R. Alexandre, Y. Morimoto, S. Ukai, C. Xu, and T. Yang, Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation, Archive for Rational Mechanics and Analysis, vol.143, issue.1
DOI : 10.1016/j.matpur.2007.03.003

URL : https://hal.archives-ouvertes.fr/hal-01116729

, Arch. Ration. Mech. Anal, vol.198, issue.1, pp.39-123, 2010.

G. E. Andrews, R. Askey, and R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, 1999.

A. Povzner, The Boltzmann equation in the kinetic theory of gases
DOI : 10.1090/trans2/047/12

. Amer, Math. Soc. Trans, vol.47, issue.2, pp.193-214, 1965.

L. Arkeryd, On the Boltzmann equation, Archive for Rational Mechanics and Analysis, vol.47, issue.100, pp.1-34, 1972.
DOI : 10.1017/S0305004100026992

URL : https://hal.archives-ouvertes.fr/hal-01579351

L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation, Archive for Rational Mechanics and Analysis, vol.5, issue.1, pp.11-21, 1981.
DOI : 10.1007/BF00280403

L. Arkeryd, Asymptotic behaviour of the Boltzmann equation with infinite range forces, Communications in Mathematical Physics, vol.5, issue.4, pp.475-484, 1982.
DOI : 10.1007/BF01214883

G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows, volume 42 of Oxford Engineering Science Series Corrected reprint of the 1994 original, With 1 IBM-PC floppy disk (3.5 inch, 1995.

A. V. Bobylev, Exact solutions of the Boltzmann equation, Dokl. Akad

L. Desvillettes, Regularization properties of the 2-dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules, Transport Theory and Statistical Physics, vol.34, issue.3, pp.341-357, 1997.
DOI : 10.1080/03605309408821082

L. Desvillettes, About the use of the Fourier transform for the Boltzmann equation Summer School on " Methods and Models of Kinetic Theory, Riv. Mat. Univ. Parma, issue.7 2, pp.1-99, 2003.

L. Desvillettes and F. Golse, On the smoothing properties of a model boltzmann equation without grad's cutoff assumption, Proceedings of the 21st International Symposium on Rarefied Gas Dynamics

L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations, Archive for Rational Mechanics and Analysis, vol.5, issue.4, pp.387-395, 1993.
DOI : 10.1007/BF00375586

T. Gramchev, S. Pilipovi´cpilipovi´c, and L. Rodino, Classes of degenerate elliptic operators in Gelfand-Shilov spaces. New Developments in Pseudo- Differential Operators, Birkhäuser Basel, issue.189, pp.15-31, 2009.
DOI : 10.1007/978-3-7643-8969-7_2

N. Lerner, Y. Morimoto, K. Pravda-starov, and C. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinetic and Related Models, vol.6, issue.3, pp.625-648, 2013.
DOI : 10.3934/krm.2013.6.625

URL : https://hal.archives-ouvertes.fr/hal-01116722

N. Lerner, Y. Morimoto, K. Pravda-starov, and C. Xu, Spectral and phase space analysis of the linearized non-cutoff Kac collision operator, Journal de Math??matiques Pures et Appliqu??es, vol.100, issue.6
DOI : 10.1016/j.matpur.2013.03.005

URL : https://hal.archives-ouvertes.fr/hal-01116721