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lui suis reconnaissant d’avoir pris cette décision.

Je remercie l’accueil chaleureux de mes collègues du LMV (ex PRISM): Christina,
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véritable bonté et ses plats délicieux. Merci pour les soirées, les repas, les moments

partagés avec vous, et excusez-moi pour les clés oubliées et les plaques allumées.

Juan et Pablo sont les derniers arrivés sur ma route. J’ai eu cependant le temps

d’admirer et d’apprendre beaucoup d’eux. De l’un, la joie de vivre, la simplicité,
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Abstract

Fully Homomorphic Encryption schemes allow public processing of encrypted

data. Since the groundbreaking discovery of the first FHE scheme in 2009 by Craig

Gentry, an impressive amount of research has been conducted to improve efficiency,

achieve new levels of security, describe applications and detect connections to other

areas of cryptography. In this Dissertation, we first give a detailed account on re-

search these past years. Our contributions include a key-recovery attack against the

ideal lattices FHE scheme and a new security conception inside hierarchic structures,

avoiding betrayal between users to some extent, while maintaining the homomorphic

encryption flexibility and also addressing an homomorphic re-encryption paradigm

we detected. We also describe a working implementation of a recent proposal. This

research was done in the Laboratoire de Mathématiques de Versailles, under super-

vision of Prof. Louis Goubin.

Résumé

Les schémas de Chiffrement Complètement Homomorphe permettent de manipu-

ler des données chiffrées avec une grande flexibilité : ils rendent possible l’évaluation

de fonctions à travers les couches de chiffrement. Depuis la découverte du premier

schéma FHE en 2009 par Craig Gentry, maintes recherches ont été effectuées pour

améliorer l’efficacité, atteindre des nouveaux niveaux de sécurité, trouver des appli-

cations et détecter des liens avec d’autres domaines de la cryptographie. Dans cette

thèse, nous avons étudié en détail ce type de schémas. Nos contributions font état

d’une nouvelle attaque de récuperation des clés contre le premier schéma FHE, et

d’une nouvelle notion de sécurité en structures hiérarchiques, évitant une forme de

trahison entre les usagers tout en gardant la flexibilité FHE. Enfin, on décrit des

implémentations informatiques. Cette recherche a été effectuée au sein du Labora-

toire de Mathématiques de Versailles avec le Prof. Louis Goubin.
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1.1. Introduction

1.1 Introduction

The word cryptography comes from the Greek kryptos and graphia – it means “hid-

den writing”. Cryptography is the science of protecting sensitive information, as it

allows to transform readable text into gibberish writings called ciphertexts. These

random-looking messages can in turn be reversed into readable text, but only by

those whose the message was intended for. The first transformation is called en-

cryption, and the reverse transformation is called decryption (un-hiding). Disguising

secrets is inherent to human nature: the first reported usage of secret writing dates

back thousands of years. Since the famous Enigma machine used in World War II

and its rotor solver1, increasingly refined ways of hiding information and attacking

ciphertexts are available, whose complexities escape by far the human scope. Today,

cryptography is a machine’s game, played billions of times a day in order to protect

our data and communications. Recently, a new kind of encryption made its way into

our cryptography toolkit, and exciting research has been conducted to defend and

improve this new instrument: Fully Homomorphic Encryption (henceforth FHE).

A beautiful peculiarity of cryptography as a science is that the basic, invariant

and common element in all its branches is information itself. It is fair to say that

information is to cryptography as energy is to physics. A bit more far-fetched would

be to say that Einstein’s relativity is to physics as FHE is to cryptography, but, on

the very least, it has been referred to as the holy grail of Cryptography.

Let us have a glance at this with the following question. Alice sends Bob a

ciphertext c, duly encrypting a message m. If f(m) is some function of the message,

can Bob deduce an encryption of f(m) with the sole knowledge of c? Much counter-

intuitively, the answer is yes for a special family of encryption schemes.

Oblivious cookie baking. Alice encrypts butter, sugar, eggs, flour and chocolate,

she gives these cipher-ingredients to Bob and asks him to bake a chocolate cookie.

Notice that Bob is not able to decrypt since he does not possess Alice’s secret,

thus he faces the task without awareness of the ingredients – and eventually does

not know what a chocolate cookie is. Nonetheless, he does the baking and in the

end, Alice decrypts the chocolate cookie and eats it with warm milk. Bob does not

understand what has just happened, and there is no cookie for him since the result

of his baking is only decryptable by Alice.

In 1978, two years after the revolutionary works of Diffie and Hellman, cryptog-

raphers Ronald Rivest, Len Adleman and Michael Dertouzos raised in [RAD78] the

question of performing arbitrary operations on ciphertexts, without access to the

underlying data:

1For excellent surveys on history of cryptography, see [Kah96,Sin99].
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“Encryption is a well-known technique for preserving the privacy of

sensitive information. One of the basic, apparently inherent, limitations

of this technique is that an information system working with encrypted

data can at most store or retrieve the data for the user; any more com-

plicated operations seem to require that the data be decrypted before be-

ing operated on. This limitation follows from the choice of encryption

functions used, however, and although there are some truly inherent lim-

itations on what can be accomplished, we shall see that it appears likely

that there exist encryption functions which permit encrypted data to be

operated on without preliminary decryption of the operands, for many

sets of interesting operations. These special encryption functions we call

“privacy homomorphisms”; they form an interesting subset of arbitrary

encryption schemes (called “privacy transformations”)”.

These encryption functions were at first called Privacy Homomorphisms, in the

sense that given an encryption E(D) of some data D and a functionality f , it is

possible to obtain an encryption of f(D) without knowing D nor any decryption se-

cret, hence providing an homomorphism between message and ciphertext spaces. In

fact, in some encryption schemes, plaintext and ciphertext messages lie in algebraic

structures, like a ring or a group, and partial algebraic homomorphisms between

the two can sometimes be constructed. In their seminal paper, they give four ex-

amples of simple (insecure) privacy homomorphisms, based on discrete-logarithms,

RSA-like encryption, Chinese Remainder Theorem and Radix-n respectively (these

last two are non-deterministic). Even before the existence of a secure privacy ho-

momorphism was proven – or believed, for that matter – multiple applications arose

specially in the context of outsourced processing. As a matter of fact, some years

later there were several public encryption schemes already allowing this for some

functionalities. For (a by now folklore) instance, basic RSA encryption happens to

be multiplicative. If c1 = me
1 mod n and c2 = me

2 mod n, then c3 = c1×c2 mod n

is an encryption of m1 × m2. In classic cryptography, this is to be avoided at all

costs: an attacker can construct a valid ciphertext by simply multiplying two or

more encryptions – basic RSA is said to be malleable. In light of this, any privacy

homomorphism is malleable.

Notice, however, that it is not clear how to construct a valid RSA encryption

of m1 +m2 from c1, c2. Hence basic RSA is not known to be an almighty privacy

homomorphism: in order to evaluate an arbitrary polynomial-time computation f

defined as a circuit C with + and × gates, a full privacy homomorphism must at

least describe two operations corresponding to these gates (or any other complete set

of operations). Other partial privacy homomorphisms followed: Paillier, Okamoto–

Uchiyama, Naccache–Stern, Cohen–Fischer, all of them achieving homomorphic ad-

dition or multiplication of messages, but not both. At this point, community was
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already on the search for almighty privacy homomorphisms, who were baptized as

fully homomorphic encryption schemes.

The first example of an additively and multiplicatively homomorphic scheme is

due to Boneh, Goh and Nissim. Their scheme, based on bilinear couplings in elliptic

curves, was capable of evaluating any number of + gates, but only one × gate.

This was a partial victory, since their scheme allows to evaluate all affine, bilinear

and quadratic functionalities. Another effort was a scheme proposed by Fellows and

Koblitz, based on the hardness of a membership problem in the ring Fq[X1, · · · , Xn],

however it suffered some attacks and is not considered secure.

All of these efforts and the apparent slippery of true FHE were coupled with

some degree of skepticism. In spite of this, the quest continued until 2009, when

Craig Gentry proposed the first fully homomorphic encryption scheme in his Ph.D.

dissertation at Stanford University. In theory, his scheme is capable of homomor-

phically evaluating any polynomial-time functionality f over encrypted data. His

merit does not only consist in having the insight to find the mathematical object

that allowed the construction, but also proposing generic transformations between

a family of weak homomorphic schemes – called somewhat homomorphic encryption

(SHE) schemes – and a fully homomorphic encryption scheme. The schemes in

this family must own a self-reference property called “bootstrapping” that allows to

“clean” the output of a large circuit.

In [Gen09a,Gen09b,Gen09c,Gen10a], Gentry describes this revolutionary idea

and gives an explicit construction of a family of SHE schemes relying on ideal lattices.

This family is parameterized by the maximum depth of allowed circuits, and can be

transformed into an FHE scheme. Consequently, Gentry had constructed the first

blindfolded computing machine. Since his breakthrough, other schemes have been

proposed, all of them following this blueprint.

In 2009, the theoretical playground in cryptographic security was fairly ready to

the arrival of FHE, as malleability of ciphertexts was widely discussed. Homomor-

phic encryption allowed to relativise previous notions, in that it gives honest use of

ciphertext modification and introduces new levels of security that are, and rightly

so, considered to be grand contributions.

Two flat tires of this thrilling discovery are the ones of efficiency and underlying

assumptions. Indeed, Gentry’s ideal lattices scheme is complex and suffers from

enormous ciphertext expansion and public-key size, and its celebrated bootstrapping

procedure had to wait for two years to be actually implemented. On the other hand

its security relied in, though reasonable and arguable, new assumptions. The fact

that this scheme was not even remotely comparable to other encryption schemes

provoked a second wave of skepticism, yet, thanks to enthusiastic scientific research,

multiple optimizations and new candidates have been proposed to meet applications.

There are now five independent families of homomorphic schemes, each member ad-
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dressing a different challenge from the community (efficiency, optimal depth of de-

cryption, optimization for static functions, identity-based, attribute-based, support

for multiple users, fast bootstrapping). We describe these families in this Introduc-

tion in 1.5.

Today, we can encrypt, decrypt and add packages of binary messages in a matter

of milliseconds, and multiply, bootstrap and relinearize in some seconds. Manifestly,

this is sufficient for some growing set of exciting applications, see 1.3.

1.2 Overview of this Dissertation

In the rest of this Chapter, we describe some practical applications, report some con-

nections with other cryptography fields, explain how proposals are today ordered into

five branches, give a formal definition of FHE and list underlying computationally-

hard problems.

In Chapter 2, we revisit Gentry’s first FHE proposal based on ideal lattices.

We also propose a proof-of-concept implementation and a digression about natural

densities of some special sets of lattices.

Our main contributions are given in Chapters 3 and 4. In Chapter 3, we describe

a key-recovery attack against Gentry’s first scheme that, in spite of the enormous

parameters selected for security and feasibility, recovers a secret-key of the scheme

in sub-quadratic time with a reasonable number of decryption queries. This is the

subject of a paper submitted to an international conference on Cryptography. In

Chapter 4, we describe a technique of one-way gluing keys from different users of an

FHE scheme, addressing for the first time a natural betrayal problem that arises in

hierarchic scenarios. With this, we deal with a homomorphic proxy re-encryption

paradigm we detected. To that end, we define the Excalibur property and show that

the celebrated NTRU-based FHE of Lopez-Alt et al. displays it. We reproduce an

article included in the proceedings of the Indocrypt 2016 conference [GVP16].

Finally, in Chapter 5, we report a C++ implementation of the FHE scheme of

Brakerski, Gentry and Vaikuntanathan, which is believed to be one of the most

promising candidates in terms of efficiency.

In addition, appendix A “Seeing the whole picture: An article reading guide”

may be of help when approaching the disconcerting and multidimensional literature

of fully homomorphic encryption.

1.3 Reported practical applications

In principle, all outsourced statistical analysis of sensible data can be performed

homomorphically. This is now being done in some domains. We collect here some

of the recent – public – applications.
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Processing Genomic Data

Immense progress has been done in study of genomes, and large databases of human

genomic data are essential to researchers. However, as pointed out in the report

[ADCHT13], given a short DNA sequence of an individual, it is possible to search by

pattern matching in available genomic databases, and eventually retrieve his whole

sequence. With this, the individual privacy is highly invaded: the attacker may

compute illness risks, physical characteristics and eventually identity (for instance

having access to hospital or police records). For that reason, there is legal and ethic

need to protect database volunteers. Researchers have recently propose to encrypt

the human DNA sequence with a fully homomorphic encryption scheme, in order to

conduct meaningful statistic experiences over the encrypted data. In [LLAN15] and

[KL15], such homomorphic evaluations are performed, aiming to process encrypted

genomic data. Authors present computational experiments and report correct and

efficient evaluation of statistic tests such as Pearson’s Goodness-of-Fit test, D� and

r2 measures for linkage disequilibrium, Estimation Maximization for haplotyping,

and Cochran-Armitage tests. In the follow-up article [BLN13], authors explain how

to perform predictive analysis of encrypted genomic data. In addition, they provide

a working implementation of an on-line privacy-respecting cardiovascular disease

(such as heart failures) probability predictor.

Electronic voting

Recently in [CGGI16b], authors presented a new post-quantum e-voting protocol

using lattice-based fully homomorphic encryption. Their scheme proves to be very

transparent, since no additional verifications need to be taken care of when counting

votes or revealing the final result of an election. Indeed, former protocols already pro-

posed to count votes homomorphically, but relied on non-interactive zero-knowledge

proofs carried out by several trustees for ballot validations, which looks like a tail-

biting drawback. In [CGGI16b], only two trustees are required to give independent

proofs of correct decryptions.

Targeted Advertising

Gender, age, location and known interests of an individual are currently been used

to provide personalized advertising. Yet if a mobile phone sends the owner’s lo-

cation to an advertising provider who answers tailored ads, this provider can keep

record of his client’s activities. Ensuring privacy is thus paramount, and it can be

done performing the advertising algorithms homomorphically in a certain scenario,

see [LNV11]. Also in [JPH13], authors use secure multi-party computation pro-

tocols and somewhat homomorphic encryption to secure privacy when the user is

asking recommendations for a given product to friendly users, preserving everyone’s
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anonymity.

Outsourced forensic image recognition

Detection of illegal images in a confiscated hard-drive is done by comparing the con-

tents with a confidential database of hashes of known illegal images. From [BPHJ14]

we quote:

“The Dutch police, for example, owns a database consisting of hash

values of so-called PIPs (Picture that Interests the Police), such as im-

ages showing glorification or overexposure of violence, indignity or porno-

graphic content, like zoophilia and pedophilia. When the police confiscates

equipment with data storage, the hash of each picture found in the stor-

age is computed and looked up in the PIP database. If there are many

matches, the police knows that the confiscated equipment contains PIPs

and the investigation is continued manually to crosscheck.”

To stop the distribution of such images inside a company’s in-line traffic, for

instance, it would be helpful to have remote access to this confidential databases,

however law enforcement agencies refuse outsourcing at all costs to prevent ill use

thereof. In this article, authors propose SOFIR, an on-line algorithm which encrypts

databases and allows recognition of illegal images in a company’s traffic, sending

reports in real time while respecting privacy of other files.

Biometric authentication

Biometric authentication consists in identification of an individual using binary en-

codings of some biological attribute, such as fingerprints or retina. A scan allowing

some small error can be performed in order to authenticate, followed by pattern

matching against a database. In [YSK+13] authors provide a privacy-preserving

secure pattern-matching, optimized for biometric clearance.

1.4 Connections: FHE and ...

As expected, fully homomorphic encryption did not land in a desert. It has proven

to be closely connected to numerous problems and research subjects.

1.4.1 ... Functional Encryption

A functional encryption scheme is a public-key encryption scheme allowing gener-

ation of special secret-keys such that, when used in decryption, the output is a

specific function of the plaintext. Namely, for a valid function f there is a se-

cret key skf such that for a ciphertext c encrypting m, the decryption Dec(sk, cf )
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outputs f(m) and nothing more. This notion controls malleability, in as much as

secrets must be possessed in order to learn more functions of the ciphertext. In

opposition, FHE gives total freedom of computation, but the output is encrypted.

Authors in [ABF+13] provide a detailed study of this relationship and show that

under certain assumptions, a functional encryption scheme supporting operations

on two ciphertexts actually implies the construction of an FHE scheme.

1.4.2 ... Cryptographic Obfuscation

Obfuscating a program is hiding the information embedded in the code, without

hurting functionality. The obfuscated program behaves like a black-box implemen-

tation of the original one, in the sense that no information other than the input and

output can be obtained from the program. With FHE it is possible to obfuscate

some functionalities, but the result is by definition, encrypted, thus conditioned de-

cryption may be necessary to perform the last step of the program, i.e. producing

meaningful output. A natural idea is to hide this conditioned decryption inside the

program. Heavily using FHE and cryptographic multilinear maps as building bricks,

authors in [GGH+13] proposed the first candidate for cryptographic obfuscation.

1.4.3 ... Secure Multi-Party Computation

In a secure multi-party computation (MPC) protocol, two or more mutually dis-

trusting parties wish to compute a function of their joint data. For instance, Alice

holds some value x and Bob holds y, they want to perform some protocol such that

they both learn f(x, y) and nothing more that can be deduced from their input and

output. Using a variant of FHE called Multikey-FHE, authors in [LATV12] showed

that the general MPC problem can be reduced to a specific MPC instance – the one

of a joint decryption of a ciphertext in their scheme.

1.4.4 ... Identity-/Attribute-Based Encryption

IBE is a scenario where the public-key of a user can be deduced from a tag such as

a string (e.g. “Name.Surname”, address, e–mail, phone number, subscription num-

ber). This was proposed in [Sha85], and it relies on an authority that distributes

secret-keys to users corresponding to their public-key after proper clearance. Two

constructions were proposed in 2001 using quadratic residues and Weil pairings of el-

liptic curves (see [Coc01] and [BF01] respectively). In an attribute-based encryption

scheme, decryption of a ciphertext is possible whenever the decryptor meets some

predefined conditions. In other words, secret-keys depend on user’s attributes, e.g.

company, name, kind of subscription. The first ABE scheme was proposed in [SW05]

(see [LCH13] for a nice survey). Hybrid schemes have been proposed in [GSW13]:
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Attribute-Based HE, Identity-Based FHE (IBFHE) and Multi-identity IBFHE. In-

terestingly, these constructions provide compilers that enhance any LWE-based FHE

scheme with the desired property.

1.4.5 ... Proxy Re-encryption

A proxy re-encryption procedure allows the public transformation of ciphertext c de-

cryptable by Alice into a ciphertext c� decryptable by Bob. It is said to be multi-hop

if this new ciphertext can be in turn re-encrypted for another party, and bidirectional

if there are reverse transformations. This is useful in mail redirecting applications.

It has been claimed (for instance in the seminal work [Gen09b]) that following the

bootstrapping argument, FHE is the first candidate for multi-hop bidirectional proxy

re-encryption. However, we point out in [GVP16] that this relies on a non-standard

assumption. We propose an “automatic re-encryption” key-generation procedure

that addresses this paradigm and, moreover, solves an interesting betrayal issue in

hierarchic structures. This is detailed on Chapter 4.

1.5 The five families

To the date, there are five recognizable families of homomorphic schemes, addressing

different security challenges, exhibiting fancy properties and competing for efficiency.

1.5.1 Ideal Lattices

The first proposal of a fully homomorphic scheme uses the notion of ideal lattices.

These are regular lattices laying in the image of a ring homomorphism between

R = Z[x]/(f(x)) and Zn for some monic polynomial f of degree n, when the ho-

momorphism is fed with a principal ideal of R. By structure transport, this gives a

nice representation of Zn, supporting addition, multiplication and basis reduction.

With these three operations and careful sampling of two ideal lattices I, J , Gentry

constructed the first fully homomorphic scheme in [Gen09b].

Simplified variants and new proposals follow with works of Smart and Vercau-

teuren with improvements by Stehlé, Steinfeld, Loftus and May. See [SS10,LMSV12].

As an homage to his dissertation, we devote Chapter 2 to the study of this

scheme in sufficient level of detail. We consider this study to be rewarding and,

contradicting the pro-FHE enthusiasm exposed in this Introduction, we propose a

new key-recovery attack in Chapter 3 that reveals completely the secret key. We

consider the relatively new and rarely used in cryptography problem of guessing a

Zn-parallelepiped given a collection of points. We mention that authors in [LMSV12]

presented the only homomorphic scheme known to be CCA-1 secure so far.
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1.5.2 Integers

Only a year after the first proposal, van Dijk, Gentry, Halevi and Vaikuntanathan

proposed a fully homomorphic encryption scheme that used integers as plaintexts

and ciphertexts, in [vDGHV10]. This allowed a much better understanding of the

efficiency gap between homomorphic and classic schemes, and conceptually suggests

that FHE is not that artificial, as algorithms are simple to understand. This scheme

has been revisited recently to support batching in [CCK+13], allowing to pack ci-

phertexts and perform parallel homomorphic operations. However, to the date this

family is not considered to be the most promising.

1.5.3 (Ring-)Learning with errors

Brakerski and Vaikuntanathan proposed a scheme based on the learning with errors

problem, which has been deeply studied since its introduction by Regev in 2005

(see [Reg05,Reg10]). This problem is conjectured to be hard to solve, and faces a

polynomially large linear system in which every equation is almost correct – approx-

imated up to some small error. Let us reproduce Regev’s folklore example here; an

instance of the LWE problem is to recover an integer vector s = (s1, s2, s3, s4) ∈ Z4
17

satisfying





14s1 + 15s2 + 5s3 + 2s4 ≈ 8 mod 17,

13s1 + 14s2 + 14s3 + 6s4 ≈ 16 mod 17,

6s1 + 10s2 + 13s3 + 1s4 ≈ 3 mod 17,

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 mod 17,

9s1 + 5s2 + 9s3 + 6s4 ≈ 9 mod 17,

3s1 + 6s2 + 4s3 + 5s4 ≈ 16 mod 17,

where “≈” means that the equation is correct up to an error of ±1. As the abstract

of [BGV12] reads,

“We present a radically new approach to fully homomorphic encryp-

tion (FHE) that dramatically improves performance and bases security

on weaker assumptions. A central conceptual contribution in our work is

a new way of constructing leveled fully homomorphic encryption schemes

(capable of evaluating arbitrary polynomial-size circuits), without Gen-

try’s bootstrapping procedure”

They give constructions based in LWE and its ring variant, and introduced novel

noise-management techniques called relinearization and modulus switching, which

replace the bootstrapping procedure. In this scenario, homomorphic evaluation and

decryption climb a ladder of decreasing moduli and scale the ciphertexts properly to

ensure correctness. Also, in [Bra12] Brakerski proposed a scheme in which the same

11
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modulus is used throughout evaluation; these schemes are called scale invariant.

Some remarks and tweaks in this family bring a great deal of efficiency improve-

ments, allowing for instance to bootstrap a ciphertext in less than 1s [DM15] and

subsequently in less than 0.1s [CGGI16a].

1.5.4 NTRU-based

The “N -th degree TRUncated” scheme is an efficient lattice based encryption scheme

proposed in [HPS98]. For some time, due to absence of formal proofs, its security

level was not clear. In 2011, Stehlé and Steinfeld [SS11b] provided modifications

that allowed to complete the proofs (more precisely, the use of cyclotomic rings and

a power of 2 degree). In the groundbreaking article [LATV12], authors constructed

an homomorphic scheme based on this encryption flavor. Their contribution is

large: they achieve homomorphic support for multiple users proposing Multikey-

FHE, conceive the notion of on-the-fly MPC, and propose a leading candidate for

practical FHE. Based on this work, Goubin and V.propose in [GVP16] a method to

blend NTRU keys together, addressing a betrayal problem in hierarchic encryption

scenarios. For more on this see Chapter 4.

1.5.5 Approximate eigenvectors

In all previous BGV-like encryption schemes, ciphertext multiplication are seemingly

complex, artificial procedures. Motivated by this, Gentry, Sahai and Waters in

[GSW13] proposed a new generation of fully homomorphic schemes. Ciphertext

and key representation is new, while security is still based on variants of the LWE

problem. In this scheme, a secret-key is a vector v in Zn
q with at least one large

coefficient. A ciphertext C corresponding to this key is a n× n binary matrix over

Zq for a large prime q, such that v is close to an eigenvector of C, the corresponding

eigenvalue being the underlying plaintext m ∈ {0, 1}. In other words, m,C and v

verify

C · v = m · v + e mod q

for small e ∈ Zn
q . Homomorphic evaluation is simply given by matrix arithmetic,

producing asymptotic improvements in efficiency: their construction is asymptoti-

cally faster than any previous FHE scheme (alas with a large constant keeping it out

of the practical scope). To present their analysis, authors consider {NAND} as the

complete set of operations to evaluate circuits. In addition, matrix multiplication is

not commutative, and therefore some ways to multiply ciphertexts are better than

others, regarding noise growth.

12
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1.6 Definition of FHE

We give in this section a theoretical definition of homomorphic encryption. Let us

first remark why we use circuits instead of general functions.

1.6.1 Circuits versus functions

Homomorphically solving a maze runs in worst-case complexity. Suppose that P is

a 2-D labyrinth solver algorithm. It receives the plot of a maze M and a point x

inside the maze, and the algorithm outputs a path from x to the exterior of the

maze, or the symbol ⊥ if there is no exit. Typically, such algorithm must test

conditions such as “if the point y ∈ M has already been visited”, or “if this is a

dead end”. If for any reason the maze walls, its inside points and the position of

the player are probabilistically encrypted, such comparisons become comparison or

identity circuits with an encrypted output. The whole algorithm can be carried

out homomorphically and it actually produces the correct (encrypted) output, but

because of this lack of decision it runs in its worst-case complexity, outputting the

path as a complicated polynomial expression depending on all points of the maze.

The same applies when running set or graph algorithms homomorphically. This is

why we only consider being able to evaluate circuits of fixed depth, instead of general

functions or procedures. To avoid this paradigm for the moment, all research in

homomorphic encryption embraces this consideration.

Figure 1.1: An easy maze

1.6.2 Definitions

Let us now give some definitions.

Definition 1.6.1 (HE). An homomorphic encryption scheme is a public-key encryp-

tion scheme E with four PPT algorithms with polynomial complexity in the security

parameter λ:

– Keygen: λ �→ (sk, pk), generates a key pair.

13
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– Enc: (pk,π) �→ ψ, encrypts a message π under public-key pk.

– Dec: (sk,ψ) �→ π, decrypts a ciphertext ψ under secret-key sk.

– Eval: (pk, C,ψ1, . . . ,ψt) �→ ψ, where C is a circuit that belongs to a set of

allowed circuits C, evaluates the circuit C gate by gate on inputs ψ1, . . . ,ψt.

The evaluation algorithm should describe how to perform addition and multipli-

cation gates (or any other complete set of operations). If the resulting ciphertext

decrypts to the desired message, we say that the scheme is correct. Let C be a

collection of circuits:

Definition 1.6.2 (Correct HE). An HE scheme is correct for all circuits in C if for

all C ∈ C, (sk, pk) ← Keygen(1λ) and for all plaintexts π1, . . . ,πt, if ψi ← Enc(pk,πi)

for i = 1, . . . , t, then

ψ ← Eval(pk, C,ψ1, . . . ,ψt) implies Dec(sk,ψ) = C(π1, . . . ,πt).

The decryption algorithm can be itself written as a circuit D; if the scheme cor-

rectly evaluates D it will be later possible to introduce the bootstrapping procedure.

Hence the following definition:

Definition 1.6.3 (Compact HE). An homomorphic encryption scheme is compact

if there is a polynomial f such that for any value of λ, the algorithm DecE may be

computed by a circuit of depth ≤ f(λ).

I.e. an homomorphic encryption scheme is compact if its decryption algorithm is

of reasonable size.

Definition 1.6.4 (Compact evaluation). An homomorphic scheme compactly eval-

uates a set of circuits C if it is compact and correct for all circuits in C.

Definition 1.6.5 (FHE). A Fully Homomorphic Encryption Scheme is an homo-

morphic scheme that compactly evaluates all circuits.

Definition 1.6.6 (Levelled FHE). A family of HE schemes {E(d), d ∈ N} is levelled

fully homomorphic if

(i) they all have the same decryption circuit D

(ii) for each d ∈ N, E (d) compactly evaluates every circuit of depth ≤ d and all

algorithms have polynomial complexity.

14
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1.6.3 Security definitions

Consider the following game between parties A and B.

Game 1.6.1. Let E be a public key encryption scheme of plaintext space P and

algorithms E .Keygen, E .Enc, E .Dec. Let A,B be two parties.

1. A generates (pk, sk) ← E .Keygen(λ) and publishes pk.

2. For i from 1 to t, B asks A to decrypt a ciphertext ψi, and A answers

E .Dec(sk,ψi). These exchanges cannot be repeated after the challenge cipher-

text.

3. (Challenge) B generates two plaintexts π0,π1 ∈ P and sends them to A, who

chooses b ∈R {0, 1}, and sets ψ∗ ← E .Enc(pk,πb). She sends ψ∗ to B.

4. B wins if he guesses the value of b.

Definition 1.6.7. Let b� ∈ {0, 1} be B’s final guess in the game. The advantage of

B is defined by

Adv(B, E ,λ) = |Pr(b = b�)− 1/2|.

Definition 1.6.8 (Semantic security). We say that E is semantically secure against

CPA,CCA1,CCA2 if it is not possible for a CPA,CCA1,CCA2 (respectively) adver-

sary to win the game with a non negligible advantage and polynomial time in λ.

For a homomorphic scheme, consider the following game.

Game 1.6.2. Let H be a homomorphic encryption scheme of plaintext space P and

algorithms H.Keygen,H.Enc,H.Dec,H.Eval. Let A,B be two parties.

1. A generates (pk, sk) ← H and publishes pk.

2. For i from 1 to t, B asks A to decrypt a ciphertext ψi, and A answers

H.Dec(sk,ψi). This step can be repeated after the challenge, with new ci-

phertexts not matching the challenge ciphertext.

3. (Challenge) B generate two sets of plaintexts (π0i)
k
i=1, (π1i)

k
i=1 ∈ Pk and an

allowed circuit C and sens them to A, who chooses b ∈R {0, 1}, computes

ψ∗ R←− H.Eval(pk, C, (ψbi)
k
i=1)

where ψbi = Enc(pk,πbi) and sends ψ∗ to B.

4. B makes a guess b� ∈ {0, 1} and wins if b� = b.

15
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It is not difficult to show with an hybrid argument that an algorithm breaking

the (homomorphic) semantic security with advantage ε can be used to break the

(classical) semantic security with advantage ε/k. The hybrid argument “travels”

through the gates of the chosen circuit and estimates the advantage. Therefore,

to prove the semantic security of an homomorphic scheme, it suffices to prove the

semantic security in the classical sense.

1.7 The bootstrapping procedure and other techniques

In all known homomorphic schemes, the encryption procedure adds random noise

to plaintexts. If the norm of this noise is beyond a certain threshold, the resulting

ciphertext does not decrypt to the expected underlying plaintext. In addition, ev-

ery homomorphic evaluation results in a growth of the corresponding noise. This

limits the maximum depth achieved for correct evaluation of circuits at parame-

ter setting time, and hence something must be done to achieve true FHE. Gentry

achieves this with his most groundbreaking idea: If an homomorphic scheme E can

homomorphically evaluate its own decryption circuit DE , one can use E to construct

other schemes capable of homomorphically evaluate any circuit of fixed depth, i.e.to

construct a family of levelled FHE schemes. Thereafter, this achieves a theoretical

construction of an FHE scheme.

Definition 1.7.1 (Bootstrappable scheme). Let E be an homomorphic encryption

scheme with compact evaluation of circuits in C, and let D be its decryption circuit.

We say that E is bootstrappable if D ∈ CE .

This self-reference property permits to implement an algorithm that can “up-

date” or “clean” noisy ciphertexts, the price being a change of keys. In effect, let π

be a plaintext and suppose that a ciphertext ψ encrypting π is the output of an ho-

momorphic circuit of high depth allowed by the scheme. The ciphertext can be used

in homomorphic computations, but not for long, since adding too much gates would

trespass the maximum allowed depth. Is it possible to obtain another ciphertext

ψ� that also encrypts π and such that it is useful for more homomorphic operations

than ψ? In general, it is straightforward to construct other ciphertexts encrypting

the same thing because of malleability – just “add” encryptions of 0 or “multiply”

encryptions of 1. Gentry’s idea is far more deep: encrypt ψ with another public key

(obtaining two layers of encryption) and homomorphically run the decryption circuit

over this message and encryptions of the first key. The result is a new encryption of

π under a new key. Figure 1.2 show this idea.
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Figure 1.2: The re-encrypt procedure

Algorithm 1 The Re-Encrypt algorithm
Require: A ciphertext ψ encrypting a message π under public-key pk, another public-key

pk�, an encryption of the old secret key τ = Enc(pk�, sk), and the decryption circuit DE .

Ensure: A ciphertext ψ� encrypting π under pk�.

1: Set ψ2 ← Enc(pk�,ψ)

2: Set ψ� ← Eval(pk�, DE , τ,ψ2).

3: Output ψ�.

1.7.1 Circular security

The bootstrapping procedure uses public encryptions of secret-keys. This calls into

question the security of such encryptions: is an attacker more successful if he acquires

ciphertexts of the form Enc(pk, [sk]i), where [sk]i are the secret-key bits? Or if

she can distinguish such encryptions from regular ciphertexts? To the day, this

question remains open. Most known FHE schemes rely on the hypothesis that

they are in fact circular secure. This seems reasonable, because on one hand, it is

not clear how to use encryptions of secret keys (or the ability to distinguish them

from regular ciphertexts, in message interception scenarios) to win advantage in any

security game or to break schemes. On the other hand, there are counterexamples of

public encryption schemes that are IND-CPA secure in normal use, but security fails

completely when participants are encrypting secret keys. This is becoming alarming,

since some counterexamples are constructed with LWE instances (see [ABBC10,

BHW15,KW16]).

Addressing this, in [BV11b] Brakerski and Vaikuntanathan proposed the first

homomorphic encryption scheme proven to be Key-Dependent Message secure, and

in particular, circular secure.

1.8 Hard problems used in FHE

As any other encryption scheme, FHE schemes need supposedly (or proven) hard

underlying problems. They enjoy many of them, mostly coming from lattice-based

cryptography. We list and define these problems here. For the sake of completeness,

let us define a lattice. More details are given in 3.2.2 of Chapter 2.
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A lattice L of Rn is a discrete subgroup of (Rn,+) which spans Rm as a R-vector
space. The integer m is called the dimension of L. A lattice may be described in

terms of a linearly independent set B ⊂ L ⊂ Rn, which Z-spans L and R-spans Rn.

The set B is called a basis of L. All bases of L have cardinality m, and if m = n we

say that L is a full-rank lattice.

Let B(r) denote the closed Rn-ball centered at 0 of radius r with respect to the

Euclidean norm ||x||2 :=
��n

i=1 x
2
i . For a lattice L of dimension m, define the

sequence of successive minima as λ1(L) = minv∈L\{0} ||v||2 and for i = 2, . . . ,m,

λi(L) = min
v∈L\B(λi−1(L))

||v||2.

All of the following problems are lattice-based.

Problem 1.8.1 (SVP,γ-SVP). Given a lattice L, the Shortest Vector Problem is to

find a non-zero vector v ∈ L of smallest possible norm ||v||2 = λ1(L). The γ-SVP

variant is to find a non-zero vector of norm at most γ · λ(L).

Problem 1.8.2 (GapSVPβ). Given a lattice L and β ∈ R+, the Gap Shortest Vector

Problem is to decide whether λ1(L) ≤ 1 or λ1(L) ≥ β

Problem 1.8.3 (CVP). Given a lattice L and a vector v ∈ Rn (not necessarily in

L), the Closest Vector Problem is to find the vector in L closest to v. The CVPγ

variant consists in finding a vector in L with at distance at most γ from v.

Problem 1.8.4 (BDDP). The Bounded Distance Decoding Problem consists in solv-

ing the closest vector problem with the promise that minl∈L ||v − l||2 ≤ λ1(L)/2.

Problem 1.8.5 (SIVP). Given a lattice L of dimension n, the Smallest Indepen-

dent Vectors Problem is to find n linearly independent lattice vectors v1 . . . , vn such

that maxi ||vi||2 ≤ λn(L). The γ-SIVP variant is to find n l.i. vectors such that

maxi ||vi||2 ≤ γλn(L)

Problem 1.8.6 (SBP). Given a basis B of a lattice L, the Shortest Basis Problem

consists in outputting a basis B� of the same lattice such that the length of vectors

in B� is as short as possible.

In 2005, Regev introduced the celebrated Learning With Errors Problem as a gen-

eralization of the parity learning problem. He proved that LWE is hard if GapSVPγ

and SIVP are quantum-hard.

Problem 1.8.7 (LWE). Let q be an integer and χ be an error distribution on Z.
Let s ← Zn

q be a secret vector, and define Aq,χ as the distribution that first sets

a
R←− Zn

q , e ← χ and then outputs (a, a · s + e). The Learning With Errors Problem

is to deduce s given polynomially many samples of Aq,χ. Its decision variant (called

Decision-LWE) consists in distinguishing m samples of Aq,χ from uniformly random

samples of Zn
q × Zq.
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Problem 1.8.8 (RLWE). The Ring-LWE Problem is the analog of LWE but replac-

ing Zn
q with the polynomial ring Rq = Zq[x]/(f(x)) where f is a monic n-th degree

polynomial. Typically, f(x) = xn+1 and n is a power of 2 (therefore, f is the 2n-th

cyclotomic polynomial)

The following are two integer-based problems. The first was used in the con-

struction of FHE over the integers, while the second is a combinatorial problem

needed to “squash” the decryption circuit of Gentry’s ideal lattice scheme, in order

to make it bootstrappable.

Problem 1.8.9 (AGCD). The Approximate Greatest Common Divisor Problem is

to find a secret number p given a list of m integers of the form xi = qip + ri for

integers qi, ri sampled from possibly different distributions over Z.

Problem 1.8.10 (SSSP). The Sparse Subset Sum Problem consists in deciding

whether a set of integers contains a small subset such that the sum of its elements

equals 0 in Zq. More precisely, given a set A of t integers, the SSSP asks to decide if

there is a subset A� ⊂ A of cardinality at most s � t such that
�

a∈A� a ≡ 0 mod q.

Finally, we describe polynomial ring problems. For a distribution ξ over a ring

R, let ξ× be the distribution that samples repeatedly from ξ until the output is

invertible.

Problem 1.8.11 (DSPRφ,q,ξ). Let φ be a monic polynomial of degree n, q ∈ Z a

prime and ξ a distribution over the ring Rq = Zq[x]/(φ(x)). The Decisional Small

Polynomial Ratio problem is to distinguish between (i) a polynomial h of the form

h = g/f where g ← ξ and f ← ξ×, and (ii) a polynomial h� sampled uniformly at

random from Rq.

We propose in [GVP16] two new factorization problems in cyclotomic rings, that

support the security in our solution to the betrayal problem. We call these problems

the Special Factors Problem and the ξ×-Common Divisor Problem.

Problem 1.8.12 (SFP). Let ξ be a distribution on some ring R. Let a, b ∈ ξ× and

let c = a · b ∈ R. The Special Factors Problem consists in finding a, b given c and a

test function T : R → {0, 1} that outputs 1 if the input is in {a, b} and 0 otherwise.

Problem 1.8.13 (ξ×-CDP). Let ξ be a distribution on some ring R. Let a, b ← ξ×

and y
R←− R. Let u = a · y ∈ R and v = b · y ∈ R. The ξ×-Common Divisor Problem

is to guess (a, b, y) given (u, v) and a test function T : R → {0, 1} that outputs 1 if

the input is in {a, b, y} and 0 otherwise.

Remark. In Chapter 4 and in [GVP16], these two problems are called the “Small

Factors Problem” and the “invertible Gaussian GCD Problem”. This is because the

specialness of polynomials a, b in our cyclotomic ring scenario is that they have small

l2 norm.
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1.9 Conclusion

In this Chapter, we approached the area of fully homomorphic encryption. We high-

lighted some practical applications, relations to other cryptographic properties, and

described how different generations of proposals are ordered today in five branches.

Also, we defined fully homomorphic encryption from the theoretical point of view

and discussed some computational problems that lay in the foundations of these

constructions. We believe that this review is of help to FHE-neophyte readers; to

more informed readers wishing to follow the vast FHE literature in a certain angle

(efficiency, applications, security, etc), please refer to appendix A, where we cite

important references in a list arrangeable by different criteria.
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2.1. Introduction

2.1 Introduction

In this Chapter, we revisit Gentry’s ideal lattice homomorphic scheme. It has been

widely mentioned that this scheme, while achieving fully homomorphic encryption

for the first time, is not even remotely competitive with contemporary encryption

schemes regarding efficiency. The main bottleneck is ciphertext and public-key size,

which grows exponentially with the level of security. Nonetheless, understanding the

scheme’s construction is very rewarding and we firmly believe that it deserves study,

at least with similar deepness than later homomorphic schemes. New cryptographic

ideas and mathematical birds live here, and it would be a pity to pass them by

because the scheme does not meet our prompt needs.

Our objective is to present the scheme in a sufficient level of detail, as a tribute

to Gentry’s original Ph.D. dissertation. The first idea leading to the solution is

remarkably simple: it reduces the so-called Holy Grail of Cryptography quest to the

problem of finding an algebraic ring with some class of ideals that support hard

problems for security and specific operations. Of course, it would be terribly unfair

to state that Gentry’s contribution relied on finding a proper ring for a generic

construction. But still, his solution can be understood with the following image.

Ideal + lattices = Ideal Lattices. A cryptographer C with infinite amounts

of intelligence and ignorance is asked to solve the fully homomorphic encryption

problem. To solve this, he would most likely invent algebra, take a ring R and

define the following encryption scheme:

Let I be some ideal of R, let m ∈ R/I an encoding of a message, and define

ciphertext Enc(m) = m+ i where i ∈ I.

This is indeed homomorphic, since if ⊕,⊗ denote both ring operations,

Enc(m)⊕ Enc(m�) encrypts m⊕m�,

Enc(m)⊗ Enc(m�) encrypts m⊗m�.

He would then search for a ring R that enjoys

· random efficient sampling of α+ I for α ∈ R/I to encrypt1,

· an “ideal annihilation” procedure m+ xI �→ m to decrypt,

· connection to hard problems.

If in addition C met another cryptographer C � with unbounded knowledge of re-

cent research, he would be inclined to believe that the answer may be found in

lattice-based cryptography. This was, in fact, the solution to the FHE problem: use

1C would understand on-the-spot that an homomorphic encryption scheme cannot be determin-

istic, since it would be possible to solve equations on ciphertexts.
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polynomial rings and specialize the latter basic construction using two sets of ideal

lattices.

A study on some natural densities. Sampling random coprime lattices has

some subtleties. We collect some results and quantify the structure of random bases

in Hermite Normal Forms, which represent special bases for lattices.

Overview of this Chapter. In section 2.2, we define ideal lattices. In 2.3 we re-

construct Gentry’s basic somewhat homomorphic scheme, which supports a bounded

amount of homomorphic operations. A discussion of the underlying security follows

in section 2.4, and a proof-of-concept implementation is presented in 2.6. We finish

with the study of natural densities of some lattice bases in 2.5.

2.2 Preliminaries: Ideal lattices

2.2.1 Lattices

Definition 2.2.1 (Lattice). A lattice in Rn is a discrete subgroup of (Rn,+) which

spans Rm as a R-vector space.

Every lattice L has a minimal subset of m elements B ⊂ L such that L =�
b∈B Zb. When n ≥ 2 there is an infinite number of such sets and we call them

bases of L. The integer m does not depend on the chosen basis and is called the

rank of L, therefore, to describe a lattice, only one basis is required.

b1

b2

3b1 + 5b2

5b1 + 8b2

Figure 2.1: A lattice of R2 and two bases.

Given a basis of rank m in matrix form B = (b1|b2| · · · |bm), the quantity

|det(B)| :=
�
det(tBB) is an invariant of L, which we note by detL. Let the
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fundamental parallelepiped of the basis B be the translated convex hull delimited by

the column vectors in B. We note this parallelepiped P (B):

P (B) =





�

1≤i≤m

xibi ∈ Rn ; xi ∈ [−1/2, 1/2)





By definition, the volume of P (B) equals the determinant of the lattice:

det(L) = Rn-measure(P (B)) for all basis B.

Let L be a full rank lattice. If x ∈ Rn, we note by x mod L the equivalence class

of x in the quotient group Rn/L. We use the fundamental parallelepiped P (B) as

the set of representatives of the equivalence classes when describing L with the basis

B. Therefore, it is natural to note by x mod B the single element in the intersection

(x mod L)∩P (B). To reduce a vector x ∈ Rn modulo B, use Z-linear combinations

of vectors in B to find the equivalent vector inside P (B). In other words,

Lemma 2.2.1. Let x ∈ Rn and B a basis of a full-rank lattice L. Then x mod B =

x−B�B−1x�, where �v� := (�v1�, �v2�, · · · , �vn�) is the closest Zn vector to v.

Proof : The invertibility of B comes from the fact that detL �= 0. We have

x−B�B−1x� = B(B−1x− �B−1x�) = By,

where y = B−1x− �B−1x� is a Rn-vector with coordinates in [−1/2, 1/2). �

In the scheme, two coprime lattices I, J will define the plaintext and ciphertext

space respectively.

Definition 2.2.2 (Relatively prime lattices). Two lattices L,L� of Zn are relatively

prime (or coprime) if their sum is Zn. We note this (L,L�) = 1.

Keys in Gentry’s scheme are lattice bases, which we identify with square matrices.

The private-key is a “good” basis in the orthogonality defect sense and the public

key is an eccentric, large basis of the same lattice. More precisely, this large basis is

the Hermite Normal Form of the lattice.

Definition 2.2.3 (Hermite Normal Form). A square matrix H ∈ Mn×n(Z) of en-

tries hij is in Hermite Normal Form if

1. H is lower triangular, semi-positive definite: hkk ≥ 0 and hij = 0 for i < j.

2. The pivot (first nonzero entry) of a column is strictly below the pivots of prece-

dent columns.

3. Entries to the right of pivots are zero and elements to the left of pivots are

nonnegative, strictly smaller than the pivot.
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x

mod B

b1

b2

Figure 2.2: A basis modular reduction in R2

For instance, the following matrices are in HNF.




17 0 0 0

2 3 0 0

50 0 51 0

6 6 6 7


 ,




12 0 0 0 0 0

−1 0 0 0 0 0

10 13 0 0 0 0

1 2 4 0 0 0

78 −26 10 0 0 0

13 13 1 14 0 0




.

A lattice is uniquely defined by a matrix in HNF, and according to this we will define

the HNF of a lattice as its unique basis in HNF. This allows us in section 2.3.5 to

provide a characterization of coprime lattices.

2.2.2 Notation

In this Chapter, all lattices are of full rank (m = n) unless stated otherwise. In

addition, if B = {b1, · · · ,bn} ⊂ L is a basis of the lattice L, we will not distinguish

between B and the matrix B = (b1|b2| · · · |bn). We note by In the n × n identity

matrix and ek the k-th column of In.
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2.2. Preliminaries: Ideal lattices

2.2.3 Ideal lattices

Let G be an additive group and α : G → (Rn,+) a group homomorphism, then α(G)

is a lattice. This happens because α transports the additive structure of G to points

in Rn in order to generate linear integer combinations of them. Of course, this can

also be performed with rings, considering the additive operation, and it proves to

be fruitful as it allows to define Rn-products (if α is suitable) and ideal lattices.

Definition 2.2.4 (Ideal lattice). Let A be a ring and α : A → Rn and additive ring

homomorphism. An ideal lattice of Rn is a lattice of the form α(I) for a principal

ideal I ⊂ A.

Remark. A definition with non-principal ideals seems worthy of attention. However

we will not address this, since in polynomial quotient rings the non-principal case

can be regarded as a linear algebra problem considering reduction of union of basis

coming precisely from principal ideals.

2.2.4 Polynomial principal ideal lattices

Consider the ring R = Z[x]/(f(x)) where f is a monic polynomial of degree n, and

the natural homomorphism α : R → Zn given by

α : a(x) = a0 + a1x+ · · ·+ an−1x
n−1 �→ a = (a0, . . . , an−1).

We can now define a precise ideal lattice: if I = (v) is a principal ideal of R, then

α(I) is a lattice of Rn with a remarkable basis:

Lemma 2.2.2. Let v ∈ R, I = (v) and vi = v×Xi mod f(X) for i = 1, . . . , n− 1.

Then a basis of the ideal lattice α(I) is given by a linearly independent subset of

rot(v) := {v, v1, v2, · · · , vn−1}.

Proof : If w ∈ (v), then w = v × a = v ×
��n−1

i=0 aiX
i
�

for some a ∈ A.

Hence α(w) =
�n−1

i=0 aivi ∈ rot(v). Conversely, if (the vector) w ∈ rot(v), then

w =
�n−1

i=0 aiα(vi) = α(P ) for P =
�n−1

i=0 aivi. �

Remark. The ideal lattice α(I) may not be of full rank (hence the “given by a linearly

independent set of” statement). For instance, if R = Z[x]/(xn − 1) then the ideal

lattice α((1+x+x2+ · · ·+xn−1)) is of rank 1. This happens because the polynomial

1 + x + x2 + · · · + xn−1 is not invertible in R. We do not worry much about this,

and we will deal only with full-rank lattices, thanks to the choice of the polynomial

ring and the ideal generator.

From now on, we will not distinguish between the polynomial w ∈ R and the

corresponding vector α(w) ∈ Zn. Sometimes, we will not distinguish between a

polynomial ideal (v) and the corresponding ideal lattice α((v)).
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Definition 2.2.5 (Rotation basis). The set {vi = v×xi mod f(x); i = 0, . . . , n−1}
is called the rotation basis of (v). The matrix rot(v) = (v|v1| . . . |vn−1) is called the

rotation matrix of v.

Proposition 2.2.3 (Inversing rotation matrices). Let v ∈ R×. Then rot(v) ×
rot(v−1) = In.

Proof: It follows directly from the fact that for every a, b ∈ Zn, a×b = rot(a)b =

rot(b)a. �.

Example 2.2.1. If n = 4 and R = Z[x]/(x4 + 2), the ideal lattice α((v)) where

v(x) = 1 + x2 = (1, 0, 1, 0) is generated by

v(x) mod f(X) = 1 + x2 = (1, 0, 1, 0),

xv(x) mod f(X) = x+ x3 = (0, 1, 0, 1),

x2v(x) mod f(X) = −2 + x2 = (−2, 0, 1, 0),

x3v(x) mod f(X) = −2x+ x3 = (0,−2, 0, 1),

i.e. by the columns of the matrix

rot(1 + x2) =




1 0 −2 0

0 1 0 −2

1 0 1 0

0 1 0 1


 .

This matrix is invertible, and therefore the corresponding ideal lattice is of full-rank,

with det(rot(1 + x2)) = 9.

Let us give another example which we will find very often in fully homomorphic

encryption schemes, in various forms.

Example 2.2.2. If f(x) = xn−1, the rotation of a polynome a(x) �→ xa(x) mod f

corresponds to a coefficient-wise rotation of α(a):

(a0, . . . , an−2, an−1) �→ (an−1, a0, . . . , an−2),

therefore the ideal lattice (a) is generated by the columns of the circulant matrix

rot(a0, . . . , an−1) =




a0 an−1 an−2 · · · a1

a1 a0 an−1 a2

a2 a1 a0 a3
...

. . .
...

an−1 an−2 an−3 · · · a0




.

Lattices generated by circulant bases (or equivalently, ideal lattices of the ring

Z[x]/(xn − 1)) are called cyclic lattices. They verify the following property: if

(a1, a2, . . . , an) ∈ L then (a2, a3, . . . , an, a1) ∈ L. Notice also that all of these la-

ttices contain vectors in the lines spanned by (1, 1, 1, . . . , 1) and (1,−1, 1, . . . ,±1).
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2.3. The basic homomorphic scheme

2.2.5 Ring operations in Zn

Given that we identified Zn � R = Z[x]/(f(x)), ring operations are inherited by

structure transport. This way, for all v, w ∈ Zn we define

addition v + w := α(v(x) + w(x)),

product v × w := α(v(x)× w(x))

Of course, the first operation is usual addition in Zn and the second operation is a

convolution product in Zn. A third operation was already discussed, that allows to

reduce a vector in Rn modulo a basis B of a lattice L. We are now ready to define

the scheme.

2.3 The basic homomorphic scheme

The scenario of this scheme is as follows

– We fix a dimension n ≥ 2 and a monic polynomial f of degree n,

– let R = Z[x]/(f(x)),

– let I be an ideal lattice with a base BI ,

– let J be an ideal lattice relatively prime to I (i.e. I +J = Zn), with two bases

Bsk
J ,Bpk

J , and finally

– choose an algorithm Samp : Zn/(I) → Zn that given a vector x, samples

randomly from x+ (I).

The plaintext space in the scheme is Zn∩P (BI) (a small, quite orthogonal paral-

lelepiped) and ciphertext space is Zn∩P (Bpk
J ) (a huge, very eccentric parallelepiped).

The elements n, f, I, J,BI are all public, and the keys are

pk = {Bpk
J }, sk = {Bsk

J }.

The successive choices of f, I,Bsk
J ,Bpk are essential and non-trivial to understand

and eventually implement the scheme. Let us give a second look at these elements

in secure scenarios:

– n is large to prevent lattice reduction attacks (n ≥ 29 avoids LLL and BKZ

reduction, for instance),

– f is of the form Xn + h(X) where deg(h) is small (for instance h(X) = −1),

in order to control product norms,
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Chapter 2. Gentry’s ideal lattices scheme

Figure 2.3: Fundamental parallelepipeds in Gentry’s scheme
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2.3. The basic homomorphic scheme

– the parallelepiped BI consists of small vectors (the binary case is I = (2) and

BI = 2In),

– Bsk
J is quite orthogonal, with large volume and P (Bsk

J ) contains P (BI),

– Bpk
J is on the contrary, very eccentric (it is defined by large and almost parallel

vectors),

– the algorithm Samp : P → Zn randomly chooses a representative of x + I

inside a ball of fixed radius lSamp contained in P (Bsk
J ).

The scheme is described in 6.

Algorithm 2 Gentry’s homomorphic ideal lattice scheme

1: function Keygen(λ)

2: Generate Bsk
J and Bpk

J randomly from a security parameter.

3: end function

——–

4: function Enc(pk,π ∈ P (BI))

5: To encrypt message π, compute

ψ ← Samp(π) mod Bpk
J

and output ψ. It is an integer vector of the form π + i+ j where i ∈ I, j ∈ J , and it is

inside P (Bpk
J ).

6: end function

——–

7: function Dec(sk,ψ)

8: To decrypt ψ, compute

µ = (ψ mod Bsk
J ) mod BI = (ψ −Bsk

J �(Bsk
J )

−1ψ�) mod BI

and output µ.

9: end function

——–

10: function Eval((pk,C,ψ1, · · · ,ψt)

11: Perform the circuit C on inputs ψ1, · · · ,ψt replacing each “+” and “×” gate of C

by addition and multiplication modulo Bpk
J respectively. Output the result.

12: end function

2.3.1 Does it work? Why does it work?

Before looking at correctness of the algorithms, we will have a glance at what hap-

pens when a plaintext is encrypted, then decrypted. Suppose I = α((2)). Let

π be a plaintext (π is a binary vector). The first step of encryption is to define

π� ← Samp(π). Thus, π� = π + i for i ∈ I (a binary vector plus multiples of 2
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component wise), in clear, π� = π mod I. The next step is to reduce π� mod Bpk
J .

This will map π� to a point ψ = π� + j for j ∈ J . As the generating vectors in Bpk
J

are long and almost parallel, it is more than likely that this point ψ will be very far

along the direction en and outside P (Bsk
J ): this is the ciphertext. To decrypt, the

first step is to recover π� from ψ. As ψ = π� mod J , the reduction ψ mod Bsk
J will

output π�

if and only if π� ∈ P (Bsk
J ).

This is ensured by

Samp(P (BI)) ⊂ P (BJ)
sk.

Then, recovering π is easy. This is why the sampling procedure outputs must be l2-

bounded by a constant lSamp. What about homomorphic operations of ciphertexts?

Will they decrypt correctly? Let ψ1 = Enc(pk,π1),ψ2 = Enc(pk,π2). Then

ψ1 + ψ2 = (π1 + π2) + i� + j� for some i� ∈ I, j� ∈ J, (2.1)

ψ1 × ψ2 = (π1 × π2) + i�� + j�� for some i�� ∈ I, j�� ∈ J, (2.2)

i.e. they will decrypt to π1 + π2 and π1 × π2 respectively

if and only if (π1 + π2) + i� ∈ P (BJ)
skand (π1 × π2) + i�� ∈ P (BJ)

sk.

As P (BJ)
sk is bounded in Rn, it is not possible to carry out an arbitrary number

of correct homomorphic operations, since at some point the latter vectors will get

out of P (BJ)
sk, ruining decryption. This also means that the growth of the Zn

operations will directly affect the number of homomorphic operations that can be

correctly performed. In the next section, we will describe kind choices to this end,

that look out to security as well.

2.3.2 Key generation and correctness of the algorithms

We will explain how to choose parameters and generate keys to ensure correctness

of the scheme and its homomorphic operations.

2.3.3 Choice of the polynomial ring

The choice R = Z[x]/(f(x)) has consequences in the overhead of operations in Zn.

For instance, if f has lots of monomials, the product of two polynomials a, b ⊂ R

is likely to have larger l2 norm than when using a sparse polynomial f , since the

reduction modulo f involves more euclidean divisions. For monic polynomials of

degree n, let us define the product overhead

λ(f) := max
u,v∈Z[x]/(f(x))

||u× v||2
||u||2||v||2

.
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2.3. The basic homomorphic scheme

A good choice of ring involves a polynomial with small product overhead. The

reader may consult [Gen09b], § 7.4 for more details. We highlight the fact that if f

is of the form f(x) = xn − h(x) for a polynomial of degree ≤ n/2, then λ(f) ≤ c
√
n

for some constant c depending on f . For instance,

λ(xn ± 1) =
√
n.

For completeness, let us prove this.

Lemma 2.3.1. Let R = Z[x]/(xn − 1). If a× b = z = (z0, · · · , zn−1) ∈ R, then

zk =

n−1�

j=0

ak−jmod nbj and ||z||2 ≤
√
n ||a|| · ||b||.

Proof : Given that Xn+k ≡ Xk mod (Xn − 1) (the following are equations in

the ring),

n−1�

i,j=0

aibjX
j+i =




n−1�

j=0

n−j−1�

i=0

+
n−1�

j=0

n−1�

i=n−j


 ajbi−jX

i+j

=

n−1�

i=0

i�

j=0

ajbi−jX
i +

n−1�

i=0

n�

j=i+1

ajbn+i−jX
i

=
n−1�

i=0

Xi




n−1�

j=0

ajbi−jmod n


 .

In consequence, zi, the coefficient of X i in z, is the scalar product between a and

rotations of b. The result is given as an application of Cauchy-Schwartz inequality.

�

As an easy corollary, we have that if f(X) = Xn −m for m ∈ Z, then

zk =

k�

j=0

ak−jbj +m
�

j=k+1

an+k−jbj and ||z|| ≤ C(m) ||a|| · ||b||

for some constant C(m) such that
√
n ≤ C(m) ≤

�
n|m|. As noted in section 3.2.3,

for R = Z[x]/(xn − 1) the ideal lattices are cyclic (or circulant): if (a1, · · · , an) ∈ L,

then (an, a1, · · · , an−1) ∈ L. This choice is elegant and allows to apply the very

developed theory of circulant matrices, see for instance [Gra06]. In this chapter, we

will fix f(x) = xn − 1.

2.3.4 Lattice I: choice of the plaintext space

In Gentry’s scheme, the message space is (a subset of)

P = Zn mod BI = Zn ∩ P (BI),
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where BI is a matrix whose columns Z−span I. Here are four examples in Z3.


2 0 0

0 2 0

0 0 2


 ,



d1 0 0

0 d2 0

0 0 d3


 ,



t11 t12 t13

0 t22 t23

0 0 t33


 ,



r1 r3 r2

r2 r1 r3

r3 r2 r1


 .

In the first case, plaintext space P is {0, 1}3. In the second and third case, a

message is a vector (x1, x2, x3) whose components verify |xi| < |di| for i = 1, 2, 3 and

{|x3| < |t33|, |x2| < |t22| + |t23|, |x1| < |t11| + |t12| + |t13|}, respectively. The binary

case I = (2), BI = 2In and P = {0, 1}n suffices for applications and is the simplest

to analyze. We will of course adopt this choice, however, it raises the nontrivial

question of studying the distribution of lattices that are relatively prime to α((2)).

See next section.

2.3.5 Lattice J: ciphertext space

The lattice J must be chosen relatively prime to I and have two bases – a small,

quite orthogonal Bsk
J and a large, eccentric Bpk

J . Let us begin by giving following

characterization of relatively prime lattices:

Proposition 2.3.2. Let L,L� be two lattices of Zn and B,B� their respective bases.

Recall that ei is the i-th column of the identity In. The following statements are

equivalent:

(i) L+ L� = Zn.

(ii) (Bézout’s identity for lattices) There are two matrices M,M � with integer en-

tries such that BM +B�M � = In.

(iii) Let H and H� be the Hermite normal forms of B and B� respectively. The

respective diagonal elements of H,H� are relatively prime.

Proof : The equivalence (i)⇔(ii) comes from the fact that if L,L� are relatively

prime, then one can write each column of the identity matrix as a linear integer

combination of elements in B ∪ B�, thus generating Zn. The equivalence (i)⇔(iii)

is simply the fact that H,H� are bases of L,L� in triangular form. Indeed, suppose

that (i) holds, then for 1 ≤ k ≤ n, ek is a linear integer combination of columns of

(H|H�), and because of the triangular structure this combination is of the form

ek =
k�

i=1

αihi + βih
�
i.

In particular, 1 = αkHkk + βkH
�
kk, proving (iii). Conversely, if (iii) holds, one

can perform column operations to the rectangular matrix (H|H�) following Bézout’s

identity between corresponding columns, resulting in a rectangular matrix with 1’s

in the diagonal, consequently, its columns generate Zn. �
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Corollary. Let L,L� be two lattices in Zn. If (det(L), det(L�)) = 1 then (L,L�) = 1.

Remark. The converse is not true. For instance, the lattices of Z2 generated by

{2e1, 3e2} and {3e1, 2e2} are relatively prime but they have equal determinants.

Let us come back at our choice of a binary plaintext I = (2). Is it easy to find

an ideal lattice J = α((v)) relatively prime to I, i.e. such that det J is odd? A

probability result states that the distribution of determinants of uniformly random

matrices is not uniformly distributed in Z (this distribution is an interesting prob-

lem, see [CM00]). In fact, the Hermite normal form of a uniformly random matrix

follows a structured distribution. Asymptotically (in a bound on entry-wise uniform

samplings), for a matrix M there are around 40% chances that the first n − 1 di-

agonal elements of the HNF(M) are 1 and the last equals | det(M)|. We quantify

this distribution in section 2.5. We also compute the natural density of matrices in

Mn×n(Z) with odd determinant, which answer the former question. Let δn denote

this density, then we show in 2.5 that

δn =
|SLn(F2)|

2n2 =
n�

i=1

�
1− 1

2i

�
,

i.e. this density is between limn→∞ δn ≈ 0.28 and δ2 ≈ 0.38.

2.3.6 Generating the bases

We address now the “shape” of bases Bsk
J ,Bpk

J and the method to generate them.

Because of how decryption works, P (Bsk
J ) must contain a large Rn-ball, which in

turn must contain the set Samp(P). Indeed, if a message x ∈ P = {0, 1}n is such

that Samp(x) �∈ P (Bsk
J ), then Dec(sk,Enc(pk, x)) �= x. On the contrary, the “public”

base Bpk
J must be large and eccentric, imitating the shape of a very long segment

in Rn, to ensure that the encryption Samp(x) mod Bpk
J is very far away (and in

particular, different modulo BI) from Samp(x).

We already assumed that n is large so no lattice reduction is available (in order

to generate the quite orthogonal Bsk
J ). Instead, one can simply generate this matrix

using the rotation basis of a suitable polynomial. In point of fact, choose a secret

vector vsk of large l2 norm and next to the direction e1 = (1, 0, · · · , 0) (or any other

axis) and set J = α((vsk)), Bsk
J = rot(vsk). To generate the public key, just compute

the Hermite normal form of Bsk
J .

As a minor detail, note that if vsk = (v1, . . . , vn) ∈ Zn, then both s = v1+ · · ·+vn

and d = −v1 + v2 − v3 − . . . (−1)nvn divide det(rot(vsk)) (s and d are eigenvalues

of rot(vsk) with corresponding eigenvectors
�

k ek and
�

k(−1)kek respectively).

Therefore, if the sampled secret vector corresponds to an even value of s or d, it can

be ruled out since the determinant of rot(vsk) is even.

Let us give a toy example.
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Algorithm 3 Key Generation for Gentry’s IL homomorphic scheme
Require: Security parameter λ, parameters n, lSamp

Ensure: Key-pair Bsk
J ,B

pk
J

1: function Keygen(λ)

2: Bsk
J ← 0

3: while (det(Bsk
J ) = 0 mod 2) do

4: Sample vsk ← Zn such that vsk is close to a Rn axis and ||vsk||2 � lSamp

5: Set Bsk
J = rot(vsk)

6: end while

7: Bpk
J = HNF(Bsk

J )

8: Output (Bsk
J ,B

pk
J )

9: end function

Example 2.3.1. Let n = 7 and sample vsk = (18,−3, 0, 0, 1, 0,−1) (or the polyno-

mial 18− 3X +X4 −X6) which is close to the direction e1 (notice also that s = 15

and d = 21 are odd). The key generation algorithm outputs

Bsk
J = rot(vsk) =




18 −1 0 1 0 0 −3

−3 18 −1 0 1 0 0

0 −3 18 −1 0 1 0

0 0 −3 18 −1 0 1

1 0 0 −3 18 −1 0

0 1 0 0 −3 18 −1

−1 0 1 0 0 −3 18




,

Bpk
J =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

516180659 338284094 98416679 286516904 328581644 458971154 573665415




.

Now, det J = 573665415 is odd, therefore (I, J) = 1 (we also have the minor details

(18− 3+1− 1)|573665415 and (−18− 3− 1+1)|573665415). Notice how the entries

of the last column of Bpk
J are large in comparison to the secret vector.

2.3.7 Role of the representative sampling function

To encrypt a message π ∈ {0, 1}n, one computes Enc(π) = Samp(π) mod Bpk
J ,

where Samp is a randomized procedure that chooses a representative of the class

π + I. In the absence of this sampling, the scheme would be deterministic. A

huge comeback, since it would allow to solve equations on ciphertexts. Indeed,

suppose that the encrypting equation was simply Enc(π) = π mod Bpk
J , then we

have Enc(pk, x) = x for every x ∈ {0, 1}n ∩ P (Bpk
J ) (for instance x ∈ {0, en}).

Therefore, the role of this function is to randomize encryption and separate the

message from the eccentric parallelepiped P (Bpk
J ) while keeping the parity of the
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coordinates, in order that mod Bpk
J reduction outputs a very far away point of Zn

and, above all, not equivalent to π modulo 2 (i.e.modulo BI).

In fact, we have {0, 1}n ∩ P (Bpk
J ) = {0, en}, it hence suffices to take Samp as a

distribution that outputs randomly a representative of π + (I) in a ball of radius

lSamp. Gentry proposes lSamp = n.

2.3.8 Correctness of encryption and decryption

The size of the private key ||vsk||2 and radius of the sampling lSamp must be chosen

to ensure correctness of decryptions.

Proposition 2.3.3. Let (sk, pk) ← Keygen(λ). If P (Bsk
J ) ⊃ Samp({0, 1}n), then

Dec(sk,Enc(pk, x)) = x for all x ∈ {0, 1}n.

Proof: Let x ∈ {0, 1}n and suppose that the representative x+ i = Samp(x) lays

in the interior of P (Bsk
J ). To encrypt, one performs

x
Samp−−−→ x+ i

mod Bpk
J−−−−−−→ x+ i+ j = y ∈ P (Bpk

J ),

where i ∈R I, j ∈R J. Decryption gives

y
mod Bsk

J−−−−−→ y − j�
mod BI−−−−−→ y − j� − i�,

where i� ∈ I, j� ∈ J. The reduction y mod Bsk
J outputs the only representative of y

in P (Bsk
J ), and by hypothesis x+ i is inside P (Bsk

J ), thus y − j� = x+ i and j = j�.

Also y − j� mod BI = x+ i mod BI = x. �

On the contrary, if x + i �∈ P (Bsk
J ), the reduction y mod Bsk

J outputs a point

z ∈ Zn that does not match x+ i since z ∈ P (Bsk
J ), ruining decryption.

Example 2.3.2. In the example 2.3.1 above, the sampling radius must not exceed

||vsk||/2 ≈ 9.15. As a matter of fact, our choice of vsk ensures correctness of decryp-

tions since 9.15 > 7 = n, i.e.P (Bsk
J ) ⊃ Samp({0, 1}n) (however, as we will see in the

next section, this choice does not allow homomorphic operations). Let us encrypt

the message π = (1, 1, 0, 1, 0, 0, 1) under the public key of example 2.3.1. We first

sample a representative of π + I contained within a ball of radius 7 centered at 0:

Samp(π) = (1,−1, 4, 1, 4,−2, 1) (notice that parity is respected and the point is not

close to the stable direction e7). We then compute the representative of this vector

within P (Bsk
J ) and output

Enc(pk, (1, 1, 0, 1, 0, 0, 1)) = (0, 0, 0, 0, 0, 0,−107133622) = ψ.

To decrypt this message, first compute

(0, 0, 0, 0, 0, 0,−107133622) mod Bsk
J = (1,−1, 4, 1, 4,−2, 1)

and output this point modulo 2. We find the message x = (1, 1, 0, 1, 0, 0, 1).
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2.3.9 Correctness of homomorphic operations

As we discuss here, in order to securely evaluate circuits of high depth, the size of

public keys and ciphertexts must be very large. This is a major drawback of the

scheme.

Let (pk, sk) ← Keygen, x, x� be two messages in {0, 1}n and let i, i� ∈ I, j, j� ∈ J

such that Enc(pk, x) = x + i + j,Enc(pk, x�) = x� + i� + j�. To verify correctness of

homomorphic addition, the vector s ∈ Zn given by s = Enc(pk, x)+Enc(pk, x�) must

be a valid ciphertext and correctly decryptable in the sense of section 2.3.8. In clear,

s = (x+ x�) + (i+ i�) + (j + j�),

and with the same reasoning as before, the image of s under Dec(sk, ·) will not

output x+ x� mod 2 if (x+ x�) + (i+ i�) lies outside P (Bsk
J ). Given that

||(x+ x�) + (i+ i�)|| ≤ 2lSamp,

homomorphic addition is correct if lSamp < ||vsk||/4, where vsk is an edge of Bsk
J . In

general, to ensure correctness of k fan-in homomorphic addition

Dec(sk,Enc(pk, x1) + · · ·+ Enc(pk, xk)) = x1 + · · ·+ xk mod 2

for all tuple of vectors x1, · · · , xk in {0, 1}n, the condition is lSamp <
||vsk||
2k

. In our

example 2.3.1, not even an homomorphic addition can be supported since n = 7 �<
1
4 ||vsk|| ≈ 4.58. More precisely, for the secret key vsk = (18,−3, 0, 0, 1, 0,−1), one

homomorphic addition can be carried out if Samp outputs vectors within a ball of

radius 4.

Of course, to support homomorphic multiplication of two ciphertexts, the in-

equality between ||vsk|| and lSamp is far more restrictive. Consider the same scenario

as before and p = Enc(pk, x)× Enc(pk, x�), i.e. ,

p = (x+ i)× (x� + i�) + j(x� + i�) + j�(x+ i) ∈ Zn.

For correct decryption, the point (x + i) × (x� + i�) must lie within the secret par-

allelepiped. Applying the product overhead inequality ||a × b|| ≤ √
n||a|| × ||b||

for all a,b in Zn, this is verified if 2
√
n(lSamp)

2 < ||vsk||. To perform a k-fan-in

multiplication gate, one needs

2n
k−1
2 (lSamp)

k < ||vsk||.

In our 7-th dimensional example with lSamp = n, this is ||vsk|| > 260, meaning that

to support a single multiplication, the entries in the last row of a public key base are

56-bit integers. For n = 334 (preventing current lattice reductions in the average

case), supporting a single multiplication needs a public base of vectors with 7335-bit

integers.
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2.3.10 Maximum depth of allowed circuits

With the previous reasoning we quantify the maximum depth for correct evaluation.

As we will see, an increase in the maximum depth needs a drastic growth of key

sizes.

Theorem 2.3.4. Let vsk be a secret key vector (i.e.Bsk
J = rot(vsk)). The maximum

depth that can be correctly homomorphically evaluated is

dmax = log2 log2(||vsk||)− log2 log2(
√
nlSamp),

with at most
√
n addition fan-in and 2 product fan-in.

Proof: Let ri ≥ 1 be a superior bound to the l2 norm of outputs on level i of

the circuit C. Suppose that C is of depth dmax and set r0 = lSamp. At level i− 1 for

i ≥ 1,

· ||v1 + · · ·+ v�√n�|| ≤
√
n · ri,

· ||u× v|| ≤ √
n ||u|| · ||v|| ≤ √

n · r2i .

Therefore the output of gates at level i can be bounded by
√
n · r2i . Therefore

ri−1 ≤
√
n · r2i and

r0 ≤
√
nr21 ≤ √

n
1+2

r22 ≤ · · · ≤ √
n
1+2+···+2k−1

r2
k

k =
√
n
2k−1

r2
k

k ≤ (
√
nrk)

2k .

For the evaluation to be correct al level dmax we must have rdmax ≤ ||vsk||2 i.e.

lSamp ≤ (
√
n||vsk||2)2

dmax
. �

Said otherwise, the secret key size ||vsk||2 is super-exponential in the maximum

depth.

2.4 Security

2.4.1 The Ideal Coset Problem

Gentry’s scheme semantic security is based on the Ideal Coset Problem (ICP). It is

the problem of distinguishing between a valid encryption and a random vector in

the eccentric parallelepiped P (Bpk
J ).

Definition 2.4.1 (ICP). Let R = Z[x]/(f(x)) for a monic polynomial f of degree

n, and let I, J be relatively prime ideal lattices. Let Samp be an algorithm that, on

input x, samples a representative of the class x+I. Let b
R←− {0, 1} and (Bsk

J ,Bpk
J ) ←

Keygen(λ).

– If b = 0, let x
R←− and set v� ← Samp(x) mod Bpk

J .
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– If b = 1, let v
R←− R mod Bpk

J .

The Ideal Coset Problem is to guess b with the knowledge of (v,Bpk
J ).

If the image of Samp samples from a ball of too small radius, solving ICP is easy.

Gentry reduces the semantic security of the homomorphic scheme to the Ideal Coset

Problem.

Theorem 2.4.1. If A is an algorithm that breaks the semantic security of the ideal

lattice homomorphic scheme with advantage ε, then there is an algorithm B that

solves ICP with advantage ε/2.

Proof: Suppose an attacker Bob wants to solve ICP. He uses the algorithm A,

which asks B to send the encryption of one of two messages π0 or π1. Bob defines

a bit β and sends Enc(πβ) to algorithm A. The algorithm outputs a guess β� to the

challenge, which will be correct with an advantage ε. Bob answers the ICP challenge

with the bit β ⊕ β�.

Indeed, if b = 0, Bob’s simulation is perfect: the message given to Bob from the

ICP instance is of the form ψ ← πβ + v × s mod Bpk
J and therefore of the form

Enc(πβ). The algorithm A will output the correct β� = β with an advantage of ε,

thus giving an advantage of ε pour B. If b = 1, the advantage of Bob is 0 since

ψ is a uniformly random element of the parallelepiped P (Bpk
J ). Hence Bob total

advantage is ε/2. �

The ratio between the size of λ1(J) (the norm of the smallest vector of J) and

the sampling radius lSamp is crucial to conserve the difficulty of this problem. If fact,

if λ1(J)/lSamp ≥ 2n, one can find the nearest lattice element j ∈ J to the challenge

v (using variants of LLL and Babai’s nearest plane algorithm). If dist(j, t) > lSamp,

then v was generated uniformly, and if dist(j, t) < lSamp then more than likely v is

an actual encryption.

There are no known attacks for lSamp = poly(n),λ1(J) = 2O(
√
n), and con-

trolling the value λ1(J) is possible via a spectral analysis of rotation matrices

(see [OYKU10]).

2.5 Natural density of some classes of lattices

We are motivated by the choice of I, J , which are meant to be relatively prime

lattices. Practical questions arise, for instance, how “dense” is the set of relatively

prime lattices in the set of pairs of random lattices? As stated before, each lattice of

Zn is uniquely defined by a matrix in Hermite Normal Form. This allows to imagine

a random lattice sampler:

Definition 2.5.1. Let Hn(t) be the distribution that samples n positive integers

d1, . . . , dn uniformly in {1, . . . , t} and (n2 − n)/2 integers aij for i = 1, . . . , n and
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j = i+ 1, . . . , n uniformly in {−t, . . . , t} for a large integer B, and then outputs the

Hermite Normal Form of the following matrix




d1 a1,2 a1,3 · · · a1,n−1 a1,n

0 d2 a2,3 · · · a2,n−1 a2,n

0 0 d3 · · · a3,n−1 a3,n
...

. . .
. . .

...

0 0 0 · · · dn−1 an−1,n

0 0 0 · · · 0 dn




.

Let ||·||max be the component-wise max norm defined by ||M ||max := maxi,j |Mij |.
Let also Bt be the ball of matrices centered at 0 with radius t with respect to the

max norm, then image of this sampler is the set of all random matrices in HNF

lying inside the ball Bt, or equivalently, all lattices with det(L) ≤ tn. In this section

we aim to quantify some probability distributions on random lattices, i.e. random

Hermite Normal Forms. These results aim to give intuition on the more complex

problem of studying the distribution of relatively prime random ideal lattices. Let

us first define the natural density of a set of matrices.

Definition 2.5.2 (Matrix natural density). Let S ⊂ Mn(Z) be a subset of integer

matrices. Let σmax : N → N be the counting function σmax(t) := #(S ∩ Bt). The

natural density of S is

δ(S) := lim
t→∞

σmax(t)

tn2 ,

when the limit exists.

2.5.1 Natural density of diagonal elements of HNF’s

Here, we show that uniformly random HNF matrix in the sense of the sampler

Hn follows a very different structure as the HNF of a uniformly random matrix.

In [Maz11], authors prove the following:

Theorem 2.5.1. (i) The natural density of matrices having at least one zero in the

diagonal of their HNF is zero.

(ii) Let (d1, · · · , dn−1) ∈ (N∗)n. The natural density of matrices having a HNF

of the form

HNF(A) =




d1 ∗ ∗ · · · ∗ ∗
0 d2 ∗ · · · ∗ ∗
0 0 d3 · · · ∗ ∗
...

. . .
. . .

...

0 0 0 · · · dn−1 ∗
0 0 0 · · · 0 β




, where β =
| det(A)|�n−1

i=1 di
,
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is equal to

δ(d1, · · · , dn−1) = (ζ(n) · ζ(n− 1) · ... · ζ(2) · dn1 · dn−1
2 · ... · d2n−2 · dn−1)

−1.

The proof of this theorem relies on two fundamental observations: (a) The

natural density of k-tuples (r1, . . . , rk) with pgcd(r1, . . . , rk) = d is (ζ(k) · dk)−1

where ζ is the Riemann Zeta function and (b) if E is a set of elements of Zn, then

UE := {Ue, e ∈ E} has the same natural density that E, where U is any unimodular

matrix. The proof is interesting, see [Maz11].

In this fashion, if by uniformly random lattice we mean the lattice generated by

the columns of a uniformly random matrix, then the natural density of lattices L

whose HNF diagonal elements are d1 = d2 = · · · = dn−1 = 1 and dn = det(L) is

(
�∞

k=2 ζ(k))
−1 = 0.436.... Hence, it is likely that public bases of Gentry scheme have

“1” entries almost everywhere in the diagonal, and large divisors of the determinant

near the tail. In our implementation, we observed precisely this behavior.

2.5.2 Natural density of coprime lattices

Now, let I be a fixed lattice generated by the columns of A, and let φ denote Euler’s

totient function. We prove the following:

Proposition 2.5.2. Let B ← Hn. The probability that the lattice J generated by B

is coprime to I verifies

1

det I
≤ P((I, J) = Id) ≤ ϕ(det I)

det I
,

with equality at left if det I is a power of 2 and equality at right if the diagonal

elements of HNF(I) are pairwise coprime.

Proof: From proposition 2.3.2 we know that (I, J) = 1 if and only if (Akk, Bkk) =

1 for all 0 ≤ k ≤ n. Hence

P((I, J) = Id) = P(∀ 0 ≤ k ≤ n : (Akk, Bkk) = 1)

=
n�

k=1

P((Akk, Bkk) = 1) =
n�

k=1

ϕ(Akk)

Akk

=
1

det(I)

n�

k=1

ϕ(Akk).

where ϕ(x) is Euler’s totient function (the amount of integers relatively prime to

and smaller than x). Note that ϕ(ab) ≥ ϕ(a)ϕ(b) (with equality if (a, b) = 1), and

the result follows. �
Remark. A plaintext spaceBI for Gentry’s scheme which gives a good probability in-

volves a choice of I such that det(I) is a product of n (not necessarily distinct) prime
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numbers p1, . . . , pn, each one greater than an integer αn, and such that HNF(I) = H

verifies Hii = pi. The probability then gives

P((I, J) = Id) =
n�

i=1

�
1− 1

pi

�
>

�
1− 1

αn

�n

> exp(−1/α).

For instance, if α = 1, then the probability of sampling an ideal lattice J relatively

prime to I is greater than 1/e ≈ 36.79%.

We consider now the natural density of two coprime HNF’s:

Proposition 2.5.3. Let H ← Hn, H
� ← Hn. The natural density of coprime ma-

trices H and H � is

δ((H,H �) = Id) =

�
6

π2

�n

.

Proof: If follows directly from the fact that the natural density of relatively prime

integers is 6/π2. �

2.5.3 Natural density of odd ideal lattices

Let us say that an ideal lattice is odd if it is relatively prime to the ideal lattice

(2). Therefore, L is odd if all diagonal entries of HNF(L) are odd, or equivalently,

if detL is odd. If lattices are sampled via a uniformly random matrix, it suffices to

compute the natural density of matrices with odd determinant.

Lemma 2.5.4. The natural density of matrices in Mn×n(Z) with odd determinant

is

δn =
|SLn(F2)|

2n2 =
n�

i=1

�
1− 1

2i

�
.

Proof: We wish to compute

δn(t) =
1

tn2 #{M ∈ Mn×n(Z), |mij | ≤ t ∀i, j, det(M) ≡ 1mod 2}

and δn := limt→∞ δn(t). We first perform a reduction modulo 2 and work in F2, this

eliminates the dependency on the radius t:

δn =
1

2n2 #{M ∈ Mn×n(F2), det(M) = 1(mod 2)}.

We hence see that the natural density δn is exactly the proportion of invertible

elements of Mn×n(F2). One can actually count this elements: let (x1, · · · , xn), xi ∈
{0, 1}n be the columns of a matrix in Mn×n(F2). Then if this matrix is invertible,

the family (x1, · · · , xn) is linearly independent. Thus, for the first column there

are 2n − 1 choices since it can be zero. The second column must not verify an

equation of the form e1x1 = x2 by independence, hence there are 2n − 2 choices.
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The third column must not verify an equation of the form e1x1 + e2x2 = x3, and

thus there are 2n − 4 choices. Continuing the argument, the column xk must be

linearly independent of the precedent k− 1 columns, i.e. a choice between 2n − 2k−1

elements. This way,

#{M ∈ Mn×n(F2), det(M) = 1} =
n−1�

i=0

(2n − 2i),

and the result follows. �

Note that, for all n ≥ 2, δn is a strictly decreasing sequence, from where we

conclude

0.28 ≈ lim
k→∞

δk < δn < δ2 ≈ 0.38.

2.5.4 Remark on natural density of circulant matrices with odd

determinant

Let L be an ideal lattice and let RL its rotation basis. The set of bases of L is

exactly

B(L) = RL ·GLn(Z),

i.e. , the set of all matrices of the form RLU where U is a unimodular matrix. If

the set of circulant matrices is not uniformly distributed in Mn×n(Z), the latter

lemma may not be relevant: the parity of the determinant may have a very different

distribution when constrained to cyclic matrices.

In a more direct approach, the determinant of circulant matrices can be written

in terms of the generating polynomial. Indeed, if M = rot(x0, x1, · · · , xn−1), we

have M = x0 Id+x1T + x2T
2 + xn−1T

n−1 where

T =




0 0 · · · 0 1

1 0 · · · 0 0

0 1 0 0
...

. . .
...

...

0 0 0 0

0 0 · · · 1 0




.

The eigenvalues of T are n-th roots of unity µk = e(2πi/n)k, k = 0, . . . , n − 1, and

therefore the eigenvalues of M are

λk = x0 + x1µk + x2µ
2
k + · · ·+ xn−1µ

n−1
k .

As the determinant is the product of eigenvalues, parity may be established with a

deeper analysis of vanishing sums of roots of unity. In other words, the proportion
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of circulant integer matrices with odd determinant amongst all circulant integer

matrices is given by

1

2n
×#{(x0, . . . , xn−1) ∈ {0, 1}n :

n−1�

k=0

n−1�

i=0

xiµ
i
k = 0 mod 2}

For more on vanishing sums of roots of unity, the reader may refer to [CJ76,Len78,

LL00, Ste08, Eve99]. Finally, we state that if the set of circulant matrices up to

multiplication by a unimodular matrix is a topological cover of the set of all matrices,

then the answer relates to lemma 2.5.4. Unfortunately, this exits the scope of this

Dissertation.

2.6 Proof-of-concept implementation

We coded a working instance of Gentry’s ideal lattice homomorphic scheme in C

with the GMP large numbers library. In the first place, we needed to build linear

algebra and lattice layers. Note that, in order to compute basis reductions, we

needed to calculate Q-inverses of matrices, therefore with the type mpf t of GMP. For

completeness, let us enumerate some of the functions we implemented.

2.6.1 Basic functions

A large integer number (having up to millions of bits) is defined in GMP by the prefix

mpz t, and a floating point number (with a user-predefined precision) by the prefix

mpf t. Some of the functions we implemented follow.

FFT(mpf t &v[N]) (v ← FFT(v))

FastMatrixVector(mpz t A[N][N],mpz t x[N],mpz t b[N]) (b ← Ax)

MultiplyCtxt(mpz t x[N],mpz t y[N],mpz t prod[N]) (prod ← x×y mod Bpk
J )

MultiplyZn(mpz t x[N],mpz t y[N],mpz t prod[N]) (prod ← x× y ∈ Zn)

RandomBinaryVector(mpz t x[N]) (x
R←− {0, 1}n)

RandomVector(mpz t x[N],int lambda) (x
R←− Zn bounded by λ)

RintVector(mpz t X[N],mpf t x[N]) (nearest integer vector)

Det(mpz t A[N][N],mpz t d) (d ← det(A))

HNF(mpz t &A[N][N]) (A ← HNF(A))

Inverse(mpz t A[N][N],mpf t Ainv[N][N]) (Ainv ← A−1)

ModBasis(mpz t v,mpz t A[N][N],mpf t Ainv[N][N]) (v ← v −A�A−1v�).
MatrixProduct(mpz t A[N][N],mpz t B[N][N],mpz t P[N][N]) (P ← AB)

PALU(mpz t P[N][N],mpz t A[N][N],mpf t L[N][N],mpf t U[N][N]) (PA = LU

decomposition)

RandomUnimodular(mpz t A[N][N]) (A ∈R GL(n,Z))
RotationMatrix(mpz t v,mpz t A[N][N]) (A ← rot(v))
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Solve(mpz t A[N][N],mpf t x[N],mpz t b[N]) (Solve Ax = b)

Transpose(mpz t A[N][N]) (A ← tA)

At key-generation, one must generate a random vector v close enough to Ze1 and
define the secret and public bases as the rotation matrix of v and its Hermite normal

form. Also, to test is two lattices are prime, the determinant can be computed.

Finally, to test a variant of the key-generation procedure where one randomizes

the secret key (instead of computing the HNF) we wrote a function that generates

unimodular matrices. See algorithms 4 and 5.

This algorithm runs in cubic complexity, which is enough for our implementation

since HNF’s are only computed in key-generation time. We mention that better

algorithms are reviewed in [PS10].

Algorithm 4 Unimodular Matrix Generator
1: procedure UnimodularMatrixGen

Require: A bound B ∈ R+

Ensure: A unimodular matrix U such that maxi,j |ui,j | ≥ B

2: for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ N − 1 do

3: if (i = j) then uii
R←− {−1, 1}

4: else if (i > j) then uij ∈R [[−� 3
√
B�, � 3

√
B�]]

5: else uij = 0

6: end if

7: end for

8: while (maxi,j |ui,j | < B) do

9: i ∈R [[0, N − 1]], i� ∈R [[0, N − 1]] \ {i}
10: λ ∈R [[−� 3

√
B�, � 3

√
B�]]

11: Row(i) ← Row(i)− λ×Row(i�)

12: j ∈R [[0, N − 1]]

13: j� ∈R [[0, N − 1]] \ {j}
14: µ ∈R [[−� 3

√
B�, � 3

√
B�]]

15: Column(j) ← Column(j�)− µ×Column(j)

16: SwapRows(i, i�)

17: SwapColumns(j, j�)

18: end while

19: end procedure

2.6.2 Scheme algorithms

With these functions, the scheme can be described neatly:

KeyGen(int lambda, mpz t BJsk[N][N],mpz t BJpk[N][N])

{
mpz t v[N];

InitVector(v);
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RandomVector(v,lambda);

while(“v is far from every axis”)

{
RandomVector(v,lambda);

}
RotationMatrix(v,BJsk);

RotationMatrix(v,BJpk);

HNF(BJpk);

}
Encrypt(mpz t pi[N], mpz t Bp[N][N], mpf t Bpinv[N][N])

{
Samp(pi,Bp);

ModBasis(pi,Bp,Bpinv);

}

Decrypt(mpz t psi[N], mpz t Bs[N][N], mpf t Bsinv[N][N])

{
ModBasis(psi,Bs,Bsinv);

Mod2(psi);

}

Algorithm 5 Hermite Normal Form
Require: M is a non-singular N ×N matrix

1: function HNF(M)

2: for k from 0 to N − 1 do

3: while ∃i > k,mik �= 0 do

4: j� ← such that mj�k = minj≥k(mjk)

5: Swap rows j� and k

6: for l from max(k − 1, 0) to N − 1 do

7: Row(l) ← Row(l)− λRow(k) where λ = �mlk/mkk�
8: end for

9: end while

10: if mkk < 0 then Row(k) ← (−1)×Row(k)

11: end if

12: end for � M is now upper triangular

13: for k from N − 1 to 0 (decreasing) do

14: for l from max(k − 1, 0) to 0 (decreasing) do

15: Row(l) ← Row(l)− λRow(k) where λ = �mlk/mkk�
16: end for

17: end for

18: Output M

19: end function

49



Chapter 2. Gentry’s ideal lattices scheme

2.6.3 Performances

Because of the size of public keys, our implementation operates up to n = 200,

which is clearly too small to avoid lattice reduction attacks (i.e. recover Bsk
J from

Bpk
J ). For a choice of parameters allowing depth-2 circuits, we have the performances

in seconds given in figure 2.6.3.

Function n = 32 n = 64 n = 128 n = 200

HNF[s] <0.1 <0.1 8 993

Inverse[s] <0.02 2 42 2507

KeyGen[s] <0.02 2 50 3516

Table 2.1: Timings of Gentry’s key-generation procedure in toy settings

Encryption, addition, multiplication, and decryption took < 0.1 seconds in this

setting, but we point out that for larger values of n this performances must be taken

into account. For instance, authors in [GH11b] report 3-minute encryptions and key-

generation for large dimensions in the somewhat homomorphic scheme. We highlight

also that when converted into FHE, key-generation and re-crypt procedures took 2.2

hours and 31 minutes, respectively.

Multiplication of ciphertexts consists exactly in one polynomial product (where

inputs are very sparse) and one basis reduction. The efficiency bottleneck manifests

for larger values of n and other choices of the polynomial ring (where fresh cipher-

texts are not sparse). Notice also that key generation essentially computes (Bsk
J )−1

and HNF(Bsk
J ) (the inversion of a matrix in Hermite normal form being easy). Above

n = 256, the size of matrices and, over all, the floating point precision required,

makes our key generation algorithm no longer capable of outputting keys that cor-

rectly evaluate homomorphic circuits. A series of tweaks to improve efficiency must

be applied. However we only intended to provide a proof-of-concept implementation,

since other homomorphic schemes are far more efficient and deserve better analy-

sis. See Chapter 5 for our implementation of the Brakerski-Gentry-Vaikunthanatan

scheme, for instance.

We also tested circuit evaluation with artificial keys, for the sake of completeness.

To this end we considered the following variant of the scheme (Gentry’s first tweak),

where no matrix inversion is needed. Note by vsk the first column of Bsk
J . As

rot(vsk) = Bsk
J , only vsk needs to be stocked in memory. It is easy to see that for

every a, b ∈ Zn, a × b = rot(a)b = rot(b)a. Now suppose that w ∈ Qn is such that

w × vsk = 1 ∈ R. For 0 ≤ k ≤ n − 1, we have w × (Xkvsk) = Xk, and therefore

w × rot(vsk) = Id, hence rot(w) = (Bsk
J )−1. With this notations, the decryption

equation becomes
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Dec(ψ) = (ψ − vsk × �w × ψ�) mod 2.

When R = Z[x]/(f(x)), in order to compute w = (vsk)−1, just apply the Ex-

tended Euclidean algorithm on inputs vsk and f(x). This variant reduces consid-

erably the size of keys, however, the floating point precision is still of order about

log det J to ensure correct decryptions. With this tweak, we evaluated circuits to

give in table 2.2 the required size of ||vsk|| to perform 1.000.000 correct successive

evaluations when lSamp = n.

lSamp = n Depth 2 Depth 3 Depth 5

n = 10 (toy) 234 246 270

n = 32 240 261 2103

n = 64 256 274 2158

n = 128 (very small) 264 288 2257

Table 2.2: Reported secret key Euclidean size in Gentry’s tweaked scheme.

In an application of depth 10 with n = 1024, we estimate that the secret key

in our implementation is of Euclidean norm O(21.1·10
8
), which corresponds to about

14MB of data. This agrees to [GH11b] where authors report a public-key size of

70MB for n = 2048. In contrast, they implement the full scheme (bootstrapping

included) and they use highly optimized algorithms to compute resultants and arith-

metic in Z[x]/(f(x)).

2.7 Conclusion

In this Chapter, we described in detail the first FHE scheme ever constructed, as an

homage to Craig Gentry’s dissertation. We verified with a C+gmp implementation its

huge handicap in efficiency, and agreed to the fact that it is not remotely competitive

with other FHE schemes. Finally, we gave a digression about the probabilistic

structure of some classes of random lattices.
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Chapter 3

A Key-Recovery Attack Against

Gentry’s Ideal Lattice Scheme

via ad-HPP

The contents of this Chapter include an article submitted to an international

conference. This is joint work with Louis Goubin and Cyril Hougounenq.
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3.1. Introduction

3.1 Introduction

A parallelepiped of Rn, or parallelotope, is the polytope obtained when translating

a point of Rn successively in n independent directions. It is the set delimited by

2n hyperplanes of dimension n − 1 such that there are exactly n different pairs of

parallel hyperplanes. Consider the following.

Adaptive Hidden Parallelepiped Problem (ad-HPP): Let P be a secret

parallelepiped in Rn centered at 0 with vertices in Zn. Let χ be the indicator function

of P . Given adaptive access to χ and a superior bound D on the diameter of P ,

recover P .

Gentry’s celebrated first fully homomorphic scheme relies on ideal lattices of Rn.

In particular, the keys (sk, pk) are two parallelepipeds of the same volume, such that

sk is quite orthogonal and small, and pk is eccentric and large (it may look like a

long segment of Rn). The latter one is public and it serves to encrypt messages,

implying that any attacker may use it to try and recover information about sk or

the underlying message. In this article we show that an attacker having access to

adaptive decryption queries may construct a function that matches the indicator

function of sk in all points of Rn with overwhelming probability. With sufficient

amount of queries they can use any algorithm solving ad-HPP to find the vertices

of sk, or approximate its shape with some precision, which can be enough to recover

the parallelepiped.

Fully Homomorphic Encryption. In a groundbreaking sequence of articles

[Gen09b,Gen09c], Gentry constructed the first fully homomorphic encryption (FHE)

scheme. An FHE scheme is a regular public key encryption scheme that allows pub-

lic processing of ciphertexts, without access to decryption secrets. More precisely,

it allows to publicly transform a set of ciphertexts into a new one that encrypts any

desired polynomial function on the underlying plaintexts. FHE finds several mod-

ern applications, and exciting research has been performed since 2009. In order to

fulfill the needs of these applications and to compete with contemporary encryption

schemes, optimizations, modifications and new proposals have been appearing in or-

der to improve efficiency and security. Today, there are five families of homomorphic

schemes, based on ideal lattices, integers, NTRUEncrypt, (Ring) Learning With Er-

rors and Approximate Eigenvalues, respectively. Some constructions are better in

security, others in efficiency, and others exhibit fancy properties (let us highlight the

Multikey FHE scheme of Lopez-Alt et al. [LATV12], the provable circular-secure of

Brakerski et al. [BV11b], and the attribute-based of Gentry et al. [GSW13]). Recent

proposals greatly outperform the original ideal lattices scheme as they are better in

efficiency, more suited for applications and less complex in structure. We review the

first scheme in section 3.3, in order to present our key-recovery attacks in section

3.4.
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FHE and chosen ciphertext attacks. It is known that FHE schemes cannot re-

sist CC-2 attacks, i.e.when an adversary aims to decrypt a challenge ciphertext with

the help of an oracle that decrypts ciphertexts under the corresponding key. The

reason for this is that despite the attacker is not allowed to submit the challenge, she

can transform it into a different ciphertext using identity homomorphic operations

(such as m �→ m⊕ 0) and submit the result. Of course, this does not mean that the

secret of the oracle can be retrieved by the adversary in a CC attack. Precisely, the

aim of this paper is to show that the original scheme proposed by Gentry allows an

attacker to recover the secret key in polynomial time.

Our Contributions. We first show how to use an ad-HPP solver to recover a

secret key of Gentry’s scheme. We propose two algorithms that solve ad-HPP. Our

first proposal consists in guessing sufficiently many points near the boundary and

then approximating an edge of the parallelepiped (which recovers the full secret by

rotations). It uses O(n2 logD) adaptive calls to χ. Our second and more promising

proposal imitates the effect of gravity, bouncing repeatedly against ∂P and converg-

ing to a vertex. To this end, after n bounces the attacker computes the (n−1)-surface

generated by the n bouncing points, and repeats the process starting from the center

of the hyperrectangle formed by these points. We prove that �log(D)� repetitions

are enough to output a vertex, and that two neighbor vertices can be found adap-

tively by submitting O(n log3(D)) points to χ. With this, retrieving a secret-key of

Gentry’s scheme can be done with O(n log3 n) adaptive calls to the oracle. We give

a complete analysis and proof of our attack.

Related Work. The Hidden Parallelepiped Problem has already been used in

cryptanalysis in its non-adaptive form, i.e. , guess the parallelepiped given a list

of random uniformly distributed points in its interior, without access to the indi-

cator function or the integer vertices hypothesis. In [NR06], Nguyen and Regev

introduced a nice algorithm solving the Hidden Parallelepiped Problem based on

an optimization problem on a n-hypercube after proper transformations. We refer

to it as the Nguyen-Regev algorithm. They applied it to cryptanalyze NTRU and

GGH signature schemes, reporting full recovery of NTRU secret keys using only 400

message-signature pairs for advised parameters. In the adaptive version of HPP

we introduce, the attacker may generate a list of interior points using the indicator

function and feed the NR algorithm to find the parallelepiped. However, a large

number of points is required to proceed. Authors overcome this using known sym-

metries on NTRU lattices, which allow to generate a number of signatures from a

given message-signature list. Unfortunately, these symmetries are not present in

Gentry’s ideal lattices. Some other key-recovery attacks against homomorphic en-

cryption schemes have been published, we mention [DGM15] and [LMSV12]. The

latter includes an attack to a variant of Gentry’s scheme that turns out to be iso-

morphic to the I = (2) case. In contrast, to the best of our knowledge, our proposal

56



3.2. Preliminaries

is the first direct key-recovery attack to the scheme.

Overview of this chapter. In sections 3.2 and 3.3 we review some concepts

and revisit Gentry’s scheme, for the sake of completeness and independence of the

Chapters. In section 3.4 we describe our key recovery attack, and present some

numerical evidence in section 3.5.

3.2 Preliminaries

3.2.1 Notation

Vectors in Rn are noted with an arrow: �a, canonical vectors in Rn are noted by

bold letters: e1 = (1, 0, 0, . . . , 0). If S if a set of vectors of Rn, �S� denotes the

vector space generated by elements in S, and �S�⊥ is the orthogonal complement

of �S�. If E is a set, e
$←− E means that e was sampled randomly from E using

the uniform distribution. Unless stated otherwise, the norm in Rn is the Euclidean

norm ||�x||2 =
��

i x
2
i . If P is a polytope, ∂P denotes its boundary. The (n− 1)-th

dimensional hyperplanes delimiting the interior of a parallelepiped are called facets,

and the lines connecting two consecutive vertices are called edges. Two vertices are

said to be neighbors if there is an edge that connects them. Overloading notation,

if p(x) is a polynomial of degree n− 1, its coefficient vector α(p) will be also noted

p. If (g) is an ideal in R, the ideal lattice α((g)) will be also noted (g). The rotation

basis of (g) is denoted by rot(g). Bases of ideal lattices will be noted with bold

letters. All lattices in this article are of full rank, we identify their bases with square

invertible matrices. Let In be the n× n identity matrix.

3.2.2 Lattices

Definition 3.2.1 (Lattice). A lattice in Rn is a discrete subgroup of (Rn,+) which

spans Rm as a R-vector space.

Every lattice L has a minimal subset of m elements B ⊂ L such that L =�
b∈B Zb. When n ≥ 2 there is an infinite number of such sets and we call them

bases of L. The integer m does not depend on the chosen basis and is called the

rank of L, therefore, to describe a lattice, only one basis is required. Given a basis

of rank m in matrix form B = (b1|b2| · · · |bm), the quantity |det(B)| :=
�
det(tBB)

is an invariant of L, which we note by detL. Let the fundamental parallelepiped

of the basis B be the translated convex hull delimited by the column vectors in

B. We note this parallelepiped by P (B) =
��

1≤i≤m xibi ∈ Rn ; xi ∈ [−1/2, 1/2[
�
.

By definition, the volume of P (B) equals the determinant of the lattice: det(L) =

measn(P (B)) for any basis B. Let L be a full rank lattice. If x ∈ Rn, we note

by x mod L the equivalence class of x in the quotient group Rn/L. We use the
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fundamental parallelepiped P (B) as the set of representatives of the equivalence

classes when describing L with the basis B. Therefore, it is natural to note by x

mod B the singleton in (x mod L) ∩ P (B). To reduce a vector x ∈ Rn modulo B,

use Z-linear combinations of vectors in B to find the equivalent vector inside P (B).

In other words,

Lemma 3.2.1. Let x ∈ Rn and B a basis of a full-rank lattice L. Then x mod B =

x−B�B−1x�, where �v� := (�v1�, �v2�, · · · , �vn�) is the closest Zn vector to v.

In the scheme, two coprime lattices I, J will define the plaintext and ciphertext

space respectively.

Definition 3.2.2 (Relatively prime lattices). Two lattices L,L� of Zn are relatively

prime (or coprime) if their sum is Zn. We note this (L,L�) = 1.

Keys in Gentry’s scheme are lattice bases. The private-key is a “good” basis in

the orthogonality defect sense and the public key is an eccentric, large basis of the

same lattice. More precisely, this large basis is the Hermite Normal Form of the

lattice.

3.2.3 Polynomial ideal lattices

Let (R,+,×) be a commutative ring and α : R → Rn an additive group homo-

morphism, then α(R) is a lattice. This yields because α transports the additive

structure of R to points in Rn in order to generate linear integer combinations of

them.

Definition 3.2.3 (Ideal lattice). Let A be a commutative ring and α : A → Rn an

additive ring homomorphism. An ideal lattice of Rn is a lattice of the form α(I) for

a principal ideal I ⊂ A.

Consider the ring R = Z[x]/(f(x)) where f is a monic polynomial of degree n,

and the natural homomorphism α : R → Zn given by α : a(x) = a0 + a1x + · · · +
an−1x

n−1 �→ (a0, . . . , an−1). We can now define a precise ideal lattice: if I = (v) is a

principal ideal of R, then α(I) is a lattice of Rn with a remarkable basis:

Lemma 3.2.2. Let v ∈ R, I = (v) and vi = v×Xi mod f(X) for i = 1, . . . , n− 1.

Then a basis of the ideal lattice α(I) is given by a linearly independent subset of

rot(v) := {v, v1, v2, · · · , vn−1}.

Definition 3.2.4 (Rotation basis). The set {vi = v×xi mod f(x); i = 0, . . . , n−1}
is called the rotation basis of (v). The matrix rot(v) = (v|v1| . . . |vn−1) is called the

rotation matrix of v.

Proposition 3.2.3 (Inversing rotation matrices). Let v ∈ R×. Then rot(v) ×
rot(v−1) = In.
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3.2.4 Key-Recovery Attacks against SHE schemes

In the chosen ciphertext (CC) model, an attacker faces an oracle possessing a secret

who publishes a challenge – the encryption of a random message r – and the goal

of the attacker is to guess the message. To this end they engage in exchanges,

in which the attacker submits a set of ciphertexts of his choice (different from the

challenge ciphertext) and the oracle responds with the decryption of each ciphertext.

The publication of the challenge can occur after or before the exchanges (which is

referred to as CCA-1 or CCA-2). The attack is successful whenever the adversary is

able to guess r with better probability than a third party who guesses the plaintext

without access to any decryption oracle. If in the course of these exchanges, the

attacker reconstructs the oracle’s secret, the attack is said to be a Key-Recovery

(KR) attack. This is evidently stronger than a CC attack. To the date, a number

of KR attacks against SHE schemes have been published, including one against the

Gentry-Halevi variant of Gentry’s ideal lattice scheme [LMSV12]. As this variant is

essentially homomorphic to the I = (2) Gentry’s scheme, their attack applies in this

case, as mentioned in the abstract of [LMSV12]. The attack we propose is, to the

best of our knowledge, the first direct KR attack to [Gen09b,Gen09c].

Let us specify the KR game addressed by our attack. Let E = (Keygen,Enc,Dec)

be a public encryption scheme and let (sk, pk) ← Keygen(1λ). Let O be an oracle

that possesses sk and assume there is an adversary A with knowledge of every public

element of the scheme.

Key-Recovery Game.

1. A generates a ciphertext c and sends it to O.

2. O computes the underlying plaintext m and sends it to A.

3. Repeat the two last steps � times.

4. A makes a guess sk�, and wins if sk� = sk.

We say that the attack is successful if A wins the game with better probability than

a random guesser.

3.3 Gentry’s ideal lattice basic scheme

With the homomorphism Zn � R = Z[x]/(f(x)), ring operations are inherited by

structure transport. This way, for all v, w ∈ Zn and a basis B we define addition v+

w := α(v(x)+w(x)), product v×w := α(v(x)×w(x)), and basis reduction v mod B :=

v −B�B−1v�. We are now ready to define the scheme. The scenario of this scheme

is as follows
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– Fix a dimension n ≥ 2 and a monic polynomial f of degree n. To prevent

lattice reduction attacks, n must be sufficiently large.

– Let R = Z[x]/(f(x)). In order to control the norm of products, f is of the

form Xn + h(X) where deg(h) is small (for instance h(X) = −1).

– Let I be an ideal lattice with a basis BI . The binary plaintext setting is set

with I = (2), although we do not limit ourselves to this case.

– Let J be an ideal lattice relatively prime to I, with two bases Bsk
J ,Bpk

J . The

secret Bsk
J is quite orthogonal, with large volume such that P (Bsk

J ) contains

P (BI), and Bpk
J is very eccentric (defined by large and almost parallel vectors).

– Choose an algorithm Samp : Zn/(I) → Zn that given a vector x, samples

randomly from x + (I). The samples should lie inside a ball of fixed radius

lSamp contained in P (Bsk
J ).

The plaintext space in the scheme is P := Zn ∩ P (BI) (a small, quite orthog-

onal parallelepiped) and ciphertext space is Zn ∩ P (Bpk
J ) (a huge, very eccentric

parallelepiped). The elements n, f, I, J,BI are all public, and the keys are pk =

{Bpk
J }, sk = {Bsk

J }. The scheme is described in 6.

Algorithm 6 Gentry’s homomorphic ideal lattice scheme

1: function Keygen(λ)

2: Generate Bsk
J and Bpk

J randomly from a security parameter.

3: end function

——–

4: function Enc(pk,π ∈ P (BI))

5: To encrypt message π, compute ψ ← Samp(π) mod Bpk
J and output ψ. It is an

integer vector of the form π + i+ j where i ∈ I, j ∈ J , and it is inside P (Bpk
J ).

6: end function

——–

7: function Dec(sk,ψ)

8: To decrypt ψ, compute µ = (ψ mod Bsk
J )mod BI = (ψ − Bsk

J �(Bsk
J )

−1ψ�)mod BI

and output µ.

9: end function

——–

10: function Eval(pk,C,ψ1, · · · ,ψt)

11: Perform the circuit C on inputs ψ1, · · · ,ψt replacing each “+” and “×” gate of C

by addition and multiplication modulo Bpk
J respectively. Output the result.

12: end function
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3.4 The attack

We assume that the secret basis is the rotation matrix of a secret polynomial, i.e.

Bsk
J := rot(vsk) (this is the setting proposed in [Gen09b] and maintained in later

revisions). In other words, the secret basis is generated by any of its elements. This

implies that the full parallelepiped may be retrieved when a vector along any edge is

known. We first show that any algorithm solving ad-HPP may be used to recover a

secret vector in Gentry’s scheme: to this end we define a function Zn → {0, 1} that

matches the indicator function of P (Bsk
J ) over Zn with overwhelming probability,

and estimate the diameter bound D using public values.

3.4.1 Reduction to ad-HPP

In order to recover the secret key Bsk
J of the scheme, first remark that only an edge

of P (Bsk
J ) is sufficient, since it allows to find a polynomial that generates the basis

by rotations. Recall that the ciphertext space is P (Bpk
J ). The decryption equation

of a ciphertext ψ ∈ P (Bpk
J ) with secret-key Bsk

J is

Dec(Bsk
J ,ψ) = (ψ mod Bsk

J ) mod BI .

Now, consider the function g : Zn → P (BI):

g : x �→ (x mod BI)− Dec(Bsk
J , x).

However, note that x may not lie in the ciphertext space, and the decryption query

may be refused depending on the setting. Addressing this, define θ : Zn → P (BI)

as

θ = g ◦mod Bpk
J .

It follows that θ(x) = 0 for all x ∈ P (Bsk
J ) and, with overwhelming probability,

θ(y) �= 0 if y �∈ P (Bsk
J ). Finally, define χ : Zn → {0, 1} as follows

x �→ χ(x) =

�
1 if θ(x) = 0,

0 if θ(x) �= 0.

This function matches the indicator function of P (Bsk
J ) in Rn with overwhelming

probability. Remark also that the attacker can estimate the diameter as D ≈ 2
√
n ·

||vsk||2, or using only public values,

D ≈ √
n ·Vol(P (Bsk

J ))1/n =
√
n · | detP (Bsk

J )|1/n =
√
n · | detP (Bpk

J )|1/n.

For correct evaluation of k successive multiplications, ||vsk||2 = O(nk), hence logD =

O(log n). The attacker guesses the secret key feeding (χ, D) to an algorithm solving

ad-HPP.
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3.4.2 Feeding Nguyen-Regev’s algorithm and Random Scattering

We first propose a method that solves ad-HPP using the well-known Nguyen-Regev

algorithm, and a second proposal that collects information about the facets of P .

We point out that these two methods require a large number of decryption queries.

Authors in [NR06] solve non adaptive HPP given a list of uniformly random

points in the interior of the secret parallelepiped. They first perform a transfor-

mation to obtain a list of points inside a hypercube of dimension n and then they

recover the shape with a multivariate optimization problem, solving by gradient de-

scent. This gives a first approach to solve ad-HPP in a non adaptive manner: just

ask the decryption of a uniform set of points inside a ball of radius D/2. In the

case of Nguyen and Regev, the knowledge of a point inside a NTRU parallelepiped

implies the knowledge of a number of different points. This is because of symme-

tries in NTRU lattices: as stated in [NR06], from a list of 400 points inside the

parallelepiped, it is possible to generate 100,400. In Gentry’s ideal lattices, however,

no such symmetries are present. According to their experimental analysis in GGH

signatures, over 200,000 uniformly distributed points are needed to disclose a secret

parallelepiped of diameter ≈ 4n in dimension n = 400. Gentry’s parallelepiped has

diameter O(nk) where k is the maximum allowed depth of evaluation circuits, dras-

tically increasing the number of required samples. Nevertheless, we point out that

new samples can be generated using homomorphic evaluations, although disturbing

the uniformity assumption of Nguyen-Regev algorithm. We leave the analysis of this

possibility as an open problem.

In the second method we propose, the attacker finds K = O(n) points near a

neighborhood of ∂P and fit an hyperplane between them in order to approximate

a facet. They repeat the process in other O(n) directions, and then solve linear

systems to find approximation of vertices.

To find a single point near ∂P , the attacker starts from 0, chooses a random direc-

tion �d ∈ Rn and tests integer points near ��d � (i.e.inside the cylinder Bn(0,
√
n)×��d �).

They can find a point lying within distance of at most
√
n of ∂P in O(logD) calls

to the membership function χ, since dist(O, ∂P ) ≤ D/2. To search the remaining

points near the facet, they can repeat this procedure using small perturbations of
�d of the form �di = �d + �ri for i = 1, . . . ,K − 1 with ||�ri||2 � ||�d||2 (in order to

avoid other facets). Another approach to find points near a facet is to perform the

dichotomy search inside a cylinder Bn(0, r) × ��d � for r >
√
n. Once K points near

each facet are found, the attacker fits an hyperplane (for instance using linear least

squares). The procedure finds an approximation of a vertex in O(n2 logD) calls to

the indicator function χ.

There are many possible descriptions and optimizations of this algorithm, which

cost more calls to χ but gives more precision in the approximation of vertices. We

state that this can be carried out in O(n2 logD) calls to χ and the result are points
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at distance at most O(n) from vertices. As this method requires too many queries

and the algorithm analysis is straightforward, we focus on our next proposal.

3.4.3 Falling towards vertices

In this approach, the attacker travels onto vertices imitating the effect of gravity

and bouncing against ∂P . This is achieved with a first stage of successive falls to

find a vertex V , and a second stage to find a neighbor vertex V � of V . Let us first

expose the algorithms and then describe our attack.

– Touch Border: Starting from a point inside P and considering a direction

�u, it performs a binary search to find the closest integer point to the boundary

∂P in that direction.

– Bounces: Using Touch Border, it finds n integer points close to ∂P that

form an hyperrectangle that roughly points to the vertex.

– Find Vertex: Uses Bounces repeatedly to find a vertex of P .

– Find Neighbor Vertex: Given a vertex V , it outputs another vertex V �

connected to V by an edge.
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Algorithm 7 Finding a point near ∂P

Require: An indicator function χ of a parallelepiped P , the diameter D of P , a

point x0 ∈ P , and a vector �u.

Ensure: Two points x ∈ P and y �∈ P such that d(x, y) <
√
n and (x0, x, y) are

collinear up to translation of
√
n.

1: function Touch Border(x0, �u)

2: �u ← �u/||�u||
3: Let x1 ← x0 +D�u � Notice that x1 �∈ P

4: return Touch Border Rec(x0, x1, �u)

5: end function

———

6: function Touch Border Rec(xin, xout, �u)

7: if d(xin, xout) <
√
n then

8: Return (xin, xout)

9: else

10: Let y ← �xin +
||xout−xin||

2 �u �
11: if (χ(y) = 1) then

12: Return Touch Border Rec(y, xout, �u)

13: else

14: Return Touch Border Rec(xin, y, �u)

15: end if

16: end if

17: end function
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Algorithm 8 Orthogonal bounces towards a vertex
Require: An indicator function χ of a parallelepiped P , an interior point x ∈ P , a set of

orthogonal vectors E = {�v1, · · · �vn−1} ⊂ Rn and a vector �u ∈ Rn independent from E.

Ensure: A set of n points S ⊂ Zn such that d(y, ∂P ) <
√
n for all y ∈ S.

1: function Next Point(x ∈ Zn, �u)

2: Outputs y, the integer point closest to the segment {x+ λ�u/||�u|| : 1 ≤ λ ≤ 2
√
n}.

3: end function

4: function Bounces(x, �u, �v1 . . . , �vn−1)

5: y0 ← x

6: �v0 ← �u

7: for i = 1 to n do

8: if χ(Next Point(yi−1,�vi−1)) = 1 then (yi, ·) ←Touch Border(yi−1,�vi−1)

9: else if χ(Next Point(yi−1,−�vi−1)) = 1 then

(yi, ·) ←Touch Border(yi−1,−�vi−1)

10: else yi = yi−1

11: end if

12: end for

13: return {y1, . . . , yn}
14: end function

Algorithm 9 Fall onto a vertex

Require: A parallelepiped P centered at O, the diameter D of P , and a set of

orthogonal vectors {�u, �v1 . . . , �vn−1}.
Ensure: A point in Zn

1: function Find Vertex(�u, �v1 . . . , �vn−1)

2: {y1, . . . , yn} ←Bounces(O, �u, �v1 . . . , �vn−1)

3: x ← (y1 + yn)/2

4: �u� ← −→
Ox � Note that �u� is not necessarily orthogonal to {�v1, . . . , �vn−1}

5: return Find Vertex Rec(x, �u�, �v1, . . . , �vn−1)

6: end function

——–

7: function Find Vertex Rec(x, �u�, �v1, . . . , �vn−1)

8: {y1, . . . , yn} ←Bounces(x, �u�, �v1, . . . , �vn−1)

9: if (y1 = yn) then

10: return yn

11: else

12: x ← (y1 + yn)/2

13: �u� ← −→
Ox

14: return Find Vertex Rec(x, �u�, �v1, . . . , �vn−1)

15: end if

16: end function
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Algorithm 10 Finding a neighbor vertex

Require: The center O and a vertex V of a parallelepiped P . A superior bound L.

Ensure: A vertex V � such that ||V � − V || < L.

1: function Find Neighbor Vertex(V,L)

2: �u ← V −O.

3: �v
$←− ��u �⊥

4: return Find Neighbor Vertex Rec(O, V, �u,�v, L, 0, 1)

5: end function

—— � Look by dichotomy a direction that leads to a neighbor vertex

6: function Find Neighbor Vertex Rec(O, V, �u,�v, L, a, b)

7: t ← a+b
2

8: �w ← (1− t)u+ tv

9: Compute W �, an orthogonal base of �w�⊥
10: V � ←Find Vertex(O, �w,W �)

11: if V = V � then return Find Neighbor Vertex Rec(V, �u,�v, L, a+b
2 , b)

12: else if ||V � − V || < L then return V �.

13: else return Find Neighbor Vertex Rec(V, �u,�v, L, a, a+b
2 )

14: end if

15: end function

Falling towards V

We now detail the algorithms, prove their correctness and state their complex-

ity. The aim is to find a vertex of P . First choose a set of orthogonal vectors

�u,�v1, . . . ,�vn−1 and start from the center of the parallelepiped, denoted O. Using al-

gorithm 7, find a point y1 ∈ P along O+ ��u� such that dist(y1, ∂P ) <
√
n. From y1,

repeat the procedure advancing in the inward pointing direction in {−�v1,�v1}: again
use algorithm 7 along y1+��v1� to find a point y2 ∈ P such that dist(y2, ∂P ) <

√
n (if

there are no inward pointing directions, simply set y2 = y1). Continuing recursively,

at step k we have a point yk near the boundary, from which we choose an inward

pointing direction in {�vk,−�vk}. If no such directions are available, set yk+1 = yk,

else travel with algorithm 7 along yk + ��vk� to find a point yk+1 near ∂P . This

procedure performs n steps and outputs n points near the boundary. The fall is

detailed in algorithm 8. The next step is to compute c = (y1+ yn)/2 and repeat the

fall starting from c in the direction �u� =
−→
Oc while maintaining the previous direc-

tions �v1, . . . ,�vn−1. Continue recursively and stop when there are no inward pointing,

norm growing directions. The whole procedure is detailed in algorithm 9. We show

in theorem 3.4.3 that this procedure stops, and outputs a vertex in O(n log2(D))

calls to χ.

Proposition 3.4.1. The Touch Border algorithm has a complexity of O(logD)
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calls to χ.

Proof. Let k be the number of recursive calls to Touch Border. At each step the

function computes a candidate to a point near the border, and reduces by 2 that

distance, which is initially less than D.

Let us discuss the correctness of the Find Vertex algorithm. Without loss of

generality take the canonical vectors �u = e1,�v1 = e2, . . . ,�vn−1 = en. Let O be the

center of P , and define S0 ←Bounces(O, e1, e2, . . . , en). Recall that S0 is a set

of n points very close to ∂P , generated by bouncing against ∂P successively along

the directions e1, . . . , en. Parse S0 = {x(0)1 , . . . , x
(0)
n }, and note that the sequence

||x(0)1 ||, . . . , ||x(0)n || is strictly increasing with overwhelming probability, unless we

have reached a vertex. Now, set c0 ← (x
(0)
1 +x

(0)
n )/2, u0 =

−−→
Oc0 and define recursively

for i ≥ 1:

Si = {x(i)1 , . . . , x
(i)
n } ← Bounces(ci−1, �ui−1, e2, . . . , en),

ci ← (x
(i)
1 + x

(i)
n )/2

ui ← −→
Oci

Proposition 3.4.2. The program Find Vertex outputs a point in Zn in a finite

number of steps.

Proof. The algorithm outputs a point when there are no inward-pointing and norm-

growing directions available (by convexity of the parallelepiped this is a vertex).

Before this happens, the integer sequence of bouncing points norms

||x(0)1 ||, . . . , ||x(0)n ||, ||x(1)1 ||, . . . , ||x(1)n ||, ||x(2)1 ||, . . . ||x(2)n ||, . . .

is strictly increasing and bounded by D/2.

We quantify in the following theorem the ratio of diameters of two successive

hyperrectangles containing the bounces in the process of finding a vertex.

Theorem 3.4.3. For all k ≥ 0, let dk := dist(x
(k)
1 , x

(k)
n ). Then dk+1 ≤ dk/2.

Proof. At any iteration of the algorithm, we have an initial point c and suppose

without loss of generality that the given set of vectors to perform a fall from c is

{�u, e2, . . . , en}, where �u is independent from {e2, . . . , en}. Let x1, . . . , xn be the

bouncing points obtained after n bounces. Recall that by construction, we have





x1 = c+ λ1�u,

x2 = x1 + λ2e2,

x3 = x2 + λ3e3,
...

xn = xn−1 + λnen,
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for λi ∈ Q, and let c� = (x1 + xn)/2, �u
� =

−→
Oc�. The next step is to perform a new

fall starting from c�, with initial direction �u�. After n new bounces against the wall

(in the same directions than the previous step) we will have points





y1 = c� + β1�u
�,

y2 = y1 + β2e2,

y3 = y2 + β3e3,
...

yn = yn−1 + βnen,

First perform the translation y�1 = y1 − β1�u
�, y�2 = y2 − β1�u

�, . . . , y�n = yn − β1�u
�.

We therefore have that dist(y�1, y
�
n) = dist(y1, yn) and y�1 = c�. Consider H, the n-

hyperrectangle formed by x1, . . . , xn. With the given translation y�1 lies at its center.

Notice also that every point y�2, . . . , y
�
n lies inside of this hyperrectangle, because if

there is a point y�i �∈ H, the straight line connecting O and yi has a segment outside

the parallelepiped, contradicting the convexity of P . In particular, y�n ∈ H, therefore

its distance to the center is less than half the diameter of H. In other words,

dist(y1, yn) = dist(y�1, y
�
n) ≤ diameter(H)/2 = dist(x1, xn)/2,

completing the proof.

Corollary. The Find Vertex algorithm outputs a vertex of P after at most �log(D)�
recursive calls.

Proof. After k iterations, dk ≤ d0
2k

< D
2k
, and dk < 1 is therefore reached after at

most �logD� iterations. The fact that this sequence converges to a vertex of P

follows immediately by convexity of P .

Proposition 3.4.4. The Find Vertex algorithm has a complexity of O(n log2D)

calls to χ.

Proof. At the first iteration of Bounces we have the bound d1 ≤ D. Since at each

step we divide di by 2, then the number of steps is less than logD. The most costly

operation of Find Vertex is Bounces, who needs n calls to Touch Border.

Therefore, Bounces has a complexity of O(n log(D)) calls to χ.

Falling towards V �

When a vertex V is found, one can repeat algorithm 9 to fall into a neighbor vertex,

given a proper initial direction to fall into. Let us explain how to establish this

direction and justify the correctness of our method.
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Proposition 3.4.5. Let P be a parallelepiped centered in O with a known vertex V .

Let �v =
−−→
OV , and �u

$←− ��v�⊥. Then, with overwhelming probability, there is a vector

�w ∈ {(1− t)v + tu : t ∈ [0, 1]} such that a fall inside P in the direction �w converges

to a neighbor of V .

Proof. Consider a linear transformation ψ : [−1, 1]n → P such that ψ((1, 1, . . . , 1)) =

V . Let �a = ψ−1(�v),�b = ψ−1(�u). Now, let f : [0, 1] → Rn such that f(t) :=

t�a + (1 − t)�b. With overwhelming probability, �b is not normal to a cube’s facet,

and in this case as f(1) = �a and f(0) = �b, by continuity of f it follows that there

is a value t0 such that f(t0) has exactly one negative and n − 1 positive non-zero

coordinates (i.e. , f(t0) points inside a neighbor hyperoctant). Now, note that a fall

inside the cube towards a direction �d = (d1, d2, . . . , dn) converges with overwhelming

probability to the vertex (sign(d1), sign(d2), . . . , sign(xn)) where sign(x) = x/|x|.
With this, a fall towards f(t0) converges to a neighbor C of (1, 1, . . . , 1), thus a fall

inside the parallelepiped towards �w = ψ(f(t0)) converges to V � = ψ(C), a neighbor

of V .

This vector �w can be found by dichotomy, which is what we propose in algorithm

10. Moreover, our numerical analysis of section 3.5 suggests that in dimension

n = 512 there are about 64% chances that this dichotomy ends in less than 7 steps,

and about 77% in less than 11 (compared to the theoretical log(D) ≈ k log(512) steps

where k is the maximum allowed depth of the scheme). In dimension n = 1024, we

report 42% and 57%, respectively. With this method, only one additional complete

fall is necessary to find a neighbor vertex, the falls converging elsewhere can be

discarded after one bounce against ∂P because of too small or excessive distances

from V .

Summing up all procedures, the attacker may find two adjacent vertices V1, V2

in O(n log3D) calls to χ as follows:

1. V1 ←Find Vertex(O, e1, . . . , en).

2. V2 ←Find Neighbor Vertex(V,αD/
√
n) with a constant α � 1

With two neighbor vertices, the attacker finally establishes vsk = V1 − V2.

3.5 Length of binary searches in the neighbor algorithm

Our algorithm 10 uses binary searches to find a direction leading to a neighbor

vertex. In theory, these searches finds such a direction in logD steps. However,

we conducted experiments and found that even in high dimensions, the search has

good chances of succeeding in very few steps. Consider the hypercube [−1, 1]n and

let v = (1, 1, . . . , 1) be the already found vertex. It is clear that the neighbors of

v are the n elements of {−1, 1}n that possess only one negative coordinate, and
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that a fall towards direction (u1, . . . , un) inside the hypercube converges towards

(sign(u1), . . . , sign(un)). Therefore, take a random vector �v ∈ ��u�⊥, the goal is to

find an element f(t0) in the set {f(t) = (1 − t)u + tv, t ∈ [0, 1]} with exactly one

negative coordinate. We implemented the dichotomy in C++, and obtained apparent

bounds for the parameter t0 depending on the dimension, as well as the expected

number of dichotomic tries. In the table below, k is the number of dichotomic steps

performed. For each setting, we performed 10,000,000 searches. A success is when

a search outputs a vector with only one negative coordinate before k recursions.

n [min t0,max t0] Mean(t0) k ≤ 7 success rate k ≤ 10 success rate

256 [0.600,0.688] 0.630 79.8% 87.8%

512 [0.602,0.669] 0.631 64.2% 76.6%

1024 [0.610,0.659] 0.632 42.6% 57.3%

2048 [0.614,0.650] 0.634 19.9% 30.3%

Table 3.1: Direction searching in the dichotomy of algorithm 10.

Notice how the interval size containing the desired parameter diminishes as the

dimension grows. We point out that if the linear transformation between the par-

allelepiped and the hypercube is almost homothetic up to rotations (for instance in

Gentry’s setting), a similar behavior should be observed when performing the binary

search inside the parallelepiped.

3.6 Conclusion

We proposed a new key recovery attack on Gentry’s ideal lattice fully homomorphic

scheme, based on the adaptive Hidden Parallelepiped Problem. We proposed two

solutions, one of them exposing the secret in O(n log3D) adaptive calls to the de-

cryption oracle. It would be interesting to see an implementation, and to analyze the

possibility of determining points inside the parallelepiped with help of homomorphic

operations. We point out that the gap between theoretical and practical analysis is

large. For instance, evidence in appendix B suggests that finding a new direction

costs less than 10 parameter searches, with good probability, thus relaxing a log(D)

factor. It is also safe to assume that the complexity of Bounces is a great deal

lower than O(n logD), since each search starts from points progressively away from

the origin. With this, we estimate that for an application of the scheme in n = 334

(safe against lattice reduction attacks) of depth d, the number of decryption queries

is about 2500d2 to recover a secret key with good probability. It would be of in-

terest to apply this attack to other lattice based encryption schemes with smaller

parameters.
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Chapter 4

A betrayal problem - The

Excalibur Property

The contents of this Chapter include an article published in the Proceedings of

Indocrypt 2016. This is joint work with Louis Goubin.
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4.1. Introduction

4.1 Introduction

Is it possible to avoid betrayal in a hierarchic scenario? Imagine a chain of users

equipped with a public-key encryption scheme, where high level users can decrypt

ciphertexts intended to all lower level users in the chain. This is trivial to construct

using any public-key cryptosystem E : just transfer low-level secret-keys to upper

levels following the hierarchy. The evident drawback is that high-level users can

betray their children and distribute their secrets to other parties. Using a proxy

re-encryption procedure or multiple trapdoors is hence preferred, because parents

do not have direct knowledge of their children’s secrets. A proxy re-encryption

scheme is a cryptosystem that allows a public transformation of ciphertexts such

that they become decryptable to an authorized party. This is a particular case of

a cryptosystem allowing delegation of decryption, which finds applications in mail

redirection, for instance. In this Chapter, we give a solution to the betrayal issue in

another perspective, relying on a new property we found in the well-known modified

NTRU encryption scheme, and which we refer to as “Excalibur”. Basically, this

feature allows to generate a secret-key that decrypts encryptions under multiple

public-keys and behaves like a regular key of the cryptosystem.

The Excalibur Property. A public-key encryption scheme E = (Keygen,Enc,Dec)

with plaintext space M has the Excalibur property if there is an algorithm that al-

lows two users Alice and Bob with key-pairs (skoldA , pkoldA ) and (skB, pkB) respectively

to forge a new key-pair for Alice (skA, pkA) such that

– Alice’s key skA can decrypt ciphertexts in Enc(pkA,M) ∪ Enc(pkB,M).

– Bob cannot decrypt ciphertexts in Enc(pkA,M).

– Alice cannot generate a secret-key sk�B that is able to decrypt ciphertexts in

Enc(pkB,M) but is not able to decrypt ciphertexts in Enc(pkA,M) (i.e. she

cannot give away access to Bob’s secret without leaking her own).

The intuition is that skA is a one-way expression of (skoldA , skB). As Alice owns

decryption rights over Bob’s ciphertexts, this can be seen as automatic proxy re-

encryption, in the sense that the re-encryption procedure is the identity. The idea

is to “glue” Alice and Bob secret-keys together, resulting on a master key given to

Alice. This Excalibur master key can be separated into factors only by Bob, hence

the name of the feature: Bob plays the role of young Arthur, who is the only man

in the kingdom able to separate Excalibur from the stone. Moreover, Alice can glue

her key to an upper user’s key, who inherits decryption over Bob’s ciphertexts, and

so forth, and if we suppose that no user is willing to give away own secrets, this

achieves automatic N–hop re-encryption and sets a hierarchic chain.

We therefore have a scheme in which a single private-key can decrypt messages

under multiple public-keys, and we will see that if a group of low-level users cheated
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in the joint key generation of this private-key (in order to sabotage or harden de-

cryption), the secret-key holder may be able to trace it back to the wrongdoers, by

simply testing decryptions and looking at the private-key’s coefficients. In a sense,

this is the inverse setting of a public-key traitor tracing scheme, where there are

multiple secret-keys associated with a single public-key, and such that if a group of

users collude in creating a new private-key achieving decryption with the public-key,

it is possible to trace it to its creators, see for instance [BF99].

Three main advantages of this property over the trivial transfer of keys, over

re-encryption schemes and over multiple trapdoor schemes are (i) there are no extra

space or time costs: as soon as the keys are blended, the resulting key-pair acts

as a fresh one and no ciphertext modification is necessary, (ii) our key generation

procedure can be plugged directly into the (multikey) NTRU-based fully homomor-

phic encryption scheme, supporting homomorphic operations and automatic N -hop

re-encryption and (iii) a user with a powerful key does not need to handle a “key

ring” of secret-keys of her children; her key-pair (sk, pk) acts as a regular NTRU key.

In contrast, the classical proxy re-encryption scenario is more flexible; a user can

agree a decryption delegation at any moment to any user, whereas in our proposal

once the keys are blended, modifications in hierarchy involve new key generations.

This is why our proposal is more suitable to a rigid pre-defined hierarchic scenario.

Modified NTRU. The NTRUEncrypt cryptosystem is a public-key encryption

scheme whose security is based on short vector problems on lattices. Keys and

ciphertexts are elements of the polynomial ring Z[X]/�φ(x)� where φ(x) = xn − 1,

and coefficients are considered modulo a large prime q. This scheme was defined in

1996 by Hoffstein, Pipher, Silverman and gained much attention since its proposal

because of its efficiency and hardness reductions. In [SS11b], Stehlé and Steinfeld

provided modifications to the scheme in order to give formal statistic proofs, which

ultimately led to support homomorphic operations with an additional assumption

in [LATV12]. Among these modifications, we highlight the change of ring and

parameters restrictions: R = Z[x]/�φ(x)� where now φ(x) = xn + 1, n is a power of

2 (hence φ is the 2n-th cyclotomic polynomial), and the large prime modulus is such

that xn + 1 splits into n different factors over Fq (namely, q = 1 mod 2n). We will

consider the modified NTRU scheme, but we believe that, possibly via a stretching

of parameters, the original NTRU may also exhibit the Excalibur property.

Excalibur key generation. The way to glue two secret-keys is very simple: just

multiply them together! Indeed, the modified NTRU scheme offers a fruitful prop-

erty: If one replaces a secret-key with a small polynomial multiple of it, decryption

still works. If this polynomial multiple is itself a secret-key, then by symmetry de-

cryption with the resulting key will be correct in the union of ciphersets decryptable

by one key or another. However, addressing the main point of this Chapter, parties

must multiply the involved polynomials using multiparty protocols, since they do
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not want to trust individual secrets to each other. To achieve this joint key gener-

ation, we rely on multiparty protocols in the polynomial ring Rq = Fq[x]/(x
n + 1)

in both the secret and shared setting. To this end, we describe two multiplication

protocols between mutually distrusting Alice and Bob:

1. Secret inputs setting : Alice and Bob hold f, g ∈ Rq respectively. They ex-

change random polynomials and at the end Alice learns fg + r ∈ Rq where r

is a random polynomial known by Bob, and Bob learns nothing.

2. Additively shared inputs setting : Alice and Bob hold fA, gA ∈ Rq and fB, gB ∈
Rq respectively such that f = fA + fB and g = gA + gB. They exchange some

random polynomials, and at the end Alice and Bob learn πA,πB respectively

such that πA+πB = fg ∈ Rq. Revealing πA or πB to each other does not leak

information about the input shares.

Let us illustrate how to use these protocols in Alice’s key generation. Suppose

that Bob keys were previously generated. Generating Alice’s secret-key is fairly

easy: Informally, if β ∈ Rq is Bob’s secret-key, let Alice and Bob sample random

αA,αB ∈ Rq respectively, with small coefficients. They perform the first protocol

on inputs f = αA and g = β, and Bob chooses r = αBβ. At the end, Alice learns

γ = αAβ + αBβ = αβ ∈ Rq, and Bob learns nothing. One may stop here and let

Alice compute her public-key pkA = 2hγ−1 ∈ Rq for suitable h ∈ Rq, but she may

cheat and generate other NTRU fresh keys (skA,
� pk�A) and then distribute freely

Bob’s secret γ. This is why the public-key is also generated jointly, and moreover,

the public-key will be generated before the secret-key, this way Alice must first

commit to a public-key pkA.

Fully Homomorphic Encryption. Fully Homomorphic Encryption schemes al-

low public processing of encrypted data. Since Gentry’s breakthrough in [Gen09a,

Gen09b,Gen09c], there has been considerable effort to propose FHE schemes that

are efficient [HS14, BGH13b, GHS12c, GHS12b, GHS12a, GHPS12, GH11b, ASP14,

ASP13], secure [GH11a, BV11b, BV11a, Bra12, ASP14], and having other proper-

ties [BV11b,GH11a,BGH13b,GSW13]. We highlight the existence of Multikey FHE

schemes, in which some ciphertexts can only be decrypted with the collaboration

of multiple key-holders. This was first constructed in [LATV12], and it reduces the

general multiparty computation problem to a particular instance. We encourage the

reader to see the latest version of this article.

All of the above schemes have a PPT encryption algorithm that adds random

“noise” to the ciphertext, and propose methods to add and multiply two ciphertexts.

With these methods they give an (homomorphic) evaluation algorithm of circuits.

The noise in ciphertexts grows with homomorphic operations (especially with mul-

tiplication gates) and after it reaches a threshold, the ciphertext can no longer be

decrypted. Thus, only circuits of bounded multiplicative degree can be evaluated:
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these schemes are referred to as leveled FHE schemes. Gentry proposed a technique

called “bootstrapping” that transform a ciphertext into one of smaller noise that

encrypts the same message, therefore allowing more homomorphic computations.

This (algorithmically expensive) technique remains the only known way to achieve

pure FHE scheme from a leveled FHE scheme. In order to do this, the decryption

circuit of the leveled scheme must be of permitted depth and the new scheme relies

on non-standard assumptions.

Nevertheless, leveled FHE schemes with good a priori bounds on the multiplica-

tive depth do satisfy most applications requirements, see [YSK+13]. We suggest

that the use of our protocols in the LATV scheme use the leveled version, but as

pointed out in [LATV12], the scheme can be transformed into a fully homomorphic

scheme by boostrapping and modulus reduction techniques, both adaptable to the

use of Excalibur keys.

FHE and bidirectional multi-hop re-encryption paradigm. It has been

widely mentioned (for instance in the seminal work [Gen09b]) that a fully homo-

morphic encryption scheme allows bidirectional multi-hop proxy re-encryption. The

argument is similar to the celebrated bootstrapping procedure: let c be an encryp-

tion of m using Bob’s secret-key sB. First publish τ , an encryption of sB under

Alice’s public-key, then homomorphically run the decryption circuit on c and τ , the

result is an encryption of m decryptable by Alice’s secret-key. However, we point

out that this is pure re-encryption only if Alice never gets access to τ , since she

can decrypt and learn sB directly. This restriction tackles the pure re-encryption

definition, and in light of this the NTRU-based FHE scheme with the Excalibur

property may be a starting point to clear out this paradigm (as it satisfies the pure

definition, but fails to be bidirectional).

Our contributions. In this chapter, we propose a key generation protocol that

allows to glue NTRU secret-keys together in order to equip a hierarchic chain of

users, such that a given user has the ability to decrypt all ciphertexts intended to

all lower users in the chain, and she cannot give away secrets without exposing her

own secret-key. This procedure can be plugged directly into the (multikey) FHE-

scheme by Lopez-Alt et al. , it is compatible with homomorphic operations and has

no space costs or ciphertext transformations, and important users do not have to

handle key rings. To achieve this, we describe two-party computations protocols

in cyclotomic polynomial rings that may be of independent interest. We base the

semantic security on the hardness of RLWE and DSPR problems, and the semi-

honest and malicious security in a new hardness assumption which we call “Small

Factors Assumption”. In this assumption we define the “Small GCD Problem” and

we show that any algorithm solving this problem can be used to break the semantic

security of the modified NTRU scheme.
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4.2 Preliminaries

4.2.1 Notation

Let q be a large prime. We let the set {−�q/2�, . . . , �q/2�} represent the equivalence

classes of Z/qZ, and both notations [x]q or x mod q represent modular reduction of

x into this set. For a ring A, A× stands for the group of units (or invertible elements)

of A, �a� or (a) is the ideal generated by a ∈ A. Also, we denote by Fk the finite field

of k elements, for k = ql ∈ Z. The notation e ← ξ indicates that the element e is

sampled according to the distribution ξ, and e
R←− S means that e was sampled from

the set S using the uniform distribution. Similarly, A
R⊂ S means that each a ∈ A was

sampled uniformly at random on S. Finally, let R
def
= Z[x]/(xn + 1), we identify an

element of R with its coefficient vector in Zn, and for v(x) = v0+v1x+· · ·+vn−1x
n−1

in R, we denote by ||v||∞, ||v||2 its l∞, l2 norm respectively.

4.2.2 The quotient ring Rq

Operations in the modified NTRU scheme are between elements of Rq
def
= Fq[x]/(x

n+

1), the ring of polynomials modulo Φ2n(x) = xn + 1 (i.e. Φ2n is the 2n–th cyclo-

tomic polynomial) and coefficients in Fq, where n is a power of 2 and q is a large

prime. Addition and multiplication of polynomials are performed modulo Φ2n(x)

and modulo q. The ring Rq is not a unique factorization domain, in fact, small units

of this ring serve as NTRU secret-keys. The Chinese remainder theorem shows that

the group of units is large, and thus y = ru ∈ Rq where r ∈ Rq is a random element

and u is a unit is a good masking of u: it is unfeasible to recover u from y for large

n. Let us collect some lemmas related to the set of invertible elements of Rq.

Lemma 4.2.1. Let q ≥ 3 be a prime number and Φn(x) ∈ Z[x] be the n–th cyclo-

tomic polynomial. Then Φn(x) is irreducible over Fq if and only if q is a generator

of the group (Z/nZ)×.

Lemma 4.2.2. If n > 2 is a power of 2, then (Z/2nZ)× is not cyclic and therefore

Φ2n(x) = xn + 1 is not irreducible over Fq. In addition, xn + 1 decomposes into l

distinct irreducible factors over Fq for prime q ≥ 3: Let (φi)
l
i=1 ⊂ Fq[x] respectively

such that xn + 1 =
�l

i=1 φi(x) over Fq. Then we have a ring isomorphism

π :
Fq[x]

(xn + 1)
→

l�

i=1

Fq[x]

(φi(x))
where

Fq[x]

(φi(x))
� Fqdeg φi .

Corollary. Card(R×
q ) =

�l
i=1

�
qdeg φi − 1

�
.

The proofs are straightforward. In the original modifications in [SS11b], q = 1

mod 2n and hence xn +1 splits into n distinct linear factors, yielding Card(Rq)
× =

(q − 1)n.
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4.2.3 Bounded discrete Gaussian samplings on Z[x]/(xn + 1)

Let n be a power of 2 and q a prime number, R = R0
def
= Z[x]

(xn+1) and as before

Rq
def
=

Fq [x]
(xn+1) . The modified NTRU scheme uses a particular distribution in Rq,

which we refer to as K-bounded by rejection discrete Gaussian, serving to sample

both message noises and secret-keys. Definitions follow.

Definition 4.2.1. Let Gr be the discrete Gaussian distribution over R, centered

about 0 and of standard deviation r.

Sampling from Gr can be done in polynomial time, for instance approximating

with Irwin-Hall distributions and outputting the nearest integer vector. Consider

the following definitions from [LATV12]:

Definition 4.2.2. A polynomial e ∈ R is called K-bounded if ||e||∞ < K.

Definition 4.2.3. A distribution is called K-bounded over R if it outputs a K-

bounded polynomial.

Definition 4.2.4. (K-bounded by rejection discrete Gaussian) Let ḠK be the discrete

distribution GK/
√
n that repeats sampling if the output is not K-bounded.

Lemma 4.2.3 (Expansion factors for φ(x) = xn + 1, from [LATV12]). For any

polynomials s, t ∈ R,

||s · t mod φ(x)||2 ≤ √
n · ||s||2 · ||t||2,

||s · t mod φ(x)||∞ ≤ n · ||s||∞ · ||t||∞.

Corollary. Let χ be a K-bounded distribution over R and let s1, . . . , sl ← χ. Then�l
i=1 si is (nl−1K l)-bounded.

4.3 Modified NTRU encryption

We review the modified NTRU encryption scheme as presented in [LATV12], and

we insist on the multi-key property. The message space is {0, 1} and the ciphertext

space is Rq =
Fq [x]

(xn+1) . Let q be a large prime, 0 < K � q, n be a power of 2 and ḠK

be the K-bounded by rejection discrete Gaussian. A key-pair (sk, pk) is a tuple of

polynomials in Rq, the secret-key being K-bounded.

Keygen(1κ):

Step 1. Sample a polynomial f ← ḠK . Set sk = 2f +1, if sk is not invertible in Rq

start again.

Step 2. Sample a polynomial g ← ḠK and set pk = 2g · sk−1 ∈ Rq.

Step 3. Output (sk, pk).
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Enc(pk,m): Sample polynomials s, e ← ḠK . For message m ∈ {0, 1}, output
c = m+ 2e+ s · pk mod q.

Dec(sk, c): For a ciphertext c ∈ Rq, compute µ = c · sk ∈ Rq and output m = µ

mod 2.

4.3.1 The multikey property

We describe a decryption property that states that one can decrypt a ciphertext

with the secret-key required for decryption, or a small polynomial multiple of it.

Lemma 4.3.1. Let (f, h) ← Keygen(1κ), m ∈ {0, 1} and let c ← Enc(h,m). Let

θ ∈ R be a M -bounded polynomial satisfying θ mod 2 = 1. If M < (1/72)(q/n2K2),

then

Dec(f, c) = Dec(θ · f, c) = m.

Proof: There exist K-bounded polynomials s, e such that c = m + hs + 2e.

Decryption works since

[fc]q = [fm+ fhs+ 2fe]q = [fm+ 2gs+ 2fe]q

and supposing there is no wrap-around modulo q in the latter expression, we have

[fc]q mod 2 = fc mod 2 = m. If we replace f by θ · f and try to decrypt, we have

θfc = θfm + 2θgs + 2θfe, and then again, if there is no wrap-around modulo q

(i.e. if M is small enough), θfc mod 2 = m is verified. To ensure that there is no

wrap-around modulo q, one has to give an a priori relation between K,n and M . In

fact, using corollary 4.2.3, we have ||gs||∞ < nK2 and ||fe||∞ < n(2K + 1)K, and

thus

||fc||∞ < 2nK2 + 2n(2K + 1)K +K.

Decryption using f is correct if 2nK2+2n(2K+1)K+K < q/2, and decryption using

θf is correct if nM(2nK2 + 2n(2K + 1)K +K) < q/2. Therefore, decryption using

f is ensured by 36nK2 < q/2, decryption using θf is ensured by 36n2MK2 < q/2.

�

Corollary (The multikey property). Let (f1, h1) and (f2, h2) be valid keys, m1,m2 ∈
{0, 1} and let c1 ← Enc(h1,m1), c2 ← Enc(h2,m2). Let f̃ ← f1 · f2 ∈ Rq. Then

Dec(f̃ , c1) = m1, Dec(f̃ , c2) = m2

provided that K is small enough.

Proof: Apply 4.3.1 with f = f1 and θ = f2 for the first equation and f = f2, θ =

f1 for the second. �
We can of course extend this facts to show that a highly composite key of the

form f̃ =
�l

i=1 fi ∈ Rq can decrypt all messages decryptable by any of fi: Just

apply lemma 4.3.1 with f = fi and θ = f̃/fi, provided good a priori bounds: In

fact ||f̃ ||∞ ≤ nl−1K l, therefore decryption with this key is ensured by nl−1K l � q.
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4.4 Hardness assumptions

The modified NTRU-FHE scheme semantic security is based on the celebrated Ring

Learning With Errors problem (RLWE) and the new Small Polynomial Ratio problem

(SPR). For the original modified NTRU parameters, the decisional SPR problem

reduces to RLWE, but not a single homomorphic operation can be assured. A stretch

of parameters is needed to overcome this, though it severely harms the statistic

proofs of Stehlé and Steinfeld. The DSPR assumption states that the decisional SPR

problem with stretched parameters is computationally hard. We adopt this same

assumption, and in addition, we base the security of the honest-but-curious model

on two problems that involve decomposing a polynomial into bounded factors. In

the first, one wants to factorize a polynomial in Rq into two K-bounded polynomials,

given the information that this is possible. In the second, one wants to extract a

common factor of two polynomials such that the remaining factors are K-bounded.

We first describe the DSPR assumption and then our “Small Factors” assumption.

4.4.1 Small Polynomial Ratio Problem, from [LATV12]

In [SS11b] Stehlé and Steinfeld based the security of the modified NTRU encryption

scheme on the Ring Learning With Errors (RLWE) problem [LPR10]. They showed

that the public-key pk = 2g ·sk−1 ∈ Rq is statistically close to uniform over Rq, given

that g and f � = (sk−1)/2 were sampled using discrete Gaussians. Their results holds

if (a) n is a power of 2, (b) xn + 1 splits over n distinct factors over Rq (i.e. q = 1

mod 2n) and (c) the Gaussian error distribution has standard deviation of at least

poly(n)
√
q. However, these distributions seem too wide to support homomorphic

operations in the NTRU-FHE scheme. To overcome this, authors in [LATV12]

defined an additional assumption which states that if the Gaussian is contracted, it

is still hard to distinguish between a public-key and a random element of Rq (even

if the statistic-closeness result does not hold).

Definition 4.4.1 (DSPR Assumption). Let q ∈ Z be a prime integer and ḠK denote

the K-bounded discrete Gaussian distribution over R0 = Z[X]/(xn + 1) as defined

in 4.2.4. The decisional small polynomial ratio assumption says that it is hard to

distinguish the following two distributions on Rq: (1) A polynomial h = [2gf−1]q ∈
Rq where f �, g were sampled with ḠK and f = 2f � + 1 is invertible over Rq, and (2)

a polynomial u
R←− Rq sampled uniformly at random.

Finally, in a work by Bos et.al. [BLLN13], authors achieved to base the security

on RLWE alone, alas achieving multikey FHE for a constant number of keys, a

property inherent to any FHE scheme (as proved in the latest version of [LATV12]).
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4.4.2 Small factorizations in the quotient ring

In addition to the RLWE and DSPR assumptions, we rely the semi-honest security

on the hardness of the following problems. Let us define the distribution Ḡ×
K which

samples repeatedly from ḠK until the output is invertible over Rq.

Small Factors Problem: Let a, b ← Ḡ×
K and let c(x) = a(x) · b(x) ∈ Rq. Find

a(x) and b(x), given c(x) and a test routine T : Rq → {0, 1} that outputs 1 if the

input is in {a, b} and 0 otherwise.

Ḡ×
K–GCD Problem: Let a, b ← Ḡ×

K , and y
R←− Rq. Let u(x) = a(x) · y(x) ∈ Rq

and v(x) = b(x) · y(x) ∈ Rq. Find a(x), b(x) and y(x), given u(x), v(x) and a test

routine T : Rq → {0, 1} that outputs 1 if the input is in {a, b, y} and 0 otherwise.

Proposition 4.4.1. An algorithm solving the Ḡ×
K–GCD problem can be used to break

the semantic security of the NTRU scheme.

Proof: Given only a public-key of the form pk = [2ab−1]q where a is the secret-

key, sample p
R←− Rq and define (u�, v�) = (ab−1p, p). Define also T : Rq → {0, 1}

that for input α ∈ Rq, samples random r
R←− {0, 1}, checks if Dec(α,Enc(pk, r)) ?

= r

and outputs 1 if α pass several such tests. Note that u� = ay� and v� = by� for

y = b�−1p, therefore seeding u�, v�, T to such algorithm outputs a, b, y�. �

Small Factors Assumption: For the modified NTRU parameters, it is unfeasible

to solve the small factors problem.

In the absence of a formal proof, let us motivate the hardness of the small factors

problem. The SF problem is equivalent to solve a quadratic system of equations over

Fq with additional restrictions on the unknowns. Indeed, each coefficient of c(x) is

a quadratic form on coefficients of a(x), b(x):

ck =
n−1�

i=0

aibk−i mod n · σk(i) mod q,

where σk(i) = +1 if i ≤ k and −1 otherwise, the unknowns ai, bj follow a Gaussian

distribution about 0 and are bounded in magnitude by K. As K � q, one can

consider the equations over the integers. This results in a Diophantine quadratic

system of n equations in 2n variables. Quadratic systems of m equations with n

unknowns can be the Achilles heel for strong cryptographic primitives, as they can

be attacked in the very overdetermined (m ≥ n(n− 1)/2) or very under-determined

(n ≥ m(m+1)) cases in fields with even characteristic. In [TW12], authors adapt an

algorithm of Kipnis-Patarin-Goubin [KPG99] to odd characteristic fields and show

a gradual change between the determined case (m = n, exp(m) runtime) and the

massively under-determined case (n ≥ m(m + 1), poly(n) runtime). According to
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their analysis, our system (n = 2m) escapes the polynomial-time scope. Let us write

the system in clear:

∀i ∈ {0, . . . , n− 1}, ||ai||∞ < K and ||bi||∞ < K,




c0 = a0b0 − a1bn−1 − a2bn−2 − . . . − an−1b1,

c1 = a0b1 + a1b0 − a2bn−1 − . . . − an−1b2,

c2 = a0b2 + a1b1 + a2b0 − . . . − an−1b3,
...

cn−1 = a0bn−1 + a1bn−2 + a2bn−3 + . . . + an−1b0.

As this is an under-determined system, the linearization Zi,j = aibj results in a

linear system with too many degrees of freedom to select the correct solution; this

is not better than guessing in the initial quadratic system. On the other hand, this

system presents cyclic anti-symmetry, which one could exploit to find a solution.

However, it is not clear how to use the additional symmetry to make progress in

finding solutions (this is also the case when trying to solve lattice problems in the

particular case of ideal lattices).

From another point of view, if nothing was required from a, b, we are given an

element c and a test routine T : R → {0, 1} that outputs 1 if the input is b and

0 otherwise (in our scenario, the test routine is to simply try out the extracted

key β = b via decryptions). An algorithmic issue arises again: There is a degree of

freedom of one ring unit in the small factors problem, and an algorithm must exclude

trivial factorizations of c: for instance, if nothing was required for a and b, the size

of the candidates list for (a, b) is at least the number of units of Rq, since it contains

all pairs (a, b) = (cu, cu−1) for invertible u ∈ Rq. Using the K-boundedness of a, b,

the list is to be reduced rejecting all incorrect pairs. To optimize up the rejection,

we suggest a study of the distribution χ
def
= (ḠK)−1, which samples e according to

ḠK and then outputs e−1 ∈ Rq if e is invertible.

If a, b were sampled using another distribution, distinguishing c = a · b ∈ Rq

from random may be achievable. For instance, if a, b coefficients were sampled with

Bernoulli trials, we detected some linear correlation between the coefficients of c in

this case. See appendix C.

4.5 Two-party multiplication protocols in Rq

In this section we introduce two protocols to jointly achieve multiplication in the

quotient ring between two mutually distrusting parties. We distinguish two settings,

the “secret inputs” (which is the classical MPC scenario) and the “shared inputs”

which supposes that both parties have additive shares of some elements. The lat-

ter setting, however, can be regarded as a classical MPC computing a quadratic

expression of the inputs.
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4.5.1 Secret inputs setting

Alice and Bob hold f ∈ Rq and g ∈ Rq respectively. The following protocol allows

them to multiply these elements: Alice will learn fg+r ∈ Rq where r is a polynomial

chosen by Bob. The reason of this is that if Alice learns fg, she can compute

g = fg/f . The utility of this protocol may seem questionable, in the sense that

it transfers Alice’s obliviousness from g to r, nevertheless we will see that careful

selection of r will allow the two parties to generate Alice’s NTRU keys. This protocol

is inspired on [AD01], where authors propose a protocol to compute scalar products

as a building block to perform much more complex functionalities. It is detailed in

algorithm 11.

Algorithm 11 Excalibur - TMP
Require: Alice holds f ∈ Rq, Bob holds g ∈ Rq. Let p,m be public integers.

Ensure: Alice learns fg + r ∈ Rq where Bob knows r ∈ Rq

1: Alice generates m random polynomials {f1, . . . , fm} R⊂ Rq such that
�m

i=1 fi = f .

2: Bob generates m random polynomials {r1, . . . , rm} R⊂ Rq and r
def
=

�m
i=1 ri.

3: for i = 1, . . . ,m do

4: Alice generates a secret random number k, 1 ≤ k ≤ p.

5: Alice generates random polynomials v1, · · · , vp, sets vk = fi, and send all these

polynomials to Bob.

6: Bob computes the products and masks them: For all j = 1, . . . , p zi,j = vjg + ri.

7: Alice extracts zi,k = fig + ri from Bob with a 1–out–of–p OT protocol.

8: end for

9: Alice computes
�m

i=1 zi,k = fg + r.

Note that throughout the protocol, Bob always computed products of random

polynomials, and to guess the value of f he has to perform ≈ pm additions.

Lemma 4.5.1. If it is not feasible to compute O(pm) additions in Rq, and if the

RLWE assumption holds for q,φ(x) = xn+1 and uniform χ over Rq, TMP securely

outputs fg + r to Alice and r to Bob in the presence of semi-honest parties.

Proof: In this model, both parties follow exactly the protocol but try to learn

as much information as possible from their transcript of the protocol. Let viewA,

viewB be the collection of learned elements by Alice and Bob respectively. We have

that viewB contains only polynomials v
(i)
j indistinguishable from uniform (since they

were sampled by semi-honest Alice), and these elements are independent from Bob’s

input, samplings, and computations. Therefore, to learn f , he needs to perform≈ pm

additions. On the other hand Alice wants to learn g or r and she only has m pairs

of the form (fi, fig+ri) (and the output which is the component-wise sum of these),

which by the RLWE assumption are indistinguishable from (fi, ui) for uniform ui.

In other words, the view of each adversary contains her input, her output, and a list
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of polynomials indistinguishable from random by construction. We can construct

simulators SA,SB of protocol TMP for both parties, and it follows immediately that

the views of Alice and Bob are indistinguishable from the simulators. �

Remark: If both parties are malicious but they do not want to leak their own

inputs, at the end of the protocol they learn nothing about the other party’s input.

This holds because Alice may deviate from the samplings, but she sends pm

random elements computationally hiding f , Bob will process these pm elements

(deviating as much as he wants from the actual required computation) and send m

elements computationally hiding g and r to Alice via the OT protocol, thus Bob

learns nothing. In this case, deviations from the protocol may cause the output to

be incorrect. We do not worry much about this as soon as Bob’s input is safe, since

we will see that it will result in invalid keys for Alice and the honest party will know

that the other is malicious.

4.5.2 Shared inputs setting

In this setting, two parties share two elements of Rq additively, and they want to

compute shares of the product of these elements. Let Alice and Bob hold xA, yA

and xB, yB respectively such that

x = xA + xB and y = yA + yB.

We propose a protocol SharedTMP, at the end of which Alice and Bob will learn

additive shares πA,πB respectively of the product:

πA + πB = xy ∈ Rq.

Algorithm 12 Excalibur - SharedTMP

Require: Alice holds (xA, yA) ∈ R2
q , Bob holds (xB , yB) ∈ R2

q such that x = xA + xB , y =

yA + yB
Ensure: Alice learns πA ∈ Rq, Bob learns πB ∈ Rq such that πA + πB = xy

1: Alice samples rA
R←− Rq, Bob samples rB

R←− Rq

2: Alice and Bob perform TMP(xA, yB) using Bob’s randomness rB , thus Alice learns

uA = xAyB + rB and Bob learns nothing.

3: Bob and Alice perform TMP(xB , yA) using Alice’s randomness rA, thus Bob learns

uB = xByA + rA and Alice learns nothing.

4: Alice computes the share πA = xAyA + uA − rA ∈ Rq

5: Bob computes the share πB = xByB + uB − rB ∈ Rq

Note that πA+πB = (xA+xB)(yA+ yB) = xy. Since they only communicate in

steps 2 and 3, security is reduced to two independent instances of the TMP protocol.

We also have the following observation:
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Lemma 4.5.2. Let Alice and Bob perform SharedTMP on some non-trivial inputs,

learning at the end πA and πB respectively. Even if Alice reveals πA to Bob, he

cannot deduce Alice’s inputs.

Proof: This follows directly from the randomness of uA − rA. �

4.6 Excalibur key generation

We present our main contribution, three protocols Keygenpk,Keygensk and a valida-

tion protocol, to be performed by Alice and Bob that will generate the public and

the (blended) private-key of Alice, in that order. Let us first give an informal outline

of the protocol. Bob has already generated his key-pair (β, 2hβ−1) ∈ Rq×Rq. They

want to compute a new key-pair (skA, pkA) = (αβ, 2g(αβ)−1) ∈ Rq × Rq for Alice,

which correctly decrypts encryptions under pkB since it contains the factor β.

– Excalibur generation of pkA

1. They share polynomials α, g, r of Rq additively, such that α = 1 mod 2.

2. They perform SharedTMP to obtain shares of αr, gr. Alice reveals her

shares to Bob.

3. Bob computes 2(gr) · (αr)−1 · β−1 = 2g(αβ)−1 in Rq and broadcasts the

result.

– Excalibur generation of skA (to be performed after publication of pkA)

1. Let αA + αB = α denote the same additive sharing of α than in the

previous steps, where Alice holds αA and Bob holds αB. Alice and Bob

perform TMP on entries αA,β respectively, and Bob chooses r = αBβ as

the randomness in the protocol.

2. At the end of the protocol, Alice learns αAβ + r = αβ = skA ∈ Rq, and

Bob learns nothing.

– Validation protocol : Alice and Bob run tests to be convinced that the keys

are well formed and behave as claimed.

The protocols are described formally in algorithms 13, 14, 15 and 16.

If protocol 13 was carried out properly, a ciphertext encrypted with pkA is cor-

rectly decrypted by any secret-key having the factor αβ and reasonable coefficient

size. Remark that in step 2, Bob received the element z = α · r: this does not allow
to deduce a functional equivalent of the secret-key αβ, since r has large coefficients.

Also, chances are overwhelmingly high that this element is in fact invertible in view

of section 4.2.2.
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Algorithm 13 Excalibur - Keygenpk

Require: Bob already has his own key-pair (skB , pkB) = (β, 2hβ−1) ∈ Rq ×Rq.

Ensure: A public-key for Alice pkA
1: Alice and Bob sample random shares of elements in Rq:

– Alice samples sA ← ḠK , rA
R←− Rq, gA ← ḠK

– Bob samples sB ← ḠK , rB
R←− Rq, gB ← ḠK

Let α = 2(sA + sB) + 1, r = rA + rB , g = gA + gB denote the shared elements.

2: Alice and Bob perform SharedTMP twice to obtain shares of z = α · r and w = g · r.
Alice reveals her shares, thus Bob learns z, w.

3: Bob checks: If z is not invertible in Rq, restart the protocol.

4: Bob computes 2w(zβ)−1 = 2g(αβ)−1 and publishes it as pkA, along with a NIZK proof

showing that z, w come from step 2 and that pkA is well-formed.

5: Alice verifies Bob’s proof. If it is not correct, abort the protocol.

Algorithm 14 Excalibur - Keygensk
Require: Bob’s secret-key β and the same sharing of α = 2(sA + sB) + 1 than in protocol

13.

Ensure: A secret-key for Alice skA = αβ

1: Bob computes r := (2sB + 1)β ∈ Rq

2: Alice and Bob perform the protocol TMP(2sA,β), and Bob uses r as the random poly-

nomial. At the end Alice knows 2sAβ + r = αβ ∈ Rq.

Figure 4.1: M. and G. perform Excalibur Keygensk

Once the keys are generated, they must pass a series of decryption and a well-

formedness test. This is described in algorithms 15 and 16. First, Alice checks

if her new secret-key works as expected, and then she convinces Bob, via a game

of decryptions that she is indeed capable of decrypting ciphertexts encrypted under
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pkA and under pkB. As we will see, this validation protocol avoids malicious activity.

Algorithm 15 Excalibur - Validation function (performed by Alice)

1: function Validate(skA, pkA, pkB)

2: for i from 1 to k do

3: µ
R←− {0, 1}

4: µ1 ← Dec(skA,Enc(pkA, µ))

5: µ2 ← Dec(skA,Enc(pkB , µ))

6: if µ1 �= µ or µ2 �= µ then output reject

7: end if

8: end for

9: if ||skA||∞ > n(2K + 1)2 or ||skA · pkB ||∞ > 2(2K + 1) then output size warning

10: end if

11: output accept

12: end function

Algorithm 16 Excalibur - Validation protocol (performed by Alice and Bob)

Require: Alice holds (skA, pkA) and Bob holds (skB , pkB)

1: Alice runs Validate(skA, pkA, pkB). If the output is reject, abort.

2: Bob picks 2k random messages (m
(A)
1 , . . . ,m

(A)
k ) and (m

(B)
1 , . . . ,m

(B)
k ), and for each

i = 1, . . . , k he computes ciphertexts c
(A)
i = Enc(pkA,m

(A)
i ), c

(B)
i = Enc(pkB ,m

(B)
i ). He

send all ciphertexts to Alice.

3: For each i = 1, . . . , k, Alice compute µ
(A)
i = Dec(skA, c

(A)
i ), µ

(B)
i = Dec(skA, c

(B)
i ). She

sends all plaintexts to Bob.

4: For each i = 1, . . . , k, Bob checks if µ
(A)
i = m

(A)
i and µ

(B)
i = m

(B)
i .

4.7 Security

We first discuss the honest-but-curious model, where the protocol is strictly followed

but parties try to learn secrets. Then we look at the malicious model, where one

party does not follow the protocol properly, in order to steal secrets or to sabotage

the key generation.

4.7.1 Honest-but-curious model

In this model, we suppose that Alice and Bob follow exactly the instructions in

algorithms 13, 14, 15 and 16 but they try to learn about each other’s secret with all

collected information.

Proposition: If Alice is able to extract Bob’s key from the protocol, she can

solve the Small Factors Problem or the Ḡ×
K-GCD Problem. If Bob is able to extract

Alice’s key, he can solve the Ḡ×
K-GCD Problem.
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Proof: Let us focus first in Bob’s chances on learning α (or a functional equivalent

of the form θ · α for small θ ∈ Rq). Recall that




pkB = 2hβ−1,

pkA = 2g(αβ)−1,

z = α · r,
w = g · r,
α = 2(sA + sB) + 1.

Let us focus on Bob’s view of the protocol:

V = {(sB, rB, gB, zB, wB, zA, wA,β, pkB), pkA,α · r, g · r} ⊂ Rq.

What Bob is curious about: Any element of the set

U = {α, g, r, sA, gA, rA} ⊂ Rq.

The parentheses in V indicate that he sampled or received the elements con-

tained, and the rest are results of joint computation. The knowledge of any element

in U allows Bob to deduce Alice’s secret-key α, and only the last three elements

pkA,α · r, g · r of V depend on elements in U . Thus, extracting α is equivalent to

solve the following system of equations in the unknowns (X,Y, Z) = (α, r, g):




b1 = XY,

b2 = ZY,

b3 = ZX−1,

where b1 = α · r, b2 = g · r, b3 = βpkA/2. We can eliminate the third equation noting

that b1b3 = b2, and thus Bob faces the Small GCD Problem of section 4.4.2.

Let us now focus in Alice chances of learning Bob’s secret.

Alice’s view of the protocol: W = {(sA, rA, gA, zA, wA), pkB, pkA,αβ} ⊂ Rq.

What Alice is curious about: Any element of the set

Q = {α,β, h, sB, {wB, zB}, {w, z}}.

First, extracting α or β directly from α · β is exactly the small factors Problem.

Using the only three sensitive elements of W , she faces the following system of

equations in (X,Y, Z) = (h,β,α)




a1 = XY −1,

a2 = (ZY )−1,

a3 = ZY,

where a1 = pkB/2, a2 = pkA/2g, a3 = αβ. After elimination of the third equation

since a3 = a−1
2 , Alice also faces the small GCD problem (actually, mapping Y �→

Y −1, Z �→ Z−1 yields to the same gcd problem faced by Bob). �
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4.7.2 Security against one malicious party

We consider the presence of one malicious adversary, a party that deviates as much

as she wants from the protocol, but has a list of paramount objectives which she is

not willing to sacrifice. We suppose that one of the two parties strictly follows the

protocol and the other one is malicious, given the objectives below. We consider the

presence of only one somewhat malicious adversary, given that both parties have

concurrent objectives (for instance, Bob is trying to protect his key, and Alice to

extract it from the protocols). In other words,

What curious Alice wants:

(A1) A functional secret-key skA associated with pkA,

(A2) such that skA decrypts encryptions under pkB,

(A3) protecting elements of U = {gA, rA, sA} from Bob and

(A4) to learn β.

What curious Bob wants:

(B1) To give Alice a functional secret-key skA associated with pkA with decryption

rights on Enc(pkB,M).

(B2) to protect elements of Q = {β, h, sB, {wB, zB}} from Alice,

(B3) (if malicious) overloading Alice’s secret-key skA to have large coefficients, and

(B4) to learn α.

We will show that either the keys will be correctly generated or one party will

not fulfill all of her objectives.

Malicious Alice, semi-honest Bob

Suppose that Bob is strictly following the protocol and Alice may deviate from the

protocol but wants to fulfill (A1) to (A4). Let us summarize Alice’s participation in

the key generation:

1. Samples sA ← ḠK , rA
R←− Rq, gA ← ḠK .

Trivial samplings of these elements may ultimately leak α to Bob. For instance,

if sA = 0, α = 2sB + 1, if rB = 0, z/rB = α, if gA = 0 g = w/gB. Also, if

sA or gA have large coefficients, there is risk of mod q wrap-around in the

decryption procedure with skA. As she is sampling only shares of elements,

she cannot force algebraic relations with them: regardless of her samples, α, g, r

will remain indistinguishable from random.
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2. Participates in SharedTMP((2sA, rA), (2sB+1, rB)) and learns zA, participates

in SharedTMP((gA, rA), (gB, rB)) and learns wA, then sends zA, wA to Bob.

As discussed in section 4.5, TMP and SharedTMP are secure if Bob is honest,

in the sense that either Alice learns the correct output, or either she learns

indistinguishable from random elements, but she learns nothing about Bob’s

input. She is limited to alter the inputs of both instances of SharedTMPand

then giving wrong zA or wA to Bob. Nevertheless if she inputs different rA’s

in both protocols or if she changes the values of zA, wA before sending them

to Bob, from the linearity of shares and the randomness of Bob’s entries it

follows that this sabotages the relation wz−1 = gα−1, needed for correctness

of decryption. In other words, in order to ensure (A1) and (A2), she is forced

to maintain the input rA for both instances of SharedTMPand send the correct

output to Bob.

3. Participates in TMP({2sA}, {2sB + 1}) and learns αβ.

If she uses the correct value of 2sA (i.e. the same as in step 2), she learns

the correct output αβ. If she inputs another value x �= 2sA, she does learn

a functional equivalent of Bob secret (namely, (x + 2sB + 1)β), but she is

not able to decrypt encryptions under the already published pkA, failing the

verification procedure.

Malicious Bob, semi-honest Alice

Now suppose the inverse case, where Alice follows the protocol strictly and Bob is

protecting β and guessing α, deviating as much as he wants from the protocol but

fulfilling (B1) to (B4). We begin by saying that (B3) is unavoidable (unless the

presence of a zero-knowledge proof that Bob’s polynomials are of the right size), but

Alice can tell if Bob overloaded the secret-key αβ simply looking at the coefficients.

Let us now summarize Bob’s participation in the key generation:

1. Samples sB ← ḠK , rB
R←− Rq, gB ← ḠK .

Trivial sampling may compromise sensible elements as before. He must ensure

the randomness of α, r if he wants to protect these elements, and on the other

hand Alice will know if he deviates from a K-bounded sampling (just looking

at the coefficients in α · β. Therefore, he gains nothing in deviating from a

K-bounded sampling.

2. Participates in SharedTMP((2sA, rA), (2sB+1, rB)) and learns zB, participates

in SharedTMP((gA, rA), (gB, rB)) and learns wB.

As noted in section 4.5, because of Alice’s randomness in SharedTMP, either

Bob obeys the protocol and receives the correct outputs, either he deviates
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and receives random outputs, from which he cannot deduce secret values and

which sabotage key generation. Also, if he uses different rB’s in both instances,

Alice will not be able to decrypt since the decryption relation wz−1 = gα−1

is not fulfilled (and he remains oblivious of rA, not being able to force this

relation). Hence, he is forced to follow SharedTMP and use the same rB in

both instances if he wants to fulfill (B1).

3. Receives zA, wA, learning z, w. Checks if z is invertible and publishes pkA =

2w(zβ)−1. He then participates in TMP({2sA}, {2sB+1}), chooses R = (2sB+

1)β and learns nothing.

Suppose that he published pk�A as Alice’s public-key and participated in the

TMP instance with generic values, indicated by an apostrophe. At the end,

Alice knows pk�A and sk�A. She will run the validate function of algorithm 15

to check (i) if sk�A has the expected coefficient size, (ii) if sk�A · pk�A = 2g� for a

vector g� ∈ χ and (iii) if she is able to decrypt encryptions of messages under

pk�A and pkB. If she is indeed able to decrypt encryptions under pkB, then

sk�A contains the factor β, thus by randomness of sA, β
� = θβ and R� = ωβ for

small θ and ω. Also, as long as the polynomials sk�A and sk�A · pk�A are of the

right form, she does not care about how Bob computed pk�A, as decryption of

encryptions under pk�A work as claimed. If on the contrary a single decryption

fails or if sk�A or sk�A · pk�A have large coefficients, she can claim one of the

following Bob’s wrongdoings: Either he did not include β, either he included

θβ for too large θ, either he sabotaged entirely the key generation in a change

of input or inside a multiparty multiplication protocol. This allows to conclude

that if Bob fails to give what is expected, the output keys will be rejected by

Alice, who discovers Bob’s maliciousness after the validation protocol 16.

We should point out another strategy that Bob could maliciously try. When gener-

ating Alice’s secret-key, he could simply ignore Alice’s input share 2sA, and thus the

protocol gives Alice the key sk�A = α�β, for an α� ∈ R×
q of Bob’s choice. Bob, who

received no output from the protocol, can reconstruct this key, thus gaining Alice’s

secret. However, this key will be rejected by Alice since it cannot be associated with

the previously generated pkA = 2g(αβ)−1. To avoid this rejection, Bob should have

published pk�A = 2g�(α�β)−1 instead, but it is easy to see that this publication would

contradict the NIZK proof of step 4 of algorithm 13: Because of the way SharedTMP

works, Bob has no way of choosing α� of his choice in the expression z = αr. In view

of this, passing the validation protocol with such a key is overwhelmingly unlikely.
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4.8 Extensions

4.8.1 Chains of keys

Suppose Alice and Bob perform the latter protocols, such that Alice has now a

private-key of the form skA = αβ where β is Bob’s secret-key. Alice can repeat

the protocol with a third user Charlie (with slight coefficients size modifications

at the validation protocol), who at the end receives a pair of keys of the form

(skC , pkC) = (αβγ, 2gC(αβγ)
−1). As his secret-key contains the factors β and αβ, he

can decrypt both Bob’s and Alice’s ciphertexts. This shows that easy modifications

to the protocol allows to generate a chain of users, each one inheriting the previous

user decryption rights. From corollary 4.3.1, it is easy to see that the length of such

a chain is at most ≈ log(q/nK) to ensure decryptions (this matches the maximum

number of keys on the multikey LATV FHE scheme for the same parameters). We

point out that intersecting chains are also possible, meaning that a user can glue

her secret-keys to two or more upper-level users and even if they collude they are

not able to extract his key. This comes from an easy generalization of our Ḡ×
K–GCD

problem.

4.8.2 Plugging in LATV-FHE

Because of the form of an Excalibur key, i.e. (sk, pk) = (
�r

i=1 αi, 2g
�r

i=1 α
−1
i ),

the inclusion of our protocols into the Multikey FHE scheme from [LATV12] is

immediate. The only missing element are the evaluation keys, which can be gener-

ated easily by the secret-key holder after the (Excalibur) key generation: they are

“pseudo-encryptions” of the secret-key sk under the public-key pk. This achieves a

somewhat homomorphic encryption scheme in the chain of users, where in addition

they can combine ciphertexts generated by any public-key.

4.9 Conclusion

In this Chapter, we proposed a new protocol to generate NTRU keys with addi-

tional decryption rights, allowing to form a hierarchic chain of users. We motivated

such a procedure because it avoids betrayal naturally, and since it applies to the

FHE-NTRU scheme, it may contribute to clear the bootstrapping-like re-encryption

paradigm, since it is to our knowledge the first FHE scenario featuring (the pure

definition of) proxy re-encryption. In this light, it concurs with other proxy re-

encryption schemes, as, while being rigid, ciphertext transformation is no necessary

at all, since decryption rights are defined in key-generation time. We used two-party

computation protocols as building blocks, and relied the semantic security on the

well-known RLWE and DSPR assumptions, and security in presence of semi-honest

parties on a hardness assumption in cyclotomic polynomial rings.
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5.1. Introduction

5.1 Introduction

The Brakerski-Gentry-Vaikuntanathan scheme has been praised as the most aus-

picious in terms of efficiency amongst other homomorphic schemes. Its structure

allows to use the corresponding Galois group in order to pack ciphertexts and per-

form parallel operations in the style of SIMD techniques.

In this Chapter we provide a description and a working implementation of the

Brakerski-Gentry-Vaikuntanathan homomorphic scheme, using C++ with the multi-

ple precision library GMP and additional support to complex numbers. In order to

handle ciphertext noise, we use the scale and modulus switching techniques. This

chapter is motivated by the article [CS16], where authors compare ring-based ho-

momorphic schemes. In an appendix, they list security parameters; we follow these

suggestions in our implementation.

The well-known HElib “Homomorphic Encryption library” (https://github.

com/shaih/HElib) also implements BGV homomorphic scheme. Of course, this

implementation with highly optimized routines outperforms ours.

5.2 The scheme

We present here a full description of the BGV homomorphic scheme. First let us

precise the ring framework.

5.2.1 Parameters

Consider the following parameters and plaintext/ciphertext spaces.

N – A power of 2.

R – The cyclotomic ring Z[x]/(xN + 1).

L – The desired homomorphic depth.

p ∈ N – The plaintext modulus.

Rp – The plaintext space Zp[x]/(x
N + 1)

p0, . . . , pL−1 – L primes s.t. pi ≡ 1 mod 2N

q0, . . . , qL−1 – The “chain of moduli”. For k from 0 to L−1, qk =
�k

j=0 pj .

Rq – The polynomial ring Zq[x]/(x
N + 1), for any q. This is the

chain of ciphertext spaces.

For our implementations, p ∈ {2, 101, 232} (binary, small alphabet and 32-bit

plaintext space). In the scheme, a message must be encoded into one or several

plaintexts m ∈ Rp � (−p/2, p/2]N . Before defining decryption, let us slightly jump

ahead. Fresh ciphertexts are elements of RqL , and upon multiplication, they jump

to smaller ciphertext spaces. This way, the scheme operates in L − 1 levels of
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“decreasing” polynomial cyclotomic rings as follows :

‘Fresh’ ciphertext space = RqL−1 −→ RqL−2 −→ · · · −→ Rq1 −→ Rq0 .

Ciphertexts in the last ring cannot be used to multiply, however they can still be

used in homomorphic additions. This chain of moduli allows therefore to perform

L− 1 multiplications.

More precisely, ciphertexts consist in a pair of polynomials in these spaces, along

with two tags, one indicating the level of this ciphertext and another one representing

an approximation of the noise. See 5.2.3 below.

An important remark is that the primes p0, . . . , pL−1 are chosen to satisfy pi ≡ 1

mod 2N , implying the existence of a primitive 2N -th root of unity in Zpi (this will

prove helpful in order to compute number theoretic transform of polynomials). As

suggested in [CS16], we require in addition that pi ≡ 1 mod p, in order to simplify

the scaling operation (and slightly control noise growth).

5.2.2 Key Generation – sampling from Zp[x]/(x
N + 1)

Toward defining key generation, four random samplings of elements inRq are defined:

Uq – The uniform distribution on Rq � {−q/2, . . . , q/2− 1}N .

HWT (h) – Samples a ZN vector with h non-zero entries in {−1,+1}.
ZO(ρ) – Samples a ZN vector, where each coordinate is 1 or −1 with

probability ρ/2 each and is 0 with probability 1− ρ.

DGq(σ
2) – Let N (0,σ2) denote the Gaussian distribution on real num-

bers, with zero-mean and variance σ2. DGq(σ
2) draws a

real vector from N (0,σ2)N , rounds it to the nearest integer

vector, and outputs the result modulo q.

With this, the key generation procedure outputs a sparse polynomial as the

secret-key and a pair of uniform-looking elements of RqL−1 as the public-key. See

algorithm 17.

Algorithm 17 BGV - Key Generation

1: function KeyGen(1λ)

2: Define sk, e, a, b ∈ R

3: sk ← HWT (h) � h = 64 is suggested in [CS16].

4: a ← UqL−1 .

5: e ← DG(σ2) � σ2 = 1.3 is suggested in [CS16].

6: Set b ← [a · sk+ pe]qL−1

7: Output secret key sk and public key pk = (a, b)

8: end function
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Keys are therefore of the form (s, (a, b)) ∈ Rp × R2
qL−1

such that b − sa is a

polynomial with small coefficients and equivalent to 0 modulo p.

5.2.3 Encryption and decryption

Ciphertexts are of the form ((c0, c1), ν, t) ∈ R2 × R × [0, L]: (c0, c1) is the ring gib-

berish, ν is a bound for the noise of the ciphertext and t indicates the multiplication

level. Therefore, (c0, c1) ∈ Rqt . To encrypt a message m ∈ Rp, do as described in

algorithm 18.

Algorithm 18 BGV - Encryption and Decryption

1: function Enc(pk,m ∈ Rp)

2: Define v, e0, e1, c0, c1 ∈ R

3: v ← ZO(ρ) � ρ is not important, 0.5 is suggested

4: e0 ← DGqL−1(σ
2)

5: e1 ← DGqL−1(σ
2)

6: c0 ← [b · v + p · e0 +m]qL−1

7: c1 ← [a · v + p · e1]qL−1

8: c = (c0, c1, L− 1, Bclean) � Bclean is a noise norm upper bound for correct decryption

9: Output c

10: end function

———————–

1: function Dec(sk, c ∈ R2 × R× N)
2: Parse c = (c0, c1, t, ν)

3: Set m� ← [c0 − c1 · sk]qt � A “verify noise” procedure may be performed here

4: Output m� mod p

5: end function

5.2.4 Relinearization and Modulus switching

It is possible to define multiplication of ciphertexts now, but for correct decryption

this would need powers of the secret key. Let us explain this, consider two fresh

ciphertexts encrypting m,m� respectively under the same public key:

c = (c0, c1, ν, t) such that [c0 − c1 · sk]qt = m mod p,

c� = (c�0, c
�
1, ν, t) such that [c�0 − c�1 · sk]qt = m� mod p.

Then it is clear that the “extended ciphertext” D defined as follows

D = (d0, d1, d2, νD, tD) such that





d0 = [c0 · c�0]qt
d1 = [c0c

�
1 + c1c

�
0]qt

d2 = [c1 · c1]qt
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verifies the “extended decryption equation”

[d0 + d1sk+ d2sk
2]qt = m ·m� mod p.

This indeed defines ciphertext multiplication, but fails to meet the required FHE

compactness as ciphertexts (and decryption circuits) grow after each product.

To overcome this, authors in [BGV12] propose a relinearization procedure. This

needs the publishing of circular ciphertexts, somehow encrypting sk2. This public

information looks a list of public keys, but for whom the attribute b is not exactly

a valid ciphertext, but “almost” encryptions of the new key “sk · sk” in base-T

decomposition for some T . To see how to generate these lists, see algorithm 19.

Algorithm 19 BGV - Key-Switching Procedure

1: procedure SwitchKeyGen(sk,sk�)

2: for i = 0 to θ − 1 do � Let θ = �logT (qL−1)�
3: ai ← UqL−1

4: e ← DGqL−1(σ
2)

5: bi ← [ai · sk+ p · ei + T i · sk�]qL−1

6: end for

7: swk ← {ai, bi}θ−1
i=0

8: Output swk

9: end procedure

———————–

The following is the first variant proposed in [CS16]. It is the last step in

ciphertext multiplication. The polynomials d0, d1, d2 are three ring elements

containing the coefficients of 1, sk, sk2 in the product (c0 − skc1)(c
�
0 − skc�1) for

ciphertexts (c0, c1, etc) and (c�0, c
�
1, etc), while t, ν are level and noise tags.

———————–

1: procedure SwitchKey(swk, d0 ∈ R, d1 ∈ R, d2 ∈ R, t, ν)

2: Write d2 component-wise in base T : d2 = d2,0, d2,1, . . . , d2,θ−1

3: c0 ← d0 +
�

d2,i · bi
4: c1 ← d1 +

�
d2,i · ai

5: ν � = ν +B(t)

6: Output ciphertext c = (c0, c1, t, ν
�) � SwitchKey does not modify the level t.

7: end procedure

The additive noise depends on the level:

B(t) =
8√
3
pσNT �logT qt�

There is a common confusion between this operation, called Key Switching and

Modulus Switching. They are independent: modulus switching is a noise manage-

ment technique, based on the fact that two ciphertexts can be just multiplied, or
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they can be translated into another ciphertext space via scaling and then be multi-

plied, with smaller error growth (see the latter equation). In our implementation, we

adopt the scaling variant proposed in [CS16], in which an auxiliary modulus Q is in-

troduced. This operation aims to reduce noise/modulus ratio, and as a positive side

effect it reduces ciphertext sizes. This implies that, somehow counter-intuitively,

multiplications near the end of the circuit take considerably less time.

5.2.5 BGV Homomorphic operations

With these procedures we are ready to describe how to perform homomorphic op-

erations. See algorithms 20 and 21.

Algorithm 20 BGV - Homomorphic Operations

1: procedure AddCipher(cipher a,cipher b)

2: t ← min(a.t,b.t)

3: a ←ReduceLevel(a, t)

4: b ←ReduceLevel(b, t)

5: Define c

6: c.c0 ← a.c0 + b.c0 mod qt

7: c.c1 ← a.c1 + b.c1 mod qt

8: c.t ← t

9: c.ν ← a.ν + b.ν � Noise grows linearly

10: Output c

11: end procedure

———————–

1: procedure MulCipher(cipher a,cipher b, switchingkey swk)

2: t ← min(a.t,b.t)

3: a ←ReduceLevel(a, t)

4: b ←ReduceLevel(b, t)

5: Define c, d0, d1, d2

6: d0 ← a.c0 · b.c0
7: d1 ← a.c0 · b.c1 + a.c1 · b.c0
8: ν ← a.ν · b.ν � Noise grows exponentially

9: c ←SwitchKey(swk, d0, d1, d2, t, ν)

10: c ←ReduceLevel(c, t− 1) � Reducing modulus (next product will be faster)

11: Output c

12: end procedure
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Algorithm 21 BGV - Scaling ciphertexts

1: procedure ScaleVariant(cipher c, Q ∈ N) � This is the variant proposed in [CS16]

Require: Q|qc.t, P ≡ 1 mod p.

2: Parse c = (c0, c1, t, ν)

3: Let P = Q/qt

4: For i = 1, 2 compute small δi such that

�
δi = −ci mod P

δi = 0 mod p

5: Define c�0 ← (c0 + δ0)/P, c
�
1 ← (c1 + δ1)/P

6: and ν � ← ν/P +Bscale � Bscale is an additive global constant.

7: Output ciphertext c� ← (c�0, c
�
1, t, ν

�)

8: end procedure

———————–

1: procedure Scale(cipher c, tout ∈ N)
2: Define c� ← c

3: c�.t ← tout � c� is a clone of c, but assigned to the new level

4: Output ScaleVariant(c�, qc.t)

5: end procedure � (Remark that qc.t satisfies both requirements of ScaleVariant)

———————–

1: procedure ReduceLevel(cipher c, t� ∈ N)
2: if c.t ≤ t� then return c

3: end if

4: if c.ν > B then c ←Scale(c, t�)

5: else

6: c�0 ← c0 mod qt�

7: c�1 ← c1 mod qt�

8: c ← (c�0, c
�
1, t

�, ν)

9: Output c�

10: end if

11: end procedure
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5.3 Implementation

We programmed the above procedures in C++ with the gmp large numbers library. As

figure 5.3 display, we implemented various classes. We distinguish the cryptography

layer (two top floors) and the ring arithmetic layer (first and second floors).

params.h

FFTMul.h

Ring.hSampling.h

key.h cipher.h switchingkey.h

BGV.h

Figure 5.1: BGV implementation: C++ Class dependencies

5.3.1 Math Layers

The basic bricks aim to support necessary operations in the polynomial ring Rq. We

define N as a (global, constant) power of 2 and M = 2N , but use the modulus q

as an argument to our functions, since it decreases from one level to another. We

propose four bricks params.h, Ring.h, Sampling.h and FFT.h.

Overall parameters

The most basic layer contains all parameters for the implementation. Even if bricks

are portable, we regroup all parameters in params.h for testing different sets thereof.

This way, to instance the first set of parameters provided in [CS16], we set

//in params.h

#define N 1024

#define h 64

#define L 2

#define p 2 //plaintext space iz R p

#define bitsp 14 //number of bits of the

first prime

105



Chapter 5. The promising BGV scheme: an implementation

#define pdiff 16 //measures the distance

in bits between the

p[i]’s

extern mpz class primes[L],chain[L]; // Chain of moduli

#define sigma 1.3 //variance of the noise

distribution

#define bitsT 26

#define rho 0.5 //See "ZO" distribution

extern double Bclean,Bscale,B; //These are BGV

constants

extern mpz class T; //Base for decomposition

extern mpf class root; //Root of unity for FFT

#define bitsCoeff bitsp*L

#define PREC bitsCoeff*5

The gmp parameters cannot be set globally, this is why we include a function

SetParameters() in the BGV.h file that sets all remaining parameters.

Ring of polynomials

The file Ring.h provides all necessary functions on polynomials: addition, component-

wise reduction modulo q, component-wise decomposition in base T (for key switch-

ing), prime numbers generator of a given number of bits and congruent to 1 modulo

2N , and fast multiplication in the ring (via the number theoretic transform).

Sampling

The file Sampling.h includes four different samplings over Rq:

//in Sampling.h

void Uniform(mpz class vec[N],mpz class q) //We inherit the

uniform distribution

from gmp random

generators with

appropriate seeds.

void HWT(mpz class v[N]) //See 5.2.2

void ZO(mpz class v[N]) //See 5.2.2.

void DG(mpz class v[N]) //Approximated

with Irwin-Hall

distributions.

To approximate the normal distribution, we use the Irwin-Hall distribution, de-
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0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1
I1

I2

I3

I4

I5

Figure 5.2: First five Irwin-Hall probability density functions.

fined as the sum of k independent, uniformly distributed random variables in (0, 1).

The mean and variance of an Irwin-Hall distribution are k/2 and k/12 respectively,

and the probability density function approaches the normal p.d.f. as k grows. We

used a value of k according to the desired variance σ2, i.e. k = 12 · σ2, with proper

scaling and translating.

Fast polynomial multiplication

In FFTMul.h, we implement Cooley-Tukey’s recursive algorithm to compute the

FFT’s of polynomials, in time O(N logN). The complex numbers are defined with

the mpc.h library, and we fix a precision in bits in params.h, which grows with the

input size of coefficients. See algorithm 22.

The Free statements in the algorithm are advised in order to avoid memory

allocation problems. To soften the butterfly, we omitted the product ω · ωn, instead

we precomputed all 2N−th roots of unity and choose ω using the relation ωk
n =

ω
2Nk/n
2N .

5.3.2 Cryptography layers

Key object

The class key.h has three attributes and three member functions:

//in key.h

mpz class sk[N] //The secret key

mpz class a[N],b[N] //The public key pair (a,b)

void key::Print();

void key::KeyGen(); //Generates a key-pair
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void key::Verify(): //This tests the relation (b-a.sk mod

p)==0, for correct decryption

Cipher

The class cipher.h links to Ring.h and params.h, and it has four attributes:

//in cipher.h

mpz class c0[N],c1[N] //Contains ring gibberish

mpz class nu //An upper bound on the noise (set to

Bclean in a fresh encryption)

int t //The level of a ciphertext, set to

L-1 initially and decreasing with

multiplication. If t=0, ciphertext

is no longer usable in products.

Switching-key object

In order to relinearize an already evaluated ciphertext, for which decryption would

normally need powers of the secret key, some information about the Key Switching

procedure must be published (see 5.2.4). We decided to create an independent class

switchingkey.h to contain this information, rather than including this into the

key.h class. The reason for this is that this special key is the largest object of the

scheme and its handling can be certainly optimized. It contains two attributes

//in switchingkey.h

mpz class a[theta][N];

mpz class b[theta][N]; //We introduced

the parameter

theta=log T(q L-1) for

memory allocation.

void switchingkey::Print();

void switchingkey::Verify(); //Verify the correctness

of semi-encryptions, see

5.2.4.

The BGV scheme

Linking to all previous classes, the BGV.h is at user-end and contains the crypto-

graphic functions, as key-generation, encryption, decryption, homomorphic evalua-

tion and some test routines;
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Algorithm 22 Recursive FFT

1: procedure RecFFT(n, (a[0], · · · a[n− 1]), (y[0], · · · y[n− 1])) � Puts the FFT

of �a in �y.

Require: Primitive n-th root of unity ωn

2: if n = 1 then

3: y[0] ← a[0]

4: return

5: end if

6: �a0 ← (a[0], a[2], · · · , a[n− 2]) � Even part of a

7: �a1 ← (a[1], a[3], · · · , a[n− 1]) � Odd part of a

8: RecFFT(n/2, a0, y0)

9: RecFFT(n/2, a1, y1)

10: (Free a0, a1)

11: ω ← 1

12: for k = 0 to n/2− 1 do � Butterfly

13: y[k] ← y0[k] + ωy1[k]

14: y[k + n/2] ← y0[k]− ωy1[k]

15: ω ← ω · ωn

16: end for

17: (Free y0, y1,ω)

18: end procedure

//in BGV.h

void PrepareParams(); //Parameter computations

void KillParams();

cipher Encrypt(int message,key k); //Encryption

mpz class Decrypt(cipher c,key k); //Decryption

//Bricks for homomorphic multiplication:

cipher ScaleVariant(cipher c,mpz class Q); //See 5.2.4

cipher Scale(cipher c,int t);

cipher ReduceLevel(cipher c, int t);

switchingkey SwitchKeyGen(key k1, key k2);

cipher SwitchKey (switchingkey sw,mpz class

d0[N],mpz class d1[N],mpz class d2[N],int

t,mpz class nu);

//Homomorphic operations:
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cipher AddCipher(cipher c1,cipher c2);

cipher MulCipher(cipher ca,cipher

cb,switchingkey sw);

//Timings:

void ChronoBGV(); //Displays performances in

machine and user seconds

of all functions and

evaluation of a depth-L

circuit.

5.4 Performance

We selected sets of parameters from [CS16] and performed an evaluation of different

depth-L circuits. This tests were run on a desktop computer running at 2.70 GHz.

A consideration about the choice of the degree N :

For each suggested value of N , we chose the smallest power of 2 greater than

the given value. Since our polynomial product runs in O(N logN), allowing smaller

values of N can fasten the algorithms in a factor of at most 2. In view of this, we

have included the factor α = (value of N)/(suggested value of N).

5.5 Conclusion

In this Chapter we described our implementation of the BGV fully homomorphic

scheme. We correctly evaluated circuits up to depth 30, and we acknowledge that

other implementations (such as HElib) outperform ours by far. In contrast, we did

not analyze the mean timings with respect to packs of ciphertexts or depth level: We

only provided timings of the worst case (i.e. fresh ciphertext multiplication with no

packing). However, with this analysis and considering optimization of our functions,

our timings should be divided by a factor at least the number of packed ciphertexts

times the ratio of l = 1 and l = L multiplication timings, giving an acceleration

factor of about 103 for homomorphic product.
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[DS16] L. Ducas and D. Stehlé. Sanitization of FHE Ciphertexts. In Pro-

ceedings of the 35th Annual International Conference on Advances in

Cryptology — EUROCRYPT 2016 - Volume 9665, pages 294–310, New

York, NY, USA, 2016. Springer-Verlag New York, Inc.

[Eve99] J. Evertse. The number of solutions of linear equations in roots of

unity. Acta Arithmetica, 89(1):45–51, 1999.

[FGP14] D. Fiore, R. Gennaro, and V. Pastro. Efficiently Verifiable Computa-

tion on Encrypted Data. In Proceedings of the 2014 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS ’14, pages

844–855, New York, NY, USA, 2014. ACM.

[FSF+13] S. Fau, R. Sirdey, C. Fontaine, C. Aguilar-Melchor, and G. Gogniat.

Towards Practical Program Execution over Fully Homomorphic En-

cryption Schemes. In Proceedings of the 2013 Eighth International

Conference on P2P, Parallel, Grid, Cloud and Internet Computing,

3PGCIC ’13, pages 284–290, Washington, DC, USA, 2013. IEEE Com-

puter Society.

[FV12] J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic

Encryption. Cryptology ePrint Archive, Report 2012/144, 2012.

[Gen09a] C. Gentry. Computing on Encrypted Data. In Proceedings of the 8th

International Conference on Cryptology and Network Security, CANS

’09, pages 477–477, Berlin, Heidelberg, 2009. Springer-Verlag.

[Gen09b] C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,

Stanford University, Stanford, CA, USA, 2009. AAI3382729.

[Gen09c] C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In

Proceedings of the Forty-first Annual ACM Symposium on Theory of

Computing, STOC ’09, pages 169–178, New York, NY, USA, 2009.

ACM.

[Gen10a] C. Gentry. Computing Arbitrary Functions of Encrypted Data. Com-

mun. ACM, 53(3):97–105, March 2010.

117



Bibliography

[Gen10b] C. Gentry. Toward Basing Fully Homomorphic Encryption on Worst-

case Hardness. In Proceedings of the 30th Annual Conference on Ad-

vances in Cryptology, CRYPTO’10, pages 116–137, Berlin, Heidelberg,

2010. Springer-Verlag.

[GGH+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters.

Candidate Indistinguishability Obfuscation and Functional Encryption

for All Circuits. In Proceedings of the 2013 IEEE 54th Annual Sym-

posium on Foundations of Computer Science, FOCS ’13, pages 40–49,

Washington, DC, USA, 2013. IEEE Computer Society.

[GGP10] R. Gennaro, C. Gentry, and B. Parno. Non-interactive Verifiable Com-

puting: Outsourcing Computation to Untrusted Workers, pages 465–

482. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[GH09] C. Gentry and S. Halevi. Hierarchical Identity Based Encryption with

Polynomially Many Levels, pages 437–456. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2009.

[GH11a] C. Gentry and S. Halevi. Fully Homomorphic Encryption Without

Squashing Using Depth-3 Arithmetic Circuits. In Proceedings of the

2011 IEEE 52Nd Annual Symposium on Foundations of Computer Sci-

ence, FOCS ’11, pages 107–109, Washington, DC, USA, 2011. IEEE

Computer Society.

[GH11b] C. Gentry and S. Halevi. Implementing Gentry’s Fully-homomorphic

Encryption Scheme. In Proceedings of the 30th Annual International

Conference on Theory and Applications of Cryptographic Techniques:

Advances in Cryptology, EUROCRYPT’11, pages 129–148, Berlin, Hei-

delberg, 2011. Springer-Verlag.

[GHPS12] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Ring Switching

in BGV-Style Homomorphic Encryption. In Proceedings of the 8th

International Conference on Security and Cryptography for Networks,

SCN’12, pages 19–37, Berlin, Heidelberg, 2012. Springer-Verlag.

[GHPS13] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Field Switching in

BGV-style Homomorphic Encryption. J. Comput. Secur., 21(5):663–

684, September 2013.

[GHS12a] C. Gentry, S. Halevi, and N. P. Smart. Better Bootstrapping in

Fully Homomorphic Encryption. In Proceedings of the 15th Interna-

tional Conference on Practice and Theory in Public Key Cryptography,

PKC’12, pages 1–16, Berlin, Heidelberg, 2012. Springer-Verlag.

118



Bibliography

[GHS12b] C. Gentry, S. Halevi, and N. P. Smart. Fully Homomorphic Encryption

with Polylog Overhead. In Proceedings of the 31st Annual International

Conference on Theory and Applications of Cryptographic Techniques,

EUROCRYPT’12, pages 465–482, Berlin, Heidelberg, 2012. Springer-

Verlag.

[GHS12c] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic Evaluation of

the AES Circuit, pages 850–867. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2012.

[GHV10] C. Gentry, S. Halevi, and V. Vaikuntanathan. A Simple BGN-type

Cryptosystem from LWE. In Proceedings of Eurocrypt 2010, LNCS

6110, pages 506–522, 2010.

[GN08] N. Gama and P. Q. Nguyen. Predicting Lattice Reduction, pages 31–51.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[Gra06] R. Gray. Toeplitz and Circulant Matrices: A Review. Foundations and

Trends R� in Communications and Information Theory, 2(3):155–239,

2006.

[GSW13] C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from

Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,

Attribute-Based. In Advances in Cryptology – CRYPTO 2013, vol-

ume 8042 of Lecture Notes in Computer Science, pages 75–92. Springer

Berlin Heidelberg, 2013.

[GVP16] L. Goubin and F. J. Vial Prado. Blending FHE-NTRU Keys - The

Excalibur Property. Springer Berlin Heidelberg, Berlin, Heidelberg,

2016. To appear.

[Hai08] I. Haitner. Semi-honest to Malicious Oblivious Transfer: The Black-box

Way. In Proceedings of the 5th Conference on Theory of Cryptography,

TCC’08, pages 412–426, Berlin, Heidelberg, 2008. Springer-Verlag.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-Based

Public Key Cryptosystem. In Lecture Notes in Computer Science, pages

267–288. Springer-Verlag, 1998.

[HRSV11] S. Hohenberger, G. N. Rothblum, A. Shelat, and V. Vaikuntanathan.

Securely Obfuscating Re-Encryption. Journal of Cryptology, 24(4):694–

719, 2011.

[HS14] S. Halevi and V. Shoup. Algorithms in HElib. In Advances in Cryp-

tology – CRYPTO 2014, volume 8616 of Lecture Notes in Computer

Science, pages 554–571. Springer Berlin Heidelberg, 2014.

119



Bibliography

[HS15] S. Halevi and V. Shoup. Bootstrapping for HElib, pages 641–670.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[JPH13] A. Jeckmans, A. Peter, and P. Hartel. Efficient Privacy-Enhanced

Familiarity-Based Recommender System, pages 400–417. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2013.

[Kah96] D. Kahn. The codebreakers : the story of secret writing. Scribner, New

York, 1996.

[KL15] M. Kim and K. Lauter. Private genome analysis through homomorphic

encryption. BMC Medical Informatics and Decision Making, 15(5):S3,

2015.

[KMR11] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing Multi-Party

Computation. Cryptology ePrint Archive, Report 2011/272, 2011.

[KPG99] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced Oil and Vinegar

Signature Schemes, pages 206–222. Springer Berlin Heidelberg, 1999.

[KRW15] V. Koppula, K. Ramchen, and B. Waters. Separations in Circular

Security for Arbitrary Length Key Cycles, pages 378–400. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2015.

[KW16] V. Koppula and B. Waters. Circular Security Counterexamples for

Arbitrary Length Cycles from LWE. IACR Cryptology ePrint Archive,

2016:117, 2016.

[LATV12] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multi-

party computation on the cloud via multikey fully homomorphic en-

cryption. In In STOC, pages 1219–1234, 2012.

[LCH13] C.-C. Lee, P.-S. Chung, and M.-S. Hwang. A Survey on Attribute-based

Encryption Schemes of Access Control in Cloud Environments. I. J.

Network Security, 15(4):231–240, 2013.

[Len78] H. W. Lenstra. Vanishing Sums of Roots of Unity, volume 101, pages

249 – 268. Math. Centre Tracts 101, Vrije Univ, Amsterdam, 1978.

[LL00] T. Lam and K. Leung. On Vanishing Sums of Roots of Unity. Journal

of Algebra, 224(1):91 – 109, 2000.
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Appendix A

Seeing the whole picture: An

article reading guide

Approaching fully homomorphic encryption literature can be very disconcerting.

Several teams of expert cryptography research have published hundreds of articles

since 2009, and partly because of the speed of advancements, understanding the

different lines of work and their relationships is not an easy task. We will list here

some of the principal articles, ordered by chronology and battlefronts: efficiency,

security, applications, implementations and displaying other properties. We begin

by stating that we highly recommend the lecture of On data banks and Privacy

Homomorphisms, by Adleman, Dertouzos and Rivest [RAD78].

Tag Ref. Title

1 [Gen09c] FHE using ideal lattices

2 [vDGHV10] FHE over the Integers

3 [BV11a] Efficient FHE from (Standard) LWE

4 [LATV12] On-the-Fly MPC on the Cloud via Multikey FHE

5 [GSW13] HE from LWE: Conceptually-Simpler [...]

Table A.1: The five families

In table A.1, seminal works at the origin of the five FHE families are highlighted.

In A.2, relevant publications are listed, ordered by year, alphabetically, and with a

tag indicating the type of contributions. The objective of table A.2 is to facilitate the

task of filtering publications, for instance, the tags “i,3” and “i,4” regroup principal

articles providing an implementation of LWE or NTRU based schemes, and the tag

“2” lists articles related to FHE over the integers.
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Appendix A. Seeing the whole picture: An article reading guide

e = Studies/Improves Efficiency

s = Studies/Improves Security

i = An implementation is discussed or provided

a = Describes practical applications

p = Displays special properties

{1,2,3,4,5} = Belongs to family (see table A.1)

Disclaimer: the following list is not intended to be exhaustive. It contains all

principal articles to the date of this writing, in the opinion of the author. According

to CiteSeerX and ACM digital libraries, all principal FHE focused articles with at

least 2 non-self citations and citing Gentry’s seminal work are in table A.2.

Table A.2: FHE publications map

Year Reference Tags Title

2010 [Gen10b] 1,s Toward Basing FHE on Worst-Case Hardness

[GHV10] p A Simple BGN-type Cryptosystem from LWE

[SV10] 1,e FHE with Relatively Small Key and Ciphertext sizes

[SS10] 1,e,s Faster FHE

2011 [BV11b] 3,s,p FHE from Ring-LWE and Security for KDM

[CMNT11] 2,s,e FHE over the Integers with Shorter Public Keys

[GH11a] p,e FHE without squashing [...]

[GH11b] 1,i Implementing Gentry’s FHE scheme

[LNV11] 3,a,i Can homomorphic encryption be practical?

[SS11a] 1,e,i Improved Key Generation for Gentry’s FHE scheme

2012 [BGV12] 3,p,e FHE without bootstrapping

[Bra12] e FHE without modulus switching from classical GapSVP

[BSW12] p,s Targeted Malleability: HE for Restricted Computations

[FV12] 3,e, Somewhat practical FHE

[GHS12b] 3,e FHE with Polylog overhead

[GHPS12] 3,e Ring Switching in BGV-Style HE

[LMSV12] 1,s On CCA-Secure SHE

[CNT12] 2,e,i,s Public Key Compression and Modulus Switching [...]

2013 [ASP13] 1,e Practical Bootstrapping in Quasilinear Time

[BGH+13a] 3,a Private Database Queries Using SHE

[BLLN13] 3,s Improved Security for a Ring-Based FHE scheme

[BLN13] 1,a,i Private Predictive Analysis on Encrypted Medical Data

[BLP+13] 3,s Classical Hardness of LWE

[BGH13b] 3,p,e Packed Ciphertexts in LWE-Based HE

[CCK+13] 3,e,p Batch FHE over the Integers

[FSF+13] 3,i Towards practical program execution over FHE schemes

[GHPS13] 3,e,s Field Switching in BGV-style Homomorphic Encryption

[JPH13] 3,a Efficient privacy-enhanced [...] recommender system

[vdPS13] 3,e,i Estimating Key Sizes For High Dimensional [...]

2014 [ASP14] 5,s,e Faster Bootstrapping with Polynomial Error

[BV14] 5,s, Lattice Based FHE as secure as PKE

[CMO+14] 2,i High-Speed FHE Over the Integers

(Continued on next page)
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Table A.2 – continued from previous page

Year Reference Tags Title

[CLT14] 2,p,i Scale-Invariant FHE over the Integers

[LN14] 3,e,i A Comparison of [...] FV and YASHE

[HS14] 3,i Algorithms in HElib

[FGP14] p Efficiently Verifiable Computation on Encrypted Data

[SV14] 1,a,e Fully homomorphic SIMD operations

2015 [CCF+15] e How to Compress Homomorphic Ciphertexts

[CM15] 3,p Multi-identity and Multi-key Leveled FHE from LWE

[DGM15] 3,4,s Adaptive Key Recovery Attacks on NTRU [...]

[DM15] 3,e,i Bootstrapping in less than a second

[HS15] 3,e Bootstrapping for HElib

[KL15] 3,i,a Private genome analysis through HE

[LLAN15] 3,4,a,i Private Computation on Encrypted Genomic Data

[VYY15] i HEtest: A HE Testing Framework

2016 [ABD16] 4,s A subfield lattice attack on overstretched [...]

[CDPR16] 4,s Recovering Short Generators of Principal Ideals [...]

[CGGI16a] 5,e,i Bootstrapping in less than 0.1 second

[CGGI16b] 3,a A Homomorphic LWE Based E-voting Scheme

[CS16] e Which Ring Based SHE Scheme is Best

We also recommend the lecture of the following articles, which are related to

or have implications on FHE: [Gen10a, Mic01, GN08, LPR13, Vai12, Sil13, MP12,

HRSV11,KMR11,Mic11,Pei16].
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Appendix B

Homomorphic operations on

sets

In this appendix, we describe how to handle homomorphic operations over sets of

data, where cardinality and order of the elements are kept private. We give circuits

that perform equality and membership tests, cardinality, union, intersection and

Jaccard similarity.

Context and encoding conventions

We suppose that there are multiple users holding sets of similar data (i.e. all sets

are made of lists of names, or account numbers, etc). Users want to store their data

in the cloud, in order to perform homomorphic evaluations on two different sets as

wholes. They do not want to leak the cardinality of their sets, nor any ciphertext

identification. We suppose that

- Each element of a set can be encoded using κ bits with non-zero Hamming

weight.

- There is a null element encoded with κ zero bits.

- Encryption of a set is performed element-wise, padding with encryptions of

null until a number n of elements is reached, and then permuting randomly

the ciphertexts.

- Decryption is performed element-wise.

For instance, if κ = 4 and n = 8, the set S = {1001, 0110} is encrypted by a set

C = {c1, c2, . . . , c8} such that two elements in C are encryptions of “1001” and

“0110” and the rest are encryptions of null=“0000”.
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Appendix B. Homomorphic operations on sets

Equality circuits

Let a, b ∈ {0, 1}κ be two plaintexts. The equality circuit is the bitwise computation

of NXOR, followed by the AND of all outputs:

Eq(a, b) = 1⊕
κ�

i=1

(ai ⊕ bi ⊕ 1) =

�
0 if a = b,

1 if a �= b.

The multiplicative depth of this circuit is �log κ�. Let Eq0 = Eq(a, 0) the function

that tests if a is the null element. It can be performed with the following circuit

Eq0(a) = NOT (ANDκ
i=1NOT(ai)) = 1⊕

κ�

i=1

(ai ⊕ 1) =

�
0 if a = 0,

1 if a �= 0.

Another possible equality circuit involves computing the Hamming distance of a

and b:

EqH(a, b) = Ham(aXOR b) =

�
0 if a = b,

h > 0 if a �= b.

EqH0(a, b) = Ham(a) =

�
0 if a = 0,

h > 0 if a �= 0.

Cardinality

Let E = {c1, . . . , cn} a cipherset. To homomorphically compute the cardinality of

the underlying set, one can simply perform

#(E) = Eq0(c1) + Eq0(c2) + · · ·+ Eq0(cn),

which will return an encryption of the number of non zero integers in the underlying

set counting repetitions.

Membership

Let E = {c1, . . . , cn} a cipherset and z a ciphertext. Then

in(z, E) = Eq(z, c1) + Eq(z, c2) + · · ·+ Eq(z, cn) =

�
encryption of 0 if z �∈ E,

encryption of 1 if z ∈ E.

Intersection and union

Let A = {a1, . . . , an}, B = {b1, . . . , bn} be two ciphersets. One can compute the

intersection and union with the following algorithms:

The intersection algorithm outputs a set of n ciphertexts, which are encryptions

of 0 or encryptions of elements in the underlying intersection.

The union algorithm outputs a set of 2n ciphertexts, which are encryptions of

0 or encryptions of elements in the underlying union, using n2 calls to the equality

circuit.
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Algorithm 23 Homomorphic Intersection

1: I ← ∅
2: for i from 1 to n do

3: z ← in(ai, B) · ai
4: I ← I ∪ {z}
5: end for

6: Output I.

Algorithm 24 Homomorphic Union

1: U ← A

2: for i from 1 to n do

3: z ← NOT in(bi, A) · bi
4: U ← U ∪ {z}
5: end for

6: Apply a random permutation to the set U

7: Output U .

Jaccard Similarity

With this one can compute the homomorphic Jaccard index of two sets, which is

defined as

J(A,B) =
#(A ∩B)

#(A ∪B)
.

This can be done with 2n2 + 3n calls to the equality circuit as written. Noticing

that #(A ∪B) = #(A) + #(B) + #(A ∩B), this can be reduced to n2 + 3n calls.
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Appendix C

Coefficient correlation in the

Small Factors Problem

In this Appendix, we quantify the linear correlation between any two coefficients

of the known polynomial in the Small Factors Problem, when instantiated with

Bernoulli sampling of the factors. We shall see that this correlation is inversely

proportional to the sparseness of the secret factors, and for inattentive selection of

parameters this could help to attack SFP.

Preliminaries

A discrete random variable θ is a Bernoulli trial with parameter p if it produces only

two outcomes, one with probability p and the other with probability 1− p. If θ is a

Bernoulli trial, 



θ ∈ {0, 1},
P(θ = 1) = p,P(θ = 0) = 1− p,

E(θ) = p,

Var(θ) = E((θ − p)2) = p(1− p).

For i = 1, . . . , n, let θi be independent Bernoulli trials with the same parameter p,

and let χ =
�n

i=1 θi. Then χ follows the Binomial distribution with parameters n, p.





χ ∈ {0, . . . , n},
P(χ = k) =

�
n
k

�
pk(1− p)n−k,

E(χ) = np,

Var(χ) = np(1− p).

C.1 φ(x) = xn − 1 (NTRU ring)

Proposition C.1.1. Let α(x), β(x) two polynomials of degree n−1 and with random

coefficients in {0, 1}. Each coefficient was sampled using independent coin tosses
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with probability p of being 1. Let γ(x) = α(x)β(x)mod (xn − 1). Then each coeffi-

cient of γ follows a binomial distribution of parameters n, p2. The linear correlation

coefficient between two distinct coefficients is 2p
p+1 .

Proof: For 0 ≤ i, j ≤ n − 1, let αi,βj be the independent Bernoulli trials

of parameter p used to generate the polynomials α(x) =
�n−1

i=0 αix
i and β(x) =�n−1

j=0 βjx
j . For k = 0, . . . , n − 1 let γk ∈ Z be the random variable defined by the

equation

γ(x) =

n−1�

k=0

γkx
k = α(x) · β(x) mod (xn − 1).

Expanding the right-hand product and performing modular reduction gives

γk =
n−1�

i=0

αiβk−i mod n.

Note that the random discrete variables Zi,k := αiβk−i are Bernoulli trials of pa-

rameter p2 (as they are a product of two independent B.t.). This allows to compute





γk ∈ {0, . . . , n},
P(γk = l) =

�
n
l

�
p2l(1− p2)n−l,

E(γk) = np2,

Var(γk) = np2(1− p2).

From this is is clear that every pair γa, γb for a �= b consists of dependent random

variables. We compute the covariance of this pair: let ξc be the characteristic

function of the condition c (ξc = 1 if c is true). Then

Cov(γa, γb) = E((γa − np2)(γb − np2))

= E(γaγb)− np2(E(γa) + E(γb)) + n2p4

= E(γaγb)− n2p4.

E(γaγb) = E



�

n�

i=0

αiβa−i mod n

�


n�

j=0

αjβb−j mod n






=
�

0≤i,j<n

E(αiαj)E(βa−i[n]βb−j[n]),

=
�

0≤i,j<n

(ξi�=j,a−i�=b−j[n] + ξi=j + ξa−i=b−j[n])E(αiαj)E(βa−i[n]βb−j[n])

= (n2 − 2n)p4 + np3 + np3.

Therefore,

Cov(γa, γb) = 2n(p3 − p4),

Corr(γa, γb) =
Cov(γa, γb)

σaσb
=

2n(p3 − p4)

np2(1− p2)
=

2p

1 + p
. �
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C.2. φ(x) = xn + 1 (rLWE ring)

C.2 φ(x) = xn + 1 (rLWE ring)

Proposition C.2.1. Let α(x), β(x) two polynomials of degree n−1 and with random

coefficients in {0, 1}. Each coefficient was sampled using independent coin tosses

with probability p of being 1. Let γ(x) = α(x)β(x)mod (xn + 1). Then each coeffi-

cient of γ is sampled as the substraction of two binomial distributions. Moreover, if

γk denotes the k-th coefficient of γ(x), we have





E(γk) = p2(2k + 2− n),

Var(γk) = np2(1− p2),

Corr(γa, γb) =
�
1− 2 b−a

n

� 2p
1+p if a < b.

Proof: The setting is the same, but now the coefficients of γ(x) are

γk =
n−1�

i=0

αiβk−i[n] · πk(i) where πk(i) =

�
1 if i ≤ k,

−1 if i > k.

By linearity and independence, we have

E(γk) = p2
n−1�

i=0

πk(i) = p2(2k + 2− n),

Var(γk) = E(γ2k)− p4(2k + 2− n)2,

E(γ2k) =
n−1�

i=0

n−1�

j=0

E(αiαj)E(βk−i[n]βk−j[n])πk(i)πk(j)

= p4
�

i,j<n;i�=j

πk(i)πk(j) + p2
n�

i=0

πk(i)
2;

= p4((2k + 2− n)2 − n) + p2n,

yielding the claimed expression for Var(γk). Now, let a < b, then

E(γaγb) =
�

i,j<n

E(αiαjβa−i[n]βb−j[n])πa(i)πb(j)

= p4
�

i�=j;a−i�=b−j[n]

πa(i)πb(j) + p3
n−1�

l=0

πa(l)πb(l) + p3
n−1�

l=0

πa(l)πb(b− a+ l[n])

= p4S1 + p3(S2 + S3).

S2 =
n−1�

l=0

πa(l)πb(l) = n− 2(b− a).

It holds that

πb(b− a+ l[n]) =

�
1 if b− a+ l[n] ≤ b

−1 if b− a+ l[n] > b
=

�
πa(l) if l < n− (b− a)

1 if l ≥ n− (b− a)
,
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therefore

S3 =

n−1�

l=0

πa(l)πb(b− a+ l[n])

=

n−(b−a)−1�

l=0

πa(l)
2 +

n−1�

l=n−(b−a)

πa(l)

= n− (b− a)− (n− (n− (b− a)))

= n− 2(b− a)

and

S1 =
�

i�=j;a−i�=b−j[n]

πa(i)πb(j)

=

�
n−1�

i=0

πa(i)

�


n−1�

j=0

πb(j)


− S2 − S3

= (2(a+ 1)− n)(2(b+ 1)− n)− 2n+ 4(b− a).

Replacing these expressions we obtain

E(γaγb) = p4((2(a+ 1)− n)(2(b+ 1)− n)− 2n+ 4(b− a)) + 2p3(n− 2(b− a)),

allowing to compute

Cov(γa, γb) = E(γaγb)− E(γa)E(γb)

= 2(n− 2(b− a))(p3 − p4),

and finally

Corr(γa, γb) =
2(n− 2(b− a))(p3 − p4)

np2(1− p2)

=

�
1− 2

b− a

n

�
2p

1 + p
.

Note that |Corr(γa, γb)| ≤ (1 − 1/n)2p/(p + 1), the extreme cases achieved when

b = a+ 1 and b = n− 1, a = 0. �
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