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ABSTRACT

Emerging trends in embedded systems and applications need high throughput and low power
consumption. Due to the increasing demand for low power computing, and diminishing
returns from technology scaling, industry and academia are turning with renewed interest
toward energy efficient hardware accelerators. The main drawback of hardware accelerators
is that they are not programmable. Therefore, their utilization can be low as they perform
one specific function and increasing the number of the accelerators in a system on chip
(SoC) causes scalability issues. Programmable accelerators provide flexibility and solve the
scalability issues.

Coarse-Grained Reconfigurable Array (CGRA) architecture consisting several processing
elements with word level granularity is a promising choice for programmable accelerator. In-
spired by the promising characteristics of programmable accelerators, potentials of CGRAs in
near threshold computing platforms are studied and an end-to-end CGRA research framework
is developed in this thesis.

The major contributions of this framework are: CGRA design, implementation, integra-
tion in a computing system, and compilation for CGRA. First, the design and implementation
of a CGRA named Integrated Programmable Array (IPA) is presented. Next, the prob-
lem of mapping applications with control and data flow onto CGRA is formulated. From
this formulation, several efficient algorithms are developed using internal resources of a
CGRA, with a vision for low power acceleration. The algorithms are integrated into an
automated compilation flow. Finally, the IPA accelerator is augmented in PULP - a Parallel

Ultra-Low-Power Processing-Platform to explore heterogeneous computing.
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Introduction

With the increasing transistor density, the power dissipation improves very little with each
generation of Moore’s law. As a result, for fixed chip-level power budgets, the fraction of
transistors that can be active at full frequency is decreasing exponentially. The empirical
studies in [34] show that the strategy to enhance performance by increasing the number of
cores will probably fail since voltage scaling has slowed or almost stopped, and the power
consumption of individual cores are not reducing enough to allow the increase in the number
of active computing units. Hence, as technology scales, an increasing fraction of the silicon
will have to be dark, i.e., be powered off or under-clocked. This study estimated that at 8nm,
more than 50% of the chip will have to be dark. The most popular approach to improve
energy efficiency is a heterogeneous multi-core which is populated with a collection of
specialized or custom hardware accelerators (HWAC), each optimized for a specific task
such as graphics processing, signal processing, cryptographic computations etc.

Depending on the specific application domain, the trend is to have few general-purpose
processors accelerated by highly optimized application-specific hardware accelerators (ASIC-
HWACCsSs) or General-Purpose Graphics Processing Units (GPGPUs). Although ASIC-
HWACC:s provide the best performance/power/area figures, the lack of flexibility drastically
limits their applicability to few domains (i.e. those where the same device can be used
to cover large volumes, or where the cost of silicon is not an issue). Graphics Processing
Units (GPUs) are very popular in high performance computing (HPC). Although they are
programmable, their energy efficiency and performance advantages are limited to parallel
loops [94]. Moreover, GPUs require significant effort to program them using specialized
languages (e.g. CUDA). GPUs have rapidly evolved not to be limited only to perform
graphics processing but also general purpose computing and referred to as GPGPU. As
GPGPUs consist of thousands of cores, they are excellent computing platforms for the
workloads that can be partitioned into a large number of threads with minimal interaction
between the threads. The effectiveness of GPGPUs decreases significantly as the number of
workload partitions decreases or the interaction between them increases [106]. In addition, the

memory access contentions across threads should be minimized to diminish the performance
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penalty [106]. In such acceleration model, programmers are responsible to find an effective
way to partition the workload.

In between of the two extremes ASIC-HWACC and GPU, Field Programmable Gate
Arrays (FPGAs) provide high degree of reconfigurability. FPGAs offer significant advantages
in terms of sharing hardware between distinct isolated tasks, under tight time constraints.
Historically, reconfigurable resources available in FPGA fabrics have been used to build high
performance accelerators in specific domains. The HPC domain has driven the development
of reconfigurable resources, from relatively simple modules to highly parametrizable and
configurable subsystems. While FPGAs started out as a matrix of programmable processing
elements, called configurable logic blocks (CLBs) connected by programmable interconnect
to configurable I/O, they have evolved to also include a variety of processing macros, such
as reconfigurable embedded memories and DSP blocks to improve the efficiency of FPGA
based accelerators. The flexibility, however, comes at the cost of programming difficulty
and high static power consumption [42]. The high energy overhead due to fine-grained
reconfigurability and long interconnects limit their use in ultra-low power environments like
internet-of-things (IoT), wireless sensor networks etc. In addition, limitations and overhead of
reconfiguring FPGAs at run-time impose a significant restriction on using FPGAs extensively
in wider set of energy-constrained applications. Kuon et al in [58] shows that FPGAs require
an average of 40x area overhead, 12 x power overhead and 3 x execution time overhead than
a comparable ASIC.

A promising alternative to ASIC-HWACC, GPU and FPGA is the Coarse-Grained
Reconfigurable Array (CGRA) [104]. As opposed to FPGAs, CGRAs are programmable at
instruction level granularity. Due to this feature, compared to FPGAs, a significantly less
silicon area is required to implement CGRAs. Besides, static power consumption is much
lower in CGRAs compared to FPGAs. CGRAs consist of multi-bit functional units, which
are connected through rich interconnect network and have been shown to achieve high energy
efficiency [8] while demonstrating the advantages of a programmable accelerator.

This dissertation capitalizes on the promising features of CGRAs as ultra-low-power
accelerator in three segments. The first part studies the hardware and compiler for state of
the art CGRAs. The second part is devoted to implementing a novel CGRA architecture
referred to as Integrated Programmable Array (IPA). The third part is dedicated to compilation
problems associated with the acceleration of applications in CGRAs and a novel compilation
flow. The final part explores heterogeneous computing by augmenting the IPA in a state of
the art multi-core platform.



Motivation for CGRAs

CGRAs (Figurel) are built around an array of processing elements (PEs) with word level
granularity. A PE is a single-pipeline stage functional unit (FU) (e.g., ALU, multiplier) with
a small local register file and simple control unit, which fetches instruction from a small
instruction memory. Additionally, some PEs can perform load-store operations on a shared
data memory, which are usually referred to as load-store units (LSUs). Rather than a compiler
mapping a C program onto a single core, a CGRA tool flow maps a high level program over

multiple processing elements.

From Neighbors and
memory

1y iy

?
: )
=
To Neighbors and

,
1
[

i

Fig. 1 Block diagram of CGRA

In Figure 2, we present wide range of accelerator solutions. Figure 3 compares the CGRA
architecture against the instruction processor solutions such as CPU, DSP, multi-core (MC),
GPU and FPGA. Energy efficiency is shown against flexibility and performance.

Parallel
architectures for

Accelerator choices

Instruction set Reconfigurable Specialized
architectures architectures architectures

Data level Instruction level Thread level Process level

. : . : Specialized
parallelism parallelism parallelism parallelism

Vector architecture VLIW architecture

Chip Multi-Processing
SIMD architecture Superscalar architecture (CMP)

Fig. 2 Wide spectrum of Accelerators

The charts are summarized as follows:
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Fig. 3 Energy efficiency vs Flexibility and Performance of CGRA vs CPU, DSP, MC, GPU,
FPGA and ASIC

DSPs have superior energy efficiency to both CPU and GPU but lack scalable perfor-

mance.

MC:s provide greater performance than CPU and have simpler cores, therefore greater
energy efficiency than CPUs but inferior to GPUs.

GPU energy efficiency has surpassed CPUs and multi-cores over recent years (however,
GPUs still require multi-core CPUs to monitor them).

Modern FPGAs with DSP slices offer superior energy efficiency to CPUs, MSPs, DSPs
and GPUs, and provide strong performance.

Nothing beats an ASIC for performance, but everything beats an ASIC for flexibility.

CGRAs offer greater flexibility than FPGAs as they can be programmed efficiently
in high level languages. They offer greater performance due to the coarse grained
nature of the computation. Also, due to the coarser granularity, CGRAs need lesser

reconfiguration time compared to FPGAs.

Contribution of the Thesis

The thesis contributes in the following aspects of employing CGRAs as accelerators in

computing platforms.

1.

CGRA design and implementation: The dissertation presents a novel CGRA archi-
tecture design referred to as Integrated Programmable Array (IPA) Architecture. The



design is targeted for ultra-low-power execution of kernels. The design also includes

an extensive architectural exploration for best trade-off between cost and performance.

2. Mapping of applications onto the CGRA: For better performance instruction level par-
allelism is exploited at the time of compilation of the program, which maps operations
and data onto the internal resources of CGRA. Efficient resource binding is the most
important task of a mapping flow. An efficient utilization of available resources on
CGRA plays a crucial role in enhancing performance and reducing the complexity of
the control unit of the CGRA. As Register Files (RF) are one of the key components,
efficient utilization of registers helps to reduce unwanted traffic between the CGRA
and data memory. In this dissertation, we present an energy efficient register allocation

approach to satisfy data dependencies throughout the program.

Also, an accelerator without an automated compilation flow is unproductive. In this
regard, we present a full compilation flow integrating the register allocation mapping

approach to accelerate control and data flow of applications.

3. Support for control flow: Since control flow in an application limits the performance, it
is important to carefully handle the control flow in hardware software co-design for the
CGRA accelerator. On the one hand, taking care of the control flow in the compilation
flow adds several operations increasing the chance of higher power consumption, on the
other hand, implementing bulky centralized controller for the whole CGRA is not an
option for energy efficient execution. In this thesis, we implement a lightweight control

unit and synchronization mechanism to take care of the control flow in applications.

4. System level integration in a system on chip (SoC): Integration in a computing system is
necessary to properly envision the CGRA as an accelerator. The challenge is interfacing
with data memory due to scalability and performance issues. In this dissertation, we
present our strategy to integrate the accelerator in the PULP [92] multi-core platform
and study the best trade-off between the number of load-store units present in the

CGRA and the number of banks present in the data memory.

Organization

The dissertation is organized into five chapters. In Figure 4, we show the positioning of
the chapters based on the major features of the reconfigurable accelerator and compilation
flow. Chapter 1 discusses the background with major emphasis on the state of the art works
in architecture and compilation aspects. In chapter 2, the design and implementation of an
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Reconfigurable Compilation
Accelerator Flow

ControlFlow
Support

Background and
Chapter performance
La eveluation
2, |
= g Design
8o
2 a
2 O Integration

Fig. 4 Thesis overview

ultra-low power reconfigurable accelerator with the support for control flow management in
applications is presented. Chapter 3 covers the compilation frame work for the accelerator.
In chapter 4, we evaluate the performance of the accelerator and compilation flow. Chapter
5 addresses the integration of the accelerator in a multi-core SoC along with the software
infrastructure.

Finally, the thesis concludes with an overview of the presented work and suggestions for

the future research directions.



Chapter 1

Background and Related Work

As a consequence of power-wall, in combination with the ever-increasing number of tran-
sistors available due to Moore’s Law, it is impossible to use all the available transistors at
the same time. This problem is known as the utilisation-wall or dark silicon [34]. As a
result, energy efficiency has become the first-order design constraint in all computing systems
ranging from portable embedded systems to large-scale data-centers and supercomputers.
The research in the domain of computer architecture to tackle dark silicon, can be

categorized into three disciplines.

* Architectural heterogeneity: To improve energy efficiency, modern chips tend to bundle
different specialized processors or accelerators along with general purpose processors.
The result is a system-on-chip (SoC) capable of general purpose computation, which
can achieve high performance and energy efficiency occasionally for specialized
operations, such as graphics, signal processing etc. The research in this domain
identifies most suitable platforms like FPGA, CGRA, ASIC or hybrid, as accelerators.
[6] [26] has already shown that accelerators in SoCs are useful for combating utilization

wall.

* Near threshold computing: Low-voltage is indeed an attractive solution to increase
energy efficiency, as the supply voltage has strong influence on both static and dynamic
energy. Scaling down the supply voltage close to the threshold voltage (Vth) of
the transistor is proven to be highly power efficient. [32] shows that near threshold
operation achieves up to 5-10x energy efficiency improvement. Since decreasing
supply voltage slows down the transistor, near threshold voltage operation aims to
achieve a significant trade-off between performance and energy efficiency.

» Power Management: This category of research is concentrated on the architectures and

algorithms to optimize the power budget. This involves introducing sleep modes [2]
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or dynamic voltage and frequency scaling (DVFES) [75], power and clock gating

techniques.

The use of application-specific accelerators [36] designed for specific workloads can
improve the performance given a fixed power budget. The wide use of such specialized
accelerators can be realized in SoCs such as Nvidia’s Tegra 4, Samsung’s Exynos 5 Octa,
Tilera’s Gx72. However, due to the long design cycle, increasing design cost and limited
re-usability of such application specific approach, reconfigurable accelerators have become
attractive solution. FPGAs acting as reconfigurable accelerators [1] [22] [16], are widely used
in heterogeneous computing platforms [5] [107] [60]. FPGAs have evolved from employing
only matrix of configurable computing elements or configurable logic blocks connected
by programmable interconnect to collection of processing macros, such as reconfigurable
embedded memories and DSP blocks to improve the efficiency. FPGA accelerators are
typically designed at RTL (Register Transfer Level) level of abstraction for best efficiency.
The abstraction consumes more time and makes reuse difficult when compared to a similar
software design. HLS tools [78] [19] [12] [65] have helped to simplify accelerator design by
raising the level of programming abstraction from RTL to high-level languages, such as C or
C++. These tools allow the functionality of an accelerator to be described at a higher level to
reduce developer effort, enable design portability and enable rapid design space exploration,
thereby improving productivity and flexibility.

Even though efforts, such as Xilinx SDSoC, RIFFA, LEAP, ReconOS, have abstracted
the communication interfaces and memory management, allowing designers to focus on
high level functionality instead of low-level implementation details, the compilation times
due to place and route in the back-end flow for generating the FPGA implementation of the
accelerator, have largely been ignored. Place and route time is now a major productivity
bottleneck that prevents designers from using mainstream design based on rapid compilation.
As a result, most of the existing techniques are generally limited to static reconfigurable
systems [100]. Apparently, the key features like energy efficiency, ease of programming, fast
compilation and reconfiguration motivate the use of CGRAs to address signal processing and
high performance computing problems.

In this thesis, we explore CGRA as accelerator in a heterogeneous computing platform
and create a research framework to fit the CGRA within an ultra-low power (mW) power
envelope. In this chapter, we investigate the design space and compiler support of the state of
the art CGRAs. As we move to the next chapters, we will consider the significant architectural
features explored in this chapter to design and implement a novel, near-threshold CGRA and
a compilation flow with a primary target to achieve high energy efficiency.
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1.1 Design Space

CGRAs have been investigated for applications with power consumption profiles ranging
from mobile (hundreds of mW) [28] to high performance (hundreds of W) [71]. The design
philosophy differs in CGRAs to optimize and satisfy different goals. In the following, we
present a set of micro-architectural aspects of designing CGRAs.

1.1.1 Computational Resources

The computational resources (CRs) or Processing Elements (PEs) in CGRAs are typically
categorized as Functional Units (FUs) and Arithmetic Logic Units (ALUs) with input bit-
widths ranging from 8-32. The FUs are of limited functionality. Specifically, few operations
for a specific application domain, as used in ADRES [8] architectural templates. The ALUs
feature complex functionality and require larger reconfiguration compared to that of FUs.
Due to the versatility of ALU, they make instruction mapping easier. Depending on the
application domain a full-custom processing element can be designed, which gives better
area and performance, but extensive specialization can also lead to negative effects on energy
consumption [105]. The PEs can be homogeneous in nature making instruction placement

simple, whereas a heterogeneous PEs may present a more pragmatic choice.

1.1.2 Interconnection Network

There are several options for the interconnection network, such as programmable interconnect
network, point-to-point, bus or a Network-on-Chip (NoC).

The programmable interconnection network consists of switches which need to be pro-
grammed to extract the desired behaviour of the network. This comes with a cost of
configuration overhead. CREMA [38] CGRA consists of such programmable interconnect
network.

A point-to-point (P2P) network directly connects the PEs and allows data to travel from
one PE to only its immediate neighbours. To perform a multi-hop communication, one
needs "move" instruction at each of the intermediate PE. These instructions are a part of the
configuration. In contrast with the programmable interconnects, the P2P network does not
impose any additional cost on programming the interconnect network. The most popular
topologies in P2P network are mesh 2-D and bus based. Designs like MorphoSys [98],
ADRES [8], Silicon Hive [10] feature a densely connected mesh-network. Other designs
like RaPiD [20] feature a dense network of segmented buses. Typically, the use of crossbars

is limited to very small instances because large ones are too power-hungry. SmartCell [64]
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CGRA uses crossbar to connect the PEs in a cell. Since only 4 PEs are employed in each

cell, the complexity of the crossbar is paid off by the performance in this design.
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Fig. 1.1 Different interconnect topologies (a) Mesh 2D; (b) Bus based; (c) Next hop

A NoC provides a packet switched network where the router checks the destination field
of the packet to be forwarded and determines the appropriate neighbouring router to which
it needs to be forwarded. The NoC does not need to program the interconnect network
but the hardware must implement a routing algorithm. Generally, cluster based CGRAs
like REDEFINE [3], SmartCell use NoC to interact between the clusters. HyCube [52]
implements a crossbar switched network. Unlike the NoC, this network implements clock-
less repeaters to achieve single clock multi-hop communication.

Apart from these basic types, one may choose a hierarchical interconnection where
different network types are used at different levels of the fabric. As an example, MATRIX [76]
CGRA consists of three levels of interconnection network which can be dynamically switched.
The SYSCORE [82] CGRA uses mesh and cross interconnect for low power implementations.
In this architecture, cross interconnections are only introduced at odd numbered columns
in the array of PEs, to avoid dense interconnect. The cross interconnections are useful to

perform non-systolic functions.

1.1.3 Reconfigurability

Two types of reconfigurability can be realized in CGRAs: static and dynamic.

In statically reconfigured CGRAs, each PE performs a single task for the whole duration
of the execution. The term "execution" here refers to the total running period between
two configurations. In this case, mapping of the applications onto CGRA concerns only
space, as illustrated in Figure 1.2. In other words, over times or cycles, the PE performs
the same operation. The mapping solution assigns single operation to each PE depending
on the data-flow. The most important advantage of static reconfigurability is the lack of

reconfiguration overhead, which helps to reduce power consumption. Due to the lack of
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reconfigurability, the size of the CGRA becomes large to accommodate even small programs
or need to break the large program into several smaller ones.

In dynamically reconfigured CGRAs, PEs perform different tasks during whole execution.
Usually, in each cycle, the PEs are reconfigured by simple instructions which are referred to
as context words. Dynamic reconfigurability can overcome the constraints over resources in
static reconfigurability by expanding loop iterations through multiple configurations. Clearly,
this comes with the cost of added power consumption due to consecutive instruction fetching.
Designs like ADRES and MorphoSys tackle this by not allowing control flow in the loop
bodies. Furthermore, if conditionals are present inside the loop body, the control flow is
converted in data flow using predicates. This mechanism usually introduces overhead in the
code. Liu et al in [67] performs affine transformations on loops based polyhedral model and
able to execute up to 2 level deep loops.
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Fig. 1.2 Static and Dynamic Reconfigurability: (a) Mapping of the DFG in (d) for static
reconfigurability onto a 2x2 CGRA; (b) Mapping of the DFG in (d) for Dynamic reconfigura-
bility onto a 2x1 CGRA; (c) Execution of the statically reconfigurable CGRA in 3 cycles; (d)
Data flow graph; (e) Execution of the dynamically reconfigurable CGRA in 3 cycles.
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The MorphoSys design reduces the cost of instruction fetching further by limiting the
code to Single Instruction Multiple Data (SIMD) mode of operation. All the PEs in a row or a
column in this case execute same operation during the whole execution process. The similar
approach is realized in SIMD-CGRA [33], where bio-medical applications are executed in an
ultra-low-power environment. The RaPiD architecture limits the number of configuration bits
to be fetched by making only a small part of the configuration dynamically reconfigurable.
Kim et al [55] proposed to reduce the power consumption in the configuration memories by
compressing the configurations.

Generally, a limited reconfigurability imposes more constraints on the types and sizes of
loops that can be mapped. The compiler also needs to take extra burden to generate mappings
satisfying the constraints. The Silicon Hive [10] is one such design which does not impose
any restrictions on the code to be executed and allow execution of full control flow in an
application. Unfortunately, no numbers on the power consumption are publicly available for
this design.

The CGRA design in this thesis adopts the philosophy of unlimited reconfigurability that
allows to map any kind of application consisting complex control and data flow in an energy

constrained environment.

1.1.4 Register Files

CGRA compilers schedule and place operations in the computational resources (CR) and
route the data flow over the interconnect network between the CRs. The data also travel
through the Register Files (RF). Hence, the RFs in CGRA is treated as interconnects that can
be extended over multiple cycles. As the RFs are treated for routing, compiler must know
the location of RFs, their size and topology of interconnection with the CRs. Both power and
performance depend on these parameters. Hence, while designing the CGRA, it is important

to bear special attention to determine the size, number of ports location of the RFs.

1.1.5 Memory Management

While targeting low power execution, data and context management is of utmost importance.
Over past years, several solutions [28] have been proposed to integrate CGRAs as accelerators
with the data and instruction memory.

In many low-power targeted CGRAs [8][80][93][53], memory operations are managed by
the host processor. Among these architectures, Ultra-Low-Power Samsung Reconfigurable
Processor (ULP-SRP) and Cool Mega Array (CMA) operate in ultra-low-power (up to 3 mW)

range. In these architectures, PEs can only access the data once prearranged in the shared
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register file by the processor. For an energy efficient implementation, the main challenge for
these designs is to balance the performance of the data distribution managed by the CPU, and
the computation in the PE array. However, in several cases, the computational performance
of the PE array is compromised by the CPU, due to large synchronization overheads. For
example, in ADRES [8] the power overhead of the VLIW processor used to handle the data
memory access is up to 20%. In CMA [80] the host CPU feeds the data into the PEs through
a shared fetch register (FR) file. This is very inefficient in terms of flexibility. The key feature
of this architecture is the possibility to apply independent DVFS [101] or body biasing [73]
to balance array and controlling processor parameters to adjust performance and bandwidth
requirements of the applications. The highest reported energy efficiency for CMA is 743
MOPS/mW on 8-bit kernels, not considering the overhead of the controlling processor, which
is not reported. With respect to this work, which only deals with DFG described with a
customized language, we target 32-bit data and application kernels described in C language,
which are mapped onto the array using an end-to-end C-to-CGRA compilation flow.

In a few works [98] [54] load-store operations are managed explicitly by the PEs. Data
elements in these architectures are stored in a shared memory with one memory port per
PE row. The main disadvantages of such data access architecture are: (a) lots of contention
between the PEs on the same row to access the memory banks, (b) expensive data exchange
between rows through complex interconnect networks within the array. With respect to these
architectures, our approach minimizes contention by exploiting a multi-banked shared mem-
ory with word-level interleaving. In this way data-exchange among tiles can be performed
either through the much simpler point-to-point communication infrastructure or fully flexible
shared TCDM.

Solutions targeting high programmability and performance executing full control and data
flows are reported for the weakly programmable processor array (WPPA) [56], Asynchronous
Array of Simple Processors (AsAP) [108], RAW [103], ReMAP [21] and XPP [11]. The
WPPA array consists of VLIW processors. For low power target the instruction set of a single
PE is minimized according to domain-specific computational needs. In AsAP, each processor
contains local data and instruction memory, FIFOs for tile-to-tile communication and local
oscillator for local clock generation. Both the ReMAP and XPP consist of PE array each
with DSP extension. These architectures are mainly intended for exploitation of task-level
parallelism. Hence, each processor of the array must be programmed independently, which
is much closer to many-core architectures. RAW PEs consist of 96 KB instruction cache
and 32 KB data cache, router-based communication. These large-scale "array of processors"
CGRA s are out of scope for ultra-low power, mW-level acceleration (a single tile would take

more than the full power budget).
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NASA’s Reconfigurable Data-Path Processor (RDPP) [30] and Field Programmable Pro-
cessor Array (FPPA) [31] are targeted for low-power stream data processing for spacecrafts.
These architectures rely on control switching [30] of data streams and synchronous data flow
computational model avoiding investment on memories and control. On the contrary, the IPA
is tailored to achieve energy-efficient near sensor processing of data with the workloads very
different from the stream data processing.

Table 1.1 summarizes an overview of the jobs managed by CGRA and the host processor
for different architectural approaches. Acceleration of the kernels involves memory opera-
tions, innermost loop computation, outer loop computation, offload and synchronization with
the CPU. As shown in the table, IPA manages to execute both the innermost and outer loops
and the memory operations of a kernel imposing least communication and memory operation
overhead while synchronizing with the CPU execution.

With respect to these state of the art reconfigurable arrays and array of processors, this
thesis introduces a highly energy efficient, general-purpose IPA accelerator where PEs have
random access to the local memory and execute full control and data flow of kernels on
the array starting from a generic ANSI C representation of applications [24]. This work
also focuses on the architectural exploration of the proposed IPA accelerator [25], with the
goal to determine the best configuration of number of LSUs and number of banks for the
shared L.1 memory. Moreover, we employ a fine-grained power management architecture to
eliminate dynamic power consumption of idle tiles during kernels execution which provides
2x improvement of energy efficiency, on average. The globally synchronized execution
model, low cost but full-flexible programmability, tightly coupled data memory organization
and fine-grained power management architecture define the suitability of the proposed

architecture as an accelerator for ultra-low power embedded computing platforms.

Table 1.1 Qualitative comparison between different architectural approaches

ADRES [8],

CMA [73], MorphoSys [98],

MUCCRA [93], RSPA [54]
Architectures FPPA [31], ) ’ Liuet al [67] | TPA [25]

PipeRench [41],

RDPP [30], CHARM [17]

MATRIX [76],

CHESS [72]
Memory operations CpPU CGRA CpPU CGRA
Innermost loop CGRA CGRA CGRA CGRA
Outer loop CpPU CpPU CGRA CGRA
Offload + Synchronization | CPU CPU CPU CPU
Communication overhead | I [ [ ]
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1.2 Compiler Support

The compiler produces an executable for the reconfigurable fabric. As opposed to the com-
piler for general-purpose processors where only instruction set is visible to the compiler,
the micro-architecture details of a CGRA are exposed to a CGRA compiler. This enables
compilers to optimize applications for the underlying CGRA and take advantage of inter-
connection network, Register Files to maximize performance. Like the other compilers,
the CGRA compilers generate an intermediate representation from the high level language.
The intermediate representation is usually convenient for parallelism extraction, as most
CGRAs have many parallel function units. Different architectures exploit different levels of
parallelism through their compilers.

1.2.1 Data Level Parallelism (DLP)

The computational resources in this approach operate on regular data structures such as one
and two-dimensional arrays, where the computational resources operate on each element of
the data structure in parallel. The compilers target accelerating DLP loops, vector processing
or SIMD mode of operation. CGRAs like Morphosys, Remarc, PADDI leverage SIMD
architecture. The compilers for these architectures target to exploit DLP in the applications.
However, DLP-only accelerators face performance issues while the accelerating region does

not have any DLP, i.e. there are inter iteration data dependency.

1.2.2 Instruction Level Parallelism (ILP)

As for the compute intensive applications, nested loops perform computations on arrays of
data, that can provide a lot of ILP. For this reason, most of the compilers tend to exploit ILP
for the underlying CGRA architecture.

State of the art compilers which tend to exploit the ILP, like RegiMap [45], DRESC [74],
Edge Centric Modulo Scheduling (EMS) [81] mostly rely on software pipelining. This
approach can manage to map the innermost loop body in a pipelined manner. On the other
hand, for the outer loops, CPU must initiate each iteration in the CGRA, which causes
significant overhead in the synchronization between the CGRA and CPU execution. Liu et
al in [67] pinpointed this issue and proposed to map maximum of two levels of loops using
polyhedral transformation on the loops. However, this approach is not generic as it cannot
scale to an arbitrary number of loops. Some approaches [66] [62] use loop unrolling for the
kernels. The basic assumption for these implementations is that the innermost loop’s trip

count is not large. Hence, the solutions end up doing partial unroll of the innermost loops. The
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outer loops remain to be executed by the host processor. As most of the proposed compilers
handle innermost loop of the kernels, they mostly bank upon the partial predication [48] [13]
and full predication [4] techniques to map the conditionals inside the loop body.

Partial predication maps instructions of both if-part and else-part on different PEs. If both
the if-part and the else-part update the same variable, the result is computed by selecting the
output from the path that must have been executed based on the evaluation of the branch
condition. This technique increases the utilization of the PEs, at the cost of higher energy
consumption due to execution of both paths in a conditional. Unlike partial predication, in
full predication all instructions are predicated. Instructions on each path of a control flow,
which are sequentially configured onto PEs, will be executed if the predicate value of the
instruction is similar with the flag in the PEs. Hence, the instructions in the false path do
not get executed. The sequential arrangement of the paths degrades the latency and energy
efficiency of this technique.

Full predication is upgraded in state based full predication [47]. This scheme prevents
the wasted instruction issues from false conditional path by introducing sleep and awake
mechanisms but fails to improve performance. Dual issue scheme [46] targets energy
efficiency by issuing two instructions to a PE simultaneously, one from the if-path, another
from the else-path. In this mechanism, the latency remains similar to that of the partial
predication with improved energy efficiency. However, this approach is too restrictive,
as far as imbalanced and nested conditionals are concerned. To map nested, imbalanced
conditionals and single loop onto CGRA, the triggered long instruction set architecture
(TLIA) is presented in [68]. This approach merges all the conditions present in kernels into
triggered instructions and creates instruction pool for each triggered instruction. As the depth
of the nested conditionals increases the performance of this approach decreases. As far as the
loop nests are concerned, the TLIA approach reaches bottleneck to accommodate the large
set of triggered instructions into the limited set of PEs.

1.2.3 Thread Level Parallelism

To exploit TLP, compilers partition the program into multiple parallel threads, each of which
is then mapped onto a set of PEs. Compilers for RAW, PACT, KressArray leverage on TLP.
To support parallel execution modes, the controller must be extended for supporting the call
stack and synchronizing the threads. As a result, power consumption is increased.

The TRIPS controller supports four operation modes of operation to support all the types
of parallelism [96]. The first mode is configured to execute single thread in all the PEs,
exploiting ILP. In the second mode, the four rows execute four independent threads exploiting
TLP. In the third mode, fine-grained multi-threading is supported by time-multiplexing all
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PEs over multiple threads. In the fourth mode each PE of a row executes the same operation,
thus implementing SIMD, exploiting DLP. Thus, the TRIPS compiler can exploit the most
suited form of parallelism.

The compiler for REDEFINE exploits TLP and DLP to accelerate a set of HPC applica-
tions. Table 1.2 presents an overview of several architectural and compilation aspects of the
state of the art CGRA designs.

Table 1.2 CGRA design space and compiler support: CR - Computational Resources;
IN - Interconnect Network; RC - Reconfigurability; MM - Memory management; CS -
Compilation Support; MP - Mapping; PR - Parallelism

High performance targets
. CS
Architecture CR IN RC MM NP PR
RAW RISC core | Hybrid static and | CDFG | TLP
dynamic
ILP,
TRIPS ALU NoC Dynamic | FU CDFG DLP,
TLP
) . DLP,
REDEFINE | ALU Hybrid Dynamic | FU CDFG TLP
ReMAP DSP core | Programmable | Dynamic | FU CDFG TLP
MorphoSys ALU Hybrid P2P Dynamic | FU DFG })LII‘)P
Low-power targets
ADRES FU Hybrid P2P Dynamic | VLIW host | DFG ILP
Smartcell ALU Hybrid Dynamic | PE CDFG 31111;;
PACT XPP ALU Hybrid Dynamic | PE CDFG TLP
TCPA ALU Hybrid Dynamic | PE CDFG TLP
AsAP ALU Mesh 2D Dynamic | PE CDFG TLP
MUCCRA-3 | FU Hybrid P2P Dynamic | VLIW host | DFG ILP
RaPiD ALU Busbased | bucand | pp DFG DLP
dynamic
Ultra-low-power targets
CMA ALU Hybrid P2P | Dynamic | DO ™0 | pota flow | ILP
controller
ULP-SRP FU Mesh-x Dynamic | VLIW host | Data flow | ILP
SYSCORE ALU Hybrid Dynamic | DSP host Data flow | DLP
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1.3 Mapping

Mapping process assigns data and operations onto the CGRA resources. The process
comprises of scheduling and binding of the operations and data on the functional units and
registers respectively. Depending upon how these two steps are realized, mapping process
can be divided into two classes.

The first one solves scheduling and binding sequentially using heuristics and/or meta-
heuristics [61] [81] [37] or exact methods [44] [45]. [81] and [37] implement heuristic based
iterative modulo scheduling [87] approach. In [81] an edge-based binding heuristic is used
(instead of classical node-based approaches) to reduce the number of fails. In [37], binding
problem is addressed by combining a routing heuristic from FPGA synthesis and a Simulated
Annealing (SA) algorithm for placement. Schedulable operation nodes are moved randomly
according to a decreasing temperature and a cost function. To efficiently explore the solution
space, the temperature needs to be high. Slow decrease in the probability of accepting worse
solutions effects the computation time. [61] proposes to improve the computation time, by
finding a solution on a simplified problem with heuristic-based methods for both scheduling
and binding at first and then trying to improve the initial solution with a genetic algorithm.
However, the use of only one seed limits the ability to explore the whole solution space.
Mapping proposed in EPIMap [44] and REGIMap [45] solve the scheduling and the binding
problems sequentially by using a heuristic and an exact method respectively. Scheduling is
made implicit by integrating both architectural constraints (i.e. the number of operations
simultaneously executable on the CGRA and the maximum out-degree of each operation due
to the communication network) and timing aspect into the DFG by statically transforming it.
Binding is addressed by finding the common sub-graph between the transformed DFGs and a
time extended CGRA with Levi’s algorithm [63]. However, since the graph transformations
are done statically, it becomes difficult to know which transformation is relevant at a given
time. This reduces the ability of the method to efficiently explore the solution space since the
problem is over-constrained. Mapping proposed using graph minor approach in [15] also
uses graph transformation and sub-graph matching to find the placement.

The second category solves the scheduling and binding problem concurrently. The
mappings proposed in [61], [9], [84] use exact methods, e.g. ILP-based algorithms, to find
the optimal results. Due to the exactness of the approaches, these methods suffer from
scalability issues. DRESC [74] and its extension [27] that can cope with RFs, leverage on
metaheuristics. These are based on a Simulated Annealing (SA) framework that includes
a guided stochastic algorithm. The classical placement and routing problem which can be

solved with SA, is extended in three dimensions to include scheduling. Thus, schedulable
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operation nodes are moved randomly through time and space. Therefore, the convergence is
even slower than for other SA based methods as it includes scheduling.

The key idea of the mapping approach in this work is to combine the advantages of
exact, heuristic and meta-heuristic methods while offsetting their respective drawbacks as
much as possible. Hence, as detailed in chapter 4, scheduling and binding problems are
solved simultaneously using a heuristic-based algorithm and a randomly degenerated exact
method respectively and transforming the formal model of the application dynamically when
necessary.

1.4 Representative CGRAs

In this section, we present five well-known and representative CGRA architectures chosen

due to their unique network model, functional units and memory hierarchy.

1.4.1 MorphoSys

The MorphoSys reconfigurable array (Figure 1.3) consists of an 8 x8 grid of reconfigurable
cells (RCs), each of which contains an ALU, RF and multiplier. The interconnect network
consists of four quadrants that are connected in columns and rows. Inside each quadrant a
dense mesh network ((Figure 1.3 (a)) is implemented. At the global level, there are buses that
support inter-quadrant connectivity ((Figure 1.3 (b)). The context memory stores multiple
contexts which are broadcast to row or column-wise providing SIMD functionality. Each
unit is configured by a 32-bit configuration word. A compiler is developed based on extended
C language, but partitioning is performed manually.

1.4.2 ADRES

The ADRES architecture (Figure 1.4) comprises of an array of PEs tightly coupled with a
VLIW processor. The reconfigurable cells (RC) consist of ALU and register file and tiny
instruction memory. RCs are connected through a mesh interconnection network. A predica-
tion network is implemented to execute conditionals. The register file in VLIW processor is
shared with the RC array. This reduces the communication between reconfigurable matrix
and memory subsystem. ADRES features a C compiler for both VLIW and CGRA.
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1.4.3 RAW

The RAW architecture (Figure 1.5) is an array of RISC-based pipelined FUs. Each FU
consists of instruction and data memory. The FUs communicate via a programmable inter-
connect network. Each FU is connected to switch that controls the destination addresses
used by the network interface, hence, the routing can be statically scheduled. When no data
transfer is scheduled on the network, the instruction scheduled dynamically by RAW control
unit can utilize the network as a dynamic one. A compiler based on a high-level language

implementing TIERS based [97] place and route is available.
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Fig. 1.5 RAW Architecture
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TCPA (Figure 1.6) consists of an array of heterogeneous, VLIW-style FUs, connected via
a programmable network. The heterogeneity of the FUs is a design-time decision. The
interconnect between the FUs is statically configured and forms direct connections between
the FUs. Each FU has a (horizontal and vertical) mask that allows individual reconfiguration
of FUs. In this way, SIMD type behaviour can also be implemented. Unlike conventional
VLIW processors, the register files in these FUs are explicitly controlled. Compilation for the
architecture is introduced in [102] where algorithms are described in PAULA language [49],
designed for multi-dimensional data intensive applications.

1.4.5 PACT XPP

PACT XPP defines two types of processing array elements (PAE). One for computation
and another with local RAM. The PAEs are connected with a packet-based network and
computation is event driven. Figure 1.7 presents the architecture of a PAE. The typical
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Fig. 1.7 PAE architecture of PACT XPP

PAE contains a back registers (BREG) object and forward register (FREG) object which are
used for vertical routing, as well as an ALU object which performs the actual computations.
Both the operation of the PAEs and the communication are reconfigurable resulting in a
large number of configuration bits. The event driven compute model means the control flow
is handled in a decentralized fashion such that a configuration can be kept static as long
as possible. To support irregular computations that do require to update the configuration,
PACT XPP uses two techniques. Firstly, configurations are cached locally to enable fast
configuration and secondly, partial configurations are supported. Partial configurations only
update selected bits, which can keep them small in many cases, optimizing the use of the
local configuration cache.

1.5 Conclusion

This chapter presented an overview of different CGRAs and their execution models. Different
architectural and compilation approaches have been presented for a comprehensive view of
wide spectrum of the design and compilation. In the next chapter, we make design choices
and focus on implementing CGRA operating in ultra-low power domain.



Chapter 2

Design of The Reconfigurable
Accelerator

Due to the increasing complexity of near-sensor data analytics algorithms, low power em-
bedded applications such as Wireless Sensor Networks (WSN), Internet of Things (IoT)
and wearable sensors combine the requirement of high performance and extreme energy
efficiency in a mW power envelope [7]. While traditional ultra-low power sensor processing
circuits rely on hardwired Application Specific Integrated Circuit (ASIC) architectures [29],
near-threshold parallel computing is emerging as a promising solution to exploit the energy
boost given by low-voltage operation while recovering the related performance degradation
through execution over multiple programmable processors [91].

Even though exploitation of parallel ultra-low power computing provides maximum
flexibility, a dominating majority of the power consumed during processing is linked to the
typical overheads of instruction processors [39], such as complex fetching and decoding of
instructions, control and data-path pipeline overheads (up to 40%), and the load and store
overhead needed for processors to work with their L1 memory (up to 30%).

In this chapter, we make significant step forward in parallel near-threshold computing
toward the goal of achieving the energy efficiency of application-specific data-paths, by ex-
ploiting the Coarse Grain Reconfigurable Array (CGRA) architectural template and revisiting
it to fit within an ultra-low power (mW) power envelope. Some of the primary objectives
that motivates highly flexible ULP CGRA design are discussed in the following.

* Flexibility: Flexibility is the key accomplishment relying on a reconfigurable fabric.
However, along the design path, there are several compromises made to satisfy design
constraints. As an example, the RaPiD [20] architecture limits the number of config-

uration bits to be fetched by making a small part of the configuration reconfigurable
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per cycle. The MorphoSys design reduces the reconfiguration overhead by limiting
the supported code to SIMD. To achieve better energy efficiency, other CGRA design
which support MIMD, like ADRES [8], CMA [101], ULP-SRP [53] relies on execut-
ing the innermost loop only to avoid the control flow hazards. If conditionals exist
in the innermost loop, they are tackled in software by flattening them using several

predication techniques.

All the restrictions are mostly addressed in the design entry point, where a high level
language is used to program the CGRAs. As a result, restrictions in reconfigurability
eventually leads to the programmability issues. As previously mentioned, most CGRAs
use C language as the entry point, ideally, the designs and their compilers should be
able to find a mapping for any valid C program. In practice, this is not the case: only
the loops, particularly the innermost loops are mapped onto the CGRAs. In addition,
the designs use a subset of C language. In other words, they do not support use of
pointer-based access, recursions etc. However, well-structured loops can be written

without these structures, but the fact of re-engineering the source code remains.

As flexibility is our primary design philosophy, we prioritize executing any C program,
not just the loop kernels. This is achieved by implementing low cost control flow
support in the hardware, and an efficient control flow mapping support in the compiler
(see chapter 3).

Utilization: One of the most critical design choices is the processing element. Since
high performance is achieved by exploiting parallelism, choice of the computing unit
(FU, ALU) is of paramount importance. FUs are of limited functionality, hence, the
reduced area of each unit allows to have a larger number of them in a fabric. However,
given an interconnect network, the interaction between the FUs gets limited. For
illustration, let us assume a CGRA which comprises FUs interconnected through
a mesh-torus topology. Each FU interacts with four of its neighbours. For better
utilization, the types of these four FUs must be chosen carefully depending upon the
certain instruction sequence in the application domain. If the instruction sequence does
not match the type of the neighbouring FUs, it will result multi-hop communication to
other FUs. This eventually leads to less utilization of the FUs resulting bottleneck for
exploiting parallelism. Use of full fledged ALU supports wide range of functionality

increasing the utilization and chance of better exploiting parallelism.

Another design goal is to achieve high energy efficiency, which is achieved by the data
locality. In other words, data must stay as close as possible to the computing unit. As,
registers are the closest possible storage unit to the processing part, high utilization
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of register files increases the possibility of achieving high energy efficiency. There
are two kinds of data in an application except the regular array inputs and outputs:
the recurring variables (repeatedly written and read) and the constants. In this thesis,
we show that register files can be efficiently used to store the recurring variables
present not only in the loops but in an application. The existing designs use the shared
memory to store the constants. Indeed, storing constants in the memory helps to
reduce the instruction width or configuration overhead, but accessing shared/central
register file [8] or memory [98] results in higher latency, and increase in the number of
load-stores, degrading performance and energy efficiency. In this work, we take care
of constants by introducing the concept of constant register file (CRF) which helps
local access of constants at the time of execution.

Interconnect Network: Since energy efficiency is first order design constraint in the

thesis, the focus is on low power choices for the interconnect networks.

Both for static and dynamic reconfigurable CGRAs, there are two phases involved
in the execution process. The first one is the configuration phase, when the fabric
is reconfigured partially or fully. The second one is the compute phase, when com-
putations are performed on the data. To efficiently support the phases there must
be two interconnect networks involved: (a) network to distribute the instruction, (b)
network to support the data flow. Depending on the computation model, frequency of
performing configuration and compute phase, and ratio between their effective time

must be analysed for choosing the ideal interconnect network.

To give a clear perspective, first, we consider the case for a statically configurable
CGRA, where each PE executes single instruction in the whole execution. In this case,
the ratio between the computation time and configuration time is usually high. In other
words, much time is spent on the computation compared to the configuration. Hence,
for computation, low cost interconnect networks (i.e. mesh 2D) provide better energy
efficiency. Since configuration or instructions are supplied to the PEs at once, high cost
interconnect network can be afforded for better performance. If the size of the CGRA
is small, then it may require frequent configuration. In this case, the better choice for
instruction delivery network may be a bus-based network [50].

In the dynamically reconfigurable CGRAs, there may be two types of arrangements.
The first one uses a centralized configuration memory. The configurations or instruc-
tions are accessed by the PEs from the centralized memory in each cycle. Due to
centralized access of instructions, the PEs must access the configurations frequently.
Since the configuration phase is frequent, it is convenient to merge the instruction
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and data distribution networks. In other words, the same interconnect network can
be used for both instruction and data distribution. However, if they are performed
simultaneously, then loading of instructions affects the data movement due to the
use of shared resources. Certainly, some of these conflicts can be avoided through
appropriate choice of placement and routing of data and instructions onto the CGRA.
Many designs like SmartCell, TRIPS employ NoC as a unified network, which gives a
great flexibility in routing data and instructions. In NoC, the destination is specified
as a part of the packet and it is then routed based on a hard-wired routing algorithm.
However, the flexibility comes with a cost of added power consumption in hardware

routing and composing/decomposing of packets.

If the PEs consist of local configuration or instruction memories, the solution can
be arranged differently for efficiency. Although the configuration happens in every
cycle, no interconnect network is involved to deliver them to the PEs. Instead, the
configuration memories are filled prior to the execution starts. Hence, the solution
for filling the configuration or instruction memories can be viewed as streaming the
instructions before starting the compute stage in statically reconfigurable CGRA.

Hence, the arrangements of the network may also be similar.

Instruction set architecture: It is essential to keep each processing element small to
maximize the number of processing parts that can fit on a chip. Employing simple
instruction set architecture helps to minimize the cost of instruction fetching and
decoding.

Control flow support: Acceleration of applications generally depends on efficient
computation of the innermost loop kernel. Usually, the host processor takes in charge
of initiating the outer loops. This scheme requires regular communication with the
host processor, which in turn increases the synchronization overhead. For low power
target, it becomes essential for the accelerator to have support for control flow, in order

to minimize the communication with the host and synchronization overhead.

Compilation: Automated compilation tools are required alongside the hardware
designs, which map applications to the target architectures. A good compilation tool

must exploit data locality references (see Chapter 4) for better energy efficiency.
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2.1 Design Choices

Based on the discussions presented above, our reconfigurable fabric is designed as an
interconnection of typically 4x4 processing elements consisting ALUs. We employ a
mesh-torus based network for the data flow and a bus-based interconnection network for
configuration. As, the size of the CGRA, interconnection topology and RF size are important
dimensions of the architecture, we performed experiments to support the design choices.

Nine applications from signal processing domain have been used for our experiments
(Table 2.1). We have used fully unrolled version of these applications. The increased code
size of the applications after full unrolling helps to understand how the limit in the size of the
CGRA, local RFs and interconnect network impacts on the performance. As, the data flow
graphs (DFG) of the fully unrolled applications are mapped onto the CGRA, we consider
ASAP (As-soon-as-possible schedule) length of the DFGs as the best performance metric.
The cycles taken by the CGRA to compute the DFG will be similar to the ASAP length of
the DFG if the particular configuration can exploit all the parallelism (maximum number of
operations present in a cycle) available in the application.

Table 2.1 Characteristics of the benchmarks used for design space exploration

Benchmark nodes | ASAP | Parallelism
2D Discrete Cosine Transform (DCT-2D) 711 81 32
matrix product 504 98 32
Fast Fourier Transform (FFT) 1348 37 64
Trapizoidal (Trapez) filter 332 59 32
Exponential Moving Average Filter (EMA) | 412 99 38
Moving Window De-convolution (MWD) 440 112 32
Unsharp Mask 91 27 16
Elliptic Filter 130 31 16
DC Filter 507 96 32

In the experiments, we consider CGRAs with different dimensions (3x3, 4x4, 5x5),
with different RF sizes (6, 8, 16, 24), and with different P2P topology (mesh torus, mesh-x,
fully connected). Figure 2.1 represents performance of a 3x3 CGRA with different RF
sizes and topologies, normalized to the ASAP length of the application DFGs. Similarly,
Figure 2.2 and 2.3 presents the performance analysis in 4 x4 and 5x5. Latencies closer to
the ASAP value represents better performance. A normalized latency of value 0.5 means that
the specific configuration is unable to find a mapping solution.

The performance trend is similar to other dimensions of the CGRA, except the fact that
graph with higher dimensions consist less number of bars with 0.5 normalized latency, which
implies that finding mapping solutions is highly probable in CGRAs with higher dimensions,
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as expected. However, for this extensive set of experiments the 4 x4 CGRA with RF size
of 8 is able to find solutions for all the applications with the minimum overhead possible
among all the combinations of CGRA configurations. Fig. 2.2 shows that increasing the RF
size does not result revolutionary performance gain. After a certain RF size (which depends
on the application), the performance does not increase. With the increased interconnection
complexity, performance is enhanced, but the small performance gains are not encouraging
enough to go for a more complex solution.
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Fig. 2.2 Latency comparison for 4 x4 CGRA

With the choice of a 4 x4 CGRA with RF size of 8 and mesh-torus topology we move
forward to design the novel CGRA architecture referred to as Integrated Programmable Array
(IPA) [25].

To cope with the ultra-low power profile and memory sharing challenges, IPA involves a
multi-bank Tightly Coupled Data Memory (TCDM) coupled with a flexible and configurable

memory hierarchy for data storage. As shown in Figure 2.4, from an architectural viewpoint,
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Fig. 2.3 Latency comparison for 5x5 CGRA

point-to-point data communication between processing elements (PEs) (Figure 2.4(b)) during
kernel execution, represents a key advantage over energy-hungry data sharing over shared
memory that is required when using a traditional processor-cluster architecture (Figure 2.4(a))
for parallel processing. Table 2.2 shows that the IPA cluster performs a lower number of
memory operations on the sample program presented in the Listing 2.1, which in turn gives
energy improvement of 1.3 over the clustered multi-core architecture, which performs data
sharing through the TCDM. In this comparison, we even ignore the barrier synchronization
overheads in the many-core cluster for the sake of simplicity.

The IPA approach allows to significantly reduce the pressure on L.1 memory. Hence, it
requires a smaller number of banks to achieve low contention [91]. As opposed to clustered
multi-core architectures, where data-exchange among cores is managed through shared data
structures and OpenMP parallel processing constructs, in CGRAs the compiler must take
care of data-exchange among PEs by exploiting point-to-point connections among the PEs as
much as possible to minimize shared memory accesses.
for(i=0; i<l; i++)

{

s A[i] = B[i] = C[1i]

}
for(i=0; i<l; i++)
{

sum = sum + A[i];

}

Listing 2.1 Sample program to execute in the multi-core and IPA cluster
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Fig. 2.4 (a) multi-core Cluster and (b) IPA cluster executing the sample program in Listing 2.1.
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Table 2.2 Energy consumption comparison between multi-core and IPA while executing the
sample program in Figure 2.4(a)

Average energy consumption in pJ/operation
Load-Store | Arithmetic MOV
operations operations | operation
4.2 3.4 3.1
Total energy consumption
Total Total Total Energy Gain
#Load-Store | #Arithmetic | #MOV (rJ)
Multi-Core 8 3 0 43.8 -
IPA 4 3 2 33.2 | 1.3x

2.2 Integrated Programmable Array Architecture

The architecture comprises a PE array, a global context memory, a controller, a tightly coupled
data memory (TCDM) with multiple banks and a logarithmic interconnect. Figure 2.5 shows

the organization of the IPA. In the following we discuss the components of the IPA fabric.

2.2.1 IPA components
Global Context Memory (GCM)

The configurations for the PEs are stored in the Global Context Memory. Prior to the
computation starts in the PE array, the configurations are loaded into the PEs through the bus-
based network. The configurations contain instructions and the non-recurring variables which

are stored into the instruction register file and constant register file of each PE respectively.

IPA Controller (IPAC)

The IPA controller identifies configuration data for the corresponding PE and transfers it
in the load context stage. It also initiates the execution phase after loading all the contexts.
The IPAC handles the important task of synchronizing with the host processor which will be

discussed in the following chapter where we integrate the IPA in a multi-core platform.

PE Array (PEA)

The PE Array follows the multiple instruction, multiple data (MIMD) model of computation.
All PEs operate on different set of instructions. A bus based interconnect network is imple-

mented to load instructions and constants (i.e. context) from the GCM into the PEs, whereas
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Fig. 2.5 System level description of the Integrated Programmable Array Architecture

the torus network is used during execution phase for low power data communication between
the PEs. The details of the load context protocol are discussed later in this chapter. To achieve
low power execution, the instruction set architecture was designed from the scratch resulting
20-bit long instruction. We took the advantage of the visibility of the micro-architecture to
the compiler and shifted the immediate data to constant register file in the PEs (discussed
later) which eases the compression of the instruction, imposing low pressure on the decoder.
The details of components of the PEs are discussed in the following.

The PE array consists of a parametric number of PEs (the optimal number of PEs is
studied in section 2.1), connected with mesh torus network for the data flow and a bus-based
network for instruction distribution. Figure 2.6 describes the components of a PE. Two Muxes
(INO and INT) selects the inputs of each PE. The input sources are the neighbouring PEs and
the register file. A 32-bits ALU and a 16-bits x 16-bits = 32-bits multiplier are employed in
this block. The Load Store Unit (LSU) is optional for the PEs (the optimal number of LSU is
a parameter studied later in this chapter). The Control unit is responsible for fetching the
instruction from the corresponding address of the instruction memory and managing program
flow. The Constant Register File (CRF) stores the non-recurring values or constants, while

the Regular Register File (RRF) and Output Register (OPR) store the recurring variables.
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Control flow support: In order to minimize the synchronization overhead with the host
processor, the PEs support branch instructions for executing loops and conditionals. The
Controller in the PE fetches the instructions from the Instruction Register File (IRF). If the
decoded instruction is a jump, the target address of the jump is stored in the Jump Register
(JR). The cjump (conditional jump) instruction contains two target addresses. The true path
is evaluated in the JR by the Boolean OR of the Condition Register (CR) bits of the PEs.

Power Management Unit (PMU)

To reduce dynamic power consumption in idle mode, each PE contains a tiny Power Manage-
ment Unit (PMU) which clock gates the PEs when idle. An idle condition for a PE arises
from three situations: (i) Unused PE: when a PE is not used during mapping; (ii) Load
Store stall: In case of TCDM banking conflict the PMU generates a global stall, which
is broadcast to all the PEs. Until the global stall is resolved, all the PEs are clock gated
by their corresponding PMUs. LSUs are placed in the global clock region (Figure 2.6) to
avoid deadlocks; (iii) Multiple NOP operations: a NOP instruction contains the number of
successive NOPs. When a NOP instruction is fetched, the decoder loads this number into a
counter within the PMU. The clockgate_en remains low until the count reaches zero. The
counter gets halted when it encounters a global stall and resumes the count after the stall is
resolved, synchronizing the execution flow among PEs.

Due to the fine-grained nature of the power management, more aggressive power gating
is not implemented, since it imposes large area penalty without significant benefits. Since the
leakage power of each tile is so small that does not change significantly the energy efficiency

when the rest of the system is active.

TCDM and logarithmic interconnect

The TCDM acts as L1 memory for the IPA. Featuring a number of ports equal to the number
of memory banks, it provides concurrent access to different memory locations. The TCDM is
interfaced with the LSUs of the PE array through a low latency, logarithmic interconnect [85],
implementing a word level interleaving scheme to minimize access contention. To optimize
the performance and energy efficiency, we explore the IPA architecture with special focus on

shared memory access in the next section.

2.2.2 Computation Model

After compiling a kernel (see the Chapter 5), the compiler generates the assembly and the

addresses for the input and output data in the local shared memory. The assembler takes the
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assembly and the Instruction Set Architecture (ISA) of the IPA, to generate the context (i.e.
the program to be stored into the IRF) for each PE, which is pre-loaded in the GCM. The
context contains instructions and constants for each PE in the array. Prior to the execution
start, the context is loaded into the corresponding IRF and CRF of the PEs. We assume that
the code fits in the local memory. Larger execution contexts can be handled using the IPA

controller and overlays.

Load context

Figure 2.7 shows the configuration network to load the context in each PE. In each cycle of
this stage the IPAC receives the context word from the GCM and broadcasts to the PEs. For
the PEs with same instruction, broadcast mode is used to distribute instruction to a set of PEs.
To load PEs with non-identical set of instructions and constants normal addressing mode is

used. The organization of context word in these two modes are described in the following.

Global context
memory

CRF Constant Register File
Instruction Register File

ey Data bus
—p Address bus

Fig. 2.7 The configuration network for load-context

The GCM (Figure 2.8) contains the context of the PEs. Each address in the GCM contains
a 64-bits context word. To distinguish between several sets of the instructions and constants,
the GCM is divided into several segments (table 2.3), where each segment contains a set
of instructions and constants to be broadcast or normally addressed. The first bit in each
segment represents whether the next set of instructions is addressed to broadcast (0) or
normal addressing mode (1). In broadcast mode following 16 bits represent the mask, where
the position of the high bits represents the addresses of the PEs to be broadcast. For normal
addressing mode, only 4 bits are used to address the target PE.
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Table 2.3 Structure of a segment

Number of bits Encoded information

1 Addressing modes

4/16 Normal Address/Mask

6 Total number of instructions (N)
4 Total number of constants (M)
20xN Instructions

32xM Constants

. - . . 1bit 5 bit - IRF/CRF
20x3 bit - Instructions/ 32x2 - bitConstants 16 bit - PE select IRE/CRE select

64 bits Data bus 21 bits Address bus

Fig. 2.9 Format of the data and address bus in the configuration network

The format of the address and data bus in the configuration network is presented in
Figure 2.9. The address bus encodes 22 bits of information containing the 16 bits mask or
address of the target PE, 1 bit to select IRF or CRF followed by 5 bits address. The 64 bits

data bus consists of 20x 3 bits instruction or 32 x 2 bits constant.

Execution

In every cycle, each PE fetches 20-bits instruction from the local IRF. Table 2.4 describes
the instruction format. The first field in the instruction is used to present the opcode, which
is of 5 bits width supporting a maximum of 32 different operations. Details of supported
operations are in Table 2.5.
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Table 2.4 Instruction format

5 bits 2 bits | 3 bits | 1 bit | 4 bits | 1 bit | 4 bits
D
Opeode Oﬁngut stgt INO | INO | INI | INI
Type | Addr | Type | Addr
type | Addr P P
Jmp Address unused
) Address of the | Address of the
Cjmp unused
true path false path
Number of
NOP consecutive unused
NOPs
example(int¥, int*):
Initializati ush {17
fHatization IS)ub sf,, s}p, #0 |—> PE] R PE2 R PE3 «J
Loop control add 17, sp, #0
- Compute and str 10, [17, #4] (©
store str1l, [17, #0] PE1:1d12, 0
mov 13, #0 PE2: 1d 12, 4
str 13, [r7, #12] PE3:1d 2. 8  Cycle 1
b2 PE4:1d 12, 16
int example(int a[4], int b[4])
. ~ Cycle 2
nt 1;
for(i=0; i<4; i++)
{
(@) (d)
Idr 13, [r7, #12]
add 13,3, #1
str 13, [17, #12]

L2:1dr 13, [r7, #12] Total | Total #exec | Speed
cmp 13, #3 #Inst cycles up
ite gt
movgt 13, #0 Lo e =
movle 13, #1 IPA 12 3 28x

(b) uxtb r3,r3
cmp 13, #0 (e)
time y bne L3

Fig. 2.10 (a) Sample program (b) Execution in CPU (c) Example PEA (d) Execution in IPA
(e) Execution metrics in CPU and IPA
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Figure 2.10 shows the execution of a sample program in a traditional CPU and the IPA.
The total number of instructions for the sample program in the CPU and the IPA are 31 and
12 respectively. Also, the IPA achieves 28 x performance gain compared to that of the CPU
while executing the sample program. The decrease in the number of instructions in the IPA
in this specific example is mainly due to the much lower number of memory operations and

the fact that the small loop can be completely unrolled without code size blown-up.

2.3 Conclusion

In this chapter, we presented the design of a CGRA targeting ultra-low power computing.
The proposed Integrated Programmable-Array (IPA) is a 2-D array of NxN processing
elements involving two layers of interconnect network. The context distribution network
uses a bus-based solution for better performance, while the data distribution network uses
a mesh-torus based solution for better energy efficiency. The proposed design leverages a
multi-banked tightly coupled data memory for data storage to ease the integration in clustered
multi-core architectures. The compilation flow for the IPA is presented in the next chapter.
The succeeding chapter evaluates the performance and energy efficiency along with the

implementation of the IPA.
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Table 2.5 Summary of the opcodes (R = Result, C = Condition bit)

Mnemonic | Opcode Instruction Operation
NOP 0x00 | No operation -
UADD 0x01 | Unsigned addition Ié - (OU) Opl+0p2
SADD 0x02 | Signed addition Ié i gp 1+0p2
SSUB 0x03 | Signed subtraction Ié i gp 1-Op2
= *

SMUL 0x04 | Signed multiplication ’é - gPl Op2
LS 0x06 | Shift left R = Opl«Op2

C=0
RS 0x06 | Shift right Ié i gp] »Op2
LD 0x07 | Load :
STR 0x09 Store i
AND 0xOb | Bit-wise AND Ié = gpl &Op2
OR 0xOc | Bit-wise OR R = OpllOp2

C=0
NOT 0x0d | Bit-wise NOT ’é = gpl
XOR 0x0e | Bit-wise XOR Ié = gpl © Op2
MOV 0x0f Copy input to output Ié i gp 1

if (Opl1<=0p2)
LTE 0x10 Conditional less than equal eClsz I

C=0

if (Op1>=0p2)
GTE Ox11 Conditional greater than equal ecl; 1

C=0

if (Opl!=0p2)
NE 0x12 | Conditional not equal C=1

else

C=0
EOC Ox1f | End of computation ;







Chapter 3

Compilation flow for the Integrated
Programmable Array Architecture

Over the last twenty five years, CGRAs have been an active field of research. However, the
lack of efficient and automated compiler prevents widespread use of the CGRAs. As opposed
to the general purpose computing platforms, the micro-architecture of a CGRA must be
visible to the compiler to be able to improve performance by extracting the advantages of the
underlying interconnect network and distribution of register files.

In this chapter, we discuss about the design of a compiler to map programs onto a CGRA
specifically for the IPA. First, we present the background and the problems for mapping
applications onto CGRAs. Then, we study the design of the compiler based on a CGRA

model, which can be varied to accommodate a wide range of CGRA designs.

3.1 Background

As discussed earlier the compiler must know the underlying architecture of the CGRA, it
takes two inputs. The first is the architecture model (PE array (PEA) of the IPA), and the
second is the application described by a high level language, in our case it is ANSI-C code of

the application.

3.1.1 Architecture model

The PEA is modelled by a bipartite directed graph with two types of nodes: operators and
registers. Timing is implicitly represented by connections between registers and operators,
which is referred to as the time extended model of the PEA [45]. Two types of operator nodes
are defined for the PEAs. The first type is the computing operator (functional unit (FU) nodes
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in Figure 3.1(a)) that represents the physical implementation of an arithmetic and logical
operation (+, X, -, OR, AND) and/or memory access (e.g. load/store). The second type
of operator is the memorization operator (circular nodes in Figure 3.1(b)). It is associated
with the output register and represents the operation of keeping a value in a local register
explicitly.

Figure 3.1 (a) shows a sample PEA with two PEs connected by a torus network. Each
PE has 3 registers in the distributed register file, and a single output register. Figure 3.1 (b)
represents the time extended model of the PEA shown in Figure 3.1 (a).

In this model, one can vary the interconnect network, the distribution and size of the

register file, and the type of the PE, to explore different PEA designs.

3.1.2 Application model

The application is modelled as a control and data flow graph (CDFG). Supporting control flow
gives the opportunity to accelerate a kernel without any intervention of the host processor. A
CDFG is depicted as G = (V,E) where V is the set of basic blocks and E CV x V is the set
of directed edges representing control flow. A Basic Block (BB) is represented as a data flow
graph (DFG) or BB = (D, 0,A) where D is the set of data nodes, O is the set of operation
nodes and A is the set of arcs representing dependencies. The control flow from one basic
block to another is supported with jump (jmp) and conditional jump (cjmp) instructions.
Figure 3.2 shows the CDFG representation of the sample program presented in Listing 3.1.
In the figure, basic blocks are represented as blue rectangles. The flow from one basic block
to another basic block is represented by black arrows and managed by simple branch (jmp)
operation. The true and false paths of a conditional managed by c¢jmp, are shown by solid and
dashed arrows respectively. The execution flow of the CDFG is presented as: BB_1 — BB_2
— (either BB_3 or BB_8) if BBy — BB_4 — (either BB_5 or BB_6) —+BB_ 7 —>BB_2 ---.
In order to maintain the execution flow, it is necessary to synchronize all the PEs in the
array, to the execution of the same basic block. When the execution flow jumps from one
basic block to another, all the PEs in the PEA must be synchronized to the current basic
block execution. This allows to use all the PEs concurrently or sequentially, while executing
a single basic block, since only one basic block is executed at a time. Dually, several basic
blocks can use the same PE. The synchronized execution allows the compiler to map several
operations and data onto the same PE. Next, we present the homomorphism of the CDFG

model with the application model, to support different stages in the compilation flow.
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Fig. 3.1 (a) A 2x1 PEA with 3 registers in RF and one output register (c) CDFG model (b) A
possible mapping of (b) onto the PEA over 4 cycles using register allocation based approach.
(d) The transformed CDFG of (b) for systematic load store based approach (e) A possible
mapping of (d) onto the PEA over 7 cycles using systematic load store based approach



48 Compilation flow for the Integrated Programmable Array Architecture

1 //Sample program to demonstrate CDFG model

» X1 = 10;

s X2 = 20;

+ X3 = 500;

s X4 = 30;

¢ X5 = 50

7 for(i = 0; i < q; 1i++)
s {

o a =m[i] % XI;
0w b =mn[i] * X2;
11 c=b+a;

n if(c < X3)

13 pli] = ¢ + X4;
14 else

15 pli] = ¢ — X5;

Listing 3.1 Sample program with control flow

BB_1

X1=10; X2 = 20;
X3=500; X4 = 30;
X5=50;i=0;

I
|
I
|
v
B_8

Outside the
for loop

Fig. 3.2 CDFG representation of the sample program in 3.1
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3.1.3 Homomorphism

The basic blocks in the CDFG, presented in Figure 3.1(c), are composed of data nodes,
operation nodes, and data dependencies. Three equivalences between the basic block DFGs
and PEA model nodes are defined: (1) data and registers; (2) computation and computing
operators; (3) data dependences and connection between the time extended PE components.
As the two models are homomorphic, the mapping of a DFG onto the PEA is therefore a
problem equivalent to finding a DFG in the PEA graph.

Figure 3.1(b) represents a possible mapping of the sample CDFG in Figure 3.1(c) onto
the PEA in Figure 3.1(a) over 4 cycles.

3.1.4 Supporting Control Flow

One of the major challenges associated with all accelerators is to effectively handle control
flow in the applications. Since the goal of the compiler presented in this chapter is to execute
a complete program efficiently onto a CGRA, by control flow, we do not only mean the
conditionals which are present inside a loop body, but any conditional or unconditional
branch in general. For better understanding, we classify the control flow into three categories
as presented in Figure 3.3. The unconditional branches can be optimized by merging basic
blocks or straightening which is applicable to pairs of basic blocks such that the first has
no successors other than the second and the second has no predecessors other than the first.
If there exists more than one basic block in a program after optimization, which is often
the case, the underlying accelerator must support unconditional branch to avoid host

interference.

Unconditional
branch

Conditionals

Fig. 3.3 Classification of control flow present in an application

The fundamental problem for the conditionals are outcome of the branch at runtime.

Hence, effective resource allocation is a problem. Hardware accelerators and FPGAs executes
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both the paths of a conditional branch in parallel, and then choose the results of the true path.
This results in waste of resources and power. GP-GPUs also schedule the instructions and
allocated resources for both the paths of the conditionals, but at the runtime, instructions from
the false path are not issued. This saves power, but the cycles and resources allocated for the
not-taken path are still wasted. In the graphics processing community, this is referred to as
the problem of branch divergence. CGRAs widely use predication techniques to deal with
the conditionals. Fundamentally partial, and full predication are adapted by the compilers,
which are now discussed along with some other notable schemes.

Partial predication

Since conditionals are constructed by if-then-else (ITE), in partial predication, the operations
of both the if-part and the else-part are mapped on different PEs. If the same variable needs
to be updated in both the if-part and the else-part, the final result is computed by selecting
the output from the true path, which is decided at runtime. This is achieved through a special
operation, named select, which takes in the result of the branch condition from predicatesl,
and two updated values of the variable to select the correct one. If a variable is to be updated
in only one path, a select operation is still necessary to maintain the validity of the variable
for the upcoming cycles.

Figure 3.4 (a) shows the partial predication transformation of the CDFG presented in
Figure 3.1(c), and mapping of the transformed DFG onto the CGRA (Figure 3.1(a)) in
Figure 3.4(b). To map a conditional that has n operations on each path, the number of
operations for partial predication transformation is, in the worst-case, 3n. This is because all
the operations from both the paths must be mapped (2n), as well as the select operations (n),
assuming the worst-case produces outputs in each operation, which are used outside of the
conditionals.

Full predication

Full predication executes the two paths sequentially. Unlike partial predication the full
predication does not need the select operation, instead, the operations that update the same
variable are mapped to the same PE but in different cycles. Since only one of the operations
will be executed at runtime (and the other will be squashed), the correct value of the output
is present in the register file of that PE by the end of that iteration. If the paths have different
variables to update, then they can be mapped in different PEs. This is done so that after

A predicated network in hardware is necessary to support the execution
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Fig. 3.4 (a) Transformed DFG of the conditional presented in figure 3.1 by partial predication;
(b) Mapping of the DFG onto the CGRA in figure 3.1(a); (d) Transformed DFG of the
conditional presented in figure 3.1 by full predication; (c) Mapping of the DFG onto the
CGRA in figure 3.1(a)

executing an ITE, for each variable there is a unique PE, that has its value and therefore no
select operation is required.

Figure 3.4 (a) shows the full predication transformation of the CDFG presented in
Figure 3.1(c), and mapping of the transformed DFG onto the CGRA (Figure 3.1(a)) in
Figure 3.4(b). Since both the PEs update the same variable in this case, they are mapped onto
the same PE, and the output is validated at the end of the ITE execution. A conditional that
possesses n operations in each path, full predication DFG transformation in the worst-case
costs 2n. Since the execution of one path gets squashed, there is performance penalty in this

technique.

Others

Dual issue scheme [46] targets energy efficiency by issuing two instructions to a PE simul-
taneously, one from the if-path, another from the else-path. In this mechanism, the latency
remains similar to that of the partial predication with improved energy efficiency. However,
this approach is too restrictive, as far as imbalanced and nested conditionals are concerned.
To map nested, imbalanced conditionals and single loop onto CGRA, the triggered long
instruction set architecture (TLIA) is presented in [68]. This approach merges all the condi-
tionals present in kernels into triggered instructions, and creates instruction pool for each

triggered instruction. As the depth of the nested conditionals increases the performance of
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this approach decreases. As far as the loop nests are concerned, the TLIA approach reaches
bottleneck to accommodate the large set of triggered instructions into the limited set of PEs.

In this chapter, we address this problem by introducing a register allocation mapping
approach where both the true and false path can reuse the resources preventing the waste of
additional resource and power. This allows to map both loops and conditionals of any depth.
In our case, the only limitation in the mapping of kernels onto the CGRA 1is given by the size
of instruction memory of the PEs, and not by the structure of the application (i.e. number of
loops, and branches). Also, one can increase the size of code segment to be executed in the
CGRA as much as possible, minimizing the control and synchronization overheads with the
core, which is not negligible in the other approaches.

Traditional CGRAs manage to execute only the innermost loop, since they lack the support
for branches. The traditional software pipelining is an excellent choice for accelerating the
innermost loop only. Compilation flow proposed in [81], [74], [45], [43] [35] [14] use
modulo scheduling [87] for innermost loop pipelining. For the outer loops, the CPU or the
host initiates each iteration. As, the loop nests increases, the communication overhead goes
high both in terms of performance and power penalty. However, software pipelining faces
several limitations such as, in-loop function calls?, multiple exits inside the loop. Loops with
uncertain exits (example loop in the following code to compute greatest common divisor

(Listing 3.2)) are not qualified for software-pipelining either.

3 void ged (nl, n2)

{

while (nl!=n2)
{

if(nl > n2)
nl —= n2;
else
n2 —= nl;
}
res = nl;

Listing 3.2 Loop with uncertain exits

On the other hand, loop unrolling has its own limits for increasing code size immensely,
preventing optimizing all the loop levels of a nested loop structure. Hence, for a flexible

application acceleration, the need to support branches in CGRA accelerators is unavoidable.

2this can be sorted out using intrinsics
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The compilation flow discussed in the latter sections uses partial unrolling of the innermost
loop.

Table 3.1 presents a comprehensive comparison between several techniques to manage
control flow in the kernels. The table clearly shows that the register allocation approach can
deal with any kind of conditionals and loops.

Table 3.1 Comparison between different approaches to manage control flow in CGRA

Techniques Conditionals Loops
Balanced | Imbalanced | Single | Nested

Partial
predication [13] % % % %
Full predication [4] V vV X X
State based
full predication [47] % 4 % %
Dual issue . o o o
single execution [46]
TLIA [68] V V V X
Software » o . o
pipelining [74]
Loop unrolling [62] X X V NA
Register allocation [24] V Vv V Vv

Next, in this chapter, we discuss the problem for supporting branches in CGRAs, and
formulate a register allocation approach for supporting control flow efficiently. The compila-
tion flow, described later in this chapter, is developed using this approach. Results at the final
part of this chapter demonstrates the flexibility and efficiency of the compilation approach

both in terms of performance and energy gain.

3.2 Compilation flow

Figure 3.5 shows a schematic representation of the compilation flow for mapping CDFGs
onto the PEA. A CDFG mapping is a set of DFG mappings that are compatible with each
other. To be compatible, the DFGs must access the data that remain in the PEs (see symbol
variables (see definition 3.2.1)) in the same location. This is ensured by the register allocation
approach.

First, the flow orders the basic blocks and for each basic block it finds a set of DFG
mappings that are compatible with the DFG already mapped by settings the constraints. When

no solution for scheduling and binding is found, the flow tries to transform the application
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graph to ease the mapping. When no transformation can be applied, it means that a mapping
for the current basic block cannot be found given the constraints of the selected mappings
of the other basic blocks. A backtrack mechanism is used to select another consistent set
of already mapped DFGs to map the current DFG. The set of valid mappings found for
the current basic block is saved into a mapping bank. To map the basic blocks, we rely
on the highly scalable and efficient mapping approach for DFGs described in [23]. The
compilation flow proposed here, extends the DFG mapping to accommodate the register
allocation approach to map a full CDFG onto the PE array. As presented in Figure 3.5, the
full compilation flow is composed of six interdependent stages: BB selection, backtracking,
update constraints, scheduling and placement, graph transformation and a stochastic pruning.
First, we discuss the steps involving the mapping of DFGs, then, we introduce the problems

while mapping the control flow graph and discuss the solutions.

3.2.1 DFG mapping

As shown in Figure 3.5, mapping of DFGs involves three steps, scheduling and placement,

graph transformation, and stochastic pruning.

Scheduling and placement

The scheduling step uses a backward traversal [83] list scheduling algorithm to schedule
nodes of the DFG. It relies on a heuristic in which the schedulable operations are listed by
priority order. In backward traversal, a node is schedulable if and only if all its children
are already scheduled (e.g. node 2, in Fig. 3.6(b), is not schedulable since node 3 is not
yet scheduled. So, it must be routed to keep data dependency resulting in Fig. 3.6(c)). The
priority of nodes depends on their mobility and number of successors (fan-outs). It is possible
to process memorization nodes and conventional nodes differently. When several nodes have
the same mobility, their respective number of successors is used as a second priority criterion.
The higher the number of successors, the higher the priority. Indeed, a node with a higher
number of successors is more difficult to map due to routing constraint coming from the
limited amount of connections between tiles. Thus, scheduling these nodes at first usually
allows for reducing the application's latency (e.g. node 2 in Fig. 3.6(d) has a higher priority
than node 1).

As soon as nodes are prioritized and ordered, our approach tries to find a binding solution.
The first node is then selected from the ordered list and the algorithm searches for a binding
solution. If no binding solution exists, the graph is transformed (see Section 3.2.1). The
proposed placement uses an incremental version of Levi’s algorithm [63], i.e. fully exhaustive
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Scheduling order

Fig. 3.6 Example of scheduled and transformed DFG on a CGRA with one PE. (a) Initial
DFG, (b) after scheduling node 4, (c) after adding node 2’, (d) after scheduling node 3 and
2’, (e) after scheduling node 2, (f) Scheduled DFG after routing and scheduling node 1.
Horizontal line shows the limit between scheduled and non scheduled nodes. Memorization
nodes are doted circles.

search of the whole DFG. The algorithm we propose, adds the newly scheduled operation
node and its associated data node to the sub-graph composed of already scheduled and bound
nodes. Only the previous set of solutions that have been kept are used to find every possibility
to add this couple of nodes without considering the non-yet scheduled nodes. If no solution is
found, there is absolutely no possibility to bind this couple in all the previous partial solutions
because Levi’s algorithm provides a complete exploration of the available solution space.

Introducing stochasticity in the scheduling: The scheduling discussed above is a list
ordering using a backward traversal. This heuristic approach proposes to schedule the nodes
according to a priority function. The priority is derived depending on two criteria: 1) the
mobility of the nodes, ii) the number of outgoing arcs for the nodes having the same mobility.
Despite these two types of criteria, it is possible that several nodes have the same priority
(typically, those with same mobility and only one outgoing arc). Nodes with similar mobility
and number of successors are ordered randomly. Stochasticity is introduced in the scheduling
process to get better coverage of the underlying micro-architecture. The ability of the random
selection of the similar priority nodes to better architectural exploration, is examined at the
end of this section.

Graph transformation

DFG is transformed dynamically when no binding solution is found. Following are the two

graph transformations (Figure 3.7) used in our compilation flow.
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1. Operation splitting: duplicates an operation node by keeping its same inputs and
distributing output edges to reduce the number of successors of the original operation
node (see Fig. 3.7(b)).

2. Memorization routing: adds a memorization node and its associated data node to delay
one operation and to keep data dependencies (see Fig. 3.7(c)).

Memorization
node
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€
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(a) Sample DFG (b) Operation (c) Memorization
splitting routing

Fig. 3.7 Graph transformation

Stochastic pruning

The exhaustive enumeration of Levi’s algorithm usually leads to a very large number (up
to tens of thousands) of partial mappings (depending on the data dependencies and the
architectural constraints) which prevents its use with large DFG and/or complex CGRA.
In [83], the idea to reduce this number was to remove redundant partial mappings. A partial
mapping is redundant when it uses the same operators to make the same operations as
another partial mapping at the current scheduling cycle. This step allows for keeping only all
the different partial solutions and preserving an exhaustive search. However, this pruning
technique does not scale well. The problem is so complex that it is difficult to define a
smart and efficient pruning function. To keep both computation time and memory usage to
a reasonable level in the mapping tool, we propose to use a stochastic selection instead of
removing redundant partial mappings. This pruning step is made after the binding step and
before scheduling the next node. Let the result of the binding be a list ntbMappings (nbM) of
partial solutions. The stochastic pruning step selects nbCurrentMappings (nbCM) number of
partial solutions from nbMappings.
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Fig. 3.8 Performance of threshold functions (we choose inverse function for its stable
selection capability)

For each partial mapping, a random number between O and 1 is generated and compared
to a threshold. This threshold must be chosen carefully: it should be low enough to scale up
and high enough to allow keeping enough partial solution among which at least one solution
can lead to a complete mapping. Thus, the threshold should adapt itself to nbMappings. For
that purpose, nbMappings is normalized by a reference number A, set by the user. This num-
ber is used by the threshold function. Many functions can be considered (e.g. exponential,
invert, hyperbolic etc.). To select an optimal threshold function we present a performance
graph (Fig. 3.8) which presents the average number of selected partial mappings (nbCur-
rentMappings) for ten runs with average number of original partial mappings (nbMappings)
for A value 3000 (the same trend is experienced with several other values of A).

We experience exponential decay in selected number of mappings for exponential and
hyperbolic function as opposed to inverse function. Hence the inverse function has been
chosen as the threshold function (see Eq. 3.1) in our approach.

A/nbM)  if nbM > )
Threshold(nbM.2) — 4 /™M) i G.1)
1 ifnbM < A

After choosing the right threshold function it becomes very important to have control over
the number of selected partial mappings as this leads the approach to find a valid solution.
We propose to introduce bounds as control mechanisms: LB (Lower Bound) and UB (Upper

Bound). We propose two variants based on bounds.
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LB & UB: This variant sets an upper bound and lower bound on nbCurrentMappings as
presented in equation 3.2 and 3.3. In this method also, a random number is generated
between 0 and 1, which is compared to the threshold value. If the random number is less than
or equal to the threshold or the lower bound is not satisfied, then it selects the partial solution
from nbMappings and stores into nbCurrentMappings otherwise the solution is discarded. If

nbCurrentMappings exceeds the upper bound, then it stops selection of partial mappings.

maxnbCM = [nbM /3] (3.2)

. InbM/A|  if nbM > A
minnbCM = (3.3)
[nbM /3] if nbM < A

LB only: This variant generates a random number between O and 1 which is compared
to the threshold. If the random number is less than or equal to the threshold then it selects
the partial solution from nbMappings and stores into nbCurrentMappings otherwise the
solution is discarded. The solution space nbMappings is traversed again and again until

nbCurrentMappings reaches the minimum bound as presented in the equation 3.4.

minnbCM = [nbM /1] (3.4)

Efficiency of stochasticity in mapping: To demonstrate the efficiency of stochastic based
approach in the mapping flow, we perform experiments involving the kernels presented in
Table 3.1 in chapter 3. Since latency performance and compilation time are the most critical
parameters that are affected by the introduction of stochasticity in the mapping, we analyse
the effect of different combinations of stochastic behaviour and a non-stochastic approach,
on both latency and compilation time. For the different combinations of stochastic behaviour
in the pruning stage, we consider (a) mapping with Stochastic pruning with no bounds or
SNoB, (b) mapping with stochastic pruning with lower and upper bounds (LB & UB) or
SLUB, (c) mapping with stochastic pruning with lower only bound (LB) or SLoB. For a
non-stochastic based approach in pruning we select a mapping approach based on redundant
elimination-based pruning, proposed in [83], which is referred to as RED in the comparisons.
Since the mappings are based on different stochastic solutions, in the experiments we take

the best outcome out of ten runs to ensure the best performance of the corresponding method.

* Latency and computation time: In Figure 3.9, we compare the latency obtained by the
different mapping approaches normalized to the ASAP length of the corresponding
DFGs. As the trends are the same for different sizes of CGRA and RF, we have
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latency (normalized to ASAP length)

presented results for only 3x3 CGRA with RF 24. Fig. 3.10 presents compilation time
comparison. To realize the gain in compilation time using stochastic based pruning
over the state of the art pruning using redundant elimination RED, we have normalized
the compilation time over RED.

I RED W SnoB SLUB mmmm SloB ——— ASAP length

4.5

Fig. 3.9 Mapping latency comparison for 3x3 CGRA

Fig. 3.9 shows the ability of different methods to find mappings with best latency. The
latency value closer to the ASAP line refers to the capability of finding better mappings.
The latency comparison depicts that SLoB generates the best of mappings whereas
SLUB produces the worst latencies. The compilation time comparison in Fig. 3.10
shows that SLUB and SLoB achieve best scaling. Comparing both the performance
metrics, the SLoB is the clear winner.

Architectural coverage: After comparing the performance metrics, we analyse the
ability of the stochasticity in mapping, to explore the underlying micro-architecture.
Since better architectural coverage ensures better resource utilization, we consider the
best performed candidate, the SLoB from the above set of experiments. As discussed
in the previous section, we introduce SLoBS which integrates stochastic scheduling in
SLoB. For the experiment, we consider FFT kernel, as it possesses the highest number
of parallelism (see Table 3.1 in chapter 3).
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Fig. 3.10 Compilation time comparison for 3x3 CGRA

Fig. 3.11 exhibits the architectural coverage for different mapping approaches. In this
figure, we present FFT benchmark running for different CGRA configurations using
three different methods, RED, SLoB and SLoBS.

Since the trend realized in this figure is similar for other benchmarks, results for only
one kernel is presented for clarity and better understanding. The CGRA configurations
are presented using dimension and the RF size (i.e. 4 x4 RF 16, means the configuration
is for a 4x4 CGRA where each PE consists of a RF of size 16). Each point in the
Fig. 3.11 corresponds to the outcome of a single run by a method on the corresponding
CGRA configuration.

The x axis of the graph represents latency normalized to ASAP length and the y axis
represents the number of transformed nodes normalized to the number of operation
nodes in the original graph. In other words, each point in the graph is basically the
outcome latency and number of transformed nodes of each run by a certain method.
The points corresponding to the method RED and SLoB show that they find similar
latencies with almost similar number of transformations. The wide range of latencies
and transformations in method SLoBS prove that this method can explore the solution
space better. Not surprisingly, the method SLoBS finds the best latency with least
number of transformations.
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Fig. 3.11 Architectural coverage between methods

3.2.2 CDFG mapping

First, we formulate the problem of CDFG mapping and propose a register allocation based

solution accordingly. Subsequently, we discuss the steps involving the mapping of CDFG.

Definition and problem formulation

Data in an application is separated into two categories.

1. The standard input and output data (mostly the array inputs and outputs) are mapped
as memory operands. The inputs and outputs are allotted by load-store operations. In
our sample program in Figure 3.2, m, n are the input arrays and p are the output array,
which are managed by load and store operations.

2. The internal variables of a program are mapped onto the registers of the processing
elements, and managed by the register allocation based approach [24].

Following, we introduce several definitions concerning register allocation approach:

Definition 3.2.1. Symbol Variables and location constraints: In compilation, the recurring
variables (repeatedly written and read) are managed in local register files of the PEs to avoid

multiple access of local memory. The recurring variables which have occurrences in multiple
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basic blocks need special attention since the integrity of these variables must be kept intact
throughout the mapping process for different basic blocks. These variables are defined as
Symbol variables. The register locations for the symbol variables are referred to as location
constraints. For instance, variable c in the CDFG (Fig. 3.2) is written in BB_3, and read in
BB_4, BB_5 and BB_6. In mapping all these basic blocks the register location for ¢ must be

same. Similarly, X1, X2, X3, X4, X5, i, a and b must be location constrained. The locations

for such symbol variables are denoted with an overline, as variable_name.
Depending on the order of the basic blocks mapped (i.e. traversing the CDFG), some
location constrains may be reused in the mapping process or may be kept reserved for later

use. These two types of location constraints are discussed in the following.

Definition 3.2.2. Target Location Constraints (TLC): We consider a scenario scenario_l,
where BB_6 is mapped first, BB_3 is mapped next and so on. While mapping BB_6, variables
c and X5 are placed at ¢ and X5. While mapping BB_3, ¢ and X5 which are already mapped
in BB_6, must be considered because ¢ will be used to map c in BB_3. In other words, the
placement of the variables in the registers must be respected. Also, @, b, X1 and X2 must
not reuse X5. Otherwise, X5 will have wrong value when executing BB_6. Let’s consider
scenario_2 with another order of basic blocks mapped, like first BB_3 and then BB¢ and so
on. In this order of mapping, it is necessary to pass ¢ and X5 from BB_3 to BB_6 mapping.
To keep ¢ and X5 alive in BB_6 both ¢ and X5 must be used in mapping of BB_6. The
placement or binding information which are passed from the mapping of one basic block
to the mapping of the other basic block is referred to as constraint (e.g. scenario_I: ¢ and
X5 passed from BB_6 to BB_3). The location constraints related to the data that are used
within a basic block mapping phase (e.g. scenario_I: ¢ in BB_3 mapping) are referred to as

target location constraints (TLC).

Definition 3.2.3. Reserved Location Constraints (RLC): As we have seen in the previous
examples, some of the location constraints must be reserved in the mapping of basic blocks
for the sake of data integrity. To keep the symbol variables alive, it is necessary to exclude
the memory elements from placement. Accordingly, these resources will not override while
mapping the basic block (e.g. scenario_I: X5 in BB_3 mapping). These are referred to as
reserved location constraints (RLC).

If the number of RLC and TLC is high, mapping becomes complex. As TLC forces to
use resources, and RLC forces to exclude resources from placement. Hence, the primary
goal for our compiler is to minimize the number of TLCs and RLCs by choosing an efficient
traversal of the CDFG.
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Register allocation approach: The basic solution to deal with the symbol variables is
to introduce memory operations. The symbol variables are stored in the memory where
they are generated and are loaded from the memory when used as operands. This basic
solution is referred to as systematic load-store based approach. This method is presented in
the Figure 3.1(d). For the symbol variable ¢ in the CDFG shown in Figure 3.1(c), it stores
variable ¢ in the memory in BB_3, and loads in BB_4, BB_5 and BB_6. Figure 3.1 refers
to the mapping of the transformed CDFG in this approach. This basic solution reduces
the complexity of the mapping as there are no constraints in the basic block mapping. On
the other hand, it requires a huge memory bandwidth, significantly reducing the energy
efficiency of the system. As an alternative, we propose register allocation approach, where
the symbol variables are stored in the register files when they are written and retrieved from
the registers when used as operands. While doing so, the effects of the constraints in mapping
are unavoidable. RLC restrict the use of some resources, and TLC force to reuse some
resources. If there is only a single TLC in a basic block mapping, it becomes easier to start
mapping from the known place. However, several TLC and RLC complicates the mapping.
Forced and blocked placements by these constraints induce extra routing effort (dynamically
transforming the graph in compilation).

Impact of the constraints on DFG mapping: Since location constraints in the register
allocation approach forces to use and block some of the locations while mapping the variables,
we have tailored the placement algorithm in DFG mapping. The modified binding approach
uses a database of the RLC and TLC to find placements of the current data nodes. If no
solution is found due to the constraints the DFG is dynamically transformed emulating
additional routing of the targeted data node. We introduce Assignment routing (Figure 3.12),
which adds an assignment node (mov operation node) to increase the physical distance
between the source and sink of symbol variables by one. Due to TLC or RLC, when the
physical distance between the source and sink of the symbol variable becomes more than
one, the compiler dynamically adds one mov operation node to the DFG.

To illustrate the excess data routing due to RLC and TLC, we consider a scenario where
BB_1 and BB_4 in Figure 3.2 are already mapped (variables X1, X2, X3, X4, X5, ¢, i
already mapped). The mapping of BB_3 must be done considering the TLC ¢, X1, X2 and
RLC X5, X3, X4, i. The variables a, and b in BB_3 must be mapped satisfying all these
constraints. Consequently, additional data move might be necessary. A graphical view of this
circumstance is presented in Fig. 3.13, where BB_3 is being mapped onto a 3 x 1 PEA with
4 registers in the RFs of each PE (RO is the output register). In this PEA, we assume that the
register files are local to the PEs.
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@ and b will be mapped in the respective PEs where X1 and X2 are allocated. Extra
routing effort may be necessary to bring a and b to the PE where ¢ is allocated. Hence, the
graph must be transformed dynamically, adding extra mov operation, when such situation
arises. The mapping can be done because the addition operation must generate ¢ in ¢ which
is a location in the register file (RF) of the corresponding PE.

a =mli] * X1;
b = n[i] * X2; Start
c=b+a;

cycle 1

cycle 2

cycle 3

(@) (b)

Fig. 3.13 (a) DFG BB_3. (b) mapping of BB_3 onto a 3x1 PEA starting with TLCs c, X1
and X2 and RLCs X5, X3, X4 and i. (c) transformed BB_3 after mapping.
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As we can see in Figure 3.13 (b), the execution starts with TLC ¢ (PE3 — R2), X1
(PE1—R1)and X2 (PE2—R3), and the RLC X3 (PE2 —R2), X4 (PE1 —R4), X5 (PE3 —R4)
and i (PE3 — R1). Due to the constraints, the original BB_3 was transformed to the basic
block presented in Figure 3.13 (c), and mapping was settled in 3 cycles. The TLCs force
to map a, b in PE1 and PE?2 in cycle 1. Let’s assume they are mapped in PE1 — R2 and
PE?2 — R1 respectively. In cycle 2, a and b cannot be accessed to produce ¢ in PE3 — R2.
Hence, graph transformation is necessary to route a, b from the register files to the output
registers, which is done in cycle 2. In cycle 3, ¢ is generated in ¢ which is (PE3 — R2). Hence,
the mapping of the operation attached to c in this case, experiences longer schedule due to
the several TLC and RLC. The increased number of the constraints during the basic block
mapping affects the complexity and the quality of the mapping. Hence, it is necessary to
wisely select the basic blocks to reduce the impact of the constraints on the mapping. In the
next section, we present a suitable traversal of CDFG to minimize the number of RLCs and
TLCs.

Following, we discuss the compilation flow steps implementing the register allocation
approach.

Basic block selection

Once all the nodes of the BB have been scheduled and bound, the compiler selects one
partial mapping among the several mappings generated and selects the next basic block to be
mapped. As discussed previously, it is necessary to maintain data integrity over several basic
block mappings. The data mapping problem for CDFG mapping is now described before
going into the detailed basic block selection step.

As the selection of the basic blocks during the mapping is important, we compare the
number of TLC and RLC for several CDFG traversal strategies in this section. Table 3.2
presents the comparison between the number of different constraints in the forward and
backward CDFG traversal for Breadth First Search (BFS) and Depth First Search (DFS)
strategies. As the trend is similar for other kernels we present the results for sobel and
separable 2D filter only. The numbers show that DEFS strategy generates a lower number
of RLC than the BFS in both forward and backward traversal. The number of RLC for
sobel filter is much higher in BFS due to several sequential loops present in the kernel. The
numbers of TLC are similar in both the strategies for different traversal mechanisms. Also,
for the different search strategies forward and backward traversal perform similarly. The
DFS strategy is thus used.
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Table 3.2 Comparison of RLC and TLC numbers between different CDFG traversal

Forward Traversal Backward Traversal
Kernels BFS DFS BFS DFS
#RLC | #TLC | #RLC | # TLC | # RLC | #TLC | # RLC | # TLC
Sep 2D Filter 22 35 17 35 22 35 17 35
sobel Filter 64 85 35 85 69 85 35 85

Backtracking

For a basic block to be mapped except the first one, this stage selects the first map out of
several mappings generated for the last basic block mapped. The selected map updates the
constraints for the current basic block mapping. If one basic block does not find a mapping
due to the constraints, this stage selects the second map from previous basic block to update
the constraints and restart mapping of the new basic block. The process continues up to the

first basic block mapped until a valid mapping is found for the current basic block.

Update Constraints

In this stage, the compiler creates and updates a constraint database. This database is used
in the placement algorithm, to place the data nodes and corresponding operation nodes
according to the TLC and RLC. In the current basic block mapping variables are not placed
in RLCs, and TLCs are used to map the symbol variables. When mapping a current basic
block, new variables cannot be placed in RLCs, while TLCs are used to map the symbol
variables. If the symbol variable in the current basic block mapping is not present in the
constraint database, then the variable is mapped using available resources, and the respective
placement is used to update the constraint database prior to next basic block mapping.
Once all the basic blocks are mapped the compiler generates the assembly file containing

a single map for the whole CDFG.

3.2.3 Assembler

Assembler holds the key to differentiate from the PEA model used in the compiler and the
actual hardware implementation. The assembler takes the ASCII text assembly generated by
the compiler and the instruction set architecture (ISA) and produces machine code, which
can then be used to configure the PEs in the hardware. The ISA provides the added hardware
information to the PEA model used in the compiler. As an example, the PEs in the IPA use an
added constant register file (CRF) for storing the constants. The introduction of the CRF in

the PEA model minimizes the instruction length by storing the immediates of the instruction
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into the internal registers, giving a low power solution. That is how the assembler separates
the model used in the compiler from the actual implementation of the hardware. One can
define their own PEA model and derive an architecture from that for actual implementation.
Thus, the compiler can be used for a wide range of PEA variations.

3.3 Conclusion

In this chapter, we presented a compilation flow targeting the mapping of both control and
data flow portions of kernels onto the IPA. The proposed approach maps a complete CDFG
with least number of memory operations. A Register allocation approach was introduced
for maintaining data locality throughout the CDFG mapping. We also showed the effect
of the constraints raised due to the register allocation approach on different traversal of
the CDFG. For mapping the basic blocks in the CDFG, the proposed approach leverages
on simultaneous scheduling and binding steps respectively based on a heuristic and an
exact method. Stochastic pruning was introduced to reduce the impact of the exact binding
approach. The formal graph model of the basic blocks, obtained after compilation, is
backward traversed and dynamically transformed to allow for a better exploration of the

design space. In the next chapter, we present the efficiency of the compilation flow.



Chapter 4
IPA performance evaluation

In this chapter, first, we analyse the implementation of the IPA, providing performance, area,
and energy consumption on several signal processing kernels. We perform an architectural
exploration to find the optimal configuration in terms of number of load-store units and
number of TCDM banks for a IPA with 4x4 PE array. Performance, area and energy
efficiency are compared with that of the orlk CPU [59].

Second, we carry out experiments to show the efficiency of the register allocation ap-
proach compared to the state of the art predication techniques, considering a wide range of
control dominated kernels. The proposed mapping flow has been fully automated through a
software tool implemented by using Java and Eclipse Modeling Framework (EMF). GCC 4.8
is used to generate CDFGs from applications described in C language. Finally, we present
the efficiency of the compilation flow, executing a smart visual trigger application enriched
with data-flow and control-flow intensive kernels on the IPA, compared with the state of the

art architectures.

4.1 Implementation of the IPA

This section presents the implementation results of the IPA using STMicroelectronics 28nm
UTBB FD-SOI technology libraries. For area reference we consider low power orlk [59]
CPU. Both the designs were synthesized with Synopsys design compiler 2014.09-SP4. The
IPA consists of a 4 x4 array with 16 PEs, each one consisting 64 x20-bit instruction register
file, a 8 x32-bit regular register file and 16 x32-bit constant register file, as shown in Table 4.1.
For area comparison, the CPU includes 32kB !of data memory, 4kB of instruction memory,
and 1 kB of instruction cache, which is equivalent to the design parameters of the IPA.

IThe size is considered both in size and power
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For the memory access optimization, we compare the performance and energy efficiency
of different configurations in the IPA with the CPU. The different configurations of the IPA
are the variation of the number of LSUs present in the PEA and the number of TCDM banks
present in the data memory. Table 4.2 presents the code-size (instructions and constants)
and maximum depth of the loops present in the kernels used for the following experiments.
Thanks to the simpler architecture and tiny processing elements, at the target operating
voltage of 0.6V, the IPA runs at 100 MHz while orlk can only reach 45SMHz in the same
operating point. Synopsys PrimePower 2013.12-SP3 was used for timing and power analysis
at the supply of 0.6V, 25°C temperature, in typical process conditions. The cycle information
was achieved simulating the RTL with Mentor Questa Sim-64 10.5c.

Table 4.1 Specifications of memories used in TCDM and each PE of the IPA

Name Type Size
Global context memory SRAM 8KB
TCDM SRAM 32KB

Instruction Register File (IRF) | Registers | 0.16KB
Regular register file (RRF) Registers | 0.032KB
Constant register fie(CRF) Registers | 0.128KB

4.1.1 Area Results

Figure 4.1 shows the area of the whole array and memory with different numbers of TCDM
banks, where the total amount of memory is kept constant at 32kB. As the area of LSUs is
negligible if compared to the overall system area, we show the area results for the worst-case
scenario with maximum number of LSUs present in the PE array (i.e. 16). As shown in
Figure 4.1, in the minimal configuration with 4 TCDM banks, the IPA area is dominated
by the array of PEs (60%) and by the local data storage (35%), while the remaining 5% is
consumed by the interconnect. Increasing the number of TCDM banks imposes a significant
area overhead on the size of the interconnect. Also, the area of the TCDM increases as well
due to the higher area/bit of small SRAM cuts necessary to implement 32kB of memory with
several banks. Hence, it is fundamental to properly balance the number of LSUs and TCDM
banks with the bandwidth requirements of applications.

4.1.2 Memory Access Optimization

This section provides an extensive comparison with respect to the CPU computational model

and an evaluation of the performance of the IPA while varying the number of LSUs and
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Fig. 4.1 Synthesized area of IPA for different number of TCDM banks

TCDM banks, a critical parameter for data-hungry accelerators. To carry out the exploration,
we selected seven compute intensive signal processing kernels featuring a high bandwidth
towards the TCDM. Table 4.2 presents the code-size (instructions and constants) of all the
kernels used in the following experiments. The cost of the IRF is considered both in size and

power.

Table 4.2 Code size and the maximum depth of loop nests for the different kernels in the IPA

s

I = i A7
2 & E B = 2 = = 2 3 o - F z
G = |2 |8 |& |£ |8 |g |8 [§ |% |8 |2 |%
M = 2 Z. b = =
Code 0.568 | 0.704 | 0.704 | 0.720 | 0.784 | 0.696 | 1.16 | 0.496 | 0.336 | 1.448 | 0.600 | 2.016 | 0.624
size (KB)
Max depth |, 3 3 3 4 2 2 1 1 1 2 3 2
loop nests
Performance

Generally speaking, the IPA performs well when significant parallelism can be extracted
from a kernel. This concept is well shown in Figure 4.2, which compares the performance
of the IPA with that of the orlk processor on a matrix multiplication when growing the size
of the matrices from 2x2 to 32x32. It is possible to note that the increase of the kernel
size increases the average utilization of the PEs as well, which in turn helps to enhance
performance. It also demonstrates that the initial configuration time, which is dominant
for small kernel size is well amortized for larger kernels, further contributing to improve

performance.
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Figure 4.3 presents the total execution time (clock cycles) of seven compute-intensive
kernels. The execution time is normalized with respect to that of orlk processor, where
the kernels are compiled with -O3 optimization flag. The IPA outperforms the CPU by
up to 20.3x, with an average speed-up of 9.7x. A quantitative performance comparison
with respect to the CPU is presented in Table 4.3. The table presents the configuration and
execution cycles in the IPA for different kernels. It also presents the average utilization of
PEs over the total execution period and total number of instructions executed in the IPA. The
instruction count includes the instructions that are replicated on all the active PEs for keeping
the PE in synch across conditionals and jumps. It also includes NOPs that are used when
some PEs are stalled due to manipulation of index variables. However, during NOP execution
PEs are clock gated and do not consume dynamic power. The IPA achieves a maximum of

18 and an average of 9.23 x energy gain over the CPU.

Table 4.3 Overall instructions executed and energy consumption in IPA vs CPU

R 5
X = 5 = g
= = <3 i =
Kernels = — E = o) = 5
= = =) =
= g 2 Z 2
S |2 : -
= 4
Configuration 7 38 38 90 98 87 145
cycles
Execution 6071 | 11940 | 56241 | 827685 | 1852382 | 8076 | 4748
IPA | cycles

Total number
of instructions 44294 | 110946 | 531815 | 7349843 | 17486486 | 76310 | 28868

executed

Active

PEs/cycle(%) 46.1 58.5 59.2 55.5 59 59.7 39.5
Energy (1J) 0.022 0.043 0.202 2.98 6.669 0.032 | 0.017

Energy (1tJ) in
non-clock-gated | 0.047 0.077 0.479 7.152 11.704 0.063 | 0.045

IPA

Execution 37677 | 96256 | 616805 | 5982730 | 9084101 | 164480 | 50085
CPU | cycles

Energy (1.J) 0.132 | 0337 | 2159 | 2094 | 31.794| 0576 | 0.175

Speed-up 6.21x | 8.06x | 1097x | 7.23x 49x | 203x | 10.55x

Energy-gain 6x 7.84x | 10.69x 7.03x 4.77x 18x | 10.29x

To establish the impact of the memory bandwidth over performance and energy efficiency,
we vary the number of LSUs in the PE array from 4 to 16 and the number of TCDM banks
from 4 to 32. The number of LSUs defines the available bandwidth from the TCDM to the
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Fig. 4.2 Performance of IPA executing matrix multiplication of different size

array, while increasing the number of TCDM banks reduces the banking conflict probability,
improving performance. To perform the exploration without any bias towards configurations,
the innermost loops of the kernels are unrolled to get a maximum of 16 load-store operations
in one cycle (as the highest number of LSUs considered is 16, in the exploration). In
Figure 4.3, each configuration is represented as a 2-dimensional number, where the first one

represents the number of LSUs, and the second one represents the number of TCDM banks.
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Results show that, as opposed to tightly coupled clusters of processors which require a
banking factor of 2 (i.e. number of TCDM banks is twice the number of cores) [91], IPA
performance is almost insensitive to the number of TCDM banks, and a configuration with
a banking factor of 0.5 is sufficient to minimize the impact of contention on the shared
memory banks for most applications. Indeed, while the typical processor execution requires
several load/store operations for variables exceeding the size of the register file, direct CDFG
mapping on the IPA does not add extra memory operations except primary inputs and outputs
(e.g. arrays), since all the temporary variables are stored in the register file of the PEs.
Moreover, flexible point-to-point connections within the array allow to efficiently exchange
data among PEs, further reducing the pressure on the TCDM. This concept is well explained

in Figure 2.10 and Figure 2.4, which show the typical mapping of an application on the IPA.

Energy Efficiency

Figure 4.4 shows the average breakdown of power consumption for different configurations
of the IPA. As expected, the PE array is the most dominant power consumer for all the
configurations. The configurations with 4 TCDM banks achieve the best power advantages
in each group, since increasing the number of TCDM banks increases the complexity of the

interconnect, causing timing pressure on the array, which increases the sizing of the cells,

hence power consumption.
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Fig. 4.4 Average power breakdown in different configurations ([#LSUs][#TCDM Banks])

Figure 4.5 shows the average energy efficiency (MOPS/mW) for different configurations.
Million Operations Per Second (MOPS) only considers the active PEs during execution, since
a PE may be idle due to TCDM bank access conflicts, consecutive NOPs, or not mapped
(not used in the application execution). Executions with high number of active PEs/cycle
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achieve large MOPS. As depicted in Figure 4.5, for different number of LSUs in the PE array,
the configuration with 4 TCDM banks achieves the best energy efficiency, since this is the
least number of banks in each configuration, it causes lowest power consumption. At the
same time, the active number of PEs/cycle does not get significantly impacted due to the
least memory access policy of the compilation. As a result, the best efficiency is achieved at
2306 MOPS/mW for matrix multiplication, in a configuration with 8 LSUs and 4 TCDM
banks. The minimum energy efficiency is achieved at 1112 MOPS/mW for separable filter in
a configuration with 4 LSUs and 16 TCDM banks.

To investigate the power gain in the fine-grained clock gating we present the energy
consumption of the clock gated IPA and the non clock gated IPA in Table 4.3. In an average,
the clock gated design consumes an average of 2x less power compared to that of the non
clock gated design. Due to the regular architecture of the PE array, fine grained power
management is much more suitable to implement. Moreover, thanks to the efficient execution
of CDFG on the array, the smaller energy required to execute an instruction in the IPA with
respect to a CPU (5.6E-07 uJ vs 3.49E-06 ulJ), and the effectiveness of the fine-grained
power management the IPA outperforms the orlk CPU’s energy efficiency by up to 18
(Table 4.3). The energy per instruction execution in the IPA is much less than that of the CPU
due to its simple instruction set architecture. Also, the lower number of memory operations

executed in the IPA helps reducing on the average energy consumption.
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Fig. 4.5 Average energy efficiency for different configurations ([#LSUs][#TCDM Banks])
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4.1.3 Comparison with low-power CGRA architectures

Table IX shows a comparison with existing CGRAs. For some papers, energy efficiency
figures could not be extracted, so "NA’ is put in the corresponding cell. The energy efficiency
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Fig. 4.6 Energy efficiency/area trade-off between several configurations ([#LSUs][#TCDM
Banks])

Energy efficiency/Area

results for Morphosys, Imagine and ReMAP presented in the table are studied in [21].
The energy efficiency figures of the other architectures are provided both in the original
manufacturing technology node and scaled to the 28nm technology, according to the power
scaling factor C* V2. C and V represent the effective capacitance (approximated with
the channel length of the technology) and the supply voltage of the designs, normalized
to the nominal parameters of the 28nm technology node. It should be noted that this
simplified scaling factor penalizes our design, since deep-submicron technologies such
as 28nm, where the load capacitance of gates is typically dominated by wires require
much more buffering than mature technology nodes, which penalizes energy efficiency.
Nevertheless, IPA provides leading-edge energy efficiency, surpassing by more than one
order of magnitude other architectures (ADRES, Morphosys, XPP, AsAP) featuring a C
based mapping flow. The driving factors for this gain are (a) architectural simplicity with
less complex interconnect network, (b) low power instruction processing, (c) lowest possible
number of memory operations in application execution, (d) fine grained power management
architecture, described in previous sections. One distinguishing characteristic of the proposed
accelerator is the flexible execution model capable of implementing CDFG on the array
without the need of a host processor, coupled with a fully automated mapping flow that starts
from a plain ANSI C description of the application. Moreover, the memory architecture,
based on a shared multi-banked TCDM enables easy integration within ultra-low-power
tightly coupled clusters of processors, while fine-grained power management allows to
improve energy efficiency by up to 2x. The average power consumption on the IPA is
0.49mW, which is compatible with the ultra-low power target.
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Table 4.4 Comparison with the state of the art low power targets
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4.2 Compilation

The results of the exploration show that a configuration of the IPA with 8 load-store units
and 4 TCDM banks achieves the optimal performance/energy trade-off featuring an average
speed-up of 9.7x (max 20.3x, min 4.9 x) compared to a general-purpose processor. Thanks
to the optimized architecture and mapping flow, the proposed accelerator achieves an average
energy efficiency of 1617 MOPS/mW over a wide range of sensor signal processing kernels,
surpassing other CGRA architectures featuring a C based mapping flow by more than one

order of magnitude.

4.2.1 Performance evaluation of the compilation flow

This section analyses the performance and energy consumption results compiling kernels
using the compilation flow described in the previous chapter. First, we compare the register
allocation approach with different predication techniques to handle control in applications.
Next, we perform some experiments while running several kernels involved in a smart visual
trigger application, as the context of smart visual applications the shortcoming of traditional
CGRA s is quite severe, since after brute-force morphological filtering (e.g. erosion, dilatation,
sobel convolution), these algorithms usually require the execution of highly control intensive
code for high-level feature extraction. In this experiment we perform trigger based feature
extraction in the IPA compiling kernels using the flow.

All the designs used in the following experiments, were synthesized with Synopsys design
compiler 2014.09-SP4 in STMicroelectronics 28nm UTBB FD-SOI technology. Synopsys
PrimePower 2013.12-SP3 was used for timing and power analysis at the supply voltage of

0.6V, 25.C temperature, in typical process conditions.

4.2.2 Comparison of the register allocation approach with state of the

art predication techniques

To evaluate the efficiency of the register allocation approach to handle the control flow
we compare the execution of six control intensive kernels compared to the state of the
art partial and full predication techniques. The results, presented in Table 4.5 show that
the register based approach achieves a maximum of 1.33x (with minimum of 1.04x and
average of 1.13x) and 1.8 x (with minimum of 1.37x and average of 1.59 x) performance

gain compared to partial predication and full predication techniques. The maximum gain

ZPEs perform 8-bit operations, hence energy efficiency is normalized to equivalent 32-bit operations, does
not include the power of controlling processor.
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achieved over existing methods are highlighted in bold in the table. The smaller number of
executed instructions allows the register allocation approach to outperform the partial and
full predication techniques by an average of 1.54x (with min 1.35x, max 2x) and 1.71x
(with min 1.44x, max 2 X) respectively in terms of energy efficiency. The table also presents
a comparison with respect to orlk CPU and C64 DSP processor [51] from TI. The register
allocation approach achieves a maximum of 3.94x, 15.8 x performance gain and 7.52X,
32.77x energy gain over orlk and C64 processor, respectively. Due to the abundance of
branches in these kernels, the DSP processor performs worst. Finally, we compare with the
basic systematic load-store (SLS) based approach for control mapping. It is depicted from
the Table 4.5 and 4.6 that the register allocation approach performs an average of 1.16x (with
max of 1.46x, min of 1.05x) better than the SLS based approach, while gaining an average
of 1.31x energy efficiency with a maximum gain of 2x and minimum gain of 1.07x.

Table 4.5 Performance (cycles) comparison between the register allocation approach and the
state of the art approaches

# # IPA Céo4
Kernels loops | condi | reg SLS partial | full CPU DSP
tionals | based | based | pred pred
cordic 1 2 328 408 396 542 513 286
cordic 1 2 328 408 396 542 513 286
sobel 4 11 | 179617 | 262282 | 188253 | 245583 | 454028 | 669794
ged 1 1| 55312 | 58596 | 73747 | 92852 | 67545 92184
sad 2 1| 15962 | 16824 | 16573 | 28776 | 62932 | 252193
deblocking 5 7 | 472258 | 495081 | 518722 | 727243 | 834683 | 1310220
manh-dist 1 1 6288 6826 6738 0522 | 15394 55317
max gain 1.46x 1.33x 1.8x 3.94x 15.8x

4.2.3 Compiling smart visual trigger application

Performance and energy consumption: This section provides performance comparison
of IPA running at 100 MHZ with respect to a or10n CPU [40] running at 45 MHZ clock
frequency, that are the operating frequency of the two architectures at the operating voltage of
0.6V. The experiment is carried out on a smart visual surveillance application [77] performing
on 160x120 resolution of images, consisting 9 different motion detection kernels including
morphological filters (e.g. finding minimum and maximum pixel, erosion, dilatation, Sobel
convolution), and a smart trigger kernel asserting an alarm if the size of the detected objects
surpasses a defined threshold, the latter kernel composed of highly control intensive code.

To compile the applications for the IPA, we use the compilation flow. Table 4.7 shows the
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Table 4.6 Energy consumption (¢J) comparison between the register allocation approach and
the state of the art approaches

# # IPA Cod
Kernels loops | condi | reg SLS | partial | full CPU DSP
tionals | based | based | pred pred

cordic 1 2 328 408 396 | 542 | 513 286
cordic 1 2| 0.001 | 0.002 | 0.002 | 0.002 | 0.004 | 0.002
sobel 4 11| 0.736 | 1.102 1] 1.058 | 3.531 | 5.656
ged 1 1| 0227 | 0.246 | 0.392 040525 ] 0.778
sad 2 1| 0.065| 0.071 | 0.0838 | 0.124 | 0.489 2.13
deblocking 5 71 1.936 | 2.079 | 2.754 | 3.134 | 6.492 | 11.064
manh-dist 1 1] 0.026 | 0.029 | 0.036 | 0.041 | 0.12 | 0.467
max gain 2x 2x 2x | 7.52x | 32.77x

performance comparison executing the application in the IPA (programmed in plain ANSI C
code) and a highly optimized core with the support for vectorization and DSP extensions that
can only be exposed optimizing the source code with intrinsics [40]. The IPA surpasses the
CPU by 6x and 10x in performance and energy consumption, respectively. It is interesting
to notice that while DSP instructions do not improve the performance of the core during
execution of the smart trigger kernel, its implementation on the IPA provides even more

benefits with respect to the data-flow part of the application (motion detection), improving

performance by 10x with respect to execution on the processor.

Table 4.7 Performance comparison

Applications | CPU CPU (Col[))gmize d) IPA

cycles 2237124 1308036 | 261 120
Motion energy[uJ] 10.179 5.952 0.679
Detection perf gain 9x 5x

energy gain 15x 9x

cycles 480000 480000 | 48000
Smart energy[uJ] 2.184 2.184 0.125
Trigger perf gain 10x 10x

energy gain 17x 17x

cycles 2707200 1785600 | 309 120
Overall energy[uJ] . 12.318 8.124 0.804

performance gain 9x 6x

energy gain 15x 10x
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Comparison with the state of the art architectures: Table 4.8 presents the performance
comparison of the smart visual trigger application running on a CPU and two state of the
art reconfigurable array architectures [77] [89], chosen due to the availability of the target
application, with similar features to other state of the art CGRAs. Results show that, although
the two state of the art CGRAs deliver huge performance when dealing with the data-flow
portion of the application, thanks to highly optimized and pipelined datapath that allows
to implement operations on binary images as Boolean operations [77], they are not able to
implement the control dominated kernel, which runs on the CPU forming a major bottleneck
for performance when considering the whole application. On the other hand, the superior
flexibility of the IPA allows to implement the whole application on the accelerator, allowing
to surpass performance of other CPU + CGRA systems by 1.6x. It is important to note that
in the context of more complex smart vision applications, such as context understanding and
scene labelling, it is common that control intensive kernels dominate the overall execution
time share, further improving performance with respect to CGRA accelerators only able to

map DFGs.

Table 4.8 Performance comparison of smart visual surveillance application [cycles/pixel]

Reference Motion Detection | Smart Trigger | Total
CPU 116 25 141
CPU

(Optimized) 68 250 P
Mucci et al [77] 2.09 25 | 27.09
Rossi et al [89] 1.27 25 | 26.27
IPA 13.6 25| 16.1

4.3 Conclusion

With respect to state of the art partial and full predication techniques, the proposed compi-
lation flow improves performance by 1.54x on average (min 1.35x, max 2x) and energy
efficiency by 1.71 x on average (min 1.44 X, max 2x). The experiment on the target smart
visual trigger application show that the IPA achieves an average performance of 507 MOPS
with average energy efficiency of 142 MOPS/mW at 0.6V surpassing a general purpose pro-
cessor by 6x in performance and 10x in energy efficiency. The proposed IPA also surpasses
the state of the art CGRA architectures performance by 1.6x, thanks to the capability of
efficiently implementing control intensive code. In the next chapter, we integrate the IPA in a

multi-core cluster and present the energy efficiency aspects of heterogeneous computing.






Chapter 5

The Heterogeneous Parallel

Ultra-Low-Power Processing-Platform
(PULP) Cluster

High performance and extreme energy efficiency are strict requirements for many deeply
embedded near-sensor processing applications such as wireless sensor networks, end-nodes
of the Internet of Things (IoT) and wearables. One of the most traditional approaches to
improve energy efficiency of deeply embedded computing systems is achieved exploiting
architectural heterogeneity by coupling general-purpose processors with application- or
domain-specific accelerators in a single computing fabric. On the other hand, most recent
ultra-low power designs exploit multiple homogeneous programmable processors operating in
near-threshold [88]. Such an approach, which joins parallelism with low-voltage computing,
is emerging as an attractive way to join performance scalability with high energy efficiency.

The concepts of parallelism and heterogeneity in ultra-low power designs inherit from
traditional high-end embedded platforms such as NVIDIA Tegra [79], IBM PowerEN pro-
cessor [57], Qualcomm Snapdragon S4 Pro [99], STMicroelectronics P2012 [6], Kalray
MPPA [26].

In this chapter, we present a heterogeneous architecture which integrates a near-threshold
tightly-coupled cluster of processors [88] augmented with the Integrated Programmable Array
(IPA) presented in [24]. We synthesized the architecture in a 28nm FD-SOI technology, and
we carried out a quantitative exploration combining physical synthesis results (i.e. frequency,
area, power) and benchmarking on a set of signal processing kernels typical of end-nodes
applications. One interesting finding of our exploration is that (1) the performance of the
IPA is much less sensitive to memory bandwidth than parallel processor clusters [24]

and (2) the simpler nature of its architecture allows to run 2x faster than the rest of the



84 The Heterogeneous Parallel Ultra-Low-Power Processing-Platform (PULP) Cluster

system. Experimental results show that the heterogeneous architecture achieves significant
performance improvement for both compute and control intensive benchmarks with respect

to the software cluster.

5.1 PULP heterogeneous architecture

The PULP platform project is a collaborative effort of several academic and industrial
institutions!, whose goal is to design an ultra-low power achieving high levels of energy
efficiency by combining near-threshold computing and parallel computing and by exposing
low power features of the technology up the technological stack, at the architecture and
software levels.

Ultra-low power operation and extreme energy efficiency are the key features of the
implementation of PULP, which exploits near threshold computing. The PULP SoC utilizes
multi-core parallelism with explicitly-managed shared .1 memory to overcome performance
degradation at low voltage, while keeping the flexibility typical of instruction processors.
Moreover, enabling the cores to operate on-demand over a wide supply voltage and body
bias ranges allows to achieve high energy efficiency over a wide spectrum of computational

demands.

5.1.1 PULP SoC overview

Figure 5.1 shows the main building blocks of a single-cluster PULP SoC. The PULP cluster
features 8 32-bit RISC-V cores based on a four pipeline stages micro-architecture optimized
for energy-efficient operation [39] sharing a 64KB multi-banked scratchpad memory through
a low-latency interconnect [85]. The ISA of the cores is extended with instructions targeting
energy efficient digital signal processing such as hardware loops, load/store with pre/post
increment, SIMD operations. The cores share a 4KB private instruction cache to boost
performance and energy efficiency for tightly coupled clusters of processors typically relying
on data parallel computational models [69]. Off-cluster data transfers are managed by
a lightweight multi-channel DMAs optimized for energy-efficient operation [90]. Both
the (I$) and DMA connects to an AXI4 cluster bus. A peripheral interconnect is used to
communicate with on-cluster peripherals such as a timer, an event-unit used to accelerate
synchronization among the cores and other memory mapped peripherals such as application-

specific accelerators. To operate at the best operating point for a given workload the cluster

ncludes the University of Bologna, ETH Zurich, STMicroelectronics, EPFL Lausanne, Politecnico di
Milano and others.
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can be integrated in an independent voltage and frequency domain, featuring dual-clock

FIFOs and level-shifters at its boundary.

SoC domain
(SoC clk, SoC vdd )

Cluster domain
(cluster clk, cluster Vdd )
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Fig. 5.1 PULP SoC. Source [91]

5.1.2 Heterogeneous Cluster

The PULP cluster is augmented with the Integrated Programmable Array accelerator, as
shown in Figure 5.2. Figure 5.3 shows a detailed block diagram of the subsystem embedding
the IPA array. The IPA array is configured through a global context memory (GCM),
responsible for storing locally the configuration bitstream of the PEs. The GCM is connected
through a DMA-capable AXI-4 port to the cluster bus, enabling pre-fetching of IPA contexts
from L2 memory. The size of GCM is considered twice the size of configuration bitstream of
the IPA in the worst case, in this way it is possible to employ a double-buffering mechanism
and load a new bitstream from the L2 to the GCM when the current one is being loaded on
the array, completely hiding time for reconfiguration. More details on the structure of the
IPA array bitstream can be found in [25]. A set of memory mapped control registers allow to
load a new context to the IPA array, trigger the execution of a kernel and synchronize with
the other processors in the cluster.

As opposed to many CGRA architectures, the IPA can access a multi-banked shared
memory through 8 master ports connected to the low-latency interconnect. This eases data
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Fig. 5.2 Block diagram of the heterogeneous cluster.

sharing with the other processors of the cluster, following the computational model described
in [18]. The optimal number of port has been chosen to optimize the trade-off between the
size of the interconnect and the bandwidth requirements of the IPA. Following the analysis
conducted in [24], where it is shown that the IPA can operate 2x faster than the processors,
we have extended the architecture of the cluster in a way that the IPA can work at twice
the frequency of the rest of the cluster. This approach allows to operate each component
in the cluster at the optimal frequency, without paying the overheads of dual-clock FIFOs,
requiring a significant amount of logic and synchronization overhead. On the contrary, the
hardware support for the dual-frequency mode includes a clock divider to generate the two
different edge aligned clocks, and two modules needed to adapt the request-grant protocol of
the low-latency interconnect [85] to deal with the frequency domain crossing, as shown in
Figure 5.4.

5.2 Software infrastructure

To offload jobs to the IPA and synchronize the execution, the cores access the control
registers of the IPA, by memory mapped operations. The control registers are composed of
a command register and a status register. We designed a simple Application Programming
Interface (APIs) to perform the offload and synchronize tasks with the IPA. The main
functions are described in Table 5.1. Before execution starts in the IPA accelerator, the
cores load the corresponding context and data from the L2 memory to the GCM and L1
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memory, programming the system DMA and the IPA DMA, respectively. The context for

the IPA consists of instructions and constants for the PEs, generated by the compilation flow

proposed in [24]. The functions load_data_I2totcdm and load_context [2togcm contain a

set of routines to write data and context into TCDM and GCM respectively. The ipa_start_-

execution writes execute command into the command register of the IPA. The completion of

the execution is notified by updating the status register. The core is synchronized with the

IPA execution by calling the ipa_check_status function, which checks for the updates in the

status register.
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Fig. 5.4 Synchronous interface for reliable data transfer between the two clock domains.

Table 5.1 List of APIs for controlling IPA

Function Description
void load_data_I2totcdm
(int DMA_CORE_ID, int size,
unsigned int 12_addr,
unsigned int tcdm_addr)
void load_context_I2togcm
(int DMA_IPA_ID, Writes context from L2 memory
int size, unsigned int 12_addr, | to the GCM through DMA_IPA
unsigned int gcm_addr)

Writes data from L2 memory
to the TCDM banks through
DMA_CORE

Initiate IPA execution by writing
in the command register

void ipa_check_status(in id) Core synchronization

void free_ipa (int id) Release IPA

int ipa_start_execution ()

5.3 Implementation and Benchmarking

In this section we present the implementation results of the heterogeneous PULP cluster.
The three possible modes considered in these comparisons are: (a) single-core: running
applications in a single core, (b) ipa: running applications in the IPA where the core takes part
in offloading only, (c¢) multi-core: running applications in parallel cores. All the benchmarks
are coded in fully portable C, using the OpenMP programming model to express parallelism
for PULP.
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5.3.1 Implementation Results

Table 5.2 presents the details of the memories used in the cluster. It consists of 8 cores
featuring 4 kB of shared I$, one IPA with 16 PEs and a GCM of 4KB, while the TCDM
is composed of 16 banks of 4 kB each, leading to an overall TCDM size of 64 kB. These
architectural parameters were chosen to fit the constraints of the wide range of signal
processing benchmarks. The SoC was synthesized with Synopsys Design Compiler 2013.12-
SP3 on a STMicroelectronics 28nm UTBB FD-SOI technology library. Since the achievable
frequency of the PEs in the IPA is higher than the RISKY cores used in the cluster, the IPA is
clocked at 100 MHz, while the rest of the cluster runs at 50 MHz (in the SS, 0.6V, —40°C
corner). Synopsys PrimePower 2013.12-SP3 was used for timing and power analysis at the
supply voltage of 0.6V, 25°C temperature, in typical process conditions. Table 5.3 presents
the area information of the components in the cluster. Although the total area of the IPA with
16 PEs is almost similar to the area of the 8 cores combined, the area occupied by the GCM
is much less than the total cache memory, which in turn provides better area efficiency while

running applications in IPA.

Table 5.2 Cluster Parameters and memories used

Name | Type | Size
L1 Memory (16 banks)
TCDM | SRAM | 64KB
Cores (8)
Instruction Cache \ SRAM \ 4KB
IPA (16 PEs)
Global context memory SRAM 8KB
Instruction Register File (IRF) | Registers | 0.16KB
Regular register file (RRF) Registers | 0.032KB
Constant register fie(CRF) Registers | 0.128KB

5.3.2 Performance and Energy Consumption Results

Table 5.4 reports the execution time in nano seconds for different benchmarks running on a
single-core, on 8 cores and on the IPA. The IPA execution time includes the time taken for
loading the context into the PEs. Comparing to the performance of execution in single-core,
the accelerator achieves a maximum of 8 x (with a minimum of 2.49x and an average of
5.4x) speed-up. The control intensive kernel like GCD does not exhibit parallelism, hence
parallel software execution does not improve performance of the homogeneous cluster. On the

other hand, the execution on the IPA improves the performance by almost 5%, exploiting also
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Table 5.3 Synthesized area information for the PULP heterogeneous cluster

2 % of

Components Area (um~) cluster area
CORES 160,352 18
ICACHE 190,089 22
DMA_CORE 41,406 5
IPA 156,323 18
DMA_IPA 32,636 4
GCM 18,704 2
TCDM 149,638 17
CLUSTER_INTCNCT 63,126 7
CLUSTER_PERIPHERALS 21,610 2
OTHERS 37,932 4
Total 871,816 100

instruction-level parallelism rather than data-level parallelism only. The performance gain in
the accelerator for the compute intensive kernels like matrix multiplication, convolution, FIR
and separable filters is limited if compared to the performance of parallel-cores. However,
the relatively small performance gain compared to the parallel cluster is compensated by the
gain in energy consumption (Table 5.6) due to the simpler nature of the compute units of
the IPA with respect to full processors, to the smaller number of power-hungry load/store
operations (Table 5.7), and to the fine-grained power management architecture that allows
clock gate the inactive PEs during execution (Table 5.6).

Table 5.5 presents the performance improvement of the IPA when moving from iso-
frequency to the 2x frequency domain execution in the IPA. This shows that, although there
is a reduction of memory bandwidth (see loss due to additional stalls column in Table 5.5),
since the TCDM operates at the same frequency as the rest of the cluster (i.e. half frequency
w.t.t. the IPA array), an average of 1.82x speed-up (with maximum of 1.92x and a minimum
of 1.73x) can be achieved with this dual-frequency cluster architecture.

The power consumption profiles for the different modes of execution presented in Fig-
ure 5.5 and 5.6, which shows the percentage of contribution by the several components in the
cluster. Figure 5.5 (a), (b), (c) represents the power breakdown while executing matrix multi-
plication in multi-core, single-core and IPA respectively, representative for other compute
intensive benchmarks. Similarly, Figure 5.6 (a) and (b) present the profiles for executing
GCD, a control intensive benchmark, in single-core and IPA respectively. In Figure 5.5 (a),
(b), (c), the TCDM contributes to 14.7%, 15% and 7.2% in the multi-core, single-core and
IPA configurations, respectively. The reduced memory access in IPA execution helps to
achieve better energy efficiency. While executing GCD in single-core and the IPA, the TCDM
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Table 5.4 Performance evaluation in execution time (ns) for different configuration in the
heterogeneous platform

Single- Multi- | SPeed- Speed-up
up in IPA in
Kernels core core .
(ns) (ns) multi- (ns) IPA
core (X) (x)
MatMul 3,358,740 | 435,180 772 | 432,630 776
Convolution | 9,733,380 | 1,520,840 6.4 | 1,494,860 6.51
FFT 767,640 | 142,720 538 94,510 8.12
FIR 182,500 33,460 5.45 33,410 5.46
Separable | 10 070 420 | 6404160 | 623 | 6334700 6.29
Filter
Sobel 117,024,880 | 40,894,260 2.86 | 28,865,890 4.05
Filter
GCD 2,951,160 | 2,951,160 1| 61,1300 4.83
Cordic 9,000 7,000 1.29 3,610 2.49
g‘;‘h 244,640 | 164,640 1.49 70,300 3.48

Table 5.5 Performance comparison between iso-frequency and 2 x frequency execution in
IPA

#cycles #cycles overall

. . Loss due .
Benchmarks in iso in 2x execution

to stalls

frequency | frequency speed-up
MatMul 39,330 43,263 3,933 1.82
Convolution 130,896 149,486 18,590 1.75
FFT 8,182 9,451 1,269 1.73
FIR 3,122 3,341 219 1.87
Separable filter 575,882 633,470 57,588 1.82
Sobel Filter 2,634,172 | 2,886,589 | 252,417 1.83
GCD 58,573 61,130 2,557 1.92
Cordic 328 361 33 1.82
ManhDistance 6,391 7,030 639 1.82
Average 1.82
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consumed around 15.9% and 2.5% of the total power in the two analysed configurations,
respectively. Also, the IPA consumes around 33.9% of the total power while executing the
GCD kernel, due to heavy usage of internal registers to support control flow dependencies.
The simpler nature of the compute units, low burden on the TCDM and data exchange
through PEs explains the energy gain of 7 in the IPA execution.

Table 5.6 Energy consumption evaluation in p J for different configuration in the heteroge-
neous platform

Kernels Single-core | Multi-core IPA of
Energy | Active
PEs/cycle
MatMul 1.247 0.313 0.208 58.5
Convolution 2.876 1.095 0.658 59.2
FFT 0.292 0.087 0.042 59.7
FIR 0.08 0.026 0.026 46.1
Separable filter 16.663 4.611 4.28 55.5
Sobel Filter 51.491 29.444 | 12.701 51.2
GCD 1.151 1.151 0.257 6.25
Cordic 0.004 0.003 0.001 50
ManhDistance 0.1 0.095 0.03 48.5

Table 5.7 Comparison between total number of memory operations executed

Benchmarks multi-core | single-core | IPA

MatMul 66,584 66,561 | 35,032
Convolution 135,280 135,114 | 75,600
FFT 12,528 11,733 6528
FIR 5,904 5,893 3,990
Separable filter 142,840 142,800 | 95,200
Sobel Filter 148,240 148,224 | 120,000
GCD 64,531 64,531 2
Cordic 32 28 15
ManhDistance 2,158 2,049 2,048

5.4 Conclusion

In this chapter, we presented a novel approach towards heterogeneous computing, augmenting

ultra-low power reconfigurable accelerator in the PULP multi-core cluster. The experiments
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integrating IPA in the PULP platform suggests that architectural heterogeneity is a powerful
approach to improve energy profile of the computing systems. We have presented three pos-
sible executions of the benchmarks in the IPA integrated PULP platform. The heterogeneous
cluster achieves achieving up to 4.8 X speed-up and up to 4.4 x better energy efficiency with

respect to an 8-core homogeneous cluster.



Summary and Future work

Coarse-Grained Reconfigurable Architectures (CGRAs) are appealing choice of reconfig-
urable accelerator platforms to explore both performance and energy efficiency, the two most
critical metrics in embedded computing domain. Since both energy and performance refine-
ment require better exploring the underlying architectures, design of the compiler is much
of importance. On the one hand the design of the computation unit, interconnect network
strategy along with the computation model, decides the compiler complexity and flexibility
of computing. On the other hand, compiler capabilities to truly explore the micro-architecture
determine the final performance. Hence, the combined design flow is necessary to satisfy
performance and power constraints.

In this dissertation, we addressed ultra-low-power acceleration through CGRA approach.
In this regard, we have explored several architectural aspects like computation unit, inter-
connect network, synchronization mechanism and power management issues to design an
Integrated Programmable Array (IPA) accelerator operating at 0 to 3 mW power envelop
achieving significant performance improvement over ultra-low power processor cores. We
also discussed about the compilation approach to accelerate kernels with a pressing con-
cern of minimized memory access in ultra-low-power execution environment. In addition,
the compilation approach along with the hardware synchronization makes the framework
compatible with applications containing several loops and conditionals nests.

The key aspects of the thesis are listed below:

* Data and control dependent execution: In this dissertation, we have pointed out that
the framework of a CGRA acceleration must possess the capability to handle both the
data and control flow of the application, to dislodge the communication overhead with
the host and achieve increased flexibility of execution. We have introduced a register
allocation approach for supporting the execution of control and data dependence. This
approach works independent of program optimizations giving freedom to explore
several inner-most loop optimizations (unrolling, software pipelining, pattern oriented

optimizations) without involving the host for the initiation of outer loops.
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Summary and Future work

* Data locality: One of the key approaches for energy efficient execution is to keep

the data as close as possible. This helps to increase latency performance as well as
save energy consumption. In this dissertation, the execution of applications considers
only the array input and outputs of the application to be processed by load-store
operations. All the variables and constants are accessed involving the internal registers
of the processing elements. Since the register files of the PEs are distributed, we
have formulated the mapping problem on CGRAs while efficiently using registers,
we present a unified and precise formulation of the problem of variable placement
and register allocation and an effective and efficient placement augmenting the exact
binding approach.

Two way synchronization: While mapping and executing applications consisting
several basic blocks, it is of utmost importance to synchronize between PEs. In
compilation, the PEs are synchronized following the register allocation augmented
placement algorithm. While executing, the PEs get synchronized to the same basic
block in a single cycle following a lightweight synchronization mechanism, reducing

performance and energy consumption penalty.

Constant management: Managing constants in an application is one of the major
challenges for energy efficient acceleration. Signal processing applications usually
use 16 bits constants. For the sake of wide range of application domain support,
in this thesis we considered constants maximum of 32 bits width. On the one side,
accommodating the constants in the instructions increases its length, on the other hand
memory based access of constants escalates the number of memory operations which
in turn increase the energy consumption. In this dissertation, we have introduced the
concept of distributed constant register file, where the constants are loaded as a part of
the context load. These are accessed by the PEs at the time of execution as register
operands.

Two fold interconnect network: The computation model in this dissertation contem-
plates the sequential arrangement of context (instruction and constants) load and
execution. Since the ratio between the context load time and execution time is very
small, we deployed a bus-based network for efficient distribution of context into the
PEs. The execution uses a different 2D torus-based network. However, Since the
execution of the application is mapped by the compiler, only the 2D torus network is
exposed to the compiler. This way we manage to keep configuration time as less as
possible, while keeping the energy consumption in the execution checked by using a

low cost interconnect network.
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* Coupling in a heterogeneous platform: The experiments integrating the designed
CGRA in the PULP platform suggests that architectural heterogeneity is a powerful
approach to improve energy profile of the computing systems. We have presented
three possible executions of the benchmarks in the IPA integrated PULP platform. The
accelerator execution achieves a maximum of 4.5x (with a minimum of 2x and an
average of 3x) energy consumption improvement over the execution in single core

and parallel cores respectively.

Directions for Future Research

We believe, there are several directions of research that can be accomplished based on the
framework, we have presented in this dissertation.

First, latency improvement through upgrading the binding algorithm in the compilation
flow. The placement of operation and the data is managed in the binding algorithm where
it takes the location constraints derived in the previous operation and data binding. The
underlying graph is transformed if no placement is found in this algorithm. If the graph is
transformed due to location constraints, then the latency is increased in each transformation.
In this situation, a guided placement can help to reduce the number of graph transformations,
hence improving the latency.

Second, performance improvement by exploring different loop optimizations. In this
thesis, we have only explored the performance gain depending on the loop unrolling op-
timizations performed on the innermost loop. It may be another research direction to
explore performance improvement by other loop optimizations like pattern based polyhedral
model [67], software-pipelining or combining the possible optimizations.

Third, exploring different application domains other than the signal processing. The
emerging domains of approximate computing, cryptographic application domain, machine
learning etc., may be the interesting choices to explore for both performance and energy
efficiency. Since the framework we have presented in this dissertation has the potential to
execute wide range of application domain, it will be highly productive while exploring these
emerging domains based on the hardware approach and compilation flow.

Fourth, investigating the potential of IPA by supporting floating point arithmetic. In this
dissertation, we rely on computing using integer arithmetic. Supporting floating points could
be another research direction considering the IPA architecture as the reference. Since the
compiler has the flexibility to adapt several architectural configuration revisions, it will be
fruitful to update the IPA architecture to support flexible floating point computation.
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Fifth, Just-in-Time (JIT) compilation of kernels at runtime. The IPA integrated in the
PULP platform uses pre-compiled contexts of the application. It will be another research
direction to introduce JIT compilation at run-time and offload them onto the IPA.

In general, the dissertation presents a heterogeneous approach integrating reconfigurable
accelerators into a state of the art multi-core computing platform, which addresses the
rising concern of energy efficiency. Based on the framework presented in this thesis, there
are several challenging research directions in the domain of ultra-low-power embedded
computing which can be exploited.
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L'inconvénient d'un accélérateur matériel est qu'il est
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accélérateurs dédiés dans les systémes sur puce
conduit a une faible efficacité en surface et pose des
problémes de passage a l'échelle et d'interconnexion.
Les accélérateurs programmables fournissent le bon
compromis efficacité et flexibilité. Les architectures
reconfigurables a gros grains (CGRA) sont
composées d'éléments de calcul au niveau mot et
constituent un choix prometteur d'accélérateurs
programmables.

Cette thése propose d'exploiter le potentiel des
architectures reconfigurables a gros grains et de
pousser le matériel aux limites énergétiques dans un
flot de conception complet.

Les contributions de cette thése sont une
architecture de type CGRA, appelé IPA pour
Integrated Programmable Array, sa mise en ceuvre
et son intégration dans un systéme sur puce, avec le
flot de compilation associé qui permet d'exploiter les
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notamment sa capacité a supporter du flot de
contréle. L'efficacité de l'approche est éprouvée a
travers le déploiement de plusieurs applications de
traitement intensif. L'accélérateur proposé est enfin
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