. [. Bibliography and D. Albertini, Notions of controllability for bilinear multilevel quantum systems, IEEE Trans. Automat. Control, issue.8, pp.481399-1403, 2003.

]. C. Alt02 and . Altafini, Controllability of quantum mechanical systems by root space decomposition, J. Math. Phys, vol.43, issue.5, pp.2051-2062, 2002.

S. Avdonin and W. Moran, Ingham-type inequalities and Riesz bases of divided differences Mathematical methods of optimization and control of large-scale systems, Int. J. Appl. Math. Comput . Sci, vol.11, issue.4, pp.803-820, 2000.

R. [. Bloch, C. Brockett, and . Rangan, Finite Controllability of Infinite-Dimensional Quantum Systems, IEEE Transactions on Automatic Control, vol.55, issue.8
DOI : 10.1109/TAC.2010.2044273

URL : http://arxiv.org/pdf/quant-ph/0608075

J. [. Boscain, F. Gauthier, M. Rossi, and . Sigalotti, Approximate Controllability, Exact Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical Systems, Communications in Mathematical Physics, vol.30, issue.4, pp.1225-1239, 2015.
DOI : 10.1007/978-3-642-57237-1_4

URL : https://hal.archives-ouvertes.fr/hal-00869706

P. [. Berkolaiko and . Kuchment, Introduction to quantum graphs, volume 186 of Mathematical Surveys and Monographs

C. Baiocchi, V. Komornik, and P. Loreti, Ingham-Beurling type theorems with weakened gap conditions, Acta Mathematica Hungarica, vol.97, issue.1/2, pp.55-95, 2002.
DOI : 10.1023/A:1020806811956

C. [. Beauchard and . Laurent, Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl, issue.95, pp.94520-554, 2010.
DOI : 10.1016/j.matpur.2010.04.001

URL : https://doi.org/10.1016/j.matpur.2010.04.001

C. Bardos, G. Lebeau, and J. Rauch, Sharp Sufficient Conditions for the Observation, Control, and Stabilization of Waves from the Boundary, SIAM Journal on Control and Optimization, vol.30, issue.5, pp.1024-1065, 1992.
DOI : 10.1137/0330055

A. [. Baudouin and . Mercado, An inverse problem for Schrödinger equations with discontinuous main coefficient, Appl. Anal, vol.87, pp.10-111145, 2008.
DOI : 10.1080/00036810802140673

URL : http://arxiv.org/pdf/0804.1714

J. [. Ball, M. Marsden, and . Slemrod, Controllability for Distributed Bilinear Systems, SIAM Journal on Control and Optimization, vol.20, issue.4, pp.575-597, 1982.
DOI : 10.1137/0320042

URL : https://authors.library.caltech.edu/4635/1/BALsiamjco82.pdf

]. R. Bro73 and . Brockett, Lie theory and control systems defined on spheres Lie algebras: applications and computational methods, SIAM J. Appl. Math, vol.25, pp.213-225, 1972.

]. N. Bur91 and . Burq, Contrôle de l'´ equation de Schrödinger en présence d'obstacles strictement convexes, Journées " ´ Equations aux Dérivées Partielles, 1991.

E. [. Cerpa and . Crépeau, Boundary controllability for the nonlinear Korteweg???de Vries equation on any critical domain, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.2, pp.457-475, 2009.
DOI : 10.1016/j.anihpc.2007.11.003

URL : https://hal.archives-ouvertes.fr/hal-00678473

P. [. Komornik and . Loreti, Fourier series in control theory, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00086863

]. P. Kuc04 and . Kuchment, Quantum graphs. I. Some basic structures. Waves Random Media, pp.107-128, 2004.

]. C. Lau10a and . Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on an interval, ESAIM Control Optim . Calc. Var, vol.16, issue.2, pp.356-379, 2010.

]. C. Lau10b and . Laurent, Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3, SIAM J. Math. Anal, vol.42, issue.2, pp.785-832, 2010.

]. G. Leb92 and . Lebeau, Contrôle de l'´ equation de Schrödinger, J. Math. Pures Appl, vol.71, issue.93, pp.267-291, 1992.

B. [. Russell and . Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Transactions of the American Mathematical Society, vol.348, issue.09, pp.3643-3672, 1996.
DOI : 10.1090/S0002-9947-96-01672-8

B. [. Rosier and . Zhang, Local Exact Controllability and Stabilizability of the Nonlinear Schr??dinger Equation on a Bounded Interval, SIAM Journal on Control and Optimization, vol.48, issue.2, pp.972-992, 2009.
DOI : 10.1137/070709578

]. Sac00, . L. Yu, and . Sachkov, Controllability of invariant systems on Lie groups and homogeneous spaces, J. Math. Sci, vol.100, issue.8, pp.2355-2427, 2000.

]. H. Tri95 and . Triebel, Interpolation theory, function spaces, differential operators, 1995.

]. G. Tur00 and . Turinici, On the controllability of bilinear quantum systems, Mathematical models and methods for ab initio quantum chemistry, pp.75-92