HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation

Contribution to the design of soft hybrid generators : combination of electroactive materials

Abstract : Over the last years, wearable sensors have gained in accuracy and precision, while following the demands of miniaturization and lower power consumption. Scavenging human kinetic energy to produce electricity is an attractive alternative for the power supply of these low-power-consumption devices. E-textiles for health-monitoring or biomedical implants are some of the possible applications that could benefit from a self-powering system.In this context, in 2013, a first prototype of soft and autonomous energy scavenger was developed by our research group through the collaboration between LaMCoS and G2Elab laboratories. This electrostatic generator was based on the dielectric elastomers generators (DEGs) technology, which relies on the mechanical deformation of a thin layer of dielectric material (acrylic or silicone) sandwiched between two compliant electrodes. The main advantages of this technology are their low-cost, compliance, light-weight and adaptability to complex shapes. In addition, they can work on a large scale of temperatures and frequencies (<100Hz), which make them interesting to harvest and convert ambient mechanical vibrations.The objectives of this work were focused on the first prototype optimization to realize a second-generation device with higher energy output, suitability for wearable applications and lifetime and to conceive new alternatives hybrid devices for autonomous DEGs.To these aims, the first stage of the study consisted in the investigation of new conformant electret materials (representing the charges reservoir for electrostatic generator polarization) replacing Teflon in the scavenger structure. Different variants of poly(p-xylylene) polymers, better known with the commercial name of Parylene, were tested as new potential electret materials, mainly due to their highly conformability and possibility of CVD-deposition on complex shapes. The surface potential decays (SPD) on electrets formed by corona discharge method were monitored over time for different Parylene variants, samples thicknesses and charging voltages. These characterizations were aimed to evaluate the performance of Parylene electrets and to monitor the charge dynamic under mechanical conditions close to the final applications and under harsher environmental temperatures. As a result of these tests, fluorinated Parylenes showed excellent long-term charge retention performance (over 1.5 years) both for positive and negative charges.The second part of the work consisted in the realization of optimized structures realizing the electromechanical coupling of the two different electroactive materials constituting the soft electrostatic generator. For this aim, two different working modes were developed: the first one employs electret materials as polarization source, with the aim of optimizing the first hybrid device conceived in the previous study; the second one is made of piezoelectric materials (PZT and PVDF) as DEGs polarization sources, opening a new promising solution for autonomous wearable generators. Through numerical simulations, geometry optimization was performed with the aim of increasing the power output of the devices. Beneath, for the different structures, centimeter scale prototypes were realized and characterized with the final aim to be integrated at human knee level to exploit the mechanical deformation given by human body while walking.
Complete list of metadata

Contributor : Abes Star :  Contact
Submitted on : Monday, July 2, 2018 - 11:40:58 AM
Last modification on : Friday, March 25, 2022 - 9:43:28 AM
Long-term archiving on: : Monday, October 1, 2018 - 8:06:35 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01827397, version 1



Clara Lagomarsini. Contribution to the design of soft hybrid generators : combination of electroactive materials. Automatic. Université Grenoble Alpes, 2018. English. ⟨NNT : 2018GREAT001⟩. ⟨tel-01827397⟩



Record views


Files downloads