Skip to Main content Skip to Navigation

Couplage modal pour la reproduction de la cinématique d'une aile d'insecte et la génération de portance d'un nano-drone bio-inspiré

Abstract : This work in the Nano-Air Vehicle field aims to design a small flying object directly inspired by the nature. For this purpose, a state of the art has been performed on insects flight mecanisms and has reviewed the overall artificial flapping wings solutions developped until today. The result of this analysis is on one hand, that insects use a specific wing kinematics which relies on a flapping motion and a twisting motion coupled in a quadrature phase shift and on the other hand, that the existing Nano-Air Vehicles do not exploit the dynamic behavior of their artificial wings to produce lift. The proposed concept in this research is a departure from those other works. It consists of a vibratory coupling in a quadrature phase shift of a flapping and a twisting mode applied on flexible artificial wings in order to reproduce a kinematics close to the insects ones with a single actuator. The used methodology resulted in the development of an analytic modeling which neglects the aerodynamic forces to calculate the dynamic behavior and dimension the prototype structure. Simulations highlighted the existence of eigen modes of the wings structure whose modal shapes match with the wanted flapping and twisting motion. Noteworthy fact, an optimization allowed to get those modes close in frequency while keeping a non-neglectible amplitude in such a way as to couple them and obtain the expected kinematics. The produced lift force is then estimated with an aeroelastic modeling which has shown that the maximum lift is obtained for two frequencies which provide a quadrature phase shift between the two modes. Those results are then validated by experimental measurements performed on a specific bench made according to the constraints due to the prototype in terms of sensitivity and dynamic behavior. The different generations of prototypes tested are produced with microfabrication process, allowing to integrate a wing membrane in parylene with a thickness comparable to the one existing in insects. The conclusion of this study is that we now have a prototype able to compensate its weight.
Complete list of metadatas

Cited literature [134 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Wednesday, July 4, 2018 - 10:09:06 AM
Last modification on : Monday, March 2, 2020 - 1:38:07 PM
Long-term archiving on: : Monday, October 1, 2018 - 10:10:40 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01829483, version 1


Damien Faux. Couplage modal pour la reproduction de la cinématique d'une aile d'insecte et la génération de portance d'un nano-drone bio-inspiré. Micro et nanotechnologies/Microélectronique. Université de Valenciennes et du Hainaut-Cambresis, 2018. Français. ⟨NNT : 2018VALE0007⟩. ⟨tel-01829483⟩



Record views


Files downloads