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Résumé

Les travaux de cette thèse portent sur l’étude de la métastabilité du modèle de
Blume-Capel. Il s’agit d’un modèle introduit en 1966 dans lequel évoluent au cours
du temps des spins à trois états +1, -1, 0, représentant respectivement une particule
chargée positivement, négativement, et l’absence de particule, sur un réseau. La
thèse est structurée en deux parties.

La première partie contient un travail en collaboration avec C. Landim qui est
paru dans la revue Journal of Statistical Physics. L’article traite du comportement
métastable du modèle de Blume-Capel lorsque la température tend vers 0, dans le
cas où la taille du domaine dans lequel vit le processus est fixée durant l’évolution.

La seconde partie est consacrée à l’extension des résultats du premier papier au
cas où la taille de la boite croît exponentiellement vite vers +∞ lorsque la tempé-
rature décroît vers 0.

Pour ce modèle, sur une très grande échelle de temps, trois états métastables
subsistent, à savoir les états où le tore est respectivement remplis par des spins
négatifs, positifs, ou "nuls". Il est démontré qu’avec probabilité 1, partant de la con-
figuration n’ayant que des spins négatifs, le processus visite la conguration n’ayant
que des spins "nuls" avant de visiter la configuration n’ayant que des spins positifs.
Les résultats de la thèse consistent notamment à caractériser les configurations cri-
tiques et à fournir des estimations précises des temps d’atteinte des états stables.

Mots-clés : Métastabilité, Blume-Capel, Configurations Critiques, Temps de
Transition, Théorie du potentiel
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Abstract

This thesis is about the study of the metastability of the Blume-Capel model.
This model, introduced in 1966, is a nearest-neighbor spin system where the single
spin variable takes three possible values +1, -1, 0. One can interpret it as a system of
particles with spins. The value 0 of the spin corresponds to the absence of particle,
whereas the values ± correspond to the presence of a particle with the respective
spin. The thesis is divided in two parts.

The first part is an article published in Journal of Statistical Physics with C.
Landim. We prove the metastable behavior of the Blume-Capel model when the
temperature decreases to 0 on a fixed size torus.

The second part is dedicated to the generalization of these results to the case of
a torus which size increases to +∞ as the temperature decreases to 0.

For this model, three metastable states -1,0,+1 remain on a very large time
scale, where -1,0,+1 stand for the configuration where the torus is respectively
filled with -1’s, 0’s and +1’s. We prove that starting from -1, the process visits 0
before reaching +1 with very high probability. We also caracterize the critical confi-
gurations and provide sharp estimates of the transition times.

Keywords : Metastability, Blume-Capel, critical configurations, transition times,
potential theory
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Introduction

La métastabilité est un phénomène observé dans la nature dans de nombreux
modèles physiques, chimiques ou biologiques, en particulier dans des systèmes de
particules dans le domaine de la mécanique statistique. Elle peut se définir comme
la propriété, pour un système de particules, d’être stable d’un point de vue ciné-
tique, mais instable d’un point de vue thermodynamique. En d’autres termes, elle
met en étude l’existence d’états stables pour un système, dans lesquels ce dernier
demeure pour une longue durée avant de rejoindre son état d’équilibre sous l’action
d’une quantité suffisante d’énergie, appelée énergie d’activation. A titre d’illustration
simple, voire simpliste, observons l’évolution d’une bille sur le schéma suivant :

Il est évident qu’en position (1), la bille se trouve dans un état stable ; sans
aucune perturbation extérieure, elle restera immobile. Cependant, si l’on fournit
suffisamment d’énergie pour qu’elle quitte l’état (1) pour rejoindre l’état (2) - appelé
critique -, elle rejoindra l’état d’équilibre (3).

Une autre caractéristique de la métastabilité concerne le temps extrêmement long
de transition entre un état stable et l’état d’équilibre. Nous pouvons en observer un
exemple frappant avec le diamant. Ce dernier est composé d’atomes de carbone
qui, sous cette forme, se trouvent dans un état stable. Une fois l’énergie d’activation
fournie à ce système, dans le cas présent provenant naturellement des conditions nor-
males de température et de pression, les atomes de carbone quittent l’état diamant
pour rejoindre l’état d’équilibre graphite, mais ce après plusieurs milliards d’années.

La métastabilité est étudiée par bon nombre de scientifiques, qu’il s’agisse de phy-
siciens ou encore de mathématiciens. Bien que les premières études mathématiques
de la métastabilité datent du début du XXeme siècle, avec les travaux de Eyring et
Kramer, il a fallu attendre les approches de Freidlin et Wentzell [16] pour obser-
ver les premiers résultats obtenus dans les mathématiques modernes. La théorie des
grandes déviations permet d’étudier le comportement asymptotique des systèmes
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métastables. L’approche utilisée est dite trajectorielle, ou pathwise approach dans la
littérature.

Au début du XXIeme siècle, Bovier, Eckhoff, Gayrard et Klein (BEGK) étudient
la métastabilité sous un angle différent avec le développement de la théorie du poten-
tiel. Le raffinement des résultats déjà obtenus est conséquent, puisque cette méthode
permet pour la première fois d’estimer le temps d’atteinte d’états pertinents, en par-
ticulier les états critiques, qui constituent l’un des enjeux majeurs dans l’étude de la
métastabilité, ainsi que la probabilité d’atteindre le voisinage de certains états mé-
tastables. A ce stade, il apparaît comme naturel que la théorie du potentiel présente
de nombreux avantages dans l’étude de la métastabilité. En particulier, la notion de
capacité se révèle être centrale, et il faut très souvent estimer cette quantité à l’aide
des principes de Dirichlet et de Thomson (cf. (2.9) et (2.10)).

Au début des années 2010, Beltran et Landim [2–5] proposent une approche
de type martingale, développant les travaux de BEGK et parviennent à décrire les
comportements métastables de processus sous des hypothèses faibles : on suppose
ici que le processus est irréductible, que son état stationnaire est réversible, et que
les produits finis de taux de saut sont comparables (cf. [3] pour plus de détails).
Pourtant, leur principal résultat assure de l’existence de différentes échelles de temps
sur lesquelles nous pouvons observer un comportement métastable. Bien que ce soit
encore une fois l’estimation de capacités, aidée par les deux principes précédemment
cités, qui se trouve au centre des démonstrations, la méthode s’appuie également sur
une réduction drastique du champ d’étude grâce à l’utilisation du processus-trace,
permettant de restreindre l’observation du comportement du processus aux états
pertinents, et donc de s’affranchir de données provenant d’évènements négligeables.

Contrairement à l’approche pathwise, celle-ci ne met pas en évidence le chemin
précis parcouru par le processus d’un état stable x à un autre état stable y. En re-
vanche, la caractérisation des états critiques permet un calcul exact de la profondeur
des puits des états stables, le puits d’un état x étant un voisinage qui, une fois atteint
par le processus, le conduit en x très rapidement. Ceci permet de donner une descrip-
tion exacte de la dynamique asymptotique entre les puits, en particulier de montrer
l’existence de suites (θN) telles que TN/θN converge vers une variable exponentielle
de moyenne 1, où TN est l’instant où le processus quitte un état métastable.

Cette thèse utilise les techniques développées par Beltrán et Landim pour le cas
particulier du modèle de Blume-Capel.

Le modèle de Blume-Capel a été introduit en 1966 pour modéliser la transition
He3-He4. Il s’agit d’un modèle de spins à trois états +1, -1, 0, représentant respecti-
vement une particule chargée positivement, négativement, et l’absence de particule,
sur un réseau. Bien que considérer Zd comme réseau pour ce modèle ait du sens, cette
thèse traite du cas du tore avec conditions périodiques au bord : ΛL = (Z/LZ)2.
L’espace d’états est donné par ΩL = {−1, 0,+1}ΛL , dont les éléments sont appelés
des configurations. Chaque configuration σ ∈ ΩL possède ainsi un certain niveau
d’énergie représenté par l’hamiltonien H défini par

H(σ) =
∑
x,y∈ΛL
||x−y||=1

(σ(x)− σ(y))2 − λ
∑
x∈ΛL

(σ(x))2 − h
∑
x∈ΛL

σ(x),

où la première somme ne compte les paires qu’une seule fois, λ ∈ R est le potentiel
2



chimique, et h ∈ R est le champ magnétique extérieur. Nous observons alors qu’un
tel système est paramétré par λ et h. Plus particulièrement, chaque somme traite
d’une quantité pertinente pour le modèle. A l’évidence, la première indique le nombre
total d’interfaces d’une configuration σ. Notons que les interfaces de spin +1 et de
spin -1 ont une contribution élevée. Plus particulièrement, la seconde somme indique
la magnétisation de la configuration σ, c’est-à-dire la valeur moyenne d’un spin de
σ, tandis que la troisième somme indique sa concentration, autrement dit le nombre
total de spins chargés. Nous considérons dans cette thèse le cas où λ = 0 et 0 < h < 2
afin que les configurations présentant des rectangles de spins 0 soient des minima
d’énergie locaux, ce qui s’avèrera être central. Pour β qui désignera l’inverse de la
température (que l’on fera tendre vers l’infini), nous considérons une dynamique de
Glauber, c’est-à-dire que les spins ne pourront être flippés qu’un par un, dont les
taux de sauts sont donnés par :

Rβ(σ, σ′) = e−β[H(σ′)−H(σ)]+ , σ, σ′ ∈ ΩL,

où [·]+ désigne la partie positive. La mesure stationnaire est la mesure de Gibbs
associée à l’hamiltonien H :

µβ(σ) = 1
Zβ
e−βH(σ),

où Zβ est une constante de normalisation permettant à µβ d’être une mesure de
probabilité. En particulier, celle-ci satisfait la condition d’équilibre détaillée

µβ(σ)Rβ(σ, σ′) = Rβ(σ′, σ)µβ(σ′).

Nous remarquons donc que notre modèle favorise les configurations dont l’énergie
est faible ; en particulier, plus le nombre total d’interfaces d’une configuration σ
est petit, plus le temps de séjour du processus en cette configuration sera élevé.
On observe alors immédiatement que les trois états qui vont dessiner le paysage
métastable du modèle sont les états -1, 0 et +1, correspondant aux configurations
où tous les sites contiennent respectivement un spin -1, un spin 0 et un spin +1, qui
n’ont toutes les trois aucune interface. Ces configurations ne sont départagées que
par leur magnétisation ; on observe que

H(-1) > H(0) > H(+1).

L’étude de la compétition entre ces trois états s’est alors naturellement imposée
comme un sujet majeur pour la métastabilité de ce modèle.

Dans [13], Cirillo et Olivieri sont les premiers à travailler sur ce sujet, en s’inté-
ressant notamment au cas où le tore est de taille fixe, et où le champ magnétique
et le potentiel chimique sont faibles mais non-nuls. Comprenant que le système a
une tendance à se diriger vers les états d’énergie faible lorsque la température tend
vers 0, ils discutent des minima d’énergie locaux. On voit alors clairement que les
configurations 0 et -1 sont des états métastables dans lequel le modèle reste long-
temps avant de tenter de rejoindre +1. C’est pourquoi ils se sont intéressés à la
trajectoire typique du modèle partant de -1 pour aller vers +1 ; au milieu des spins
-1 - on parlera d’une mer de -1 -, un amas de spins 0, aussi appelé goutte, est créé.
Cette goutte grandit progressivement, au prix d’une augmentation significative de
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l’énergie, jusqu’à atteindre une taille dite critique, à partir de laquelle elle continue
de grandir, cette fois en diminuant l’énergie jusqu’à atteindre la configuration 0. La
trajectoire de 0 à +1 est alors analogue avec une goutte de +1 qui grandit de façon
similaire.

L’un des enjeux majeurs lorsque l’on étudie la métastabilité est l’estimation du
temps de passage d’un état métastable à un autre. C’est donc une question qui a
suscité, et suscite encore, beaucoup d’intérêt. Concernant le modèle de Blume-Capel,
on peut notamment trouver dans les travaux de Manzo et Olivieri [22], réalisés
dans le cas où le tore est de volume croissant et où potentiel chimique et champ
magnétique sont strictement positifs, des premières majorations et minorations du
temps d’atteinte de +1 partant de -1.

En 2013, Cirillo et Nardi [12] ont décrit de façon précise le paysage énergétique
du modèle sur un tore de volume fixe, et ont surtout donné une meilleure estimation
du temps d’atteinte de l’état +1 lorsque le modèle part de -1, présentant une erreur
exponentielle :

lim
β→∞

1
β

lnE-1[H+1] = Γc,

où HA = inf{t > 0 : σt ∈ A} représente le temps d’atteinte d’une configuration σ,
Γc = 4(n0 +1)−h[(n0 +1)n0 +1] est l’énergie nécessaire à la formation d’une goutte
critique et n0 = [2/h], où [·] désigne la partie entière.

Dans cette thèse, nous montrons d’abord que, partant de -1, le processus atteint
0 avant d’atteindre +1, et nous caractérisons les configurations critiques. Comme
mentionné ci-dessus, ces résultats ont été donné par Cirillo et Nardi. Néanmoins,
nous présentons une nouvelle démonstration basée sur une inégalité fondamentale
de la théorie du potentiel, faisant notamment le lien entre la probabilité d’atteindre
0 avant +1, et les capacités. De plus, les résultats précédents sur l’estimation des
valeurs asymptotiques des temps d’atteinte s’appuient pour la plupart sur l’approche
pathwise. Surtout, elles présentent des erreurs exponentielles ; nous étendons donc
les résultats de Cirillo et Nardi en donnant des valeurs exactes. Nos travaux ba-
sés sur l’approche martingale de Beltrán et Landim présente donc deux avantages
principaux : les estimations apparaissent comme plus fines, et la description du com-
portement métastable du modèle plus complète.

Cette thèse est constituée de deux parties. La première est constituée d’un article
co-écrit avec Claudio Landim, et publié dans la Journal of Statistical Physics. La
seconde est un article généralisant le premier au cas où le tore grandit au fur et à
mesure que la température décroît.

Le chapitre 1 concerne le premier article. Dans celui-ci, nous étudions la mé-
tastabilité du modèle dans le cas où le tore est à taille fixée, principalement le
comportement asymptotique du modèle. Le premier résultat principal concerne le
passage de la configuration -1 à la configuration +1. Nous démontrons que la pro-
babilité de ne pas passer par la configuration 0 tend vers 0 quand l’inverse de la
température β tend vers l’infini :

lim
β→∞

Pβ-1[H+1 < H0] = 0.

La démonstration de ce résultat illustre parfaitement l’efficacité de l’approche mar-
tingale de Beltrán et Landim puisque, bien que la preuve d’un tel résultat soit
4



évidemment divisée en étapes intermédiaires, la plupart d’entre elles concernent l’es-
timation de capacités. Or, dans le cas où le tore est de taille fixée, l’espace d’états
est fixe. L’estimation de la capacité entre des ensembles A et B se rapporte alors à
la recherche du chemin allant de A vers B avec la plus faible différence d’énergie,
parfois appelée hauteur dans la littérature.

Le second résultat principal donne une estimation du temps d’atteinte. On dé-
montre que, partant de -1, le temps d’atteinte de l’état +1 est d’ordre exponentiel :

lim
β→∞

1
eβΓc

E-1[H+1] = 1,

où eβΓc représente l’échelle de temps sur laquelle le modèle évolue lors du passage
de -1 à +1, avec Γc défini précédemment comme l’énergie permettant l’apparition
d’une goutte critique. Là encore, la démonstration s’appuie essentiellement sur des
résultats intermédiaires sur les capacités. Nous utilisons une identité dans [2], ex-
primant cette espérance en fonction d’une capacité et d’une somme de probabilités,
puis l’on démontre que la contribution de la majorité des termes de la somme est
négligeable devant les termes correspondant aux trois configurations -1,0 et +1,
dont les puits sont les plus profonds du modèle. La réversibilité ainsi que quelques
manipulations sur les capacités permettent alors d’obtenir cette limite.

Dans de très nombreux systèmes observables dans la nature, l’évolution de la
température influe sur la taille du domaine où évoluent les particules. Il apparaît
donc comme pertinent de généraliser ces premiers résultats au cas où la taille du
tore augmente quand la température décroît vers 0.

Dans le chapitre 2, nous nous intéressons cette fois-ci au cas où le tore est à
taille croissante avec l’inverse de la température β. Si le cas où cette taille est fixe se
ramène à l’estimation de capacités, celle-ci est rendue bien plus complexe par le fait
que le nombre de chemins entre deux ensembles A et B soit désormais très grand,
d’ordre exponentiel. Il s’agit alors de trouver des bornes fines pour ces capacités à
l’aide des principes de Dirichlet et de Thomson.

Il découle de ces observations que la vitesse à laquelle la taille du tore augmente
joue un rôle prépondérant. En effet, il est évident que le nombre total de configu-
rations dans le modèle dépend de cette taille. Alors que, dans le cas où la taille du
tore est fixe, il est suffisant de savoir que ce total est constant, il apparaît comme
clair que cela ne l’est plus si la taille du tore dépend de β. Il est donc indispensable
d’avoir une ou plusieurs conditions sur la vitesse de croissance. Plus précisément,
nous supposons que la taille du tore croît exponentiellement rapidement :

lim
β→∞

|ΛL|1/2
{
e−[(n0+1)h−2]β + e−hβ

}
et lim

β→∞
|ΛL|2 e−(2−h)β = 0 ,

où |ΛL| désigne le nombre de sites sur le tore. De plus amples explications sur ces
conditions sont disponibles à la suite du Théorème 2.2.2.

Une des principales difficultés réside encore dans l’estimations des capacités. En
particulier, il faut être en mesure de compter le nombre de configurations d’un sous-
ensemble donné. Lorsque la taille du tore est fixée, bien que le nombre total de
configurations en dépende, celui-ci reste constant. Désormais, il est indispensable
d’estimer le degré de dépendance en |ΛL| du nombre de configurations des sous-
ensembles concernés par les capacités étudiées.
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A cette difficulté s’ajoute celle de l’estimation de l’énergie de ces mêmes configu-
rations. En effet, la finesse de nos conditions exponentielles sur la vitesse de crois-
sance de la taille du tore repose sur notre capacité à donner l’énergie minimale d’un
sous-ensemble A ⊂ ΩL de configurations en fonction de la dépendance en |ΛL| du
nombre total de configurations dans A.

Une première perspective possible pour ce travail est de tenter d’améliorer ces
conditions. Nous donnons une première piste dans la Remarque 1.3.2 : il s’agirait
de tenir compte des petites perturbations aléatoires pouvant se produire lorsqu’une
goutte de spins 0 grandit. Ceci rendrait bien évidemment les estimations plus com-
plexes.

Il serait également intéressant d’étudier la métastabilité dans d’autres cas concer-
nant les valeurs de h et λ. Dans notre cas, nous supposions que λ = 0, ce qui avait
pour effet de rendre symétriques les interactions de spins -1/0 et 0/+1. En particu-
lier, la taille critique des gouttes de 0 est la même que celle des gouttes de +1. Si
λ > 0, alors ces gouttes exhibent des tailles critiques différentes ; l’évolution d’une
goutte de 0 est donc bien différente de celle d’une goutte de +1. Le comportement
métastable s’en trouve alors bien plus difficile à étudier.
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Chapitre 1

Metastability of the
two-dimensional Blume-Capel
model with zero chemical
potential and small magnetic field

1.1 Introduction
Since its first rigorous mathematical treatment [7,10,16,24,25], metastability has

been the subject of intensive investigation from different perspectives [1,6,14,15,23].
In [8,9] Bovier, Eckhoff, Gayrard and Klein, BEGK from now on, have shown that

the potential theory of Markov chains can outperform large deviations arguments
and provides sharp estimates for several quantities appearing in metastability, such
as the expectation of the exit time from a well or the probability to hit a configuration
before returning to the starting configuration.

Developing further BEGK’s potential-theoretic approach, and with an intensive
use of data reduction through trace processes, Beltrán and one of the authors of
this paper, BL from now on, devised a scheme to describe the evolution of a Markov
chain among the wells, particularly effective when the dynamics presents several
valleys of the same depth [2,4,5]. The outcome of the method can be understood as
a model reduction through coarse-graining, or as the derivation of the evolution of
the slow variables of the chain.

In the case of finite state Markov chains [3,21], under minimal assumptions, BL’s
method permits the identification of all slow variables, the derivation of the time-
scales at which they evolve and the characterization of their asymptotic dynamics.

In contrast with the pathwise approach [10, 24] and the transition path theory
[14,23], BEGK’s and BL’s approach do not attempt to describe the tube of typical
trajectories in a transition between two valleys, nor does it identify the critical
configurations which are visited with high probability in such transitions.

Nevertheless, under weak hypotheses, introduced in Section 1.3 below, potential-
theoretic arguments together with data reduction through trace processes provide
elementary identities and estimates which permit, without much effort, to charac-
terize the critical configurations, and to compute the sub-exponential pre-factors of
the expectation of hitting times. The purpose of this paper is to illustrate these
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assertions by examining the metastable behavior of the Blume-Capel model.
The Blume-Capel model is a two dimensional, nearest-neighbor spin system

where the single spin variable takes three possible values : −1, 0 and +1. One can
interpret it as a system of particles with spins. The value 0 of the spin at a lattice
site corresponds to the absence of particles, whereas the values ±1 correspond to
the presence of a particle with the respective spin.

The metastability of the Blume-Capel model has been investigated by Cirillo
and Olivieri [13], Manzo and Olivieri [22], and more recently by Cirillo and Nardi
[12], and Cirillo, Nardi and Spitoni [11]. We refer to [13, 22] interest of the model
and its role in the study of metastability.

We consider here a Blume-Capel model with zero chemical potential and a small
positive magnetic field. We examine its metastable behavior in the zero-temperature
limit in a large, but fixed, two-dimensional square with periodic boundary conditions.
In this case, there are two metastable states, the configurations where all spins are
equal to −1 or all spins equal to 0, and one ground state, the configuration where
all spins are equal to +1.

The main results state that starting from −1, the configuration where all spins
are equal to −1, the chain visits 0 before hitting +1. We also characterize the set
of critical configurations. These results are not new and appeared in [12, 13], but
we present a proof which relies on a simple inequality from the potential theory of
Markov chains. We compute the exact asymptotic values of the transition times,
which corresponds to the life-time of the metastable states. The previous results on
the transition time, based on the pathwise approach which relies on large deviations
arguments, presented estimates with exponential errors. To complete the picture, we
show that the expectation of the hitting time of the configuration 0 starting from
−1 is much larger than the transition time. This phenomenon, which may seem
contradicting the fact that the chain visits 0 before hitting +1, occurs because the
main contribution to the expectation comes from the event that the chain first hits
+1 and then visits 0. The very small probability of this event is compensated by
the very long time the chain remains at +1.

Finally, we prove the metastable behavior of the Blume-Capel model in the sense
of BL. Let Σ be the set of configurations and let V−1, V0, V+1 be neighborhoods of the
configurations −1, 0, +1, respectively. For instance, V−1 = {−1}, V0 = {0}, V+1 =
{+1}. Denote the inverse of the temperature by β, and let φ : Σ→ {−1, 0, 1, β} be
the projection defined by

φ(σ) =
∑

a=−1,0,+1

a1{σ ∈ Va} + β 1
{
σ 6∈

⋃
a=−1,0,+1

Va

}
.

We prove that there exists a time scale θβ for which φ(σ(tθβ)) converges, as β →∞,
to a Markov chain in {−1, 0,+1}. The point +1 is an absorbing point for this Markov
chain, and the other jump rates are given by

r(−1, 0) = r(0, 1) = 1 , r(−1, 1) = r(0,−1) = 0 .

As we said above this result can be interpreted as a model reduction by coarse-
graining, or as the identification of a slow variable, φ, whose evolution is asympto-
tically Markovian.
8



The article is divided as follows. In Section 1.2, we state the main results. In
Section 1.3, we introduce the main tools used throughout the article and we present
general results on finite-state reversible Markov chains. In section 1.4, we examine
the transition from −1 to 0, and in Section 1.5 the one from 0 to +1. In Section
1.6, we analyze the hitting time of 0 starting from −1. In the last section, we prove
the metastable behavior of the Blume-Capel model with zero chemical potential as
the temperature vanishes.

1.2 Notation and main results
Fix L > 1 and let ΛL = TL × TL, where TL = {1, · · · , L} is the discrete, one-

dimensional torus of length L. Denote the configuration space by Ω = {−1, 0, 1}ΛL ,
and by the Greek letters σ, η, ξ the configurations of Ω. Hence, σ(x), x ∈ ΛL,
represents the spin at x of the configuration σ.

Fix an external field 0 < h < 1, and denote by H : Ω→ R the Hamiltonian given
by

H(σ) =
∑(

σ(y)− σ(x)
)2 − h

∑
x∈ΛL

σ(x) , (1.1)

where the first sum is carried over all unordered pairs of nearest-neighbor sites of
ΛL. Let n0 = [2/h], where [a] represents the integer part of a ∈ R+. We assume that
L > n0 + 3.

Denote by β > 0 the inverse of the temperature and by µβ the Gibbs measure
associated to the Hamiltonian H at inverse temperature β,

µβ(σ) = 1
Zβ

e−βH(σ) , (1.2)

where Zβ is the partition function, the normalization constant which turns µβ a
probability measure.

Denote by −1, 0, +1 the configurations of Ω with all spins equal to −1, 0, +1,
respectively. These three configurations are local minima of the energy H, H(+1) <
H(0) < H(−1), and +1 is the unique ground state.

The Blume-Capel dynamics is the continuous-time Markov chain on Ω, denoted
by {σt : t ≥ 0}, whose infinitesimal generator Lβ acts on functions f : Ω→ R as

(Lβf)(σ) =
∑
x∈ΛL

Rβ(σ, σx,+)
[
f(σx,+)− f(σ)

]
+
∑
x∈ΛL

Rβ(σ, σx,−)
[
f(σx,−)− f(σ)

]
.

(1.3)

In this formula, σx,± represents the configuration obtained from σ by modifying the
spin at x as follows,

σx,±(z) :=
{
σ(x)± 1 mod 3 if z = x

σ(z) if z 6= x

and the rates Rβ are given by

Rβ(σ, σx,±) = exp
{
− β

[
H(σx,±)−H(σ)

]
+

}
, x ∈ ΛL ,
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where a+, a ∈ R, stands for the positive part of a : a+ = max{a, 0}.
Clearly, the Gibbs measure µβ satisfies the detailed balance condition

µβ(σ)Rβ(σ, σx,±) = min
{
µβ(σ) , µβ(σx,±)

}
= µβ(σx,±)Rβ(σx,±, σ) ,

and is therefore reversible for the dynamics.
Denote by D(R+,Ω) the space of right-continuous functions x : R+ → Ω with

left-limits and by Pσ = Pβσ, σ ∈ Ω, the probability measure on the path space
D(R+,Ω) induced by the Markov chain σt starting from σ. Expectation with respect
to Pσ is represented by Eσ.

Denote by HA, H+
A , A ⊂ Ω, the hitting time and the time of the first return to

A, respectively :

HA = inf
{
t > 0 : σt ∈ A

}
, H+

A = inf
{
t > τ1 : σt ∈ A

}
, (1.4)

where τ1 represents the time of the first jump of the chain σt. We sometimes write
H(A), H+(A) instead of HA, H+

A .

Proposition 1.2.1. Starting from −1 the chain visits the state 0 in its way to the
ground state +1.

lim
β→∞

P−1[H+1 < H0] = 0 .

Recall the definition of n0 introduced just below (1.1). Denote by Rl the set of
configurations in {−1, 0,+1}ΛL for which

(a) There is a n0 × (n0 + 1)-rectangle or a (n0 + 1)× n0-rectangle of 0-spins ;
(b) There is an extra 0 spin attached to the longest side of the rectangle ;
(c) All the remaining |ΛL| − [n0(n0 + 1) + 1] spins are equal to −1.

The configuration σ′ in Figure 1.1 is an example of a configuration inRl with n0 = 5.
The set of configurations Rl

0 is defined similarly, replacing 0-spins by +1-spins
and −1-spins by 0-spins. In particular, configurations in Rl

0 do not have −1 spins
and have n0(n0 + 1) + 1 spins equal to +1.

The next result states that, starting from −1, the chain reaches the set Rl before
hitting 0.

Proposition 1.2.2. We have that

lim
β→∞

P−1[HRl < H0] = 1 , lim
β→∞

P0[HRl0
< H+1] = 1 .

Denote by λβ(σ), σ ∈ Ω, the holding rates of the Markov chain σt, and by
pβ(η, ξ), η, ξ ∈ Ω, the jump probabilities, so that Rβ(η, ξ) = λβ(η)pβ(η, ξ). Let
Mβ(η) = µβ(η)λβ(η) be the stationary measure for the embedded discrete-time
Markov chain. The index β of Mβ will be frequently omitted below.

Denote by cap(A,B) the capacity between two disjoint subsets A, B of Ω :

cap(A,B) = capβ(A,B) =
∑
σ∈A

Mβ(σ)Pσ[HB < H+
A ] , (1.5)

and let
θβ = µβ(−1)

cap(−1, {0,+1}) · (1.6)
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Lemma 4.2 in [3] states that cap(−1, {0,+1})/ exp{−βH} converges to a constant
as β ↑ ∞, where H is the energy of the saddle configuration separating −1 from
the set {0,+1}. In particular, H−H(−1) represents the energy barrier between −1
and {0,+1} and θβ the time-scale at which the Blume-Capel model reaches the set
{0,+1} starting from the local minima −1. In this sense, Proposition 1.2.3 below
asserts that Rl corresponds to the set of saddle or critical configurations between
−1 and {0,+1}, while Rl

0 the ones between 0 and {-1,+1}.
Since we expect, by symmetric considerations, to reach +1 before −1 when

starting from 0 (cf. Assertion 1.5.3), θβ represents the time-scale in which the Blume-
Capel model reaches the ground state +1 starting from the local minima −1 or 0.

Proposition 1.2.3. For any configuration η ∈ Rl and any configuration ξ ∈ Rl
0,

lim
β→∞

cap(−1, {0,+1})
µβ(η) = 4(2n0 + 1)

3 |ΛL| = lim
β→∞

cap(0, {−1,+1})
µβ(ξ) .

The first identity of this proposition is proved in Section 1.4 and the second one
in Section 1.5.

Proposition 1.2.4. The expected time to visit the ground state starting from −1
and from 0 are given by

lim
β→∞

1
θβ

E−1[H+1] = 2 , lim
β→∞

1
θβ

E0[H+1] = 1 .

We have seen in Proposition 1.2.1 that starting from −1 the process reaches 0
before visiting +1. In contrast, the next proposition shows that the main contribu-
tion to the expectation E−1[H0] comes from the event in which the process, starting
from −1, first visits +1, remains there for a very long time and then reaches 0.

Proposition 1.2.5. We have that

1
θβ

E−1[H0] =
(
1 + o(1)

) µβ(+1)
µβ(0) P−1[H+1 < H0] ,

where o(1) is an expression which vanishes as β ↑ ∞, and

lim
β→∞

µβ(+1)
µβ(0) P−1[H+1 < H0] = ∞ .

A self-avoiding path γ from A to B, A, B ⊂ Ω, A ∩ B = ∅, is a sequence of
configurations (ξ0, ξ1, . . . , ξn) such that ξ0 ∈ A, ξn ∈ B, ξj 6∈ A ∪ B, 0 < j < n,
ξi 6= ξj, i 6= j, Rβ(ξi, ξi+1) > 0, 0 ≤ i < n. Denote by ΓA,B the set of self-avoiding
paths from A to B and let

H(A,B) := min
γ∈ΓA,B

H(γ) , H(γ) := max
0≤i≤n

H(ξi) . (1.7)

Thus, H(γ) represents the highest energy level attained by the path γ, while H(A,B)
denotes the energy of the saddle point between the sets A and B.
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Let M = {−1,0,+1} be the set of ground configurations of the main wells,
and let Vη, η ∈ M, be a neighborhood of the configuration η. We assume that all
configurations σ ∈ Vη, σ 6= η, fulfill the conditions

H(σ) > H(η) , H(η, σ) − H(η) < H(−1, {0,+1}) − H(−1) . (1.8)

The right hand side in the second condition represents the energetic barrier the
chain needs to surmount to reach the set {0,+1} starting from −1, while the left
hand side represents the energetic barrier to go from η to σ.

It follows from Proposition 1.2.3 that

H(−1, {0,+1})−H(−1) = H(0, {−1,+1})−H(0) . (1.9)

Indeed, as we pointed out below (1.6), the set Rl corresponds to the set of saddle
points between −1 and {0,+1} so that µβ(η) = exp{−βH(−1, {0,+1})} for η ∈
Rl. The same observation is in force for the set Rl

0 so that

µβ(ξ) = exp{−βH(0, {−1,+1})}

for ξ ∈ Rl
0. These two equations permit to compute the energies H(−1, {0,+1}),

H(0, {−1,+1}) and to check the identy (1.9).
We may therefore replace the expression on the right hand side of (1.8) by the

one on the right hand side of the previous formula.
Clearly, Vη = {η}, η ∈M, is an example of neighborhoods satisfying (1.8). Let V

be the union of the three neighborhoods, V = ∪η∈MVη, and let π : M→ {−1, 0, 1} be
the application which provides the magnetization of the states −1, 0, +1 : π(−1) =
−1, π(0) = 0, π(+1) = 1. Denote by Ψ = ΨV : Ω → {−1, 0, 1, [β]} the projection
defined by Ψ(σ) = π(η) if σ ∈ Vη, Ψ(σ) = [β], otherwise :

Ψ(σ) =
∑
η∈M

π(η) 1{σ ∈ Vη} + [β] 1
{
σ 6∈

⋃
η∈M

Vη

}
.

Recall from [18] the definition of the soft topology.

Theorem 1.2.6. The speeded-up, hidden Markov chain Xβ(t) = Ψ
(
σ(θβt)

)
converges

in the soft topology to the continuous-time Markov chain X(t) on {−1, 0, 1} in which
1 is an absorbing state, and whose jump rates are given by

r(−1, 0) = r(0, 1) = 1 , r(−1, 1) = r(0,−1) = 0 .

Remark 1.2.7. Denote by Bη, η ∈M, the basin of attraction of η :

Bη = {σ : lim
β→∞

Pσ[HM\{η} < Hη] = 0} .

We prove in (1.48) that Vη ⊂ Bη.

1.3 Metastability of reversible Markov chains
We present in this section some results on reversible Markov chains. Consider

two nonnegative sequences (aN : N ≥ 1), (bN : N ≥ 1). The notation aN ≺ bN (resp.
12



aN � bN) indicates that lim supN→∞ aN/bN = 0 (resp. lim supN→∞ aN/bN < ∞),
while aN ≈ bN means that aN � bN and bN � aN .

A set of nonnegative sequences (arN : N ≥ 1), r ∈ R, is said to be ordered if for
all r 6= s ∈ R arctan(arN/asN) converges.

Fix a finite set E. Consider a sequence of continuous-time, E-valued Markov
chains {ηNt : t ≥ 0}, N ≥ 1. We assume, throughout this section, that the chain
ηNt is irreducible, that the unique stationary state, denoted by µN , is reversible, and
that the jump rates of the chain ηNt , denoted by RN(x, y), x 6= y ∈ E, satisfy the
following hypothesis. Let Z+ = {0, 1, 2, . . .}, let B be the bonds of E : B = {(x, y) ∈
E × E : x 6= y ∈ E}, and let Am, m ≥ 1, be the set of functions k : B → Z+ such
that

∑
(x,y)∈B k(x, y) = m.

Assumption 1.3.1. We assume that for every m ≥ 1 the set of sequences{ ∏
(x,y)∈B

RN(x, y)k(x,y) : N ≥ 1
}
, k ∈ Am

is ordered.

This assumption is slightly weaker than the hypotheses (2.1), (2.2) in [3], but
strong enough to derive all results presented in that article [21]. It is also not difficult
to check that the Blume-Capel model introduced in the previous section fulfills
Assumption 1.3.1.

We adopt here similar notation to the one introduced in the previous section.
For example, λN(x) represents the holding rates of the Markov chain ηNt , pN(x, y),
x, y ∈ E, the jump probabilities, andMN(x) = µN(x)λN(x) a stationary measure of
the embedded discrete-time Markov chain. Analogously, Px = PNx , x ∈ E, represents
the distribution of the Markov chain ηNt starting from x and Ex the expectation
with respect to Px.

Denote by HA (resp. H+
A ), A ⊂ E, the hitting time of (resp. the return time to)

the set A, introduced in (1.4), and by cap(A,B) the capacity between two disjoint
subsets A, B of E, as defined in (1.5).

Identities (1.10)–(1.12) below are well known and will be used often (cf. [7,
Lemma 8.4]). Let A, B be two disjoint subsets of E and let x be a point which does
not belong to A ∪B. We claim that

Px[HA < HB] =
Px[HA < H+

B∪{x}]
Px[HA∪B < H+

x ] · (1.10)

To prove this identity, intersect the event {HA < HB} with the set {H+
x < HA∪B}

and its complement, and then apply the strong Markov property to get that

Px[HA < HB] = Px[H+
x < HA∪B]Px[HA < HB] + Px[HA < H+

B∪{x}] .

To obtain (1.10) it remains to subtract the first term on the right hand side from
the left hand side.

Multiply and divide the right hand side of (1.10) byM(x) and recall the definition
of the capacity to obtain that

Px[HA < HB] =
M(x)Px[HA < H+

B∪{x}]
cap(x,A ∪B) ≤ M(x)Px[HA < H+

x ]
cap(x,A ∪B) · (1.11)
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Hence, by definition of capacity and since, by [17, Lemma 2.2], the capacity is
monotone.

Px[HA < HB] ≤ cap(x,A)
cap(x,A ∪B) ≤

cap(x,A)
cap(x,B) · (1.12)

For any disjoint subsets A and B of E,

cap(A,B) ≈ max
x∈A

max
y∈B

cap(x, y) . (1.13)

Indeed, on the one hand, by monotonicity of the capacity,

cap(A,B) ≥ max
x∈A

cap(x,B) ≥ max
x∈A

max
y∈B

cap(x, y) .

On the other hand, since by [17, Lemma 2.3] cap(A,B) = cap(B,A), by definition
of the capacity,

cap(A,B) = cap(B,A) =
∑
y∈B

M(y)Py[HA < H+
B ] ≤

∑
x∈A

∑
y∈B

M(y)Py[Hx < H+
B ] .

Therefore, since cap(B, x) = cap(x,B),

cap(A,B) ≤
∑
x∈A

cap(x,B) ≤ |A| max
x∈A

cap(x,B) , (1.14)

where |A| stands for the cardinality of A. Repeating this argument for B in place of
A, we conclude the proof of (1.13).

Let GN : E×E → R+ be given by GN(x, y) = µN(x)RN(x, y) and note that GN

is symmetric. In the electrical network interpretation of reversible Markov chains,
GN(x, y) represents the conductance of the bond (x, y). Recall that a self-avoiding
path γ from A to B, A, B ⊂ E, A ∩ B = ∅, is a sequence of sites (x0, x1, . . . , xn)
such that x0 ∈ A, xn ∈ B, xj 6∈ A ∪ B, 0 < j < n, xi 6= xj, i 6= j, RN(xi, xi+1) > 0,
0 ≤ i < n. Denote by ΓA,B the set of self-avoiding paths from A to B and let

GN(A,B) := max
γ∈ΓA,B

GN(γ) , GN(γ) := min
0≤i<n

GN(xi, xi+1) .

By [3, Lemma 4.2], for every disjoint subsets A, B of E, the limit

lim
N→∞

cap(A,B)
GN(A,B) exists and belongs to (0,∞) . (1.15)

Remark 1.3.2. Suppose that the stationary state µN is a Gibbs measure associated
to an energy H, and that we are interested in the Metropolis dynamics : µN(x) =
Z−1
N exp{−NH(x)}, where ZN is the partition function, RN(x, y) = exp{−N [H(y)−

H(x)]+}. In this context, GN(x, y) = Z−1
N exp{−N max[H(x),H(y)]}. In particular,

for a path γ = (x0, x1, . . . , xn), GN(γ) = Z−1
N exp{−N maxiH(xi)}, and for two

disjoint subsets A, B of E,

GN(A,B) = 1
ZN

exp
{
−N min

γ∈ΓA,B
max
x∈γ

H(x)
}

= 1
ZN

exp
{
−NH(xA,B)

}
= µN(xA,B) ,

where xA,B represents the configuration with highest energy in the optimal path joi-
ning A to B.
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Lemma 1.3.3. Let E1 be a subset of E. Assume that for every y 6∈ E1, z ∈ E1 such
that µ(z) � µ(y),

cap(y, z)
µ(z) ≺ cap(y, E1)

µ(y) · (1.16)

Then, for any B ⊂ E1, x ∈ E1 \B,

Ex[HB] =
(
1 + o(1)

) 1
cap(x,B)

∑
y∈E1

µ(y)Py[Hx < HB] .

Proof. By [2, Proposition 6.10],

Ex[HB] = 1
cap(x,B)

∑
y∈E

µ(y)Py[Hx < HB] .

Denote by P1
z, z ∈ E1, the distribution of the trace of σ(t) on the set E1 starting

from z (cf. [2, Section 6] for the definition of trace), and let q(y, z) = Py[HE1 = Hz],
y 6∈ E1, z ∈ E1. Decomposing the previous sum according to y ∈ E1, y 6∈ E1, since
B and x are contained in E1, we can write it as∑

y∈E1

µ(y)P1
y[Hx < HB] +

∑
y 6∈E1

∑
z∈E1

µ(y) q(y, z)P1
z[Hx < HB]

=
∑
y∈E1

µ(y)P1
y[Hx < HB] +

∑
z∈E1

P1
z[Hx < HB]

∑
y 6∈E1

µ(y) q(y, z) .
(1.17)

We claim that for y 6∈ E1, z ∈ E1,

µ(y) q(y, z) = µ(y)Py[Hz < HE1\{z}] ≺ µ(z) . (1.18)

If µ(y) ≺ µ(z), there is nothing to prove. Assume that µ(z) � µ(y). In this case, by
(1.12) and by (1.16), the second term in the previous expression is bounded by

µ(y) cap(y, z)
cap(y, E1) ≺ µ(z) .

This proves claim (1.18) and that the second term in the last equation of (1.17) is
of smaller order than the first, as asserted. �

Remark 1.3.4. In Lemma 1.3.3, the set E1 has to be interpreted as the union
of wells. In the set-up of the Metropolis dynamics introduced in Remark 1.3.2, by
(1.15) and Remark 1.3.2, for two disjoint subsets A, B of E, cap(A,B)/µN(xA,B)
converges, as N ↑ ∞, to a real number in (0,∞). Hence, assumption (1.16) requires
that for all z ∈ E1, y 6∈ E1 such that H(y) ≤ H(z),

H(xy,E1) − H(y) < H(xy,z) − H(z) . (1.19)

In other words, it requires the energy barrier from y to E1 to be smaller than the
one from z to y.

The condition (1.19) may seem unnatural, as one would expect on the right hand
side H(xz,Ĕz)−H(z) instead of H(xy,z)−H(z), where Ĕz represents the union of the
wells which do not contain z. However, since in the applications the set E1 represents
the union of wells, and since H(y) ≤ H(z), to reach y from z the chain has to
jump from one well to another and therefore one should have H(xz,Ĕz) − H(z) ≤
H(xy,z)−H(z).
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Lemma 1.3.5. Fix two points a 6= b ∈ E. The set of sequences µN(x)Px[Ha < Hb],
x ∈ E \ {b}, is ordered.

Proof. Fix two points x 6= y ∈ E\{b}. We need to show that the ratio µN(x)Px[Ha <
Hb]/µN(y)Py[Ha < Hb] either converges to some value in [0,∞), or increases to ∞.

Assume that x 6= a, y 6= a, and consider the trace of the process ηN(t) on
A = {a, b, x, y}. By [2, Section 6], the stationary measure of the trace is the measure
µN conditioned to A. Denote by PAz the distribution of the trace starting from z. It
is clear that Pz[Ha < Hb] = PAz [Ha < Hb]. Therefore,

µN(x)Px[Ha < Hb]
µN(y)Py[Ha < Hb]

= µAN(x)PAx [Ha < Hb]
µAN(y)PAy [Ha < Hb]

,

where µAN represents the measure µN conditioned to A. Since A has only four ele-
ments, it is not difficult to show that

PAx [Ha < Hb] = pA(x, a) + pA(x, y)pA(y, a)
1− pA(x, y)pA(y, x) ,

where pA(z, z′) represents the jump probabilities of the trace process. In particu-
lar, multiplying the numerator and the denominator of the penultimate ratio by
λA(x)λA(y), where λA stands for the holding rates of the trace process, yields that
the penultimate ratio is equal to

µAN(x){λA(y)RA(x, a) +RA(x, y)RA(y, a)}
µAN(y){λA(x)RA(y, a) +RA(y, x)RA(x, a)} ,

where RA is the jump rates of the trace process. By reversibility of the trace process,
this expression is equal to

λA(y)RA(a, x) +RA(y, x)RA(a, y)
λA(x)RA(a, y) +RA(x, y)RA(a, x) ·

By [3, Lemma 4.3], the set of jump rates RA(x, y) satisfies Assumption 1.3.1. Since
λA(z) =

∑
z′∈A,z′ 6=z R

A(z, z′), by Assumption 1.3.1, the previous expression either
converges to some a ∈ [0,∞), or increases to +∞. This completes the proof of the
assertion in the case where x, y 6∈ {a, b}.

The case where x = a or y = a is simpler and left to the reader. �

1.4 Proofs of Propositions 1.2.1, 1.2.2 and 1.2.3
We examine in this section the metastable behavior of the Blume-Capel model

starting from −1. We first consider isovolumetric inequalities. Denote by ‖ · ‖ the
Euclidean norm of R2. A subset A of Z2 is said to be connected if for every x, y ∈ A,
there exists a path γ = (x = x0, x1, . . . , xn = y) such that xi ∈ A, ‖xi+1 − xi‖ = 1,
0 ≤ i < n. Denote by Cn, n ≥ 1, the class of connected subset of Z2 with n points
and by P (A) the perimeter of a set A ∈ Cn :

P (A) = #{(x, y) ∈ Z2 : x ∈ A , y 6∈ A , ‖x− y‖ = 1} .

where #B stands for the cardinality of B.
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Assertion 1.4.1. For every A ∈ Cn, n ≥ 1, P (A) ≥ 4
√
n.

Proof. For A ∈ Cn, denote by R the smallest rectangle which contains A, and by
a ≤ b the length of the sides of the rectangle R. Since A is connected, and since R
is the smallest rectangle which contains A, P (A) ≥ 2(a + b) ≥ 2 min{a + b : a, b ∈
R , ab ≥ n} = 4

√
n. �

Assertion 1.4.2. A set A ∈ Cm, m = n0(n0 + 1), is either a n0× (n0 + 1) rectangle
or has perimeter P (A) ≥ 4(n0 + 1).

Proof. Fix A ∈ Cm, and recall the notation introduced in the proof of the previous
assertion. We may restrict our study to the case where the length of the shortest
side of R, denoted by a, is less than or equal to n0, otherwise the perimeter is larger
than or equal to 4(n0 + 1). If a = n0, either b = n0 + 1, in which case, to match the
volume, A must be a n0 × (n0 + 1) rectangle, or b ≥ n0 + 2, in which case the the
perimeter is larger than or equal to 4(n0 + 1). If a = n0 − j for some j ≥ 1, then
b = n0 + k for some k ≥ 1 because the volume has to be at least n2

0. Actually, we
need (n0 + k)(n0 − j) ≥ n0(n0 + 1), i.e., (k − j)n0 ≥ n0 + kj. This forces k − j ≥ 2
and, in consequence, the perimeter P ≥ 4(n0 + 1). �

We may extend the definition of the energy H introduced in (1.1) to configuration
in {−1, 0, 1}Z2 . For such configurations, while H(σ) is not well defined, H(σ)−H(−1)
is well defined if σx = −1 for all but a finite number of sites.

Denote by ∂+A the outer boundary of a connected finite subset A of Z2 : ∂+A =
{x 6∈ A : ∃ y ∈ A s.t. ‖y − x‖ = 1}.

Assertion 1.4.3. Let A ∈ Cn, 1 ≤ n ≤ (n0 + 1)2, and let σ be a configuration of
{−1, 0, 1}Z2 whose spins in A are equal to +1 and whose spins in ∂+A are either 0
or −1. Let σ? b ?e the configuration obtained from σ by switching all spins in A to
0. Then, H(σ) ≥ H(σ?) + 2.

Proof. By definition of the energy and since A has n points, H(σ)−H(σ?) = −hn+
P0+3P−1 ≥ −hn+P , where P0 (resp. P−1) represents the number of unordered pairs
{x, y} such that x ∈ A, y ∈ ∂+A, σy = 0 (resp. σy = −1), and where P = P0 + P−1
is the perimeter of the set A.

It remains to show that P − hn ≥ 2. For 1 ≤ n ≤ 3, this follows by inspecting
all cases, keeping in mind that h < 1 ≤ 2. Next, assume that n ≥ 4. By hypothesis,
and since n0 ≥ 2, (2/3)

√
n ≤ (2/3)(n0 + 1) ≤ n0 < 2/h so that hn < 3

√
n. Hence,

by Assertion 1.4.1, hn < 4
√
n−
√
n ≤ P − 2. �

Let A(σ) = {x ∈ Z2 : σx 6= −1}, σ ∈ {−1, 0, 1}Z2 . Denote by B the boundary of
the valley of −1 formed by the set of configurations with n0(n0 + 1) sites with spins
different from −1 :

B =
{
σ ∈ {−1, 0, 1}Z2 : |A(σ)| = n0(n0 + 1)

}
.

Sometimes, we consider B as a subset of Ω. Denote by R the subset of B given by

R =
{
σ ∈ {−1, 0}Z2 : A(σ) is a n0 × (n0 + 1) rectangle

}
.

Note that the spins of a configuration σ ∈ R are either −1 or 0 and that all confi-
gurations in R have the same energy.

17



Assertion 1.4.4. We have that H(σ) ≥ H(ζ) + 2 for all σ ∈ B \R, ζ ∈ R.

Proof. Fix a configuration σ ∈ B. Let σ∗ be the configuration of {−1, 0}Z2 ob-
tained from σ by switching all +1 spins to 0. Applying Assertion 1.4.3 k times,
where k is the number of connected components formed by +1 spins, we obtain that
H(σ) ≥ H(σ∗) + 2k. It is therefore enough to prove the lemma for configurations
σ ∈ {−1, 0}Z2 .

Let σ be a configuration inB∩{−1, 0}Z2 . If A(σ) is not a connected set, by gluing
the connected components of A(σ), we reach a new configuration σ∗ ∈ B∩{−1, 0}Z2

such that A(σ∗) ∈ Cm, m = n0(n0 + 1). Since by gluing two components, the volume
remains unchanged, but the perimeter decreases at least by 2, H(σ) ≥ H(σ∗) + 2. It
is therefore enough to prove the lemma for those configuration in B∩ {−1, 0}Z2 for
which A(σ) is a connected set.

Finally, fix a configuration in B ∩ {−1, 0}Z2 for which A(σ) is a connected set
different from a n0 × (n0 + 1) rectangle. Since all spins of σ are either −1 or 0. By
definition of the energy, H(σ)−H(ζ) = P (A(σ))− P (A(ζ)), and the result follows
from Assertion 1.4.2. �

Denote byR+ the set of configurations in {−1, 0,+1}Z2 in which there are n0(n0+
1)+1 spins which are not equal to −1. Of these spins, n0(n0 +1) form a n0×(n0 +1)-
rectangle of 0 spins. The remaining spin not equal to −1 is either 0 or +1.

It is clear that starting from −1 the set (B \ R) ∪ R+ is hit before the chain
attains the set {0,+1} :

HB+ < H{0,+1} P−1 a.s. , where B+ = (B \R) ∪R+ . (1.20)

Let Ra ⊂ R+ be the set of configurations for which the remaining spin is a 0 spin
attached to one of the sides of the rectangle. Note that all configurations of Ra have
the same energy and that H(ξ) = H(ζ) + 2− h if ξ ∈ Ra, ζ ∈ R. In particular,

H(σ) ≥ H(ξ) + h , σ ∈ B \R , ξ ∈ Ra . (1.21)

On the other hand, for a configuration η ∈ R+ \Ra, H(η) ≥ H(ζ) + 4− h if ζ ∈ R,
so that

H(η) ≥ H(ξ) + 2 , η ∈ R+ \Ra , ξ ∈ Ra . (1.22)

Recall the notation introduced just above Remark 1.3.2. For two disjoint subsets
A to B of Ω, denote by ξA,B, the configuration with highest energy in the optimal
path joining A to B. By Remark 1.3.2 and (1.15), the limit

lim
β→∞

cap(A,B)
µβ(ξA,B) exists and takes value in (0,∞) . (1.23)

In particular, for every subset B of Ω and every configuration σ 6∈ B,

cap(σ,B) � 1
Zβ

e−βH(σ) . (1.24)

Assertion 1.4.5. For all configurations ξ ∈ Ra, cap(ξ,−1) ≈ Z−1
β exp{−βH(ξ)}.
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Proof. Fix ξ ∈ Ra. By (1.23), (1.24), it is enough to exhibit a path γ = (ξ =
ξ0, ξ1, . . . , ξn = −1) from ξ to −1 such that maxiH(ξi) = H(ξ).

Consider the path γ = (ξ = ξ0, ξ1, . . . , ξn = −1), n = n0(n0 + 1) + 1, constructed
as follows. ξ1 is the configuration obtained from ξ by switching the attached spin
from 0 to −1. Clearly, H(ξ1) = H(ξ) − 2 + h, and ξ1 consists of a n0 × (n0 + 1)
rectangle of 0 spins.

The portion (ξ1, . . . , ξn0+1) of the path γ is constructed by flipping, successively,
from 0 to −1, all spins of one of the shortest sides of the rectangle, keeping until
the last step the perimeter of the set A(ξi) equal to 4n0(n0 + 1). In particular, ξn0+1
consists of a n0 × n0 square of 0 spins, H(ξi+1) = H(ξi) + h for 1 ≤ i < n0, and
H(ξn0+1) = H(ξn0)−2+h. The energy of this piece of the path attains its maximum
at ξn0 and H(ξn0) = H(ξ1) + (n0 − 1)h = H(ξ)− 2 + n0h < H(ξ).

The path proceed in this way by always flipping from 0 to −1 all spins of one of
the shortest sides. It is easy to check that H(ξi) < H(ξ) for all 1 ≤ i ≤ n, proving
the assertion. �

Assertion 1.4.6. For every σ ∈ B+ \Ra, limβ→∞ P−1[Hσ = HB+ ] = 0.

Proof. Fix σ ∈ B+ \Ra and ξ ∈ Ra. By (1.12), by the monotonicity of the capacity,
stated in [17, Lemma 2.2], by (1.24), and by Assertion 1.4.5,

P−1[Hσ = HB+ ] ≤ cap(σ,−1)
cap(B+,−1) ≤

C0

Zβ

e−βH(σ)

cap(ξ,−1) ≤ C0 e
−β{H(σ)−H(ξ)}

for some finite constant C0 independent of β. By (1.21), (1.22), this expression
vanishes as β ↑ ∞, proving the assertion. �

Denote by S the set of stable configurations :

S =
{
σ ∈ Ω : lim

β→∞
λβ(σ) = 0

}
. (1.25)

The stable configurations are formed as follows. On a background of negative spins,
place vacant rectangles of length and width larger than or equal to 2, and vacant
rings of length or width larger than 2. Note that inserting a vacant ring of size L×L
is not excluded. We just require the graph distance between vacant rectangles and
vacant rings to be greater than or equal to 3, and we do not allow the coexistence
of horizontal and vertical vacant rings.

Inside the vacant rectangles and the vacant rings, embed positive rectangles along
the same rules. This means that the length and the width of the positive rectangles
should be larger than or equal to 2, that the length or the width of the positive
rings should be larger than or equal to 2, that the graph distance between positive
rectangles and positive rings should be greater than or equal to 3. Note that the
previous rules do not allow the coexistence of horizontal and vertical positive rings.
Furthermore, we do not allow positive spins to have negative spins as neighbors, a
layer of vacant sites should separate positive from negative spins.

The next assertion is the only one in which capacities are not used to derive the
needed bounds, because we estimate the probability of reaching a state which can be
attained through paths in which the energy never increase. The argument, though,
is fairly simple.
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Figure 1.1 – Examples of configurations σ ∈ Rc and σ′ ∈ Ri in the case where
n0 = 5. A 1 × 1 square centered at x has been placed at each site x occupied by a
0-spin. All the other spins are equal to −1.

Denote by Rc, Ri the configurations of Ra in which the extra particle is attached
to the corner, interior of the rectangle, respectively (cf. Figure 1.1).
Assertion 1.4.7. For σ ∈ Rc and σ′ ∈ Ri,

lim
β→∞

Pσ[Hσ+ = HS] = 1/2 and lim
β→∞

Pσ[Hσ− = HS] = 1/2 ,

lim
β→∞

Pσ′ [Hσ+ = HS] = 2/3 and lim
β→∞

Pσ′ [Hσ− = HS] = 1/3 ,

where σ− is the configuration obtained from σ or σ′ by flipping to −1 the attached
0 spin, and σ+ is the configuration whose set A(σ+), formed only by 0 spins, is the
smallest rectangle which contains A(σ).
Proof. Suppose that the extra 0 spin is not attached to the corner of the rectangle.
Denote by σ1, σ2 the configurations obtained from σ′ by flipping from −1 to 0 one
of the two −1 spins which has two neighbor spins equal to 0, and let σ0 = σ−.
By definition, Rβ(σ′, σj) = 1, 0 ≤ j ≤ 2, and Rβ(σ′, σ′) = o(1) for all the other
configurations, where o(1) represents an expression which vanishes as β ↑ ∞. This
shows that pβ(σ′, σj) converges to 1/3, 0 ≤ j ≤ 2. We may repeat this argument to
show that from σj, j = 1, 2, one reaches S at σ+ with a probability asymptotically
equal to 1. The argument is similar if the extra spin is attached to the corner. �

Assertion 1.4.8. Fix a configuration σ ∈ S for which A(σ) is a m× n rectangle of
0 spins in a sea of −1 spins. Assume that m ≤ n. Then,

lim
β→∞

Pσ[HB = HS\{σ}] = 1 .

In this equation, if n0 < m, n ≤ L−3, B is the set of four configurations in which a
row or a column of 0 spins is added to the rectangle A(σ). If n0 < m < n = L−2, the
set B is a triple which includes a band of 0 spins of width m and two configurations
in which a row or a column of 0 spins of length n is added to the rectangle A(σ).
If n0 < m ≤ L − 3, n = L, the set B is a pair formed by two bands of 0 spins of
width m + 1. If n0 < m = n = L − 2, B is a pair of two bands of width L − 2. If
n0 < m = L − 2, n = L, B = {0}. Finally, if 2 ≤ m ≤ n0, n ≥ 3, the set B is the
pair (quaternion if m = n) of configurations in which a row or a column of 0 spins
of length m is removed from the rectangle A(σ), and if m = n = 2, B = {−1}. The
case m = 1 is not considered because such a configuration is not stable.
Proof. The assertion follows from inequality (1.12), and from estimates of cap(σ, S \
{σ}), cap(σ, S\[B∪{σ}]). In the casem > n0, cap(σ, S\{σ}) ≈ µβ(σ) exp{−β(2−h)}
and cap(σ, S\[B∪{σ}]) ≺ µβ(σ) exp{−β(2−h)}, while in the casem ≤ n0, cap(σ, S\
{σ}) ≈ µβ(σ) exp{−β(m−1)h} and cap(σ, S\ [B∪{σ}]) ≺ µβ(σ) exp{−β(m−1)h}.
�
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Lemma 1.4.9. For every σ ∈ B+,

lim
β→∞

P−1[Hσ = HB+ ] = 1
|Ra|

1{σ ∈ Ra} ,

where |Ra| represents the number of configurations in Ra.

Proof. In view of Assertion 1.4.6, we may restrict our attention to σ ∈ Ra. Fix a
reference configuration σ∗ in Ra. By (1.10) and by definition of the capacity,

P−1[Hσ = HB+ ] =
M(−1)P−1[Hσ = H+

B+∪{−1}]
cap(−1,B+) ·

By reversibility, the numerator of this expression is equal to

M(σ)Pσ[H−1 = H+
B+∪{−1}] = µβ(σ)λ(σ)Pσ[H−1 = H+

B+∪{−1}] .

By Assertions 1.4.7 and 1.4.8, Pσ[H−1 = H+
B+∪{−1}] = n(σ) + o(1), where

n(σ) =
{

1/2 if σ ∈ Rc,
1/3 if σ ∈ Ri.

Since

λ(σ) =
{

2 + o(1) if σ ∈ Rc,
3 + o(1) if σ ∈ Ri,

and since µβ(σ) = µβ(σ∗), we conclude that

P−1[Hσ = HB+ ] = µβ(σ∗)
cap(−1,B+)

(
1{σ ∈ Ra}+ o(1)

)
.

Summing over σ ∈ B+, we conclude that µβ(σ∗)/cap(−1,B+) = |Ra|−1(1 + o(1)),
which completes the proof of the assertion. �

It follows from the proof of the previous lemma that for any configuration σ∗ ∈
Ra,

lim
β→∞

cap(−1,B+)
µβ(σ∗) = |Ra| . (1.26)

Denote by Rl, Rs the configurations of Ra in which the extra particle is attached
to one of the longest, shortest sides, respectively, and letRlc = Rl∩Rc,Rli = Rl∩Ri.
The next lemma is an immediate consequence of Assertions 1.4.7 and 1.4.8.

Lemma 1.4.10. For σ ∈ Rlc, σ′ ∈ Rli, and σ′′ ∈ Rs,

lim
β→∞

Pσ[H−1 = HM] = 1/2 and lim
β→∞

Pσ[H0 = HM] = 1/2 ,

lim
β→∞

Pσ′ [H−1 = HM] = 1/3 and lim
β→∞

Pσ′ [H0 = HM] = 2/3 ,

lim
β→∞

Pσ′′ [H−1 = HM] = 1 .
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It follows from this assertion that for every σ ∈ Ra,

lim
β→∞

Pσ[H{−1,0} < H+1] = 1 , (1.27)

Proof.[Proof of Proposition 1.2.3] We prove below the first idendity of the proposi-
tion. We first claim that

cap(−1, {0,+1}) = cap(−1,B+)
∑
σ∈B+

P−1[Hσ = HB+ ]Pσ[H{0,+1} < H−1] .

(1.28)
Indeed, since starting from −1 the process hits B+ before {0,+1}, by the strong
Markov property we have that

P−1[H{0,+1} < H+
−1] =

∑
σ∈B+

P−1[Hσ = H+
B+∪{−1}]Pσ[H{0,+1} < H−1] .

By (1.10), we may rewrite the previous expression as

P−1[HB+ < H+
−1]

∑
σ∈B+

P−1[Hσ = HB+ ]Pσ[H{0,+1} < H−1] .

This proves (1.28) in view of the definition (1.5) of the capacity.
By (1.28) and (1.26), for any configuration σ∗ ∈ Ra,

lim
β→∞

cap(−1, {0,+1})
µβ(σ∗) = |Ra| lim

β→∞

∑
σ∈B+

P−1[Hσ = HB+ ]Pσ[H{0,+1} < H−1] .

By Lemma 1.4.9, the right hand side is equal to

lim
β→∞

∑
σ∈Ra

Pσ[H{0,+1} < H−1] . (1.29)

By Lemma 1.4.10, this expression is equal to (1/2)|Rlc| + (2/3)|Rli| = 2|ΛL|{2 +
(4/3)(n0 − 1)}, which completes the proof of the first claim of the proposition. �

Assertion 1.4.11. We have that

lim
β→∞

cap(−1,0)
cap(−1, {0,+1}) = 1 .

Proof. Let σ∗ be a configuration in Ra. By the proof of Proposition 1.2.3 up to
(1.29),

lim
β→∞

cap(−1,0)
µβ(σ∗) = lim

β→∞

∑
σ∈Ra

Pσ[H0 < H−1] .

By (1.27), this expression is equal to (1.29). This completes the proof of the assertion.
�
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Proof.[Proof of Proposition 1.2.1] Let q(σ) = P−1[Hσ = HB+ ], σ ∈ B+. By Assertion
1.4.6, q(σ)→ 0 if σ 6∈ Ra. Hence, by (1.20),

P−1[H+1 < H0] =
∑
σ∈B+

q(σ)Pσ[H+1 < H0] =
∑
σ∈Ra

q(σ)Pσ[H+1 < H0] + o(1) .

By (1.27), for all σ ∈ Ra,

Pσ[H+1 < H0] = Pσ[H+1 < H0 , H{−1,0} < H+1] = Pσ[H−1 < H+1 < H0] .

Therefore, by the strong Markov property,

P−1[H+1 < H0] = P−1[H+1 < H0]
∑
σ∈Ra

q(σ)Pσ[H−1 < H{0,+1}] + o(1) .

By Lemma 1.4.10, for σ ∈ Rl, lim supβ→∞ Pσ[H−1 < H{0,+1}] ≤ 1/2, which com-
pletes the proof of the proposition. �

Proof.[Proof of Proposition 1.2.2] We prove the proposition when the chain starts
from −1, the argument being analogous when it starts from 0. Since the chains hits
B+ before reaching 0 and Rl, by the strong Markov property,

P−1[HRl < H0] =
∑
σ∈B+

P−1[Hσ = HB+ ]Pσ[HRl < H0] .

By Lemma 1.4.9, this expression is equal to

(
1 + o(1)

) 1
|Ra|

{
|Rl| +

∑
σ∈Rs

Pσ[HRl < H0]
}
.

By Assertions 1.4.7 and 1.4.8, for all σ ∈ Rs, σ′ ∈ R

lim
β→∞

Pσ[HR < HRl∪{−1,0}] = 1 , lim
β→∞

Pσ′ [H−1 < HRl∪{0}] = 1 .

Therefore, for all σ ∈ Rs,

lim
β→∞

Pσ[H−1 < HRl∪{0}] = 1 .

Hence, by the strong Markov property and by the first two identities of this proof,

P−1[HRl < H0] =
(
1 + o(1)

) 1
|Ra|

{
|Rl| +

∑
σ∈Rs

P−1[HRl < H0]
}
,

which completes the proof of the proposition. �
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1.5 Proofs of Propositions 1.2.3 and 1.2.4
We examine in this section the metastable behavior of the Blume-Capel model

starting from 0. The main observation is that the energy barrier from 0 to −1
is larger that the one from 0 to +1. We may therefore ignore −1 and argue by
symmetry that the passage from 0 to +1 is identical to the one from −1 to 0.

In analogy to the notation introduced right before Assertion 1.4.4, let B0 be the
set of configurations with n0(n0 + 1) sites with spins different from 0, and let R0 be
the subset of B0 given by

R0 =
{
σ ∈ {0,+1}Z2 : {x : σ(x) 6= 0} forms a n0 × (n0 + 1) rectangle

}
.

Denote by R+
0 the set of configurations in {−1, 0,+1}Z2 in which there are n0(n0 +

1)+1 spins which are not equal to 0, and in which n0(n0 +1) spins of magnetization
+1 form a n0× (n0 + 1)-rectangle. Finally, let Ra

0 ⊂ R+
0 be the set of configurations

for which the remaining spin is a +1 spin attached to one of the sides of the rectangle,
and let

B+
0 = (B0 \R0) ∪ R+

0 .

Assertion 1.5.1. For every σ ∈ B+
0 , limβ→∞ P0[Hσ = HB+

0
] = |Ra

0|−11{σ ∈ Ra
0}.

Moreover, if σ∗ represents a configuration in Ra
0,

lim
β→∞

cap(0,B+
0 )

µβ(σ∗) = |Ra
0| .

Proof. As in Assertion 1.4.6, we may exclude all configurations σ ∈ {0,+1}ΛL which
do not belong to Ra

0. We may also exclude all configurations in B+
0 which have

a negative spin since by turning all negative spins into positive spins we obtain
a new configurations whose energy is strictly smaller than the one of the original
configuration. For the configurations in Ra

0 we may apply the arguments presented
in the proof of Lemma 1.4.9. �

Denote by Rc
0, Ri

0 the configurations of Ra
0 in which the extra particle is attached

to the corner, interior of the rectangle, respectively. Denote by Rl
0, Rs

0 the configu-
rations of Ra

0 in which the extra particle is attached to one of the longest, shortest
sides, respectively, and let Rlc

0 = Rl
0 ∩ Rc

0, Rli
0 = Rl

0 ∩ Ri
0. The proof of the next

assertion is analogous to the one of Lemma 1.4.10 since it concerns configurations
with only 0 and +1 spins.

Assertion 1.5.2. For σ ∈ Rlc
0 , σ′ ∈ Rli

0 , and σ′′ ∈ Rs
0,

lim
β→∞

Pσ[H0 = HM] = 1/2 and lim
β→∞

Pσ[H+1 = HM] = 1/2 ,

lim
β→∞

Pσ′ [H0 = HM] = 1/3 and lim
β→∞

Pσ′ [H+1 = HM] = 2/3 ,

lim
β→∞

Pσ′′ [H0 = HM] = 1 .

The next claim follows from the previous two assertions.

Assertion 1.5.3. We have that

lim
β→∞

P0[H−1 < H+1] = 0 .
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Proof. Since, starting from 0, the setB+
0 is reached before the process hits {−1,+1},

by the strong Markov property,

lim
β→∞

P0[H−1 < H+1] = lim
β→∞

∑
σ∈B+

0

P0[Hσ = HB+
0

]Pσ[H−1 < H+1] .

By Assertion 1.5.1 and by the strong Markov property at time HM, this expression
is equal to

lim
β→∞

1
|Ra

0|
∑
σ∈Ra0

Eσ
[
Pσ(HM)[H−1 < H+1]

]
= c0 lim

β→∞
P0[H−1 < H+1] .

where we applied Assertion 1.5.2 to derive the last identity. In this equation, c0 =
{|Rlc

0 |/2|Ra
0|}+ {|Rli

0 |/3|Ra
0|} < 1. This completes the proof of the assertion. �

Proof.[Proof of Proposition 1.2.3, Part B] The proof is similar to the one of Part A,
presented in the previous section. As in (1.28), we have that

cap(0, {−1,+1}) = cap(0,B+
0 )
∑
σ∈B+

0

P0[Hσ = HB+
0

]Pσ[H{−1,+1} < H0] .

Hence, by Assertion 1.5.1, for any configuration σ∗ ∈ Ra
0,

lim
β→∞

cap(0, {−1,+1})
µβ(σ∗) = |Ra

0| lim
β→∞

∑
σ∈B+

0

P0[Hσ = HB+
0

]Pσ[H{−1,+1} < H0] .

By Assertion 1.5.1, the right hand side is equal to

lim
β→∞

∑
σ∈Ra0

Pσ[H{−1,+1} < H0] .

By Assertion 1.5.2, this expression is equal to (1/2)|Rlc
0 | + (2/3)|Rli

0 | = 2|ΛL|{2 +
(4/3)(n0− 1)}, which completes the proof of the second claim of the proposition. �

As in Assertion 1.4.11 we have that

lim
β→∞

cap(0,+1)
cap(0, {−1,+1}) = 1 . (1.30)

Assertion 1.5.4. We have that

lim
β→∞

cap(−1,+1)
cap(−1, {0,+1}) = 1 .

Proof. We repeat the proof of the part A of Proposition 1.2.3 up (1.29) to obtain
that

lim
β→∞

cap(−1,+1)
µβ(σ∗) = lim

β→∞

∑
σ∈Ra

Pσ[H+1 < H−1] ,

if σ∗ represents a configuration in Ra. By (1.27), this expression is equal to

lim
β→∞

∑
σ∈Ra

Pσ[H0 < H+1 < H−1]

= lim
β→∞

P0[H+1 < H−1]
∑
σ∈Ra

Pσ[H0 < H{−1,+1}] .

where we used the strong Markov property in the last step. By Lemma 1.4.10 and
Assertion 1.5.3, this limit is equal to (1/2)|Rlc| + (2/3)|Rli|, which completes the
proof of the assertion. �
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Assertion 1.5.5. We have that

lim
β→∞

cap(+1, {−1,0})
cap(0, {−1,+1}) = 1 .

Proof. Indeed, by monotonicity of the capacity and by (1.14),

cap(+1,0) ≤ cap(+1, {−1,0}) ≤ cap(+1,0) + cap(+1,−1) .

By Assertion 1.5.4, by (1.30), and by Proposition 1.2.3, cap(+1,−1)/cap(0,+1)→ 0
as β ↑ ∞. Hence,

lim
β→∞

cap(+1, {−1,0})
cap(0,+1) = 1 .

To complete the proof, it remains to recall (1.30). �

We turn to the proof of Proposition 1.2.4. We first show that the assumptions of
Lemma 1.3.3 are in force for E1 =M. Recall Remark 1.3.4.

Assertion 1.5.6. Consider two configurations σ 6∈M and η ∈M. If H(σ) ≤ H(η),
then H(ξσ,M)−H(σ) < H(ξσ,η)−H(η).

Proof. We claim that for any configuration σ 6∈M, H(ξσ,M)−H(σ) ≤ 2−h. To prove
this claim it is enough to exhibit a self-avoiding path from σ to M whose energy is
kept below H(σ) + 2− h. This is easy. Starting from σ we may first reach the set S
of stable configurations through a path whose energy does not increase. Denote by
σ? the configuration in S attained through this path. From σ? we may reach the set
M by removing all small droplets (the ones whose smaller side has length n0 or less)
and by increasing the large droplets (the ones whose both sides have length at least
n0 + 1) in such a way that the energy remains less than or equal to H(σ?) + 2− h.
This proves the claim.

On the other hand, since H(ζ) ≥ H(η) + 4 − h for any configuration ζ which
differs from η at one site, H(ξσ,η)−H(η) ≥ 4− h, which proves the assertion. �

Assertion 1.5.7. We have that

lim
β→∞

M(−1)P−1[H0 < H+
{−1,+1}]

cap(−1, {0,+1}) = 1 .

Proof. Fix σ∗ in Ra. In view of Proposition 1.2.3, it is enough to show that

lim
β→∞

M(−1)P−1[H0 < H+
{−1,+1}]

µβ(σ∗) = 4(2n0 + 1)
3 |ΛL| .

In the proof of Proposition 1.2.3.A, replace cap(−1, {0,+1}) by the numerator ap-
pearing in the statement of this assertion. The proof is identical up to formula (1.29).
It remains to estimate

lim
β→∞

∑
σ∈Ra

Pσ[H0 < H{−1,+1}] which is equal to lim
β→∞

∑
σ∈Ra

Pσ[H{0,+1} < H−1]

in view of (1.27). This expression has been computed at the end of the proof of
Proposition 1.2.3.A, which completes the proof of the assertion. �
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Proof.[Proof of Proposition 1.2.4] We first assume that the chain starts from 0. By
Lemma 1.3.3 and Assertion 1.5.6,

E0[H+1] =
(
1 + o(1)

) 1
cap(0,+1)

{
µβ(0) + µβ(−1)P−1[H0 < H+1]

}
.

Since the second term in the expression inside braces is bounded by µβ(−1) ≺ µβ(0),
the expectation is equal to (1 + o(1))µβ(0)/cap(0,+1). By (1.30), we may replace
cap(0,+1) by cap(0, {−1,+1}). On the other hand, by Proposition 1.2.3,

lim
β→∞

µβ(0)
cap(0, {−1,+1})

cap(−1, {0,+1})
µβ(−1) = 1 .

This completes the proof of the proposition in the case in which the chain starts
from 0.

We turn to the case in which the chain starts from −1. By Lemma 1.3.3,

E−1[H+1] =
(
1 + o(1)

) 1
cap(−1,+1)

{
µβ(−1) + µβ(0)P0[H−1 < H+1]

}
.

By (1.10), by reversibility and by definition of the capacity,

µβ(0)P0[H−1 < H+1] =
M(0)P0[H−1 < H+

{0,+1}]
λβ(0)P0[H{−1,+1} < H+

0 ]

=
M(−1)P−1[H0 < H+

{−1,+1}]
λβ(0)P0[H{−1,+1} < H+

0 ]
=

µβ(0)M(−1)P−1[H0 < H+
{−1,+1}]

cap(0, {−1,+1}) ·

Hence, by Assertion 1.5.7,

E−1[H+1] =
(
1 + o(1)

) µβ(−1)
cap(−1,+1)

{
1 + µβ(0) cap(−1, {0,+1})

µβ(−1) cap(0, {−1,+1})

}
.

To complete the proof it remains to recall the statements of Proposition 1.2.3 and
Assertion 1.5.4. �

1.6 The hitting time of 0 starting from −1
We prove in this section Proposition 1.2.5. By Lemma 1.3.3 and Assertion 1.5.6,

E−1[H0] =
(
1 + o(1)

) 1
cap(−1,0)

{
µβ(−1) + µβ(+1)P+1[H−1 < H0]

}
.

By (1.10) and the first identity in (1.11), and by reversibility, the second term inside
braces is equal to

µβ(+1)M(+1)
P+1[H−1 < H+

{0,+1}]
cap(+1, {−1,0}) = µβ(+1)M(−1)

P−1[H+1 < H+
{−1,0}]

cap(+1, {−1,0}) ·

By the first identity in (1.11), this expression is equal to

µβ(+1) cap(−1, {0,+1})
cap(+1, {0,−1}) P−1[H+1 < H0] .
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By Assertion 1.5.5 and Proposition 1.2.3, we may replace the ratio of the capacities
by µβ(−1)/µβ(0). Hence,

E−1[H0] =
(
1 + o(1)

) µβ(−1)
cap(−1,0)

{
1 + µβ(+1)

µβ(0) P−1[H+1 < H0]
}
.

By Lemma 1.6.1 below, this expression is equal to

E−1[H0] =
(
1 + o(1)

) µβ(−1)
cap(−1,0)

µβ(+1)
µβ(0) P−1[H+1 < H0] .

By Assertion 1.4.11, we may replace in the right hand side of the previous formula
cap(−1,0) by cap(−1, {0,+1}). This proves the first assertion of the proposition in
view of the definition of θβ. The second assertion of the proposition is the content
of Lemma 1.6.1.

Lemma 1.6.1. We have that

lim
β→∞

µβ(+1)
µβ(0) P−1[H+1 < H0] = ∞ .

The proof of this lemma is divided in several assertions. By (1.11), and by the
definition of the capacity,

P−1[H+1 < H0] =
µβ(−1)λβ(−1)P−1[H+1 < H+

{−1,0}]
cap(−1, {0,+1}) · (1.31)

We estimate the probability appearing in the numerator. This is done by propo-
sing a path from −1 to +1 which does not visit 0. The obvious path is the optimal
one from −1 to 0 juxtaposed with the optimal one from 0 +1, modified not to visit
0.

We describe the path in S, the set of stable configurations introduced in (1.25).
Let ξ0 ∈ S be the configuration formed by a L× (L− 2) band of 0-spins and a L× 2
band of −1 spins. The first piece of the path, denoted by γ0, connects −1 to ξ0. It
is formed by creating and increasing a droplet of 0-spins in a sea of −1-spins.

Let γ0 = (−1 = η0, . . . , ηN = ξ0), where
— N = 2(L− 3),
— η1 is a 2× 2 square of 0-spins in a background of negative spins,
— For k < N − 1, ηk+1 is obtained from ηk adding a line of 0-spins to transform

a j × j-square of 0-spins into a (j + 1)× j-square of 0-spins, or to transform
(j + 1)× j-square of 0-spins into a j × j-square of 0-spins.

Note that ηN is obtained from ηN−1 transforming a (L− 2)× (L− 2) rectangle into
a L× (L− 2) band.

Let ξ1 ∈ S be the configuration formed by a 2 × 2 square of +1-spins in a
background of 0-spins. The last piece of the path, denoted by γ1, connects ξ0 to +1
and is constructed in a similar way as γ0 so that γ1 = (ξ1 = ζ0, . . . , ζN = +1). Note
that the length of γ1 is the same as the one of γ0.

Denote by q(η, ξ) the jump probabilities of the trace of σ(t) on S : q(η, ξ) =
Pη[Hξ = HS\{η}]. Let

q(γ0) =
N−1∏
k=0

q(ηk, ηk+1) , q(γ1) =
N−1∏
k=0

q(ζk, ζk+1) ,
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so that
P−1

[
H+1 < H+

{−1,0}
]
≥ q(γ0) q(ξ0, ξ1) q(γ1) . (1.32)

We estimate the three terms on the right hand side.

Assertion 1.6.2. There exists a positive constant c0, independent of β, such that

q(γ0) ≥ c0 e
−β{4(n0−1)−[n0(n0+1)−2]h} .

Proof. By the arguments presented in the proof of Assertion 1.4.8, there exists a
positive constant c0, independent of β, such that q(ηk, ηk+1) ≥ c0 if k ≥ 2n0 − 1.
Thus,

q(γ0) ≥ c0

2(n0−1)∏
k=0

q(ηk, ηk+1) ,

and η2n0−1 is a (n0 + 1)× (n0 + 1) square of 0 spins in a sea of −1-spins.
Denote by λS the holding rates of the trace of σ(t) on S, by µS the invariant

probability measure, and let MS(η) = λS(η)µS(η). The measure MS is reversible for
the dicrete-time chain which jumps from η to ξ with probability q(η, ξ).

By the proof of Assertion 1.4.8, there exists a positive constant c0, independent
of β, such that q(ηk+1, ηk) ≥ c0 if k < 2(n0 − 1). Thus, multiplying and dividing by
MS(−1), by reversibility

2(n0−1)∏
k=0

q(ηk, ηk+1) =
MS(η2(n0−1))
MS(−1)

2n0−3∏
k=0

q(ηk+1, ηk) q(η2(n0−1), η2n0−1)

≥ c0
MS(η2(n0−1))
MS(−1) q(η2(n0−1), η2n0−1) ,

where the configuration η2(n0−1) is a (n0 + 1)× n0 rectangle of 0-spins.
Recall that MS(η) = µS(η)λS(η). Since µS(η) = µβ(η)/µβ(S), by [2, Proposition

6.1], for any η ∈ S,

MS(η) = µβ(η)
µβ(S) λβ(η)Pη

[
HS\{η} < H+

η

]
= cap(η, S \ {η})

µβ(S) · (1.33)

We claim that

MS(η2(n0−1)) q(η2(n0−1), η2n0−1) ≥ c0 µS(η2(n0−1)) e−β(2−h) . (1.34)

To keep notation simple, let η = η2(n0−1), ξ = η2n0−1. By definition of q and by the
first equality in (1.11), the jump probability appearing on the left hand side is equal
to

Pη
[
Hξ = HS\{η}

]
=

µβ(η)λβ(η)Pη
[
Hξ = H+

S

]
cap(η, S \ {η}) ·

The denominator cancels the numerator in (1.33). On the other hand, to reach
ξ from η without returning to η, the simplest way consists in creating a 0-spin
attached to the longer side of the rectangle and to build a line of 0-spins from
this first one. Only the first creation has a cost which vanishes as β ↑ ∞. Hence,
λβ(η)Pη

[
Hξ = H+

S

]
≥ c0Rβ(η, η′) where η′ is a critical configuration in Rl. This

completes the proof of (1.34) since Rβ(η, η′) = exp{−β(2− h)}.
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It remains to estimateMS(−1). Recall (1.23). Since ξ−1,S\{−1} is the configuration
with three 0-spins included in a 2× 2 square, cap(−1, S \ {−1}) ≤ C0 exp{−β[8−
3h]}µβ(−1). Hence, by (1.33),

MS(−1) ≤ C0 e
−β(8−3h) µS(−1) . (1.35)

Putting together all previous estimates, we obtain that

q(γ0) ≥ c0
µβ(η2(n0−1))
µβ(−1) e−β(2−h) eβ(8−3h) ,

which completes the proof of the assertion in view of the definition of η2(n0−1). �

Next result is proved similarly.
Assertion 1.6.3. There exists a positive constant c0, independent of β, such that

q(γ1) ≥ c0 e
−β{4(n0−1)−[n0(n0+1)−2]h} .

We turn to the probability q(ξ0, ξ1). Recall that ξ0 is the configuration formed
by a L × (L − 2) band of 0-spins and a L × 2 band of −1 spins, and that ξ1 is the
configuration formed by a 2× 2 square of +1-spins in a background of 0-spins.
Assertion 1.6.4. There exists a positive constant c0, independent of β, such that

q(ξ0, ξ1) ≥ c0 e
−2β[2−h] .

Proof. By definition of q and by (1.10),

q(ξ0, ξ1) = Pξ0
[
Hξ1 = HS\{ξ0}

]
=

µβ(ξ0)λβ(ξ0)Pξ0
[
Hξ1 = H+

S

]
cap(ξ0, S \ {ξ0})

·

We claim that
Pξ0
[
Hξ1 = H+

S

]
≥ c0 e

−2β[2−h] . (1.36)
To estimate this probability, we propose a path γ3 from ξ0 to ξ1 which avoids S. The
path consists in filling the −1-spins with 0-spins, until one −1-spin is left. At this
point, to avoid the configuration 0, we switch this −1-spin to +1. To complete the
path we create a 2× 2 square of +1-spins from the first +1-spin, as in the optimal
path from 0 to ξ1.

Hence, γ3 as length 2L+3. Denote this path by γ3 = (ξ0 = η′0, η
′
1, . . . , η

′
2L+3 = ξ1).

From η′0 to η′2L−2 the next configurations is obtained by flipping a −1 spin to a 0-
spin as in an optimal path from ξ0 to 0. In this piece of the path, all jumps have a
probability bounded below by a positive constant. Therefore, there exists a positive
constant c0, independent of β, such that

Pξ0
[
Hξ1 = H+

S

]
≥

2L+2∏
j=0

pβ(η′j, η′j+1) ≥ c0

2L+2∏
j=2L−1

pβ(η′j, η′j+1) .

The first and the last probabilities in this product, pβ(η′2L−1, η
′
2L) and pβ(η′2L+2, η

′
2L+3),

are also bounded below by a positive constant. The other ones can be estimated ea-
sily, proving (1.36).

By (1.23), cap(ξ0, S\{ξ0})/µβ(ξ0) is bounded above by C0 exp{−β[2−h]}, while
an elementary computation shows that λβ(ξ0) is bounded below by c0 exp{−β[2−h]}.
This completes the proof of the assertion. �
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By (1.32) and Assertions 1.6.2, 1.6.3 and 1.6.4,

P−1
[
H+1 < H+

{−1,0}
]
≥ c0 e

−2β{2(2n0−1)−[n0(n0+1)−1]h} . (1.37)

Proof.[Proof of Lemma 1.6.1] Since λ(−1) ≥ c0e
−β[4−h], by (1.31), (1.37),

P−1[H+1 < H0] ≥ c0
µβ(−1)

cap(−1, {−1,0}) e
−β{8n0−[2n0(n0+1)−1]h} .

Therefore, by Proposition 1.2.3,

µβ(+1)
µβ(0) P−1[H+1 < H0] ≥ c0 e

βL2
e−β{4(n0−1)−[n0(n0+1)−2]h} .

It remains to show that L2 > 4(n0 − 1)− [n0(n0 + 1)− 2]h. By definition of n0,
n0h > 2− h, so that 4(n0− 1)− [n0(n0 + 1)− 2]h ≤ 2n0− 6 + hn0 + 3h. As hn0 < 2
and h < 1, this expression is less than or equal to 2n0. This expression is smaller
than L2 because L ≥ 2 and L > n0. �

1.7 Proof of Theorem 1.2.6
The statement of Theorem 1.2.6 follows from Proposition 1.7.3 and Lemma 1.7.6

below and from Theorem 5.1 in [18]. We start deriving some consequences of the
assumption (1.8). Clearly, it follows from (1.8) and from (1.23) that for all η ∈ M

and σ ∈ Vη, σ 6= η,
µβ(η)

cap(σ, η) ≺ θβ . (1.38)

Assertion 1.7.1. For all η ∈M and σ ∈ Vη, σ 6= η,

µβ(σ) ≺ µβ(η) , cap(η,M \ {η}) ≺ cap(σ, η) .

Proof. The first bound is a straightforward consequence of the hypothesis H(σ) >
H(η). In view of (1.23), to prove the second bound we have to show that H(σ, η) <
H(η,M \ {η}). The case η = −1 is a consequence of the second hypothesis in (1.8),
as the case η = 0 if one recalls (1.9). It remains to consider the case η = +1. By
condition (1.8) and (1.9),

H(σ,+1) < H(+1) + H(0, {−1,+1})−H(0) < H(0, {−1,+1}) .

By Assertion 1.5.5 and by (1.23), H(0, {−1,+1}) = H(+1, {−1,0}). Therefore,

H(σ,+1) < H(+1, {−1,0}) ,

which proves the second claim of the assertion. �
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Assertion 1.7.2. For all η 6= ξ ∈M and for all σ ∈ Vη, σ′ ∈ Vξ,

cap(σ, σ′) ≈ cap(η, ξ) .

Proof. Fix η 6= ξ ∈M and σ ∈ Vη, σ′ ∈ Vξ. We need to prove that H(η, ξ) = H(σ, σ′).
On the one hand, by definition, H(σ, σ′) ≤ max{H(σ, η),H(η, η′),H(η′, σ′)}. By the
proof of Assertion 1.7.1, H(σ, η) < H(η,M\{η}), with a similar inequality replacing
σ, η by σ′, η′, respectively. Since H(A,B) is decreasing in each variable, H(η,M\{η})
and H(η′,M \ {η′}) are less than or equal to H(η, η′), which shows that H(σ, σ′) ≤
H(η, η′).

Conversely, H(η, η′) ≤ max{H(η, σ),H(σ, σ′),H(σ′, η′)}. By the previous para-
graph, H(η, σ) < H(η, η′) and H(σ′, η′) < H(η, η′) so that H(η, η′) ≤ H(σ, σ′). This
completes the proof of the assertion. �

We conclude this preamble with two simple remarks. Fix η ∈M and σ ∈ Vη. By
(1.13) and Assertion 1.7.2,

cap(σ,∪ξ 6=ηVξ) ≈ max
σ′∈∪ξ 6=ηVξ

cap(σ, σ′) ≈ max
ξ∈M\{η}

cap(η, ξ) .

Applying (1.13) once more, we conclude that

cap(σ,∪ξ 6=ηVξ) ≈ cap(η,M \ {η}) . (1.39)

In particular, by Assertion 1.7.1,

lim
β→∞

cap(σ,∪ξ 6=ηVξ)
cap(σ, η) = 0 . (1.40)

Denote by σA(t), A ⊂ Ω, the trace of σ(t) on A. By [2, Proposition 6.1], σA(t) is
a continuous-time Markov chain. Moreover, for B ⊂ A, σB(t) is the trace of σA(t)
on B. When A = M, we represent σA(t) by η(t). Denote RA

β (σ, σ′), σ 6= σ′ ∈ A, the
jump rates of the Markov chain σA(t).

Recall the definition of the map π : M → {−1, 0, 1}, introduced just before the
statement of Theorem 1.2.6. Denote by ψ = ψV : V → {−1, 0, 1} the projections
defined by ψ(σ) = π(η) if σ ∈ Vη :

ψ(σ) =
∑
η∈M

π(η) 1{σ ∈ Vη} .

Recall also the definition of the time-scale θβ introduced in (1.6).

Proposition 1.7.3. As β ↑ ∞, the speeded-up, hidden Markov chain ψ(σV(θβt))
converges to the continuous-time Markov chain X(t) introduced in Theorem 1.2.6.

We first prove Proposition 1.7.3 in the case where the wells Vη are singletons :
Vη = {η}. In this case, ψ is a bijection, and ψ(η(t)) is a Markov chain on {−1, 0, 1}.

Lemma 1.7.4. As β ↑ ∞, the speeded-up chain η(θβt) converges to the continuous-
time Markov chain on M in which +1 is an absorbing state, and whose jump rates
r(η, ξ), are given by

r(−1,0) = r(0,+1) = 1 , r(−1,+1) = r(0,−1) = 0 .
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Proof. Denote by rβ(η, ξ) the jump rates of the chain η(θβt). It is enough to prove
that

lim
β→∞

rβ(η, ξ) = r(η, ξ) (1.41)

for all η 6= ξ ∈M.
By [2, Proposition 6.1], the jump rates rβ(η, ξ), η 6= ξ ∈M, of the Markov chain

ηβ(t) are given by
rβ(η, ξ) = θβ λ(η)Pη[Hξ = H+

M] .
Dividing and multiplying the previous expression by Pη[HM\{η} < H+

η ], in view of
[2, Lemma 6.6] and of (1.10), we obtain that

rβ(η, ξ) = θβ
µβ(η) cap(η,M \ {η}) Pη[Hξ < HM\{η,ξ}] .

For η = +1 and ξ = −1, 0, by Assertion 1.5.5 and by Proposition 1.2.3,

lim
β→∞

rβ(+1, ξ) ≤ lim
β→∞

θβ
µβ(+1) cap(+1,M \ {+1}) = lim

β→∞

µβ(0)
µβ(+1) = 0 .

On the other hand, by Proposition 1.2.3,

lim
β→∞

θβ
µβ(0) cap(0,M \ {0}) = 1 ,

while θβcap(−1,M \ {−1})/µβ(−1) = 1. Furthermore, by Proposition 1.2.1 and
Assertion 1.5.3,

lim
β→∞

P−1[H+1 < H0] = lim
β→∞

P0[H−1 < H+1] = 0 .

This yields (1.41) and completes the proof of the lemma. �

Denote by PV
σ, σ ∈ V, the probability measure on the path space D(R+,V)

induced by the Markov chain σV(t) starting from σ. Expectation with respect to PV
σ

is represented by EV
σ. Clearly, for any disjoint subsets A, B of V,

PV
σ[HA < HB] = Pσ[HA < HB] . (1.42)

The hitting time of a subset A of V by the trace chain σV can be represented in
terms of the original chain σ(t). Under Pσ,

HV
A = inf{t > 0 : σV(t) ∈ A} =

∫ HA

0
1{σ(t) ∈ V} dt . (1.43)

Let
V̆(η) = V̆η =

⋃
ζ 6=η

Vζ .

Denote by {Tj : j ≥ 0} the jump times of the hidden chain ψ(σV(t)) :

T0 = 0 , Tj+1 = inf{t ≥ Tj : σV(t) ∈ V̆(σV(Tj))
}
, j ≥ 0 ,

Similarly, denote by {τj : j ≥ 0} the successive jump times of the chain η(t).
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Lemma 1.7.5. Fix σ ∈ V−1. There exists a sequence εβ → 0 such that for j = 1, 2

lim
β→∞

PV
σ

[
|τj − Tj| ≥ θβεβ

]
= 0 , lim

β→∞
PV
σ

[
T3 − T2 ≤ θβε

−1
β

]
= 0 . (1.44)

Moreover,

lim
β→∞

PV
σ

[
σ(T1) 6∈ V0

]
= 0 , lim

β→∞
PV
σ

[
σ(T2) 6∈ V+1

]
= 0 . (1.45)

Proof. Fix a configuration σ ∈ V−1. By (1.42), (1.12) and (1.40),

lim sup
β→∞

PV
σ

[
HV̆(−1) < H−1

]
≤ lim

β→∞

cap(σ, V̆(−1))
cap(σ,−1) = 0 . (1.46)

On the other hand, under PV
σ,

τ1 =
∫ H0,+1

H−1

1{σ(s) = −1} ds .

Hence, under PV
σ and on the event {H−1 < HV̆(−1)} we have that

T1 = H−1 +
∫ H(V̆−1)

H−1

{
1{σ(s) = −1}+ 1{σ(s) 6= −1}

}
ds

= τ1 + H−1 +
∫ H(V̆−1)

H−1

1{σ(s) 6= −1} ds −
∫ H0,+1

H(V̆−1)
1{σ(s) = −1} ds .

It remains to estimate the last three terms.
To bound the first term, by (1.42), (1.12), and (1.40),

lim sup
β→∞

PV
σ[HV̆−1

< H−1] = lim sup
β→∞

Pσ[HV̆−1
< H−1] ≤ lim

β→∞

cap(σ, V̆−1)
cap(σ,−1) = 0 .

Hence, to prove that PV
σ[H−1 > θβεβ]→ 0, it is enough to show that

lim
β→∞

PV
σ[HV̆−1∪{−1} > θβεβ] = 0 .

By Tchebycheff inequality, by Lemma 6.9 and Proposition 6.10 in [2], and by (1.42),
the previous probability is less than or equal to

1
θβεβ

1
cap(σ, V̆−1 ∪ {−1})

∑
η∈V

µβ(η)Pη[Hσ < HV̆−1∪{−1}] .

By definition of θβ, since the capacity is monotone, and since we may restrict the
sum to V−1, the previous expression is less than or equal to

1
εβ

cap(−1, {0,+1})
cap(σ,−1)

µβ(V−1)
µβ(−1) ·

By Assertion 1.7.1, µβ(V−1)/µβ(−1) is bounded and cap(−1, {0,+1})/cap(σ,−1)
vanishes as β ↑ ∞. Hence, the previous expression converges to 0 for every sequence
εβ which does not decrease too fast.
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We turn to the second term of the decomposition of T1. By the strong Markov
property and by (1.43), we need to estimate,

PV
−1

[ ∫ H(V̆−1)

0
1{σ(s) 6= −1} ds > θβεβ

]
= P−1

[ ∫ H(V̆−1)

0
1{σ(s) ∈ V \ {−1}} ds > θβεβ

]
.

By Tchebycheff inequality and by [2, Proposition 6.10], the previous probability is
less than or equal to

1
θβεβ

1
cap(−1, V̆−1)

∑
η∈V\{−1}

µβ(η)Pη[H−1 < HV̆−1
] .

By (1.39), cap(−1, V̆−1) ≈ cap(−1, {0,+1}). Hence, by definition of θβ, and since
the sum can be restricted to the set V−1 \{−1}, the previous expression is less than
or equal to

C0

εβ

1
µβ(−1) µβ(V−1 \ {−1})

for some finite constant C0. By Assertion 1.7.1, the ratio of the measures vanishes
as β ↑ ∞. In particular, the previous expression converges to 0 as β ↑ ∞ if εβ does
not decrease too fast.

The third term in the decomposition of T1 is absolutely bounded by H0,+1 −
H(V̆η) and can be handled as the first one. This proves the first assertion of (1.44)
for j = 1.

In a similar way one proves that T2− T1 is close to τ2− τ1. The first assertion of
(1.44) for j = 2 follows from this result and from the bound for T1− τ1. The details
are left to the reader.

We turn to the proof of the first assertion in (1.45). Since V̆−1 = V0 ∪ V+1,

PV
σ

[
σ(T1) 6∈ V0

]
= Pσ

[
σ(H) ∈ V+1

]
,

where H = H(V̆−1). We may rewrite the previous probability as

Pσ
[
σ(H) ∈ V+1 , H0 < H+1

]
+ Pσ

[
σ(H) ∈ V+1 , H0 > H+1

]
.

Both expression vanishes as β ↑ ∞. The second one is bounded by Pσ[H+1 <
H0], which vanishes by Proposition 1.2.1. Since H < min{H0, H+1}, by the strong
Markov property, the first term is less than or equal to

max
σ′∈V+1

Pσ′
[
H0 < H+1

]
.

This expression converges to 0 as β ↑ ∞ because V+1 is contained in the basin of
attraction of +1. The proof of the second assertion in (1.45) is similar and left to
the reader.

We finally examine the second assertion of (1.44). By the second assertion of
(1.45), it is enough to prove that

lim
β→∞

PV
σ

[
T3 − T2 ≤ θβε

−1
β , σ(T2) ∈ V+1

]
= 0 .
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By the strong Markov property, this limit holds if

lim
β→∞

max
σ′∈V+1

PV
σ′

[
T1 ≤ θβε

−1
β

]
= 0 .

Since V+1 is contained in the basin of attraction of +1, it is enough to show that

lim
β→∞

max
σ′∈V+1

PV
σ′

[
T1 ≤ θβε

−1
β , H+1 < T1

]
= 0 .

On the event {H+1 < T1}, {T1 ≤ θβε
−1
β } ⊂ {T1 ◦ θH+1 ≤ θβε

−1
β }, where {θt : t ≥ 0}

represents the semigroup of time translations. In particular, by the strong Markov
property, we just need to show that

lim
β→∞

PV
+1
[
T1 ≤ θβε

−1
β

]
= 0 .

Let {ej : j ≥ 1} be the length of the sojourn times at +1. Hence, {ej : j ≥ 1} is
a sequence of i.i.d. exponential random variables with parameter λ(+1). Denote by
A the set of configurations with at least n0(n0 + 1) sites with spins not equal to +1.
Each time the process leaves the state +1 it attempts to reach A before it returns
to +1. Let δ be the probability of success :

δ = PV
+1
[
HA < H+

+1
]
.

Let N ≥ 1 be the number of attempts up to the first success so that
∑

1≤j≤N ej
represents the total time the process σ(t) remained at +1 before it reached A. It is
clear that under PV

+1,
N∑
j=1

ej ≤ T1 ,

and that N is a geometric random variable of parameter δ independent of the se-
quence {ej : j ≥ 1}. In view of the previous inequality, it is enough to prove that

lim
β→∞

P+1
[ N∑
j=1

ej ≤ θβε
−1
β

]
= 0 .

The previous probability is less than or equal to

λ(+1) θβε−1
β PV

+1
[
HA < H+

+1
]

= 1
εβ

θβ
µβ(+1) cap(A,+1) .

Since θβcap(A,+1)/µβ(+1) ≺ 1, the previous expression vanishes if εβ does not
decrease too fast to 0. This completes the proof of the lemma. �

Proof.[Proof of Proposition 1.7.3] The assertion of the proposition is a straightfor-
ward consequence of Lemmas 1.7.4 and 1.7.5.

Fix σ ∈ V−1 and recall the notation introduced in Lemma 1.7.5. Let A =
{σ(T1) ∈ V0} ∩ {σ(T2) ∈ V+1}. By (1.45), PV

σ[Ac]→ 0. On the set A,

ψ(σV(θβt)) = −1{t < T1/θβ} + 1{T2/θβ ≤ t < T3/θβ}

By Lemma 1.7.4, (τ1/θβ, (τ2 − τ1)/θβ) converges to a pair of independent, mean 1,
exponential random variables. Hence, by (1.44), (T1/θβ, (T2 − T1)/θβ, (T3 − T2)/θβ)
converges in distribution to (e1, e2,∞), where (e1, e2) is a pair of independent, mean
1, exponential random variables. This completes the proof. �
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Lemma 1.7.6. Let ∆ = Ω \ V. For all ξ ∈ V, t > 0,

lim
β→∞

Eξ
[ ∫ t

0
1{σ(sθβ) ∈ ∆} ds

]
= 0 .

Proof. Fix ξ ∈ V+1. On the one hand, by [2, Proposition 6.10],

1
θβ

Eξ
[ ∫ H+1

0
1{σ(s) ∈ ∆} ds

]
≤ 1

θβ

µβ(+1)
cap(ξ,+1)

µβ(∆)
µβ(+1) ·

This expression vanishes as β ↑ ∞ because, by (1.38), µβ(+1)/cap(ξ,+1) � θβ, and
because µβ(∆) ≺ µβ(+1), as +1 is the unique ground state.

On the other hand, by the strong Markov property,

1
θβ

Eξ
[ ∫ tθβ

H+1

1{σ(s) ∈ ∆} ds
]
≤ 1

θβ
E+1

[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds

]
.

Therefore, to prove the lemma for ξ ∈ V+1 it is enough to show that

lim
β→∞

E+1

[ ∫ t

0
1{σ(sθβ) ∈ ∆} ds

]
= 0 .

This last assertion follows from Lemma 1.7.7 below.
Similar arguments permit to reduce the statement of the lemma for ξ ∈ V0 (resp.

ξ ∈ V−1) to the verification that

lim
β→∞

Eζ
[ ∫ t

0
1{σ(sθβ) ∈ ∆} ds

]
= 0 ,

for ζ = 0 (resp. ζ = −1), which follows from Lemma 1.7.7 below.
�

Lemma 1.7.7. Let ∆∗ = Ω \M. For all ξ ∈M, t > 0,

lim
β→∞

Eξ
[ ∫ t

0
1{σ(sθβ) ∈ ∆∗} ds

]
= 0 .

Proof. Consider first the case ξ = +1. Clearly,

E+1

[ ∫ t

0
1{σ(sθβ) ∈ ∆∗} ds

]
≤ 1

µβ(+1)
∑
σ∈Ω

µβ(σ)Eσ
[ ∫ t

0
1{σ(sθβ) ∈ ∆∗} ds

]
.

Since µβ is the stationary state, the previous expression is equal to

tµβ(∆∗)
µβ(+1) ,

which vanishes as β →∞ because +1 is the unique ground state.
We turn to the case ξ = 0. We first claim that

lim
β→∞

E0

[ 1
θβ

∫ H{−1,+1}

0
1{σ(s) ∈ ∆∗} ds

]
= 0 . (1.47)
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Indeed, by [2, Proposition 6.10], the previous expectation is equal to
1
θβ

〈V 1{∆∗}〉µβ
cap(0, {−1,+1}) = µβ(0)

θβ cap(0, {−1,+1})
〈V 1{∆∗}〉µβ

µβ(0) ,

where V is the harmonic function V (σ) = Pσ[H0 < H{−1,+1}]. By definition of θβ,
the first fraction on the right hand side is bounded.

It remains to estimate the second fraction, which is equal to
1

µβ(0)
∑
σ∈∆∗0

µβ(σ)Pσ[H0 < H{−1,+1}] ,

where ∆∗0 = {σ ∈ ∆∗ : µβ(σ) � µβ(0)}. By (1.12), this sum is less than or equal to∑
σ∈∆∗0

cap(σ,0)
µβ(0)

µβ(σ)
cap(σ,M) .

Each term of this sum vanishes as β ↑ ∞. Indeed, as σ belongs to ∆∗0, to reach σ
from 0 the chain has to escape from the well of 0 so that cap(σ,0)/µβ(0) ≈ θ−1

β . On
the other hand, µβ(σ)/cap(σ,M) is the time scale in which the process reaches one
of the configurations in M starting from σ, a time scale of smaller order than the
one in which it jumps between configurations in M.

By (1.47), to prove the lemma for ξ = 0, we just have to show that

lim
β→∞

E0

[ 1
θβ

∫ tθβ

0
1{σ(s) ∈ ∆∗} ds1{H{−1,+1} ≤ tθβ}

]
= 0 .

Since P0[H−1 < H+1]→ 0, we may add in the previous expectation the indicator of
the set {H+1 < H−1}. Rewrite the integral over the time interval [0, tθβ] as the sum
of an integral over [0, H{−1,+1}] with one over the time interval [H{−1,+1}, tθβ]. The
expectation of the first one is handled by (1.47). The expectation of the second one,
by the strong Markov property, on the set {H{−1,+1} ≤ tθβ} ∩ {H+1 < H−1}, is less
than or equal to

E+1

[ 1
θβ

∫ tθβ

0
1{σ(s) ∈ ∆∗} ds

]
.

By the first part of the proof this expectation vanishes as β ↑ ∞.
It remains to consider the case ξ = −1. As in the case ξ = 0, we first estimate

the expectation in (1.47), with H{0,+1} instead of H{−1,+1}. Then, we repeat the
arguments presented for ξ = 0, with obvious modifications, to reduce the case
ξ = −1 to the case ξ = 0, which has already been examined. �

We conclude this section proving the assertion of Remark 1.2.7. Fix η ∈ M,
σ ∈ Vη, σ 6= η. By (1.12), (1.13) and Assertion 1.7.2,

Pσ[HM\{η} < Hη] ≤
cap(σ,M \ {η})

cap(σ, η) ≈
∑

ξ∈M\{η}

cap(σ, ξ)
cap(σ, η) ≈

∑
ξ∈M\{η}

cap(η, ξ)
cap(σ, η) ·

(1.48)
By monotonicity of the capacity, the previous expression is bounded by 2cap(η,M \
{η})/cap(σ, η), which vanishes in view of Assertion 1.7.1.
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Chapitre 2

Metastability of the
two-dimensional Blume-Capel
model with zero chemical
potential and small magnetic field
on a large torus

2.1 Introduction

The Blume–Capel model is a two dimensional, nearest-neighbor spin system
where the single spin variable takes three possible values : 1, 0 and +1. One can
interpret it as a system of particles with spins. The value 0 of the spin at a lattice
site corresponds to the absence of particles, whereas the values ±1 correspond to
the presence of a particle with the respective spin.

Denote by TL = {1, . . . , L} the discrete, one-dimensional torus of length L, and
let ΛL = TL × TL, ΩL = {−1, 0, 1}ΛL . Elements of ΩL are called configurations and
are represented by the Greek letter σ. For x ∈ ΛL, σ(x) ∈ {−1, 0, 1} stands for the
value at x of the configuration σ and is called the spin at x of σ.

We consider in this article a Blume–Capel model with zero chemical potential
and a small positive magnetic field. Fix an external field 0 < h < 2, and denote by
H = HL,h : ΩL → R the Hamiltonian given by

H(σ) =
∑

(σ(y)− σ(x))2 − h
∑
x∈ΛL

σ(x), (2.1)

where the first sum is carried over all unordered pairs of nearest-neighbor sites of
ΛL. We assumed that h < 2 for the configuration whose 0-spins form a rectangle in
a background of −1 spins to be a local minima of the Hamiltonian.

The continuous-time Metropolis dynamics at inverse temperature β is the Mar-
kov chain on ΩL, denoted by {σt : t ≥ 0}, whose infinitesimal generator Lβ acts on
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functions f : ΩL → R as

(Lβf)(σ) =
∑
x∈ΛL

Rβ(σ, σx,+) [f(σx,+)− f(σ)]

+
∑
x∈ΛL

Rβ(σ, σx,−) [f(σx,−)− f(σ)] .

In this formula, σx,± represents the configuration obtained from σ by modifying the
spin at x as follows,

σx,±(z) :=
{
σ(x)± 1 mod 3 if z = x ,

σ(z) if z 6= x ,

where the sum is taken modulo 3, and the jump rates Rβ are given by

Rβ(σ, σx,±) = exp
{
− β

[
H(σx,±)−H(σ)

]
+

}
, x ∈ ΛL ,

where a+, a ∈ R, stands for the positive part of a : a+ = max{a, 0}. We often write
R instead of Rβ.

Denote by µβ the Gibbs measure associated to the Hamiltonian H at inverse
temperature β,

µβ(σ) = 1
Zβ
e−βH(σ), (2.2)

where Zβ is the partition function, the normalization constant which turns µβ into
a probability measure. We often write µ instead of µβ.

Clearly, the Gibbs measure µβ satisfies the detailed balance conditions

µβ(σ)Rβ(σ, σx,±) = min
{
µβ(σ) , µβ(σx,±)

}
= µβ(σx,±)Rβ(σx,±, σ) ,

σ ∈ ΩL, x ∈ ΛL, and is therefore reversible for the dynamics.
Denote by -1,0,+1 the configurations of ΩL with all spins equal to −1, 0,+1,

respectively. The configurations -1, 0 are local minima of the Hamiltonian, while
the configuration +1 is a global minimum. Moreover, H(0) < H(-1).

The existence of several local minima of the energy turns the Blume-Capel model
a perfect dynamics to be examined by the theory developed by Beltrán and Landim
in [2, 4] for metastable Markov chains.

Let M = {−1,0,+1}, and denote by Ψ : ΩL → {−1, 0, 1, d} the projection
defined by

Ψ(σ) =
∑
η∈M

π(η) 1{σ = η} + d1{σ 6∈M} ,

where d is a point added to the set {−1, 0, 1} and π : M → {−1, 0, 1} is the
application which provides the magnetization of the states −1, 0, +1 : π(−1) = −1,
π(0) = 0, π(+1) = 1.

A scheme has been developed in [2, 4, 20] to derive the existence of a time-scale
θβ for which the the finite-dimensional distributions of the hidden Markov chain
Ψ(σ(tθβ)) converge to the ones of a {−1, 0, 1}-valued, continuous-time Markov chain.
Note that the limiting process does not take the value d.
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The approach consists in proving first that in the time-scale θβ the trace of the
process σt on M converges in the Skorohod topology to a continuous-time Markov
chain. Then, to prove that in this time scale the time spent on ΩL \M is negligible.
Finally, to show that, at any fixed, the probability to be in ΩL \M is negligible.

This is the content of the main result of this article. We are also able to describe
the path which drives the process from the highest local minima, -1 to the ground
state+1. We not only characterize the critical droplet but we also describe precisely
how it grows until it invades the all space. In this process, we show that starting
from -1, the model visits 0 on its way to +1.

We consider in this article the situation in which the length of the torus increases
with the inverse of the temperature. The case in which L is fixed has been considered
by Cirillo and Nardi [12], by us [19] and by Cirillo, Nardi and Spitoni [11].

The method imposes a limitation on the rate at which the space grows, as we
need the energy to prevail over the entropy created by the multitude of configura-
tions. In particular, the conditions on the growth impose that the stationary state
restricted to the valleys of -1, 0 or +1, defined at the beginning of the next section,
is concentrated on these configurations (cf. (2.5)).

The study of the metastability of the Blume–Capel model has been initiated by
Cirillo and Olivieri [13] and Manzo and Olivieri [22]. We refer to these papers for
the interest of the model and its role in the understanding of metastability.

2.2 Notation and Results
Denote by D(R+,ΩL) the space of right-continuous functions ω : R+ → ΩL with

left-limits and by Pσ = Pβ,Lσ , σ ∈ ΩL, the probability measure on the path space
D(R+,ΩL) induced by the Markov chain (σt : t ≥ 0) starting from σ. Sometimes,
we write σ(t) instead of σt.

Denote by HA, H+
A , A ⊂ ΩL, the hitting time of A and the time of the first

return to A respectively :

HA = inf{t > 0 : σt ∈ A} , H+
A = inf{t > T1 : σt ∈ A} , (2.3)

where T1 represents the time of the first jump of the chain σt.
Critical droplet. We have already observed that +1 is the ground state of the
dynamics and that -1 and 0 are local minima of the Hamiltonian. The first main
result of this article characterizes the critical droplet in the course from -1 and 0 to
+1. Let n0 = b2/hc, where bac stands for the integer part of a ∈ R+.

Denote by V-1 the valley of -1. This is the set constituted of all configurations
which can be attained from -1 by flipping n0(n0 + 1) or less spins from -1. If after
n0(n0 + 1) flips we reached a configuration where n0(n0 + 1) 0-spins form a [n0 ×
(n0 + 1)]-rectangle, we may flip one more spin. Hence, all configurations of V-1 differ
from -1 in at most n0(n0 + 1) + 1 sites.

The valley V0 of 0 is defined in a similar way, a n0×(n0+1)-rectangle of +1-spins
replace the one of 0-spins. Here and below, when we refer to a [n0×(n0+1)]-rectangle,
n0 may be its length or its height.

Denote by Rl = Rl
L the set of configurations with n0(n0 +1)+1 0-spins forming,

in a background of −1-spins, a n0× (n0 + 1) rectangle with an extra 0-spin attached
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to the longest side of this rectangle. This means that the extra 0-spin is surrounded
by three −1-spins and one 0-spins which belongs to the longest side of the rectangle.
The set Rl

0 = Rl
0,L is defined analogously, the −1-spins, 0-spins being replaced by

0-spins, +1-spins, respectively.
We show in the next theorem that, starting from -1, resp. 0, the process visits

Rl, resp. Rl
0, before hitting {0,+1}, resp. {-1,+1}. An assumption on the growth

of the torus is necessary to avoid the entropy of configurations with high energy to
prevail over the local minima of the Hamiltonian. We assume that

lim
β→∞

|ΛL| e−2β = 0 . (2.4)

We prove in Lemma 2.8.2 that under this condition,

lim
β→∞

µβ(V-1 \ {-1})
µβ(-1) = 0 . (2.5)

Theorem 2.2.1. Assume that 0 < h < 1, that 2/h is not an integer and that (2.4)
is in force. Then,

lim
β→∞

P-1[HRl < H{0,+1}] = 1 , lim
β→∞

P0[HRl0
< H{-1,+1}] = 1 .

On the other hand, under the condition that

lim
β→∞

|ΛL|1/2
{
e−[(n0+1)h−2]β + e−hβ

}
and lim

β→∞
|ΛL|2 e−(2−h)β = 0 , (2.6)

it follows from Proposition 2.5.1 that

lim
β→∞

inf
η∈Rl

Pη[H{0,+1} < H-1] > 0 , lim
β→∞

inf
ξ∈Rl0

Pξ[H{-1,+1} < H0] > 0 .

The route from -1 to +1. The second main result of the article asserts that
starting from -1, the processes visits 0 in its way to +1. Actually, in Section 2.5,
we describe in detail how the critical droplet growths until it invades the all space.

Theorem 2.2.2. Assume that 0 < h < 1, that 2/h is not an integer and that
condition (2.6) is in force. Then,

lim
β→∞

P-1[H+1 < H0] = 0 and lim
β→∞

P0[H-1 < H+1] = 0 .

The strategy of the proof relies on the assumption that while the critical dro-
plet increases, invading the entire space, nothing else relevant happens in other
parts of the torus. A new row or column is added to a supercritical droplet at rate
e−(2−h)β/|ΛL|, because e−(2−h)β is the rate at which a negative spin is flipped to 0
when it is surrounded by three negative spins and one 0-spin, and L is the time
needed for a rate one asymmetric random walk to reach L starting from the ori-
gin. We need L2 because we need an extra 0-spin to complete a row, and then to
repeat this procedure L times for the droplet to fill the torus. This rate has to be
confronted to the rate at which a 0-spin appears somewhere in the space. The rate
at which a negative spin is flipped to 0 when it is surrounded by four negative spins
is e−(4−h)β. Since this may happen at |ΛL| different positions, the method of the
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proof requires at least |ΛL|e−(4−h)β to be much smaller than e−(2−h)β/|ΛL|, that is,
|ΛL|2e−2β → 0. This almost explains the main hypothesis of the theorem. The extra
conditions appear because we need to take care of other details to lengthy to explain
here.
Metastability. For two disjoint subsets A, B of ΩL, denote by cap(A,B) the ca-
pacity between A and B :

cap(A,B) =
∑
σ∈A

µβ(σ)λβ(σ)Pσ[HB < H+
A ] ,

where λβ(σ) =
∑

σ′∈ΩL Rβ(σ, σ′) represents the holding times of the Blume-Capel
model. Let

θβ = µβ(−1)
cap(−1, {0,+1}) · (2.7)

We prove in Proposition 2.7.3 that under the hypotheses of Theorem 2.2.2 for any
configuration η ∈ Rl,

lim
β→∞

cap(−1, {0,+1})
µβ(η) |ΛL|

= 4(2n0 + 1)
3 .

Theorem 2.2.3. Under the hypotheses of Theorem 2.2.2, the finite-dimensional
distributions of the speeded-up, hidden Markov chain Xβ(t) = Ψ

(
σ(θβt)

)
converge

to the ones of the {−1, 0, 1}-valued, continuous-time Markov chain X(t) in which 1
is an absorbing state, and whose jump rates are given by

r(−1, 0) = r(0, 1) = 1 , r(−1, 1) = r(0,−1) = 0 .

Note that the limit chain does not take the value d, in contrast with Xβ(t) since
Ψ(σ) = d for all σ 6∈M.

The paper is organized as follows. In the next section, we recall some general
results on potential theory of reversible Markov chains and we prove a lemma on
asymmetric birth and death chains which is used later in the article. In Section 2.4,
we examine the formation of a critical droplet and, in Section 2.5, the growth of
a supercritical droplet. Theorems 2.2.1 and 2.2.2 are proved in Section 2.6. In the
following two sections, we prove that the trace of σt on M converges to a three-state
Markov chain and that the time spent outside M is negligible. In the final section
we prove Theorem 2.2.3.

2.3 Metastability of reversible Markov chains
In this section, we present general results on reversible Markov chains used in

the next sections. Fix a finite set E. Consider a continuous-time, E-valued, Markov
chain {Xt : t ≥ 0}. Assume that the chain Xt is irreducible and that the unique
stationary state π is reversible.

Elements of E are represented by the letters x, y. Let Px, x ∈ E, be the distri-
bution of the Markov chain Xt starting from x. Recall from (2.3) the definition of
the hitting time and the return time to a set.

Denote by R(x, y), x 6= y ∈ E, the jump rates of the Markov chain Xt, and let
λ(x) =

∑
y∈E R(x, y) be the holding rates. Denote by p(x, y) the jump probabilities,
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so that R(x, y) = λ(x) p(x, y). The stationary state of the embedded discrete-time
Markov chain is given by M(x) = π(x)λ(x).
Potential theory. Fix two subsets A, B of E such that A ∩ B = ∅. Recall that
the capacity between A and B, denoted by cap(A,B), is given by

cap(A,B) =
∑
x∈A

M(x)Px[HB < H+
A ] . (2.8)

Denote by L the generator of the Markov chain Xt and by D(f) the Dirichlet
form of a function f : E → R :

D(f) = −
∑
x∈E

f(x) (Lf)(x)π(x) = 1
2
∑
x,y

π(x)R(x, y) [f(y)− f(x)]2 .

In this later sum, each unordered pair {a, b} ⊂ E, a 6= b, appears twice. The Dirichlet
principle provides a variational formula for the capacity :

cap(A,B) = inf
f
D(f) , (2.9)

where the infimum is carried over all functions f : E → [0, 1] such that f = 1 on A
and f = 0 on B.

Denote by P the set of oriented edges of E : P = {(x, y) ∈ E×E : R(x, y) > 0}.
An anti-symmetric function φ : P → R is called a flow. The divergence of a flow φ
at x ∈ E is defined as

(divφ)(x) =
∑

y:(x,y)∈P

φ(x, y) .

Let FA,B be the set of flows such that∑
x∈A

(div φ)(x) = 1 ,
∑
y∈B

(div φ)(y) = − 1 , (div φ)(z) = 0 , z 6∈ A ∪B .

The Thomson principle provides an alternative variational formula for the capacity :

1
cap(A,B) = inf

φ∈FA,B

1
2
∑

(x,y)∈P

1
π(x)R(x, y) φ(x, y)2 . (2.10)

We refer to [7] for a proof of the Dirichlet and the Thomson principles.
In the Blume-Capel model, by definition of the rate function Rβ(σ, σx,±),

µβ(σ)Rβ(σ, σx,±) = µβ(σ) ∧ µβ(σx,±) .

This identity will be used throughout the paper, without further notice, to replace
the left-hand side, which appears in the Dirichlet and in the Thomson principle, by
the right-hand side.

We turn to an estimate of hitting times in terms of capacities. Fix x ∈ E\(A∪B).
Then,

Px[HA < HB] =
Px[HA < H+

B∪{x} ]
Px[HA∪B < H+

x ] · (2.11)
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Indeed, intersecting the event {HA < HB} with {H+
x < HA∪B} and its complement,

by the Strong Markov property,

Px[HA < HB] = Px[H+
x < HA∪B ]Px[HA < HB] + Px[HA < H+

B∪{x} ] ,

which proves (2.11) by substracting the first term on the right hand side from the
left hand side.

Recall the definition of the capacity introduced in (2.8). Multiplying and dividing
the right hand side of (2.11) by M(x) yields that

Px[HA < HB] =
M(x)Px[HA < H+

B∪{x} ]
cap(x,A ∪B) ≤ M(x)Px[HA < H+

x ]
cap(x,A ∪B) ·

Therefore, by definition of the capacity and since, by (2.9), the capacity is monotone,

Px[HA < HB] ≤ cap(x,A)
cap(x,A ∪B) ≤

cap(x,A)
cap(x,B) · (2.12)

Trace process. We recall in this subsection the definition of the trace of a Markov
process on a proper subset of the state space. Fix F ( E and denote by TF (t) the
time the process Xt spent on the set F in the time-interval [0, t] :

TF (t) =
∫ t

0
χF (Xs) ds ,

where χF represents the indicator function of the set F . Denote by SF (t) the gene-
ralized inverse of the additive functional TF (t) :

SF (t) = sup{s ≥ 0 : TF (s) ≤ t} .

The recurrence guarantees that for all t > 0, SF (t) is finite almost surely.
Denote by XF (t) the trace of the chain Xt on the set F , defined by XF (t) :=

X(SF (t)). It can be proven [2] that XF (t) is an irreducible, recurrent, continuous-
time, F -valued Markov chain. The jump rates of the chain XF (t), denoted by
rF (x, y), are given by

rF (x, y) = λ(x)Px
[
H+
F = Hy

]
, x , y ∈ F , x 6= y .

The unique stationary probability measure for the trace chain, denoted by πF , is
given by πF (x) = π(x)/π(F ). Moreover, πF is reversible if so is π.
Estimates of an eigenfunction. We derive in this subsection an estimate nee-
ded in the next sections. Consider the continuous-time Markov chain Xt on E =
{0, . . . , n} which jumps from k to k + 1 at rate ε and from k + 1 to k at rate 1,
0 ≤ k < n.

Denote by Pk the distribution of the Markov chain Xt starting from k ∈ E.
Expectation with respect to Pk is represented by Ek.

Denote by Hn the hitting time of n. Fix θ > 0, and let f : E → R+ be given by

f(k) = Ek

[
e−θ Hn

]
.
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An elementary computation based on the strong Markov property shows that f is
the solution of the boundary-valued elliptic problem{

(Lf)(k) = θ f(k) , 0 ≤ k < n ,

f(n) = 1 ,

where L stands for the generator of the Markov chain Xt.

Lemma 2.3.1. We have that f(0) ≤ εn/θ.

Proof. Multiplying the identity (Lf)(k) = θ f(k) by εk and summing over 0 ≤ k < n
yields that

n−1∑
k=0

εk+1 [f(k + 1)− f(k)] +
n−1∑
k=1

εk [f(k − 1)− f(k)] = θ
n−1∑
k=0

f(k) εk .

On the left-hand side, all terms but one cancel so that

εn [f(n)− f(n− 1)] = θ
n−1∑
k=0

f(k) εk .

Since f(k) ≥ 0 and f(n) = 1, we have that

θ f(0) ≤ θ
n−1∑
k=0

f(k) εk = εn [1− f(n− 1)] ≤ εn ,

as claimed. �

This result has a content only in the case ε < 1, but we did not use this condition
in the proof.

2.4 The emergence of a critical droplet
In this section, we prove that starting from -1, the process creates a droplet of

0-spins on its way to {0,+1}, that is, a configuration σ with a n0×(n0 +1) rectangle
of 0-spins (or 0-rectangle) and an extra 0-spin attached to one of the sides of the
rectangle, in a background of negative spins.

In the next section, we prove that if this extra 0-spin is attached to one of the
longest sides of the rectangle, with a positive probability the process hits 0 before
{-1,+1}, while if it is attached to one of the shortest sides, with probability close
to 1, the process returns to -1 before hitting {0,+1}. An important feature of this
model is that the size of a critical droplet is independent of β and L.

Throughout this section, C0 is a large constant, which does not depend on β or
L but only on h, and whose value may change from line to line.

Recall the definition of the valley V-1 introduced just above equation (2.4). Note
that there are few configurations in V-1 which differ from -1 at n0(n0 + 1) + 1 sites.
Moreover, such configurations

may not have two spins equal to +1. (2.13)
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To define the boundary of the valley of V-1, fix L large, and denote by B the set
of configurations with n0(n0 + 1) spins different from −1 :

B =
{
σ ∈ ΩL : |A(σ)| = n0(n0 + 1)

}
,

where
A(σ) = {x ∈ ΛL : σ(x) 6= −1} .

Denote by R the subset of B given by

R =
{
σ ∈ {−1, 0}ΛL : A(σ) is a n0 × (n0 + 1)rectangle

}
.

Note that the spins of a configuration σ ∈ R are either −1 or 0 and that all confi-
gurations in R have the same energy.

Denote by R+ the set of configurations in ΩL in which there are n0(n0 + 1) + 1
spins which are not equal to −1. Of these spins, n0(n0 + 1) form a n0 × (n0 + 1)-
rectangle of 0 spins. The remaining spin not equal to −1 is either 0 or +1. Figure
2.1 present some examples of configurations in R+.

Figure 2.1 – Examples of two configurations in R+ in the case where n0 = 5. An
empty (resp. filled) 1×1 square centered at x has been placed at each site x occupied
by a 0-spin (resp. positive spin). All the other spins are equal to −1.

Let B+ be the boundary of V-1. This set consists of all configurations σ in V-1
which have a neighbor [that is, a configuration σ′ which differs from σ at one site]
which does not belong to V-1. By definition of V-1,

B+ = (B \R) ∪ R+ .

Figure 2.2 – Example of three configurations in Ra in the case where n0 = 5. An
1×1 empty square centered at x has been placed at each site x occupied by a 0-spin.
All the other spins are equal to −1. The one on the left belongs to Rs. According
to the notation introduced at the beginning of Section 2.5, the one on the center
belongs to Rli and the one on the right to Rlc.

Let Ra ⊂ R+ be the set of configurations for which the remaining spin is a 0
spin attached to one of the sides of the rectangle. Figure 2.2 present some examples
of configurations in Ra. We write the boundary B+ as

B+ = (B \R) ∪ (R+ \Ra) ∪ Ra . (2.14)
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Since B+ is the boundary of the valley V-1, starting from −1, it is reached before
the chain attains the set {0,+1} :

HB+ < H{0,+1} P−1 a.s. (2.15)

Note that all configurations of Ra have the same energy and that H(ξ) = H(ζ)+
2− h if ξ ∈ Ra, ζ ∈ R. In particular, by Assertion 4.D in [19],

H(σ) ≥ H(ξ) + h , σ ∈ B \R , ξ ∈ Ra . (2.16)

On the other hand, for a configuration η ∈ R+ \Ra, H(η) ≥ H(ζ) + 4− h if ζ ∈ R,
so that

H(η) ≥ H(ξ) + 2 , η ∈ R+ \Ra , ξ ∈ Ra . (2.17)
In particular, at the boundary B+ the energy is minimized by configurations in

Ra. This means that σt should attained B+ at Ra. This is the content of the main
result of this section. Let

ε(β) = |ΛL| e−2β + e−hβ . (2.18)

Proposition 2.4.1. There exists a finite constant C0 such that

P-1[HB+ < HRa ] ≤ C0 ε(β)

for all β ≥ C0.

Proof. The proof of this lemma is divided in several steps. Denote by {ηt : t ≥ 0}
the process obtained from the Blume-Capel model by forbiding any jump from the
valley V-1 to its complement. This process is sometimes called the reflected process.

It is clear that ηt is irreducible and that its stationary state, denoted by µV is
given by µV(σ) = (1/ZV) exp{−βH(σ)}, where ZV is a normalizing constant.

Moreover, starting from -1, we may couple σt with ηt in such a way that σt = ηt
until they hit the boundary. Hence, if we denote by PV

-1 the distribution of ηt,

P-1[HB+ < HRa ] = PV
-1[HB+ < HRa ] .

By (2.12),

PV
-1[HB+ < HRa ] = PV

-1[HB+\Ra < HRa ] ≤
capV(B+ \Ra, -1)

capV(Ra, -1) ,

where capV represents the capacity with respect to the process ηt. The lemma now
follows from Lemmata 2.4.2 and 2.4.3 below. �

Denote by Γc the energy of a configuration σ ∈ Ra :

Γc = 4 (n0 + 1) − h
[
n0(n0 + 1) + 1 − |ΛL|

]
. (2.19)

Lemma 2.4.2. There exists a finite constant C0 such that

1
capV(Ra, -1) ≤ C0

1
|ΛL|

ZV e
βΓc .
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Figure 2.3 – We present in this figure some configurations ζx,k introduced in the
proof of Lemma 2.4.2. Let m = 16. The figure represent the configurations ζx,m,
ζx,m+1, ζx,m+2. Then, ζx,m+4, ζx,m+5, ζx,m+6, and ζx,m+9. An 1 × 1 empty square
centered at x has been placed at each site x occupied by a 0-spin. All the other
spins are equal to −1.

Proof. We use the Thomson principle to bound this capacity by constructing a flow
from -1 to Ra. The flow is constructed in two stages.

To explain the procedure we interpret a flow as a mass transport, φ(η, ξ) repre-
senting the total mas transported from η to ξ. The goal is to define the transport
of a mass equal to 1 from -1 to Ra. The first step consists in transferring the mass
from -1 to R.

This is done as follows. Consider the sequence of points in Z2 which forms a
succesion of squares of length 1, 2 up to n0. It is given by u1 = (1, 1), u2 = (1, 2),
u3 = (2, 2), u4 = (2, 1), u5 = (1, 3) and so on until un2

0
= (n0, 1). Hence, we first add

a new line on the upper side of the square from left to right, and then a new column
on the right side from top to bottom. Once we arrived at the (n0 × n0)-square, we
add a final row at the upper side of the square : Let un2

0+k = (k, n0 + 1), 1 ≤ k ≤ n0,
to obtain a n0 × (n0 + 1)-rectangle.

Note that we reach through this procedure only rectangles whose height is larger
than the length. We could have defined flows which reach both types of rectangles,
but the bound would not improve significantly.

Let Ak = {u1, . . . , uk} and denote by Ax,k the set Ak translated by x ∈ Z2 :
Ax,k = x + Ak. Denote by ζx,k the configuration with 0-spins at Ax,k and −1-spins
elsewhere. Figure 2.3 presents some of these configurations. Let ε = 1/|ΛL|. The
first stage of the flow consists in transferring a mass ε from -1 to each ζx,1 and then
transfer this mass from ζx,k to ζx,k+1 for 1 ≤ k < n0(n0 + 1).

Let un2
0+n0+1 = (1, n0 + 2), and consider the configurations ζx,n2

0+n0+1 obtained
through the correspondance adopted above. The final stage consists in transferring
the mass ε from ζx,n2

0+n0 to ζx,n2
0+n0+1.

Since each configuration ζx,n2
0+n0+1 belongs to Ra, the total effect of this proce-

dure is to transport a mass equal to 1 from the configuration -1 to the set Ra.
Denote this flow by φ, so that φ(-1, ζx,1) = φ(ζx,k, ζx,k+1) = ε. We extend this

flow by imposing it to be anti-symmetric and to vanish on the other bonds. It is
clear that this flow belongs to F-1,Ra , the set of flows defined above 2.10. Therefore,
by the Thomson principle,

1
capV(Ra, -1) ≤ ε2 |ΛL|

n0(n0+1)∑
k=0

1
µV(ζ1,k) ∧ µV(ζ1,k+1) ·

Since ε = 1/|ΛL| and µV(ζ1,k) ≥ µV(ζ1,n0(n0+1)+1), the previous expression is bounded
by

1
capV(Ra, -1) ≤ C0

1
|ΛL|

1
µV(ζ1,n0(n0+1)+1) ,
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which completes the proof of the lemma because the energy of the configuration
ζ1,n0(n0+1)+1 is Γc. �

We turn to the upper bound for cap(B+ \Ra, -1).

Lemma 2.4.3. There exists a finite constant C0 such that

capV(-1,B+ \Ra) ≤ C0
1
ZV

|ΛL| e−βΓc
{
|ΛL| e−2β + e−hβ

}
.

for all β ≥ C0.

The proof of this lemma is divided in several steps. Let B := B+ \ Ra and let
χB : ΩL → R be the indicator of the set B. Since χB(−1) = 0 and χB(σ) = 1 for
σ ∈ B, by the Dirichlet principle,

capV(B+ \Ra,−1) ≤ DV(χB) , (2.20)

where DV(f) stands for the Dirichlet form of f for the reflected process ηt. An
elementary computation yields that

DV(χB) =
∑
σ∈B

∑
σ′∈V-1\B

µV(σ) ∧ µV(σ′) , (2.21)

where the second sum is carried over all configurations σ′ which belong to V-1 \ B
and which differ from σ at exactly one spin. We denote this relation by σ′ ∼ σ.

Let
B1 := B \ R , B2 := R+ \ Ra , (2.22)

so that B = B1 ∪ B2, and consider separately the sums over B1 and B2. We start
with B2.

Assertion 2.4.4. We have that∑
σ∈B2

∑
σ′∼σ

µV(σ) ∧ µV(σ′) ≤ C0
1
ZV

|ΛL| e−βΓc
{
|ΛL| e−2β + e−[10−h]β

}
.

Proof. A configuration η ∈ B2 has a n0× (n0 + 1) rectangle of 0-spins, and an extra-
spin. If this extra-spin is attached to the rectangle it is equal to +1, while it may
be 0 or +1 if it is not. We study the two cases separately.

Fix a configuration η ∈ B2 where the extra-spin is attached to the rectangle, so
that H(η) = Γc + (10− h). Consider a configuration σ′ ∈ V-1 \ B such that σ′ ∼ η.
As σ′ may have at most n0(n0 + 1) + 1 spins different from −1, this excludes the
possibility that σ′ is obtained from η by flipping a −1. By (2.13), configurations in
B with n0(n0 + 1) + 1 spins different from −1 may not have two spins equal to +1.
This excludes flipping a 0 to +1. Finally, we may not flip the +1 to 0 because by
doing so we obtain a configuration in Ra, and thus not in B = B+ \Ra.

Hence, either σ′ is obtained from η by flipping the +1 to −1, or it is obtained
by flipping a 0 to −1. In the first case H(σ′) < H(η), while in the second case if
the 0-spin belongs to the corner, H(σ′) > H(η). Since the number of configurations
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obtained by these flips is bounded by a finite constant, the contribution to the sum
appearing in the statement of the assertion is bounded by

C0
∑
η

µV(η) ≤ C0
1
ZV

e−β Γc |ΛL| e−[10−h]β ,

where the factor |ΛL| comes from the number of possible positions of the rectangle,
while the constant C0 absorbs the number of positions of the positive spin.

Fix now a configuration η ∈ B2 where the extra-spin is not attached to the
rectangle. Then H(η) ≥ Γc + 2. Consider a configuration σ′ ∈ V-1 \ B such that
σ′ ∼ η. As before, since σ′ may have at most n0(n0 + 1) + 1 spins different from −1,
this excludes the possibility that σ′ is obtained from η by flipping a −1. By excluding
this possibility, we are left with a finite number [depending on n0] of possible jumps.
Hence, the contribution of configurations of this type to the sum appearing in the
statement of the assertion of is bounded by

C0
∑
η

µV(η) ≤ C0
1
ZV

e−βΓc |ΛL|2 e−2β ,

where the factor |ΛL|2 appeared to take into account the possible positions of the
rectangle and of the extra particle. This proves the assertion. �

It remains to examine the sum over B1. Denote by N(σ) the number of spins of
the configuration σ which are different from −1 :

N(σ) = #A(σ) = #{x ∈ ΛL : σx 6= −1} . (2.23)

Next assertion states that we can restrict our attention to configurations σ which
have no spin equal to +1. For a configuration σ such that N(σ) ≤ n0(n0 + 1) + 1,
let σo be the one obtained from σ by replacing all spins equal to +1 by 0-spins :
σox = σx ∧ 0.

Assertion 2.4.5. For all σ ∈ ΩL such that N(σ) ≤ n0(n0 + 1) + 1,

H(σo) ≤ H(σ) .

Proof. This result is clearly not true in general because +1 is the ground state. It
holds because we are limiting the number of spins different from −1.

For a configuration σ ∈ ΩL, denote by Ia,b(σ), −1 ≤ a < b ≤ 1, the number of
unordered pairs {x, y} of ΩL such that ‖x − y‖ = 1, {σx, σy} = {a, b}, where ‖z‖
stands for the Euclidean norm of z ∈ R2.

An elementary computation yields that

H(σ) − H(σo) = I0,1(σ) + 3 I−1,1(σ) − hN1(σ) ,

where N1(σ) stands for the total number of spins equal to +1 in the configuration
σ. To prove the assertion, it is therefore enough to show that hN1(σ) ≤ I0,1(σ) +
I−1,1(σ).

By [19, Assertion 4.A], I0,1(σ) + I−1,1(σ) ≥ 4
√
N1(σ). It remains to obtain that

hN1(σ) ≤ 4
√
N1(σ), i.e., that h

√
N1(σ) ≤ 4. Indeed, since N(σ) ≤ n0(n0 + 1) + 1,

N1(σ) ≤ n0(n0+1)+1 so that, by definition of n0, h
√
N1(σ) ≤ h(n0+1) ≤ 2+h ≤ 3.

�
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Recall that A(σ) = {x ∈ ΛL : σx 6= −1}. A set A ⊂ A(σ) is said to be a
connected component of A(σ) if (a) for any x, y ∈ A, there exists a path (x0 =
x, x1, . . . , xm = y) such that xi ∈ A, ‖xi+1 − xi‖ = 1, 0 ≤ i < m and (b) for any
x ∈ A, y 6∈ A, such a path does not exists.

Next assertion gives an estimation of the energy of a configuration σ ∈ ΩL such
that N(σ) ≤ n0(n0 + 1) + 1 in terms of the number of connected components.

Assertion 2.4.6. Let σ ∈ ΩL be a configuration such that N(σ) = n0(n0 + 1), and
denote by k, 1 ≤ k ≤ n0(n0 + 1) the number of connected components of σ. Then,

H(σ) ≥ Γc + 2 (k − 1) + h .

Proof. By Assertion 2.4.5, we can assume that σ has no spin equal to +1. For such
a configuration and by definition of Γc,

H(σ) =
[
I−1,0(σ) − (4n0 + 4)

]
+ Γc + h .

To complete the proof of the assertion, we have to show that I−1,0(σ) ≥ (4n0 + 4) +
2(k − 1).

By moving 2 of the connected components of σ, and gluing them together, we
reach a new configuration σ1 such that N(σ1) = N(σ), while the size of the interface
has decreased at least by 2 :

I−1,0(σ) ≥ I−1,0(σ1) + 2 .

Iterating this argument k − 1 times, we finally reach a configuration σ∗ with only
one connected component and such that

I−1,0(σ) ≥ I−1,0(σ∗) + 2(k − 1) . (2.24)

The last connected component is glued to the set formed by the previous ones in
such a way that the set A(σ∗) is not a n0×(n0 +1) rectangle. This is always possible.

Since the connected set A(σ∗) is not a n0 × (n0 + 1) rectangle, by [2, Assertion
4.B], I−1,0(σ∗) ≥ 4n0 + 4, so that

I−1,0(σ) ≥ (4n0 + 4) + 2(k − 1),

which proves the assertion. �

We estimate the sum over σ ∈ B1 on the right-hand side of (2.21) in the next
assertion.

Assertion 2.4.7. There exists a finite constant C0 such that∑
σ∈B1

∑
σ′∼σ

µV(σ) ∧ µV(σ′) ≤ C0
1
ZV

|ΛL| e−βΓc e−hβ

for all β ≥ C0.
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Proof. The proof of this assertion is divided in three steps. The first one consists
in applying Assertion 2.4.5 to restrict the first sum to configurations with no spin
equal to +1. Indeed, as configuration in B1 have at most n0(n0 + 1) spins different
from −1, by this assertion,∑

σ∈B1

∑
σ′∼σ

µV(σ) ∧ µV(σ′) ≤ 2n0(n0+1)
∑
σ∈B1,0

∑
σ′∼σ

µV(σ) ∧ µV(σ′) ,

where B1,0 represents the set of configurations in {−1, 0}Λ which belong to B1.
The second step consists in characterizing all configurations σ′ which may appear

in the second sum. Recall that it is performed over configurations σ′ ∈ V-1 \B which
can be obtained from σ by one flip. In particular, N(σ′), introduced in (2.23), can
differ from N(σ) = n0(n0 + 1) by at most by 1.

If N(σ′) = N(σ) + 1, as σ′ 63 B ⊃ R+, we have that σ′ ∈ Ra. Since σ does not
belong toR, the 0-spins of the configuration σ form a n0×(n0+1)-rectangle in which
one site has been removed and one site at the boundary of the rectangle has been
added. In this case H(σ) > H(σ′) and H(σ) ≥ Γc + h. The last bound is attained
if the site removed from the rectangle to form σ is a corner. Hence, restricting the
second sum to configurations σ′ such that N(σ′) = N(σ) + 1 yields that

∑
σ∈B1,0

∑
σ′∼σ

µV(σ) ∧ µV(σ′) ≤ C0
1
ZV

|ΛL| e−βΓc e−hβ ,

where the factor |ΛL| takes into account the possible positions of the rectangle and
the constant C0 the positions of the erased and added sites.

If N(σ′) = N(σ), resp. N(σ′) = N(σ) − 1, as σ has no spin equal to +1, this
means that one 0-spin has been flipped to +1, resp. to −1. In both cases, there are
n0(n0 + 1) such configurations σ′. Hence, the sum restricted to such configurations
σ′ is less than or equal to

C0
∑
σ∈B1,0

µV(σ) .

Let N := n0(n0 + 1), and denote by Ck, 1 ≤ k ≤ N , the set of configurations
in B1,0 which have k connected components. Rewrite the previous sum according to
the number of components and apply Assertion 2.4.6 to obtain that it is bounded
by

N∑
k=1

∑
σ∈Ck

µV(σ) ≤ C0
1
ZV

|ΛL| e−βΓc e−hβ
N∑
k=1

|ΛL|k−1 e−β[2(k−1)] ,

where |ΛL|k takes into account the number of positions of the k components, and
C0 the form of each component. By the assumption of the theorems, |ΛL| e−2β is
bounded by 1/2 for β large enough, so that the sum is bounded by 2. To complete
the proof of the assertion it remains to recollect the previous estimates. �

Proof.[Proof of Lemma 2.4.3] This Lemma is a consequence of Assertions 2.4.4, 2.4.7,
and from the fact that h < 5. �
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2.5 The growth of a supercritical droplet
In the previous section we have seen that starting from -1 we hit the boundary

of the valley V-1 at Ra. In this section we show that starting from Ra the process
either returns to -1, if the extra 0-spin is attached to one of the shortest sides of the
rectangle, or it invades the all space with positive probability, if the extra 0-spin is
attached to one of the longest sides of the rectangle.

Denote by Rl, Rs the configurations of Ra in which the extra particle is attached
to one of the longest, shortest sides of the rectangle, respectively, and by Rc the
configurations of Ra in which the extra particle is attached to one corner of the
rectangle. Let Ri = Ra \Rc, Rlc = Rl ∩ Rc, Rli = Rl ∩Ri.

Recall that M = {-1,0,+1}, and let

δ(β) = |ΛL|1/2 e−[(n0+1)h−2]β + |ΛL|1/2 e−hβ + |ΛL|2 e−(2−h)β . (2.25)

Proposition 2.5.1. There exists a finite constant C0 such that for all σ ∈ Rlc,
σ′ ∈ Rli, and σ′′ ∈ Rs,∣∣Pσ[H−1 = HM] − 1/2

∣∣ ≤ C0 δ(β) and
∣∣Pσ[H0 = HM] − 1/2

∣∣ ≤ C0 δ(β) ,∣∣Pσ′ [H−1 = HM] − 1/3
∣∣ ≤ C0 δ(β) and

∣∣Pσ′ [H0 = HM] − 2/3
∣∣ ≤ C0 δ(β) ,

Pσ′′ [H−1 = HM] ≥ 1 − C0 δ(β)

for all β ≥ C0.

The proof of this proposition is divided in several lemmata. The first result
describes what happens when there is a 0-spin attached to the side of a rectangle of
0-spins in a sea of −1-spins. From such a configuration, either the attached 0-spin
is flipped to −1 or an extra 0-spin is created at the neighborood of the attached
0-spin.

For n ≥ 1, let

κn(β) := e−hβ + n e−(2−h)β + |ΛL| e−(4−h)β . (2.26)

Since n2 ≤ |ΛL|, κn(β) ≤ δ1(β), where

δ1(β) := e−hβ + |ΛL|1/2 e−(2−h)β + |ΛL| e−(4−h)β .

Note that for β large enough, |ΛL| e−(4−h)β ≤ |ΛL|1/2 e−(2−h)β.

Assertion 2.5.2. Fix n0 ≤ m ≤ n ≤ L−3. Consider a configuration σ with nm+1
0-spins, all the other ones being −1. The 0-spins form a (n × m)-rectangle and
the extra 0-spin has one neighbor 0-spin which sits at one corner of the rectangle
[there is only one −1-spin with two 0-spins as neighbors ]. Let σ−, resp. σ+, be the
configuration obtained from σ by flipping to −1 the attached 0-spin, resp. by flipping
to 0 the unique −1 spin with two 0-spins as neighbors. Then, there exists a constant
C0 such that∣∣∣ pβ(σ, σ−) − 1

2

∣∣∣ ≤ C0 δ1(β) ,
∣∣∣ pβ(σ, σ+) − 1

2

∣∣∣ ≤ C0 δ1(β) .
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Proof.We prove the lemma for σ−, the proof for σ+ being identical. Clearly,Rβ(σ, σ−) =
Rβ(σ, σ+) = 1, so that

pβ(σ, σ−) = Rβ(σ, σ−)
λβ(σ) = 1

2 +
∑

σ′ 6=σ−,σ+
Rβ(σ, σ′) ·

Consider the last sum. There are three terms, corresponding to the corners of the
rectangle, for which Rβ(σ, σ′) ≤ e−βh. There are 4(n+m)− 2 terms, corresponding
to the inner and outer boundaries of the rectangle, such that Rβ(σ, σ′) ≤ e−β(2−h).
All the remaining rates are bounded by e−β(4−h). Hence,∑

σ′ 6=σ−,σ+

Rβ(σ, σ′) ≤ C0 κn(β) ,

where κn(β) has been introduced in (2.26). This proves the assertion. �

In the next assertion we consider the case in which the extra 0-spin does not sit
at the corner of the rectangle, but in its interior. The proof of this result, as well as
the one of the next assertion, is similar to the previous proof.

Assertion 2.5.3. Under the same hypotheses of the previous assertion, assume now
that the extra 0-spin has one neighbor 0-spin which does not sit at one corner of the
rectangle [there are exactly two −1-spins with two 0-spins as neighbors ]. Let σ−,
resp. σ+

+, σ−+, be the configuration obtained from σ by flipping to −1 the attached
0-spin, resp. by flipping to 0 one of the two −1-spins with two 0-spins as neighbors.
Then, there exists a constant C0 such that∣∣∣ pβ(σ, σ−) − 1

3

∣∣∣ ≤ C0 δ1(β) ,
∣∣∣ pβ(σ, σ±+) − 1

3

∣∣∣ ≤ C0 δ1(β) .

The next lemma states that once there are two adjacent 0-spins attached to
one of the sides of the rectangle, this additional rectangle increases with very high
probability. This result will permit to enlarge a (p × 1)-rectangle to a (2n0 × 1)-
rectangle. To enlarge it further we will apply Lemma 2.5.8 below.

This result will be used in three different situations :
(A1) To increase in any direction a rectangle with 2 adjacent 0-spins whose

distance from the corners is larger than 2n0 to a rectangle with 2n0 adjacent
0-spins ;

(A2) To increase in the direction of the corner a rectangle with k ≥ 2 adjacent
0-spins which is at distance n0 or less than from one of the corners to a
rectangle with adjacent 0-spins which goes up to the corner ;

(A3) To increase a rectangle with k < 2n0 adjacent 0-spins which includes one
of the corners to a rectangle with 2n0 adjacent 0-spins.

Fix n0 ≤ m ≤ n ≤ L− 3. Denote by σ a configuration in which nm 0-spins form
a (m × n)-rectangle in a sea of −1-spins. Recall that we denote this rectangle by
A(σ), and assume, without loss of generality, that m is the length and n the height
of A(σ). Let (x, y) be the position of the upper-left corner of A(σ).

We attach to one of the sides of A(σ) and extra (p × 1)-rectangle of 0-spins,
where p ≥ 2. To fix ideas, suppose that the extra 0-spins are attached to the upper
side of length m of the rectangle.
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More precisely, denote by η(c,d), 0 ≤ c < d ≤ m, d − c ≥ 2, the configuration
obtained from σ by flipping from −1 to 0 the ([d − c] × 1)-rectangle, denoted by
Rc,d, given by {(x+ c, y+ 1), . . . , (x+d, y+ 1)}. The next lemma asserts that before
anything else happens the rectangle Rc,d increases at least by n0 units at each side.

For a pair (c, d) as above, denote by Sc,d the set of configurations given by

Sc,d = {η(a,b) : 0 ≤ a ≤ c and d ≤ b ≤ m} ,

and by Ec,d the exit time from Sc,d,

Ec,d = inf
{
t > 0 : σt 6∈ Sc,d

}
.

Let c∗ = max{0, c − n0}, d∗ = min{m, d + n0}. Denote by Hc,d the hitting time of
the set Sc∗,d∗ :

Hc,d = inf
{
t > 0 : σt ∈ Sc∗,d∗

}
.

Lemma 2.5.4. There exists a constant C0 such that

Pη(c,d)
[
Ec,d < Hc,d

]
≤ C0 δ1(β) .

Proof. Consider a configuration η(a,b) in Sc,d. To fix ideas assume that a > 0, b < m.
At rate 1 the −1-spins at (x+ a− 1, y + 1), (x+ b+ 1, y + 1) flip to 0. Consider all
other possible spin flips. There are less than 2 |ΛL| flips whose rates are bounded by
e−[4−h]β, 4(n+m) flips whose rates are bounded by e−[2−h]β and 4 flips whose rates
are bounded by e−hβ. Since all these jumps are independent, the probability that
the −1-spin at (x+ a− 1, y + 1) flips to 0 before anything else happens is bounded
below by 1 − C0 [ |ΛL| e−[4−h]β +ne−[2−h]β + e−hβ ]. Iterating this argument n0-times
yields the lemma. �

Applying Assertion 2.5.2 or 2.5.3 and then Lemma 2.5.4 to a configuration σ ∈
Ra yields that either the process returns to R or an extra row or line of 0-spins is
added to the rectangle of 0-spins. The next two lemmata describe how the process
evolves after reaching such a configuration.

Denote by m ≤ n the length of the rectangle of 0-spins. If the shortest side has
length n0 or less, the configuration evolves to a (m× [n− 1]) rectangle of of 0-spins.
If both sides are supercritical, that is if m > n0, a −1-spin next to the rectangle is
flipped to 0.

Denote by SL the set of stable configurations of ΩL, i.e., the ones which are local
minima of the energy :

SL =
{
σ ∈ ΩL : H(σ) < H(σx,±) for all x ∈ ΛL

}
.

Let
δ2(β) = |ΛL| e−[4−n0h]β + e−hβ .

Fix 2 ≤ m ≤ n0, 2 ≤ n ≤ n0 + 1, m ≤ n. Consider a configuration σ with nm
0-spins forming a (n×m)-rectangle, all the other ones being −1. If m = n = 2, let
S(σ) = {-1}. If this is not the case, let S(σ) be the pair (quaternion if m = n) of
configurations in which a row or a column of 0-spins of length m is removed from
the rectangle A(σ).
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We define the valley of σ, denoted by Vσ, as follows. Let Gk, 0 ≤ k ≤ m, be the
configurations which can be obtained from σ by flipping to −1 a total of k 0-spins
surrounded, at the moment they are switched, by two −1-spins. In particular, the
elements of G1 are the four configurations obtained by flipping to −1 a corner of
A(σ).

Let G = ∪0≤k<mGk. Note that we do not include Gm in this union. Let B be
the configurations which do not belong to G, but which can be obtained from a
configuration in G by flipping one spin. Clearly, S(σ) and Gm are contained in B.
Finally, let V(σ) = G ∪B be the neighborhood of σ.

Lemma 2.5.5. Fix 2 ≤ m ≤ n0, 2 ≤ n ≤ n0 + 1, m ≤ n. Consider a configuration
σ with nm 0-spins forming a (n×m)-rectangle, all the other ones being −1. Then,
there exists a constant C0 such that

Pσ
[
HB\S(σ) < HS(σ)

]
≤ C0 δ2(β) .

Proof. Assume that 2 < m < n. The other cases are treated in a similar way. As in
the proof of Proposition 2.4.1, denote by ηt the process σt reflected at Vσ, and by
PV
σ its distribution starting from σ. By (2.12),

Pσ
[
HB\S(σ) < HS(σ)

]
= PV

σ

[
HB\S(σ) < HS(σ)

]
≤ capV(σ,B \ S(σ))

capV(σ, S(σ)) ,

where capV represents the capacity with respect to the process ηt.
We estimate separately these two capacities. Let η(k), 0 ≤ k ≤ m, be a sequence

of configurations such that η(0) = σ, η(m) ∈ S(σ), and η(k+1) is obtained from η(k)

by flipping to −1 a 0-spin surrounded by two −1-spins.
Consider the flow ϕ from σ to S(σ) given by ϕ(η(k), η(k+1)) = 1 and ϕ = 0 for all

the other bonds. By Thomson’s principle,

1
capV(σ, S(σ)) ≤ mZV e

[H(σ)+(m−1)h]β .

To estimate the capacity on the numerator, denote by χ = χB\S(σ) the indicator
function of the set B \ S(σ). By the Dirichlet principle,

capV(σ,B \ S(σ)) ≤ DV(χ) ≤
∑

σ′∈B\S(σ)

∑
σ′′

µV(σ′) ∧ µV(σ′′) ,

where the last sum is performed over all configurations σ′′ ∈ Vσ \ [B \ S(σ)] which
can be obtained from σ′ by one flip.

To estimate the last sum we examine all elements of B \S(σ). There are at most
C0 |ΛL| configurations σ′ obtained from a configuration in G by flipping a spin at
distance 2 or more from the [inner or outer] boundary of A(σ). These configurations
have only one neighbor σ′′ in Vσ and their energy is bounded below by H(σ)+4−h.

There are at most C0 configurations σ′ not in Gm and obtained from a configu-
ration in G by flipping a spin [surrounded by three spins of the same type] at the
boundary of A(σ). These configurations have only one neighbor σ′′ in Vσ and their
energy is bounded below by H(σ) + 2− h.

Finally there are at most C0 configurations σ′ in Gm \ S(σ) or obtained from a
configuration in G by flipping a spin [surrounded by two spins of the same type] at
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the boundary of A(σ). These configurations have at most C0 neighbors σ′′ in Vσ and
their energy is bounded below by H(σ) +mh. It follows from the previous estimates
that

DV(χ) ≤ C0
1
ZV

e−H(σ)β{ |ΛL| e−[4−h]β + e−mhβ
}
.

Putting together the previous estimates on the capacity, we conclude that

Pσ
[
HB\S(σ) < HS(σ)

]
≤ C0

{
|ΛL| e−[4−n0h]β + e−hβ} .

This completes the proof of the lemma. �

Applying the previous result repeatedly yields that starting from a configuration
σ with nm 0-spins forming a (n × m)-rectangle in a sea of −1-spins the process
converges to -1 if the shortest side has length m ≤ n0.

Corollary 2.5.6. Let σ be a configuration with n0(n0 + 1) 0-spins which form a
n0 × (n0 + 1)-rectangle in a background of −1. Then,

Pσ[H−1 = HM] ≥ 1 − C0 δ2(β) .

The next results shows that, in constrast, ifm > n0, then the rectangle augments.
We first characterize how the process leaves the neighborhood of such a configuration
σ.

Fix n0 < m ≤ n ≤ L − 3. Consider a configuration σ with nm 0-spins forming
a (n ×m)-rectangle in a sea of −1’s. Recall that we denote by A(σ) the rectangle
of 0-spins. Let Vσ be the valley of σ whose elements can be constructed from σ as
follows.

Fix 0 ≤ k ≤ n0. We first flip sequentially k spins of A(σ) from 0 to −1. At each
step we only flip a 0-spin if it is surrounded by two −1-spins. The set of all confi-
gurations obtained by such a sequence of k flips is represented by Gk. In particular,
since at the beginning we may only flip the corners of A(σ), G1 is composed of the
four configurations obtained by flipping to −1 one corner of A(σ). On the other
hand, since m > n0, all configurations of Gk have an energy equal to H(σ) + kh.
Denote by G−1 the configuration obtained from σ by flipping to 0 a −1-spin which
is surrounded by one 0-spin. Let G = ∪−1≤k<n0Gk, and note that Gn0 has not been
included in the union.

The second and final stage in the construction of the valley Vσ consists in flipping
a spin of a configuration in G. More precisely, denote by B all configurations which
are not in G, but which can be obtained from a configuration in G by flipping one
spin. The set B is interpreted as the boundary of the valley Vσ := G ∪B.

Note that all configurations in Vσ can be obtained from σ by at most n0 flips.
Conversely, if (η(0) = σ, η(1), . . . , η(n0)) is a sequence of configurations starting from
σ in which each element is obtained from the previous one by flipping a different
spin, one of the configurations η(k) belong to the boundary of Vσ.

Denote by R2 the set of 2(m+n− 2) configurations obtained from σ by flipping
to 0 two adjacent −1-spins, each of which is surrounded by a 0-spin. Clearly, R2 is
contained in B, and the energy of a configuration in R2 is equal to H−1 = H0 − h,
where H0 := H(σ)+(2−h) is the configuration in which only one −1-spin has flipped
to 0. As n0h > 2− h, an inspection shows that all the elements of A := B \R2 have
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an energy strictly larger that H0. In particular, starting from σ, the process reaches
the boundary B at R2. This is the content of the next lemma.

Let
δ3(β) = e−[(n0+1)h−2]β + |ΛL|1/2 e−(2−h)β + |ΛL| e−2β . (2.27)

Lemma 2.5.7. Fix n0 < m ≤ n ≤ L − 3. Consider a configuration σ with nm
0-spins forming a (n×m)-rectangle in a sea of −1’s. Recall that A := B\R2. Then,
there exists a constant C0 such that

Pσ[HA < HR2 ] ≤ C0 δ3(β) .

Proof. Since we may not leave the set Vσ without crossing its boundary B, the
probability appearing in the statement of the lemma is equal to the one for the
reflected process at Vσ, that is, the one in which we forbid jumps from Vσ to its
complement. We estimate the probability for this later dynamics which is restricted
to Vσ.

By (2.12), the probability appearing in the statement of the lemma is bounded
above by capV(σ,A)/capV(σ,R2), where capV stands for the capacity with respect
to the reflected process. We estimate the numerator by the Dirichlet principle and
the denominator by the Thomson principle.

We start with the denominator. Denote by η(1), . . . , η(2(n+m−2)), the configura-
tions of R2, and by xj, yj ∈ Z2 the positions of the two extra 0-spins of η(j).
Assume that xj 6= xk for j 6= k. Consider the flow ϕ from σ to R2 such that
ϕ(σ, σxj) = 1/[2(n + m − 2)], ϕ(σxj , η(j)) = 1/[2(n + m − 2)], and ϕ = 0 at all the
other bonds. By the Thomson principle, since µV(σxj) is less than or equal to µV(σ)
and µV(η(j)),

1
capV(σ,R2) ≤

1
n+m− 2 ZV e

βH0 . (2.28)

We turn to the numerator. Denote by f the indicator function of the set A. Since
f vanishes at σ and is equal to 1 atA, by the Dirichlet principle, capV(σ,A) ≤ DV(f).
On the other hand,

DV(f) =
∑
η∈A

∑
ξ∼η

µV(η) ∧ µV(ξ) , (2.29)

where the second sum is performed over all configurations in Vσ \ A which can be
obtained from η by one spin flip. This relation is represented by ξ ∼ η.

We first consider the configuration η in A which have a neighbor in G−1. Fix
ξ ∈ G−1. Consider the configurations obtained from ξ by flipping a spin which is not
at the boundary of A(σ). There are at most |ΛL| of such spins, and the energy of
the configurations obtained by this spin flip is bounded below by H0 + 4− h. There
is one special spin, though, the one which is next to the extra spin and not at the
boundary of A(σ). The energy of the configuration obtained by flipping this spin
to 0 or to +1 is bounded below by H0 + 2 − h. The contribution of these terms to
(2.29) is thus bounded above by

2 (n+m) 1
ZV

e−βH0
{
|ΛL| e−(4−h)β + e−(2−h)β } ,

where the factor 2 (n+m) comes from the total number of configurations in G−1.
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We turn to the configurations obtained from ξ by flipping a spin at the boundary
of A(σ). Since the configuration resulting from this flip can not be in R2, their energy
is bounded below by H0 + 2− h. The contribution of these terms to the sum (2.29)
is thus bounded by

4 (n+m)2 1
ZV

e−βH0 e−(2−h)β ,

the extra factor 2(n + m) coming from the possible positions of the extra spin flip
at the boundary.

Consider now configurations η inA which have a neighbor in a set Gk, 0 ≤ k < n0.
Fix 0 ≤ k < n0 and ξ ∈ Gk. The configuration ξ is formed by a connected set
A(ξ) ⊂ A(σ) of 0-spins in a sea of −1-spins.

There is one special case which is examined separately. Suppose that ξ belongs
to Gn0−1 and η to Gn0 . There are C(n0) of such pairs, and the energy of η is equal to
H(σ) + n0h = H0 + (n0 + 1)h− 2. We exclude from now in the analysis these pairs.

Apart from this case, there are two types of configurations η ∈ A which can be
obtained from ξ by a spin flip. The first ones are the ones in which η and ξ differ
by a spin which belongs to the inner or outer boundary of A(ξ). There are at most
4(n+m) ≤ 8n of such configurations. The energy of these configurations is bounded
below by H(ξ) + 2 − h = H(σ) + kh + 2 − h = H0 + kh. The minimal case occurs
when a −1-spin which has a 0-spin as neighbor is switched to 0.

The previous estimate is not good enough in the case k = 0 because in the
argument we did not exclude the configurations in G−1. For k = 0 if η belongs to
B \G−1, we obtain that H(η) ≥ H(σ) + 2 +h = H0 + 2h. The right-hand side of this
inequality corresponds to the case in which a 0-spin surrounded by three 0-spins has
been changed to −1. In conclusion, if the flip occurs at the boundary of A(ξ), there
are at most 8n configurations and the energy of such a configuration is bounded
below by H0 + h.

If the flip did not occur at the boundary of A(ξ), there are at most |ΛL| possible
configurations, and the energy of these configurations is bounded below by H(ξ) +
4− h = H(σ) + kh+ 4− h = H0 + 2 + kh.

The previous estimates yield that the Dirichlet form (2.29) is bounded by
C0

ZV

e−βH0
{
n |ΛL| e−(4−h)β + n2 e−(2−h)β + e−[(n0+1)h−2]β + ne−βh + |ΛL|e−2β

}
.

Multiplying this expression by (2.28) yields that the probability appearing in the
statement of the lemma is bounded above by

C0

{
n e−(2−h)β + e−[(n0+1)h−2]β + |ΛL| e−2β

}
because (n0 + 1)h− 2 < h and 4− h > 2. We bounded 1/n by 1 when n appeared
in the denominator because n can be as small as n0 + 1. This completes the proof
of the lemma since n2 ≤ |ΛL|. �

The previous lemma asserts that the process leaves the neighborhood of a large
rectangle of 0-spins in a sea of −1 spins by switching from −1 to 0 two adjacent
spins at the outer boundary of the rectangle. At this point, applying Lemma 2.5.4
yields that with a probability close to 1 these two adjacent 0-spins will increase to
2n0 adjacent 0-spins. To increase it further, we apply the next lemma.

This result will be used in two different situations :
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(B1) To increase in any direction a rectangle with 2n0 adjacent 0-spins whose
distance from the corners is larger than 2n0 to a rectangle of adjacent 0-spins
which is at distance less than 2n0 from one of the corners ;

(B2) To increase a rectangle with k ≥ 2n0 adjacent 0-spins which contains one
corner and is at a distance larger than 2n0 from the other corner to a rectangle
of adjacent 0-spins which is at distance less than 2n0 from this later corner.

To avoid a too strong assumption on the rate at which the cube ΛL increases, we
do not impose [as in the Assertions 2.5.2–2.5.3 and Lemma 2.5.4] the extra rectangle
of 0-spins to grow without never shrinking or to grow while the spins at the corners
stay put.

As in the proof of Lemma 2.5.7, we construct a set of configurations in two stages.
We consider below the case in which the extra rectangle is far from the corners. The
case in which it contains one of the corners can be handled similarly.

Fix n0 ≤ m ≤ n ≤ L− 3. Denote by σ a configuration in which nm 0-spins form
a (n×m)-rectangle in a sea of −1-spins. Denote this rectangle by A(σ), and assume,
without loss of generality, that m is the length and n the height of A(σ). Let (x, y)
be the position of the upper-left corner of A(σ).

We attach to one of the sides of A(σ) an extra (p×1)-rectangle of 0-spins, where
p > n0. In particular, the length of the side to which this extra rectangle is attached
has to be larger than n0. To fix ideas, suppose that the extra 0-spins are attached to
the upper side of length m of the rectangle and assume that m > 5n0. As explained
previously, the case m ≤ 5n0 is handled by Lemma 2.5.4.

Figure 2.4 – Assume that n0 = 3. The first picture provides an example of a
configuration η(c,d). Here, m = 18 ≤ n, c = 6, d = 10 and p = 5. The gray portion
indicates that the rectangle continues below as its height is larger than 18. The
second picture presents a configuration in Gc,d,6. We chose k = 6 > n0 to make the
definition clear.

Denote by η(c,d), 2n0 ≤ c < d ≤ m− 2n0, d− c > n0, the configuration obtained
from σ by flipping from −1 to 0 the ([d− c]×1)-rectangle, denoted by Rc,d, given by
{(x+ c, y + 1), . . . , (x + d, y + 1)}. Denote by Gc,d,k, 0 ≤ k ≤ n0, the configurations
obtained from η(c,d) by sequentially flipping to −1, close to the corners of A(σ), a
total of k 0-spins surrounded, at the moment they are switched, by two −1 spins.
We do not flip spins in Rc,d.

In the case [not considered below] where the rectangle Rc,d includes one corner,
say c = 0, we treat the spins at (x, y + 1), . . . , (x + n0, y + 1) as belonging to the
corner and we allow them to be flipped.

Let G = ∪c,d ∪0≤k<n0 Gc,d,k, where the first union is performed over all indices
such that 2n0 ≤ c < d ≤ m− 2n0, d− c > n0. Note that we excluded k = n0 in this
union. Denote by B the configurations which do not belong to G and which can be
obtained from a configuration in G by flipping one spin. The set B is treated as the
boundary of G.
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Note that B contains configurations in Gc,d,n0 and also configurations in Gc,d,k in
which d− c = n0. Let A1, A2 be such configurations :

A1 :=
⋃
c,d

Gc,d,n0 , A2 :=
⋃
c′,d′

⋃
0≤k<n0

Gc′,d′,k , A := A1 ∪A2 ,

where the first union is performed over all indices such that 2n0 ≤ c < d ≤ m− 2n0,
d − c > n0, and the second one is performed over all indices such that 2n0 < c′ <
d′ ≤ m− 2n0, d′ − c′ = n0. The set B also contains configurations in which a 0-spin
in a rectangle Rc,d surrounded by 3 0-spins is flipped to ±1.

All configurations in G are similar to the ones represented in Figure 2.4. They
are obtained by adding a (p× 1)-rectangle of 0-spins to the upper side of A(σ) and
by switching to −1 some of the spins of A(σ) close to the corners.

For t < HB, denote by ct, resp. dt, the position at time t of the leftmost, resp.
rightmost, 0-spin of the upper rectangle. Let τ ∗ be the first time ct ≤ 2n0 or dt ≥
m− 2n0 :

τ ∗ := inf{t ≥ 0 : ct ≤ 2n0 or dt ≥ m− 2n0} .

and let δ′4(β) = |ΛL| e−[4−h]β + |ΛL|1/2 e−[2−h]β,

δ4(β) := |ΛL|3/2 e−[4−h]β + |ΛL| e−[2−h]β . (2.30)

Lemma 2.5.8. Let σ′ = η(c0,d0), for some 2n0 < c0 < d0 < m− 2n0, d0 − c0 ≥ 2n0.
Then, there exists a finite constant C0 such that

Pσ′ [HB < τ ∗] ≤ C0 δ4(β)

for all β ≥ C0.

Proof. Let Ct be the set of spins in A(σ) close to the corners which takes the value
−1 at time t. In the right picture of Figure 2.4 the set Ct consists of the 6 squares
at the corners which have been removed from the left picture. Set Ct to be ΛL for
t ≥ HB. Before hitting B, the total number of sites of Ct, represented by |Ct|, is
strictly bounded by n0. Moreover, Before hitting B, |Ct|, which starts from 0, is
bounded by a Markov process mt which jumps from k ≥ 0 to k + 1 at rate n0e

−βh

and from k + 1 to k at rate 1.
Let bt = 1{σt ∈ Gc \ A}. This process starts from 0 and jumps to 1 when σt

reaches B through a configuration which is not in A. Inspecting all possible jumps
yields that the process bt is bounded by a process zt which starts from 0 and jumps
to 1 at rate |ΛL|e−[4−h]β+2(n+m)e−[2−h]β ≤ δ′4(β), where δ′4(β) has been introduced
just above (2.30)

The key observation in the proof of this lemma is that the processes (ct, dt), Ct
and bt are independent until the set B is attained because they involve different spin
jumps.

Let xt = dt− ct. Before hitting B, xt evolves as a random walk in Z which starts
from d − c ≥ 2n0 and jumps from k to k + 1 at rate 2 and from k + 1 to k at rate
2e−βh. Let τ0 be the first time xt ≤ n0.

Let Hb
1 be the hitting time of 1 by the process bt, and let HC

n0 be the first time
|Ct| attains n0. The event {HB < τ ∗} is contained in the event {τ0 < τ ∗} ∪ {Hb

1 <
τ ∗} ∪ {HC

n0 < τ ∗}.
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Consider three independent Markov chains, Xt, Yt, Zt. The first one takes value
in {0, . . . ,m}, it starts from 2n0, and jumps from k to k+ 1 at rate 2 and from k+ 1
to k at rate 2e−βh. The process Yt takes value in {0, . . . , n0}, it starts from 0, and
jumps from k to k+1 at rate 2e−βh and from k+1 to k at rate 1. The last one takes
value in {0, 1}, it starts from 0, and jumps from 0 to 1 at rate δ′4(β).

Before time HB we may couple (xt, |Ct|, bt) with (Xt, Yt, Zt) in such a way that
Xt = xt, |Ct| ≤ Yt and bt ≤ Zt. In particular, {τ0 < τ ∗} ⊂ {HX

0 < HX
m}, {HC

n0 <
τ ∗} ⊂ {HY

n0 < HX
m}, {Hb

1 < τ ∗} ⊂ {HZ
1 < HX

m}. In these formulas, HW stands for
the hitting time of the processW . Hence, the probability appearing in the statement
of the lemma is bounded above by

P
[
HX
n0 < HX

m

]
+ P

[
HY
n0 < HX

m < HX
n0

]
+ P

[
HZ

1 < HX
m < HX

n0

]
. (2.31)

We estimate each term separately.
The first one is easy. Denote by PX

k the distribution of Xt starting from k. Let
f(k) = PX

k [HX
n0 < HX

m ], which is harmonic. It can be computed explicitly and one
gets that

P
[
HX
n0 < HX

m

]
= PX

2n0

[
HX
n0 < HX

m

]
≤ 2e−n0hβ

provided β ≥ C0.
We turn to the second term of (2.31). On the set {HX

m < HX
n0} we may replace X

by a random walk on Z and estimate P
[
HY
n0 < HX

m ]. As X and Y are independent,
we condition on Y and treat HY

n0 as a positive real number. The set {HY
n0 < HX

m} is
contained in {XJ ≤ m} where J = HY

n0 . Fix θ > 0. By the exponential Chebyshev
inequality and since m ≤ n [the sizes of the rectangle A(σ)],

PX
2n0

[
XJ ≤ m

]
≤ PX

0
[
XJ ≤ n

]
≤ eθnEX

0
[
e−θXJ

]
.

Choose θ = 1/n and compute the expectation to obtain that the previous expression
is bounded by 3 exp{−(2/n)HY

n0} provided β ≥ C0. By Lemma 2.3.1,

E
[
e−(2/n)HY

n0
]
≤ C0 n e

−n0hβ ,

where E represents the expectation with respect to P .
The third expression in (2.31) is estimated similarly. The argument yields that

it is bounded by

3E
[
e−(2/n)HZ

1
]
≤ 3 δ′4(β)

(2/n) + δ′4(β) ≤ 2n δ′4(β) ,

where δ′4(β) has been introduced just above (2.30). This completes the proof of the
lemma because n0h > 2− h. �

Remark 2.5.9. One could improve the previous argument and obtain a better esti-
mate by allowing the spins at the boundary of A(σ) to flip while the rectangle Rc,d

fills the upper side.

The next result describes how the supercritical droplet of 0-spins grows. Let

δ5(β) := e−[(n0+1)h−2]β + e−hβ + |ΛL|3/2 e−(2−h)β .
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A simple computation based on the bound |ΛL|e−2β ≤ 1, which holds for β large
enough, shows that there exists C0 such that

δ1(β) + δ3(β) + |ΛL|1/2 δ4(β) ≤ C0 δ5(β) (2.32)

for all β ≥ C0.

Proposition 2.5.10. Fix n0 < m ≤ n ≤ L. Let σ be a configuration with mn 0-
spins which form a m× n-rectangle in a background of −1-spins. Then, there exists
a constant C0 such that

Pσ[HSL\{σ} = HS(σ)] ≥ 1 − C0 δ5(β) ,

for all β ≥ C0. In this equation, if n ≤ L− 3, S(σ) is the set of four configurations
in which a row or a column of 0 spins is added to the rectangle A(σ). If m < n =
L− 2, the set S(σ) is a triple which includes a band of 0 spins of width m and two
configurations in which a row or a column of 0 spins of length n is added to the
rectangle A(σ). If m ≤ L−3, n = L, the set S(σ) is a pair formed by two bands of 0
spins of width m+ 1. If m = n = L− 2, S(σ) is a pair of two bands of width L− 2.
If n0 < m = L− 2, n = L, S(σ) = {0}.

Proof. Consider the first case, the proof of the other ones being similar. By Lemma
2.5.7, with a probability close to 1, the process σt escapes from the valley Vσ of σ
by flipping to 0 two adjacent spins at the outer boundary of A(σ). By Lemma 2.5.4,
with a probability close to 1, these two adjacent spins will become 2n0 adjacent
0-spins. Of course, if the length of the side is smaller than 2n0, this simply means
that the 0-spins fill the side.

Denote by Re the (2n0 × 1)-rectangle of adjacent 0-spins. At this point, if Re is
at distance less than 2n0 of one of the corners of A(σ), we apply Lemma 2.5.4 again
to extend it up to the corner. After this step, or if Re is at distance greater than
2n0 of one of the corners of A(σ), we apply Lemma 2.5.8 to increase Re up to the
point that one of its extremities is at a distance less than 2n0 of one of the corners of
A(σ). We fill the 2n0 sites with 0-spins by applying again Lemma 2.5.4. We repeat
the procedure applying Lemma 2.5.8 to reach a position close to the corner and then
Lemma 2.5.4 to fill the gap.

The probability that something goes wrong in the way is bounded by the sum of
the probabilities that each step goes wrong. This is given by C0{δ3(β) + 6n0δ1(β) +
2|ΛL|1/2δ4(β)}, which completes the proof of the proposition in view of (2.32). �

Corollary 2.5.11. Let σ be a configuration with n0(n0 + 1) + 2 0-spins which form
a n0× (n0 +1)-rectangle in a background of −1, with two additional adjacent 0-spins
attached to the longest side of the rectangle. Then, there exists a constant C0 such
that

Pσ[H0 = HM] ≥ 1 − C0 |ΛL|1/2 δ5(β)
for all β ≥ C0.

Proof. Denote by {Tj : j ≥ 1} the jump times of the process σt. Let σ+ be the
configuration obtained from σ by flipping to 0 all −1-spins in the same row or
column of the two adjacent 0-spins. Hence, σ+ has (n0 +1)2 0-spins in a background
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of −1 spins. According to Lemma 2.5.4, Pσ[σ(Tn0−1) = σ+] ≥ 1 − C0 δ1(β). Since
Tn0−1 ≤ HM, we may apply the strong Markov property to conclude that

Pσ[H+1 = HM] ≥ Pσ+ [H+1 = HM] − C0 δ1(β) .

At this point, apply Proposition 2.5.10 (2|ΛL|1/2) times to complete the proof. �

Proof.[Proof of Proposition 2.5.1] We prove the first statement, the argument for
the other ones being analogous. Fix σ ∈ Rlc. Recall that we denote by T1 the time
of the first jump. By the strong Markov property at time T1 and by Assertion 2.5.2,

Pσ[H−1 = HM] = Eσ
[
PσT1

[H−1 = HM]
]

= 1
2
{
Pσ+ [H−1 = HM] + Pσ− [H−1 = HM]

}
+ Rβ ,

where Rβ is a remainder whose absolute values is bounded by C0 δ1(β), and σ−, resp.
σ+, is the configuration obtained from σ by flipping to −1 the attached 0-spin, resp.
by flipping to 0 the unique −1 spin with two 0-spins as neighbors.

The configuration σ− has n0(n0 + 1) 0-spins which form a n0× (n0 + 1)-rectangle
in a background of −1. Hence, by Corollary 2.5.6, Pσ− [H−1 = HM] ≥ 1 − C0 δ2(β).
On the other hand, by Corollary 2.5.11, Pσ+ [H+1 = HM] ≥ 1−C0 |ΛL|1/2 δ5(β). The
first statement of the proposition follows from these estimates and from the fact
that δ2(β) < δ5(β), because 4 − n0h > 2, and δ3(β) < C0 δ5(β) for β large enough
by (2.32). �

2.6 Proof of Theorems 2.2.1 and 2.2.2
The proofs of Theorems 2.2.2 and 2.2.1 are based on Propositions 2.4.1 and 2.5.1.

By Proposition 2.5.1, there exists a finite constant C0 such that

max
σ∈Ra

Pσ[H+1 < H{−1,0}] ≤ C0 δ(β) ,

max
σ∈Rl

Pσ[H−1 < H{0,+1}] ≤ (1/2) + C0 δ(β)
(2.33)

for all β ≥ C0, where δ(β) has been introduced in (2.25).
Proof.[Proof of Theorem 2.2.2] We prove the first statement of the theorem, the
argument for the second one being identical. Recall the definition of the boundary
B+ of the valley of -1 introduced in (2.14). By (2.15) and by the strong Markov
property at time HB+ ,

P-1
[
H+1 < H0

]
= E-1

[
Pσ(HB+ )

[
H+1 < H0

] ]
.

Let q(σ) = P−1[Hσ = HB+ ], σ ∈ B+. By Proposition 2.4.1, the previous expectation
is equal to∑

σ∈B+

q(σ)Pσ[H+1 < H0] ≤
∑
σ∈Ra

q(σ)Pσ[H+1 < H0] + C0 ε(β) ,

where ε(β) has been introduced in (2.18).
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By the first estimate in (2.33), uniformly in σ ∈ Ra,

Pσ[H+1 < H0] ≤ Pσ[H+1 < H0 , H{−1,0} < H+1] + C0 δ(β)
= Pσ[H−1 < H+1 < H0] + C0 δ(β) .

Therefore, by the strong Markov property at time H−1,

P−1[H+1 < H0] ≤ P−1[H+1 < H0]
∑
σ∈Ra

q(σ)Pσ[H−1 < H{0,+1}] + C0 δ(β) .

because ε(β) ≤ δ(β).
By the second bound in (2.33), as δ(β)→ 0, for σ ∈ Rl, Pσ[H−1 < H{0,+1}] ≤ 2/3

provided β ≥ C0. Hence, for β large enough,

P−1[H+1 < H0] ≤ (2/3)P−1[H+1 < H0]
∑
σ∈Ra

q(σ) + C0 δ(β)

≤ (2/3)P−1[H+1 < H0] + C0 δ(β) .

This completes the proof of the theorem since δ(β)→ 0. �

Proof.[Proof of Theorem 2.2.1] Since the chains hits B+ before reaching 0 and Rl,
by the strong Markov property,

P−1[HRl < H0] =
∑
σ∈B+

P−1[Hσ = HB+ ]Pσ[HRl < H0] .

Recall the definition of q(σ) introduced in the previous proof. By Proposition
2.4.1, this expression is equal to∑

σ∈Rl
q(σ) +

∑
σ∈Rs

q(σ)Pσ[HRl < H0] + R(β) . (2.34)

where the absolute value of the remainder R(β) is bounded by C0 ε(β). By Assertion
2.5.2, Lemma 2.5.4 and by the proof Lemma 2.5.5, uniformly in σ ∈ Rs, σ′ ∈ R

Pσ[HR < HRl∪{−1,0}] ≥ 1 − C0 [δ1(β) + δ2(β)] ,
Pσ′ [H−1 < HRl∪{0}] = 1 − C0 δ2(β) .

Hence, uniformly in σ ∈ Rs,

Pσ[H−1 < HRl∪{0}] ≥ 1 − C0 [δ1(β) + δ2(β)] , (2.35)

and we may introduce the set {H−1 < HRl∪{0}} inside the probability appearing in
(2.34) by paying a cost bounded by C0[δ1(β) + δ2(β)].

Up to this point, we proved that

P−1[HRl < H0] =
∑
σ∈Rl

q(σ) +
∑
σ∈Rs

q(σ)Pσ[H−1 < HRl < H0] + R(β) ,

where the absolute value of the remainder R(β) is bounded by C0 [ε(β) + δ1(β) +
δ2(β)]. By the strong Markov property this expression is equal to∑

σ∈Rl
q(σ) + P−1[HRl < H0]

∑
σ∈Rs

q(σ)Pσ[H−1 < HRl∪{0}] + R(β) .
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By (2.35), this expression is equal to∑
σ∈Rl

q(σ) + P−1[HRl < H0]
∑
σ∈Rs

q(σ) + R(β) ,

where the value of R(β) has changed but not its bound. Therefore,(
1 −

∑
σ∈Rs

q(σ)
)
P−1[HRl < H0] =

∑
σ∈Rl

q(σ) + R(β) .

Since, by Proposition 2.4.1,∑
σ∈Rl∪Rs

q(σ) = P−1[HRa = HB+ ] ≥ 1 − ε(β) ,

replacing on the right-hand side
∑

σ∈Rl q(σ) by 1−
∑

σ∈Rs q(σ)− R′(β), where the
absolute value of R′(β) is bounded by ε(β), we conclude that

P−1[HRl < H0] = 1 + R(β) ,

as claimed. �

2.7 The convergence of the trace process
In this section, we examine the evolution of the trace of σt on M = {−1,0,+1}

under the hypotheses of Theorem 2.2.2. Denote by ηt the trace of σt on M. We refer
to Section 2.3 for a precise definition. By [2, Proposition 6.1], ηt is an M-valued,
continuous-time Markov chain. Recall the definition of θβ given in (2.7).

Proposition 2.7.1. As β ↑ ∞, the speeded-up Markov chain η(θβt) converges to the
continuous-time Markov chain on M in which +1 is an absorbing state, and whose
jump rates r(η, ξ), are given by

r(−1,0) = r(0,+1) = 1 , r(−1,+1) = r(0,−1) = 0 .

The proof of this proposition, presented at the end of this section, relies on
estimation of capacities. We start characterizing the distribution of σ(HB+) when
the process starts from -1. Recall the definition of δ2(β) introduced just before
Lemma 2.5.5.

Lemma 2.7.2. There exists a finite constant C0 such that for every σ ∈ Ra,∣∣∣ |Ra|P−1[Hσ = HB+ ] − 1
∣∣∣ ≤ C0 [ ε(β) + δ1(β) ]

for all β ≥ C0.

Proof. Fix a reference configuration σ∗ in Ra. By (2.11) and by definition of the
capacity,

P−1[Hσ = HB+ ] =
M(−1)P−1[Hσ = H+

B+∪{−1}]
cap(−1,B+) ·
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By reversibility, the numerator of this expression is equal to

M(σ)Pσ[H−1 = H+
B+∪{−1}] = µβ(σ)λβ(σ)Pσ[H−1 = H+

B+∪{−1}] .

By Assertions 2.5.2 and 2.5.3, with a probability close to 1, either a negative spin
next to the attached 0-spin flips to 0 or the attached 0-spin flips to −1. In the first
case, as the process left the valley V-1 introduced at the beginning of Section 2.4, it
will hit B+ before reaching -1. In the second case, applying Lemma 2.5.5 repeatedly
yields that the process reaches -1 before hitting B+. Hence, by these three results,∣∣Pσ[H−1 = H+

B+∪{−1}] − n(σ)
∣∣ ≤ C0 [ δ1(β) + δ2(β) ] ,

where

n(σ) =
{

1/2 if σ ∈ Rc,
1/3 if σ ∈ Ri.

Since

λ(σ) =
{

2 + δ1(β) if σ ∈ Rc,
3 + δ1(β) if σ ∈ Ri,

and since µβ(σ) = µβ(σ∗), we conclude that

P−1[Hσ = HB+ ] = µβ(σ∗)
cap(−1,B+)

(
1 +Rβ

)
,

where the absolute value of Rβ is bounded by C0[δ1(β) + δ2(β)]. Summing over
σ ∈ Ra, it follows from Proposition 2.4.1 that for any configuration σ∗ ∈ Ra,∣∣∣ µβ(σ∗) |Ra|

cap(−1,B+) − 1
∣∣∣ ≤ C0 [ε(β) + δ1(β)]

because δ2(β) ≤ ε(β). To complete the proof of the lemma, it remains to multiply
both sides of the penultimate identity by |Ra|. �

It follows from the proof of the previous lemma and the identity |Ra| = 4(2n0 +
1)|ΛL| that there exists a finite constant C0 such that for all σ ∈ Ra,∣∣∣ cap(−1,B+)

µβ(σ) |ΛL|
− 4(2n0 + 1)

∣∣∣ ≤ C0 [ε(β) + δ1(β)] (2.36)

for all β ≥ C0.

Proposition 2.7.3. For any configuration η ∈ Rl and any configuration ξ ∈ Rl
0,

lim
β→∞

cap(−1, {0,+1})
µβ(η) |ΛL|

= 4(2n0 + 1)
3 = lim

β→∞

cap(0, {−1,+1})
µβ(ξ) |ΛL|

.

Proof. We prove below the first idendity of the proposition, the one of the second
being analogous. We first claim that

cap(−1, {0,+1}) = cap(−1,B+)
∑
σ∈B+

P−1[Hσ = HB+ ]Pσ[H{0,+1} < H−1] .

(2.37)
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Indeed, since starting from −1 the process hits B+ before {0,+1}, by the strong
Markov property we have that

P−1[H{0,+1} < H+
−1] =

∑
σ∈B+

P−1[Hσ = H+
B+∪{−1}]Pσ[H{0,+1} < H−1] .

By (2.11), we may rewrite the previous expression as

P−1[HB+ < H+
−1]

∑
σ∈B+

P−1[Hσ = HB+ ]Pσ[H{0,+1} < H−1] .

This proves (2.37) in view of the definition (2.8) of the capacity.
By (2.36) and (2.37), for any configuration σ∗ ∈ Ra,

cap(−1, {0,+1})
|ΛL|µβ(σ∗) = [4(2n0 + 1) +R

(1)
β ]

∑
σ∈B+

P−1[Hσ = HB+ ]Pσ[H{0,+1} < H−1] .

where |R(1)
β | ≤ C0 [ε(β) + δ1(β)] for β large.

Consider the sum. By Proposition 2.4.1, we may ignore the terms σ 6∈ Ra. On the
other hand, Proposition 2.5.1 provides the asymptotic value of Pσ[H{0,+1} < H−1]
for σ ∈ Ra. Putting together these two result yields that the sum is equal to

1
2 P−1[HRlc = HB+ ] + 2

3 Pσ[HRli = HB+ ] + R
(2)
β ,

where the absolute value of the remainder R(2)
β is bounded by C0[ε(β) + δ(β)]. By

Lemma 2.7.2, this expression is equal to
1
2

2
2n0 + 1 + 2

3
n0 − 1
2n0 + 1 + R

(3)
β ,

where |R(3)
β | ≤ C0 [ε(β) + δ(β)] because δ1(β) ≤ δ(β). The first assertion of the

proposition follows from the previous estimates. �

The same proof yields that for any configuration η ∈ Rl, ξ ∈ Rl
0,

lim
β→∞

cap(−1,0)
µβ(η) |ΛL|

= 4(2n0 + 1)
3 = lim

β→∞

cap(0,+1)
µβ(ξ) |ΛL|

.

In particular,

lim
β→∞

cap(−1,0)
cap(−1, {0,+1}) = 1 , lim

β→∞

cap(0,+1)
cap(0, {−1,+1}) = 1 . (2.38)

Corollary 2.7.4. We have that

lim
β→∞

cap(0,M \ {0})
µβ(0) θβ = 1 ,

where θβ has been introduced in (2.7).
Proof. Fix η ∈ Ra and ξ ∈ Ra

0. By definition of θβ, the expression appearing in the
statement of the corollary can be written as

µβ(ξ)
µβ(0)

cap(0,M \ {0})
µβ(ξ) |ΛL|

µβ(η) |ΛL|
cap(−1,M \ {−1})

µβ(−1)
µβ(η) ·

By the previous lemma, the product of the second and third expression converges
to 1, while the first and fourth term cancel. �
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Lemma 2.7.5. We have that

lim
β→∞

cap(−1,+1)
cap(−1, {0,+1}) = 1 .

Proof. Fix a configuration σ∗ in Ra. By the proof of Proposition 2.7.3,

cap(−1,+1)
µβ(σ∗) |ΛL|

= 4(2n0 + 1)
∑
σ∈Ra

P−1[Hσ = HB+ ]Pσ[H+1 < H−1] + R
(1)
β ,

where |R(1)
β | ≤ C0[ε(β) + δ(β)] for some finite constant C0.

By Proposition 2.5.1, starting from σ ∈ Ra we reach {-1,0} before +1 with
a probability close to 1. Hence, up to a small error, we may include the event
H{−1,0} < H+1 inside the second probability which becomes {H0 < H+1 < H−1}.
Applying the strong Markov property, the right-hand side of the previous expression
becomes

4(2n0 + 1)P0[H+1 < H−1]
∑
σ∈Ra

P−1[Hσ = HB+ ]Pσ[H0 < H{-1,+1}] + R
(1)
β

for a new remainder R(1)
β whose absolute value is bounded by C0[ε(β) + δ(β)].

By Theorem 2.2.2, P0[H+1 < H−1] converges to 1. On the other hand, the sum
can be handled as in the proof of Proposition 2.7.3 to yield that

lim
β→∞

cap(−1,+1)
µβ(σ∗) |ΛL|

= 4(2n0 + 1)
3 ·

This completes the proof of the lemma in view of Proposition 2.7.3. �

Lemma 2.7.6. We have that

lim
β→∞

cap(+1, {−1,0})
cap(0, {−1,+1}) = 1 .

Proof. By monotonicity of the capacity and by equation (3.5) in [19],

cap(+1,0) ≤ cap(+1, {−1,0}) ≤ cap(+1,0) + cap(+1,−1) .

We claim that cap(−1,+1)/cap(0,+1) → 0. By Lemma 2.7.5, we may replace
the numerator by cap(−1, {0,+1}), and by the second identity of (2.38), we may
replace the denominator by cap(0, {-1,+1}). At this point, the claim follows from
Proposition 2.7.3.

Therefore,

lim
β→∞

cap(+1, {−1,0})
cap(0,+1) = 1 .

To complete the proof, it remains to recall again the second identity in (2.38). �
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It follows from the previous result that

lim
β→∞

cap(+1,M \ {+1})
µβ(+1) θβ = 0 . (2.39)

Indeed, by the previous lemma, this limit is equal to

lim
β→∞

θβ
cap(0, {−1,+1})

µβ(0)
µβ(0)
µβ(+1) ·

This expression vanishes in view of Corollary 2.7.4 and because µβ(0)/µβ(+1)→ 0.
Proof.[Proof of Proposition 2.7.1] Denote by rβ(η, ξ) the jump rates of the chain
ηθβt. It is enough to prove that

lim
β→∞

rβ(η, ξ) = r(η, ξ) (2.40)

for all η 6= ξ ∈M.
By [2, Proposition 6.1], the jump rates rβ(η, ξ), η 6= ξ ∈M, of the Markov chain

ηθβt are given by
rβ(η, ξ) = θβ λ(η)Pη[Hξ = H+

M] .

Dividing and multiplying the previous expression by Pη[HM\{η} < H+
η ], by definition

of the capacity and by (2.11),

rβ(η, ξ) = θβ
µβ(η) cap(η,M \ {η}) Pη[Hξ < HM\{η,ξ}] .

It follows from this identity and from (2.39) that for ξ = −1, 0,

lim
β→∞

rβ(+1, ξ) ≤ lim
β→∞

θβ
µβ(+1) cap(+1,M \ {+1}) = 0 .

On the other hand, by Corollary 2.7.4,

lim
β→∞

θβ
µβ(0) cap(0,M \ {0}) = 1 ,

while, by definition, θβ cap(−1,M \ {−1})/µβ(−1) = 1. Furthermore, by Theorem
2.2.2,

lim
β→∞

P−1[H+1 < H0] = lim
β→∞

P0[H−1 < H+1] = 0 .

This yields (2.40) and completes the proof of the lemma. �

2.8 The time spent out of M
We prove in this section that the total time spent out of M by the process σ(tθβ)

is negligible. Unless otherwise stated, we assume that the hypotheses of Theorem
2.2.2 are in force.
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Proposition 2.8.1. Let ∆ = ΩL \M. For every ξ ∈M, t > 0,

lim
β→∞

Eξ
[ ∫ t

0
1{σ(sθβ) ∈ ∆} ds

]
= 0 .

The proof of this proposition is divided in several steps. Suppose that the process
starts from -1. In this case, we divide the time interval [0, t] in 5 pieces, and we
prove that the time spent in ∆ in each time-interval [0, HB+ ], [HB+ , H0], [H0, HB+

0
],

[HB+
0
, H+1] and [H+1,∞) is negligible.

The proof of the last step requires the introduction of the valley of +1 which is
slightly different from V-1 and V0. Denote by V+1 the valley of +1. This is the set
constituted of all configurations which can be attained from+1 by flipping n0(n0+1)
or less spins of +1. The boundary of this set, denoted by B+

+1, is formed by all
configurations which differ from +1 at exactly n0(n0 + 1) sites. The configuration
with minimal energy in B+

+1 is the one where n0(n0 +1) 0-spins form a n0×(n0 +1)-
rectangle. Denote the set of these configurations by R+1. Fix η ∈ R+1 and ξ ∈ Ra

and note that
H(η) − H(+1) > H(ξ) − H(-1) . (2.41)

Thus V+1 is a deeper valley than V-1 or V0.
Indeed, according to [2, Theorem 2.6], the depth of the valley V+1 is given by

µβ(+1)/cap(+1,B+
+1). As in the proof of (2.36), or by applying the Dirichlet and

the Thomson principles, we have that cap(+1,B+
+1) is of the order of |ΛL|µβ(η) for

η ∈ R+1. Hence the depth of the valley V+1 is of the order of e[H(η)−H(+1)]β/|ΛL|.
By (2.41), the definition (2.7) of θβ, and Proposition 2.7.3, this expression is much
larger than θβ, which is of the same order of the depth of the valley V-1.

In particular, for all t > 0

lim
β→∞

P+1
[
HB+

+1
< t θβ

]
= 0 . (2.42)

We turn to the proof of Proposition 2.8.1. We first show that conditioned to
the valley V-1, the measure µβ is concentrated on the configuration -1. The same
argument yields that this result holds for the pairs (0,V0), (+1,V+1).

Lemma 2.8.2. Suppose that (2.4) holds. Then, there exists a constant C0 such that

µβ(V-1 \ {-1})
µβ(-1) ≤ C0 |ΛL| e−2β

for all β ≥ C0.

Proof. Fix 1 ≤ k ≤ N = n0(n0 + 1) + 1, and denote by Ak the configurations in V-1
with k spins different from −1. The ratio appearing in the statement of the assertion
is equal to

N∑
k=1

∑
σ∈Ak

µβ(σ)
µβ(-1) ≤ 2N

N∑
k=1

∑
σ∈A0

k

µβ(σ)
µβ(-1) · (2.43)

In this equation, A0
k represents the configurations in V-1 with k spins equal to 0,

and we applied Assertion 2.4.5.
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Fix k < N and consider the set A0
k,j of configurations in A0

k for which the 0-spins
have j connected components. There are at most C0|ΛL|j of such configurations, and
the energy of one of them, denoted by σ, is equal to H(-1) − kh + I−1,0(σ), where
I−1,0(σ) represents the size of the interface. By (2.24), I−1,0(σ) ≥ I−1,0(σ∗)+2(j−1),
where σ∗ is configuration obtained from σ by gluing the connected components. By
[2, Assertion 4.A], I−1,0(σ∗) ≥ 4

√
k. Therefore, the previous sum for k < N is

bounded above by

C0

N−1∑
k=1

e−[4
√
k−kh]β

k∑
j=1

|ΛL|j e−2(j−1)β .

Since |ΛL| e−2β ≤ 1/2 for β sufficiently large and since 4
√
k − kh ≥ min{4 −

h, 4
√
N − 1− (N − 1)h}, the previous sum is less than or equal to

C0 |ΛL|
(
e−[4−h]β + e−2(n0−1)β

)
≤ C0 |ΛL|

(
e−[4−h]β + e−2β

)
≤ C0 |ΛL| e−2β

because 4
√
N − 1 − (N − 1)h = 4

√
n0(n0 + 1) − n0(n0 + 1)h ≥ 4n0 − 2(n0 + 1) =

2(n0 − 1) ≥ 2.
It remains to consider the contribution of the set AN . There are at most C0 |ΛL|

configurations in this set, and each configuration has the same energy. The contribu-
tion of these terms to the sum (2.43) is bounded by C0 |ΛL|e−(2n0+1)β ≤ C0 |ΛL|e−2β.
This completes the proof of the lemma. �

Assertion 2.8.3. We have that

lim
β→∞

1
θβ

E-1

[ ∫ HB+

0
1{σ(s) ∈ ∆} ds

]
= 0 .

Proof. As the process σt is stopped at time HB+ , we may replace ∆ by ∆ ∩ V-1.
By [2, Proposition 6.10], and by definition of θβ, the expression appearing in the
statement of the lemma is bounded above by

1
θβ

µβ(∆ ∩ V-1)
cap(-1,B+) = cap(-1,M \ {-1})

cap(-1,B+)
µβ(∆ ∩ V-1)
µβ(-1) ·

By Proposition 2.7.3 and (2.36), the first ratio converges to 1/3, while by Lemma
2.8.2 the second one converges to 0. �

A similar result holds for the pairs (0,V0), (+1,V+1), where the valleys are
defined analogously as V-1.

Denote by Rl
2, resp, Rs

2, the set of configurations with n0(n0 + 1) + 2 0-spins
in a background of −1-spins. The 0-spins form a [n0 × (n0 + 1)]-rectangle with two
extra contiguous 0-spins attached to one of the longest, resp. shortest, sides of the
rectangle.

Lemma 2.8.4. For every t > 0,

lim
β→∞

1
θβ

max
ξ∈Rs2∪R

Eξ
[
H-1 ∧ tθβ

]
= 0 .
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Proof. Consider a configuration σ ∈ R. Applying Lemma 2.5.5 repeatedly yields
that Pσ[HB+ < H-1]→ 0. We may therefore include the indicator of the set {H-1 <
HB+} inside the expectation appearing in the statement of the lemma. After this
inclusion, we may replace H-1 by HB+∪{-1}. At this point, it remains to estimate
(1/θβ)Eσ[HB+∪{-1}]. Since the process is stopped as it reaches B+, we may replace
σt by the reflected process at V-1. After this replacement, bound HB+∪{-1} by H-1.

We need therefore to estimate (1/θβ)EV
σ[H-1]. By [2, Proposition 6.10] and by

definition of θβ, this expression is bounded by

cap(σ∗, -1)
µβ(-1)

1
capV(σ, -1) = capV(σ∗, -1)

µV(-1)
1

capV(σ, -1) ,

where σ∗ is a configuration in Ra. By Lemma 2.8.2, µV(-1)→ 1, while by the proofs
of Lemma 2.4.2 and 2.4.3,

lim
β→∞

capV(σ∗, -1)
capV(σ, -1) ≤ C0 lim

β→∞

µV(σ∗)
µV(σ) = 0 .

Consider now a configuration σ ∈ Rs
2. Denote by A the [n0 × (n0 + 2)]-rectangle

obtained from the set of 0-spins of σ by completing the line or the row where the
two extra spins sit. Denote by ξ the configuration where each site in A has a 0-spin,
all the other ones being −1.

As in the proof of Lemma 2.5.5, we define the valley Vξ of ξ in two stages. Fix
0 ≤ k ≤ n0. We first flip sequentially k spins of A from 0 to −1. At each step we
only flip a 0-spin if it is surrounded by two −1-spins. The set of all configurations
obtained by such a sequence of k flips is represented by Gk. In particular, since
at the beginning we may only flip the corners of A, G1 is composed of the four
configurations obtained by flipping to −1 one corner of A. Let G = ∪0≤k<n0Gk, and
note that Gn0 has not been included in the union.

The second stage in the construction of the valley Vξ consists in flipping a spin
of a configuration in G. More precisely, denote by B all configurations which are not
in G, but which can be obtained from a configuration in G by flipping one spin. The
set B is interpreted as the boundary of the valley Vξ := G ∪B and it contains Gn0 .

Note that σ belongs to G and that starting from σ the process hits B before -1,
so that H-1 = HB +H-1 ◦HB. Since (a+ b) ∧ t ≤ a+ (b ∧ t), a, b > 0,

Eσ
[
H-1 ∧ tθβ

]
≤ Eσ

[
HB

]
+ Eσ

[
(H-1 ◦HB) ∧ tθβ

]
.

Replacing σt by the process reflected at Vξ, applying [2, Proposition 6.10], and
estimating the capacities yield that the first term divided by θβ converges to 0 as
β →∞.

We turn to the second term. We may insert the indicator function of the set
{HB = H{η(1),η(2)}}, where η(1), η(2) are the configurations obtained from ξ by flipping
to −1 a line or a row of length n0 of the rectangle A. After this insertion, the strong
Markov property yields that the second term of the previous displayed equation is
bounded by

Eσ
[

1{HB = H{η(1),η(2)}}Eσ(HB)
[
H-1 ∧ tθβ

] ]
.

Since the configurations η(1), η(2) belong to R, the result follows from the first part
of the proof. �

74



Lemma 2.8.5. For every t > 0,

lim sup
β→∞

1
θβ

E-1

[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds

]
≤ 3 lim sup

β→∞
max
ξ∈Rl2

1
θβ

Eξ
[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds

]
.

Proof. By Assertion 2.8.3,

lim
β→∞

1
θβ

E-1

[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds1

{
HB+ ≥ tθβ

} ]
= 0 .

We may therefore insert the indicator of the set {HB+ < tθβ} inside the expectation
appearing in the statement of the assertion at a negligible cost. By Proposition 2.4.1,
we may also insert the indicator of the set {HB+ = HRa}. After inserting these
indicator functions, by the strong Markov property, we get that the expectation
appearing in the statement of the lemma is bounded by

1
θβ

E-1

[
1
{
HRa = HB+ ≤ tθβ

}
Eσ(HB+ )

[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds

] ]
+ Rβ ,

where Rβ → 0.
The previous expectation is bounded by

1
θβ

∑
σ∈Ra

P-1
[
Hσ = HB+

]
Eσ
[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds

]
.

Since λβ(σ) ≥ 1 for σ ∈ Ra and since Ra ⊂ ∆, by removing from the integral
the interval [0, τ1], where τ1 represents the time of the first jump, the previous
expectation is less than or equal to

1
θβ

∑
σ∈Ra

∑
ξ

P-1
[
Hσ = HB+

]
pβ(σ, ξ)Eξ

[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds

]
+ 1

θβ
·

By Assertions 2.5.2 and 2.5.3, we may disregard all configurations ξ which do not
have two contiguous attached 0-spins and which do not belong to R. The previous
expression is thus bounded above by

max
ξ∈Rl2

1
θβ

Eξ
[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds

]
+ 2

3
1
θβ

max
ξ∈Rs2∪R

Eξ
[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds

]
+ Rβ ,

where Rs
2 represents the set of configurations with two contiguous 0-spins attached

to the shortest side of the rectangle, and Rβ → 0.
The second expectations is bounded by

1
θβ

max
ξ∈Rs2∪R

Eξ
[
H-1 ∧ tθβ

]
+ 2

3
1
θβ

E-1

[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds

]
.

By Lemma 2.8.4, the first term vanishes as β →∞. The second one can be absorbed
in the left-hand side of the expression appearing in the statement of the lemma,
which completes the proof of the lemma. �
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Lemma 2.8.6. For every t > 0,

lim sup
β→∞

max
ξ∈Rl2

1
θβ

Eξ
[
H0 ∧ tθβ

]
= 0 .

Proof. The proof of this lemma follows the steps of Section 2.5 where we described
the growth of the supercritical droplet. Fix a configuration ξ inRl

2 and recall Lemma
2.5.4. By this result,

1
θβ

Eξ
[
H0 ∧ tθβ

]
≤ 1

θβ
Eξ
[

1{Ec,d = Hc,d} (H0 ∧ tθβ)
]

+ t δ1(β) .

Since Ec,d < H0, we may write H0 as Ec,d +H0 ◦Ec,d and bound H0 ∧ tθβ by Ec,d +
[(H0 ◦ Ec,d) ∧ tθβ]. Hence, by the strong Markov property, the previous expression
is less than or equal to

t δ1(β) + 1
θβ

Eξ
[
Ec,d

]
+ 1

θβ
Eξ
[
1{Ec,d = Hc,d}Eσ(Ec,d)

[
H0 ∧ tθβ

] ]
.

On the set {Ec,d = Hc,d}, σ(Ec,d) is a configuration with (n0 + 1)2 0-spins forming a
square in a sea of −1-spins. The previous expression is thus bounded by

t δ1(β) + 1
θβ

Eξ
[
Ec,d

]
+ 1

θβ
max
η

Eη
[
H0 ∧ tθβ

]
.

Compare the previous expression with the one on the statement of the lemma.
We replaced the set Rl

2 by the set of (n0 + 1) 0-squares at the cost of the error term
t δ1(β), and the expectation of the hitting time of the boundary of the neighborhood
of ξ. Proceeding in this way until hitting 0 will bring the sum of all errors and the
sum of the expectations of all hitting times. The assumptions of Theorem 2.2.2 where
inserted to guarantee that the sum of the error terms converge to 0 as β →∞. The
hitting times of the boundaries involve either the creation of two contiguous 0-spin
at the boundary of a rectangle, whose order is e(2−h)β, or the filling of a side of a
rectangle, which corresponds to the hitting time of an asymmetric one-dimensional
random walk, whose order is proportional to the length of the rectangle. Both orders
are much smaller than θβ, which completes the proof of the lemma. �

Lemma 2.8.7. For every t > 0,

lim sup
β→∞

1
θβ

E+1

[ ∫ tθβ

0
1{σ(s) ∈ ∆} ds

]
= 0 .

Proof. By (2.42), we may insert the indicator of the set {HB+
+1
≥ t θβ} inside the

expectation. After this insertion, we may replace the process σt by the reflected
process at V+1, denoted by ηt, and then bounded the expression by

1
θβ

EV
+1

[ ∫ tθβ

0
1{η(s) ∈ ∆} ds

]
.

This term is equal to

1
θβ

∫ tθβ

0
PV

+1
[
η(s) ∈ ∆

]
ds ≤ 1

θβ

∫ tθβ

0

1
µV(+1)

∑
ξ∈V+1

µV(ξ)PV
ξ

[
η(s) ∈ ∆

]
ds .
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As µV is the stationary state for the reflected process, this expression is equal to

t
µV(∆)
µV(+1) = t

µβ(V+1 \ {+1})
µβ(+1) ·

By Lemma 2.8.2, for V+1 instead of V-1, this expression vanishes as β →∞. �

Proof.[Proof of Proposition 2.8.1] Lemmata 2.8.5 and 2.8.6 show that the time spent
on ∆ until the process reaches 0 is negligible. We may repeat the same argument
to extend the result up to the time where the process reaches +1. Once the process
reaches +1, we apply Lemma 2.8.7. �

2.9 Proof of Theorem 2.2.3
Unless otherwise stated, we assume throughout this section that the hypotheses

of Theorem 2.2.3 are in force. According to [20, Proposition 2.1], we have to show
that for all η ∈M,

lim
δ→0

lim sup
β→∞

sup
2δ≤s≤3δ

Pη[σ(sθβ) ∈ ∆] = 0 . (2.44)

We present the proof for η = -1. The proof for η = 0 is identical. The one for
η = +1 is even simpler because the valley is deeper.
Lemma 2.9.1. Under P-1, the random variable 3HB+/θβ converges to a mean one
exponential random variable.
Proof. As we are interested in HB+ , we may replace the process σt by the reflected
process at V-1, denoted by ηt.

The proof is based on [2, Theorem 2.6] applied to the triple ({-1},V-1 \B+, -1).
We claim that the process ηt fulfills all the hypotheses of this theorem. Condition
(2.14) is satisfied because the set {-1} is a singleton, and condition (2.15) is in force
in view of Lemma 2.8.2. Therefore, by this theorem, the triple ({-1},V-1 \B+, -1)
is a valley of depth

µV(-1)
capV(-1,B+) = µβ(-1)

cap(-1,B+) = cap(-1, {0,+1})
cap(-1,B+) θβ ,

where the last identity follows from the definition of θβ given in (2.7). By (2.36)
and Proposition 2.7.3, the last ratio converges to 1/3. Hence, by property (V2) of
[2, Definition 2.1], 3HB+/θβ converges to a mean-one exponential random variable,
as claimed. �

By the previous lemma, for 2δ ≤ s ≤ 3δ,
P-1
[
σ(sθβ) ∈ ∆

]
= P-1

[
σ(sθβ) ∈ ∆ , HB+ ≥ 4δθβ

]
+ Rβ,δ ,

for some remainder Rβ,δ which vanishes as β → ∞ and then δ → 0. On the set
{HB+ ≥ 4δ}, we may replace the process σt by the reflected process ηt and bound
the first term by

PV
-1
[
η(sθβ) ∈ ∆

]
≤ 1

µV(-1)
∑
σ∈V-1

µV(σ)PV
σ

[
η(sθβ) ∈ ∆

]
= µV(∆)

µV(-1)

because µV is the stationary state. By Lemma 2.8.2 this expression vanishes as
β →∞, which proves (2.44) for η = -1.
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