Le meilleur des cas pour l’ordonnancement de groupes : Un nouvel indicateur proactif-réactif pour l’ordonnancement sous incertitudes

Abstract : This thesis represents a study of a new decision-aid criterion for manufacturing scheduling under uncertainties. The contributions made in this work relate to the groups of permutable operations context. This approach consists of proposing a flexible scheduling solution characterizing a non-enumerated and finite set of schedules. An operator is then supposed to select the appropriate schedule that best copes with the disturbances occurred on the shop floor. We focus particularly on this selection phase and we emphasize the important of the human for decision making. First, we present the best-case; a decision-aid criterion for computing the best schedule characterized by the groups of permutable operations method. We propose lower bounds for computing the best starting/completion time of operations. These lower bounds are then implemented in a branch and bound procedure in order to compute the best-case. Through to several simulations carried out on literature benchmark instances, we stress the usefulness of such criterion in a decision-aid system. Finally, we propose a Human-Machine-Interface (HMI) adapted to the groups of permutable operations and driven by a multi-criteria decision-aid system. The implementation results of this HMI on a real case study provided some insight about the practice of decision-making and scheduling under uncertainties.
Complete list of metadatas

Cited literature [132 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01830503
Contributor : Abes Star <>
Submitted on : Monday, June 3, 2019 - 1:48:08 PM
Last modification on : Wednesday, November 20, 2019 - 11:15:28 AM

File

Z_YAHOUNI.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01830503, version 2

Collections

Citation

Zakaria Yahouni. Le meilleur des cas pour l’ordonnancement de groupes : Un nouvel indicateur proactif-réactif pour l’ordonnancement sous incertitudes. Automatique. École centrale de Nantes; Université Abou Bekr Belkaid (Tlemcen, Algérie), 2017. Français. ⟨NNT : 2017ECDN0010⟩. ⟨tel-01830503v2⟩

Share

Metrics

Record views

145

Files downloads

88