Etude et conception de circuits innovants exploitant les caractéristiques des nouvelles technologies mémoires résistives - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2018

Study and design of an innovative chip leveraging the characteristics of resistive memory technologies

Etude et conception de circuits innovants exploitant les caractéristiques des nouvelles technologies mémoires résistives

Résumé

In this thesis, we study the dedicated computational approaches of deep neural networks and more particularly the convolutional neural networks (CNN).We highlight the convolutional neural networks efficiency make them interesting choice for many applications. We study the different implementation possibilities of this type of networks in order to deduce their computational complexity. We show that the computational complexity of this type of structure can quickly become incompatible with embedded resources. To address this issue, we explored differents models of neurons and architectures that could minimize the resources required for the application. In a first step, our approach consisted in exploring the possible gains by changing the model of neurons. We show that the so-called spiking models theoretically reduce the computational complexity while offering interesting dynamic properties but require a complete rethinking of the hardware architecture. We then proposed our spiking approach to the computation of convolutional neural networks with an associated architecture. We have set up a software and hardware simulation chain in order to explore the different paradigms of computation and hardware implementation and evaluate their suitability with embedded environments. This chain allows us to validate the computational aspects but also to evaluate the relevance of our architectural choices. Our theoretical approach has been validated by our chain and our architecture has been simulated in 28 nm FDSOI. Thus we have shown that this approach is relatively efficient with interesting properties of scaling, dynamic precision and computational performance. In the end, the implementation of convolutional neural networks using spiking models seems to be promising for improving the networks efficiency. Moreover, it allows improvements by the addition of a non-supervised learning type STDP, the improvement of the spike coding or the efficient integration of RRAM memory.
Dans cette thèse, nous étudions les approches calculatoires dédiées des réseaux de neurones profonds et plus particulièrement des réseaux de neurones convolutionnels (CNN). En effet, l'efficacité des réseaux de neurones convolutionnels en font des structures calculatoires intéressantes dans de nombreuses applications. Nous étudions les différentes possibilités d'implémentation de ce type de réseaux pour en déduire leur complexité calculatoire. Nous montrons que la complexité calculatoire de ce type de structure peut rapidement devenir incompatible avec les ressources de l'embarqué. Pour résoudre cette problématique, nous avons fait une exploration des différents modèles de neurones et architectures susceptibles de minimiser les ressources nécessaires à l'application. Dans un premier temps, notre approche a consisté à explorer les possibles gains par changement de modèle de neurones. Nous montrons que les modèles dits impulsionnels permettent en théorie de réduire la complexité calculatoire tout en offrant des propriétés dynamiques intéressantes, mais nécessitent de repenser entièrement l'architecture matériel de calcul. Nous avons alors proposé notre approche impulsionnelle du calcul des réseaux de neurones convolutionnels avec une architecture associée. Nous avons mis en place une chaîne logicielle et de simulation matérielle dans le but d'explorer les différents paradigmes de calcul et implémentation matérielle et évaluer leur adéquation avec les environnements embarqués. Cette chaîne nous permet de valider les aspects calculatoires mais aussi d'évaluer la pertinence de nos choix architecturaux. Notre approche théorique a été validée par notre chaîne et notre architecture a fait l'objet d'une simulation en FDSOI 28 nm. Ainsi nous avons montré que cette approche est relativement efficace avec des propriétés intéressantes un terme de passage à l'échelle, de précision dynamique et de performance calculatoire. Au final, l'implémentation des réseaux de neurones convolutionnels en utilisant des modèles impulsionnels semble être prometteuse pour améliorer l'efficacité des réseaux. De plus, cela permet d'envisager des améliorations par l'ajout d'un apprentissage non supervisé type STDP, l'amélioration du codage impulsionnel ou encore l'intégration efficace de mémoire de type RRAM.
Fichier principal
Vignette du fichier
73910_LORRAIN_2018_archivage.pdf (3.83 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01827575 , version 1 (02-07-2018)

Identifiants

  • HAL Id : tel-01827575 , version 1

Citer

Vincent Lorrain. Etude et conception de circuits innovants exploitant les caractéristiques des nouvelles technologies mémoires résistives. Traitement du signal et de l'image [eess.SP]. Université Paris Saclay (COmUE), 2018. Français. ⟨NNT : 2018SACLS182⟩. ⟨tel-01827575⟩
391 Consultations
310 Téléchargements

Partager

Gmail Facebook X LinkedIn More