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Abstract

In this CIFRE thesis, a collaboration between the Centre de Mathématiques et leurs Applica-
tions, Ecole Normale Supérieure Paris-Saclay, and the company DxO Labs, we tackle the problem
of the additive decomposition of an image into base and detail. Such a decomposition is a funda-
mental tool inimage processing. For applications to professional photo editing in DxO Photolab, a
core requirement is the absence of artifacts. For instance, in the context of contrast enhancement,
in which the base is reduced and the detail increased, minor artifacts becomes highly visible. The
distortions thus introduced are unacceptable from the point of view of a photographer.

The objective of this thesis is to single out and study the most suitable Iters to perform this
task, to improve the best ones and to de ne new ones. This requires a rigorous measure of the
quality of the base plus detail decomposition. We examine two classic artifacts (halo and staircas-
ing) and discover three more sorts that are equally crucial: contrast halo, compartmentalization,
and the dark halo. This leads us to construct ve adapted patterns to measure these artifacts. We
end up ranking the optimal Iters based on these measurements, and arrive at a clear decision
about the best lters.

In the rst part of the dissertation we study the widely used guided and bilateral Iters. In-
depth analysis of the guided Iter and confrontation with the bilateral Iter are performed. An
asymptotic analysis of the Iter when its support tends towards zero permits to link it with the
Perona-Malik anisotropic dusion. It is shown that the guided Iter does not have the edge am-
pli cation term which has been proven to cause the stairc&set this is experimentally veri ed
with an implementation that simulates this equation. This new Iter has no halo, nor contrast
halo. We then review the bilateral Iter along with its main fast approximations, and the solutions
to the staircaseMect provided in the literature.

The second part of the dissertation deals with multi-scale lters. We begin by studying a
method called exposure fusion that fuses bracketed exposure sequences of images. We extend it to
contrast enhancement by simulating the sequence from a single image. The study of this particular
case leads us to identify the core principle of the contrast manipulation in exposure fusion. This
yields further improvement in the proposed algorithm. Then, we study the local Laplacian lter,
for which we propose a compact formula when interpreted in a scale-space. This interpretation
reestablishes the translation invariance. Furthermore, the scale-space allows to replace the guide
with the result of an arbitrary edge-aware Iter, thus reducing the luminance halo. Lastly, we study
the weighted least squares Iter that also performs a multi-scale decomposition of the image. Its
main artifact is unveiled and partially corrected.

This systematic analysis of the main decomposition lters in the literature and the identi ca-
tion of their respective artifacts leads us to propose a guantitative method for comparing them.
For each one of the ve proposed artifacts types, we create a pattern-measure pair. After setting
the Iter's parameters so that they extract the same amount of detail, the Iters are applied on this
collection of test-images, and the presence of each artifact is measured. We then raMethe di
ent method according to the quality of the decomposition and conclude. Two lters stand out,
including one we propose.






Résumeé

Dans cette thése CIFRE en collaboration entre le Centre de Mathématiques et de leurs Appli-
cations, Ecole Normale Supérieure Paris-Saclay et I'entreprise DxO, nous abordons le probléme
de la décomposition additive d'une image en base et détail. Une telle décomposition est un outil
fondamental du traitement d'image. Pour une application a la photographie professionnelle dans
le logiciel DxO Photolab, il est nécessaire que la décomposition soit exempte d'artefact. Par ex-
emple, dans le contexte de I'amélioration de contraste, ou la base est réduite et le détail augmenté,
le moindre artefact devient fortement visible. Les distorsions de l'image ainsi introduites sont
inacceptables du point de vue d'un photographe.

L'objectif de cette thése est de trouver et d'étudier les ltres les plus adaptés\eatmer cette
tache, d'améliorer les meilleurs et d'en dé nir de nouveaux. Cela demande une mesure rigoureuse
de la qualité de la décomposition en base plus détail. Nous examinons deux artefacts classiques
(halo etstaircasinget en découvrons trois autres types tout autant cruciaux : les halos de con-
traste, le cloisonnement et les halos sombres. Cela nous conduit a construire cing mires adaptées
pour mesurer ces artefacts. Nous nissons par classer les Itres optimaux selon ces mesures, et
arrivons a une décision claire sur les meilleurs lItres.

Dans la premiere partie de la these nous étudions les ltres bilatéraux et le Itre guidé. Une
analyse approfondie du Itre guidé et une confrontation avec le ltre bilatéral sont réalisées. Une
analyse asymptotique du ltre quand son support tend vers zéro permet de faire le lien avec la
diVusion anisotropigue de Perona-Malik. Il est démontré que le Itre guidé ne posséde pas le
terme d'ampli cation des contours dont il a été prouvé qu'il provoquaivke d'escaliergtaircase
evec) ; cela est expérimentalement véri é par une implémentation qui simule I'équation. Ce
nouveau ltre ne posséde pas de halo, ni de halo de contraste. Nous examinons ensuite les ltres
bilatéraux et leurs approximations rapides, ainsi que les solutios#rgasevectproposées dans
la littérature.

La suite de la thése traite de Itres multi-échelle. Nous commencons par étudier une méth-
ode baptiséexposure fusiaqui fusionne des séquences d'images avec des variations d'exposition.
Nous I'étendons au rehaussement de contraste par la simulation d'une séquence d'images. L'étude
de ce cas particulier nous méne aidenti er le principe a I'ceuvre dans la manipulation de contraste
d'exposure fusiolCela nous permet d'améliorer encore l'algorithme proposé. Nous poursuivons
avec le ltre local Laplacian lter, pour lequel nous proposons une formule compacte lorsque in-
terprété dans urscale-spac€ette interprétation permet de rétablir l'invariance par translation.

De plus, l'utilisation d'unscale-spap&rmet de remplacer le guide par le résultat d'un ltre de lis-
sage avec préservation des contours arbitraire, et ainsi de réduite le halo de luminance. Pour nir,
nous étudions le ltreweighted least squargs propose également une décomposition multi-
échelle d'une image. Son artefact principal est révélé et partiellement corrigé.

Cette analyse systématique des principaux Itres de décomposition en base et détail de la lit-
térature et de ceux que nous proposons, ainsi que l'identi cation de leurs artefacts respectifs, nous
conduit & proposer une méthode quantitative pour les comparer. Pour chacun des cing types
d'artefacts proposés, nous créons une paire mire-mesure. Aprés avoir réglé les parametres des
Itres de sorte qu'ils produisent des décompositions comparables, les Itres sont appliqués sur les
mires et la présence de chaque artefact est mesurée. Nous classons aMésdetsdilgorithmes
selon la qualité de la décomposition et concluons. Deux ltres sortent du rang, dont un proposé
dans cette thése.
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1 Introduction

This CIFRE thesis has been undertaken in a collaboration of Centre de Mathématiques et leurs
Applications, Ecole Normale Supérieure de Saclay, with the company DxO, where | worked in the
image processitgam on DxO Photolab (formerly Optics Pro), a photo editing softwarEhe

team is working at producing the best quality images from RAW pictures, but also from JPEG
les produced by any camera. In this context it has been observed that it is often necessary to
decompose an image in what we intuitively callese layeand adetaillayers.

The object of the thesis is the automatic additive decomposition of digital images in base and
details layers, with the particular purpose of local contrast manipulation. It aims at adding more
clarity to the image by enhancing its detail. This problem is directly related to the so-catiteek
theory, [LM7 ] originally proposed in the seventies as a theory of the human perception of color.
This theory has later been used to enhance digital images. In this context retinex enhancement
algorithms try to transform the digital images so that the result is close to what a human observer
would have seen by looking at the original scene [9F)\PSM.4Getl]. This goal has often been
simpli ed as “seeing in the shadows” (of the digital image). Tbee-mappingperators also
belong to that category. The tone-mapping problem has the contradictory objectives of reducing
the dynamic of an image while preserving the local contrast. This is needed in high-dynamic
range imaging, where the dynamic range of an image must be reduced prior to display or printing
(because of the small dynamic range of standard screens and printers). Retinex and tone-mapping
operators can be divided in two categories: those which perform a base and detail decomposition;
those which do not and deliver directly a enhanced image.

The simplest available tool for that is the combination of a low-pass Iter and of high-pass |-
ter, which decompose an image in its low frequencies (base) and high frequencies (detail) content.
This is used for example in the unsharp mask technique, [MLFRMOO] which can be com-
puted with the Fourier transform. Wavelet transforms localize the frequency analysis in the image
and can thus be used as well [[4€]. Morphological Iters like the grain lter and the area |-
ters [Vin94, MGOO] are another class of Iter that can be used for enhancement. Closing, opening
(usedin the top hat Iter for example) or the median Iter are another option [8§r Anisotropic
diVusion PDE lters [P\VB(] are another classical option to compute a base. They have the double
objective of smoothing and simultaneously enhance the image (Coherence-EnhandirsipDi
Filtering [WeiRq for example). Denoising lters can also be viewed as methods for decomposing
an image into base and detail, the noise standard deviation playing then the role of a scale param-
eter. The base is the recovered image while the detail corresponds to the removed noise. This is
the case of the bilateral Iter, which usage for base and detail decomposition is widespread, but
was originally designed as an image denoiser. The total variation regularizatio JRas also
originally intended as a denoising algorithm but also adapts excellently to a base-detail separation,
often called cartoon+texture decomposition [MEyGuel 4.

1Seenttp://www.dxo.com/us/photography/photo-software/dxo-photolab
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In brief, there is a wide panoply of image Iters that may be used with the purpose of decom-
posing an image into base and detail. In this thesis, our purpose is to review the most relevant
such decomposition methods, to nd and improve the best ones and possibly de ne new ones.
This requires rigorous measurements evaluating the quality of the results. As we shall see, we will
be led to measure the various artifacts produced by each sort of lter.

The diY culty of the problem lies in our notion of “base” and “detail”. Indeed, while linear I-
tering would smooth them out, our notion of base may retain sharp edges in the base and exclude
them from the detail. Thus, such a decomposition is both additive and in essence non-linear. Our
research methodology is to understand, improve and evaluate edge-preserving smoothing lters,
i.e. lters that compute a base. During the study we shall de ne the artifacts, specic to a Iter
or, more often, typical of a class of Iters. We shall base our de nition of the artifacts on the
subjective feedback of DxO image experts, that we aim at transforming into rigorous quantitative
measurements. Those ratings are highly non-linear. We rst systematically try in this thesis to
correct the unveiled artifacts for each Iter. Notably, no lter is actually exempt of artifacts, as we
shall de ne them. However, the artifacts are not equivalently annoying from the point of view of a
photographer, and the pregnancy of each defect may vary, so that many an artifact may fall below
a subjective “objectionable” threshold.

We eventually select the algorithms thateo the best compromise among those artifacts,
thanks to a quantitative measure carried out on the artifacts we isolated. In our nal ranking, we
take into account the complexity of each lter. Indeed, this parameter, though often in contradic-
tion with the quality of the decomposition, may be decisive when it comes to select a Iter in an
already long and complex image processing pipeline.

In short, this dissertation develops a methodology for the quantitative evaluation of the quality
of the base and detail decompositions of any image lter. After a careful examination of many
Iters and of their artifacts, we end up creating a set of test-patterns, one for each of the ve
identi ed artifacts, and ve metrics that go along the proposed test-patterns. The method takes
in input any Iter with its parameters xed, except for one that controls the quantity of detail
extracted by the algorithm. This last parameter is set so that #heorm of the produced detail
matches a predetermined number. The value of tishorm is in fact an average of the values
of detailL? norms obtained with a representative test set of natural images. The equalization of
the L2 norms of the detail proposed by each lter ensures that the Iters can be fairly compared.
This leads to evaluate quantitatively the ve artifact measures for all Ilters on all test-patterns and
eventually to propose a ranking method and a nal ranking for all examined lters. As we shall
see, two classic — but improved by us — emerge from this study.
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11 Retinex methods

The Retinex theory was rst formulated by Edwin H. Landi864[Lan64]. It was a ground
breaking attempt to model how the human visual system (HSV) perceives colors in a scene. This
theory was further formalized by Land and McCann [Z[J] They established that the visual
system does not perceive an absolute lightness but rather a relative lightness, namely the varia-
tions of lightness in local image regions. This was proven by the experiments using Mondrian
patterns [La77 LarB3, were they showed that color sensation is not directly linked to the spec-
tral characteristics of the perceived signal: patches withrdit re ectance are perceived with
diVerent colors even when they have the same spectral light distribution because of a change in
the spatial illumination. This is what A. Rizzi al.calledcolor constan¢izM07]. In early results,

Land assumed that three independent sets of receptors exist and that the comparison of these
three receptor outputs gives the sense of color. He named this system Retinex, a neologism made
of retina and cortex. Although the original work did not involve digital images, Retinex can be
used to enhance digital images, as suggested by Land himself.

Implementations and derivations of Retinex have been an active research eld which now
counts a wealth of publications. As explained in a recent overview of Retinex methods bgtPetro
al.[PSM14, the many implementations can be divided in two groups. The rst group explores the
image relative lightness using a variety of image paths or comparing the current pixel color to a
set of random pixels [Lar], [Lan8], [FM 83, [MR 00], [PFR" 07). The second group uses a con-
volution mask or variational techniques to compute a locally enhanced imagé&J, priR\W9 7],
[JRWA7a], [KES 03, [BF99, [MPS1(, [MMOC 1}, [BCPOY.

Nowadays, the most prominent retinex implementation is an alternative to the initial random
walk algorithm published by Land [L&@]. This implementation computes the lightness as the
ratio between the value of a pixel and the average value of the surrounding samples. Taking for

example a Gaussian |t€s , the operation amounts to séf(x) := % which implies

logL(x):=log I (x) log(I G )(x): (1)

This equation 1) is the so-calleagsingle-scale reting8SR) method, explored by Jobsenal.
in [JRWO70] and later extended by the same authors to multiple scales §J&)/V The last is
calledmultiscale retinefMSR) and its formula is

X
MSK ug(x;i)

W, SSRU; ;i g(x)
=1

>

Wn log u(x;i) log (G, u(i)(x) ; (12)
n=1

whereN is the number of scales, is the weight of each scale a@d, (x) = C, exp(k xk?=2 2),
a Gaussian kernel with normalization factoy. An excellent overview of the retinex theory and
algorithms can be found in Bertalmio's book of [B4; along with connection to percetually-
based variationnal techniques [PAPEFBP. ) and ACE.

The Automatic Color EnhancemdACE) proposed by Gattat al.[GRMO0Z is strongly re-
lated to Retinex. It was further developed in [ROGRIRGMO4, BCPR)7. It has been proven
by Bertalmioet al. in their excellent paper [BAF], that “can be seen as a particular anti-
symmetrization of the KBR [Kernel-Based Retinex] model”. This last method, compared to Retinex,
has the advantage of improving the contrast in both the dark and bright parts of an image, whereas
Retinex has a tendency to move the histogram to the right, and thus to shrink contrast in the bright
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Figure 1.1: Plot of the functiors used in ACE

regions. It is de ned as follows:

_ s u(x) u(y) . _
ACH ug(x) = k< YK ;X2 (13
y2 nx
whereu: ! [0;1]istheinputimageand :[ 1;1]! Risthe slope function
s (t)=min maxft, 1g;1 ; (19

where is a user-set parameter (displayed in Figle The nal resultis a stretching of AGEg
to [0; 1], as many of its values are negative. We shall analyze in Chabteldink between ACE
and the bilateral lter.

The retinex Iters create objectionable halo artifacts. For this reason, they are not acceptable
for contrast enhancement in professional photography. Figuriélustrates this fact and shows
the superiority of Iters performing a base + detail decomposition, like the Iter MGF which will
be developed in this thesis. In the next sections, we detail our contributions chapter by chapter.
Chapters2to 12proceed to detailed analyses of Iters and to the detection, explanation, and when
possible correction of their artefacts. The long Chapfigives the nal evaluation methodology.
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inputimage MGF, base and detail

MSR MGF, enhanced

Figure 1.2: MSR and the mutli-scale guided Iter (MGF). Multi-scale retinex introduces a halo around the lighthouse,
but MGF does not. The multi-scale guided lter is a base and detail decomposition algorithm; the decomposition
obtained for the luminance part of the input image is displayed on the rst line. Both algorithms work on the
luminance only. Note that MSR does not manage to preserve the contrast of the lighthouse facade, while MGF
does; besides, the base and detail decomposition gives much exibility to the algorithms, which could be used for
example to further increase the local contrast.
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12 Chapter2: Guided lter

In Chapter2, we start our analysis of the guided Iter [HZWD]. Its artifacts, a contrast halo and a
luminance halo, are explained. A comparison of the lter's performance is made with the related
bilateral Iter. We show that attempts to nd a correspondence between the parameters of both
Iters are vain; the guided lter does not have the edge-preserving capability of the bilateral lter.

We however present in Chaptéra new Iter based on GF that reduces its artifacts while
keeping the very desirable property of being a locallyea transformation of the guide image,
which avoids the staircas¥ext.

The guided Iter The guided lter (GF) has two steps: the rst one computes a linear transform
of a guidance image in small patches. In each phatd&F solves:

X
E a(y);ky) = ay)V()+ by) u(x) “+ ay)? ; (19
x21(y)

whereu is the input imagey the guide, a smoothing parameter addthe patch. This model en-

sures that the gradients in the Itered patches are proportional to the gradients of the guide image,
and avoids the staircas¥ext of the bilateral Iter. On another hand, it introduces a contrast halo

and a luminance halo. The second step aggregates the Itered values of all overlapping patches.
This is equivalent to averaging the ¥agents(a; b) of the overlapping window so the nal output

is

GH ug(x) = a(x)v(x) + b(x); (16)

where(a; b) are the aggregated linear dbaents. Equation15) has an analytic solution, making
the Iter extremely fast to compute, since it requires only local averages, that can be computed in
linear time thanks to integral images.

The contrast halo artifactin GF This main artifact of the guided Iter comes from the fact that

the edges are preserved, but the area around them is preserved too. We show an example of the
resulting phenomenon in Figuré3 It is especially present when the lter is used with a large
radius. Indeed, the guided Iter can't smooth out half of a window and keep the other half as it

is; the choice is often an intermediate decision: half smoothed, half kept. Thus, it also creates a
luminance halo artifact.

The luminance halo artifactin GF The luminance halo artifact arises when edges are not well
preserved by the lter. This is the case with the guided lter, as shown in Figir€ompared to

its competitor the bilateral Iter, the guided Iter smooths less the textures that should be removed
and smooths more the edges that should be preserved.

13 Chapter3: lterated guided lter

Chapter2 introduces the guided lIter and its artifacts, namely, the contrast halo and the lumi-
nance halo. A comparison to the bilateral Iter shows that its edge-preserving and smoothing
property does not put the bilateral Iter in the shade. On another hand, the guided lIter has the
neat advantage not to exhibit the stairca¥ect. This makes this Iter particularly desirable for
contrast enhancement.
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Figure 1.3: Contrast halo artifact in the guided Iter: the smoothing is reduced near strong edges. On the left:
step-edge 1D-signal with a small noise (blue line) and its smoothed version with the guided lter (red line). On
the right, we show the detail layer: difference between the two signals on the left: input - Itered (green line). The
detail layer is almost at in its center, where the input signal has its step-edge. For comparison, to input noise of
the test-pattern (expected detail) is displayed below (blue line). The difference between these two signals is also
presented (red bottom line), showing that the obtained detail almost perfectly equals the noise everywhere except
at the middle where the difference contains the input noise. Parameter used are= 16 and = 0:03?.

@ =(4)° (o) = ¢

(c) Zoomin (a) (d) Zoom in (b)

(e) Zoomin (a) (f) Zoomin (b)
Figure 1.4: Comparison of the bilateral and guided lter for a test pattern containing a step edge and a sawtooth
structure. Inthe left row, the parameter equivalence is= ( 7’)2, intherightrowitis = 2. The spatial parameter
used hereisr = ¢ = 3 and the range parameter is ; = 50. Obtaining the same reduction of the oscillating

structure as the bilateral forces the guided lIter to lose more contrast on edges.
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A Partial DiVerential Equations Analysis of the Guided Filter

In [BCMO€] the authors proved the presence of a staircAf&zein the bilateral Iter by showing

that it is asymptotically equivalent to a Perona-Malik equation containing a reverse heat equation
term creating shocks along zero-crossings of the Haralick edge detect@/[HEollowing the

same methodology, we prove in Chapfthat the guided Iter is equivalent to one iteration of

an anisotropic dvusion partial dverential equation, that can be interpreted as the rsi/asive,

term of a Perona-Malik equation. This explains why the guided Iter does not show staircase
artifacts.

Theorem1l Consider @D imageu(x;y) 2 C3() . Letf(x;y) be,a nonnegative compactly
supportedFEadiaI kernel. We,assume that the lter is normalized, naimétyy)dxdy = 1; and
symmetric xfa1(x;y)dx = yfi(x;y)dy = 0. Set~= =Mgo where is the edge preserving
parameter of the guided Iter, abMbo =  f1(x;y)x%dxdy =  f1(x;y)y?dxdy. Finally, let
be the scaled kernel(x;y) =  2f1(x=;y= ).
Then, for(x;y) 2 ,

M 20~

T uOGy)iZ+ ~ u(;y)+ o( %: (17

GF fug(x;y) u(x;y)=

Remarkll Theoremilmeans that the image edges are preserved-wjnenu(x;y)j?, because

2Moo=jr u(x;y)j?"' 0. On the other hand, the Iter is auilision by the isotropic heat equation
when~ jr u(p)j?. The transition between both behaviors is smooth, and a half-half compromise
is observed whers jr u(p)j.

1if~ jr u(xy)j?,

. I P . 3 .
GF fug(x;y) u(x;y)= m u(x;y)+ O( 9);
2 if~=jr u(x;y)j?,
2
GF fugky) u(xy)= 2 ulxy)+ O %);

3if~ jr u(xy)j’
GF fug(x;y) u(xy)= 2My u(x;y)+ O( 3):

Following the interpretation of this theorem, we implement an iterated guided lter with a
small radius that simulates this equation and prove that it is halo free. This Iter can be simply
written

IGF fug(t; ) = a (t;x)IGFYfug(t 1;x)+ b (t; x): (18)

In Figure 15, a confrontation of the results of this Iter to the ones obtained by the classic bilateral
Iter shows that it is no longer "ected by any staircas®eaxt. As a consequence of the absence of
the edge reinforcement term, the smoothingget is stronger.

Furthermore, we propose two other versions of the lter. One involves a guide image and
another accelerates the Iter by computing the linearaoenta only once.

32



(a) Input (b) Iterated bilateral (c) Iterated guided

Figure 1.5: The iterated guided lter causes no staircase artifact. Parameters used here: 2 = 0:01? with the
inputdynamicrange in[0; 1];r = s = 1 with the inputimage of size250 250; number of iterationsT = 50. The
bottom graph displays the restrictions of the three above images to the vertical straight lines drawn on the images.
The staircase effect of the bilateral Iter (orange line) doesn't appear on the guided Iter version (red line).

14 Chapter4: Bilateral lter

Chapterand3are dedicated to the fast and recent guided lter, link it to the anisotropuudion
and compare it to the bilateral Iter. Those two last Iters are the most widespread lters for the
computation of an image base.

In Chapter4, we present the bilateral Iter. We recall its long history, and describe its main
descendants: the joint (or cross) bilateral lter [EBPSA 04], the bilateral Iter with regression
[BCMO6], the unnormalized bilateral Iters [APFI11APH" 14 MT1§. Furthermore, we make
the link between the bilateral Iter and ACE (the Automatic Color Enhancement), that belongs
to the retinex family. We also explain the staircageot rst described, and solved, by Buadts
al.[BCMOg)].

Two others chapters dedicated to the bilateral Iters follow this one. A review of the numerous
schemes proposed to correct the stairca@ee(Chaptels), and a review of the fast approxima-
tions, particularly usefull when the Iter is used with large spatial neighborhood as in the base and
detail decomposition problem (Chapté&). However, since the unnormalized bileral lter is de-
ned in this chapter, we get ahead and present its fast approximations here. Likewise, we propose
in this Chapter4 a fast approximation of the bilateral Iter with regression and a multi-scale lter
based onit. This last Iter gives us the opportunity to de ne and explaindaek halcartifact.

This chapter, along with the two following ones on the staircasing corrections and the fast
approximations of the bilateral lter, is directly inspired by the book by S. Paris, P. Kornprobst, J.
Tumblin and F. Durand [PKTDY. Whereas this book aims at giving an extensive presentation
of the bilateral Iter and its applications, we concentrate on its usage for base and detail decom-
position. Nonetheless, we approach several points already reviewed20@Bbook, e.g, the
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diVerent proposed extensions and its fast approximations. We highlight below the méin di

ences between our Chapters, 6 and Paris, Kornprobst, Tumblin and Durand book.

Concerning this Chaptet on the bilateral lters, we present supplementary lters and links:
we make the link with ACE (Automatic Color Enhancement) [GBZ})

we review the unnormalized bilateral Iters [APH.IMT14, along with their fast approxi-
mations;

we propose a fast approximation for the bilateral Iter with regression;

we propose a multi-scale bilateral Iter with regression.
We pursue the review of the bilateral Iter with the stairca¥ea corrections in Chaptei There
are two kinds of corrections: the rst modify the bilateral Ilter so that the slopes are taken into
account,e.g. the bilateral with regression lter, the trilateral Iter, the symmetric bilateral Iter;
these have been reviewed in Patigl.book, so the derences comes down to:

a more detailed presentation of the trilateral Iter, with pseudo-codes;

the introduction of a symmetric bilateral lter similar to Elad's one [EF}

The second kind of approximations however is not described in [PBI DIt consist in post-
processing the ltered image to correct the staircase artifact. The described corrections are:

the blending described by Durand and Dorsey [0

the minimal isotropic smoothing\éect in the separable kernel approximation [PQ/
the Poisson correction proposed by Beel.[BPDO4];

the selective diusion of Kass and Solomon [K4.

Concerning the fast approximations, most of them are reviewed in the book. Nonetheless, we add
to the list Iters posterior to2009and sometimes give more detailed descriptions:

in the local histograms, Weiss [\V€] approximation is described in the book, yet we give
of ita more in-depth description: we present the earlier Huang's algorithm and give for both
pseudo-codes. Furthermore, we review PoriRid®8version that uses integral histograms,
and discuss the usage of box spatial kernels;

the fast approximations of the unnormalized bilateral Iter and to the bilateral lter with
regression are given in Chapter

we present a supplementary class of fast approximations based on the usage of polynomials
range kernels;

the domain transform is also reviewed, this Iter can be thought as a bilateral Iter when
used with a small spatial kernel.
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The bilateral lter The principle of bilateral Itering appeared with Yaroslavsk@8p[Yarll
and Lee 198B[Lee8]. The variant we study was proposed by Smith and Brady who called it “SU-
SAN” (1995%[SB97. It was re-proposed by Tomasi and Manduchi under the name “bilateral Iter”
in 1998TM 99. All of these similar Iters can be termed neighborhood lters; the onlyeliences
lies in the shape of the range and space kernels. The performance of these algorithms is justi ed
by the same arguments: inside a homogeneous region, the gray level values slightly uctuate be-
cause of noise or texture. In that case, the bilateral Iter computes a mean. At a contrasted edge
separating two regions, if the gray levélelience between both regions is signi cantly larger than

r, then the algorithm computes averages of pixels belonging to the same region as the reference
pixel. Thus, the algorithm does not blur the edges, which is its main scope.

The version popularized by Smith and Brady and Tomasi and Manduchi uses a Gauss weight-
ing function depending on a Itering parametef (range kernel), as well as a Gauss spatial kernel:
z iy %% iue umi?

BFfug,;s<x)=C(1X) uye 2t e 27 dy; (19)

R iy x? juw w2 o _ _
whereC(x)= e 2§5 e 27 dy is the normalization factor ands is now a spatial lter-

ing parameter.
The cross bilateral Iter [ED4], or joint bilateral Iter [PSA" 04], computes its range kernel
according to a second guide image

z

CBH 1 iy ij2 i vy 2v(x>12d 1

. = — e 2§ e 2 f :
ug ;i .00= 5oy UO) % (119
where the normalization factdC is computed accordingly. This is used for example for ash/no
ash image denoising, where the edge information of the ash image are used to lter the no ash
image, with better colors but more noise.

Staircasing The staircase artifactis illustrated in gui®. Inthis gure we simpli ed the range

and spatial kernels by using simple boxes. This allows a simple visualizationHdithensional

case, of what pixels are taken into account in the averaging process. The blue arrows are the
intensity dverencesi(x) u(y). The dotted box shows the boundaries of the raagdspatial
kernels: outside of this box, all the bilateral weights are zero. Then, it is easy to see that for the
current pixel (namely the intersection of the two blue dotted lines at the center of the box) the
averaged value has a higher intensity than the initial one. By applying the bilateral averaging on
each pixel of the blue line, one obtains the red line. The “propagation of the plateau” that one can
observe is what we call the “staircase artifact”. It amounts to an undesirable edge enhancement.

The unnormalized bilateral lter Recently introduced by Aubrgt al.in [APH™ 1], the unnor-
malized bilateral lter reads:

X
UBRug(x) = u(x)+ G (x Y)G . uly) u(x) uly) ux): (11}
y2
Averaging the dierencegu(y) u(x)) using the bilateral weights actually directly computes the
detail layer. Because this layer intensities oscillate around zero, the normalization factor can be
removed without distorting the ltered image. This accelerates the Iter and reduces staircasing;
however it also reduces its smoothing properties and introduce a small, guided Iter like contrast
halo. This can be understood with the alternative de nition of the unnormalized bilateral Iter
based on BF:
UBH ug(x) = C(x)BRug(x)+ 1 C(x) u(x); (112
whereC is the bilateral Iter normalization factor.
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(b) Range kernel

(@ (c) Spatial kernel

Figure 1.6: Explanation of the staircase effect for a bilateral Iter with simpli ed range and spatial kernels. The
current pixel is at the intersection of the vertical and horizontal blue dotted lines. The dotted black rectangle

indicates which pixels will be considered in the average. Light blue vertical arrows stand for the intensity difference
between the current pixels and the pixels in the rectangle. Since the current pixel has more neighbors (in the
bilateral de nition) on the right side of the edge, its bilaterally averaged value gets up and closer to the plateau's

value.

The bilateral lter with regression This lIter, introduced by Buadest al. in [BCMO06], esti-
mates a regression plane at each pixel. Unlike the standard bilateral Iter that estimates a constant,
the Iter, used with small s, no longer causes staircase artifacts. Wekcallk(x;y) the weights
of the bilateral Iter at point(0; 0) for the imageu = u(x;y). The bilateral Iter with regression
does nd X
argmin  k(ax + by+ ¢ u)?: (113
bic iy

The nal resultis simply BFRug(x) = c¢(x). We complete this chapter by analyzing a last candi-
date to attenuate the staircadéeet, the unnormalized bilateral Iter.

15 Chapters: Staircase ¥ect corrections

In Chapter4 we showed that the bilateral Iter not only preserves the edges, but is prone to
sharpening them. ThisMect has been described and mathematically justi ed by Buatiak

in 2006[BCMO0€], who call it the staircaseMect. Indeed, bilateral-based lters tend to create
piece-wise constant signals separated by numerically created edges, thus adopting the aspect of
a staircase. From the contrast enhancement and tone-mapping point of view the Yaotése
sometimes called thgradient reversal artifadtecause the complementary detail layer, at places
where edges have been reinforced in the base layer, contains reverted gradients. The problem is
that when using the bilateral Iter for contrast enhancement and tone-mapping, the detail layer
gets stretched and the base layer compressed. The recombination of their results causes the gradi-
ent reversal artifact.

Since this artifact is particularly annoying in contrast manipulation methods, many authors
have tried to correct it. The solutions can be divided in two categories. The rst category of
correction does not modify the Iter, but corrects the artifact in a post-processing step. The second
one directly modi es the lter to make it handle smoothly the slopes. We review in this chapter
both categories of corrections.
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(a) intputimage (b) without selective diffusion (c) with selective diffusion

Figure 1.7: Effect of the selective diffusion. Images are enhanced with DxO's contrast enhancement tool using the
standard bilateral Iter (b) or the bilateral Iter with the selective diffusion (c). Most of the gradient reversal artifact
has been removed thanks to the selective diffusion.

This chapter is inspired by the Pagsal. book on the bilateral Iter [PKTDY. The diVer-
ences with our review are highlighted in the previous Sectian

Example: Durand-Dorsey correction In the manner of the Durand-Dorsey correction, most of
the post-processing step that aim at removing the staircé@set ef the bilateral Iter apply Gauss
Iters to the bilateral-smoothed image. TheXdculty is then to nd the right standard-deviation
of the Gauss Iter and where to apply it.

Durand and Dorsey in [DDZ brought a simple answer; they apply only one Gauss lter
with small standard-deviation and then blend between this blurred image and the non-blurred
one in function of the normalization factor of BF. Letbe the linear interpolation coécient
between the bilateral Iter result FBEg and its blurred versiorBF ug. This co# cient varies
with logC. The function = f log(C) is de ned as (X) =log C(x) =log Cmax , Where
Cmax is the maximal possible value f@r, i.e. Cmax = G ((x y). The corrected image is
then

FBRug®"(x) = (X)FBRug+ 1 (x) FBR ug(x): (119

Another correction iteratively smooths the bilateral results, with Gaussian Iters of increasing
width. This is the selectiveMision of Kass and Solomon [K§. At each iteration, they choose
between the image before and after blurring by measuring locally the distance to the original
image, and keeping the closest one. The idea is that if blurring the bilateral result brings it closer
to the original image, then the blurred version should be preferred.

Example result with the selective diusion Figurel7 displays the result of the selectivé/ali

sion applied to the bilateral Iter, in the context of contrast enhancement. It succeeds in removing
a large part of the gradient reversal artifact (a consequence of the staWeaspvsible as a dark

and white bands along the top of the trees. Although this method works globally well, it seems
unable to remove the staircases everywhere, especially in the corners (seé fauréurther-

more, it is not computationally ¥cient. Indeed, numerous iterations are needed to correct the
staircase\éect, and this computation time adds to the computation time of the lter itself.

16 Chapter6: Fast bilateral Iters

The bilateral Iter has rapidly become ubiquitous in image processing and is now used in atremen-
dous number of applications. The original Iter needs to compute \edéent kernel at each pixel
which makes it slow, nay novardable for large images and (consequently) large spatial support.
Hence the need for a fast implementation.
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In Chapter6 we review the numerous fast bilateral lters proposed in the literature. The
history of the fast bilateral lter starts with the fast Durand and Dorsey approximato0g
[DD 024, who presented the original idea, that would be extensively explored later, of sampling the
intensity range so as to linearize the convolution. The Gaussian convolution can then be com-
puted using one of the numerous fast schemes available. Narfdstxact implementation of
the bilateral Iter has been proposed yet. Thus the competition between the numerous proposed
schemes not only lies in the speed but also on the precision and the unavoidable artifacts. Fur-
thermore, for several schemes the speed depends on the parameters used and on the dimension
in which the Iter operates. Thus we eventually present a palett&/ettive Iters rather than a
de nitive winner.

This chapter is also inspired by the Pagisal. book on the bilateral lter [PKTDY. The
diVerences with our review are highlighted in Sectign

The piecewise-linear approximation The Durand-Dorsey fast approximation scheme is based
on the discretization of the possible valueau@X) in the bilateral kernel. Consider the bilateral
lter equation (119 for a xed pixelx

1 X

BF ug(x) = ) G.(x G, uy) u®x) uly); (113
y2

whereC is the normalization factor. This is equivalent to thedependent) convolution of the
functionH u(x) :y! G, u(y) u(x) u(y) bythekernelG . Similarly, the normalization
factorC is the convolutionofl u(x) :y! G, u(y) u(x) byG .. The only dependency
on pixelx that makes it difer from a convolution. Starting from this observation, the authors'
acceleration strategy is to discretize the set of possible signal intensitibsa¥évalues (i)g,
and to compute a linear Gaussian convolution for each such value:

X
v(xii) = C(i;i)yz G.x Y6, uy) () uw) (119
= 1 % G H(y;i 11
- C(X,|) 2 S(X y) (y,|) ( -J
and
X
Cixi)= G (x NG, uy (i) (118
2
= G (x yy:i): (119
y2

This formulation of the bilateral is exact, and shows that it can be computed by series of linear
convolutions: one per possible valuewf). The acceleration strategy is then to compute the
exact result for a limited number of intensities only. This amounts to sampling the intensity range
and to linearly interpolate between thdagers/(x;i) andC(x;i) for values that lie between the
samples.

The bilateral grid The piece-wise linear method has later been improved by Baals[PDOG,

CPDO7 in the bilateral grid. This method also linearizes the convolution and downsamples the
signal to reduce computational complexity, but also gives a more formal de nition of this fast
approximation thanks to a high dimensional interpretation of images, and a gain in precision due
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Figure 1.8: lllustration reproduced from [PDOE]. Bilateral Iter with the bilateral grid for a 1D signal. A rststep s to
lIthe S R domain with the signal values: the second line displays the resulting valueson the grid. The third
line displays it after the convolution by the Gaussian kernel with standard deviatior; . Then, the fourth line
shows the result of the division of the two above grid values (the bilateral Iter's normalization). The orange dots
depict the pixel's positions. The last line is the reconstructed Itered signal, after the “slicing” operation.

to a better subsampling in the range domain. This approximation is probably one of the most
eVective, and one of the most representative of the literature on the fast bilateral lters. We quote

the excellent review by Paris, Kornprobst, Tumblin and Durand [P Y{o give a brief overview
of the bilateral grid:

The authors consider th8 R domain [S is the spatial domain ang the range
domain] and represent a gray-scale images de ned on &D grid as &D function
by
R u(x;y); 1 ifz=u(xy);
(xy;2) = (0;0) otherwise. (129

With this representation, they demonstrate that bilateral Itering amounts to con-
volving with a3D Gaussian whose parameters@rg s; (): = G..,:
They show that the bilateral Iter output is BEg(X;y) =  X;y;u(x;y) . This
process is illustrated in Figufies.

The acceleration strategy is then to subsample thelggfdréhe application of the Gaussian lter;

this step can use a fast box subsampling that does not respect the Shannon condition because of
the ensuing low-pass Iter. Hence the convolution with the separable kernel is computed using
consecutived 1 kernels on a much small volume, which largely compensates for the cost of

subsampling and tri-linear upsampling.
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Local histograms Other fast schemes [Faf] are based on the interpretation of the bilateral
Iter as an average of local histograms. Indeed, for uniform spatial kernels, BF can be rewritten

. 1 X
c.hist — ; ; .
FBRCIN00= g M0G0 uk) b (129
x _
Cx= h{)G, | ux ;
j
wheregj belongs to the discrete intensity range of the input imagetan(q) is the local histogram
value at pixek and for intensityj .

Polynomial approximations A last class of fast Iters use polynomials range kernels(&or
CSUL). Let's explain this with a trigonometric polynomial. Assume the range kernel has the form

kM (t) = X nexp(i2t)"; (129
n= M

with i = 1. Here, , stands for the range parameter of the bilateral Iter. Sehe neighbor-
hood of the pixek andG | the spatial Gaussian kernel with standard-deviatignWith such a
range kernel, the bilateral Iter can be written

BFPOYf ug(x) )
1 X X #
= G s(y) n EXP i2n U(X y) u(x) U(X y)
K& y2 n= M (123
= = X i2 X G i2 :
= K . nexp i2nu (x) ; J(y)exp i2nu (x y) u(x vy):

The decomposition is the same for the normalization factor,

X
KM= G (kY ux y) ux) : (124
y2

The last equation involves a convolution of the image i2 nu (x) u(x) with the spatial Gaus-
siankerneG .. In other terms, the bilateral lter is obtained by a series of Gaussian convolutions.

17 Chapter7: Exposure fusion

In Chapter7 we explore an alternative option for contrast enhancement, in which no base and
detail decomposition is involved.

Exposure Fusion is a high dynamic range imaging technique to fuse a bracketed exposure
sequence into a high quality image. We show that one can extend this method to the more gen-
eral context of improving the overall contrast of any image, turning Exposure Fusion into a new
and simple contrast and color enhancement operator. To do so, bracketed images are simulated
from a single output and fused by exposure fusion. We demonstrate that the resulting algorithm
competes with state of the art retinex methods.

Furthermore, we unveil a serious drawback of the original fusion technique. Indeed, it tends
to create, albeit unexpectedly, an output image which dynamic range is higher than any of the
inputimages. This aw of the method forces either to clip the fused image, thus to loose precious
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Figure 1.9: Simulated exposure fusion method (SEF).

information from the (potentially simulated) bracketed sequence, or to compress the dynamic
range, which provokes a loss of contrast with respect to the input images. We show and explain
this é/ect. After careful diagnosis, we arrive at the important and counter-intuitive conclusion that
exposure fusion does not have the faculty to reduce the edges' amplitudevddtarely operated
tone-mapping is the consequence of twéeets: the haloing due to the Laplacian pyramid, and
the saturation i e, clipping) of the input LDR images of the sequence.

This saturation aw, also present in the introduced simulated exposure fusion, is solved in
Chapters.

Furthermore, Chapter introduces Burt and Adelson's Laplacian pyramid fEin the con-
text of tone-mapping; we see in Chapfethat this has been successfully reused in more recent
multi-scale base and detail decomposition lters. We now summarize the exposure fusion process.

The exposure fusion This method fuses the best parts of th&/elient images in an input se-
guence into a high quality image. Three metrics are used to determine what pixels are the best
and should be kept in the nal result: contrast, saturation and well-exposedness. Each measure
is pixel-wise. The rst measures the amount of local contrast using a small Laplacian kernel. The
second is the standard-deviation of the color channels at each pixel. The last one measures the dis-
tance to the mean valu®5. Those three values are multiplied, then normalized so that the weight
maps of all images in the input sequence sum to one. Rather than directly fusing the images us-
ing these weiht maps, the authors propose a multiscale fusion, using the method introduced by
Ogdenet al.[OABB8]. This technique builds the Laplacian pyramid [B3\of the output image

by blending the Laplacian pyramids of the input images according to the Gaussian pyramid of the
weight maps. We will denotepyrf ug the Laplacian pyramid of the input image Gpyf wg the
Gaussian pyramid of the weights, anthe scale. The blending operation is then

X
Lpyrfv; “g(x) = GpyfWw; gk (X)Lpyif u; " gk (X): (129
k=1

The fused image is obtained by collapsing the constructed pyrapyid vg.

Starting from this fusion method, our single image contrast enhancement algorithm consists
in the simulation of the bracketed exposure sequence, which is then merged using Equafjon (
as shown in Figuré9. We call this thesimulated exposure fusion

Saturation in the exposure fusion As we prove, saturation occurs in the original methods by
Mertenset al. Even though weights are normalized and none of the input images exceed the
nal dynamic range, the fused image can inherit a larger dynamic range than any of the input
images. We illustrate this phenomenon using the authors' demonstration image in Eigjre
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(a) lines of the input sequence (b) 3rd input image

(c) lines of the fused result (d) fused result

Figure 1.10: We show here a section taken in the input sequence (represented on the images on the right column).
Allinputimages are in the correct dynamic range. The fused result however has a greater dynamic. The experiment
is carried out with gray levels images for the sake of clarity; we thus do not use the saturation mettig:= 0. The
other parametersard : = 1;! ¢ = 1. We clipped out-of-range values in (d).

The original exposure fusion method [MKH] simply clips the values that exceed the dynamic
range, but this results in saturated areas in the nal image. One can obviously shift and scale the
intensity to make them t the output dynamic range, but then incurs into the risk of loosing part

of the contrast gains on the input images. We are then stuck in the unpleasant situation where
either we decide to compress the dynamic, but lose contrast, or we apply again a tone-mapping
operator, which is what our method was initially designed for! We present in Ch&gtenore
natural way to avoid this problem.

18 Chapter8: Edge reduction in the simulated exposure fusion

In Chapter8, we improve on the method presented in Chapia@n two ways: rst we correct the
saturation artifact that we proved to be inherent to the classic exposure fusion method. Second, we
propose a smarter way to simulate the bracketed exposure sequence by automatically choosing the
number of brightened and darkened images, so that images with unequally distributed histograms
between their left and right sides are better enhanced. We uncover a novel artifact of our method,
namely the creation of spurious edges in areas with smooth contrast changes (smooth edges). The
issue is solved by replacing the sharp threshb&l €lipping) in the remapping function by a
smoother function.

Furthermore, the general algorithm thus designed can be used to improve on itself in the
HDR context. In this generalized version of the fusion, additional simulated bracketed images are
built from the input, thus yielding a richer choice of contrasts than those provided by the physical
brackets.

The proposed method eventually resembles the local Laplacian lter, being also a multi-scale
edge-aware smoothing lters. The similarities and dissimilarities of both Iters are discussed in
Chaptero.
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(a) original remapping functions

(c) ACEwith =8 (d) MSR on luminance (e) SEF with=8

Figure 1.11: Comparison of SEF (b) with ACE (c) and MSR (d) (with chromaticity preservation, [PSM14]). The remap-
ping functions and the corresponding parameters are speci ed in Figure 8.4 (c).

Simulated exposure fusion method For the Laplacian pyramid blending is not capable of dy-
namic range compression, the solution to the out-of-range artifact of the simulated exposure fu-
sion method is to reduce the dynamic range of the input images. We thus design remapping func-
tions that improve the contrast where needed while keeping the overall dynamic of the simulated
exposure in a smaller range than the output one. We show in Figjiifen the top right corner,

the clipped remapping functions used for the output shown below, and compare it to two retinex
methods: multi-scale retinex (MSR) and automatic color enhancement (ACE). Some other im-
provements are applied to the remapping functions: in function of the input image histogram,
we generate more or less dark or bright images, so as to improve the contrast where needed only.
Furthermore, using smooth remapping functions helps obtaining cleaner smooth edges.

19 Chapter9: Local Laplacian Iter and connection to other operators

In Chapter7and ChapteBwe describe the exposure fusion method and the framework proposed
to extend it to the single image case through the generation of a simulated bracketed exposure
sequence. This fusion algorithm is based on the manipulation of Laplacian pyramids, and has
demonstrated the usefulness of such a multi-scale image representation. We focus in Cbapter
the local Laplacian lters. They use the same Laplacian pyramid but in the context of multi-scale
local contrast manipulation.

The local Laplacian lters have originally been propose@®i by Paris, Hasing and Kautz
[PHK1]. Afastversion was proposed the same year by Aubry, Paris, Na#aatz and Durand
[APH™ 1]. The initial conference papers were extended to journal pape2®idfor the Aubry
et al. fast local Laplacian lIters [APH14 and in 2015or the Pariset al. original local Laplacian
Iters [PHK 1%. Local Laplacian Iters could roughly be explained either as a single image exposure
fusion algorithm similar to the method described in Chapteor as a multi-scale unnormalized
bilateral lter. The latter interpretation was given by Aubey al. in their analysis of the lter,
where they made the link with the bilateral Iter and the multi-scale version of the anisotropic
diVusion [El2D2, BQD4].

The local Laplacian Iter (LLF) is versatile and can be used for a wide variety of contrast
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manipulations tasks, ranging from edge-aware smoothing to local contrast enhancement with dy-
namic reduction. Unlike most lters, LLF constructs the Laplacian pyramid of the output image;
a nal operationcollapsethe pyramid and builds the Itered image. Each Laplaciancoent is
computed independently using a dedicatethapping functigmvhich shape is chosen in function
of the application. The fast version (FLL) uses the Durand-Dorsey(JpBlicing strategy. It
greatly speeds up the execution by computing only a reduced number of remapped images.

In Chapter9, we rst expound the local Laplacian lters and their fast approximation. Then,
we show their strong connection with the exposure fusion method [[MKRIKVR0Y. We see
that a fast local Laplacian lter can be computed using the exposure fusion framework with very
little diVerence in the nal result. Finally, we describe the artifacts of these Iters. Indeed, although
they have proven to be one of the best suited Iters for base plus detail decomposition for contrast
manipulation, the local Laplacian Iters have some drawbacks, the major ones being a loss of
translation-invariance and luminance halos. We now proceed to give a formal de nition of these
Iters.

The fast local Laplacian Iter output pyramid We have seen in Equation®9 that the output
Laplacian pyramid_pyif vesg of the exposure fusion (EF) method is a weighted combination of
the Laplacian pyramids of thé imagesuy of the bracketed exposure input sequence. In FLL,
interpolation weights are computed at each scale and for each remapped images. They can be
pre-computed too. Denotind\; the interpolation weight pyramid associated with the remapped
imageu?, we have

x

Lpyfvy 5 g() = Ai(l; x)Lpyrf ul " gx): (126

i=1
This shows structure similarities of FLL and EF: both blend a sequence of images according to
contrast weights.

Similarity with the exposure fusion The fast local Laplacian Iter and Exposure fusion can be
written in an extremely similar way. But are they equivalent? Although FLL does not use as input
a sequence of images, it actually generates several images from the input, and nverges di
pieces of the latter using Laplacian pyramid decompositions. More precisely, FLL needs no quality
measurement, because it knows which intensity band has been corrected and therefore must be
retained for the nal image. As in EF, FLL constructs the Laplacian pyramid of the nal image.
A signi cant diVerence, however, is that local Laplacian Iters recompute the weight maps at each
scale, while EF calculates them only at the nest scale and then subsamples them.

In Figure 112we examine the Merence between ltering results of EF and FLL's weighting
methods. Put another way, we try to reproduce the output of FLL with EF. In order to do so,
we generate® images with the remapping functions of FLL and fused them with weights con-
structed as in FLL. We shall denote this modi ed EF versiorEBy Finally the only dlerence
betweerEF andFLL are the weights in the multi-scale blending. The resulting processed images
are visually very similar, but not identical. There are more low frequency halos in the FLL re-
sult. We measured for this experimenpanr (peak signal-to-noise ratio) ef0dB between both
results, meaning that they are very similar indeed.

Translation invariance in the local Laplacian Iter Due to the Laplacian pyramid, FLL is not
translation invariant. We realized the following experiment: a test-pattern was constructed using
a single line repeated several times to make it two-dimensional, this test-pattern is de@oted #
This test-pattern was then shifted by one pixel to the right, we denoté iFtgurel13displays
these test-pattern in blue in the plots (b) and (c). We ltered these test-pattern with LLF and
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(a) original (b)ER ug (c))5+3 (u ERug)

(d)FLIlf ug (e):)5+3 (u Ftlfug)

Figure 1.12: First row: original image (a), base layer (b) with the modi ed exposure fusi&fr} and corresponding
detail layer (c). Second row: base (d) and detail (e) layers obtained with the modi ed fast local Laplacian lters
(FLL). The range parameter used is = 25=255. More low-frequency halos are visible in the FLL output. Overall,
the difference between both results is minor.

(a) remapping function (b) test-pattern #1 (c) test-pattern #1 plus shift of
the edge by 1 pixel to the right

Figure 1.13: Loss of translation invariance with LLF. The (a) remapping function preserves the local contrast but
reduces the edges amplitude. Test-pattern #1: The spurious bounce didn't disappear. In illustration (b), | the edge
was shifted by one pixel on the right, and the position of the bounce changed.

superimposed in red the result on the input image. Noticeably, the red lines in (b) and\(ej,di
which evidences that the Iter is not translation invariant. We show in Chaptimat the mean-

shift an low-frequency oscillations visible in this experiment are additional symptoms of the loss
of translation invariance caused by the downsampling.

110 Chapter1d Compact formula and scale-space local Laplacian |-
ter

In Chapter9, we presented the local Laplacian Iter (LLF) and scanned its structural analogy with

exposure fusion [MKR7, MKVR0Y]. We showed that despite some excellent results, LMErsu

from three artifacts, namely, its lack of translation-invariance, its luminance halos and a slight
staircase\ect. The lack of translation-invariance is particularly annoying because it creates irreg-
ularities, small bounces and a mean-shift. Fortunately, all of these issues are solved in Chapter
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by ourscale-space local Laplacian.lter

We start by dissecting the local Laplacian Iter and proposing a compact formula by reformu-
lating the local Laplacian Iter in a scale-space setting. This amounts to removing the downsam-
pling and upsampling steps of the original Iter. Besides giving a clean mathematical description
of the Iter, a welcome outcome of this re-interpretation of the lter is the reinstatement of the
translation invariance property which LLF lacked. Furthermore, this interpretation puts in evi-
dence the implicit guide used in LLF ; this guide, that we @altle can then be replaced by the
result of an arbitrary previous Iter. We therefore explore the in uence of the oracle in this new
framework. We show that edge-aware smoothing lters used as oracle reduce the luminance halo
but increase the staircas¥est, while a simple Gaussian Itered oracle (as used in the original
Iter) has no staircase\éect but sometimes visible luminance halos. We nally compare the re-
sults of this extended scale-space local Laplacian lter with the standard local Laplacian lter in
the context of base plus detail image decomposition.

A compactformula The scale-space local Laplacian lter (SLF) has a compact formulation that
fully describes the lter. Denotin®@- = G . G .,; the diVerence-of-Gaussian operator and
g(x;)= G . u (x) the reference intensity inthe remapping function we get

e 1
SLRug(x) = D rFu gx’) (X+ G.
*=0

U (x): (129

Second compact formula using slicing We can express the exact scale-space local Laplacian |-
ter using the “sliced” formulation of the bilateral Iter introduced by Durand and Dorsey [I2])
This actually completes our previous expression of SLF by providing another compact and in-
sightful formulation.
8
< P 1 N
SLF ug(x) I8 e x5 (G u(x) +(G . u)(X)

wWx59) = (6. G.) Hu 9) (¥

In this equation,» is what we could call a “Laplacian layer”: LaplacianYccients at scale of

the remapped input image according to the reference interggitYhe output image Slfkig is
constructed from these layers, by selecting at each pixel the Laplacoients in a particular

layer, depending on the valy& . u)(x). This value acts as a guide indicating for each pixel and
each scalbow the input image should be remapfedet the enhanced nal result. Put another

way, the guidéG . u) is used to pick the value of the Laplacian ¥agent in the “right layer”.

There are as many layers as the number of possible intensities for the guide, and constructing
SLF amounts to collect the “correct” values in the pre-computed layers. The fast approximation
consists in pre-computing only a reduced set of Laplacian layers, and, for values of the guide that
have no pre-computed layer, to linearly interpolate between the two closest pre-computed values.
As we shall see in Secti@A3, this guide is implicit in the original local Laplacian lters, whereas

our scale-space interpretation reveals its presence and allows its replacement.

(128

Implicit oracle-based single-scale lter

In [APH" 1], Aubry et al. introduced the unnormalized bilateral Iter (UBF), given in Equa-
tion (11). They show that this is the Iter used in LLF when the pyramid has only one saale,

the nestones and the residual. Thanks to the scale-space interpretation of the Iter, we can de ne
the lIter that is used in SLF for an arbitrary pyramid depth. We call this Iter the unnormalized
oracle-based bilateral Iter (UOBF), because it usesm@tlein a similar way to the joint image
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Figure 1.14: Test-pattern (light blue) and its ltered version by the bilateral Iter (orange); the unnormalized bi-
lateral lter (green); and the unnormalized oracle-based bilateral Iter (red). The same parameters are used for all
lters: | = 2 pixelsand ; = :2. The oracle used in UOBF & , u. Itis drawn in dark blue. Compared to BF,
UBF has a lighter smoothing effect. On the contrary, UOBF has a stronger smoothing than both BF and UBF. In
fact, UOBF closely follows its oracle, except at the edge where most of the differences averaged have the same sign
(positive at the top of the edge, negative at the bottom).

in CBF. The unnormalized bilateral lter is a spacial case of UOBF where the oracle is the input
itself. It is de ned as:

X
UOBHU;vg(x) = v(x)+ G (x )G, uly) v(¥) u(y) v(x) : (129
y

We callv the oracle because it is the value that controls, for each pjxehether a pixey in its
neighborhood will participate a lot in the computation of the result or not. We shall explore in
Sectionl05the diVerent Iters and the improvements we can derive from the replacement of this
oracle by more sophisticated ones.

This leads to a third and last compact formulation of SLF:

1
SLRug(x) = u(x) UOBF .fu;g(x; )g(x) UOBF ., fu;g(x; )a(x) ; (130
*=0

in which it becomes clear that the local Laplacian lter belongs to the bilateral pyramid family.
Indeed in Equation {30, the right-hand term collapses a pyramid made of bilateral lters. We
display in FigureL14the application of the new oracle-based Iter UOBF on a noisy edge.

Edge-aware oracles in SLFThe oracle used in SLFg¢x; ) = G . u. We show in Figuré.15
that it can be replaced by other lters, and in particular edge-preserving ones. This helps reducing
the luminance halo but increases staircasing.

111 ChapterliWeighted least squares lter

We have presented in Chapteand ChaptefiOtwo multi-scale approaches based on the Laplacian
pyramid of Burt and Adelson [B&3. We present in Chaptetlanother &ective multi-scale lter,
the weighted least squares lter (WLS). It was proposed by Farbman three years bef608in
[FFL®E and does not involve pyramids.

Unlike other schemes based on the bilateral Iter [FOYFCPLO7], this edge-preserving smooth-
ing approach is grounded on the weighted least squares optimization framework. It is de ned as
the minimization of an energy composed of a data term that minimizes the distance between the
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(a) guide = gaussian (b) guide = guided Iter (c) guide =sslif (d) guide = bilateral Iter

Figure 1.15: First row: differences 6) — Second row: Tone-Mappinga™ = :125+ :750 ESLFug+5 (u
ESLFug)

input image and the result, and of a regularization term that penalizes the gradients of the output,
except across signi cant gradiehthe input image. Hence, the resulting image follows the input
image on its edges and is smoothed elsewhere. The authors proposed/anentlistrategies to
build a multi-scale edge-preserving decomposition of an image on this concept.

We show that WLS has objectionable artifacts. The most serious is the compartmentalization
eVect, that breaks the homogeneity of at regions when they are split in smaller regions with
diVerent areasd.g. branches of a tree with uniform sky as background). The second one is an
asymmetric halo. We present two ways to correct these artifacts.

The rst proposed solution remedies to compartmentalization by adding in the functional
“remote gradients” terms, so that disconnected regions with similar values are linked and move
together. The second solution directly prevents important intensity shifts in at regions. This
works well because these are the places where compartmentalization is mostly visible.

Despite our ndings and the improvements, we conclude that this Iter is not well adapted to
contrast enhancement. Indeed, it remains heavy in terms of memory usage and not computation-
ally e cient. Furthermore, our corrections add to its complexity. Nevertheless, for applications
on small images or for which computational time is not an issue, one can nd in this chapter new
good options for an additive base and detail decomposition.

Filter de nition  As presented by Farbma al.[FFL9, given the input imagel, edge-aware
Itering consist in seeking a new image which, on the one hand, is as close as possible to
and, at the same time, is as smooth as possible everywhere, except across signi cant gradients in
u. This translates into seeking the minimum of
X v 2 v ?
arg rrvn v(X)  u(x) 24 ax (U; x) @ (x) + ay(u;x) @ x ;  (13)

@x @y

X

wherex denotes the spatial location of a pixel. The data term minimizes the distance between
v and u, while the regularization term strives to achieve smoothness by minimizing the partial
derivatives o. The smoothness requirement is enforced in a spatially varying manner via the
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(a) original (b) base (c) detail

Figure 1.16: Decomposition of the luminance of (a) in base (b) plus detail (c) with the WLS lter. The parameters
usedare =1:2and = 6:4. The compartmentalization artifact is clearly visible in the branches of the tree on
the right hand side of the detail image.

smoothness weight anday, which depend o, and are de ned as

ay(u;x) = @;Sx) + 1 and ay(u;x) = @\X) + ; (132
' @ e @y ’
where the image s thelog-luminancehannel ofu.

The compartmentalization artifact The WLS Iter has two noticeable artifacts. The rst one

is compartmentalization, which happens when a large region with a constant inteagjtyhie

sky) is compartmented by a thin network in the foreground, typically the branches of a tree.
This creates small regions with the same constant intensity as the underlying large region, yet
disconnected. Because WLS takes into account the direct neighbors only, these small regions are
then free to evolve independently. The smaller their area, the lower the steadying in uence of the
data term compared to the gain obtained by reducing the gradients at the edge of that element.
Thus, the lower its area/perimeter ratio, the stronger a small region Maktted. Obviously this

eVect increases with. In Figure116 this compartmentalization occurs with the sky fragments
between tree's branches, that become brighter than the rest of the sky. The second artifact is a
luminance halo on the dark side of the edges only. This is also visible in RigjGa¢the horizon.

Super-connected WLS Iter Among other modi cations of the energy, we propose to solve the
compartmentalization artifact by adding “remote gradients”. They are intensigrdnces com-
puted with pixels which are not direct neighborsofThis ensure that close yet separated elements
with the same intensity will move together. We can write the new regularization term

%ax %ax '
ad(uxn) (Vx+ nvy) V)P + ag(uxin) (v(x+ nvy)  v(X)®
n=1 n=1

where we considarmax neighbors (in the original WLS Itemmax = 1), vx = (0;1) andvy =
(1; 0) are unit vectors, and the smoothness¥aents in directionx andy become

ac(u;x;n) = ju(x+ nvy) u(x)j2+ l; (133

ay(u;x;n) = ju(x+ nvy) u(x)j2+ 1: (139
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(a) input color (b) MGF detail layer (c) MGF enhancement

Figure 1.17: Detail layer (b) computed with MGF with parameters:= 2, maximal number of scales possible, no
iterations, and = 0:42. In (c), the enhancement algorithm we use is simply enhan@e = 0 :125+0:750MGF ug+
3(u  MGF ug). The inputimage dynamic range is ifi0; 1], and we treat the luminance only.

112 ChapterlZ Multi-scale guided Iter

In the previous Chaptet ] we looked at the weighted least squares lIter, which proposes a multi-
scale decomposition of an image by successive applications of the lter without downsampling,
similarly to previous multi-scale decomposition based on the bilateral Ilter — apart from the local
Laplacian lter. This last Iter and the one we introduce here are based on the local Laplacian
pyramid.

In this chapter, we propose a simple multi-scale implementation of the guided Iter based
upon the Laplacian pyramid of an image. As we shall see, a straightforward implementation leads
to the creation of the dark halo artifact, typical of the multi-scale Iters based on the Laplacian
pyramid. We encountered the same artifact in the multi-scale bilateral Iter with regression, de-
scribed in Chapte#. We show that a simple modi cation in the pyramid reconstruction solves the
problem. This correction takes advantage of the guided Iter linear model. It leads to a fast lter
giving a very clean base and detail decomposition. The comparison we carried out on thirteen
Iters in Chapter13showed that this lter is ¥ectively one of the best options available.

The mutli-scale guided lter is a direct transposition of the mutli-scale bilateral Iter with
regression (see Sectién) where BFR have been replaced by the guided lter. Indeed, we observe
that the guided lter gives a direct measure of the edge reduction with it¥ camta. Since the
dark halo artifact is created when an edge is reduced but the corresponding Lapladieiectse
in the next ner scale are not, a simple correction is to apply the sam¥ cieat a to them.
Including this modi cation, the multi-scale guided Iter (MGF) is de ned as

(
Z‘max GH prrf u1 X max gg

GH Upsamplez-+1 ) + Upsampléa- .1 )Lpyrf u; "gg;

(139

wherea-; isthe guided lter's co¥ cient at scalé+1. The nal resultis given byg. We display
in Figurel17the detail layer produced with this Iter.

113 Chapterl13 Final evaluation and comparison of the lters

At this stage of the dissertation, we have presented and examined the virtues and defects of the
most prominent existing lters, and proposed several new ones. From the bilateral lters, in
Chapter4, 6 and 5, to the local Laplacian Iter in Chapte? and 1Q passing by the guided |-

ter, Chapter2, 3and 12 the weighted least squares Iter in Chapter the exposure fusion in
Chapter7 and 8, we explored a large part of the literature on the edge-aware smoothing lter,
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Luminance halo Staircase effect Compartmentalization

Contrast halo Dark halo

Figure 1.18: Five nal test-patterns used to measure the presence of the different artifacts: the luminance halo, the
staircase effect, the compartmentalization, the contrast halo and the dark halo.

concentrating on the ones causing the least artifact and, is possible, low computation needs. Fur-
thermore, for each studied Iter, we named and de ned its most cruel defects and proposed at
least one alternative version diminishing these artifacts.

In Chapterl3we compare the lters that we presented in the previous chapters. We perform a
guantitative evaluation of the ve main artifacts of the contrast enhancement we met during this
thorough review, namely, the simple (luminance) halo, the contrast halo, the staiMasdedge
sharpening), the compartmentalization (closingget) and the dark halo (described in Chapter
seen in Chapters and 1). For each of these artifacts we propose a test-pattern speci cally de-
signed to reveal it, along with a way of quantifying it. This evaluation gives a clear overview of the
capacity of the tested lter to perform a clean base and detail decomposition. Based on the pro-
posed measures, we eventually propose a ranking of twelve representative Iters in the literature
along with those proposed in this thesis. However, not all contrast enhancement lters are based
on base-detail decomposition. For the sake of completeness, additional comparisons are provided
with well established tone-mapping Iters that do not perform this decompositog. multi-
scale retinex (MSR), automatic color correction (ACE) and simpler methods based on histogram
equalization.

Methodology for the artifact evaluation We rst design a set of ve test-patterns, one for each

identi ed artifact. Each one is paired with a measurement method giving a quantitative evaluation

of the presence of the artifact for each lter. Then, we establish of short list of lters, that we
believe to be representative of the variety of lters proposed in the literature. In order to fairly
compare the lters, we propose a rule to set their parameters. To that aim we develop a general
procedure, based on the averdgenorm for the detail of a small set of representative natural
images. Once these preparing steps are accomplished, we evaluate the presence of artifacts for the
twelve selected Iters. This study yields an objective Iter ranking, and leads to declare winners
three Iters achieving a clean base and detail decomposition. We apply those Iters on natural
images and con rm the ranking. We now describe summarily these lters.
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114 Synopsis of analyzed lters, contributions

We just presented a synthesis of the dissertation, but not of its conclusions (which are revealed
in Chapterl). Since our above synthesis is nothing but short, and the dissertation considerably
longer, we feel compelled to present a synopsis of the lters and of our contributions on their
understanding and improvement.

List of Iters in order of apparition, of their abbreviations, and our contribution  All Iters
mentioned below are formally de ned in the thesis, their artifacts are identi ed and they are com-
pared in the nal contest; quantitatively if a they give a base + detail, and qualitatively otherwise.
For most of them we propose improved variants.

MSR (mutli-scale retinex) de ned and compared in the nal contest;

ACE (automatic contrast enhancementde ned, compared in the nal contest, a formal
relation to the bilateral Iter established;

GF (guided lter): de ned, compared in the nal contest, leads to uncover the contrast
halo, compared to the bilateral Iter, improved with a multi-scale scheme;

IGF (iterated guided lter): proposed a new Iter, compared in the nal contest, analyzed
and linked to the Perona-Malik anisotropic\ision;

BF (bilateral lter), and variants: de ned, compared in the nal contest, leads to de ne
the staircaseMect, reviewed its variants and the staircagcéecorrections;

FBF (fast bilateral Iters): reviewed the fast approximations of the bilateral Iters, proposed
a fast bilateral Iter with regression, proposed a multi-scale implementation of the same
Iter, leads to de ne the dark halo artifact;

EF (exposure fusion) de ned, leads to uncover its out-of-rang¥ext, identi ed the core
principle in the contrast manipulation;

SEF (simulated exposure fusion)proposed an extension of EF to single-image contrast
enhancement, compared in the nal contest;

LLF (local Laplacian lter): de ned, compared in the nal contest, linked to the exposure
fusion, explored the dierent and undesiredvects of the pyramidal structure;

SLF (scale-space local Laplacian lterproposed a new lter, introduced a compact for-
mulation, introduced the oracle-based unnormalized bilateral Iter UOBF implicitly used
and extended Aubry's LLF analysis and link to the bilateral lter;

WLS (weighted least squares lter)de ned, compared in the nal contest, leads to de ne
the compartmentalization artifact, improved in two new lters, one that penalizes gradients
at a greater distance, one that detects and preserves the at areas;

BGRF (bilateral grain lIter): proposed a new Iter based on the morphological grain lter,
compared in the nal contest;

DT (domain transform): de ned, compared to the bilateral Iter and compared in the nal
contest;

LO-I1S (L% image smoothing) de ned and compared in the nal contest.
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1 Introduction en francais

Nous donnons dans ce chapitre une traduction des premiéres sections de l'introduction en
anglais du Chapitré. Nous présentons ainsi a nouveau les méthodes retinex (Seichion
I'analyse du ltre guidé et la proposition d'un ltre guidé itéré (Sections et 13), et les
trois chapitres sur le ltre bilatéral (Sectioris!, 15 et 16), ol nous présentons le ltre et
ses variantes, Met destaircasingt les diérentes maniéres de le corriger et pour nir les
approximations rapide du Itre. Nous renvoyons au Chapifrprécédent pour la partie de
I'introduction qui concerne la fusion d'exposition et pour notre proposition sienulated
exposure fusiqi®ectionl? et Sectionl8), 'analyse duocal Laplacian Iteet son extension
(Sectionl9 et Sectionl1(), du Itre weighted least squa(8&ctionl1), la proposition du
multi-scale guided lter (Sectiorl 1), mais aussi pour la comparaison nale des méthodes
entre elles (introduite en Sectiahl). Nous redonnons toutefois le résumé et la liste des
contributions, en Sectiofn14

Cette thése CIFRE a été réalisée en collaboration entre le Centre de Mathématiques et de leurs
Applications de I'Ecole Normale Supérieure Paris-Saclay et la société DxO, ou j'ai travaillé avec
I'équipe de traitement d'images sur le logiciel de développement de photos DxO Phdériab
ciennement DxO Optics Pro). L'équipe travaille a produire des images de grande qualité a partir
d'images RAW, mais aussi a partir de chiers JPEG produits par n'importe quelle caméra. Dans ce
contexte, il a été observeé qu'il est souvent nécessaire de décomposer une image dans ce que nous
appelons intuitivement la base et le détail.

L'objet de lathése est la décomposition additive automatique des images numériques en couches
de base et de détail, avec comme but la manipulation du contraste local. Cette opération vise a
ajouter plus de clarté a limage en améliorant ses détails. Ce probleme est directement lié a la
théorie dite retinex. Initialement proposée dans les années soixante-dix comme théorie de la
perception humaine de la couleur, cette théorie a ensuite été utilisée pour améliorer les images
numériques. Dans ce contexte, les algorithmes d'amélioration retinex tentent de transformer les
images numériques de sorte que le résultat soit proche de ce qu'un observateur humain aurait vu
en regardant la scéne originale. Cet objectif a souvent été simpli € comme “voir dans les ombres”.

Les opérateurs dene mappingmise en correspondance des tonalités ou mappage des tons en
francais) appartiennent également a cette catégorie. Le problenoaeunapping les objectifs
contradictoires d'en méme temps réduire la dynamique d'une image et de préserver le contraste
local. Une telle opération est nécessaire dans I'imagerie a grande gamme dynamique (HDR), ou
la plage dynamique d'une image doit étre réduite avaivt¢laage ou l'impression (en raison de la
faible plage dynamique des écrans et des imprimantes standard). Les opérateurs retitexest de

Woir http://www.dxo.com/us/photography/photo-software/dxo-photolab
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mappingpeuvent étre divisés en deux catégories : ceux\(péteent une décomposition en base
et détail ; ceux qui ne le font pas et produisent directement une image améliorée.

L'outil le plus simple disponible est la combinaison d'un Itre passe-bas et passe-haut, qui
décomposent l'image en son contenu de basse fréquences (base) et de haute fréquences (détail).
Ceci est utilisé par exemple dans la technique de rehaussement de contrasiadbagb mask
qui peut étre calculé avec la transformée de Fourier. Les transformées en ondelettes localisent
I'analyse fréquentielle dans l'image et peuvent ainsi étre utilisées aussi. Les ltres morphologiques
comme le Itre de grains et les Itres de surface sont une autre classe de Itre qui peut étre utilisée
pour cette décomposition. La fermeture, I'ouverture (utilisée dans le top hat Iter par exemple)
ou le Itre médian sont une autre option. Les Itres EDP comme I&@hion anisotropique sont
une autre option classique pour calculer une base. lls ont I'objectif de simultanément lisser et
améliorer I'image ¢oherence-enhancinyidiion Iteringpar exemple). Les lItres de débruitage
peuvent également étre considérés comme des méthodes de décomposition d'une image en base
et en détail, I'écart type du bruit jouant alors le r6le d'un paramétre d'échelle. La base est I'image
Itrée tandis que le détail correspond au bruit supprimé. C'est le cas du lItre bilatéral, dont
['utilisation pour la décomposition de base et de détail est trés répandue, mais qui a l'origine a été
congu pour le débruitage d'image. La régularisation par la variation totale est également congue a
l'origine comme un algorithme de débruitage mais s'adapte parfaitement a une séparation base-
détail, alors souvent appeléartoon + texture

En bref, il existe une vaste panoplie de Itres d'image qui peuvent étre utilisés dans le but de
décomposer une image en base et en détail. Dans cette thése, notre objectif est de passer en revue
les méthodes de décomposition les plus pertinentes, de trouver et d'améliorer les meilleures et
éventuellement d'en dé nir de nouvelles. Cela nécessite des mesures rigoureuses pour évaluer la
gualité des résultats. Comme nous le verrons, nous serons amenés a mesWwerdeggiartefacts
produits par chaque sorte de lItre.

La diY culté du probleme réside dans notre notion de “base” et de “détail”.\ten, @lors que
le ltrage linéaire les lisserait, notre notion de base conserve les contours principaux dans la base
et les exclut du détail. Ainsi, une telle décomposition est a la fois additive et non linéaire. Notre
méthodologie de recherche consiste a comprendre, améliorer et évaluer les Itres de lissage qui
préservent les contours, c'est-a-dire les Itres qui calculent une base. Au cours de I'étude, nous
allons dé nir les artefacts, spéci ques a un Itre ou, plus souvent, typiques d'une classe de ltres.

Nous baserons notre dé nition des artefacts sur I'évaluation qualitative des experts en image
de DxO, que nous visons a transformer en mesures quantitatives rigoureuses. Ces évaluations sont
hautement non-linéaires. Nous essayons d'abord systématiquement dans cette these de corriger
les artefacts dévoilés pour chaque Itre. Notamment, aucun ltre n'est réellement exempt des
artefacts, tels que nous allons les dé nir. Cependant, les artefacts ne sont pas tous également gé-
nants du point de vue d'un photographe, et la présence de chaque défaut peut varier, de sorte que
beaucoup d'artefacts peuvent tomber au-dessous d'un seuil subjectif “inacceptable” (trop visible
pour étre acceptable).

Nous sélectionnons nalement les algorithmes gufrent le meilleur compromis parmi ces
artefacts, gréce a une mesure quantitative réalisée sur les artefacts que nous avons isolés. Dans
notre classement nal, nous prenons en compte la complexité de chaque Itrevéinee paramétre,
bien que souvent en contradiction avec la qualité de la décomposition, peut étre décisif lorsqu'il
s'agit de sélectionner un lItre dans une chaine de traitement d'images déja longue et complexe.

En bref, cette these développe une méthodologie pour I'évaluation quantitative de la qualité
des décompositions en base et détail de tout Itre d'image. Aprés un examen attentif de nombreux
Itres et de leurs artefacts, nous nissons par créer un ensemble de mires, une pour chacun des
cing artefacts identi €s, et cinqg métriques associées aux mires proposées. La méthode prend en
entrée n'importe quel lItre avec ses paramétres xes, a I'exception de celui qui contrdle la quan-
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tité de détails extraite par I'algorithme. Ce dernier paramétre est xé de facon que la mgrme

du détail produit corresponde a un nombre prédéterminé. La valeur de cette nbfnest en

fait une moyenne des valeurs des norrhésdu détail obtenues avec un ensemble représentatif
d'images naturelles. L'égalisation des norinéslu détail extrait par chaque ltre assure que les
algorithmes peuvent étre comparés équitablement. Cela conduit a évaluer quantitativement les
cing mesures d'artefacts pour tous les ltres sur toutes les mires et a proposer nalement une
méthode de classement ainsi qu'un classement nal de tous les Itres examinés. Comme nous le
verrons, deux ltres classiques — mais améliorés par nous — émergent de cette étude.
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11 Les méthodes retinex

La théorie Retinex a été formulée pour la premiere fois par Edwin H. Larid®é4adans [Lai64].

C'était une tentative révolutionnaire de modéliser comment le systéme visuel humain (SVH)
percoit les couleurs dans une scene. Cette théorie a été formalisée par Land et McCainl[s. M

ont établi que le systéme visuel ne percoit pas une luminosité absolue mais plutdt une luminosité
relative, a savoir, les variations de luminosité dans des régions locales de I'image. Cela a été prouvé
par les expériences utilisant des formes “de Mondrian” [Labar8d, ou ils montrérent que la
sensation de couleur n'est pas directement liée aux caractéristiques spectrales du signal percu : les
patchs de ré ectances\d#rentes sont percus avec des couleWwsgmintes méme lorsqu'ils émet-

tent la méme distribution spectrale de lumiére a cause d'un changement local dans l'illumination.
C'est ce que A. Rizet al.appellentcolor constandia constance de la couleur) [RM].

Dans ses premiers résultats, Land a supposé que trois ensembles indépendants de récepteurs
existent et que la comparaison de ces trois sorties de récepteurs donne le sens de la couleur. |l
a appelé ce systeme Retinex, un néologisme fait de rétine et de cortex. Bien que le travail orig-
inal n'impliqgue pas d'images numériques, Retinex peut étre utilisé pour améliorer les images
numeériques, comme suggéré par Land lui-méme.

Les implémentations et dérivations de Retinex ont été un domaine de recherche actif qui
compte maintenant une multitude de publications. Comme expliqué dans un récent apercu des
méthodes Retinex par Petet al.[PSML4, les nombreuses implémentations peuvent étre di-
visées en deux groupes. Le premier groupe explore la luminosité relative de I'image en utilisant
un grand nombre de chemins dans l'image ou en comparant la couleur du pixel courant & un
ensemble de pixels aléatoires [Z@n Le second groupe utilise un masque de convolution ou
des techniques variationnelles pour calculer une image améliorée localemesf] [ [ Hr\\O 7],

[JRWO7], [KES 03, [BF99, [MPS1(, [MMOC 1}, [BCP0O9.

De nos jours, lI'implementation la plus répandue de Retinex est une alternative a l'algorithme
initial par marche aléatoire publié par Land [L&}. Cette implémentation calcule la luminosité
comme le rapport entre la valeur d'un pixel et la valeur moyenne des échantillons environnants.
Prenant pour exemple un ltre gaussi€n , I'opération revient a dé nirL (x) := % ce
qui implique

logL(x):=log I (x) log(I G )(x): (1)

Cette équation 11) est la méthode dite du Retinex & une seule échsligle scale retinex
ou SSR en anglais), explorée par Joletaml. dans [JRV® 0] et plus tard étendue par les mémes
auteurs a plusieurs échelles [J274]. Cette derniere est appelée Retinex multi-échethedtiscale
Retineou MSR en anglais) et sa formule est :

X
MSR ug(x;i) = Wn SSRuU; n;ig(x)
n=1
= wp log u(x;i) log (G, u(i)(x) ; (12
n=1

ou N est le nombre d'échelles, le poids de chaque échelle@t, (x) = C, exp(k xk?=2 2),
un noyau gaussien avec son facteur de normalisaipnUn excellent apercu de la théorie et des
algorithmes de Retinex peut étre trouvé dans le livre de Bertalmid f3ainsi que la connex-
ion aux techniques variationnelles basée sur la perception [PA8BEBP(] et ACE, que nous
abordons maintenant.

L'Automatic Color Enhancemd®CE, Rehaussement Automatique de Couleur en francais)
proposé par Gattat al. [GRMO0Z est fortement lié¢ a Retinex. Il a été développé plus avant

56



Figure 1.1: Tracé de la fonctios utilisée dans ACE

dans [RGM3 RGMO4, BCPR7. Il a été prouvé par Bertalmiet al.[BCFO9], qu'il peut étre

vu comme une anti-symétrisation particuliere du modéle KBR [Kernel-Based Retinex]. Cette
derniére méthode, comparée a Retinex, a l'avantage d'améliorer le contraste dans les parties claires
comme dans les parties sombres de I'image, alors que Retinex a tendance a déplacer I'histogramme
vers la droite, et donc a réduire le contraste dans les régions claires. Il est dé ni comme suit :

_ s u(x) u(y) . _
ACH ug(x) = o K X2 (13
y2 nx
ouu: ! [O;1]estlimagedentréest :[ 1;1]! R estlafonctionde pente
s (t)=min maxft 1g;1 ; (19

ou estun paramétre dé ni par l'utilisateur (montré sur la Figur8. Le résultat nal est obtenu
aprés un étirement de AGHg a[0; 1], car beaucoup de ses valeurs sont négatives. Nous analy-
serons dans le Chapitrde lien entre ACE et le Itre bilatéral.

Les ltres retinex créent des artefacts de halo. Pour cette raison, ils ne sont pas acceptables pour
I'amélioration du contraste dans la photographie professionnelle. La Figlitiistre ce fait et
montre la supériorité des ltres\ectuant une décomposition base + détail, comme le Itre MGF
qui sera développé dans cette thése. Dans les sections suivantes, nous détaillons nos contributions
chapitre par chapitre. Les Chapitrés 11procédent a des analyses détaillées des ltres et a la
détection, I'explication et, si possible, la correction de leurs artefacts. Le long Chagarame la
méthodologie d'évaluation nale.
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image d'entrée MGF, base et detall

MSR MGF, contraste amélioré

Figure 1.2: MSR et le Itre guidé multi échelles (MGF) introduit dans cette thése. Retinex multi-échelles introduit
un halo autour du phare, mais pas MGF. Le ltre guidé multi-échelle est un algorithme de décomposition en base
et détail ; la décomposition obtenue pour la partie luminance de I'image d'entrée est af chée sur la premiere
ligne, & gauche. Les deux algorithmes ne prennent en compte que la luminance pour I'amélioration de contraste.
Noter que MSR ne parvient pas a préserver le contraste de la fagade du phare, contrairement a MGF ; de plus, la
décomposition de base et de détail donne beaucoup de exibilité aux algorithmes, ce qui pourrait étre utilisé par
exemple pour augmenter encore le contraste local.
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12 Chapitre2: Le ltre guidé

Dans le Chapitre, nous commencgons notre analyse du ltre guidé [HE]. Ses artefacts, un
halo de contraste et un halo de luminance, sont expliqgués. Une comparaison des performances
du ltre est eVectuée avec un ltre apparenté, le Itre bilatéral. Nous montrons que les tentatives
de mise en correspondance des paramétres des deux ltres sont vaines ; le ltre guidé n'a pas la
méme capacité de préservation des contours que le Itre bilatéral.

Nous présentons cependant dans le Chagitom nouveau ltre basé sur GF qui réduit ses
artefacts tout en gardant sa propriété tres désirable d'étre localement une transfornyatiede
I'image guide, ce qui évite Vet d'escalierdtaircaseMecten anglais).

Le ltre guidé Le ltre guidé (guided lter GF) a deux étapes : la premiére calcule dans des
patchs les coécients qui minimisent la distance entre une transformation linéaire de l'image
guide et I'image d'entrée. Dans chaque fen&iedl) ! , GF résout :

X
E a(y);y) = ay)v()+ bly) u() *+ a(y)? ; (19
x2! (y)

ol u est I'image d'entrée, le guide, un paramétre de lissageleune fenétre.

Ce modele garantit que dans les patchs lItrés, les gradients sont proportionnels aux gradients
de l'image guide, ce qui éviteVet escalier présent dans le Itre bilatéral, par exemple. D'un autre
coté, il introduit un halo de contraste et un halo de luminance. La deuxieme étape agrege les
valeurs Itrées de tous les patches qui se chevauchent. C'est équivalent a la moyenn¥ ees coe
cients(a; b) des patchs qui se chevauchent, ainsi I'image Itrée s'écrit

GH ug(x) = a(x)v(x) + b(x); (16)

ou (a; b) sont les co¥ cients linéaires agrégés. L'équatidf)(@ une solution analytique, rendant
le Itre extrémement rapide a calculer, puisqu'il ne nécessite que des moyennes locales. De plus,
ces derniéres peuvent étre calculées en temps linéaire grace a des images intégrales.

L'artefact du halo de contraste dans GFL'artefact principal du lItre guidé vient du fait que les
contours sont conserves, et la zone alentour également. Nous montrons un exemple du phénoméne
qui en résulte dans la Figufied. L'artefact est particulierement présent lorsque le ltre est utilisé
avec un grand rayon. Envet, le ltre guidé ne peut pas lisser la moitié d'une fenétre et garder
l'autre moitié telle quelle ; le choix qui est fait est souvent une décision intermédiaire : a moitié
lissée, a moitié conservée. Ainsi, il crée également l'artefact du halo (Que nous appelons halo de
luminance pour le distinguer clairement du halo de contraste).

L'artefact du halo de luminance dans GF L'artefact du halo de luminance apparait lorsque les
bords ne sont pas bien conservés par le Itre. C'est le cas du ltre guidé, comme le montre la
Figurel4. Comparé a son concurrent le ltre bilatéral, le Itre guidé lisse moins les textures qui
doivent étre enlevées et lisse davantage les bords qui devraient étre conservés.

13 Chapitre3 Le ltre guidé itére

Le Chapitre? introduit le Itre guidé et ses artefacts, a savoir le halo de contraste et le halo de
luminance. Une comparaison avec le ltre bilatéral montre que ses propriétés de préservation des
contours et de lissage ne font pas d'ombre au ltre bilatéral. D'autre part, le ltre guidé présente
'avantage de ne pas avoir\fet d'escalier. Cela rend ce lItre particulierement souhaitable pour
I'amélioration du contraste.
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Figure 1.3: Artefact de halo de contraste dans le Itre guidé : le lissage est réduit prés des contours de fort contraste.
A gauche : signal 1D en marche d'escalier avec un bruit faible (ligne bleue) et sa version lissée avec le ltre guidé
(ligne rouge). Sur la droite, nous montrons la couche de détail. En haut, nous avons la différence entre les deux
sighaux de gauche : entrée - ltrée (ligne verte). La couche de détail est presque plate en son centre, ou le signal
d'entrée a son bord d'étape. Pour comparaison, le bruit d'entrée du motif de test (c'est le détail attendu) est af ché
dessous (au milieu, ligne bleue). La différence entre ces deux signaux est également présentée (en bas, ligne
rouge), qui montre que le détail obtenu est presque partout égal au bruit sauf au milieu, ou la différence contient

le bruit d'entrée. Le paramétre utilisé est = 16 et = 0:03?.

@ =(4)° () = ?
(c) Zoomin (a) (d) Zoomiin (b)
(e) Zoomin (a) (f) Zoomin (b)

Figure 1.4: Comparaison des ltres bilatéraux et guidés pour une mire qui contient un bord en marche d'escalier et
une structure en dents de scie. Dans la ligne de gauche, I'équivalence utilisée pour les parametres est 7’)2.
Dans la ligne de droite, elle est = 2. Le paramétre spatial utilisé est = s = 3 et le paramétre d'intensité
est \ =50. Pour obtenir le méme lissage de la structure oscillante avec les deux ltres (colone de droite), le Itre
guidé préserve moins bien le contour.
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Une analyse du Itre guidé avec les équations aux dérivées partielles

Dans [BCM€] les auteurs ont prouvé la présence d'weed'escalier dans le ltre bilatéral en
montrant qu'il est asymptotiguement équivalent a une équation de Perona-Malik contenant un
terme d'équation de la chaleur inverse créant des chocs le long des passages par zéro du détecteur
de bord de Haralick [Hz84]. En suivant la méme méthodologie, nous prouvons dans le Chédpitre

gue le Itre guidé est équivalent a une itération d'une équatiovédentielle partielle de ®u-

sion anisotropique, qui peut étre interprétée comme le premier termégili, d'une équation de
Perona-Malik. Cela explique pourquoi le Itre guidé ne montre pas l'artefact d'escalier.

Theoreml11 Considérons une imaizu(x;y) 2 C3() . Soitf 1(x;y) un neyau radial nonnégatif
de support compact. Nous supppsons que le Itr&est normalisé, c'est-a-Hilexpuieixdy = 1 ;
et qu'il est symétrique, c'est-a-diref 1(x;y)dx =  yf1(x;y)dy = 0. Nous posons= =M 2,
est le paramétre de préservation des contours du ltre gidg, &t 1(x;y)x?dxdy =
f1(x;y)y?dxdy. Pour nir, soitf le noyau mis a I'échelle :(x;y) =  f1(x=;y= ).
Alors, pou(x;y) 2

2M 20~

T UCC )2+ ~ u(;y)+ o( °: (17)

GF fug(x;y) u(xy)=

Remarkll Le théorémelsigni e que les contours de l'image sont préservéstorisque(x; y)j?,

car 2Myo=jr u(x;y)j%" 0. Aucontraire, le Itre est uneMlision par I'équation isotropique de la
chaleur lorsque jr  u(p)j?. La transition entre les deux comportements est douce, et un compro-
mis moitié-moitié est observézajr u(p)j?.

1if~ jr u(xy)j?,
2

GF fug(x;y) u(xy)= Jru(MXZ;;JZ u(y)+ o( %);

2 if~=jr ux;y)j3

2

GF fuglxy) u(y)= —52 u(cy)+ O( ;

3if~ jr  u(x;y)j?

GF fug(x;y) u(xy)= 2Mz u(x;y)+ O( 3):

Suite a l'interprétation de ce théoréme, nous implémentons un Itre guidé itéré avec un petit
rayon qui simule cette équation et prouve qu'il est sans halo. Ce Itre peut étre simplement écrit

IGF fug(t;x) = a (tX)IGFYfug(t LX)+ b (t; X): (18)

Dans la Figuré.5, une confrontation des résultats de ce Itre avec ceux obtenus par le ltre bilatéral
classigue montre qu'il n'estVacté par aucun\et d'escalier. En conséquence de I'absence du
terme de renforcement des bordsMé& de lissage est plus fort.

De plus, nous proposons deux autres versions du Itre. L'une impligue une image guide et
I'autre accélére le Itre en calculant le dbeient linéairea une seule fois.
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(a) Input (b) Iterated bilateral (c) Iterated guided

Figure 1.5: Le lItre guidé itéré ne provoque aucun artefact d'escalier. Paramétres utilisés ici= 2 = 0:01?
avec la plage dynamique d'entrée danf0;1];r = s = 1 avec l'image d'entrée de taille250 250 ; nombre
d'itérations T = 50. Le graphique du bas af che une superposition des trois images au-dessus, pour les lignes
verticales tracées sur les images. L'effet escalier du ltre bilatéral (ligne orange) n'apparait pas sur la version du

ltre guidé (ligne rouge).
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14 Chapitre4: Le Itre bilatéral

Les Chapitre§ et 3sont dédiés au ltre guidé, un ltre de lissage récent et rapide préservant les
contours. lls le relient a la®usion anisotrope etle comparent au ltre bilatéral. Ces deux derniers
Itres sont les ltres les plus répandus pour le calcul d'une base, dans le cadre de la décompasition
d'une image en base et détail.

Dans le Chapitrel, nous présentons le ltre bilatéral, ses avantages et ses inconvénients.
Nous rappelons sa longue histoire, et décrivons ses principaux descendants : le Itre bilatéral
conjoint (ou croiséjoint and cross bilateral Iterf=D04, PSA 04, le Itre bilatéral avec régres-
sion [BCMOE], et les ltres bilatéraux non normalisés [APH JAPH" 14 MT14. De plus, nous
faisons le lien entre le ltre bilatéral et ACRtomatic Color EnhancemgAimélioration Au-
tomatique de la Couleur en frangais), qui appartient a la famille retinex.

Nous décrivons et montrons Met d'escalier, suivant sa description et sa solution par Buades
et al.[BCMO0€]. Les nombreux schémas proposés pour corriger cet artefact seront passés en revue
dans le Chapitré.

Son principal inconvénient en pratique étant sa lourdeur en calculs, nous poursuivons dans le
Chapitre6 par une revue des approximations rapide du ltre bilatéral. La version rapide du ltre
bilatéral avec régression et du ltre bilatéral non normalisé sont décrites au Chapitre

Ce chapitre, avec les deux suivants sur la correction detl@escalier et les approximations
rapides du Itre bilatéral, estinspiré par le livre de S. Paris, P. Kornprobst, J. Tumblin et F. Durand
[PKTDO09Y. Alors que ce livre vise a donner une présentation détaillée du ltre bilatéral et de ses
applications, nous nous concentrons sur son utilisation pour la décomposition en base et détail.
Néanmoins, nous abordons plusieurs points déja passés en revue dans éedjves, di/érentes
extensions proposées et ses approximations rapides. Nous soulignons ci-dessous les principales
diVérences entre nos Chapitrés, 6 et le livre de Paris, Kornprobst, Tumblin et Durand.

Concernant ce chapitre sur les ltres bilatéraux, nous présentons des ltres supplémentaires :

le ltre bilatéral non normalisé [APH 11MT16, avec ses approximations rapides ;
Nous Proposons une approximation rapide pour le ltre bilatéral avec regression ;

nous faisons le lien entre le Itre ACE (Automatic Color Enhancement, rehaussement au-
tomatique de couleur), et le Itre bilatéral.

Nous poursuivons larevue du ltre bilatéral avec les corrections Het'd'escalier dans le Chapitie

Il existe deux types de corrections : la premiére modi e le Itre bilatéral de sorte que les pentes
soient prises en compte, par exemple le ltre bilatéral avec régression, le ltre trilatéral, le Itre
bilatéral symétrique ; ceux-ci ont été revus dans le livre de BPaalk Les di/érences entre cette
partie et le livre se résument donc a :

une description plus détaillée du lItre trilatéral, avec des pseudo-codes ;
l'introduction d'un ltre bilatéral symétrique similaire a celui proposé par Elad [E]a

Le deuxieme type d'approximations n'est toutefois pas décrit dans le livre [BETIDconsiste a
traiter Iimage déja Itrée pour corriger I'artefact d'escalier. Les corrections décrites sont :

le mélangelflend décrit par Durand et Dorsey [DDY] ;

I'eVect de lissage isotropique minimal dans Itre bilatéral avec I'approximation du noyau
séparable [PV ;

la correction de Poisson proposée par Baal.dans [BPD] ;
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la diVusion sélectivesglective Wusion) de Kass et Solomon [K.

En ce qui concerne les approximations rapides, la plupart d'entre elles sont examinées dans le
livre. Néanmoins, nous ajoutons des ltres postérieu2089a la liste, et donnons parfois des
descriptions plus détaillées. Notamment :

dans les histogrammes locaux, I'approximation de Weiss(@)/est décrite dans le livre,

mais nous en donnons une description plus détaillée : nous présentons l'algorithme de
Huang antérieur et donnons pour les deux les pseudo-codes. En outre, nous passons en re-
vue la version de Porikli qui utilise des histogrammes intégraux, et discutons de |'utilisation
des noyaux spatiaux carrés ;

I'approximation rapide du ltre bilatéral non normalisé est donnée dans le Chagijre

nous présentons une classe supplémentaire d'approximations rapides basées sur I'utilisation
de noyaux d'intensité polynomiaux ;

la domain transfornfGO1] est également revue, ce Itre peut étre vu comme un ltre bi-
latéral quand il est utilisé avec un petit noyau spatial.

Le ltre bilatéral Le principe du ltrage bilatéral est apparu avec YaroslavéRg®[Yarl] et
Lee (198B[LeeB]. La variante que nous étudions a été proposée par Smith et Brady qui I'ont
appelée “SUSANQ95[SBI7. Il a été re-proposé par Tomasi et Manduchi sous le nom de “ Itre
bilatéral” en1999TM 9. Tous ces lItres similaires peuvent étre appelés ltres de voisinage ; les
seules diérences résident dans la forme du noyau d'intensité et du noyau spatial. La performance
de ces algorithmes est justi ée par les mémes arguments : a l'intérieur d'une région homogene, les
valeurs du niveau de gris uctuent [égérement en raison du bruit ou de la texture. Dans ce cas, le
Itre bilatéral calcule une moyenne. A un bord contrasté séparant deux régions, Vékedce de
niveau de gris entre les deux régions est signi cativement plus grande gators l'algorithme
calcule des moyennes de pixels appartenant a la méme région que le pixel de référence. Ainsi,
I'algorithme ne rend pas les bords ous, ce qui est son objectif principal.

La version popularisée par Smith et Brady et Tomasi et Manduchi utilise une fonction de
pondération gaussienne dépendant d'un paramétre de Itrag@oyau d'intensité), ainsi qu'un
noyau spatial gaussien :

Z
1

C(x)

iy %% uy umi?

uiyJe ¢ e 27 dy (19)

BFng r s(x):

i ><'2 iU u(x 2
ou C(x) = R eJ 2 §J eJ (y; ?( ! dy est le facteur de normalisation et est un parametre de
Itrage spatial.
Le cross bilateral Ite( Itre bilateral “croisé” ou “transversal”) [ED4], ou le joint bilateral
Iter (ltre bilatéral “conjoint” ou “partagé”) [PSA 04], calcule son noyau d'intensité en fonction

d'une seconde image, une image guide

1 z iy %% Jv) veo?
CBAUG . .(0= Gy Ue =t e =0 dy (110

ou le facteur de normalisatio@ est calculé en conséquence. Cela est utilisé par exemple pour le
débruitage d'un couple d'image avec ash/sans ash, ou l'information des contours de lI'image

prise avec ash est utilisée pour ltrer 'image sans ash, qui a de meilleures couleurs mais aussi
plus de bruit.
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(b) Range kernel

(@ (c) Spatial kernel

Figure 1.6: Explication de l'effet escalier pour un ltre bilatéral avec des noyaux spatial et d'intensité simpli és.
Le pixel courant est & l'intersection des lignes pointillées bleues verticales et horizontales. Le rectangle noir en
pointillé indique quels pixels seront pris en compte dans la moyenne. Les éches verticales bleues représentent
la différence d'intensité entre le pixel courant et les autres pixels du rectangle. Puisque le pixel courant a plus de
voisins (dans le sens bilatéral) du c6té droit du bord, sa valeur bilatéralement moyennée se rapproche de la valeur
du plateau.

EVet d'escalier (staircasing\¥ect) Lartefact d'escalier est illustré dans la Figlise Dans cette

gure, nous avons simpli é les noyaux spatial et d'intensité en utilisant de simple fenétres. Cela
permet une visualisation simple, dans le cas a une seule dimension, des pixels pris en compte dans
le processus de moyennage. Les eches bleues sonVigenties d'intensita(x) u(y). La

zone délimitée par la ligne en pointillés montre les limites des noyaux spatiaux et d'intensité : en
dehors de cette zone, tous les poids bilatéraux sont nuls. 1l est alors facile de voir que pour le pixel
courant (a savoir, l'intersection des deux lignes pointillées bleues au centre de la boite), la valeur
moyenne a une intensité plus élevée que la valeur initiale. En appliquant la moyenne bilatérale
sur chaque pixel de la ligne bleue, on obtient la ligne rouge. La “propagation du plateau” que I'on
peut observer est ce que nous appelons l'artefact d'escsthéncasing\éec). Cela revient a un
renforcement indésirable des contours principaux.

Le ltre bilatéral avec regréssion Ce ltre, introduit par Buadeset al. dans [BCM€], estime

un plan de régression a chaque pixel. Contrairement au ltre bilatéral standard qui estime une
constante, le ltre, utilisé avec de petits, ne provoque plus l'artefact d'escalier. Nous appelons

k = k(x;y) les poids du ltre bilatéral au poinf0; 0) pour I'imageu = u(x;y). Le ltre bilatéral

avec régression trouve X

arg mbin k(ax + by+ ¢ u)?: (11)
a;n;c X:

Le résultat nal est simplement BFRg(X) = c(x). Nous complétons ce chapitre en analysant un
dernier candidat pour atténuer Met d'escalier, le lItre bilatéral non normalisé.

Le ltre bilatéral non normalisé Introduit récemment par Aubryet al. in [APH™ 14, le Itre
bilatéral non normalisé est dé nit comme :

X
UBFHug(x) = u(x)+ G (x y)G, uly) u(x uly) ux : (113
y2
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La moyenne des Wérencegu(y) u(x)), en utilisant les poids bilatéraux, calcule directement

la couche de détail. Parce que les intensités du détail oscillent autour de zéro, le facteur de nor-
malisation peut étre supprimé sans déformer I'image Itrée. Cela accélére le Itre et rédait I'e
d'escaliers ; cependant, il réduit également la quantité de lissage et introduit un Iéger halo de con-
traste comme dans Itre guidé. On peut le comprendre avec cette dé nition alternative du Itre
bilatéral non normalisé basée sur BF :

UBH ug(x) = C(x)BRug(x)+ 1 C(x) u(x); (113

ou C est le facteur de normalisation du ltre bilatéral.

15 Chapitre5 Corrections de I'd/et d'escalier

Dans le Chapitre! nous avons montré que le ltre bilatéral ne préserve pas seulement les bords,
mais qu'il est aussi enclin a les renforcer. Cédtea été décrit et justi € mathématiquement par
Buadeset al. en 2006[BCMO06], qui lui ont donné le nom d'&et d'escalier ftaircasing En

eVet, les Itres basés sur le bilatéral ont tendance a créer des signaux constants par morceaux
séparés par des arétes créées numériquement, prenant ainsi lI'aspect d'un escalier. Du point de
vue du rehaussement de contraste et du mappage de tons, le rivéteseparfois appelé artefact
d'inversion de gradientdradient reversal artifactar la couche de détail complémentaire, aux
endroits ou les bords ont été renforcés dans la couche de base, contient des gradients inversés. Le
probléme est que lorsque le Itre bilatéral est utilisé pour I'amélioration du contraste et le mappage

de tons, la couche de détail est étirée et la couche de base compressée. La recombinaison de leurs
résultats provoque l'artefact d'inversion de gradient.

Puisque cet artefact est particulierement génant dans les méthodes de manipulation de con-
traste, de nombreux auteurs ont essayé de le corriger. Les solutions peuvent étre divisées en deux
catégories. La premiére catégorie de correction ne modi e pas le Itre, mais corrige l'artefact dans
une étape de post-traitement. La seconde modi e directementle Itre pour lui permettre de gérer
drectement les pentes. Nous passons en revue dans ce chapitre les deux catégories de corrections.

Ce chapitre a été inspiré par I'excellent ouvrage de Bagksur le Itre bilatéral [PKTD0Y.

Les diérences avec notre revue sont mises en évidence dans la précédentel8ection

Exemple: la correction de Durand et Dorsey A la maniére de la correction de Durand-Dorsey,

la plupart des étapes de post-traitement visant a supprimeet'escalier du Itre bilatéral ap-

pliquent des Itres gaussiens a I'image lissée bilatéralement. Lleullé est alors de trouver le

bon écart-type du ltre et de savoir ou I'appliquer.

Durand et Dorsey dans [D0Y] ont apporté une réponse simple ; ils appliquent seulement un

Itre gaussien avec un petit écart-type, puis font un mélange entre cette image oue et la non-

oue en fonction du facteur de normalisation de BF. Soite coe¢ cient d'interpolation linéaire

entre le résultat du Itre bilatéral FBRg et sa version outé&BF ug. Ce co¥ cient varie avec

logC. Lafonction = f log(C) estdé nie conpne (X) =log C(X) Zlog Cmax , OU Cmax

est la valeur maximale possible pdliri.e. Crrax = e .(x y). Limage corrigée est alors
FBRuUg™'(x) = (X)FBFug+ 1 (x) FBRug(x): (119

Une autre correction itérative lisse les résultats bilatéraux, avec des ltres gaussiens de largeur
croissante. C'est la\diision sélective de Kass et Salomon]@.SA chaque itération, ils choisis-
sent entre l'image avant et aprés le ou en mesurant localement la distance a l'image originale,
et en gardant la plus proche. Lidée est que si outer le résultat bilatéral le rend plus proche de
I'image originale, alors cette version oue devrait étre préférée.
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(a) image d'entrée (b) sans la diffusion selective (c) avec la diffusion selective

Figure 1.7: Effet de la diffusion sélective. Les images sont améliorées avec |'outil d'amélioration de contraste de
DxO utilisant le ltre bilatéral standard (b) ou le ltre bilatéral avec la diffusion sélective (c). La majeure partie de
I'artefact d'inversion de gradient a été supprimée grace a la diffusion sélective.

Exemple de résultat avec la Wusion selective La Figurel7 aY che le résultat de la dusion
sélective appliquée au ltre bilatéral, dans le cadre de I'amélioration du contraste. Cette méthode
réussit & enlever une grande partie de I'artefact d'inversion de gradient (qui, comme nous l'avons
vu, est une conséquence d&/ked'escalier) visible sous la forme de bandes foncées et blanches a
la lisiére des arbres. Bien que cette méthode fonctionne globalement bien, il semble impossible de
retirer I'eVet d'escalier partout, en particulier dans les coins (voir Figute)). En outre, il n'est

pas & cace sur le plan du temps de calcul. Bfete de nombreuses itérations sont nécessaires
pour corriger I'd/et escalier, et ce temps de calcul s'ajoute au temps de calcul du Itre lui-méme.

16 Chapitre6: Filtres bilatéraux rapides

Le ltre bilatéral est rapidement devenu omniprésent dans le traitement d'image et est maintenant
utilisé dans un tres grand nombre d'applications. Le Itre original doit calculer un noysérent

a chaque pixel, ce quile rend lent, voire non abordable pour de grandes images et (par conséquent)
un large support spatial. D'ou la nécessité d'une implémentation rapide.

Dans le Chapitreés nous passons en revue les nombreux ltres bilatéraux rapides proposés
dans la littérature. L'histoire du lItre bilatéral rapide commence avec I'approximation rapide de
Durand et Dorsey 2003 [DD 07. lls ont présenté l'idée originale, qui sera largement explorée
plus tard, d'échantillonnage de la gamme d'intensités a n de linéariser la convolution. La con-
volution gaussienne peut alors étre calculée en utilisant I'un des nombreux algorithmes rapides
disponibles. Aucune implementation rapide et exacte du ltre bilatéral n'a encore été proposée.
Ainsi, la concurrence entre les nombreux schémas proposés réside non seulement dans la vitesse
mais aussi dans la précision et les inévitables artefacts qu'ils introduisent. De plus, pour plusieurs
schémas, la vitesse dépend des paramétres utilisés et de la dimension dans laquelle le Itre fonc-
tionne. Ainsi, nous présentons nalement une palette de Itr&scaces plutét qu'un gagnant
dé nitif.

Ce chapitre a été inspiré par I'excellent ouvrage de Bagksur le ltre bilatéral [PKTD0Y.

Les dvérences avec notre revue sont mises en évidence dans la précédentel8ection

L'approximation linéaire par morceaux piecewise-linear BF Le schéma d'approximation rapide
de Durand-Dorsey est basé sur la discrétisation des valeurs possibieg dans le noyau bi-
latéral. Considérons I'équatioi {9 du Itre bilatéral pour un pixel xex:

X
BR ug(x) = C(lx) G.(x G, uy) ux uy), (115
y2
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ou C est le facteur de normalisation. C'est équivalent a la convolution de la fonidtiar{x)

y! G, u(y) u(x) u(y) parlenoyalG .. De la méme maniére, le facteur de normalisation

C estlaconvolutiondé u(x) :y! G, u(y) u(x) parG .. LadépendancexdansG ,

est la seule chose quiMdiire d'avec une convolution. A partir de cette observation, la stratégie
d'accélération des auteurs est de discrétiser I'ensemble des intensités de signal possibles dans les
N '&¥ersyaleursf (i)g, et de calculer une convolution gaussienne linéaire pour chacune de ces
valeurs :

Vo) = C(i;,)yz G.(x VG, uy) () uw) (119
_1 X y
- C(X,|) . G s(x y)H(y’I) (113
et
X
Cxi)=" G.(x G, uby) () (119
X
=" 6.x VI (119
y2

Cette formulation du bilatéral est exacte et montre gu'elle peut étre calculée par une série de con-
volutions linéaires : une par valeur possibleug®). La stratégie d'accélération consiste alors a
calculer le résultat exact pour un nombre limité d'intensités seulement. Cela revient a échantil-
lonner la plage d'intensité et a interpoler linéairement entre ces com€Rg9 et C(x;i) pour les
valeurs comprises entre les échantillons.

The bilateral grid La méthode linéaire par morceaux a ensuite été améliorée pardals
[PDO6,CPLO7 dans la grille bilatérale. Cette méthode linéarise également la convolution et sous-
échantillonne le signal pour réduire la complexité de calcul, mais donne également une dé nition
plus formelle de cette approximation rapide grace a une interprétation dans une dimension plus
élevée des images et un gain de précision grace a un meilleur sous-échantillonnage. Cette approx-
imation est probablement I'une des plug eaces et I'une des plus représentatives de la littérature

sur les ltres bilatéraux rapides. Nous citons I'excellente revue de Paris, Kornprobst, Tumblin et
Durand [PKTD09 pour donner un bref apercu de la grille bilatérale :

The authors consider th8 R domain [S is the spatial domain ang the range
domain] and represent a gray-scale imaggs de ned on &D grid as &D function
by
u(x;y); 1 ifz=u(xy);
(0;0) otherwise.

(xy;2) = (120
With this representation, they demonstrate that bilateral Itering amounts to con-
volving with a3D Gaussian whose parameters@rg s; (): = G..,-:
They show that the bilateral Iter output is BEg(X;y) =  X;y;u(x;y) . This
process is illustrated in Figufies.

La stratégie d'accélération consiste alors a sous-échantillonner la grille avant I'application du ltre
gaussien ; cette étape peut utiliser un sous-échantillonnage rapide qui ne respecte pas la condition
de Shannon parce qu'il est suivi d'un ltre passe-bas. Par conséquent, la convolution avec le noyau
séparable est calculée en utilisant des noyauxl consécutifs sur un trés petit volume, ce qui
compense largement le colt du sous-échantillonnage et du suréchantillonnage tri-linéaire.
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Figure 1.8: lllustration reproduite a partir de [PD06]. Filtre bilatéral avec la grille bilatérale pour un signal 1D. Une
premiére étape consiste a remplir le domain& R avec les valeurs du signal : la deuxieme ligne af che les
valeurs résultantes surlagrille. Latroisieme ligne I'af che aprés la convolution par le noyau gaussien avec I'écart-
type s; . Ensuite, la quatrieme ligne montre le résultat de la division des deux valeurs des grille ci-dessus (la
normalisation du ltre bilatéral). Les points orange représentent les positions des pixels. La derniére ligne est le
signal ltré reconstruit, apres I'opération de découpagedlicing.

Local histograms D'autres schémas rapides [P& sont basés sur l'interprétation du ltre bi-
latéral comme moyenne des histogrammes locaux.\let, our les noyaux spatiaux uniformes,
BF peut étre réécrit

_ X
FRHOCist(x) = C;Lx) h )G, uXj; (123
j

X . .
C(x) = h ()G, ] uX ;

ol j appartient a la gamme d'intensités discrétes de l'image d'enttée(g) est la valeur de de
I'histogramme local au pixed et pour l'intensitg .

Polynomial approximations Une derniére classe de ltres rapides utilise des noyaux d'intensité
polynémiaux [Po08 CSUL]. Nous l'expliquons ici avec un polyndme trigonométrique. Sup-
posons que le noyau de la gamme a la forme

kM (t) = X nexp@i2t)": (122
n= M
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aved? = 1. lci, , représente le paramétre d'intensité du ltre bilatéral. Sole voisinage du
pixelx etG . le noyau gaussien d'écart-typg Avec un tel noyau, le ltre bilatéral peut étre écrit

BFPYf ug(x)
" #
1 X X .
" ko G nexp 20 u(x y) ue)  u(x y)
y2 n= M (123
1 X . X .
= K nexp i2nu (x) G . (y)exp i2nu (x y) u(x Vy):
(X) n= M y2
La décomposition est la méme pour le facteur de normalisation,
X
KM= G (K" ux y) ux) : (129

y2

La derniére équation impligue une convolution de l'image i2 nu (x) u(x) avec le noyau
Gaussien spati&@ .. Autrement dit, le Itre bilatéral est obtenu par une série de convolutions
gaussiennes.

Nous renvoyons au Chapitmécédent (introduction en anglais) pour la partie de I'introduction
qui concerne :

la fusion d'exposition et son application a une seule image (SéetiSections) ;
I'analyse du local Laplacian Iter et son extension (SééteirSection1() ;

le Itre weighted least squares (Sedtidr

la comparaison nale des méthodes entres elle (introduite en1Se)tion

Nous résumons toutefois ci-dessous la liste de nos contributions.
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114 Synopsis des ltres analyseés, contributions

Nous venons de présenter une synthése de la thése, mais pas de ses conclusions (qui sont révélées
au Chapitrel). Puisque notre synthése ci-dessus est tout sauf courte, et la thése considérablement
plus longue, nous nous sentons obligés de présenter une synopsis des ltres et de nos contributions

a leur compréhension et amélioration.

Liste des Itres dans l'ordre d'apparition, de leurs abréviations, et de notre contribution Tous

les Itres mentionnés ci-dessous sont formellement dé nis dans la thése, leurs artefacts sont iden-
ti és et comparés dans le concours nal ; quantitativement s'ils donnent une décomposition en
base + détail, et qualitativement sinon. Pour la plupart d'entre eux, nous proposons des variantes
qui les améliorent.

MSR (mutli-scale retinex} dé ni et comparé dans le concours nal ;

ACE (automatic contrast enhancement)dé ni, compareé dans le concours nal, une rela-
tion formelle avec le lItre bilatéral est établie ;

Guided lIter, GF : dé ni, comparé dans le concours nal, conduit a découvrir le halo de
contraste, comparé en détail avec le ltre bilatéral, amélioré avec le schema multi-échelle ;

Iterated Guided lter, IGF : proposition d'un nouveau ltre, comparé dans le concours
nal, analyseé et relié & ladusion anisotropique de Perona-Malik ;

bilateral lter, BF, and variants : dé ni, comparé dans le concours nal, conduit a dé nir
I'eVet d'escalier, revu en détail ainsi que ses variantes et les correctiongetld'bscalier ;

fast bilateral lters, FBF: revue des approximations rapides du ltre bilatéral, proposition
d'un ltre bilatéral avec régression rapide, proposition d'une implémentation multi-échelle
de ce méme lItre, qui conduit a la découverte et la dé nition de l'artefact du halo sombre ;

exposure fusion, EF dé ni, conduit & découvrir son artefact de dépassement de la dy-
namique, identi cation du principe fondamental pour la manipulation du contraste ;

simulated exposure fusion, SEFproposition d'une extension de EF au rehaussement de
contraste pour une seule image (SEF), comparé dans le concours nal ;

local Laplacian lter, LLF: dé ni, comparé dans le concours nal, reliéexposure fusign
exploration des diérents ¥ets indésirables de sa structure pyramidale ;

scale-space local Laplacian lter, SLFproposition d'un nouveau ltre, introduction d'une
formulation compacte, introduction du ltre bilatéral non normalisé basé sur un oracle
(UOBF) complétion de I'analys de LLF faite par Auletyal.;

weighted least squares lter, WLSdé ni, comparé dans le concours nal, conduit a dé nir
I'artefact de cloisonnement, amélioré dans deux nouveaux ltres, I'un pénalisant les gradi-
ents a une grande distance et l'autre détectant et préservant les zones plates ;

bilateral grain Iter, BGRF: proposition d'un nouveau ltre basé surle ltre morphologique
de grain, comparé dans le concours nal ;

domain transform, DT : dé ni, comparé au ltre bilatéral et comparé dans le concours
nal ;

L9 Image Smoothingl %-IS : dé ni et comparé dans le concours nal.
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2 The Guided lter

In this chapter, we present a thorough description of the guided Iter. Its artifacts, a contrast

and a luminance halos, are explained. A comparison of the Iter's performance is made with
the related bilateral Iter. We show that attempts to nd equivalence between the parameters
are vain; the guided Iter does not have equivalent edge-preserving capability to the bilateral
Iter.

We shall however present in the next chapter a new Iter based on GF that reduces its artifacts
while keeping the very desirable property of being a linear transformation of the guide image
in each patch, which avoids the staircageat.

2.1 Introduction

The Guided Filter (GF) was proposed by K. He, J. Sun and X. Ta@1dn “Guided Image
Filtering” [HSTL13. A preliminary conference version of this paper had been publishe2DitD
[HSTL1M]. Itis closely related to image matting and in particular to the matting Laplacian matrix
[LLWO{, [HST1@&]. GF has since been widely used in image processing. The main reason for
such a success is that this Iter is able to achieve high quality results, remains close to the bilateral
Iter, while drastically reducing the computational time. The Iter was further accelerated in
2019HS1Y by its inventors. It also avoids the appearance of staircase artifacts, also called by
the authors “gradient reversal” One can actually view the Guided Filter as a simpli ed version
of the bilateral lter, where the pixel-wise intensity\irence weighting is replaced by a global
measurement of the pixels intensity variation computed as a local variance. This change speeds
up the Iter but also causes some “contrast halo artifacts” as we shall see.

The authors of the guided lIter described their invention in the following terms.

In this paper, we propose a novel explicitimage Iter called guided lter. The ltering
output is locally a linear transform of the guidance image. On one hand, the guided
Iter has good edge-preserving smoothing properties like the bilateral Iter, but it
does not sWer from the gradient reversal artifacts. On the other hand, the guided
Iter can be used beyond smoothing: With the help of the guidance image, it can
make the lItering output more structured and less smoothed than the input.

The Guided Filter has been used in many areas such as: stereo vision, for cost-volume re-
nement in [TM 14, stereo-matching in [HBR 1]; high-quality real-timeO(N ) stereo matching
algorithm [HRB" 13, [DMMVC 1]. It has been used for image matting in [H$®] and image
dehazing algorithms in [HST]. As a base/detail decomposition algorithm it has been used for im-
provement of the Exposure Fusion [MK\2H] algorithm in [SKBL4] but also for ash/non- ash
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Figure 2.1: Guided lIter principle and comparison with the bilateral Iter. Figure reproduced from [HST13].

image fusion (see e.g. [91]). Several other applications can bene t from GF: demosaicing in
[MTO 13, optical ow estimation [HRB" 13, interactive image segmentation [HRRBJ, saliency
detection [DXYL], and illumination rendering [BEM.]. Some generalizations of the guided |-
ters have also been proposed, for example a weighted version of the guided Iter [fawith
adaptive parameter and a “gradient domain” version [KC\14, where the gradients are Itered

by the guided lIter. A generalization of the guided Iter with a “shape-adaptive local support” has
also been considered [LSMJ. In [ZSXJ14 (the “Rolling Guidance Filter”) the authors intro-
duce an iterative scheme based on the joint bilateral Iter where the guide is recursively ltered.
They present a version using the guided lter. This last work is related to our proposition of an
iterated guided lIter. The above mentioned paper [$}/&also uses an iterative scheme.

2.2 Guided Filter

Perhaps the most important aspect of the guided Iter is the local linear relation that is established
between the guidance imageand the output imagésF " ug in a window! (y). We use the
notation GF "@¥ to denote the rst step of the guided Iter. At this step, and in each window
indepently, the guided lter output is a linear transformation of the guide. For each wind@yy

of radiusr (size ig2r + 1) 2), we have

GF "™ ug(x) = a(y)v(x) + (y); 8x 2 ! (y); (2

where a(y);b(y) are some linear cdtcients assumed to be constantliy). This local linear
model ensures thabF ""f ug has an edge only ¥f has an edge, because

r GF™fug(x) = a(y)r v(x); 8x2 ! (y): (22

In each window (y), the raw guided lter is the result of tting a linear model()) to the input
imageu by minimizing the cost function

X
E a(y);by) = a(y)ve) + By) u() “+ ay)? (23
x21(y)

Here, is a regularization parameter penalizing large valuey)f The underlying model is a
decompositioru(x) = GF ™ ug(x)+ n(x) wheren is a component such as noise or texture that
we want to separate from the bas€& ""f ug(x). The minimization of the energy?(3) amounts

to minimizing the dMerence between and the basé&F ¥ ug, i.e. n, in while maintaining
the linear model in £.1). Moreover, the parameter penalizes large values of ¥odenta and
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thus helps removing the small variationsun Equation ¢.3) is the linear ridge regression model
[DS8], [FHT O] and its solution is given by

1 P
1wt (y) VOOU(X) (Y)u(y) _

_ I
a(y) = 24
) 2+ (24)
bly) = u(y) a(y) (y): (29
Here, (y) and 2(y) are resBectiver the mean and variance af ! (y), j! j is the number of

pixels in! (y), andu(y) = ﬁ 2! (y) u(x) isthe meanofiin! (y). Once the linear coécients

a(y);b(y) have been obtained, the Itering outp@F "2 ug(x) can be computed by2(J).
Interestingly, the numerator in equatior2.f)) is the empirical covariance between the input
imageu and the guider and is the empirical variance of Thusa(y) andb(y) can be expressed
as

_ Covfv;ug(y) .
ay) = W (26)
b(y) = Mearfug(y) a(y)Mearfvg; (27)

where Mean denotes the mean in the window

However, a pixek is involved in all the overlapping windowsy) containing it. Thus the
value ofGF "™ ug(x) in (2.J) varies when computed in ¥erent windows. A simple strategy is
to average all the possible valuesGH "™f ug(x). Thus, after computing (a(y); b(y) for all
windows! (y) in the image, the lter's output is given by

X

GFfug(x) = Jlj a(y)v(x) + hy) 29)
" lyix2! (y)

Due to the symmetry of the box window, the linear ¥o&ents can be averaged instead, so that

GFfug(x) = a(X)v(x) + h(x) (29
with
1 X
a(x) = a(y) (219
P a1
)= = hy) (213
P21

where .10 and (2.1) are the average cgeients of all windows overlapping

Considering the modi cation introduced by2(9), GF f ug(x) is no longer a scaling @{(x) in
I (X), because the linear céeients a(x); b(x) vary spatially. But asa(x); b(x) are the output
of a mean lIter, their gradients can be expected to be much smaller than the gradiemtezir
strong edges. Thus, we still expect tha&Ffug ' ar v, meaning that abrupt intensity changes
in v are mostly preserved i@F f ug.

2.3 \Variants and their pseudo-code

231 Guided lter

We give in Algorithm1the pseudo-code of the original guided Iter. All the operations in the
pseudo-code are pixel-wise. The Meaperator is the sample mean in a windbwde ned as

1 X
Mean fvg(y) = T V(X) : (212
STx2l(y)
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The four rst lines of the algorithm compute the mean, variance and covariance of each window
in imagesu andv. We obtain the imag€ of the local covariance betwegrand u along with

the image of the local variance wf The co# cients a(k); b(k) of the local linear model are
computed at lines and 6, in which the co# cient of each window (k) is stored at pixek.

At lines7 and 8, the co& cients of the overlapping windows are aggregated, and the nal image
GFfugis computed at liné®.

Algorithm 1 Guided Filter algorithi(All operations are pixel-wise)
input : inputimageu
input : guide imagesF fug
input : smoothing parameter
input : window radiusr (box window will have siz€r + 1) ?)
output: Itered imageR

1u Mean fug /I Empirical mean of u in windows !
2V Mean fvg /I Empirical mean of v in windows !
3C Mean fvug vu /I Empirical covariance of v and u in !
4V  Meanfv?g V? /I Empirical variance of v in windows !
sa CV+ ) Il equation (24)
6b u av /I equation (25
7 a Mean fag /I Average overlapping estimators a: equation (210
g b Mean fbg /I Average overlapping estimators b: equation (21}
9 return GFfug av+b /I equation  (2.9)

The authors of the guided Iter [HSTJ suggest the use of a box lter for the mean computa-
tion. It can be implemented with integral images, making the I@¢N) with N the number of
pixels in the image.

2.32 Fastguided lter

A Fast Guided Filter [HE} has more recently been proposed 2015y the same authors. It
speeds up the Iter by making computations on a down-sampled version of the image for the
computation of the variance and for the ¢oeientsa, b, aandb. This reduces the Iter complexity

to O(N=s?), wheres denotes the sub-sampling factor. Indeed, when applied to large images, the
guided lter is often used with a large radius One can then subsample the images submitted
to the mean Iter and therefore substantially reduce the amount of memory involved and the
required computations. The images used in the algorithm are indeed low-frequencyrwien
large. This version is described in the pseudo-code AlgorithnThis fast guided lter is an
approximation using nearest-neighbor or bilinear interpolation for sub-sampling. Yet the results
are indistinguishable for large for instance whem = 16 ands = 4, the execution time i40
smaller according to the authors.

2.3.3 Guided lter for colorimages

The guided Iter can be extended to color images. This is useful when an edge to preserve has
strong color contrast but light gray level contrast. One can then lter each channel of the input
color imageu according to the color guide. The color edges are then transfered to each channel
and color edges are well preserved. The color cost function is:

X
E° a(k);b(k) = ay)'v()+ by) u() *+ a(y)Ta(y) : (213
x21 (y)
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Algorithm 2: Fast Guided FilterGF %) (All operations are pixel-wise)
input : inputimageu
input : guide imagey
input : smoothing parameter
input : window radiusr
input : subsampling factos
output: ltered imageGF 5% ug

1u*  subsampfes; sg

2 v¥  subsampfe; sg

3r#  r=s /I window ! has size (2r% +1)?
4 u¥  Mean fug /I Empirical mean of u*
5 v Mean fv¥g /I Empirical mean of v*
6 co  Mean fvfufg v#u# /I Empirical covariance of v and u®
7vaf  Mean fv?g v* /I Empirical variance of V¥
g a’ cov=(varf+ ) /I equation  (24)
9 b u?  afv# /I equation (25
10a* Mean fa'g /I equation (210
1b*  Mean fbg /I equation (2.1}

12a upsamplea®; sg
13b  upsamplib?; sg
14 return GFffug av+ b /I equation  (2.9)

where the bold face is used to denote vectors. Its minimum is obtained for
0 1

X
ay)=(( )+ 1) 1@j,lj vou(x)  (Y)uy)A (219
" x21(y)

with | is the identity matrix and( y) the variance-covariance matrix de ned as:

1 X
(V)= — vVt () T (219
P )

with = v. The co#& cientbis given by

by)= u(y) ay)" ¥: (219
The linear co¥ cient a(y);b(y) of overlapping windows are then averaged as in equatidri)(
and (2.1) to give on couple per pixela(x); b(x) . The output (gray) image is nally obtained

with:
GF ®fug(x) = a(x)Tv(x) + b(x) : (213

A pseudo-code fo the color version of the guided lter is given in Algorithm

2.4 Understanding the guided lter and its artifacts

The guided lIter can be used in two \derent ways:
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Algorithm 3: Guided Filter algorithm with a color guide
input : inputimageu
input : color guide image
input : smoothing parameter
input : window radiusr (box window will have siz€r + 1) ?)
output: ltered imageGF °f ug

1u  Mean fug /I mean of u in !
2v Mean fvg /l mean of v in | (3 1 vector)
3C Mean fvug vu /I covariance of v and u in ! (3 1 vector)
4 Mean fvwwTg vvT /I equation (215
5a =s+ ) /I equation (219
e6b u alv /I equation (216
7a Mean fag /I equation (210
g8 b Mean fhg Il equation (2.1}
oreturn R  a'G+b /I equation (217

1 v 6 u: the guide image is Werent from the input image. This allows to transfer the
edges of the guide on the input image (eventually with a little smoothing depending on
the parameter) and is used for example in dehazing applications [H};, Wwhere one can
re ne the haze transmission map using the color input image as a guide.

2. v = u: the guide is the input image itself. This case correspond to edge-aware image
smoothing, and the parameteiis set according to amount of detail to be removed.

We will focus on this second use: indeed, the edge-aware smooWiey & the guided Iter
is particularly interesting for our main application, contrast manipulation.

Thanks to its local linear model, the guided Iter with=u avoids the sharpening/ect of
the bilateral Iter. Indeed, rewriting equatior2{@) for v = u gives

a(y) = Varfug(y)=(Varfug(y) + ): (213

Hencea 1, which means that edge magnitudes can only be reduced by the Iter. Moreover,
the averaging process in equatiahl() can only reduce the gradient conservatiorvadt edges,
because edges are generally surrounded by at areas (thus the surroundirgierata are smaller
than the co& cients localized on the edge).

The main artifact of the Guided Filter is what we will call the “contrast halo artifact”, which
comes from the fact that the edges are preserved, but the area around them is preserved too. We
show an example of the resulting phenomenon in Figi#eA second artifact is the appearance of
luminance halos. See gutelQ This happens when the edge is not well preserved. The contrast
halo appears close to the edges, when the variance is high. It is especially present when the lter is
used with a large radius. Indeed, the guided Iter can't smooth out half of a window and keep the
other half asitis ; the choice is often an in-between decision : half smoothed, half kept.

Structure transfer with the guided Iter

The joint bilateral Iter (also called the cross bilateral lter) can also be used for this kind of
structure transfer with a very similar result (see Figuigg
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Figure 2.2: lllustration of the rst guided lIter artifact: detail smoothing is reduced near strong edges. On the left:
step-edge 1D-signal with a small noise (blue line) and its smoothed version with the guided lIter (red line). On
the right, we show the detail layer: difference between the two signals on the left: input - Itered (green line). The
detail layer is almost at in its center, where the input signal has its step-edge. For comparison, to input noise of
the test-pattern (expected detail) is displayed below (blue line). The difference between these two signals is also
presented (red bottom line), showing that the obtained detail almost perfectly equals the noise everywhere except
at the middle where the difference contains the input noise. Parameter used are= 16 and = 0:03°.

Inputs Guided lter Joint bilateral lter
u=(d),v=(a)
@)
u=(a),v=(d)
(d)

Figure 2.3: Structure transfert with the guided Iter (b) and (ey(= 3 and = 0) and with the joint bilateral Iter
(c)and (f) (s =3 and , =10).
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(a) input by =4 (c)r =16 (dyr =64

Figure 2.4: Effect of the radius on the Itering effect. The bottom row displays the difference between the input
image and the ltered one, i.e.the detail layer. A factor 6 is applied for visualization. The contrast halo appears as
an area where the detail is null. With a small radius, the contrast halo is less present, but the detail can not contain
low frequencies. The guided lter is used here with parameter xed to 0:06? (image dynamic is if{O; 1]).

Evolution of the linear coeY cients a(x);b(x) as afunctionofr, andthe image content

Note thatwherv 6 u, since we want to transfer a structure, we need & coenta that is dVerent
from zero everywhere, otherwise the value maintained in the output woulbFbe  av, i.e.the
output would be smoothed out. Thus, we will prefer to keegery small. With close to zero, the
guided lter scalethe guide image to the input imageu. Indeed, we have

Covf u;vg

GFfug' Varvg

(v v)+u;

if we consider the approximatio(a; b) ' (a;b). One can see in that formulation that the guided
Iter rst removes the high frequencies in, then adds the high frequencies of the guide image
v v, with a co¢f cient Co¥ u; vg=Varf vg, which adapts the amplitude of this high frequency
component to the scale af. For example, it is then possible to use two images witke@int
dynamic range, or a negative imageg. u. On the other hand whern = u, we want to have
a = 0 most of the time, anch = 1 at edges. Thus, the parameteshould be set to a larger value.
Furthermore, the local linear model is valid in square windows of(&ize 1) 2 and one must
keep in mind that the coécients a(y);b(y) before aggregation are constant in that window.
Hence, in a window containing both an edge to preserve and some texture to smooth out, the
Iter cannot do both well, and must take a balanced decision. This explains the apparition of the
“contrast halo artifact” This also shows the importance of the paranreierthe lter: with a
larger more contrast halo will appear, but with a smallhe smoothing ¥ect in at windows is
very light (only very high frequency texture can be removed with a tight window). The Figure
shows this contrast halo artifact in function of
Concerning the averaging of the estimators in equatioh( and (2.1). Due to this averag-
ing, the outputGF f ug do not respect the linear model ir2() any longer. But this gives more
robustness to the Iter. Once again, we can distinguish two cases:
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(a) line of a real image (cameraman) (b) zoomin (a)

(c) line of areal image (cameraman) (d) zoomin (c)

Figure 2.5: In each graph we superimpose the original line of a real image (blue line) with the results of the guided
Iter (red line) and the bilateral Iter (green line). One can easily see the two artifacts of the guided lter: rst, the

amplitude of the edge in the guided lter results is always smaller than the original edge. This is the luminance

halo artifact. Second, the structures are preserved around the edges, much more with the guided lter than with

the bilateral Iter, as seen in graph (d). This is the contrast halo artifact. The parameters usedrare s = 6,
2= | =30.

When the variance in the input image is homogeneous, the linea¥ cizats a(y); (y)

have only small variations. In that case, the second mean lter in equatiaf @nd (2.1)

gives indeed a more robust estimation against the noise, because more values are aggregated
for the computation otb (equivalent to a larger window).

When the variance is not homogeneous, for example at the interface between two almost
constant areas but with Werent intensities (step edge): Then the aggregation process will
smooth the variations of the linear céeients a(y);b(y) so that the edge-preserving
property is diminished: indeed, the edge-preservingraienta can only be reduced.

This second averaging process thus helps in the smoothing part but diminishes the capacity of the
Iter to maintain edges.

EVect of the window content

We have
a(x);b(x) ' (0;0) for Varfvg(p)
a(x);b(x) ! (O;u(x)) for Varfvg(p)

Let us express the edge-preserving capability of the guided Iter in function of the Heafht
a step edge (see Fig). Consider the window (y) of size(2r + 1) 2, centered on the step edge.
This window can't be perfectly centered because the center of the edge lies between two pixels. The
variance of the window is Vavg(y) = ( %)2(1 W) This value tends rapidly towarcﬂ%)2
whenr gets larger so we will keep that value in the following.
The linear co¥ cients a(y); b(y) can therefore be rewritten using these relations as

h2
h2+4

a(y) =
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Figure 2.6: A step edge with heighh. The red frame delimits the window! (y). Its radius i = 6. The orange
frame shows what other pixels are taken into account during the aggregation process.

Figure 2.7: We draw here the evolution of the coef ciena for v = u and a window centered on a step edge.
We present four different curves, for four different values The values of are chosen so that the coef cienta is

exactly 0.5 for a speci ¢ edge height, using = (h =2)2. It follows that we know, for a specic , that edges

with a height inferior to h  will be smoothed, and edges with height superior tch  will be preserved. We used
h; =10,h, =20,h; =40 andh, = 80. Those values are shown on the gure with the vertical dashed lines.

bly)=(1 a(y)u(x)

and we can now have a closer look at the behavior of thoséaeats for a speci ¢ height.
Furthermore, one can show that for a speci cset so that = 0:5for h , then

a=0:9 for h=3h;y

a=0:1 for h= %hl:

This means that there is an interval ofwic@hl in which the windows are neither really preserved
nor smoothed. In other terms, there is a ratio equadtoetween the height of an edge that will be
smoothed and the height of an edge that will be preserved. This is interesting because we can now
precisely set the parameterWe know that for a speci ¢ , the step edge heigtthat will be half
smoothed, half kept ig™d = 2 P— The preserved edge heights BPESee= 6P — and the
well smoothed heights ahgmoothed= %p .

To give an example, a typical value for the bilateral Iter parameteis 10 In that case,
following the authors recommandation, we use 102. This leads to preserve edges of he@iht
and to smooth edges of heightOn the other hand, the bilateral Iter will smooth edges of height
10and preserve edges of height = 30. Hence, the guided Iter has more luminance halo than
the guided lIter. This can be observed in FiguréOand Figure2.12

The same conclusion can be turned in another way: using the guided lter for base + detail
decomposition without luminance haloes need a smadhd thus the detail it produces will be of
very low variance.

lor actually any window with variance , but with our relation we can think with intensities\#rences, which is
more intuitive
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Figure 2.8: Effect of the averaging of the linear coef cients.

EVect of the co# cients aggregation

In Figure2.8, one can see tha/ect of the aggregation step on the linear¥oenta. While the
smooth increase of its value at strong edges is desirable, the fact that its amplitude is also reduced
is not, as it causes a luminance halo.

Guided Iter kernel and comparison with bilateral Iter's one

We recall the bilateral lter's kernaV BR(x; y; u):

2 H 2
1 kx  yk exp ju(x) u(y)j

WEBAXy;u) = ——————exp
JWER(x; y; u)j 22 27

(219

The authors of the guided lter [HST} show that their Iter has an explicit kernel, that can be

expressed by
!
1 X ux) (@ uly) @
GFfyeryi = &
W™H(x;y;u) = e 1+ 22+ (220
z(x2! z;y2! 2)

which shows some analogy to the bilateral Iter kernel.

Proof. (as given by the authors in [HST). Due to the linear dependance betwaeandGF f ug,
the Iterkernelis given bWV (x;y) = @GR ug(X)=@ (y). Putting (2.5 into (2.9) and eliminating
b, we obtain X

GFfug(x) = Jll a(z) v(x) (2) +u(2 : (223

Zz!x

The derivative gives

@GRugx) _ 1 X @& @(2)
%) i, oo @7 e (223
In this equation, we have
g‘é;;zjllj y2! (2 :1'11 z2!(y) (223
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Figure 2.9: Spatial kernels of the bilateral Iter (red line) and the guided Iter (blue line) in a smooth area. Parame-
ters: s =6 (bilateral) andr = 6 (guided). The equivalences = r is good.

where y 2 ! (z) isone wheryisinthe window! (z) and zero otherwise. On the other hand,
the partial derivative® éz)=@ (y) in (2.22 can be computed fromZ4):
0

@(2)

@@ _ 1 gl * QW A
@®) @+ T, uw " e ?
= oo Y G @2l (224
Putting (223 and (224 into (2.29, we obtain |
@GRugx) 1 X ux @ uy) @
= — 1+ (225
@('y) J! 12 22! (x);22! (y) 2(2) *
This is the expression of the lter kern@l (x; y). O

Comparison with the bilateral Iter
Concerning the parameter equivalence, the authors in [Hgsuggest to use

rée o
$ 2
The spatial equivalence is clear (Figa@, but we will see here that the edge preserving property
is diVerent in the two Iters.

Concerning the second equivalencg 2, the problem is more complicated. As we already
saw, the guided lter is less “selective” than the bilateral lter. First, the choice is m&edeeditly.

The bilateral Iter compares pixel intensities in a one-to-one way. On the other hand, the guided
Iter measures the variance of the whole window and takes its decision accordingly. This is why a
contrast halo appears. Second, the guided lter in less seleictiier the same smoothinguect

on an edge with a certain gradient, another edge with a stronger gradient will be better preserved
by the bilateral Iter than with the guided lter.

Figure2.10shows that a cross-equivalence of parameters between the guided and the bilateral
is hard to establish. In guré€.1((d), the smoothing is too strong. In gur& 1({c), itis not strong
enough. Figure.1lshows the step edge case behavior of the lter.

Figure2.12 along with gures2.10and2.1] clearly show the impossibility to sein the guided
Iter to ensure similar edge preserving properties for both Iters. The lters aietent, and this
goal is unattainable. The setting proposed by the authors [E}Sfiight row in the Figure2.1)
gives the same amount of smoothing in the texture part, yet exhibits a strong luminance halo for
the edge, which is not present for the bilateral. The second setting 7’)2 better protects the
edge but also fails to Iter enough the textural part. Once again, the bilateral Iter proves to be
more selective that the guided lter.

84



(a) input (c) guided lter = (£&)?

(b) bilateral Iter (d)guided lter = 32

Figure 2.10: Comparison between the bilateral and the guided lIter results for two different parameter settings:
standard equivalence = 2 and another equivalence = ( TR)Z. The spatial parameter is set so that= 5. We
used here ; =27 and s =3.

Figure 2.11: Step edge preservation with the bilateral Iter (blue line) and the guided Iter (green line). The ab-
scissa shows the edge height, and the ordinate its “amount of preservation” The closer its value to zero, the more
preserved the edge is. For the bilateral Iter, this preservation comes from the fact that pixels from the opposite
side of the edge will not be used in the averaging. For the guided lter, edge preservation relies on the multiplica-
tive coef cient a. Note that this result is shown before aggregation, after which often gets smaller. On the left,
the gure shows the results for the standard equivalence = 2. On the right, with the parameter equivalence

=(4)%
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@ =(4) o = ¢

(c) Zoomin (a) (d) Zoomiin (b)

(e) Zoomin (a) (f) Zoomin (b)

Figure 2.12: Comparison of the bilateral and guided Iter for a test pattern containing a step edge and a sawtooth
structure. Inthe left row, the parameter equivalence is= ( 7’)2, intherightrowitis = 2. The spatial parameter
used hereisr = s = 3 and the range parameter is ; = 50. Obtaining the same reduction of the oscillatory

structure as the bilateral forces the guided Iter to more contrast loss in edges.
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3 Iterated Guided Iter and the Perona-
Malik equation

In the previous chapter have been introduced the guided lter and its artifacts, namely, the
contrast halo and the luminance halo. A comparison to the bilateral Iter showed that its
edge-preserving and smoothing property does not put the bilateral Iter in the shade. On
another hand, the guided lter has the neat advantage not to exhibit the stairdase &his
makes the lter particularly desirable for contrast enhancement.

By performing an asymptotic analysis for the guided Iter when its support tends to zero,
we obtain its tangent partial ¥ferential equation and prove that it is similar to the Perona-
Malik diVusion equation, but deprived of its edge enhancement term that was shown to cause
staircase artifacts. This explains why the guided Iter actually has no such staircase artifacts.
This analysis also yields a simple solution to reduce the guided lter's halos. We de ne an
iterated guided Iter that simulates the found nonlinear parabolic equation, and show that
its solutions are halo free. A practical application to local detail enhancement con rms the
eVectiveness of the new lter.

31 Guided lter relation to anisotropic di Vusion

A Partial DiVerential Equations Analysis of the Guided Filter

We now analyze the guided Iter with partial\derential equations. We refer to [BO)d] for a

similar methodology applied to the bilateral Iter, in which the authors explain the apparition

of the staircaseMect by the fact that the bilateral Iter is asymptotically equivalent to a Perona-
Malik equation containing a reverse heat equation term creating shocks along zero-crossings of
the Haralick edge detector [H&4]. The same paper proposes a modi cation of the bilateral Iter
avoiding this shock-creating term. We prove here that the guided lter is equivalent to one iter-
ation of an anisotropic diusion partial dverential equation, that can be interpreted as the rst,
diVusive, term of a Perona-Malik equation. This explains why the guided Iter does not show
staircase artifacts.

311 The Perona-Malik anisotropic diJusion

The early Perona-Malik [P “anisotropic diVusion” reads
ur = div(g(jbuj?)Du) (39

87



whereu = u(t; x) is the time-dependent image arialu (t; X) its derivative akk = (x;y), and
g:[0;+1)! [0;+1 )isasmooth decreasing function satisfyg{g) = 1, slIirpl g(s) =0. For

example the function

9@= 5 (32

satis es these conditions. The role®fs to stop the dusion process at edges, where the image
gradient is is high. Inserting3() in (3.1),

DusS

(33

one observes the following asymptotic behaviors:
If jDuj> S,thenu;' u
If jDuj?> S, thenu;’ div(Sy iz

The rst case leads back to the classic heat equation; the second case however contains a term for
edge accentuation, as shown in equatiad)( Developping equationi3), we have

@ wS @ usS

"7 @jbuz+ S @yDujz+ S
= pures Ut ) piy gt gl U Uy ol + )
“ e U g g Uit )+ Uyl e )
= jDuj§+ s U (jDuj228+ S)ZDuTDzuDu (34)

where theDu "D ?uDu term is a dvusion in the gradient direction, but is inverted by the minus
sign. To understand this term, it is enough to consider the Taylor expansiarirothe gradient
direction at a pointx,

1
u(x+ Du) u(x)= Du:Du + éD2u( Du; Du )+ O( ?):

and to notice thaDuTD2uDu = 4 D2u( Du; Du ). Thus, the second term of equatiofi4)
is (up to a factor) the opposite second derivativeuoin the gradient direction and therefore
a reverse one-dimensional heat equation. Its order of magnitude is the same as the rst term
(because of the squaringu "D 2uDu) so its in uence can't be neglected. We show in guiré
the shock ¥ects caused by the presence of this term. Note that the directional second derivative
term DuTD2uDu is nothing but the Haralick [Ha84 edge detector. Indeed its zero-crossings
characterize the in exion points of the gradient in the direction of the gradient.

To summarize, the Perona-Malik anisotropid/dision smooths the image in direction orthog-
onal to the gradient and enhances it in the gradient direction. We will demonstrate that the guided
Iter loses this edge-enhancement property. On the negative size, it therefore smooths more the
image across its edges. On the positive side, it has no staiktsde e

312 Asymptotic behavior of the guided lter when itis localized

A pseudo-code of the guided lter is presented in AlgoritimFor the asymptotic study of the
Iter, we focus on the (main) case of usage= u and will work with a continuous de nition of
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Figure 3.1: Effect of the second derivative term when it is inverted. It creates shocks.

the guided Iter. It will be denoted bysF fug(x;y), were(x;y) are the horizontal and vertical
coordinates of a pixgd and is the width of its kernel. We shall de ne for any functimx; y)
its local mean, weighted by a Itdr , by
z
vix;y)= f (hiv(x hiy l)dhdl; (39

wheref (x;y) stands for the local window of the guided lter. The authors in [HST} sug-

gested to use a square window in order to take advantage of the integral images, but mention that
any kernel form can be used. We consider here a general case. Hence, our continuous de nition
of the guided withv = u will be

GF fug(x;y) = a(x;y)u(x;y) + b(x;y) (36)
where Varfug(xy)
CuY — amugix;y
axy) = Varf ug(x;y) + (37
and
bix;y)= 1 a(x;y) u(xy); (39
where the local variance VMarg(x;y) is de ned as
z
Varfug(x;y)= f (h;Du?(x h;y Ddhdl  u?(x;y): (39)

Theorem3.1 Consider @D imageu(x;y) 2 C3() . Letfq(x;y) bgza nonnegative compactly
supportedgadial kernel. Wg,assume that the lIter is normalized, nafmetyy)dxdy = 1; and
symmetric xf 1(x;y)dx = yfl(x;y)dpé = 0. Set~= =Mgo Where is the edge preserving
parameter of the guided lter, aMbo =  f1(x;y)x?dxdy =  f1(x;y)y?dxdy. Finally, let

be the scaled kernel(x;y) =  ?f1(x=;y= ).

Then, for(x;y) 2 ,

2M 20~

T UCCY)2 + ~ u(x;y)+ O( 3): (319

GF fug(x;y) u(x;y)=

Remark3.1 Theorentlmeans that the image edges are preservedwhnenu(x;y)j?, because

2Moo=jr u(x;y)j?" 0. On the other hand, the Iter is auilision by the isotropic heat equation
when~ jr u(p)j2. The transition between both behaviors is smooth, and a half-half compromise
is observed whers jr u(p)j.
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1if~ jr u(xy)j?,
2

M ~
GF fug(x;y) u(xy)= ﬁ u(x;y)+ o( 3;

2 if~=jr u(x;y)j?
2

GF fug(x;y) u(xy)= “2”20 u(;y)+ o 3;

3 if~ jru(xy)j4
GF fug(x;y) u(xy)= 2My u(x;y)+ O( 3):

Proof. We rst analyze the raw guided Iter before the aggregation ofYcoients performed in
equations 210 and (2.1). We can then write the Iter outpuGF "% ug(x; y)

GF ™ ug(x;y) = a(x;y)u(x;y) + b(x;y) : (31}

We now study the behavior of the Iter when! 0.

Let us denote buy (X;y) the rstderivative ofu(x;y) in x anduyy (X; y) its second derivative
in X. Without loss of generality by changing the axes and the origin and adding a constant to
we can assume thét; y) = (0 ; 0), thatu(0; 0) = 0, and that the gradient af at(x;y) is null in
the direction ofy, so thatuy(0;0) = 0. Let us now consider the Taylor expansion to the second
order ofu at(0; 0),

u(Gy)= x + x 2+ xy + y?+ 0( %); (313
with = ux(0;0), = 2ux(0;0), = Uy (0;0), and = 2uyy(0;0). By developing the
expression(0; 0) we get

Z

u(0;0) = izf %Y u(x; y)dxdy
z 1 X
= S 5L (s x2e oy 4 y2+ O H)dxdy
Z
_ 1. xy 2 2 3
= bt == (x°+ y%)dxdy+ O( ~)
= Mg + )+ O(¥); (313

The terms with odd exponent cancel out because of the kernel's symmetry. Equatigns(
obtained by substituting the variabke by x%andy=byy®so that
z

izf XY y2dxdy

izf (x%y( x 92 dx Ody
Z
2 £ (x%y9x®Bdxy®

= 2Myo;
R

and the same substitution is used forsf %; ¥ y2dxdy. Similarly,
z

1f X

f =
z 1 X

—f Xy ( °x%+2 x %y?+ 2x%y?) dxdy + O( )

u2(0; 0) Y (x4 x 2+ xy + y2+ O( 2)2dxdy

2 2Mp+(2 + 2) Mp+O(3);
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whereM 5, = Rf (x;y)x2y?dxdy. Finally,
Varf ug(0; 0) = u2(0;0) u?(0;0)
2 2Mp+(2 + ) My (+ )2 ML+ O( 3
2 Mg+ O( ¥): (319
From equations$7) and (319 follows that

2

a(0;0) = ———+ O( OE (315
using~= =( *Myp), and from equation £8) we obtain
0O;0) = — 927+ )+ O( : (316

2 4~
Let us recall equatior3():

GF™fug(x;y) = a(x;y)u(xy) + b(x;y):
Hence,GF "™ ug(0;0) u(0;0) = b(0;0) becausei(0;0) = 0. Furthermore, we have? =

jr ujZand( + )= u,therefore from equationy16 we obtain
M 20~
raw; . . —_ . 3y .
GF "™ ug(0;0) u(0;0) = T U0 02+ < u(0; 0) + O( °): (317

This equation is therefore valid for affy; y).

Let us now extend the above asymptotic resulGto . The guided lter aggregates the linear
coe€Y cients of overlapping windows. It therefore performs an additional averaging step by the
same window , namely computes

a(0;0) 1 u(0;0)+ b(0;0) = b0;0): (319

Thus, we just have to convolve the ¥ogentb(x;y) by the windowf and obtain the result of
the convolution af0; 0):

2 -~
GF fug0ixg) UO:0)=f i uGay)+ O( Y (0:0)
= M e utay) 00+ O( )

where denotes the convolution. SincésC2in , by expanding af0; 0) thefunctionw&% u(x;y),

which is thereforeC!, we nally obtain

M 20 3
: ) = - 0) + :
GF fug(0;0) u(0;0) U002+ u(0;0)+ O( °) (319
This ends the proof as this relation is valid for evexyy). O

Remark32. Equation(319 can be interpreted as one step of the evolution of the Itering process. We
can express this evolution as a time evolution by sétting® (andt = ndt if we wish to consider
n iterations). So we get the evolution

GFar(xy) u(xy) _ M 20~
dt jir u(x;y)j2+~

u(xy) + O(dt?)

which can be considered as the rst step of a Perona-Malik like equation,

du(t;x;y) _ M 50~
dt Cjruxy)pR+~

u(t; x;y); withu(O; x;y) = u(x;y):
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32 lterated Guided Filter

We introduce here the Iterated Guided Filter as a straightforward derivation implementation of the
mathematical analysis led in the preceding section, which showed that the guided lter is asymp-
totically equivalent to a well posed Perona Malik equation when the Itering neighborhood size
tends to zero. This opens the way to a much more local iterated Iter and raises the hope to get rid
of all artifacts (in particular the halos) caused by the use of a xed neighborhood. Meanwhile, the
iteration can ensure that the lter keeps a similar Iterinfext compared to the original guided

Iter. In other words, the iterated guided Iter solves the guided lIter's artifacts at the price of
more iterations and therefore more computational time. The ltered results of the iterated guided
Iter are noticeably d/erent from the Guided Filter results as we shall see. This is not attributable
only to the artifact correction, but also to the\thrent edge detection. As it uses a smaller radius,
the edge detection is done at a ner scale. As a result, the preserved parts of the Itered image can
be signi cantly dVerent, but generally for the better, as ner results will be detected as part of the
base.

Algorithm description

Basically, the iterated guided ltéterateshe guided lter. However, we shall also examine strate-
gies to reduce the computational time, leading to threéedent versions that will be distinguished

by a dMerent superscripts for the three versid&F (l), IGF @ andIGF @ .
De nition 3.1 We use the supersctipd denote the iterations and set

IGF Dfug(t;x) = a (t; x)IGF Dfug(t Lx)+ b (tX); (320
where: is the local mean de ned in Equat{@r),

Var IGF mfug (t 1;x

a(t; x) = @
Var IGF *Vfug (t 1;x)+

(323

and
bt:x)= 1 a(t;x) Mean IGF Mfugt 1) (x); (322

with IGF ¥ ug(t = 0) = u. Thisisjustthe guided Iter de nition with= u and where the input
u used at each iteration is the ltered output at the previous iteratiol’ f ug(t 1). Formally,
we therefore have

IGF yf ug(t; x) = GF IGF Ofug(t 1) (X); (323

where the guided lIter's guide is the input itself.

Algorithm 4 gives the pseudo-code of th&F @ we compare the results of this Iter to
the classic bilateral Iter in Figur@?2 to verify that it is not &ected by any staircasWext. As a
consequence of the absence of the edge reinforcement term, the smoothing is stronger.

The iterated guided lIter in this rst version can't be guided by another image than itself. We
therefore introduce a second versiidF ® where the guide can be dverent from the inputu.
Thus, even in th& = u con guration the input/output image will evolve with time but not the
guide, thus avoiding the very sharp edge-stopping aspect of the rst version (seeFiyure
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Algorithm 4: Iterated guided Iter A (IGF (1))
input : imageu
input : smoothing parameter
input : radiusr
input : number of iterationsT
output: IGF ki ug

1 1GF Mg ug(t =0) u /I Initialization
2fort=1;:::;T do

/I Apply GF with given parameters , randv=u
s | 1IGF Wfugt) GF IGF Pfugt 1)

(a) Input (b) Iterated bilateral (c) Iterated guided

Figure 3.2: The iterated guided lter causes no staircase artifact. Parameters used here: 2 = 0:01? with the
inputdynamic range in[0; 1];r = s = 1 with the inputimage of size250 250, number of iterationsT = 50. The
bottom graph displays the restrictions of the three above images to the vertical straight lines drawn on the images.
The staircase effect of the bilateral Iter (orange line) doesn't appear on the guided Iter version (red line).
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De nition 32. IGF @ Iterated guided Iter with a constant guide. Here, the gutiy/s unmod-
i ed over the iterationsGF @t ug(t) is both the Itered output at iteratierand the inputat +1 ,
with u is the input image andsF @ ug(t =0) = u.

IGF @fug(t; x) = a(t; X)v(x) + b(t; x) (329
where
. _ Cov v;IGF (z)fug(t 1) (X)
a(tx) = Varf vg(x) + (329
and
b(t; xX) = Mean IGF @fug(t 1) (x) a(t;x)v(X) ; (326

with IGF @f ug(t = 0) = u. This can also be written

n (0]
IGF @fug(t) = GF IGF @fug(t 1) ; (3279

where the guided lter is used with the guide

Algorithm 5 Iterated guided Iter 2 (IGF (2))
input : imageu
input : guidev
input : smoothing parameter
input : radiusr
input : number of iterationsT
output: IGF @ ug
1IGF @Pfugt=0) u /I Initialization

/I Apply GF with given parameters , r and guide v
s | IGF Pfugt) GF IGF Pfug(t 1)

Algorithm 5 gives the pseudo-code bBF @ An illustration is given for this lIter in Fig-
ure 33(c). It smooths less than the previous version, because the texture from the guide are pre-
served and keep being transfered over the iterations. However, because the lifveziecte
measures the covariance between the two images, its value will decrease in at regions. (By at
region we mean a region with low variance with respect}tdndeed, the imagéGF @ ug(t)
gets smoother and smoother, and therefordals more and more from the guide. At edges, since
they are preserved, the linear do&ents do not change. Thus, the smoothingeet in at areas
increases (although it is a slight increase in comparison Math (1)) at each iteration.

The co& cienta in equation 325 does not participate to the smoothing nor evolve much
over the iterations. Thus, the third version of the iterated guided lIter gives up computing it at
each iteration. This saves several convolutions and is therefore iMorerg. Indeed, the iterated
guided lterwithv 6 u (IGF (2)) needs six mean lters per iterations, whereas this third version
(IGF (3)) only needs two. So the lter is approximatively three times faster, as the mean lters are
the most computationally demanding operations of the guided lIter (see Algorithm
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De nition 33. IGF @ Fast approximation of the iterated guided lter with a constant guide. Com-
pared tdGF (2), this Iter computes only once theYtdenta. We remind that imageis the guide

and is kept unmodi ed over the iteratiomss original input image andF @) ug(t) is both the
Itered output at iteratiort and the input at iteratioh+ 1.

IGF ®fug(t) = a(t; X\)v(x) + b(t; X) (329
where Corf »
v _ Covv;ug(x
a(t, X) = W (3'29
and
b(t; xX) = Mean IGF @fug(t 1) (x) a(X)Vv(X); (330

with IGF @fug(t =0) = u.

This last Iter has a lower smoothing power compared to versiadhandv?2. Indeed, the edge
(and structure) preserving c¥ecienta is computed only once, at the rst iteration of the lIter.
One therefore needs to modify the parametéw achieve the same “amount of smoothing”.

A pseudo-code for the third version of the iterated guided lter is given in Algorithnit is
straightforward to deduce from the guided Iter pseudo-code in Algoriththe rst and second
versions, using equation823 (vl and (327 (v2). All three algorithms have@(T N ) complex-
ity, with T the number of iterations anll the number of pixels. Mean lters can be implemented
with integral images which makes the Iter complexity independent from the window's radius.
However, this argument is not as crucial as in the original guided lIter case, because the iterated
guided lter is designed to use small radii (typically betwdemd5). For the same reason, the
down-sampling strategy doesn't apply here.

Algorithm 6: Iterated guided lIter algorithm
input : inputimageu
input : guide image/
input : smoothing parameter
input : window radiusr (box window will have siz€r + 1) ?)
input : number of iteration T
output: ltered imagel GF @ ug

1u Mean fug /I mean of u in windows !
2v  Meanfvg /I mean of v in windows !
3C Meanfvug vu /I covariance of v and u in windows !
4V  Meanfv’g V2 /I variance of v in windows !
sa CeHV+ ) /I equation  (2.4)
6 a Meanfag /I equation (210
71GF ®fug(t=0) u Il Initialization
gfort=1;:::;T do

o | IGF @fugt) Mean fIGF Pfugit 1)g /I mean of IGF @ fug(t) in !
10 | b(t) IGF (3)fug(t) av /I equation (2.5
12 | b(t) Mean fh(t)g Il equation (2.1}

12 | IGF Pfugt) av+ Kt)
13 return 1GF (3)fug
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(a) Input IGF ¥ (t = 50) (©)IGF @ (t = 50)

(A)IGF @ (t = 50) (e)IGE @ (t =50), =0:042
Figure 3.3: Different versions of the Iter. Parameters are= 0:012 (unless noti ed otherwise)yr =1 andT = 50.

The last versiodGF ® needa higher to achieve a similar smoothing effect. This is due to the fact that coef cient
ais not updated across the iterations.
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We show in Figuré33the ltering results with the three derent versions. Noticeably, the
amount of smoothing dvers from one to the other. Indeed, in the rst version{ythe guide is
more and more smooth across the iterations, whereas the guide stays the same in the second ver-
sion (V2. In the third (v3) version three, the gradient-preserving ¥agenta is kept unchanged
across the iterations, whereas iiwtakes the smoothness of the input image into account (co-
variance term).

Tuning the parameters to get equivalent smoothingvects

To get similar the spatial smoothing, we set eitfieandr according to the equivalent Gaussian
kernel we want. Indeed, the Gaussian convolution can be approximat&d jgsses of box |-
tering. Wells [Wes€] suggested to selectaccordingto 2 = 5K (2r +1)2 1. Since each
iteration of the guided lIter corresponds to two box Iters, we can use the relation

1 1=2
rGr = ET @riee +1)?% 1 ; (332

wherer g is the radius of the guided Iter andigr the radius of the iterated guided lter.
Concerning the edge-preserving parametdhere is no clear equivalence, yet usmg in

the rst two versions of the iterative guided Iter seems to work in practice. The third iterative

version has no dependence on the number of iteratibnget has a stronger smoothinyext

than the original guided lIter. For this reason we use in our experiments.

33 Results

Figure34 displays results obtained with all presented versions of the guided lter. The very left
column (except from the top image which is the input) shows ltering and contrast enhancement
results with the original guided Iter. The contrast halo artifact is clearly visible in the zoomed-in
part displayed in the bottom image. The next columns present the same results obtained with
the iterated versions. The contrast halo artifact is solved. The detail layers produced by the three
versions are rather ¥erent. As seen in FigufiE&3the rst version smooths more than the other

two; this is particularly visible on the dark bars. The second iterated version keeps a small contrast
halo related to window's width: We used here= 4 and this remaining contrast halo would be
smaller with a smaller. One reason to choose> 1isthat the larger, the less iterations we need

fora xed nal spatial smoothing. We therefore use the largefir which the contrast halo is not
objectionable. This value might nevertheless depend on the viewer and on the image resolution.
We found thatr = 3 orr = 4 are acceptable. The third (fast) iterated version stays close to the
second one but presents a small luminance halo.

Figure35presents another application to a gray scale image. The inputand ltered images are
displayed on the top row, and detail (input - ltered) is showed on the bottom row, with a contrast
factor of6 for visualization. The iterated guided Iter solves the issues of the guided lter. Another
example is given in guré&6, where each channel of the input color image is Itered according to
the luminance channelH0:2989 Redt0:5870 Greent0:1140 Blue). We compute the color
coeY cients before the Iter usingic®o'=yluminance gng add them back after Itering. Thus, only
luminance contrast is enhanced in this experiment. The texture of the table is better enhanced
with the iterative version around.

We show in Figures.7 the results for color Itering. Note that the guided Iter with color is
slower than the guided Iter by a factor of alma8t Indeed, the computational cost for using a
color guide is slightly less thatimes the cost of a gray guide, and one needs to Iter each of
the three channels of the color image. This is also valid for the iterated verdiansl w2, but
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inputimage

detail layer base layer

enhance detail

Zzoom

(a)GF (b)IGE © (c)IGF @ (d)IGF @

Figure 3.4: Parameter used are= 0:06 for GF ; =T for IGE ™ andIGE @ and =2for IGF © . Radius olGF
isrer = 26 andrige = 4 for the iterative versions, with the number of iterationsT = 50. rge is computed
from equation (3.3), so that the spatial smoothing of all lters is the same. The detail in the “detail layer” row
in multiplied by 6 for visualization purposes. The “enhanced” images are computed as: enhanog = 0:125 +
0:750 u+6 (u GFfug). Thelastrow displays a zoomed in part of the enhanced images.

98



(a) inputu (b)GF fug (c)IGF vsfug
r=28, =0:06 r=3, =0:06°=2, T =100

Figure 3.5: The top line displays the input image (on the left) followed by the lItered versions. The bottom line

displays the detail layers obtained (with a factor 6 for visualization). The iterated version of the guided lter gets
rid of both luminance and contrast halos of the guided lter.
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GF

IGF @

(a) Input (b) Base layer (c) Detail layer (d) Enhanced

Figure 3.6: We use here the luminance channel of the color image as guide for the Itering of each color channel.
We use thelGF @ in that experiment. Parameters arege = 28;ree = 3;T = 100; g = 0:06° and

icF = oF =2. The detall is better enhanced in the iterated version: the contrast halos around the objects of the
scene are removed.

diVerent for the fast version g, which does not require recomputing the linear Yo&enta at

each iteration. So these &beients are only computed once, and in comparison with the number
of iterations (often more tha®( this cost can be neglected, making this third version only three
times slower (due to the ltering of three channels). Hence, compared to the original color guided
Iter, the rst two iterated color guided Iters have a complexity factdr, whereas the third one
has a factom =3 (as for the gray versions).

Artifacts

The Iterated Guided Filter still produces a small luminance halo. Moreover, according to the radius
used, it can still show the contrast halo we observed with the Guided Filter. Obviously, a contrast
halo made with a radius dfis still way less visible than with a radius4f which is a standard
value for the original Guided Filter.

34 Conclusion

In this chapter, we presented the guided lter. Its main advantages are a fast and exact imple-
mentation, a structure transfer capability and the absence of over-sharpening (staircase) artifacts.
We demonstrated the last property by showing the link between the guided lter and the Perona-
Malik anisotropic dusion. Furthermore, our proposition of an iterated guided lter solves the
two main inconveniences of the lter, namely the contrast halo and luminance halo. We also
went farther and proposed two variants of the iterated guided Iter: the rst variant, version two
(v2), accepts a guide derent from the input image and can then be used for structure transfer;
the third version () is a fast approximation of the second one, that unfortunately reintroduces
some luminance halo. We then showed tivecgency of the new Iter in the case of extreme local
contrast enhancement.

Although the authors in [HSTJ defend themselves of proposing a fast approximation to the

100



GF color

IGF (1) color

IGF (2) color

IGE (3) color

(a) Input (b) Base layer (c) Detail layer (d) Enhancement

Figure 3.7: Each lter can handle a color guidd.GF W isa special case here because it requires a Itered color
image at each iteration, thus it Iters each color channel at each pass, unlike the other ones that Iter each color
channel independentely (but still using the same color guide). Parameters arer = 0:06% and G @

GF =2;fgr =26;rcgr =4 andT =50.
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bilateral Iter, one can argue that the goals and tools of both classes of Iters are closely related.
Indeed, the idea of the bilateral Iter is to prevent averaging pixels with distant intensities, even
if they are spatially close. The guided Iter, by measuring the local variance, applies the same
principle: high variance areasewhere pixels intensity variations are strong, are not averaged.
Furthermore, it was proven in [BA#] that the underlying PDE of the bilateral lter is a variant
of the Perona-Malik equation. Hence, both Iter belongs to the same family of edge-stopping
diVusion lters.

The next chapter will concentrate on the bilateral Iter, and review its numerous fast approxi-
mations proposed sinc2002
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4 Bilateral lter

The previous Chapterdand 3are dedicated to the fast and recent guided lter, link it to the
anisotropic dvusion and compare it to the bilateral Iter. Those two last Iters are the most
widespread lIters for the computation of an image base.

In this chapter, we present the bilateral Iter. We recal its long history, and describe its main
descendants: the joint (or cross) bilateral Iter [BRPSA 04], the bilateral Iter with regres-

sion [BCMO6), the unnormalized bilateral lters [APFI 1JAPH" 14MT1§. Furthermore, we
make the link between the bilateral Iter and ACE (Automatic color enhancement) that be-
longs to the retinex family. We also explain the staircasee rst described, and solved, by
Buadest al.[BCMO€g)].

Two others chapters dedicated to the bilateral Iters will follow. A review of the numerous
schemes proposed to correct the stairca@ee(Chapters), and a review of the fast approx-
imations, particularly usefull when the lter is used with large spatial neighborhood as in
the base and detail decomposition problem (ChapiferHowever, since the unnormalized
bileral Iter will be de ned in this chapter, we get ahead and present its fast approximations
here. Likewise, we propose in this Chaptex fast approximation of the bilateral Iter with
regression and a multi-scale lter based onit. This last lter gives us the opportunity to de ne
and explain thedark halcartifact.

Paris, Kornprobst, Tumblin and Durand2009book “Bilateral Iter: theory and appli-
cations”

This chapter, along with the two following ones on the staircasing corrections and the fast approx-
imations of the bilateral lter, is directly inspired by the S. Paris, P. Kornprobst, J. Tumblin and
F. Durand book [PKTmMY. Whereas this book aims at giving an extensive presentation of the
bilateral lter and its applications, we concentrate on its usage for base and detail decomposition.
Nonetheless, we approach several points already revieweddf@9book, e.g, the dMerent pro-

posed extensions and its fast approximations. We highlight below the méanetices between

our Chapterst, 5 6 and Paris, Kornprobst, Tumblin and Durand book. Concerning this chapter
on the bilateral lters, we present supplementary lters:

the unnormalized bilateral lters [APH1]1MT14, along with their fast approximations;
we propose a fast approximation for the bilateral Iter with regression;
we establish a formal link with the Iter ACE (Automatic Color Enhancement) [GE)VI

We pursue the review of the bilateral Iter with the stairca¥ea corrections in Chapteéx There
are two kinds of corrections: the rst modify the bilateral Iter so that the slopes are taken into
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account,e.g, the bilateral with regression lter, the trilateral Iter, the symmetric bilateral Iter;
these have been reviewed in Patisl. book, so the diverences between our review and theirs
comes down to:

a more detailed presentation of the trilateral Iter, with pseudo-codes;
the introduction of a symmetric bilateral Iter similar to Elad's one [B#.

The second kind of approximations however is not described in [PBI DIt consist in post-
processing the Itered image to correct the staircase artifact. The described corrections are:

the blending described by Durand and Dorsey [0

the minimal isotropic smoothing\éect in the separable kernel approximation [P
the Poisson correction proposed by Bdaeal.[BPDOE];

the selective diusion of Kass and Solomon [K4.

Concerning the fast approximations, most of them are reviewed in the book. Nonetheless, we add
to the list Iters posterior to2009and sometimes give more detailed descriptions:

in the local histograms, Weiss [\V&] approximation is described in the book, yet we give
of ita more in-depth description: we present the earlier Huang's algorithm and give for both
pseudo-codes. Furthermore, we review PoriRid®8version that uses integral histograms,
and discuss the usage of box spatial kernels;

the fast approximations of the unnormalized bilateral Iter is given in Chagter

we present a supplementary class of fast approximations based on the usage of polynomials
range kernels;

the domain transform is also reviewed, this Iter can be thought as a bilateral Iter when
used with a small spatial kernel.

4.1 Introduction

The principle of bilateral Itering appeared with Yaroslavsk98p[Yarl] and Lee (98B[LeeB].
The variant we study was proposed by Smith and Brady who called it “SUSI®IRB[SBI7]. It
was re-proposed by Tomasi and Manduchi under the name “bilateral Ite2®®gTM 99. All
of these similar lters can be termed neighborhood lters.

We call neighborhood lIter any Iter which computes a pixel by taking an average of the
values of neighboring pixels with a similar grey level value. In Yaroslali8B¥[(varl] and Lee
(198B[Lees] it is proposed to average pixels belonging to the neighbori®¢d )\ B . (X).

This Iter can be rewritten in a more continuous form as

VE (x) 1 z ) juy) u(x)jZd 4
r sUX) = —— uly)e 2 f y '
C¥) B .
R uy vz o . L
wherex 2 andC(x) = 4 (x) © 27 dyis the normalization factor. Only pixels inside

B .(x) are averaged. In later versions the gray level threshold was replaced by a Gauss weighting
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Figure 4.1: Bilateral lter principle. Figure reproduced from [TM98]

function depending on a Itering parameter, [SB97, [TM 9§. These algorithms, instead of
considering a xed spatial neighborhodgl _ (x), weigh the distance to the reference pixel

aF 1 z iy 2 jue) uz(x)jzd 42

S u(x) = u(y)e 25 e 2 f ; :

o su(x) cm ) y (42
R iy x? iy uwiz o ) i

whereC(x)= e 2s2e 27 dyis the normalization factor ands is now a spatial lter-

ing parameter. We show in guré.l(b) a representation of the bilateral kernel at an edge. There

is no signi cant dvVerence between ¥F, and BF. .. The performance of both algorithms is

justi ed by the same arguments. Inside a homogeneous region, the gray level values slightly uc-
tuate because of the noise or texture. In that case, the rst strategy computes an arithmetic mean
of the neighborhood and the second strategy a Gaussian mean. At a contrasted edge separating
two regions, if the gray level\#@rence between both regions is signi cantly larger thanboth
algorithms compute averages of pixels belonging to the same region as the reference pixel. Thus,
the algorithm does not blur the edges, which is its main scope.

We refer to [PKTMY for a extensive review of the applications of the bilateral Iter. Quot-
ing it: “[The bilateral Iter] has been used in various contexts such as denoising(JS[BM 05,
[LFSKOE)], texture editing and relighting [OCDD], tone management [BP0OS], [BM 09, [DD 07,
[EDO4], [Ela0q, [PSA" 04], demosaicking [RE], stylization [WO €], and optical- ow estima-
tion [STO{, [XCS" 06) This overview gives an idea of the wide adoption of this Iter in the
community, and more generally the usefulness of base and detail decomposing lters image pro-
cessing.

4.2 The bilateral Iter and its implementation

The bilateral lter, as de ned in equation4(?), has a simple implementation wit® (N 2) com-
plexity. It is usual to reduce it t®(r2N) by restricting the convolution to &r +1)  (2r + 1)
window (usuallyr = 2 g). But the complexity remains high when the lter is used with large
spatial support.

Algorithm 7 presents an implementation of the bilateral Iter. Numerous fast approximations
have been proposed to accelerate this Iter. However, none of them is able to reproduce the exact
bilateral Iter. Nevertheless, some of them have turned out to be really close. They will be detailed
in the next sectior® on the main fast approximations.
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Algorithm 7: StandardO(r2N) bilateral Iter (BF)
input : inputu
input : range standard deviation
input : spatial standard-deviationg
input : window widthr (usually2 )
output: BF ug
/I First loop on the whole image
1 foreachpixelx do

/I Second loop on the current pixel's window
2 foreachpixely in thex-centered window of si2 + 1) 2 do
3 k(x;y) :PG X G, ux)  u(y) /I Compute current pixel's weights
4 P = yk(xy) /I Normalization factor
5 BRug(x)="!() * ,k(xy)u(y) /I Compute output value

6 return BF ug

Limitations and artifacts of the bilateral Iter

The rst limitation of the original bilateral Iter is its execution time. Since it needs to recompute
the kernel at each pixel, the execution is very slow for large images or a large spatial standard devi-
ation . The second limitation is the so-called staircase artiofact [BE namely a tendency
of the Iter to create jumps (staircases) along the in exion lines of smooth regions.

The staircase artifact is illustrated in gure?2 and gure 4.3 In this gure we simpli ed
the range and spatial kernels by using simple boxes. This allows a simple visualizatiori; in the
dimensional case, of what pixels are taken into account in the averaging process. The blue arrows
are the intensity dierencesi(x) u(y). The dotted box shows the boundaries of the raagé
spatial kernels: outside of this box, all the bilateral weights are zero. Then, it is easy to see that for
the current pixel (namley the intersection of the two blue dotted lines at the center of the box) the
averaged value has a higher intensity than the initial one. By applying the bilateral averaging on
each pixel of the blue line, one obtains the red line. The “propagation of the plateau” that one can
observe is what we call the “staircase artifact”.

This spurious edge reinforcement causes a staircase, or “contrast reversal” artifact when the
Iter is used for contrast enhancement. Thigext is visible in guret.4.

4.3 Onthe link between ACE and the bilateral Iter

In this section we demonstrate that ACE has the same formula as the residual of the bilateral Iter.
The derence is that the spatial kernel has slow decdyjj®jj and that the range kernel does not
discard values with distant intensity but rather limits their in uence. To the best of our knowledge,
such a link has not been suggested yet.

Theorem4.1 Letu : ! [0;1]be the inputimag®, : R? ! [0;1]the lter kernelH : R!
[0; 1] anin uence functionan@ : ! [0; 1] the normalization factor. Denote ( X1;X2) and
y = (y1;Y2) theZD-coordinates of pixels in ACE and the bilateral residual BF ug are both
written in the same form:

v(x) = F(x y)H(uly) ux)

y2
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(b) Range kernel

(@ (c) Spatial kernel

Figure 4.2: Explanation of the staircase effect for a bilateral Iter with simpli ed range and spatial kernels. The
current pixel is at the intersection of the vertical and horizontal blue dotted lines. The dotted black rectangle
indicates which pixels will be considered in the average. Light blue vertical arrows stand for the intensity difference
between the current pixels and the pixels in the rectangle. Since the current pixel has more neighbors (in the
bilateral de nition) on the right side of the edge, its bilaterally averaged value will be closer to the plateau's value.

Figure 4.3: The number of neighbors is unbalanced for concave signals. This causes the staircase artifact. Figure
reproduced from [BCMO6].

(a) Input (b) Enhanced

Figure 4.4: Contrast reversal with the bilateral Iter and local contrast enhancement. In (b) the detail layer has been
multiplied by a factor > 1.
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Proof. Let recall the bilateral Iter de nition:

BH ug(x) =

Corl) , G.(x WG, u(x uly) u(y); 43

P
whereG | isthe Gaussian spatial kern@l,, the range Gaussian kernel, a@gHx) = e G (X

y)G , u(x) u(y) the normalization factor. As presented in the unnormalized bilateral I-
ter [APH" 11APH" 14 Section4.4, equation ¢.3) can be written

X
BFf ug(x) = u(x) CBi(X) G (x Y6, ux¥ uly) u® uly): (49
y2
We thus have
u BRug(x) = CorlX) Fer(X y)Hsru(y) u(x)); (4.9
y2

whereFge(X) = G .(x) andHpg(t) = G , (t)t. As for ACE, itis de ned as

ACH ug(x) = . kxlyks u(x) u(y) ; (4.6)
thus
ACH UGN = < —r Facex  YHacelu(y) u(x) (47
ace(X) ,
with (
1=kxk x2 n(0;0)

Facd 0 2 00y (48)
Hace(t) = s (1), andCace(X) = 1 everywhere in . O

In summary, the only essential\édrence between ACE and BF is that the former computes
the detail layer (and directly enhances it, as we shall see) whereas the latter computes the base
layer. Another dverence lies in the absence of normalization in ACE, allowed by the point we
just mentioned. Indeed, similarly to the unnormalized bilateral Iter (see Sectidn averaging
intensity dMerencegu(y) u(x)) that oscillate around zero permits to remove the normalization
term. The other derence between both lters is the form of the functiofg:) andH (:). As
such, ACE can be expressethesdetail layer given by an unnormalized bilateral Iter with modi ed
spatial and range kernels

The diVerence between the kernels is relevant: in ACE the spatial kernel is scale-invariant and
the range kernel, rather than excluding pixels with distant intensity from the averaging, limits their
in uence by a threshold. Various range functions for the bilateral Iter have been investigated in
the context of robust statistical estimation by Duragidal.[DD 07] in 2002 The range function
used in ACE is known as the Huber minimax [HL] It was previously studied in the context of
anisotropic dvusion by Blaclet al.in 1998BSMH9]. We reproduce in Figuré.6 an illustration
from [BSMH9] showing Huber'sninmaxnorm (:), its derivative (:), and the edge-stopping
function g(:). The derivative (:) is proportional to the in uence function [HRRE]. In Theo-
rem4.1we denoted it byH (:). This function characterizes the bias that a particular measurement
has on the solution [BSMBE. The Huberminmax edge-stopping functiomg() is de ned as
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Figure 4.5: Hubeminimaxnorm (:), its derivative (:) and the corresponding edge-stopping functiong(:). This
norm is a modi cation of the L, norm with a quadratic part around zero. See Equatiofi.9), Equation(4.10 and
Equation(4.1), respectively. Figure reproduced from [BSMH98].

Figure 4.6: Figure reproduced from [DD02]. The ACE method uses the Huber minimax in uence function, while the
classic bilateral Iter uses a Gaussian. In ACE thparameter isl= .

g(x) = qx)=x. We have

« ) -
= + = "
x )= P (49)
JX] IX] >
X= ixXji
X; 4.1
( (sigr(X) ixj>; (419
1= i X] ;
a(x; >l (4.1}

signx)=x |xj > :

Remark that (x; 1= ) = s (x). We report in Figurel.6 (reproduced from [DDZ) the plot
of diVerent in uence functions considered in Duraret al. paper. The Gauss function from the
bilateral Iter (green line) and the Huber one (red line) show thé/dient treatment of outliers
made by BF and ACE.

Remarkably, ACE range kernel prevents the lter from creating staircase patternsinthe ltered
image, that is, contrast reversal artifacts in the result. This is because outliers are not rejected but
simply clipped. On the other hand, it makes ACE prone to halos artifacts, particularly visible
when the used spatial kernel is Gaussian. However, witlitkek kernel, the halo is somehow
“dissolved” because of its width, thus not visible. We display some results of ACE in £igure

The experiments are available online ahttp://demo.ipol.im/demolg_ace/archive/?key=
FA4C4D864C59529A061E700065CF0B566 and http://demo.ipol.im/demo/g_ace/archive/?key=
B71D56923F60444C748E73A32E7ACOThey are part of the publicationttps://doi.org/10.5201/ipol.
2012.g-ace .
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(a) inputimage (b) Gaussian spatial kernel (t¥kxk spatial kernel

Figure 4.7: Contrast enhancement with ACE for two different spatial kernels: Gaussian (b)lathetk (c). The con-
trast factor used here is = 5. These results are taken from the IPOL archivaef Getreuer's ACE implementa-
tion [Get12].

4.4 Unnormalized bilateral lter

The unnormalized bilateral Iter (UBF) was proposed by Mathieu Aubry in his articles on the local
Laplacian Iter [APH" 1], [APH" 14. Itis extensively described in ChaptérHis observation is
that the bilateral Iter can be rewritten in a way that keeps the average intensity of the image even if
the normalization factor is removed. On the other hand, removing the normalization factor allows
to reduce the Itering &ect in the vicinity of the edges and then to reduce the staircasing artifact.
And because one no longer needs to compute this normalization factor, the Iter is faster than the
original one. From this point of view, the unnormalized bilateral Iter is the only Iter that with
a unique modi cation both accelerates the bilateral Iter and diminishes its sharpening property.
Furthermore, it can bene t from several acceleration schemes dedicated to the bilateral Iter. We
shall see however that removing the normalization is not without drawbacks. In particular, the
UBF smoothing strength is lowered, especially at edges and for small or thin objects.

The unnormalized bilateral Iter has the simple expression

X
UBFHug(x) = u(x)+ G (x ¥)G, uly) u(x uly) ux : (413
y2

Compared to the bilateral lter (cf. equation4(?2)), the unnormalized version averages the in-
tensity dverencesi(y) u(x) rather than the intensity(y) themselves, and the input image is
added to keep the overall intensity of the image. With the normalization factor, this would just
be a rewriting of the bilateral Iter. Yet in equatior.(L] is it safe to remov€ because when the
sum tends towards zero the output value tends to the input value, so there is no intensity shift.
Contrarily to the bilateral Iter, the spatial kern@ ¢ has to be normalized:
0 1,
kxk2 @X S
2 2 '

(413

y2

because the removed normalization factor doesn't compensate it any more. The de nitich (
can be rewritten as a blend between the original imaged the bilateral Iter result BFug
involving the bilateral normalization fact@ that we recall is de ned as
X
Cx)= G (x yG, uly u: (419
y2

This leads to a second de nition of the unnormalized bilateral lter:

UBHug(x) = C(X)BFug(x)+ 1 C(X) u(x): (4.15
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The de nition of BF is given in equation4(?). Equation (.19 makes it easy to understand the
behavior of the lter: the normalization factdC is large in at areas (where the range kernel gives
values close to one to most pixels), and gets smaller when it comes across image edges (where the
range kernel gives values close to zero to many pixels). This results in keeping the original image
at the edges and the bilateral Iter result on the at areas. This behavior resembles the one of the
guided lter (see Chapte?). We shall elaborate later on “contrast halo artifact” that UBF is prone
to create.

We provide the pseudo-code of the lter in Algorith This is the “brute force” version,
and we shall present later its fast approximation. However, note that because the normalization
factor is removed, this version is nearly twice faster than the original bilateral Iter. The algorithm,
for each pixel of the input image (lin®, starts by computing the bilateral weights (liBein the
window . Finally, it computes the weighted sum of th&/diencesi(x y) u(x)in andadds
it to the input intensityu(x) to obtain the output value UBFug(x) (line 4).

Algorithm 8: Unnormalized Bilateral Filter (UBF)
input : imageu
input : spatial parameterg
input : range parameter,
input : radius of the window
output: ltered image UBFug
1 foreachpixelx do

2 foreachpixely in thex-centered window of siz¢2r + 1) 2 do
L /I Compute bilateral weights for current pixel

k(x;y)= G (x )G, u(y) u(x
/I Compute output valuepusing equation (4.13
4 UBRug(x) = u(x)+ , k(x;y) u(y) u(x)

This algorithm can be accelerated using separable kernels, polynomials range kernels or the
layered approximations. Since this last approximation is used by M. Aetah{APH" 14 for the
fast local laplacian lter, we concentrate on this fast approximation of the unnormalized bilateral
Iter.

Algorithm 9 describes its pseudo-code. This algorithm requires to set the number of intensity
samplesS. This number is usually chosen in function of the range parameteas this layering
can be interpreted as a sampling of the range kernel. Thus, a small kernel requires a small “range
period” and therefore a large number of layers. On the contrary, a big parameteon't need a
large number of layers to acheive a good approximation. The authors in [AHirecommend to
sample the intensity range every. The algorithm starts by computing the “range period” (lie
according to the dynamic range and the chosen parangtdrhen, for each intensity sample, it
computes the layer (ling), then convolves it by the Gaussian spatial kernel (fin€rhe output
image UBESf ug is then updated (line) using the interpolation weights (computed at lifig
the output pixels which value do not correspond to an intensity sample are linearly interpolated
from the two closest layers.

We show in Figurée.8 the diVerence between the bilateral lter (red line) and the unnormal-
ized bilateral lter (orange line) in two dierent con gurations: the rst (image a) is the lItering
of a smooth edge. This gure shows the reduction of the staircase artifact. the over-sharpening is
less present with UBF (the orange line stays closer to the blue one at the edge). The second con-
guration (image b) is the Itering of the same test-pattern where we added noise. It shows that
UBF smoothes less than BF. This last property is often a drawback because one needs to increase
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Algorithm 9: Unnormalized Bilateral Filter, Fast approximation using layers
input : imageu
input : spatial parameterg
input : range parameter;
input : radiusr: window has siz€2r + 1) 2
input : number of samples of the intensity rang§e
output: Itered image UBESt ug

1 = min(u) max(u) =S 1) Il gap between two intensity samples
2 UBF®fug=u Il initialization
3 foreachintensity sample2 f 0;1;::;;S 1gdo
4 j=min(l)+j /I value of intensity sample
/I Following operations are pixel-wise:
j=max(0;1 ju j=) /I interpolation weights
Hi=G, (u j)u j) Il layer at
7 Hj = G, H;j Il convolve the layer with the truncated
I normalized spatial Gaussian kernel
8 UBHfug = UBF®fug + i Hj // update output image
(a) Filtering of a smooth edge (b) Filtering of a smooth edge with noise

Figure 4.8: Filtering with the bilateral Iter and the unnormalized bilateral Iter. We show here the pro le of a test-
pattern (abscissa for pixel position; ordinate for pixel intensity). Parameters:= 16 and ; = 0:20. Compared to
BF, UBF reduces the staircasing artefact (a) but smoothes less (b).

the value of ; to obtain a similar smoothing\éect, which reduces the edge-preserving property
of the lter.

Furthermore, as we see in equatichl(), UBF keeps the original image values where the
normalization factor is small. This happens at edges and thin lines. These parts of the image are
thus not Itered, which makes a contrast halo to appear in contrast enhancement applications.

“A new class of image Iters without normalization”

Peyman Milanfar and Hossein Talebi recently published a paper on Iters without normaliza-
tion [MT 14. While they claim to present a new class of lters, replacing the normalized by the un-
normalized ones, the idea behind is basically the same as presented by Mefabj§PH" 14.

The authors' proposition is to use a constant normalization factdor the entire image. In the
unnormalized bilateral lter, this constant factor is implicitly set ¢with a normalized spatial
Gaussian kernel). The authors in [M{ set so that it is the closest to the original normaliza-
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(a) input (b) BF (c) UBF (d) UBF (e) UBF
r = :05 r = :05 r = :10 r = :15

Figure 4.9: First row, displays in (a) the input, then the Itered images. The middle row displays the detail layer, with
a ampli cation factor of 6 for visibility purposes. The bottom row shows an example of contrast enhancement:
enhanced input+5 detail Parameter s = 16 and image size igl00 400. For this image, while UBF succeeds in
removing the edge-sharpening effect of BF (visible along the bars), it looses the ability to Iter inside thin elements,
because the number of similar pixels is too small.
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tion factors everywhere. They provide (quoting [[¥q) “an analytically sound and numerically
tractable choice for the scalar 0 that gives the best approximation to [the lter] in the least-
squares sense”. They eventually give this value:

1 -
& C(x) '
N X2u
with N the number of pixels in the image Thus, the best constantto approximate the nor-

malized lter is the mean of all the normalization factors in the image. We adopt the notations
from [MT 14 for the few formulas reported below. As de ned in the original paper (quoting):

(4.19

Consider the vectorized imageof sizen as the input, and the vectorized image
as the output of the Itering process. The general construction of a Iter begins by
specifying a symmetric positive semi-de nite (PSD) keigel 0that measures the
similarity, or & nity, between individual or groups of pixels.
Indicesi andj are pixels. The kernél; is for example the bilateral one. The normalized weights
are de ned as "
Wij = Pin I K. . (417
j=1 "™
Still following the paper notation, the output with matrix notation is:
z= Wy, (419

where the -th row of the Iter matrix W is the vectofw;1; :::; win ] and produces thé-th output
pixel. As said in [MTLg, “the lter matrix W is a normalized version of the symmetric positive
de nite aY nity matrix K constructed from the unnormalizedvanitieskjj ;1 i;] n" They
then writeW as a product of two matrices

W =D K (419

P
whereD is a diagonal matrix with diagonal elemefis]; = j":l kij = di. Whereas the nor-
malized Iter (4.19 can be written

W=1+D YK D); (4.20

they replace the normalization matr ! by the constant , what de ned the approximation
R
=1+ (K D) (423

By minimizing the following cost function using the mat#tobeniusiorm:
minkW W ( )K?; (4.22
and with some approximations they get
= F’i (4.23
Noticeably, prior to un-normalizing the Iter they need to compute the normalization factors at

each pixels.
The key properties of this approximate lter, as they give, are (quoting):

Regardless of the value ofthe rows of¥ always sum to one.
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While the Iter W is not necessarily symmetric, the approximfiteis always
symmetric. The advantages of having a symmetric lter matrix are many, as
documented in the recent work [Mi.

The normalized Iter weights i'W are typically non-negative valued. The ele-
ments in® however, can be negative valued, meaning that the behavior of the
approximate lter may dler from its reference value.

We observe that the unnormalized bilateral Iter can be written in the exact same way, with
= 1. Let recall UBF with notations from [M14:

xo
z™ =y + ki (Y; i) (4.29
=1
That is, in matrix notations:
2=y +(K D)y (4.2
=(I+(K D))y: (4.26

The properties given above then apply to UBF. Concerning the symmetric Ilter mé@trjac-
cording to P. Milanfar in [MilL3 (quoting):

Symmetrizing the smoothing operator is not just a mathematical nicety; it can have
interesting practical advantages as well. In particular, three such advantages are that
(D given a smoother, its symmetrized version generally results in improved perfor-
mance; ) symmetrizing guarantees the stability of iterative lters based onthe smoother;
and (3 symmetrization enables us to peer into the complex behavior of smoothing
Iters in the transform domain using principal components.

The same authores later published [T§la method for image enhancement based on the
Laplacian operator using this un-normalization strategy.

4.5 Bilateral Filter with regression

The bilateral Iter with regression [BCBH] incorporate a way to estimate a plan rather than a
constant for each pixel, thus handeling better the slopes where, as proven by the authors, the
original bilateral Iter has a staircas¥ect. They alos proved that the bilateral Iter with regression

has not this artefact when the size of the spatial neighborhood tends towards zero.

The bilateral Iter with regression (BFR) was introduced by Buades et al. [} & an ex-
tension of the standard bilateral Iter reducing its staircadea (see section “Artifact” if.2). It
consists in the estimation, for each pixel, of the best tting plane according to the bilateral weights.

The bilateral lter with regression is de ned as follows in [BOK).

We call BFR . .fugthe value obtained at = ( x1;X2) by nding the plane locally
approximatingu in the following sense
Z
min - k(xy) uy) yi ya dy (427
where

ky xk?  ju(y Lé(xnz

k(x;y)=e 28 e 27 (4.28
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Then, the restored value atis given byx 1 + x 2+ . The weights used to de ne

the minimization problem are the same as the ones used by the neighborhood lter.
Thus, the points with a grey level value closeifg) will have a stronger in uence

in the minimization process. The only#rence with BF is the replacement of an
average by a linear regression. The minimization process is made explicit, since we
can easily derive the normal equations. Thus, the computation of the above linear
regression reduces to the solution @ a3 linear system.

One should not confuse this regression strategy with the strategy used in 8ied@Aoising
algorithm [PRMFY, where this regression plane is subtracted from the patch before a second
Itering step is applied with new bilateral weights. A similar two-step method (estimation of
a plan, then ltering after subtraction of this plan) is used in the trilateral lter. This lIter is
described in Section?7.

We callk = k(x;y) the weights of the bilateral Iter at poin0; 0) for the imageu = u(x;y).

The bilateral Iter with regression does nds

X
argmin  Kk(ax + by+ ¢ u)2: (4.29
a,p;c
Xy

DiVerentiating this energy with respectdpb; cand equating the result to zero gives the following
system of equations,

2 32 3 2P 3
x2 Xy X a P xku

4 y2 y24DpS5=4 p Yku S (4.30
X y C ku

P P
where x = Xy xXK(X;y), xy = Xy xyk(x;y), etc.and in all equationsl, k stand foru(x; y),
k(X;y).

Algorithm 1Q Bilateral Iter with regression (BFR). (Exact)
input : imageu
input : spatial standard-deviationg
input : range standard-deviationy
output: BFR ugthe ltered image
1 foreachpixelx = ( x;y) do
2 Compute bilateral lter weight& = G ((x y)G , (u(x) u(y))
Computep(z, y2pXys X» Y gnd in X
Compute xku, vykuand kuinx
Find coeY cients(a; b; @ atx by solving the linear system of equations4r3()
Give to the output the value af BFR ug(x) = ¢

o o b ow

A pseudo-code of the standa@ir >N ) implementation of the bilateral Ilter with regression
is given in algorithmlLQ
4.6 Fastbilateral Iter with regression
The bilateral with regression can be accelerated easily using the piecewise-linear approximation
or the bilateral grid. AlgorithmLIpresent the pseudo-code of the regression bilateral Iter imple-

mented approximated with the piecewise-linear strategy.
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Algorithm 11 Fast bilateral Iter with regressioBF R )
input : imageu
input : spatial standard-deviations
input : range standard-deviatiory
input : number of layerdN
output: BFR ¥ ug
1 foreachlayer with itensitg do
2 Compute a layer of the image sitlaye(u; s) = uG . (u s)
3 Computep<z, y2ipxys Xs y algd : convolve the layer with diVerent kernels
4 Compute xwu, ywuand wu (3more convolutions of the layer)
5 And update the nine images computed at the previous layer using linear
interpolation.

6 foreachpixelx do
Find coeY cients(a; b; @ atx by solving the linear system of equations4ri3()

8 | Give tothe output the value af BFR®fug(x) = ¢

4.7 Multi-scale bilateral Iter with regression

For the time of this short section, we move ahead to the multi-scale lters, presented in details
starting at Chapter. In particular, we refer to the Secticghlfor a precise prensentation of the
Laplacian pyramid used in the following.

The multi-scale bilateral Iter with regression is a straightforward multi-scale implementation
of BFR using the Laplacian Pyramid. It is described in AlgoriitinThe exact bilateral lter with
regression is used at each scale (no need to use the fast one, because the spatial standard deviation
is only1 pixels). This lter is described in AlgorithrmQ

Algorithm 12 Multi-scale guided Iter with regression (MBR)
input : imageu
input : parameterss,  andr
input : parametet nax
output: ltered imagev

1 Lpyfug LaplacianPyramid (u) /I compute Laplacian pyramid until scale max
2 Ve BFRf Lpyrf u; Imax9g I initialization: filter residual

3 for scalé fromlnax 1t00do /I from coarsest to finest scale

4 vi  Upsampléy 1)+ Lpyrffu;lg /I upsample and add Laplacian coefficients

5 L \ BFRv,g /I filter the new image using s, randr

We display in Figuré.10the Itering result of this algorithm and compare it to the original
bilateral Iter with regression. The parameters we used are the same except for the spatial standard
deviation g: for the single-scale version we used= 32 and for the multi-scale s = 1 and
Imax = 5. But since the input image is downsampled in the (dyadic) pyramid the spatial support
is 2% = 32 in BFR too. The single-scale version presents staircasing (see #igi(e) at the
edges of the obelisk and top of the trees), becayse 32 is a large spatial support. In this
case indeed, estimating a regression plane rather than a constant does not help much because the
bilateral weights constraint the plane to have very low rst orderYcdents (the weights used
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in BFR are the same as in BF). However, the multi-scale version uses very small wingsns (
typically betweer and 3) so the plane estimation is/ective and the Iter therefore successfully
removes the staircas¥ext. This is clearly visible in FigufeL0(c). In return the luminance halo
slightly increases, but stays contained (see results with the test-pattern in S&dtidablel 35).

But the manipulation of the coécients in the Laplacian Pyramid is not without dangers.
Indeed, the pyramid is constructed so that the exact image can be recovered by collapsing the
pyramid, that is, the Laplacian cdeients at each scale perfectly match the upsampled image
from the previous scale until the nest one. The procedures for Gaussian and Laplacian pyramid
construction are described in ChaptérYet in our algorithm the dverent levels of the pyramid
are smoothed independently. Thus when we upsample the smoothed image and add the Laplacian
coeY cients of the subsequent level, they may not properly compensate their respective oscillations.
This é/ect has been described in the excellent paper by Faai@b[FPM17. In our lter, it
creates what we called the “dark halo” artifact. This is in fact an inverted luminance halo, dark
around dark objects (in the detail layer) and bright around bright objects. We display a case where
it is particularly visible in Figuré.11 It arises at thin object, for example the streetlight and the
top to the signboard. We show a zoom in those two parts in (f). The enhanced result presented
in (e) shows that it creates a strongly visible incoherence.

Conclusion The multi-scale bilateral Iter with regression has two advantages, namely, the cor-
rection of the staircas&/ect and the speed, but one unacceptable drawback: the dark halo artifact.
In [FPM17 the authors eliminate those spurious oscillatory patterns by removing, at each scale,
the high frequencies, which are eventually Itered at a ner scale — because they progressively
become the medium and low frequencies as the image gets recursively upsampled. In our case
however we cannot apply this strategy, because this would mean incregsitlyerwise this |-
ter's work would be discarded by the additional low-pass Iter. Therefore the computational time
and the staircasé/ect would both increase.

In Chapterl2we consider the replacement of the bilateral Iter with regression by the guided
Iter. As we shall see, this Iter is more appropriate for this multi-scale scheme.
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(a) input (b) MBR: base layer (c) MBR: detail layed)

(d) BFR: base layer (e) BFR: detail layet)

Figure 4.10: Results obtained with the multi-scale bilateral Iter with regression (MBR). Parameteyss 1, , =
0:05,r =2,Imax = 5. Concerning the exact bilateral Iter with regression, all the parameters are equal except for
s = 2% =32, which s equivalent to the spatial support of MBR. Itis clear from the comparison of the detail layers
that MBR can both lter with a large spatial support and remove the staircase effect. The multi-scale lter is also
faster to compute because the kernel used at each scale is drastically smaller (&nly5 pixels in this example).

(a) input (luminance channel) (b) MBR: base layer (c) MBR: detail layd (

(d) input (color) (e) enhanced result (f) zoomin (c)

Figure 4.11: “Dark-halo” artifact in the multi-scale bilateral lter with regression. This distortion is due to the
suppression of the (necess:fyry) ringing in the Laplacian pyramid. The enhancement algorithm we use is simply
enhancg¢u) = 0:125+0:750 MBRug+3(u MBRug). The inputimage dynamic range is if0; 1].
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5 Staircase effect corrections

In the previous chapter on the bilateral Iter, we have seen that BF not only preserves the
edges, but also is prone to sharpening them. TMsce has been described and mathe-
matically justi ed by Buadest al. in 2006[BCMO06], who call it the staircaseMect. In-

deed, bilateral-based lters tend to create piece-wise constant signals separated by numeri-
cally created edges, thus adopting aspect of a staircase. From the contrast enhancement and
tone-mapping point of view the sam&ect is sometimes called tigeadient reversal artifact
because the complementary detail layer, at places where edges have been reinforced in the
base layer, contains reverted gradients. The problem is that when using the bilateral lter for
contrast enhancement and tone-mapping, the detail layer gets stretched and the base layer
compressed. The recombination of their results causes the gradient reversal artifact.

Since this artifact is particularly annoying in contrast manipulation methods, many authors
have tried to correct it. The solutions can be divided in two categories. The rst category

of correction does not modify the lter, but corrects the artifact in a post-processing step.
The second one directly modi es the Iter to make it handle smoothly the slopes. We review

in this chapter both categories of corrections. Nevertheless we shall skip two of the correc-
tions, namely the bilateral Iter with regression [B¥4] and the unnormalized bilateral

lter [APH * 14. Both have already been presented in Chapter

51 Introduction

Several authors have presented a post- Itering correction step to remove the staircase artifact. F.
Durand and J. Dorsey [D0Z] proposed a blend between a low-pass version of the input image
and its bilaterally Itered one weighted by the normalization term. They justify this choice by
explaining that the bilateral ler is not robust at edges because it misses information. The au-
thors of the separable kernel bilateral Iter [P\?Y also proposed to prevent the staircaMeet
by enforcing a minimal isotropic smoothing/ect everywhere. We shall review this correction
method in sectiorb.2. In 2006 Baeet al.[BPD06] use Poisson reconstruction on the Itered im-
age; this solution is presented in Sectiof One another important proposition was made by
Kass and Solomon, the authors of the smoothed local histogram lters (JK@&here they itera-
tively smooth the bilaterally Itered image according to the distance to the input image. Roughly,
its idea is that if after a Gaussian Iter has been applied to the bilateral output, the image get closer
to the input image than to the bilaterally Itered one, then one should keep the Gaussian Itered
one. The decision is local, and the process is done in an iterative manner with increasing standard
deviations. We shall review this process in seciian

Other approaches modify the bilateral Iter so that it handles piece-wise linear signals rather
than piecewise constant ones, as implicitly assumed in the standard de nition2(0rilat-
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eral Iter [CTO03 also aims at “smoothing signals towards a sharply-bounded, piecewise-linear

approximation” It is a two-step lter, where the local slopes are estimated rst, then used to “tilt”

the bilateral kernel. This algorithm is analyzed in sectioh The2002paper by M. Elad [El2Z]

also proposed to handle the piecewise-line case by symmetrizing the bilateral kernel. We review

this method in sectiorn.6. The2006paper “The staircasingvect in the neighborhood Iters and

its solution” [BCMO6] proves that the staircas&/ect can be removed by computing at each pixel

the regression plane that best ts the signal using the bilateral weights, rather that a simple scalar.
We developped a methodology for measuring the staircasing amplitude. This is presented in

Chapter9 on the local Laplacian lIter, in Sectioh4.3.

This chapter is again inspired by Paeisal. for its in depth presentation of the bilateral Iter
[PKTDOY. The diVerences with our review are highlighted in Chapten the bilateral Iter.

52 A minimal isotropic smoothing eVect in the separable bilateral |-
ter

In the 2005fast approximation of the bilateral lter by separable kernel [FOd/(reviewed in
sectiont.?), the authors describe a trick to avoid the bilateral stairc¥sete The idea is to compel

a minimal isotropic smoothing ¥ect everywhere in the image, independently from the image
content. This is realized by constraining the bilateral kernel.

In the separable kernel method, the Itering is realized through a horizditalter followed
by averticalD lIter. In both 1D kernels, independently from the spatial parametgrthe authors
consider a centered sub-window with one pixel radius. Thus, they consider the three pixels at the
center of the kernel. Their values are constrained in order to ensure a minimal smoowéng e
the two side pixels values are set to be greater than or egtilsles that of the center pixel. They
chose =0:25in their implementation, so that the minimum smoothing kernel (in the centered
sub-window with3pixels width) is[1; 4; 1]

This way, the authors force a minimal smoothingeet everywhere, even at very sharp edges.
This trick, however, cannot help for more low-frequency edge sharpening. We do not integrate this
kernel modi cation in Algorithm 16(in section6.2) in order to keep it simple. The modi cation
would be simply to add after lind (before the normalization):

wg(x;x d)  maxf w g(x;X); wg(x;x d)g
wa(x;x+ d)  maxf w g(x;x); wa(x; X+ d)g;

with d = (1; 0) when processing in the horizontal direction, add-= (0 ; 1) when processing the
vertical one.

53 Blending at edges in the piece-wise linear bilateral Iter

In [DD 07, bilateral lter is interpreted as a robust estimator. The authors state that at edges, the
estimator, namely the bilateral Iter, has not enough information available for a precise estimation

of the base layer: the statistical estimator computed at these pixels has access to little data, leading
to a high uncertainty. Hence, their correction is to blend the ltered signal with the original image
where the number of neighbors used for the average computation is small. This number is di-
rectly given by the normalization factor. More precisely, the authors' idea is to linearly interpolate
between the Itered image FBEg and FBF ug, according to the logarithm of the normalization
factorlogC, whereFBFug = G _,, FBRugis a smoothed version of the Itered image. We

call the interpolated image FB&g®"". One has FBRIg®®" ! FBF ug whenC is high (which
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(a) inputu (b)3(u FBRug) ©P u+3(u FBFug)

(d) coef cient (e)3(u  FBE°"fug) (f)pﬁ+3(u FBE"f ug)

Figure 5.1: Parameters are; = 20, , = 0:02(image dynamic in [0;1]) and corr = 2. The dynamic in gure (d) is
[0;1] also. The colormap goes from dark blue (zero) to dark red (one) through green and yellow.

means a large number of neighbors, in the bilateral de nition) andfRRf*""! G _,, FBFRug
whenC is small (for edges, corners, isolated pixels). The authors take= 2 in practice. They
use the logarithm o€ “because it better extracts uncertain pixels”.
We recall the de nition of the normalization factor (given in equatiér):
X X
Cx)=  kixy)= G.(x G, uXx uy): (59
y y

Let be the linear interpolation coécient between FBFig and FBF ug. This co# cient varies
with logC. The function = f log(C) missing in the paper, we de ne

log C(x)

; 52
log Crmax (3

(x) =

P
whereCnax is the maximal possible value fGr, i.e Crax = y G (X y). The corrected image
is then
FBRuUg™'(x)= (X)FBFug+ 1 (x) FBRug(x) (53

This correction resembles the unnormalized bilateral Iter, extensively described in Sédtion
in that it blends the lter's result and its second smoothed version according to the normalization
term. In UBF, the second image is the input image itself and the blend term the normalization
term itself. Note that UBF reduces indeed the staircase artifact yet does not completely avoid it.

We show in Figurés.1and Figure5.2 that this correction is not well adapted to correct the
staircase\ect. Although it indeed alleviates the staircagect at thin and sharp edges, it fails to
remove itin the other cases. A smoothing with,; = 2 seems to be often too small to compensate
for the over-sharpening created by the bilateral Iter, and, more importantly, the normalization
factor seems not to be a good detector for the stairc#setebecause it principally detects the
center of the edges, whereas the staircase correction should concentrate on the borders of the
edges.
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(a) inputu (b)3(u  FBFug) ©Pu+3(u FBRuUg)

(d) coef cient (e)3(u  FBE°'fug) ) P u+3(u FBE"fug)

Figure 5.2: Parameters are; = 20, , = 0:04(image dynamic in [0;1]) and corr = 2. The dynamic in gure (d) is
[0;1] also. The colormap goes from dark blue (zero) to dark red (one) through green and yellow.

54 Gradient reversal removal with the Poisson equation

The algorithm for tone management published by Baal. in 2006[BPDOE] uses the bilateral

Iter to decompose the image in two layers (base and detail), which histogram are modi ed so as

to match the style of a target image. Because of the bilateral lter, and because their technique
can strongly increase the detail, their result presents gradient reversals. The authors address this
problem by constraining the gradients of the detail layer to be of the same sign and inferior than
or equal to the gradients of the inputimage. lebe the input image and the detail: they build

the gradient eldv = (Xy;yy) :

8
>0 if sign@d=@% sign@u=@x

Xy = @u=@xif j@d=@% j@u=@x (54)
" @d=@xotherwise

and similarly for the componeny, . The corrected detail layer is obtained by solving the cor-
responding Poisson equation. We reproduce in Figugahe illustration given by the authors,
showing the correction of the gradient reversal artifacts in the output images.

55 Selective dVusion

In their excellent paper [KE], M. Kass and J. Solomon generalized the fast strategies brought
by the literature for the bilateral Iter using local histograms [BgrPoi08, \Wei06, PHO7 and
proposed a wide variety oiecient lters that can be expressed in terms of local histogram opera-
tions (median lIter, erosion, dilatation, bilateral Iter, mean-shift and a novel closest-mode lter,
dominant-mode lter, histogram equalizatioatc) with arbitrary spatial kernel, and in particular

they show how all of these Iter can be computed in constant titd€N ), whereN is the num-

ber of pixels) using a Gaussian spatial kernel. Moreover, they present a particularly clever way of
removing the over-sharpening (that we call here the staircase artifact for the bilateral Iter) arising
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Figure 5.3: Figure reproduced from [BPDO6]. From left to right: input image, image enhanced without correction,
image enhanced with the Poisson correction.

in most of those Iters. We quote below the authors (we updated the notation for the sake of this
dissertation's consistency):

Local image histograms alone say nothing at all about the spatial layout of their data
samples [Koenderink and Doort999 They contain no indication of a gradual spa-

tial shift from one mode to another. Thus, in order to track a blurred edge accurately,
more information must be extracted from the original images. We propose extract-
ing this information by supplementing edge-preserving histogram-based lters with
a diVusion step. Our basic observation is that wherever blurring our edge-preserving
Iter causes it to get closer to the original, the blurred version is preferable as a base
layer.

LetFfug be the output of an edge-preserving smoothing lter. Our goal is to con-
struct a modi ed output imagd=f ug which is dMused fromF f ug anywhere that dif-
fusion causes it to agree more closely with the original input imad&e will do this
iteratively, considering a variety of\@irent Galbssian blurring kernéBs, in turn. In

our experience, sampling the blurs by ratios d works well. LeFfugg = Ffug

be the original output of the Iter. Then we will construéf ug; from Ffug; 1 by
selectively blending betweEri ug; 1 and a blurred versioty = Ffug; 1 G ,. An
important observation is that we only want to update a pixel with a blurred version if
an entire region around that pixel of sizeis improved by the blurring. Accordingly
we construct error metrics to measure the locdldeviation of the unblurred and
blurred versions from the original image:

erry = Ffug u? G | (59

err,b= b u? G | (56)

where controls the region size. We have found= :2 works well. Letr =
errp=err, be the ratio of the error of the blurred version to the unblurred version.
Wherer is larger then one, we prefer the unblurred version. Wheiesmaller, we
blend towards the blurred one. The exact blending is probably unimportant. The
particular formula we use is

3 b r<:5
Ffugi =  2(r S5)(Ffug 1 h)+ b r2[51) (87
" Ffug 1 r 1
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(a) intputimage (b) without selective diffusion (c) with selective diffusion

Figure 5.4: Effect of the selective diffusion. Images are enhanced with DxO's contrast enhancement tool using the
standard bilateral Iter (b) or the bilateral Iter with the selective diffusion (c). Most of the gradient reversal artifact
has been removed thanks to the selective diffusion.

Figures.4 displays the result of the selectiv¥/dsion applied to the bilateral lter, in the con-
text of contrast enhancement. It succeeds in removing a large part of the gradient reversal artifact
(a consequence of the staircase®) visible as a dark and white bands along the top of the trees.
Although this method works globally well, it seems unable to remove the staircases everywhere,
especially in the corners (see Figar&c)). Furthermore, it is not computationally¥ecient. In-
deed, numerous iterations are needed to correct the stairé4s#, eand this computation time
adds to the computation time of the lter itself. Algorithm3describes the pseudo-code of this
method.

56 Symmetric bilateral Iter

In 2002 M. Elad [EI®Z] proposed an improvement of the bilateral Iter in order to treat piecewise-
linear signals. As described by Pagisalin their excellent book [PKTDY], the modi cation
consists in comparing the intensity of the Itered pixel with the average of another pixel and its
symmetric point

X
G.(x G (v(y) u)v(y); (58)
y

1
BFY™ ug(x) = CoIm)

wherev(y) = u(y)+ u(2x y) =2isthe average between the two symmetric pixels (with respect
to X).

In a very similar way to Elad's symmetric bilateral Iter, we shall introduce here a method to
prevent the bilateral Iter from creating staircases. The modi cation is rather simple, but unfor-
tunately not well adapted to fast implementations.

The symmetric bilateral Iter (SBF) computes the actual bilateral Iter kernel at each pixel,
then takes the minimal kernel value for each pair of symmetric pixels of the kernel. In other terms,
the bilateral lter kernel is made symmetric by taking only the minimal values, which ensures that
the edge-preserving property is kept. Indeed, this process can only reduce the weights associated
to neighborings pixel, which means that their in uence can only be reduced in the averaging (or
kept as itis, if the symmetric weight is identical). But pixels with large intensifgrdince do not
see their weight increased (before normalization), thus SBF still preserves the edges.

Onthe other hand, as the bilateral Iter's kernel cannot be asymmetric after this modi cation,
the staircaseMect is removed. Indeed, it is precisely the asymmetry of the bilateral kernel that
produces staircasé/ects at strong edges (see Figuté€sand 4.3 in Section6 on the staircase
eVect).
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Algorithm 13 Selective diusion [KSL(

input : Itered imageFfug
input : input u p_
input : Ratio for sampling the blur (recommended = = 2)

input : Size of the region for the error metric(recommended= = :2)

output: corrected image without over-sharpenifg ug
1 min /I initialization
2 Ffuggy u /I initilalization
3i 1
4 while max do
5 b Ffug 1 G /I smooth previously corrected image
6 erry,  (Ffug 1 u)? G /I equation 5.5
7 err, (b u? G /I equation 5.6
8 r erry=errp /I ratio of errors
9 foreachpixelx 2 u do

/I blending using equation 5.7

10 if r(x) <:5then
11 | Ffugi(®)  h(x)
12 elseifr(x) 2 [:1;1) then
13 | Ffugi(x) 2r(x) 5 Ffug 1(x) B(X +hb(X
14 else
15 | Ffug Ffug
16 i i+l
17

18 Ffug Ffug 1
19 return Ffug
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The only dVerence with Elad's symmetric bilateral Iter [Ei] is that we take the minimal
value taken by the range kernel on the two symmetric values, rather than computing both values
according to the distance between their mean value and the central pixel.

We recall the form of the bilateral kernel (before normalization):

k(xy)= G (x )G, u(x) u(y) : (59
Starting fromk, the symmetric bilateral kern&FYMis de ned as
KYMx;y) =min - k(x;y);k(x;x  (y X)) : (510

As usual, the kernel is normalized by setting

by

X
w¥MN(x;y) = kSYM(x; 2) kSYM(x; y): (51}
z
We show in Figuré.5 some examples of kernels of the origimarsusymmetric bilateral lters.
In Figure5.6 we present the results of Itering for two images and experimentally verify that the
staircase\éect is removed.

However, since the number of pixels averaged at each position of the output image is generally
smaller (it cannot be greater, and often symmetrizing the kernel leads to the “exclusion” — weights
put to zero — of many pixels), the lter's capacity to remove noise is diminished. More speci cally,
near a strong edge one can expectthatthe Itering of the noise or texture will be inexistent. Indeed,
near the edge, for each strong ¥ament there will be a very small céeient on the other side of
the edge. Thus the smoothiny/ect is altered and one should observe a texture halo artifact.

In Figure5.7, we display the ltering result of SBFersudBF. One can verify that the denoising
capacity of the symmetric bilateral Iter is seriously diminished at borders. In particular at the
corners of the light gray square, the number of neighbors used in the averaging is reduced to zero.
Hence, these pixels are simply not denoised. The structure halo is, however, less visible than the
one observed with the guided Iter (discussed in Chap)etndeed, unlike the guided Iter which
completely stop Itering when contrasted regions enter its neighborhood, the symmetric bilateral
Iter continue averaging in the direction parallel to the edge. In other terms, the guided Iter stops
Itering at edges and the symmetric bilateral Iter simply reduce its robustness to noise (because
the mean is estimated with fewer pixels), to such an extent that some pixels are not denoised at all.
Furthermore, one can expect this situation to be rather common in more complex images, where
the content is rarely symmetrical. For this reason and the unsuitability to fast implementation, we
do not consider this method as a valid option for base+detail decomposition.

57 Trilateral lter

The trilateral Iter consists in two bilateral Iters: the rst one is a standard bilateral Iter on the
gradients of the input image u, the second one is a slightly modi ed bilateral Iter where the
range weights are computed using the intensityedénce between the current pixel and a plane
P rather than the central pixel of the current window. LetfBRug(x) be the output of the rst
step,i.ethe ltering of the gradient of the input image:

BHr ug(x) =

cm , G.x yG, ruly r ux ruy; (512

whereC is the normalization factor computed using the gradients as well,

X
Cx= G, (x NG, rufy r ul: (513

128



(a) inputimage (b) symmetric bf kernel (c) original bf kernel

Figure 5.5: Comparison of the symmetric bilateral Iter kernel (b) with the original one (c) (both normalized), for
the position indicated by a red square in the input image (a). The symmetric bilateral kernel still adapts well to
the image content. Thanks to its symmetry, the staircase effect is avoided. On the other hand, the number of
pixels used in the averaging process is systematically less than or equal to the number of pixels used in the original
bilateral lter, thus reducing its denoising property.

The Itered gradient eld is then used to de ne a plafeat each pixel:
P(x;y) = u(x) + yBHr ug(x): (519

This plane is used in the second step. Itis removed from the data in the modi ed bilateral lter that
we denote by TF (for trilateral Iter, although it is rather de ned by the association of two Iters).
By removing the planE that locally approximates the signal, the authors “tilt” the bilateral kernel,
as shown in Figuré.g(c). The second bilateral Iter would normally be de ned as

X
THug(x) = u(x) + C(lx) G.(x Y&, uy Py uly) Py (513
y

with C updated accordingly as

X
Cx)=  G.(x G, uly) PKYy): (519
y

But the authors add in this modi ed bilateral kernel a third term, the function This function

aims at avoiding the averaging of pixels with dissimilar gradients. Quoting them: “Tilting greatly
improves smoothing abilities of the trilateral lter in high gradient regions, but also ensures that
the Iter window can extend beyond local boundaries into regions of dissimilar gradients. Un-
less we exclude these regions from the Iter window, the trilateral Iter will blunt or blur sharp
ridges and corner-like features where the bilaterally smoothed gradidntgBihanges abruptly
(e.garrow 1in Figure59(b))” [CT 03. The functionf then excludes pixels which gradient is too
diVerent from the current pixel's gradient. It is de ned as follows:

1 ifkBHr ug(y) BHug(x)k<R
0 otherwise.

f(xy)= (513

Yet this de nition does not ensure that the neighborhood is a connected region, as they require.
Rather than computing this function (which is also time consuming), the authors use a “stack of
min-max gradient images”, a pyramid-based structure (where each level keeps the original image
size) where in each level is stored, for each pixel, the values min and max in neighborhood with
increasing size. We refer to the author's paper(qfor a more detailed descriptionTo nd the
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(a) inputimages (b) symmetric BF (c) original BF

Figure 5.6: Comparison of the symmetric bilateral Iter with the original one (with an exact implementation), for
two images. Column (a) displays the input images, column (b) the results (base and detail layers) obtained with
the symmetric bilateral Iter and column (c) displays the results (base and detail layers) of the original bilateral

Iter. The detail layers are multiplied by a factor 6 for visualization purposes. The parameters used for ltering are:

r = 0:1(dynamicrangein[0;1]), s =12 (images size i830 330fortop one and250 250for the bottom one).
Comparing the detail layers of the top image (2nd row), it appears that the symmetric bilateral Iter removes the
staircase effect. This effect can be observed in the original bilateral Iter detail layer as alternating dark and bright
lines along the vertical black column. The bottom image con rms that the Itering in a more general case is not
altered by the symmetrization. The edge-preserving property is preserved.
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(a) inputu (b) BF ug (d) SBFug (c) SBFug BFug

Figure 5.7: A simple experiment with a noisy square makes SBF's halo artifacts visible: the borders, and more
particularly the corners of the light gray square are less denoised with SBF than BF. This is due to the lack of
neighbors; for the corners's pixels, the number of neigbors in the averaging is reduced to zero. Parameter used:

r = 0:15 (image dynamic in [0;1] and noise std 0:05); s = 8 (image size i64 64). Difference in (c) is
enhanced with a factor 6 for visualization purposes.

Figure 5.8: (reproduced from [CTO5]) Filter extent for one scan-line of an image.

Figure 5.9: (reproduced from [CTO05]) Dif cultimage features: (1) Ridge-like and valley-like edges, (2) high-gradient
regions, (3) similar intensities in disjoint regions.
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largest (connected) region whdre= 1, one simply needs to nd, for each pixel, the highest level
of the pyramid in which the min and max values are withinfBFug(x) R. The nal trilateral
Iter is thus de ned as

TFug(x) = u(x) + C( 9 G.(x G, uy f xyu(xy); (519
whereu (x;y) = u(y) P(X;y). The normalization factor is updated accordingly as
X
C(x) = G,(x VG uxy f (xy): (519
y

Due to this modi cation, the trilateral Ilter averages only connected pixels. The output of this
Iter, rather than piecewise constant, is piecewise linear. The shocks are movedultheler
derivative.

Although this algorithm has seven internal parameters, only ong (s left to the user; the
authors proposed strategies to automatically set the others. Algofitiand Algorithm15care-
fully detail each algorithmic step of the mettiod

f

1We found an error in the paper: according to their description of the min-max stack construédeach pixel
(m; n) in any nonzero leveK holds min and max values for ti2 3 surrounding pixels found in levédK 1) at
(m+[0; 2% I:n+[0; 2K 1])" the size of the equivalent window at leweis (2 ** 1) (2*' 1)and
not (2% + 1) (2% + 1) as given is the paper [TH. Indeed, tBeradlusr of the min or max Iter at a leveK is
r(K)=2% 1 andthen the equivalent radius at le@ds <K ) = ﬁ 4 r(n)=2 K 1 (geometric series with ratio
2). Hence, the width of the square equivalent neighborhodhis 1 =2 K*1 1,

2 The authors' implementation (“example code” given attp://www.cs.northwestern.edu/~jet/
publications.html ) is inconsistent with the paper description of the minStack algorithm. Indeed, the neigh-
borhood they consider in the min and max lters at pixgh;n) is(m +[0; 1];n +[0; 1]) instead of(m +
[0; 2¢ ;n+[0; 2¢ 1]) asexplained in the paper [TH. Its makes the equivalent neighborhood size at l6vel
fallto(2K +1) (2K +1). We take this implementation as a reference in the pseudo-code we give here.

The implementation ders for the computation of , too: the averaging in a circular neighborhood mentioned in the
paper is absent from the implementation.
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Algorithm 14 Trilateral Iter [CT 03

input : inputu
input : spatial parameterg
output: trilateral Itered image TFug
/I Compute the image gradients r u using forward differences
1 foreachpixelx do
2 ryu(x)=ux+1;y) u(xy)
3 L ryux) = u(x;y +1) u(x;y)
/I Compute parameter ¢
4 k( s) unitdisk with radius s

5 0:15 Il Set between .1 and .2

sru k(¢)ru /I average gradient

7 v = kmaxru minruk /I "range" std. for gradients

8 R r /I Parameter for function f
/I Apply bilateral filter to ru

9 foreachpixelx
10 num (x) pr X YG, ruly) r ou(x) ru(y
11 | denom(x) yG X Y6, ruly) r u(x

12 BHr ug(x) num(x)=denom(x) /I equation (513

13 ComputeminStack fkr ukg /I Algorihtm 15

14 ComputemaxStackfkr ukg /I Algorihtm 15
/I Apply trilateral filter to u

15 foreachpixelx do

16 | K largesK that sati es both conditions:

minStack fkr ukg(x;K) BHr ug(x) R and

maxStackfkr ukg(x;K) BHr ug(x)+ R

17 | f (xX) unitsquare centered ir of width 2K +1

18 | u(xy) Wy u(x) yBHr ug(x) /I "un-slanted" image
19 num (x) psz X YGuxy) f (xyu (xy)

20 denom(x) yG X VG uxy f(xy)

21 | THug(xX) u(x)+ num=denom Il equation (519

22 return TH ug

Algorithm 15 minStack and maxStack algorithms

input : input u
input : number of level$N
input : Iter (min or max)
output: stack of Itered image with heightl
1 stackfu;0g u /I initialization
2 foreachlevek 2 1;2;:::;Ngdo
3 foreachpixelx do
4 stackfu; kg(x)  stackfu;k 1g(x)
5 foreachpixelyina3 3 windowdo
6 L stackf u; kg(x) Iter f stackf u; kg(x); u(y)g

7 return stack{u}
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6 Fast bilateral lters

As we saw in the previous chapters, the bilateral Iter has rapidly become ubiquitous in image
processing and is now used in a tremendous number of applications. The original lter,
invented by Yaroslavsky 98b[Yarl] and Lee (98B[Lee3d, studied by Smith and Brady
(1995[SB97, and reproposed by Tomasi and Manduchi9®8 [TM 9§ needs to compute

a diVerent kernel at each pixel which makes it slow, nay nardable for large images and
(consequently) large spatial support. Hence the need for a fast implementation of the Iter.

In this chapter, we review the numerous fast bilateral Iter of the literature. The history of
the fast bilateral Iter starts with the fast Durand and Dorsey approximat2®0g [DD 07,

who presented the original idea, that would be extensively explored later, of sampling the
intensity range so as to linearize the convolution. The Gaussian convolution can then be
computed using one of the numerous fast schemes available. As we shall sea@nmefestt
implementation of the bilateral Iter has been proposed yet. Thus the competition between
the numerous proposed schemes not only lies in the speed but also on the precision and the
unavoidable artifacts. Furthermore, for several schemes the speed depends on the parameters
used and on the dimension in which the Iter operates. Thus we eventually present a palette
of eVective lters rather than a de nitive winner.

6.1 Introduction

The rst fast bilateral Iter was proposed by F. Durand and J. Dorse2002[DD 0Z. They in-
troduced the fundamental idea of linearizing the convolution by applying the formula only on a
reduced set of intensity samples. This method is called the piece-wise linear approximation, or
layered approximation [PKTD9. This is a layered approximation where each intensity sample
de nes a layer on which a linear convolution can be applied. One can then use the fast Fourier
transform or appropriate sub-sampling to speed-up the linear Gaussian ltering step. The ltered
layers are combined to produce the approximated bilateral Iter. This work is fundamental and
paved the way to later accelerations. T.Q. Pham and L.J. Van Vliet(§proposed in2005a
diVerent way to accelerate the Iter by presenting a separable bilateral Iter. The following year
B. Weiss [Wedi6] introduced an acceleration of both median and bilateral Iters using distribu-
tive histograms. S. Pams al.proposed improvements of the layered approximation in two others
publications, with the article of S. Paris and F. Duran@@96[PD06] (extended in &2009ournal

paper [PD9]) and the bilateral grid of J. Chen, S. Paris and F. Duran2d87[CPDO07. Concur-

rently, G. Guarnieri [GMR6] improved the2002Durand method both in quality and execution
time, by inverting the order of the division and the linear convolution (as in {#]) and sug-
gested to use recursive ltering for the Gaussian ltering implementation2008came out the

rst O(N) bilateral lter by F. Porikli [Po0§], using integral histograms, thus improving upon
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Weiss'2006 lter. It is followed one year later by anothé(N ) Iter by Q. Yang, K.H. Tan and
N. Ahuja [YTAO9 that extends Durand and Dorsey902paper.

Another kind of fast approximation uses the Gauss-polynomial decomposition. This started in
201by the publication of anothe® (N ) bilateral Iter by Chaudhury, Sage and Unser [CHUIt
gave rise to other papers using the same idea]§H{ehal}, [Chal], [SK1§[GC 1], [GC1a].

Using the “range-space” domain introduced by Durand and Paris JFJP[PDO0€], some
extended it to higher dimensions, allowing fast color-weighted bilateral ltering.2089 A.
Adams, N. Gelfand, J. Dolson and M. Levoy [AGI9] published the Gaussian kd-tree. 2010
the same authors published a similar approach for fast bilateral Itering in high-dimensional
spaces [ABI], still using slicing.

One main interest of those high-dimensional lters is to accelerate the non-local means algo-
rithm. Indeed, this denoising lter is a bilateral Iter where the weights are computed according
to the distance between patches rather than between pixels intensity values. The performance of
these methods is not competitive for gray-scale bilateral Iters because they spend much extra
time preparing the data structures. These Iters are specially useful for denoising, where it makes
sense to use color information. In the base + detail decomposition, we generally do not work with
color, as it contains little useful additional information compared to the luminance. So we shall
consider that those high dimensional Iters are out of our current scope.

Given the limitations of the bilateral Iter, many new designs of fast edge-preserving lters
have been investigated. TBEN ) time Edge-Avoiding Wavelets (EAW) [[B£] are wavelet trans-
forms with explicitimage-adaptive weights. But the kernels of the wavelets are sparsely distributed
in the image plane, with constrained kernel sizes (to powers of two), which may limit the appli-
cations. In2011Gastal and Oliveira [GC] proposed anotheO(N) time Iter known as the
Domain Transform lter. The key idea is to iteratively and separably afiplgdge-aware lters.

The O(N) time complexity is achieved by integral images or recursive ltering. This Iter is par-
ticularly useful for color images. Although this Iter is not an approximation of the bilateral lter,

it is worth considering, in this review, as its smoothinget is relatively similar and its execution
time very small. This lter, as well as the guided lIter, can be considered as an alternative to fast
bilateral Iters. We summarize in Tabl&lthe list of fast approximations and give their complexity.

This chapter has been inspired by the book by Retréd.on the bilateral Iter [PKTD09). The
diVerences with our review are highlighted in Chapten the bilateral Iter.

6.2 Separable kernel

In 2005 T. Q. Pham and L. J. Van Vliet [P\D proposed the separable bilateral Iter. This very
simple acceleration applies two consecutive one-dimensional bilateral lters to the input image,
one for each dimension. Although the bilateral Iter is not separable, the results aren't very far
from the true bilateral. But this fast Iter remains a poor approximation and acceleration. Its
main inconvenience is its inability to properly Iter the textures.

Algorithm 16works as follows: rst, a horizontal bilateral Iter is applied to the input image
(lines16). The output image FB¥is obtained by applying a second one-dimensional bilateral
Iter in the vertical direction to the previous result (linek6 again). The intermediary image
is denoted by in the pseudo-code (lin@). This separable version haOdN sd) complexity
instead ofO(N 9) for the true bilateral Iter (where s is the radius of the window and is the
dimensionality).

Used with a small radius or a small intensity parameterthis approximation is faster than
the layered approximation [D0Z]. Indeed, the complexity of this last approximation decreases
with these parameters: when is large, the number of required layers become smaller. As for the
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Section Name and authors Complexity

4.2
6.2
6.3
6.3
6.4

6.5

6.6

Brute force [SB7, [TM 99 ON ¢
Separable kernel [P\0§ ON d
Local histograms [\Wéi] O N log( s)
Integral histograms [P@{] O Nb
Layered approximations and the bilateral grid [DF), O N + %Er

[GMROS6], [PDO06], [PD0Y], [YTA0Y], [CPDO7]

Polynomial range kernels [C3l, [SK1j, [Chal}, O NM
[Chall, [Chal}, [GC16], [GC1&], [NPCLT

Domain transform (not really bilateral) [GO]. ON

Table 6.1: List of the fast bilateral Iters and their complexities (inspired from [PKTDO®)stands for the number
of pixels andR for the dynamic range. s is the spatial smoothing parameter and ; the range parameter. The
dimension isd (often d = 2) and bis the number of intensity samples considered in the histogram-based lters.
For the trigonometric range kernels approximationdyl is the number of coef cients required in the polynomial
range kernel.

Algorithm 18 Separable Bilateral Filter (FBB for a 2D image

input :
input :
input
input :

output:

imageu
range standard deviation

. spatial standard-deviations

window widthr (usually2 )
FBF®Pf ug

1 foreachdimensiord 2 f horizontal,verticgldo

2 foreachpixelx do
3 foreachpixely in thex-centered window of si2e + 1) and directiord do
/I Compute current pixel's weights
a wa(x;y) G (x YG , (u(x) ulx ),
1l Normalizlgtion factor
5 Ca(x) y WX y);
/I Compute outputFyaIue
6 V(¥ Ca(x) ' wa(xy)u(x )
7 u vV, /I The input takes the filtered output in direction d
8 return v
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(a) True bilateral Iter (b) Separable Bilateral Filter

(c) Zoomin (a) (d) Zoomiin (b)

Figure 6.1: Filtering with the bilateral Iter and the separable bilateral Iter (SBF) (algo. 16). The parameters are

r = :08(dynamicin[0; 1]), s =10 andr = 25. The SBF resultis not really clean: one can see in (d) some vertical
lines created by the second pass of SBF. On the other hand, the strong edges are still well preserved (see the dark
objectin (d) and (c)).

spatial parameters, when it is set to a large value, one can subsample the layers more aggressively
and then reduce the computational complexity. This algorithm is described in Se&tio®On

the other hand, the complexity of the separable kernel approximation increases slowly with the
dimensionality, unlike other implementations. This separable kernel idea is also used in the more
recent work by Gastait al.[GO1], where they describe aVective way to avoid the apparition of
vertical or horizontal lines by iterating the Iter while reducing its spatial parameteiVe refer

to Sections.6 for more details on this trick.

We present in Figuré.1the results of the application of the separable bilateral Iter and com-
pare it to the exact bilateral Iter. One can see some vertical lines appearing. This is the drawback
of this implementation. The very sharp transitions are nevertheless well preserved.

Figure 6.2: (Reproduced from [PVV05]) Scheme for the separable kernel bilateral Iter.
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Staircase ¥ect correction

As discussed in sectiai the bilateral sWers from an “over-sharpening” at strong edges. In-
terestingly, the authors brought their own solution: they compel a minimum smoothvege
everywhere by constraining the shape of the bilateral kernel. We shall describe it in 5€ction

6.3 Local histograms

In this section, we present two methods [\0€], [Por0g , to accelerate bilateral Iters using
constant spatial lters (box lters), and arbitrary range kernels. Their key observation is that
when using constant spatial weights, a bilateral Itering amounts to a weighted average of the local
histogram (namely the histogram of the current patch). ThMsEnt non redundant schemes to
compute local histograms yield fast bilateral Iters.

In the rst publication using that strategy [WWeE], B. Weiss was more concerned by the me-
dian Iter than by the bilateral Iter. Nonetheless, as the method — by using a hierarchy of partial
histograms — computesreciently local histograms, the bilateral Iter is presented as an extension
of his work. Two years later, F. Porikli [Faf] published three ¥ cient ways to compute bilateral
Iters. Among them, one relates to the bilateral Iter with a spatial box kernel. It uses integral
histograms, another fast way to compute local histograms.

In the special case of a spatial box lter, the bilateral Iter weights do not depend on the
distance to the center of the patch: they only depend on the intensity of the pixels in the patch.
Then a histogram of the current patch is¥aient to compute the bilaterally Itered value. Let us
assume that at each image pix¢he intensity histogranh is computed from arx-centered box
window with radiusr and width2r +1. The spatial box kerndds allows rewriting the standard
bilateral Iter's equation

c.his — 1 .
FBRCS!(x) = c , ks y G, u(x y) u(x) u(x y);
X
C¥)=  ksyG, ux vy ux ;
y2
using the local histogram:
FBFSS( = oo™ 0 ()G 1 Ui (6.
j

X
Cx= h@{)G, | ux ;
j
wherej belongs to the discrete intensity range of the input imagetan(q) is the local histogram
value at pixek and for intensityj .

The sum over the intensity doesn't depend on the window size any more, thus making the
equation6.1run in constant time per pixel. What determines the overall complexity of the algo-
rithm is the dynamic range and the way the local histogram is computed.

The two methods we are going to present are based on the storage of intermediate local his-
tograms. Let us start with B. Weiss's algorithm. This method succeeds in reducing the number
of needed operations to update a row of local histograms. It improves on the idea underlying
Huang's algorithm [Hu®&]. Huang's algorithm strategy is to compute the output column per
column, with a sliding window along the rows. The local histogram of the current column is up-
dated at each new row by adding and subtracting the few pixels that entered or left the current
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window. Weiss's observation is that this scheme still has a lot of redundant operations: for two
consecutive columns, the major part of the added and removed pixels to the local histogram are
the same. Thus, while keeping the sliding window idea, he proposes to compute all the columns at
the same time, using a wisely desigsetbf histograms. Indeed, updating a local histogram for
each column does not reduce the complexity; whereas updating the set of histograms (by adding
and removing a row of pixels) requires less updates, because of the structure of this set. This set
of histograms is composed of one large histogram that is a rough approximation of the local his-
tograms, and of several smaller histograms that re ne that histogram to the exact one. On the
other hand, Porikli's algorithm uses integral histograms: as the integral image enables the compu-
tation of the mean of any rectangle in an image with very few operations, the integral histograms
give a quick way to obtain the histogram of any rectangle in the image, and from this to derive a
fast bilateral lter.

Weiss's algorithm

Ben Weiss [Wé&l€] introduced in 2006a fast algorithm for median lItering, also useful for bilat-

eral Itering with a spatial box kernel. This fast median lter@N logr) instead ofO(Nr ) for

the fastest previous method (Huant®8IHua8]), wherer denotes the radius. The proposed

fast bilateral lter is an exact implementation of a bilateral Iter with spatial box kernel and any
range kernel. This implementation is only valid for gray scale images. It could be extended to
color images by using three-dimensional histograms. Note that this would considerably increase
the computational time, as the convolution of the histogram would b&lirfa local histogram is a

256 256 256volume for a8bits colorimage) instead dD. Its complexity iO(N logr). This

paper was published after the Durand-Dorsey [[@Papproximation in 2002but also after the
2006Paris-Durand [PD6] improvement of the above-named paper. B. Weiss explains that the
Paris-Durand-Dorsey approximation ¥ars from drawbacks that his methods have not: rst, the
layered approximation “is not translation-invariant: the exact output is dependent on the phase
of the subsampling grid” Second: “the discretization may lead to a further precision loss, par-
ticularly on high-dynamic-range images with narrow intensity-weighting functions”. It is indeed
remarkable that although the box-shaped spatial kernel isn't standard, B. Weiss's algorithm is a
fast yet exact implementation of a bilateral Iter.

Let us start with Huang's fast median Iter [H&, which has inspired the B. Weiss version.
The pseudo-code is given in algorithii Note that indices in this pseudo-code may be negative
or higher than the size of the input imade We deliberately choose to not handle the image
borders, in order to clarify the pseudo-code. This algorithm can actually be used to compute a
bilateral Iter (with constant spatial kernel) by replacing lid&with 3lines:

P
1 Compute numerator: num j h )G, wu(lc)]j

P
2. Compute denominator: denom j h )G, ] u(lc)
3 FBRCNsY(|:c)  num=denom,

wherg is anintensity andh (j ) the local histogram value of the square windowf size(2r +1) 2
for the intensityj .
Huang's algorithm proceeds column per column (liBg with a sliding window (linelQ
which direction changes (lin&) from one column to the next one, so as to minimize the number
of updates needed to get the correct histogtam With such a “snake-shaped” path, the number
of pixels to be added or subtracted at each window displacement (that is to say: for each output
pixel) is2 (2r + 1). Once the local histograrm is computed (linesl2and 13, it is easy to
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Algorithm 17 Huang's Fast Median Iter [Hu&] (198} (FMF)
input : imageu
input : window radiutsr (width =2r +1)
output: FMFasf ug

ic  Or 0 /I Initialize columns and rows
2d +1 /I Initialize direction: first row is processed from top to bottom
3h compute histogram ofi for columnsc rtoc+ randlined rtol+r

4 foreachcolumnc do

5 foreachlinesl do
/I Update histogram (shift of one row)

Add values oti for linel + d(r + 1) andcolumns rtoc+ rtoh

Subtract values af for linel d(r +1) andcolumns rtoc+ r fromh
RM(]: ¢) nd median value oth /I Retrieve median value
I I+d /I Update row r in the right direction

© 00 N O

/I Update histogram (shift of one column to the right)

10 Add values ofi for columnc+ r +1 andlined rtol+ rtoh

11 | Subtractvalues af forcolumnc r landlined rtol+ rfromh

12 d d /I Update direction

retrieve the median value (ling): it lies in the rst index for which the sum of values to that
index reache8r? + 2r + 1.

B. Weiss's observation concerning Huang's algorithm is that there are still a great amount
of redundant calculations: although we save time by wisely updating the histogram when go-
ing through the rows, each pixel is still added and subtracted f2om 1 windows because the
process is repeated for each column. B. Weiss then proposésciene scheme that avoids this
redundancy.

First, the only way to save calculations is to compute all the columns at the same time. This
means that instead of updating one histogram like in Huang's version, Weiss's version updates all
histograms of the current line (that is to say: updates the histogram of each row). But at this point,
as B. Weiss says, this is just a rearrangement of operations; the runtime is unchanged. Note that
this rearrangement needs to store one histogram for each row of the output image. On the other
hand, the median lIter is local, so its exact computation can be obtained from the original image
cropped in several smaller images, leading to less memory consumption.

Weiss's algorithm takes advantage of the distributive property of the histogram:

Hapg(u) = Ha(u)+ Hg(u)

to reduce the number of operations required to update the histograms of a row. The main idea
is to store one largpartial histogram and several small othgatrtial histograms, creating a “set
of histograms'H . The histogranH . of the columnc is obtained by the distributivity property,
which amounts to add several histograms. The histogram values can be negative.

In function of the numberT 06 histograms used to decompose each row histogram, the com-
plexity of this algorithm iSO(N" r) with T = 2; O(N ®r) with T = 3; O(N logr) with
T = O(logr). The general pseudo-code, valid for any of the above-mentioned algorithms, is
described in algorithni8 As in algorithm17 the fast median lter can easily be transformed in
a fast bilateral Iter by replacing at linégsand 16the “ nd median value” by “compute bilateral
output from local histogram using equaticin?"

At lines3and 12we add a line to the set of histografds . This is done simply by adding or
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Figure 6.3: Figure reproduced from Weiss' paper [Wei06]. This gure shows a layout for processing sixty-three
columns at once. It is the three-tiered analogue of Figure 4, this time “viewed” from the side. There is a single
shared histogram P31 [yellow] corresponding to the central window; eight partial histograms [orange] at seven-
pixel intervals; and for each of these, six small partial histograms [red] at unit intervals; sixty-three histograms
altogether. Each input pixel is added/subtracted to each histogram intersecting its column.

subtracting each pixel of this line to each histogram containing it. The subtraction of a line from
H done at linel3n the pseudo-code works in the same way.

Algorithm 18 Weiss' fasO(N logr) median Iter (FMF°C-Mist. 200§
input : imageu with size= (N + 2r)?
input : window radiusr
output: FMPC-histf yg
/I Initialization of H for the first line
1 foreach rows from indefto 2r do
2 | Addrowlofl toH

3 foreach columnc of the rst rowdo
/I Find median values along the first row of pixels

4 Compute histogrant . of the current column fronH
5 | FMP°sY0:c)  nd median value ofH.

/I Process the rest of the image:
6 foreach rowl fromindexitoN 1do
7 Add new (bottom) rom + 2r of | toH
8 Subtract (top) rod  1ofl fromH
9 foreach columnc do
10 L Compute histogrant ¢ of the current column fronH

11 FMACChis(|-c)  nd median value ofH

For the cas&l = 63;T = 3, whereP3; is a big central histogran®;pc=7c+3 are medium-size
histograms andP. are small-size histograms, the histogram of a speci c colarisn

Hc = P31+ Pype=rcsz + Pc (6.2

where the second and third terms are ignored if they match earlier tegrgd{z4 = P31 + P24).
As the author [WeD 6] say,

the central [...] histogram forms a rough approximation to any particuthy; the
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[medium-size] histograms re ne that approximation, and the [small-size] histograms
provide the nal correction to make the sum exact.

An illustration is provided in Figuré.3.

Porikli's algorithm

Following his2005paper that provides a strategy tg eiently compute local histograms [Fif,

Fatih Porikli published ir2008a paper describing a fast bilateral Iter with a box spatial kernel,
that takes advantage of the local histograms (&b This paper actually gives thre¥ eient ways

to approximate the bilateral Iter. We just introduced the rst one, which we are going to present
in this section. The second one uses a polynomial range kernel. This is described in&&ction

In the third proposition, F. Porikli shows that Gaussian range and arbitrary spatial kernels can be
expressed by Taylor series as linear Iter decompositions.

The single modi cation F. Porikli brought in B. Weiss's algorithm is the integral histogram.
But this nevertheless allows to decrease the complexity @¢lhlogr) to O(N), as extracting
local histograms from the integral histogram has a complexity independent of the window radius
r.

The integral histogram is the storage, at each pixel, of the histogram of the (rectangle) region
between the origin and the current pixel. The last pixel therefore is the histogram of the whole
image. From this integral histogram, it is easy to extract local histograms of any radius, by using
the four histograms disposed at the corners of that region. Let's Write y;b) the integral
histogram at positior(x;y), and the rectangular region, which goes from the top-left pixel
(Xtop; Ytop) t0 the bottom-right pixel(Xpot; Yoot). The local histogram value at any bins then
denotedh (b) and obtained as follows:

h (D)= H(Xwp Lyiop LB H(XpotsYiop LD
H(Xtop 15 ¥Ybot: 0) + H (Xpot; Yoots D)

Hence, one needs only three arithmetic operations per bin to compute the local histogram of
a rectangle window of any size. Now, all this would be useless if the integral histogram con-
struction needed to literally compute each region histogram from the origin to the current pixel.
Fortunately, it can be computed recursively, in a way that avoids any redundant calculation. Call
Q(u(x;y)) the bin of the current pixel, then

H(x;y;b)= H(x Ly;b+ Hxy Lb H(x Ly 1b+ Qu(xy)) (6.4)

with the initial conditionH (0; O; b) = 0. Hence the integral histogram at a pix®] y) is obtained
rst by copying the histogram value of the previous pixel, then by the propagation operation
shown in equatiort.4, i.e.with three arithmetic operations per bin and per pixel.

The pseudo-code given in Algorithfritdescribes this fast bilateral Iter. First comes the com-
putation of the integral histogram (lin§, then for each pixel, the extraction of the local histogram
(line 5 with the desired radius. Finally, it computes at each pixel the bilateral Itered value using
Equation ©.]) (line 7).

(63

Using a smaller number of bins in the histogram

One can use less bins in the histogram than the actual number of intensity values in the input
image. This results in less memory consumption and a faster computation. The complexity of
this histogram-based fast approximations is indeed dependant of the number o bsed in

the histograms, so that we write@(Nb). For example, B. Weiss suggests either to dither high-
precision data int@-bits before processing, and notes that it “introduces surprisingly little error”,
or to downsample the intensity into the histogram which “yields better accuracy”.
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Algorithm 19 Local Histograms Bilateral Filter (FBR'St) for a 2D gray image
input : imageu
input : range standard deviation
input : window radiusr
output: FBRNistf yg

1 H  compute the integral histogram /I equation  (6.4)

2 foreachpixelx andx-centered window x) do
/I Retrieve local histogram with radius r

3 h compute local histogram if{ x) /I equation (6.3
Il CompLﬁg bilateral output value

4 V(X) th MG, b ux)b I bilateral-weighted average
C(x) ph (DG | b u(x) /I normalization

6 | FBE™MSfug(x)  v(x)=C(x)

Usage of a box spatial kernel

The two algorithms we just presented use box spatial kernels. And one would probably ask: is
there any visible dlerence between a Gaussian kernel and a box kernel? B. Weiss's answer is
that it may indeed create “visual artifacts [that] may resemble faint Mach bands”, but adds “these
artifacts tend to be drowned out by the signal of the preserved image”. Actually, an imperfect
frequency response is particularly visible when there is a lot of contrast in the signal (imagine a
white pixel alone in a dark region and the box- Itered result). Yet the bilateral precisely avoids
to blend contrasted regions, thus makes this artifact less visible. In fact, the smaller the range
parameter, the lesser this spurious appearance visibility. As proposed by B. Weiss, an iterative
scheme would make the box- Iter converge to a Gaussian Iter. To avoid the cartoonish look, he
suggests to iterate the Itering while keeping at each iteration the original intensity to guide the
intensity weights.

Related methods

In the same vein, JJ. Francis and G De Jager publishef0d8a paper on ailateral median
Iter [FDJ0OJ. They propose to replace the weighted mean of pixels by a weighted median of
pixels. We won't present this algorithm further; we just mention here its existence and note that
the local histogram implementation of the bilateral Iter seems very suitable to this modi cation.
In 2010 M. Kass and J. Solomon [A§ generalized the use of those local histograms, so
that the spatial kernel can have any form. They apply their method to several lters, namely the
median, min and max lters, closest mode lIter, a “dominant mode” Iter and the bilateral Iter.
They introduce their paper in those words:

Here, we present ar¥ecient and practical method for computing accurate derivatives
and integrals of locally-weighted histograms over large neighborhoods. The method
allows us to compute the location, height, width and integral of all local histogram
modes at interactive rates. Among other things, it enables the rst constant-time
isotropic median Iter, robust isotropic image morphology operators, afcient
“dominant mode” Iter and a non-iterative alternative to the mean shift.

In addition they present a method to “combat the over-sharpening that is typical of histogram-
based edge-preserving smoothing” (and bilateral ltering). This last part is presented in Sgction
They call it theselective Wusion
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Perreauliet al.[PHO7] presented irR007another paper for fast median smoothing using local
histograms, that can also be used for accelerating the bilateral Iter.

6.4 Piecewise-linear and bilateral grid approximations

S. Paris and F. Durand have been major contributors to the accelerations of the bilateral Iter. F.
Durand and J. Dorsey were the rst to propose a fast approximation(JE]DTheir original idea
would later inspire other fast schemes [B4d), [PD09 and [CPDO7 and [Y TA09] to approximate

BF.

F. Durand and J. Dorsey [DIZ] started by the “piecewise-linear bilateral Iter” They re-
marked that xing the reference pixel intensity in the formula de ning the bilateral gives back a
regular convolution. One can then compute the exact bilateral Iter i&tbonvolutions, wher®
is the number of intensity values in the image. But this would not accelerate the lter. Hence, the
authors proposed to compute the exact bilateral result for a small subset of image intensity values,
and to derive the other values by interpolation. To further accelerate the lter, the convolutions
are computed on sub-sampled images.

In the bilateral grid [P6, PDO9, CPDO7], Paris and Durand present the bilateral Iter as a
Gaussian lter on the image's graph, hence adding a dimension. Filtering azydiménsional)
image with the bilateral lter is therefore equivalent to Itering the graph of the image, viewed
as a3D sparse image (or in continuous as a Hauddareasure), with a standard Gaussian ker-
nel. For a color image this leads to Itering sparse image. The voxel coordinates in this
high-dimensional space are the initial spatial coordinates followed by the color channels treated
as coordinates. But these channels are also taken as the image values at the same voxel.

The piecewise-linear approximation

The bilateral lter is nota priori t to fast computation because its kernel isvirent at each pixel.
This is due to the edge-stopping functi@, u(y) u(x) . However, consider the bilateral Iter
equation €.5 for a xed pixelx

BF ug(x) =

1
G.(x WG, u(y) u(x u; (65
C(x)
y2

, P - .
withC(x) = , G (x y)G, u(y) u(x) . Thisis equivalentto thexdependent) con-
volution of the functionH u(x) :y! G, u(y) u(x) u(y) bythekernelG .. Similarly, the
normalization factow is the convolutionof u(x) :y! G, u(y) u(x) byG .. Theonly
dependency on pixed that makes it di‘er from a convolution is the presence of thelependent
valueu(x) in G ,. Starting from this observation, the authors' acceleration strategy)ppis to
discretize the set of possible signal intensities Mt&y¢"Svalues (i)g, and to compute a linear
Gaussian convolution for each such value:

V(i) = W(i;i)yz G WG, uy) () u(y (66)
1 X y
- W(X, |) 2 G s(x y)H (y’ I) (67)
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and

X
wixi)= G (x Y&, uy) () (6.9
X
= G (x iy (6.9
y2

The nal output FBFP'€%€Wiseof the Iter for a pixel x is then a linear interpolation between
the outputv(x;i) of the two closest valuegi) of u(x). This corresponds to a piecewise-linear
approximation of the original bilateral Iter (note however that it is a linearization of the whole
functional, not of the in uence function). The pseudocode is given in Algorithf All opera-
tions in that pseudo-code are pixel-wise. At linthe intensity sample is computed, and used at
lines6 and7to compute what we calllayerof the image at the intensy(i) (layerl is the normal-
ization). The layers are convolved with the Gaussian spatial kernel fzne$9) then divided to
get the bilateral result for the current layer (lihg. The output image is updated at each layering
(line 1) using linear interpolation weights (lin&).

Algorithm 20: Piecewise-linear fast bilateral lter (FBEViS§ for a 2D gray image
input : imageu
input : range standard deviation
input : spatial standard deviations
input : Number of layers\ 'avers
output: FBRPecewisg g

1 FBpecewise JI initialization
2a=(max u minu)=Naers Il gap between two intensity samples
3b=minu

4 foreachsampled intensity(i) withi 2 f 0;1;:::; N'&®g do

5 (i) ai+b /I current intensity sample

6 HGi) G, u ()u Il compute layers H and |
7 i) G, u (i)

8 H@{) H(@i) G, /I convolve layers
9 L) I() G

10 | v(i)= H(®i)=l(i) I/ bilaterally filtered layer i
11 (u;i)=max(0;1 j (i) uj=a /I interpolation weights

12 | FBpiecewise  ppppiecewisey (- j)y(j) /I update output

13 return FBPiecewise

The recommended number of layer®is ,whereD = max u min uisthe image dynamic
range of the input image. Thus the minimal allowed sampling rate of the range Gaussian kernel is
1= .. Indeed, one needs enough layers in order to correctly interpolate the Itered values that fall
between the layers. The authors [DFuse linear interpolation.

These same authors propose tw¥elient strategies for the Gaussian convolution. The rst,
exact, uses the fast Fourier transform, waliN logN ) complexity. This makes the Iter com-
plexity fall fromO(N  2) (for the original bilateral Iter with truncated spatial kernel) @(N '&¢™N logN ).
But the lter can be further accelerated by computing the convolutions on subsampled versions of
the images. The strategy is then to strongly subsample the image without respecting the Nyquist—-Shannon
sampling theorem, which allows a very fast subsampling. The author§jLise the nearest-
neighbor algorithm, “because it does not modify the histogram”. Remark that this is a dangerous
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procedure particularly in presence of noise. It was replaced irR@i@€paper [PD6] by a box
downsampling described in the next section (see Equatidn)). Then, a Gaussian Iter with

very small kernel is applied on the subsampled images. The bilaterally ltered layer is then up-
sampled before the output image is updated. The authors do not specify the method used for
upsampling. However, the closely-relatgithteral griduses bilinear interpolation with good re-
sults, so this method can be safely used here as well. Algazithrasents the pseudo-code of this

Iter. The main diVerences between Algorith&®and Algorithm?2lappear in red.

Algorithm 21 Piecewise-linear FBF with subsampling (PB¥E)
input : imageu
input : range standard deviation
input : spatial standard deviations
input : Number of layerd\ 'avers

input : subsampling factos

output: FBFPWsUbf g
1 FBPWsub. o /I initialization
2a=(max u minu)=Naers /I gap between two intensity samples
3 b=min u

4 u?  subsamples;s
5 foreachsampled intensity(i) withi 2 f 0;1;:::; N'&¢gdo

6 (i) ai+b /I current intensity sample

7 H#*i) G, u* (i) u /I compute layers H and |
s | 17(1) G, u* (i)

9 H#*(i) H*i) G .= Il convolve layers
10 | 1#10)  1%i) G =

11 | Vi) = HE@)=17(i) /I bilaterally filtered layer i
12 | v(i) upsamplev’(i);s

13 (u;i)=max(0;1 j () uj=a /I interpolation weights

14 | FBPWSU  EBPWSUb-4 (4 i)v(i) /I 'update output

15 return FBPW-sub.

The bilateral grid

Although the piecewise-linear approximation [[DF] does not use the “range-space” domain as
presented in [PDg], it uses the same ideas. Indeed, they both linearize the convolution and
downsample the signal to reduce computational complexity. Moreover, the piecewise-linear ap-
proximation can be seen as a layering of this range-space domain. From this point of view, the
improvements brought by Paret al.[PDO6] are: a more formal de nition of this fast approxima-
tion thanks to a high dimensional interpretation of images, and a gain in precision due to a better
subsampling in the range domain. However, they do not gain more speed-up for the bilateral
Iter. This is done in2007by Chenet al.[CPDO07] through GPU parallelization.

For the presentation of the bilateral grid, we quote Paris, Kornprobst, Tumblin and Durand
[PKTDOS8, PKTDOY. Notations have been updated.

Inspired by the layered approximation of Durand and Dorsey [I2]) Paris and Du-
rand [PDO€] have reformulated the bilateral Iter in a higher dimensional homoge-
neous space. They described a new image representation where a gray-level image
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is represented in a volumetric data structure that they named the bilateral grid. In
this representation, @D imageu is represented by 2D grid where the rst two
dimensions of the grid correspond to the pixel positien= ( x;y) and the third
dimension corresponds to the pixel intensityx). In addition, this3D grid stores
homogeneous values, that is, the intensity valug associated with a non-negative
weightw and stored as a homogeneous ve¢tou; w). Using this concept, Paris and
Durand [PDO6] showed that the bilateral Iter corresponds to a Gaussian convolu-
tion applied to the grid, followed by sampling and normalization of the homogeneous
values.

More precisely, the authors consider tBe R domain [S is the spatial domain and
R the range domain] and represent a gray-scale imegg de ned on &D grid as a
3D function by

ux;y); 1 ifz=u(xy);
(0;0) otherwise.

(xy;2) = (6.10

With this representation, they demonstrate that Itering bilateral exactly corresponds
to convolving with a 3D Gaussian whose parameters @re; s; ) @ =

G .. .. ,. Theyshowthatthe bilateral Iter outputis BEg(X;y) = X;y;u(X;y) .
This process is illustrated in Figugel.

Using the same arguments as in Durand-Dorsey [(IZ]pthe authors subsample the grid (us-
ing nearest neighbors) before Itering it with a high-dimensional Gaussian kernel. They recom-
mend using the parameterg and ; to subsample the grid. This yields a complegityjSj + E}jRj ,
wherejSj is the size of the spatial domain (number of pixels) dRd is the size of the rangesdor-
main.

Algorithm 22describes the pseudo-code of this method. The grid constructed at liné
and convolved at ling, after box subsampling (lin8. Linesland?2 can actually be replaced by
one single operation:

([ x= slly=slilz= () ([ x= slily=sli[z= D)+ u(xy);1; (6.1)

with initialized with zeros and whelg is the closest-integer operator. Upsampling is realized
atline4. Authors use linear upsampling; Algorithi@describes the pseudo-code of tigsample
function. Note that itis not necessary to upsampfeverywhere but only at voxels; y; u(x;y) .
In fact, the upsampling can be done on the y at lifand line7. By using equationd 1) at linesl
and2and upsampling on the y at line§ and 7, one avoids the storage of the full resolution grid,
and thus saves a large amount of memory. Linés 7 perform the slicing step and the output
values are obtained at lingafter normalization. In Algorithm23 d.e and b:c are the closest
superior integer and closest inferior integer operators, respectively.

In their book [PKTDO9)], Pariset al. explain the dierence between this approximation and
the piecewise-linear one [DI2]:

The major d\erence is in the way the downsampling is performed. The layered ap-
proximation encounters i culties at discontinuities: it averages adjacent pixels with
diVerent valuese.g, a white and a black pixel ends up being represented by one gray
value that poorly represents the original signal. In comparison, the bilateral grid sub-
sampling strategy preserves adjacent pixels witbrént intensities, because they are
far apart along the intensity axis. In the white and black pixels case, the bilateral grid
retains the two d¥erent values involved and thus is able to produce better results.
Figure6.5 illustrates this behavior. The bilateral grid should be preferred over the
layered approximation, because both approaches perform equivalently fast.
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Figure 6.4: lllustration reproduced from [PDO6]. Bilateral Iter with the bilateral grid for a 1D signal. A rststepisto
IIthe S R domain with the signal values: the second line displays the resulting valuesn the grid. The third
line displays it after the convolution by the Gaussian kernel with standard deviation; . Then, the fourth line
shows the result of the division of the two above grid values (the bilateral Iter's normalization). The orange dots
depict the pixel's positions. The last line is the reconstructed Itered signal, after the “slicing” operation.

Algorithm 22 Fast bilateral Iter with the bilateral grid [P05] (FBF9"d)
input : imageu
input : smoothing parameterss (space),  (range)
output: FBRE9f yg

1 build the bilateral grid using equatiorb (L0

2 subsample; s; s; r) /I equation  (6.1)

3 0 0 G111 1l 3D Gaussian convolution. Each
/I component is filtered independently

4 upsample ¢ s; s 1) /I Algorithm 23

5 foreachpixel (x,y)do /I slicing and division

6 num(x;y) wu X Y;u(x;y) Il wu is the 1st component of

7 denon(x;y) w X y;u(x;y) /I w is the 2nd component of

8 | FBE"fug(x;y) 7d';l:]r:ng’((xy3)
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Algorithm 23 upsample function: tri-linear upsampling.

input : downsampled grid ©

input : position(x;y; z) of the full resolution voxel
input : down and up-sampling parameterg and
output: linearly interpolated valug x;y; z)

1x%d Xe X
2y%d Ye X
32° d Ze £
4 (FQ(;y;Z) p p

i2f 0;1g  i2f 0;1g
5 return ( X;y;z)

k2f 0;1g %b%C+iib%C+j?b%C+kNX0 ijjy°

jiiz°

Kj

Figure 6.5: This gure is reproduced from the Paris-Durand paper [PDO6]. In the piecewise-linear approximation
(a), the downsampling is realized before the layering step. In this con guration, discontinuities are represented by
only one intensity value which poorly approximates them. On the other hand, in the bilateral grid scheme (b), the
discontinuities are represented by two distinct values in the downsample8R domain, even after downsampling.
The original function (in red) is the same as in Figure 6.4. The corresponding downsampled representation of the

intensity is shown under (a) or behind (b).
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The bilateral grid can be extended to cross bilateral lter (Z][)[PSA" 04 (also called joint
bilateral Iter) and Itering of color images. Color ltering however is not well suited for the GPU
implementation of Cheret al.[CPDO7. For the cross bilateral Iter, one simply need to construct
the grid with the guide image giving the position of the pixels and the inputgiving its value:

L ux;y); 1 ifz=v(xy)
(xy:z)= (0;0) otherwise ' (613

As S. Parist al. observed in [PD€], Felsberget al.[FFE] present a method callechannel
smoothinghat is closely related to the bilateral grid. Quoting:

Channel Smoothing Felsberg et al. [BE[tlescribed an ¥ cient smoothing method
based on a careful design of the intensity weighting function. They showed that B-
splines enable the discretization of the intensity range into a small set of channels.
Filtering these channels yields smooth images with preserved edges akin to the out-
put of the bilateral Iter. B-splines allowed for a precise theoretical characterization
of their lter using robust statistics. The downside of B-splines is the higher compu-
tational &/ort required to handle them.

We refer to their excellent paper for further details.

6.5 Polynomials approximations

The rst paper using a polynomial range kernel for the bilateral Iter is [y in 2008 Follow-

ing this, the main contributions on this way of approximating the bilateral Iter are provided by
K.N. Chaudhury. He rst published [CSL] with D. Sage and M. Unser. This article generalizes
Porikli's work and gives the key element of the next papers: [§,H&hal}, [Chal], [GC1a],
[GC1&]. One can also nd contributions in [SK}. The same method was used in [G&tin
automatic color enhancem@i€CE), in2012to accelerate the lIter.

Porikli started with a polynomial function and explained that “a bilateral Iter can be inter-
preted as a weighted sum of the spatial Itered responses of the powers of the original image”
Although the following papers use\@rent polynomial functions to approximate the Gaussian
range kernel of the bilateral lter, this is the key idea of those approximations. As we will explain
soon, choosing the right polynomial function allows to perform a bilateral Iter with a series of
simple Gaussian convolutions. Those “right polynomial function” have what K. N. Chaudhury
called the “shiftability property”

Let's explain this with a trigonometric polynomial. Assume the range kernel has the form

X
kM (t) = hexp(i2t)"; (6.13
n= M
withi?2 = 1. Here, , stands for the range parameter of the bilateral Iter. Sehe neighbor-

hood of the pixek andG | the spatial Gaussian kernel with standard-deviatignWith such a
range kernel, the bilateral Iter

X
BFPOYf ug(x) = sz) G.WKM ux y) u® ux y) (619
y2
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can be written

BFPYf ug(x)
" #
1 X X! .
K G .(y) n€xp i2n u(x y) u(x) u(x y)
y2 n= M (615
1 hd X
= nexp i2nu (x) G .(yyexp i2nu (x y) u(x vy):
KX _
= M y2
The decomposition is the same for the normalization factor,
X
KM= G . WKM ux y) u: (6.19

y2

The last equation involves a convolution of the image i2 nu (x) u(x) with the spatial Gaus-
sian kernels .. In other terms, the bilateral Iter is obtained by a series of Gaussian convolutions.
Because the range kernel is even, one only ndetld convolutions, wherd/ is the order of the
polynomial. Numerous fast algorithms can be used for a fast approximation of the Gaussian con-
volution (in general with a complexity independent of the spatial parametemwhich explains
why those algorithms are often referred@éN ) algorithms). The challenge is then to obtain
a good approximation of the range kernel with the smallest possible ddemdeed, the nal
complexity of the algorithm i© (MN ) whereN is the number of pixels in the image.

K.N. Chaudhury describes in [Ciidwhat he calls the “shiftability property” that allows to use
this sort of approximations. Trigonometric polynomials have the desteffabilityproperty, like
any function of the form (x) = cpexp( 1X) + :::+ ¢cuw exp( m X), along with the polynomials

(X) = co+ cyx + i+ cu xM . Here is how he de nes a shiftable function:

We say that a function (x) is shiftablén RY if there exists a xed ( nite) collection
of function 1(x);:::: wm (X) such that, for every translationin RY, we can write

x )=cal) 1)+ +em () m(X):

We call the xed function 1(x);:::; wm (X) the basis functions;( );:::;cm () the
interpolating coécientsandM the orderof shiftability. Note that the coécients
depend on , and are responsible for capturing the [action of the translation].

We report in Algorithm24the pseudo-code of the method presented in [(Bi; GCL&]. In
this paper, the authors use the complex exponential to approximate a Gaussian range kernel, with
orderM:

kM (1) = X cn exp(in't ) : (6.17
n= M

The bilateral lter numerator can then be written as

M
Ch €Xp infu (x) Fn(x) (6.19
n= M
Fn() = G (y)u(x y)exp inlu (x ) (6.19
y2
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and with a normalization factor (denominator)

X
Ch €Xp intlu (x) Gn(x) (6.20
n= M
with X
Gr(X) = G .(y)exp inlu (x vy): (6.22
y2

In the mentioned paper [GTC&, GCLG], the authors compute the c¥ecientsc, by minimizing

the error between this complex trigopnometric polynomi(é’! and a target Gaussian for a xed
orderM . One can also compute the Fourier series of the Gaussian range kernel and onlyise the
rstterms. The largeM , the more precise the approximation, but also the more computationally
expensive the Iter. In Algorithn24, the symbol “” stands for “complex conjugate”

Algorithm 24 Fast bilateral Iter using a polynomial range kernel as presented in
[GC1th, GCL&]: “Shiftable Bilateral Filtering” (FESEY)
input : imageu
input : orderM and co# cientsc, of the range kernel(M n M)
input : standard deviation s of the spatial kerneb |
output: Approximation FBPYf ug
1 SetP (x) =0 andQ(x) = 0 for all x
2 foreachn = M;::;;M do
3 G(x) = exp(inlu (x))
4 F(x) = G(X)u(x)
5 H(x) = cnG(x)
6 ComputeF = F G andG=G G
.
8

P(x)= P(x)+ H(X)F(x)
| QM) = Q(X) + H(X)G(x)
9 Set FBEYfug = P (x)=Q(X).

Fast Gaussian convolution algorithms

One needs a fast Gaussian convolution to achieve a fast running time for the algorithm. P. Ge-
treuer [Gefly made an excellent survey of the fast Gaussian convolution algorithms that details
the lters. Here is his conclusion:

There is no single Gaussian convolution algorithm that is clearly best; the right choice
is a consideration of aspects like accuracy, speed, memory, and ease of implementa-
tion. The results from this survey suggest the following recommendations (Where

is a threshold roughly equal ©):

For high accuracy, use FIR ( nite impulse response lIter) for T and De-
riche or Vliet-Young—Verbeek for T.

For the best accuracy, use FIR far T and DCT for T.

For the best speed, use Sl (stacked integral images) or box lItering.

For ease of implementation, use extended box ltering or Alvarez—Mazorra.

We refer to the original article for a description of thes¥atient methods. Most paper use FIR
and Vliet—Young—Verbeek approximations for the polynomials approximations.

153



Figure 6.6: Figure from [NPC17]. The visual artifacts in (c) are cluttered around sharp edges in the original image.
This can be explained by the fact that the Fourier approximation is relatively poor (often assuming negative values)
on the tails compared to that around the origin. Since the operating region for large pixel differences is precisely
the tail, this can result in artifacts around edges.

6.6 Domain transform

Around the same time of the publication of the guided Iter [H$®, HSTL} by Kaiming Heet

al. (201Gand2013 Eduardo S. L. Gastal and Manuel M. Oliveira published the domain transform
[GO1). Their paper presents a new edge-aware smoothing lter with very short running time. As
for the guided lter, it is not an approximation of the bilateral Iter. However, as the visual result
is close and the running time small, the algorithm is worth considering.

The domain transform's key idea is the de nition ofa transform that preserves the geodesic
distance between points of the grapkiv(x) (with v a one-dimensional signal) and the real
line. That is, the one-dimensional signat ! R, respectively : | R2 (color image), is
expressed in the higher dimensional spRéerespectiveliR*, then adaptively wrapped @ so
that the geodesic distance between samples is preserved.

This method is related to the high-dimensional interpretation of the edge-preserving lters
proposed (among others) in [B&Z and in the bilateral grid [PD6, CPD07. Furthermore, it
has been shown in [SKH that for a small window, one obtains a bilateralext by a direct
Gaussian diusion on the image's manifold. Although the domain transform used theorm
metric on the manifold rather than the Euclidean one, a similar interpretation is possible for one-
dimensional signals. However, the domain transform is not de ned for two-dimensional signals,
thus we cannot generalize this interpretation further.

Once this isometric transform applied to the signal, a convolution with an isotropic Gaussian
kernel can be applied. This convolution is done on a one-dimensional signal, leading to short
execution time.

One way to see this transformation is that the intensilyedences between adjacent pixels are
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transformed into spatial distances by using the geodesic distance on the image's graph. As a result,
pixels with distant intensities fall apart. Hence, an isotropic Gaussian lter averages them but little.

A diY culty of this process is that the transformed signal is no longer uniformly sampled, which
requires speci ¢ algorithms for the Gaussian convolution. The authors suggest thMee i
methods, all implementable with &d(N) complexity (withN the number of pixels).

Filtering of two-dimensional signals is performed in a separable fashion, through successive
applications of vertical and horizontal isometric transform and Gaussignsibn. This strategy
resembles the separable kernel approximation [BY.V The two-passes lItering process (hor-
izontal then vertical or vice-versa) is iterated so that the information is well propagated. The
authors recommend three iterations. To avoid the separable kernel approach typical artefact, that
is, stripes along the last ltered axis, they come up with a new stratagem: they observe that “the
length of the stripes is proportional to the size of the Iter support used in the last pass” and
thus propose to reduce the lter's standard deviation at each iteration, which successfully remove
stripes. The transformation, however, is computed only once in each direction.

Domain transform

The domain transform relies on the vision of the bilateral Iter as operatingi® apace [SKB],
Bai0Z]. For a2D RGB color image, this de nes a manifoldRP. Let® = x;u(x) be a point on
this manifold: it is described by its spatial coordinatemnd its intensity values(x). LetF (%; )
be an edge-preserving Iter kernel BD and DTf ug the Itered image. It can be generically
expressed as b

DTfug(x) =  u(y)F % ¢)dy; (6.29

R
where F(%;¥)dy = 1. The authors [GQ] propose to compute the cdecientsF (%; §) of
the lter in a transformed domain with reduced number of dimensions, so that the evaluation is
faster. LetH be the equivalent Iter kernel in the transformed domain: they want
VA Z

DTfug(x) = u(y)F %9 dy= u(y)H t(x);t(y) dy; (6.23

where evaluatingandH is faster than evaluatirfg.

As the authors explain, such a transformation f@asignal does not exist in general [G])
but exists in thelD case. The domain transform then de nes an isometry between curves on the
1D manifold in R? (gray image) oiR* (for RGB color image) and the real line. This transform
preserves the geodesic distances between points on theses curves. Dr(oting t(x), the
authors de ne an isometry that preserves the distance

jet(x + h;u(x + h) ct(x;u(x))j=j x+ h;u(x + h) X;u(X) j (6.29

h+ ju(x+ h) ux)j: (6.29

Dividing both sides of equatiort(29 by h and takingh !  Oyields
Ccty(X) = 1+ jux(X)j; (6.26

where the absolute value was removed because the authors consti@alme monotonically in-
creasing. The functioaty (x) is the derivative oft(x) with respect tox. Integrating on both sides
and takingct(0) = 0 gives 7

z

ct(z) = 1+ jux(x)j dx: (6.279
0
For a signal witkc channels the transformation becomes
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Figure 6.7: Figure reproduced from the original paper [GO11]. Cur@ede ned by the graph x;u(x) ;x 2
(left). Inly norm,k x + h;u(x + h) x;u(x) k= h+d= h+ juix+ h) u(x)j(center). Arc length ofC,
from u to w (right).

Figure 6.8: Figure reproduced from original paper [GO11]. 1D edge-preserving usit@) (noted ct(u) int the
plot). (a) Input signalu. (b)ct(z). (c) Signal plotted in the transformed domain ( w). Signalu Iteredin  with
a 1D Gaussian (d) and plotted in (e).

ZZ Xc

ct(z) = 1+ Juxk (X)jdx; (6.28
0 k=1

whereuy denotes the imagea taken at itsk-th channel anduy is the derivative ofix in x.
Quoting the authors:

By reducing the dimensionality of the Iter from ¢ %to 1, it may seem that we lost
the ability to control its support over the signal's space and range (i.e., to control the
values of s and ., in bilateral Iter notation). But, as we show, one can encode the
values of s and ; in the transformation itself.

The key idea here is that scaling the Iter amounts to scaling the signal. They therefore scale
the signal before computing the domain transform, which allows to sc@ereitly the diverent
dimensions, and then gives a total control over the smoothing parameters. When scaling the lter
with a coéY cient1=a, its standard-deviation is multiplied by the same facten. Denoting by

n the standard deviation of th#) smoothing Iter, one obtains 4 = 4 =a, hence:

ag= —; (6.29
d

whered stands fors or ri (spatial or range parameter, respectively). The authorsyx= g,
so thatag = 1. For simplicity, they also use a single valyefor every channel. One then has
a = s= r.Inserting these factors in equation 9 (i.e.ash + a,ju(x + h) u(x)j) yields the

nal domain transform 7
z xc

ct(z)= 1+ = juek(X)jdx: (6.30
0 M k=1

For detail concerning the FigufeBreproduced from [GQ ], we report the authors' explanations:

Figure6.8illustrates the use of a domain transform for Itering the signal I, shown

in (a) in its original domain . (b) shows the associated domain transfoct(z)
computed using Equation5(30. (c) shows signal in the transformed domain ,

or, more compactiywl, ct(z) = u(z). Theresult of lteringu with a Gaussian Iter

H in  is shown in (d). (e) shows the desired lItered signal obtained by reversing
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ct(z) for the signal shown in (d). The small-scale variations were eliminated and the
strong edges preserved.

Algorithm 25 O(N) domain transform lter (DT)
input : inputu
input : range and spatial standard deviationand ¢
input : number of iterations\
output: DTfug

1 Computeuyx fork 2 f 1;:::; cg /I horizontal derivative

2 Computeuy;k forllf, 2f1;:¢cg Il verical derivative

3 Cty 1+ = P Ezl JUx:k] Il derivative of ct in hor. direction
acty 1+ = §=1 jUyk] /I derivative of ct in ver. direction
5 Computect™" where8x; ct(x) P o Ctx /I hor. domain transform
6 Computect®" where8y; ct(y) ety /I ver. domain transform
7V u /I initialization

g fori 2 1;:::;dio D

9 H;i g 3N T TN g /I filter std: equation 14 in [GO11]

/I Apply a smoothing filter for non-uniformly sampled signal: normalized
convolution, interpolated convolution or recursive filtering
10 v ID-Gaussian- Iter-along-x/; ct"; H;
11 | v ID-Gaussian- Iter-along-y; ct¥®"; n;

12 return v

Smoothing irregularly sampled points in the transformed domain

Once the signal is transformed through the domain transfore, uy, (ct(x)) = u(x), itis no
longer regularly sampled. The authors [GE]propose three dierent methods for Iteringuy,.

Normalized convolution The signal is considered uniformly sampled with missing samples. By
taking advantage of the fact thett(x) is monotonically increasing, the authors implement this
eY ciently using a “moving-average” approach with a box Iter (W@r{N ) complexity,N is the
number of pixels). This can be further accelerated using GPUI[JO

u(y)H (ct(x); ct(y)); (6.3}
y2D ()

)= e

P
whereC(x) = y2n() H (ct(x); ct(y)) is the normalization factor, and the kernel is de ned as
H(ct(x);ct(y)) = fict(x) ct(y)j rg; (639

wherer is the radius of the box lter, and the Boolean functiorreturns 1where the condition
is true andO elsewhere. The pseudo-code of this algorithm is presented in AlgotithnThe
version with the moving average strategy is in Algorithim

Interpolated convolution Implemented with a box Iter inO(N) too. As the authors state:
“Interpolated convolution has an interesting interpretation: a lineafudiion process working on
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Algorithm 26: Normalized convolution (NC)

1
2

w

(S22 ¢ I

input : input u (uniformly sampled)

input : ct: distances between samples in the transformed domain

input : Iter standard deviation 4

output: Box Itered imagev in the transformed domain (uniformly sampled)

r H 3 /I radius of the box filter
foreachrow of image do
foreachpixelx of the rowdo

f x nx r+1;::X0X+rg /I window

H (x) Pfj ct(x) ct(y)jP rgfory 2 Il kernel
v(x)  , HOUY)  y HY)

Algorithm 27 Normalized convolution (NC) with moving average

1

input : input u (uniformly sampled)

input : ct: distances between samples in the transformed domain

input : Iter standard deviation

output: Box Itered imagev in the transformed domain (uniformly sampled)

r H 3 /I radius of the box filter

2 foreachrow of image do

3

N OO o A

s integral “image” (integral line) of the the current row
foreachpixelx of the rondo

Yiow Smallesy s.t.ct(x) ct(y) r

Yup Qreatesys.t.ct(y) ct(x) r

V(x) S(Yup) S(Yiow 1) =(Yup VYiow+1)
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Figure 6.9: Indices for the interpolated convolution described in Algorithm 28

the signal. [...] This is the same interpretation as ibeBeltrami ow PDE [SKEB].” With a box
kernel, the output image is computed as

z ct(x)+r

v(x)= o 200 T Ly (y)dy; (6.33

whereL, is the linearly-interpolated signal in the transformed domain. As the authors state, it
“does not need to be uniformly resampled, since the area under its graph can be explicitly com-
puted using the trapezoidal rule”. The pseudo-code is given in AlgoritBnfPixel values outside

the bounds of the image are assumed to equal the nearest pixel border value.

Recursive ltering The recursive lter is de ned in the transformed domain ap] = (1

ad)u[n] + adv[n 1], withd = ct(x,) ct(xn 1). This causal lter is applied twice, rst leftto
right, second right to left to obtain a symmetric response. As the authors prove the feedback co-
eY cientis computed in function of y asa=exp( = 2= y). Itsimplementation is als®(N ).

Itis presented in Algorithnm29

We give the pseudo-code in Algorithéh It begins with the computation of the derivative
along thex andy axis for each color channel (linésind 2), used to compute the derivatives of
the domain transform (lines and 4) and then the nal domain transform at linesSand 6. At
lines10and1lhe imagev is smoothed with a one-dimensional Gaussian kernel in horizontal and
vertical directions successively, according to the distance between points in the transformed signal.
The output image is obtained after ti iterations of these twdD Gaussian Iters. Borders are
handled by setting the domain transform value@t so that the averaging is stopped. Figifel
displays the result of the application of the domain transform to a gray image and compares it to
the exact bilateral lter.

Artifacts

There are some restrictions. The distance considered between points is geodesic, instead of Eu-
clidean for the bilateral Iter. This means that pixels from two opposite sides of a thin but con-
trasted edge will not be averaged together whereas the bilateral Iter would use them all for the
computation of the output value. This may be seen as an advantage of as an inconvenience accord-
ing to the context; concerning tone-mapping, this is not a desired property. Think for example
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Algorithm 28 Interpolated convolution (IC)

input : inputimageu

output: I5tered imagev
ir H 3 /I box filter radius
2 foreachrow of image do

3 foreachpixelx in the current rovdo
/I Compute trezoids areas

4 aredx) p u(x+1)+ u(x) ct(x+1) ct(x) =2

5 s(x) y=1 areagy) = s(x 1)+ aredx)

6 Xiow Smallesk s.t.ct(x) ct(Xjow) f

7 Xup ~ Qreatesk s.t.ct(xyp) ct(x) r
/I for center part only (see Figure 6.9)

8 cp S(Xup) S(Xlow 1)
/I left part (see Figure 6.9)

9 (Ct(X) I‘) Ct(XIOW l) Ct(Xlow) C'[(Xlow 1)

10 Wet(x) 1 Uxow 1D+ UXiow)  UXiow 1)

11 Ip u® Ct(X) r+ u(Xlow) (l ) Ct(Xlow) Ct(XIOW 1) =2
/I right part (see Figure 6.9)

12 (ct(x)+ r) ct(xyp) Ct(Xyp+1) cCt(Xup)

13 ul ct(x) + r U(Xup) +  U(Xup+1)  u(Xyp)

14 rp uwct(x)+ r + u(Xyp) Ct(Xup+1) ct(Xyp) =2
/I final value

15 v(x)  (Ip+ cp+ rp)=(2r)

Algorithm 29 Recursive ltering (RF) algorithm

input : imageu
input : smoothing parametery
input : ct: distance between samples in the domain transform
output: Iterlgd imagev
1a exp( 2=4); Il feedback coefficient (see [GO11])
2 foreachrowr do /I left to right filter
3 foreachpixelx of the current rowo
4 [ v(x)  ux)+ a®™ v(x 1) u(x) ;

5U vV, Il replace u by filtered signal in first direction
6 foreachrowr do /I right to left filter
7 foreachpixelx of the current rowo

8 [ v(x)  u(x)+ @t y(x+1)  u(x) ;

9 return v
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Figure 6.10: As well as the bilateral Iter, the domain transform has a staircase effect. This creates gradient reversal
when used for contrast enhancement. Figure reproduced from [HST13].

of a part of the sky that is disconnected by the branches of a tree. One does not want to have the
disconnected parts treated in aMdirent way than the rest of the sky.

As explained by K. Het al. in the guided Iter paper [HSTJ, the domain transform has a
staircase \ect, which causes the gradient reversal artifact when used for contrast enhancement,
as shown in the Figuré 10reproduced from [HSTJ.

Moreover, as mentioned by the domain transform authors: “One feature of our lters is that
their responses stop at strong edges. This is in contrast with the bilateral Iter, whose kernel can
cross edges” Indeed, the geodesic distance used to weigh the pixels averaging can be severely
diVerent from the Euclidean distance in regions with strong gradients. This can be seen as an
artifact or not, depending on the context. Concerning the local contrast ampli cation, it may
cause a “compartmentalization” artifact: some adjacent but disconnected components with the
original same color can be treatedvdrently. Furthermore, this property makes the Iter not
suitable for denoising. For noisy images, the domain transform will actually smooth very little
the image, because the small gradients induced by the noise arti cially separate pixels that should
be averaged together, because the geodesic distance is very sensitive to noise. Furthermore, as
demonstrated in Figuré.12 the domain transform is helpless for contrasted patterns.

6.7 Conclusion and recommendations on the fast bilateral lters

To decide for a “winner” among the considered approximations of the bilateral Iter is no easy
task. Indeed, the choice depends on the application in view. Hence, we are going here to compare
them by their degree of approximation and by their complexity. Depending on both factors, this
will give some clues on the choice to make, according to the considered application.6Table
gives the complexities of the reviewed lters of this section; Tableeports the execution times
evaluated by the authors of the\@irent methods. This last table can give an idea of the order
of magnitude one can expect from these approximations; however, it does not ranks the lters
by their speed. This is an impossible goal, for this highly depends on the complex interaction
between software optimization and hardware con guration. Furthermore, fast Iters sacri ce
accuracy, and each method has its drawbacks: this should be taken into account while comparing
the lters.

Strictly speaking of bilateral lter's approximationsd. excluding the guided Iter and the
domain transform), the smallest execution times are obtained with the local histograms approx-
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input domain transform bilateral Iter

detail layer base layer

enhanced image

Figure 6.11: Base+detail decomposition with the domain transform (center column) and the exact bilateral Iter
(right column). Detail is ampli ed by a factor 3 for visualization. Enhanced images are obtained wiilL25 +
0:750 base+ 3 detail. The separation is different with the two Iters. For this image with a lot of gradients,
the domain transform produces a detail of lower amplitude. On the other hand, the staircase effect (sharpening of
strong edges) in domain transform is smaller than in the bilateral Iter result. Parameters arg:= 8 (image size is
280 420pixels)and ; = 0;125(image dynamic in[0; 1]). For the domain transform, the number of iterations for
the two-passes 1D lterisN = 3, and the recursive strategy is used.

(a) input (b) input - noise BF(ay DT (a)g
(c) noise (a) - BRag (@)-DT(ag
Figure 6.12: Chessboard experiment. Parameters:= 8 (image sizei82 32), ; =2 noise; With poise = :08and

image dynamic in[0; 1]. The recursive lter is used for the domain transform, with 3 iterations as recommended by
the authors [GO11].
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imations of Porikliet al.[Por0g and the layered approximation of Yarmg al.[Y TAQY], followed

by the bilateral grid of Paris, Cheat al.[CPD07. The association of the moving histogram of
Perreaultet al.[PHO7] with Porikli's method was proposed by Het al. in their paper on the
guided lter [HST1M, HSTL}. It uses the modern processor's SIMD instructions (“Single in-
struction, multiple data”). When a GPU is available, however, the bilateral grid seems to be the
fastest method. Contrarily to the other methods, the execution time of this last method is depen-
dent on the parameterss and ;: its execution is inversely proportional to them thanks to the
downsampling step, so it might be a good option even with CPUs when dealing with large radii.

The local histogram approximations\¢er from the fact that their spatial kernel is a square
(the authors propose an approximation for “arbitrary spatial kernels” but this is at the cost of more
computation time), and also from the memory consumption. Indeed, one needs to store several
histograms at the same time, and for the integral histogram, this means one per pixel. However,
they are faster than the layered approximations for small spatial kernels. (One should not use the
layered approximations for small parametegsand ; because the subsampling strategy will not
apply).

Viewed as a fa$irsatof the bilateral lter, the guided Iter can be a good choice, as itis faster
than any other fast bilateral for gray scale image processing. It has an exact and fast implementa-
tion, and Bauszat [BEV] showed that it can be further accelerated with graphic hardware, before
the publication of the fast guided Iter [HE]. If color matters, we recommend the domain trans-
form or the color guided lter that might be faster for large radii, because it allows downsampling
(and therefore a fast guided Iter algorithm). However, these two very fast Iters do not actually
perform a bilateral lter. In particular, they lose the ability to gather pixels that have the save in-
tensities but are separated by another group of pixels witkrdint intensities€.g.the panes of a
window). Furthermore, both Iters introduce their own drawbacks: the contrast halo artifact for
GF and the geodesic distance for DT. Concerning the guided lter, it has been extensively explored
in Chapter2. The high-dimensional approximations by Adaetsal.[AGDL09 and [ABD1(Q are
not faster than those two non-bilateral Iters. The bilateral grid can be used for color but is not
well suited for GPU acceleration; the local-histogram Iters cannot be guided by a color image.

If precision matters, the polynomial approximations are a good option. Indeed, Werelce
with the original bilateral Iter can be controlled and the lter is still fast with a high precision. The
bilateral grid approximation is also able to control the precision by choosing the downsampling
factors, but for the bilateral grid particularly, it considerably increases the computational time and
memory needs. Their results is also rather close to the original bilateral Iter. The speed depends
on the lter parameters, as well as on the polynomial approximations.
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Method ms/Mp

Gray,cPU
Integral histograms, Wei2906[\\/ei0f)] 225
Bilateral grid 007 [PD06, CPD07] 200
B =16 QU
Constant time BF, Porik008[Por0g B =32 15%
B =64 310
Porikli 2008[Por0g with moving histogratfi* H07] B =32 407
and SSE B =64 80
B =4 (box) 65
Constant time BF, Yanet al.2009[Y TA09] B =8 (box) 126
B = 8 (gaussian) 1006
Edge-avoiding wavelets, Faitalal. 2009[Fat09] 12
Weighted least squares, Farbneral. 2008[FFL D 3500
Trigonometric, Chaudhuret al.201ICSU1] ( , =30) 550
Domain transform, Gastadt al.2011G0O1] (3 NC 55
iterations) RF 3¢
Guided lter, Heetal.[HST1Mh,HSTL} 40
Fast guided Iter, Heet al.[HS1% (s = 4) 4%
Gray,GPU
Bilateral grid, Chert al.2007[CPD07] I
Constant time BF, Yang009[Y TA09) 3¢
Weighted Least Squares, Farledal. 2008[FFLDE 1000
Domain transform [GA] (NC) F
Guided lter, Bauzsaet al.201I1BEM1] 2Y
Color,cPu
Gaussian KD-tree, Adanes al.2009[AGDLOY] 10000
Permutohedral Lattice, Adanet al.201JABD1( 1000
Domain transform, Gastadt al.2011G0O1](3 NC 160
iterations) RF 60/
Guided lter, Heetal.[HST1Mh, HSTL} 150
Fast guided lter, Heet al.[HS15 1%*
Adaptive manifolds, Gastet al.2012G0O13 200
Color,GPuU
Domain transform, Gastadt al.2011GO1]1(NC) I
Guided lter, Bauzsaet al.201I1BEM1] 9y
Permutohedral lattice, Adan201JABD1( 200
Adaptive manifolds, Gastat al.2013G017 1:3¢

Y: given by the authors.
?: measured by Het al.[HST13.
: reported by Chert al.in [CPDO7.

: reported by Fattadt al.in [Fat09].
Z: no execution time is given for the gray case in [JCbut one can expect to have little more than one third of the
color execution time.
Z: Heetal.in [HS1}reporta“>10 speedup” for theilO(N=s?) fast guided lter.

: reported by Gastadt al.in [GO1].

: reported by Gastat al.in [GO13.

Table 6.2: Execution time of several fast edge-aware lters
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/ EXxposure fusion and the simulated ex-
posure fusion

In the previous chapters, we studied the two most important edge-preserving soothing Iters
in the literature, namely, the bilateral Iter and the guided Iter. In this chapter, we explore
an alternative option for contrast enhancement, in which no base and detail decomposition
is involved.

Exposure Fusion is a high dynamic range imaging technique to fuse a bracketed exposure
sequence into a high quality image. We show that one can extend this method to the more
general context of improving the overall contrast of any image, turning Exposure Fusion into
a new and simple contrast and color enhancement operator. To do so, bracketed images
are simulated from a single output and fused by exposure fusion. We demonstrate that the
resulting algorithm competes with state of the art retinex methods.

Furthermore, we shall unveil a serious drawback of this fusion technique. Indeed, it tends to
create, unlike expected, an output image which dynamic range is higher than any of the input
images. This artifact forces either to clip the fused image, thus to loose precious informa-
tion from the (potentially simulated) bracketed sequence, or to compress the dynamic range,
which provokes a loss of contrast with respect to the input images. We shall show and explain
this é/ect in the last section of the chapter. After careful diagnosis, we arrive at the important
and counter-intuitive conclusion that exposure fusion does not have the faculty to reduce the
edges' amplitude. Thevectively operated tone-mapping is the consequence of Weats:

the haloing due to the Laplacian pyramid, and the saturation of the input LDR images of the
sequence.

The saturation artifact, also present in the introduced simulated exposure fusion, will be
solved in the next chapter.

This chapter introduce Burt and Adelson's Laplacian pyramidggin the context of tone-
mapping; we shall see in Chapteithat this has been successfully reused in more recent
multi-scale base and detail decomposition Iters.

7.1 Introduction

The dynamic range of real scenes is generally higher than the one of our camera sensors. To
capture the entire dynamic range, photographers are led to acquire a sequence of images with
diVerent exposure times: long times capture information in dark parts of the scene and saturate
the brights ones, while short exposures time capture relevant information in the brights parts.
The result of this acquisition is called a bracketed exposure sequence. This sequence must then
be merged into a high dynamic range (HDR) image, which gets a far higher number of bits than
those that can be displayed on normal screens. Thus the HdR image needs to be remapped to the
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low dynamic range (LDR) of most displays through a tone-mapping operator, which alters the
colors to make them t all in the8 bits Procrustean bed.

Exposure Fusion [MKB7, MKVRO09 was introduced by T. Mertens, J. Kautz and F. Van Reeth
in 2009as an alternative way of constructing an LDR image of a bracketed exposure sequence.
This method does not build an intermediate HDR picture. In a nutshell, it directly selects for
each pixel the values, among the provided pictures, which should be kept in the nal image. As
a result, the fused image combines the best areas of the several input images. Although similar
techniques already existed [BY, this technique has brought interesting and successful answers
to two crucial questions: how to detect the best pixel from the provided set of images, and how to
seamlessly merge those pixels in the nal image.

In this chapter, we introduce the new technique of simulating a bracketed exposure sequence
acquisition from a single LDR image, extending Exposure Fusion to color and contrast enhance-
ment methods. We will rst review the wide literature on contrast enhancement, often called
retinex method. We then examine the basic ideas of exposure fusion. Modelingabieon the
underlying physical image of bracketing, leads us to propose simulated bracketing as a way to arti-
cially enrich image information. Using Exposure fusion on simulated bracketed images delivers
a new retinex like algorithm. The last part of the chapter shows results and compares them to the
state-of-the-art Multiscale Retinex. We also demonstrate that this algorithm improves on itself
when served with bracketed images.

7.2 Exposure Fusion methods

For a review of the work that Exposure Fusion [MBERMKVR0Y has inspired, we cite the excel-
lent state-of-the-art review of the Exposure Fusion literature in Hafner and Wei2R&gH\V 14
(Section 2.3 Exposure fusion”):

Classical high dynamic range (HDR) methods combine several low dynamic range
(LDR) images to one HDR image with the help of the exposure times and the camera
response function; see,g[MPMP9], [DM 97, [MN 99, [TKTS1). However, dis-
playing those HDR results on standard monitors or printing them requires to com-
press the HDR again. This process is called tone mapping; see’[RHor a survey

and [CWNAO{] for a discussion and evaluation of various tone mapping operators.
Since tone mapping is not the focus of this work, we restrict our discussion to the
most related operators. In their gradient domain tone mapper, Fattal et al. .\
account for the local contrast adaption of the visual system by attenuating large gra-
dients, and maintaining or even enhancing the smaller ones. Similarly, Durand and
Dorsey [DC0Z decompose the HDR image into a base and a detail layer. Then, they
compress the base while keeping the details. Reinhard et al. J} &pply rst

a global transform, and locally increase the contrast afterwards. Also, Mantiuk et
al. [MMS06] show and discuss the importance of the contrast adaption of the human
visual system w.r.t. tone mapping. Most related to our work is the two-stage tone
mapper of Ferradans et al. [FBP]that applies a variational contrast enhancement

in the second stage.

However, if the goal is a displayable and well-exposed LDR image, there is a popular
alternative to the described two-step procedure of HDR imaging and tone mapping,
namely exposure fusion [MKMVEE]. Here, the task is to skip the HDR image gen-
eration by a direct fusion of the Werently exposed LDR images to an overall well-
exposed composite. Such an exposure fusion approach has several advantages: First,
there is no need to know the exposure times or the camera response function. Itis
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even possible to include images that do not follow the HDR imaging model, e.g. ash
and no ash photographs or images from\@rent cameras. Second, this one-step
approach allows a direct tuning of the nal results without the detour via an interme-
diate HDR image. Obviously, exposure fusion is related to tone mapping. However,
the diVerent types of input data ask for\drent algorithmic requirements and dif-
ferent model assumptions.

In the meantime, exposure fusion has even developed to an own research area with
various publications that we review next. Most existing exposure fusion methods
pursue the following processing pipeline: In the rst step, based on exposure fusion-
speci ¢ quality measures, weighting maps are determined for each of the input im-
ages. Such quality measures are, for instance, the magnitude of the Laplacizij,[Bog
[MKVRO09], the entropy [Go89, [HP 1(, or the colour saturation [MKVRY], [SCSA],
[SKBL4]. Another ideage.g.applied by Raman and Chaudhuri [Rd] or by Singh

et al.[SCSH], is to decompose the input images into base and detail layers. Then,
the amount of detail is considered as measure to determine the input image weights.
In the second step, these weighting maps are com- bined with the input images to
form the nal composite. Here, the fusion strategies vary from region-based blend-
ing [GoD9 and pixel-wise weighted averaging [89, [HP 1], [SCSH], [SCEL},
[SKBL4] to gradient domain fusion [hCH4], [STC" 1 and pyramid-based tech-
nigques [BK9J, [Bog0Q], [MKVR09. DiVerent to those two-step approaches, Ra-
man and Chaudhuri [RO7] propose a variational method to directly compute the
fused composite. However, this requires a smoothness constraint of the nal image
that may lead to over-smoothed blurry results. A more suitable idea by Kotwal and
Chaudhuri [KCL]is to formulate the output image as a weighted average of the input.
Then, they design an energy on this composite.

To summarize, the classic approach is to construct a high dynamic range image from a series
of low dynamic range ones taken withvilirent exposition times (but all other parameters of the
camera must be kept xed). Several papers propose methods for the fusion, of which the most
used is probably Debevec and Malik's method [@]} Then, the HDR image must be compressed
to LDR through a tone-mapping operator. Several techniques again are available in the literature,
for example Fattaét al. in 2002[FL\W0Z and Durand and Dorsey2002also [DD0Z. On the
other hand the exposure fusion approach i¥atient, in the sense that the HDR image is not
constructed: the output image is directly constructed out of the input bracketed sequence. The
critical points are then to wisely select what part of which image will be used in the fused result
(often several images are used simultaneously for a pixel, so blending weights must be computed),
but also to seamlessly fuse thosdadent parts of the inputimages. Several propositions are made
in the exposure-fusion literature, recapitulated in the above review by Hafner and Weickert. One
very popular is the “exposure fusion” method by Mertartsal, published in2009 and to which
we bring an extension here. We rst review this method, then propose our extension.

7.3 Exposure Fusion

Exposure fusion rst measures the perceptual quality of each pixel in each image of the input
sequence. Three pixel-wise metrics are used: the col@rasdturationS and well-exposedness

E. We will denote in the following byj the position of the pixel in a image, hythe color
channel, and bk the position of the image in the input sequence. Tomtrast metriases the
absolute value of a discrete Laplacian Iter applied to the grayscale version of the image. Denoting
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by K Laplacian@ Laplacian kernel, we set

18
é I ij;c;k K Laplacian - (7])

c=1

Ciix =

The authors use faK | 5piacianthe sum of diverences over the four nearest neighbors. Sdteira-
tion metricis the standard-deviation of the pixel's color,
U
1% 1%
Sij;k = {J é (I ij;c Ok é Iij;c;k )2 : (72

co=1 c=1

Finally, thewell-exposednesstric measures how close the pixel's value is to the median 0&lue
using a Gauss curve:

\8 . 0:5)2
Eijxk = exp Uik 05) ”’C’kz i ) ; (73
c=1
with = 0:2. To account for multiple color channels, this measure is made on each channel

separately and the results are multiplied.

The quality measure of each pixel is nally obtained as a product of these three metrics. By
using the product, the authors force their method to only keep pixels which are acceptable for the
three qualities simultaneously. To allow the user to choose the importance given to each quality
measure, they added a power function to each one, with paramietets; and! ¢ (by default
equal tol):

Wik = (Cijx )" :(Six ) *:(Eijc )' @ : (74)
For the blending process, the resulting weights need to be normalized as
oo
Wik = Wik o Wik - (79
ko=1

At this point, each input image has its normalized weight map. As the authors explain, one
could directly use them to fuse the images. But such an operation would lead to strong seams due
to the sharp variations in the weights. They instead propose a multiscale fusion, using the method
introduced by Ogdert al.[OABB89. This technique builds the Laplacian pyramid [B3\of the
output image by blending the Laplacian pyramids of the input images according to the Gaussian
pyramid of the weight maps. The fused image is obtained by collapsing the constructed pyramid.
We will denotelf | g the Laplacian pyramid of the input imade Gf W g the Gaussian pyramid
of the weights, antthe scale. The blending operation is then:

X
LfRg; =  GfWgjy Lflgjy : (76)
k=1

The algorithm30describes the whole process, from the quality measurements to the multiscale
fusion.

While the sum of the weights is guaranteed for every pixel to be equilttis does not
imply that the reconstructed image belongs to the initial interval. In fact it may well happens
that saturations occur in the dark or bright part. Avoiding them is possible by applyingy aie a
rescaling of the image's dynamic to tit to the standard interMal55] In our experiments, the
resulting image generally presented no artifacts. The authors however present a case where the
output image sWers from a very low frequency halo, giving an unnatural sensation (se&ofy.
their paper [MKVR)Y]). We describe and explain thi¥/ect in Sectiorv.6.
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Algorithm 30 Exposure Fusion
input : input sequence of imagés
input :!g;! ¢! e weights for saturation, contrast and well-exposedness measures,
respectively
output: fused imag®R
1 foreachimage at positiok2f 1;2; :::; N g in the input sequende
2 Compute contrast metri€ using eq. ()
3 Compute saturation metri& using eq. (2
4 Compute well-exposedness metEaising eq. (9
5 Compute weight mapVy of the current image using eqi4)

6 Normalize weights using eq.%)

7 foreachimage at positiok2f 1; 2; :::; N g in the input sequende
8 Compute Gaussian pyramid of weigl@$ W gy

9 Compute Laplacian pyramid of input image$1 gy

10 | foreachcog cient at positior) and scaledo

11 L Update Laplacian pyramid of the output image:

LfRg,  LfRg, + GfWg), :Lflg},

12 R collapse Laplacian pyramid Rg

Figure 7.1: Simulated exposure fusion method (SEF).

7.4 Simulated exposure fusion: fusion from a single image

The diY culty in local tone-mapping operators is to adapt the contrast modi cation fdedent

areas and avoid unnatural behaviors at edges such as halo or edge sharpening. Since Exposure
Fusion achieves very successfully the similar task of selecting and seamlessly merging areas from
images with signi cant exposure changes, we propose to adapt the algorithm to make it work for

a single image. The idea is to generate an input sequence simulating for this sole image its under-
exposed or overexposed versions, tuning Exposure Fusion into an image enhancement operator.
This process is displayed in Figuté The rst question we encountered is: how to generate the
sequence? We found that the choice of the over- or under-exposure processes is not that critical.
Indeed Exposure Fusion metrics are designed to always select the best pixels among the available
input images. In other words, Exposure Fusion will measure what correction, among the pro-
posed ones, is the best for each input pixel. It is therefore only necessary to present a sequence
which enhances the contrast at all levels of the dynamic.
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Figure 7.2: Approximation of the image capture process

In the RAW case, the captured image is
uj = min [Ej: to sI;S ; (77)

whereE is the scene irradiance,tg is the exposure time, angland S are respectively the black
level and the white saturation valug:]* denotes the positive part. From this model we can
estimate the irradiance of the scene:

uj +s
Eij = ”7: (18)
to
The parts ofE saturated inu are lost. We cal, an image generated fromwith the exposure
time ty. Using (798),
i, O

Viik = min uj +
ij;k to ij to
The values is small and can be neglected. In addition, taking the positive part is unnecessary as all

terms are positive. We therefore obtain a simple expression for the generating a bracketed image,

n ot 0
Vijk = min —tuij 'S (7.9)
0

Most cameras use powers of two for the exposure time. To keep generality we wiltuse
K towithk 2 Zand a parameter superior to one, for example 2. Hence:

n 0
Vik = min  Xuj;S (719

When we do not have access to the raw picture, the problem is slightlyatit because non-
linearities, typically a gamma-correction and a color balance, have been previously applied to the
pictureu. Adapting the model gives

oy = f(min [Ej to s]';S); (71}

wheref () is the composition of all the non-linearities of the aquisition process. In that case, the
generated images should be obtained using

n 0]
Vix = f(min ¥ Y(uy);S ): (713

However, although it is possible to reco¥efrom the sequence of images [[14], this is impossi-

ble from a single one. The only option is then to make a guess about the fdrramd to simulate
enough bracketed images compatible with it. Most JPEG images have undergone a multiplicative
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Figure 7.3: Remapping functions used to generate the input “bracketed” sequence, here with parameter 6
andN =4.

color balance and a gamma-correction, which is a power function. Thus, approxinfatigoa
power function seems appropriate. Denotingthe exponent, we deduce fromi{J that the
input sequence can be generated by setting
n 0
Vik = min  Pkog; SP

The image will again be saturatedSaaind we don't need to saturate below this value so the nal
expression is n 0

Vix = min  Pkoj S (713

This leads to the favorable conclusion that the generation process is simply the same for RAW and
JPEG images: we just use the identity for the funcfidoy settingp = 1 in the RAW case. To
arti cially increase the exposure time (there is no reason to decrease it as we can't recover saturated
parts) we therefore must u&e> 0.

For a more intuitive use of the algorithm, we propose a way to computem another pa-
rameter: the maximal contrast ampli cation factor authorized in the algorithm,This value is
reached when generating the last images of the sequeneehenk = N, whith N the number

of paris to generate (see below)is then determined from by = o

Each used multiplier generates a pair of images. Indeed, applying a multi}iier 1 creates
saturation. In order to prevent this information loss, we propose two functidpg: saturates
the image in the dark parts, whitg,yr; Saturates it in the bright parts. The important parameters
thus left to the user are the maximal multiplicative factoapplied to the input image, and the
total numberN of images to generate. Denoting tgn intensity, the remapping function are:

foa(t k) =maxfo; *N(t 1)+1g

foright(t; k) = min f1; *Ntg

Because factors are equal or superiot tioe fused image is guaranteed not to loose contrast.
We drew these functions for the various valuek @lenoting the position in the generated input
sequence) in gure’3. The pseudo-codeldescribes the very simple steps of our algorithm: rst,
the generation of the input sequence, and then the application of Exposure Fusion.

75 Results

Our experiments indicate that this method challenges the well known and Vecjiee Multiscale
Retinex [LM7 1JRV\B7a, PSNML. It seems indeed able to increase both the lighting and contrast in
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Algorithm 31 Exposure fusion from a single image

input : uinputimage
input : N number of image pairs to generate
input : f gar andf prigne the remapping functions
input :!g;! ¢! e exposure fusion parameters
output: R: fused image

1fork2f N;:::;0;:::;Ngdo

2 if k Othen

3 L Bik  forign(lis K)

else

| B faandliik)

(S

6 R Apply exposure fusion to sequen@with parameters ;! ¢;! ¢

(a) inputimage

() MSR (gray)

(b) single-image exposure fusion

(d) ACE=8

Figure 7.4: Tone-Mapping with the “Simulated Exposure Fusion”: original (top left) and tone-mapped (top right)
with the proposed method. The remapping functions displayed in Figure 7.3 were used: 5 images in the sequence
(including the input one) and maximal contrast factor = 6. Comparison with Multiscale Retinex on the intensity
channel [PSM14] (bottom left), witl®:1% of saturation in both black and white values for the nal “Simplest Color
Balance” Comparison with Automatic Color Enhancement (ACE) [Get12] (bottom left) with parameter8 (max-
imal authorized contrast enhancement). The generated images of our method and their corresponding weights

are displayed in Figure 7.5.
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Figure 7.5: Tone-Mapping with the “Simulated Exposure Fusion”: generated input sequence (top row) and the
corresponding weights (bottom row).

dark areas, thus revealing information in the shadows. Furthermore, even the bright parts of the
input image are improved. This is particularly relevant as Multiscale Retinex tends to compress
details in the bright areas, and generally gives grayish skies. These observations are con rmed by
gure 74. Concerning the colors, exposure fusion from a single image shows more saturation.
However, our result presents the “out-of-range” artifact. White-saturated values are observ-
able in the Figuré4 (b) on the girl's hair and in the sky. Black-saturated values are mofewlt
to spot, but are most probably present in the trees shadows in the re ect on the pickup's window.
We discuss this artifact in the next section, and give its solution in next chapter.

An IPOL workshop is available attp://ipolcore.ipol.im/demo/clientApp/demo.html?id=
77777000007 letting the user try the two presented methods on his own images and explore the
eVect of each parameter.

7.6 Saturation in the exposure fusion method

Saturation occurs in the original methods by Mertetsl, as shown in Figuré7 and Figure/.8.

Even though weights are normalized and none of the inputimages exceed the nal dynamic range,
the fused image can inherit a larger dynamic range than any of the input images. The origi-
nal exposure fusion method [MK®, MKVRO9 simply clips the values that exceed the dynamic
range, but this results in saturated areas in the nal image. The authors added ir2€@ipa-

per [MKVRO0Y the following remark: “Another issue concerns out-of-range artifacts. The pyra-
mid reconstruction does not guarantee that the resulting intensities lie wjthit], even if the
original intensities were restricted to this domain. (...) One can simply X this issue by shifting
and scaling the intensities, at the risk of reducing contrast.” We are then stuck in the unpleas-
ant situation where either we decide to compress the dynamic, but lose contrast (see for example
Figure77(b)), or we apply again a tone-mapping operator, which is speci cally what our method
was initially designed for. We shall however present an alternative way to avoid this saturation.
But we shall rst explain the apparition of this artefact. As will soon become clear, it is due to the
multiscale blending.

Constructing an image that combines the most contrasted, saturated and well-exposed parts
of each image of a given sequence supposes that the method is able to keep the small variations,
the local contrasti(e. structures and textures — the detail). Exposure fusion succeeds in selecting
these “best” parts and to fuse them seamlessly. However, constraining the fused result to respect
the initial dynamic range is more complex: it requires the method to be able to reduce the edges'
amplitude. But exposure fusion is fully based on the computation of averages of Laplacian co-
eY cients. Thus, the exposure fusion mechanism that might reduce the edges' amplitude is the
blending of high amplitude Laplacian céeients (from high amplitude edges) with lower ampli-
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Figure 7.6: Input sequence (top row) and the corresponding normalized weights maps (bottom row). The default
parameters were used for this experiment:c = 1;! s =1;! ¢ = 1. (Images courtesy of Min H. Kim.)

(a) exposure fusion output (clipped) (b) normalized output

Figure 7.7: Result of the exposure fusion method (a) with the default parameters givenin Figure 7 6= 1;! ¢ =

1;! ¢ = 1. Saturation occurs in the brights parts of the windows, despite the fact that the inputimage used in these
areas were not saturated. The information is preserved by the fusion but the image is clipped at the end of the
process, thus incurring information loss. In this experiment, the dynamic range of the fused imagg i9:38; 1; 35],
that is, almost1:75 larger than the input dynamic range. For comparison, we display the linearly-compressed
result on the right (b). It is not saturated, yet contrast is reduced compared to the input images of the bracketed
sequence.

174



(a) lines of the input sequence (b) 3rd input image

(c) lines of the fused result (d) fused result

Figure 7.8: We show here a section taken in the input sequence (represented on the images on the right column).
Allinputimages are in the correct dynamic range. The fused result however has a greater dynamic. The experiment
is carried out with gray levels images for the sake of clarity; we thus do not use the saturation mettig:= 0. The
other parametersard : = 1;! ¢ = 1. We clipped out-of-range values in (d).

tude Laplacian coécients (from lower amplitude edges). This seldom happens because weights
are designed to select the most contrasted regions. Thus, in the same way as exposure fusion
preserves the local contrast of each input images, it preserves their edges. I Fiyueeexper-
imentally show this ¥ect. We designed an input sequence composed of two test-patterns. The
rst one has values equal to zero everywhere except in a small band in its center; this band is not
saturated and has some local contrast (noise) so that exposure fusion will assign large weights to
it. The second test pattern is well-exposed and contrasted for its most part, except in the same
centered band where it is saturated to white. Thus, exposure fusion will fuse the center band of
the input 1with the side parts of inpuR. These inputs are displayed in Figure{a), (b). We
display the center line in the plot of the same gure. The fused image's (yellow line) edges height
is the average of the two input heights. If the same or another image of the sequence has large
edges in the reverse direction, then the fused image can overstep the input dynamic range: see
Figure711

In fact, we just demonstrated that saturation is a vital element of exposure fusion. A bracketed
exposure sequence obviously contains saturation; such a method would not be used otherwise.
But it is also clippingi(e. saturation) that allows exposure fusion to produce an image with re-
duced dynamic range compared to the potential HDR image one could compute using the same
bracketed exposure sequence. Understanding this is of prime importance when thinking about
our simulated exposure fus{@EF) method: indeed, we have the choice to clip the input images
or not. Itis now apparent that without clipping, our simulated exposure fusion would not be able
to enhance any image. This clari cation also leads us to a simple solution to the “out-of-range
artifact”: to reduce the dynamic range of the input sequence.
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Figure 7.9: Laplacian coef cients for a line of the input sequence and the fused result (same line as in Figure 7.8).
The Laplacian coef cients are displayed by scale, from the nest one (top row) and in descending order of neness
towards the bottom. The fused Laplacian coef cients (dark green) are a weighted combination of the input Lapla-
cian coef cients (the weights are not showed here). The fused Laplacian coef cients often follow the coef cients
of the input image that has the greatest amplitude. As a result, the fused image combines the greatest variations
(and edges!) of each different input image, which explains its increased dynamic range.
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(a) input 1

(b) input 2

(c) fused result

Figure 7.10: Fusion of input 1 and input 2 with exposure fusion. Parametetrs: = 1,! s = 0 (gray level images),
1« = 1. This simple experiment shows that exposure fusion cannot reduce edge amplitude at will. In fact, edge
reduction is a consequence of the blending of large Laplacian coef cients (from input 1) with smaller Laplacian
coef cients (from input 2). In this experiment, this is not enough to prevent a saturation of the fused result (c).
Figure 7.11 displays a more complex case where three input images are fused.

Figure 7.11: Edge preservation in exposure fusion and dynamic extension. In this experiment, the input sequence
has three images and two contrasted bands: input 1 holds the “well-exposed” rst band (saturated in the other
images); input 3 holds the well-exposed second band (saturated in the other images); input 2 holds the well-
exposed parts between the bands. By blending the well-exposed parts together, exposure fusion creates an image
too contrasted to tin the input dynamic range.
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8 Edge reduction in the simulated ex-
posure fusion

In this chapter, we improve on the method presented in chapieitwo ways: rstwe correct

the saturation artifact that we proved to be inherent to the classic exposure fusion method.
Second, we propose a smarter way to simulate the bracketed exposure sequence by automati-
cally choosing the number of brightened ant darkened images, so that images with unequally
distributed histograms between their left and right sides are better enhanced. We shall also
uncover a novel artifact of our method, namely the creation of spurious edges in areas with
smooth contrast changes (smooth edges). We solve the issue by replacing the sharp threshold
(i.e.clipping) in the remapping function by a smoother function.

Furthermore the general algorithm thus designed can be used to improve on itself in the
HDR context. In that case of application more simulated bracketed images are built from the
input, thus permitting to obtain more contrasted regions than those provided by the physical
brackets.

The proposed method eventually resembles to the local Laplacian Iter, member of the multi-
scale edge-aware smoothing lters. The similarities and dissimilarities shall be discussed in
the next chapter.

8.1 Clipping the remapping functions

As demonstrated in Chaptét Section’.6, the exposure fusion method [MK, MKVR09 has

a dynamic extension artifact. This extension is problematic because the fused result often does
not t the typical 8-bits dynamic range, thus requiring either a simple clipping of the out-of-
range values or a problematic additional tone-mapping step. For our single-image exposure fusion
method however, a simple x is to reduce the dynamic range of the input images in the generated
sequence. We show here that this can be done in a way that preserves relevant information of each
input image, and that it allows to reduce the edges' amplitude. This method can be extended to
real bracketed exposure sequences, thus correcting the dynamic extension artifact.

Let us recall the remapping function we de ned for our single-image exposure fusion method.
There are two parameters:is the maximum contrast factor used in the sequence generation;
is the number of bracketed pairs of images to simulate from the input one. We use positive and
negative indexes for a pair of images with the same contrast factor but clipping in the bright or
dark side; so the pair of images with the largest contrast facforié; N ). We keep the input
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(a) no saturation (b) with saturation

Figure 8.1: Modi ed remapping functions aimed at reducing the dynamic of the input images. So as to preserve
important information, the saturation must be done wisely. In particular, we keep values that are the most bright-
ened for the far left part of the histogram, values that are the most darkened for the far right part of the histogram,
and proceed gradually for values in-between. Here, the number of generated imageg igfth image is the input
one); the maximal contrast factor ig and the “allowed” dynamic range of the inputimage is = 2=3 of the nal
dynamic range.

image, which index i6.

. Toign(tk) =minfl;,  KNtg ifk O
fromaftk) = ¢ (tk) =maxfo, &Nt 1)+1g ifk> 0 (83

Notation and terminology

We shall use the convention that in the simulated bracketed exposure sequence, images are num-
bered from N to N. The reason is that images which number has the same absolute value have
the same contrast enhancement factor (see FigdreThe negative numbers correspond to im-

ages that enhance the left hand part of the histogram, and thus saturate the bright pixels (right
side of the histogram). Theses images are brighter, so we called the generative fuggtion

The image with positive index in the generated sequence enhance the right hand side of the his-
togram and saturate the dark pixels of the input images. They are generated using the function
f gark- We keep the (unmodi ed) input image in the sequence; its indeX i§he total number of
images in the sequence is thaid + 1.

In order to reduce the dynamic of the generated images while keeping enough relevant infor-
mation, we need to adapt the clipping process to the generated images. This leads to clip the bright
values of the image with indexN that enhance the dark values the most, to clip the dark values
of the image with indeX that enhance contrast of the bright pixels, and to equally distribute the
non-saturated intervals for in-between images. Formally, the clipping function is de ned by

clip(t; k) = max oVsetk); minfovsetk) + ;tg ; (82
with
ovsetk) = Ny, @3
- 2N ’ '
andk 2f N; N +1;:::;Ng. The new parameter controls the dynamic range of the simu-

lated bracketed images. We then use

f rem,clip(t; K) = clip fremag(t; K); k (84)

An illustration of these clipped remapping functions is given in Figiite
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In Figure8.2 we show the result of single-image exposure fusion when the clipped remapping
functions are used and compare it to the result without clipping. We used a similar test-pattern
than the one used in FigurélQ of which we display the central line. This original line appears
in Figure8.2 (a) and (b) as the orange line in the bottom plot. The fused result (dark blue) is
superimposed. The same lines taken in the generated images are displayed in the top plots of (a)
and (b). The couple of plots in (a) uses the remapping functions of Fi§urg), which produce
a fused result with extended dynamic range. On the other hand, the couple of plots in (b) uses the
remapping functions of Figurg1(b) and does not create out-of-range values.

Figure 8.3 presents the result of this method for a real image. This improved generation
method prevents saturation indeed. However, the colors seems téeotea by this speci ¢ gen-
eration method. Indeed, the clipping process actually alters colors, because they can have very
diVerent values and thus it often happens that one channel is saturated but nevertheless consid-
ered as a good pixel (because clipping reduces the number of good pixels in the input sequence).
The simple workaround we use is to work on luminance only: we rst convert the input to a
gray-level image using

Ugm = 0:2989  Ureg+0:5870 Ugreent 0:1140  Upjye, (89

then enhance the luminance only, and nally reintroduce the colontoients

Cchan= Uchar(Uum + ); (8.6)
with
0 otherwise.

(87

Due to this modi cation, we can no longer use the color saturation parameter of the Mertens
et al. method. Although this trick gives slightly less vivid results, it successfully resolves the
color alteration artifact previously introduced. The result using luminance only is displayed in
Figure8.3(c).

8.2 Asymmetric bracketed exposure

We shall further improve the bracketed image sequence generation by authorizifegerdinum-

ber for darkened or brightened images. Indeed, placing the input image at the center of the se-
guence implicitly assumes that the image needs contrast enhancement in the bright areas as much
as in the dark ones. But this is rarely the case. Hence, in order to decide the proper number of
images to generate in the left and right side of the input images in the sequence, we use the me-
dian value of the input (luminance) image, because it gives a good estimation of the proportion
of dark and bright pixels. Formally, we de g, and N4 for the number of bright and dark
images to generate, respectively. The total number of images (including the input one) is then
Np+ Ng+1=2N +1. The values o, andNy are computed from the user-set parameter

and the median value Medi&ng:

Np=[2N(1 Mediarfug)] (8.8
Ng=2N Np; (8.9)

where[:] denotes the closest-integer operator and the input image dynani®; 1. We rede ne
the remapping function usin® max = maxf Np; N40:

Foright(t; k) =minf1; kNmactg ifk 0

fremag(t; K) = Gark(GK)  =maxfo; Nmx(t 1)+1g ifk> O

(810
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(a) input sequence (top) and result (bottom) without saturation, using
remapping functions from Figure 8.1(a)

(b) input sequence (top) and result (bottom) with saturation, using
remapping functions from Figure 8.1(b)

Figure 8.2: The used test-patterns are similar to the one used in Figure 7.10. Input sequences are generated using
remapping fonctions displayed in Figure 8.1 (a) (top) and Figure 8.1 (b) (bottom), that is, the bottom couple of plots
use the remapping function with a reduced dynamic. Comparing top and bottom results: out-of-range values are
almost completely removed.
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(a) original (b) using remap

(c) usingf rem,ciip ON luminance only (d) using rem,ciip

Figure 8.3: To clip the images of the input sequence allows to reduce saturation in the fused images. Image (c)
preserves the re ections in the girl's hair and does not saturate the sky, whereas image (b) is clipped in these areas.
Parameters used here are = 4,N = 4,and = 2=3 (for image (c) and (d)), as in Figure 8.1. Exposure fusion
parametersard . =1,! s =1,! ¢ =1 (except fromimage (c) which useks = 0).

Therefore, the remapping functions with clipping are:

frem,cip(t; K) = clip fremagdt; k);k ; (811
withk 2f Np; Np+1;:::;NggandoVsetrede ned as
_ k + Np )
dVsetk) = m(l ): (812

We show in Figure3.4 the remapping functions with this asymmetric distribution of contrast-
enhanced images in the generated input sequence and the corresponding fused results. This mod-
i cation avoids increasing contrast when it is not necessary, for example on the white columns of
the house.

8.3 Introducing smooth clipping functions

An issue we encountered is the creation of shocks in areas with smooth gradients, as shown in
Figure8.5. This artifact is caused by the arti cial edges introduced when clipping in the generation
process.

In order to avoid this distortion of the original image, we modi ed the saturation process so
that it does not create edges: the brutal clipping is replaced by a smooth transition. When the val-
ues exceed the allowed dynamig,(we progressively reduce the remapping function's derivative
(the decay behaves likex) until it reaches zero. The exact formulation is unimportant but we
give it for the sake of completeness. The clipping function only is modi ed.

smooth-clift; k) = max O;minf1;g(t oVsetk) §)+ oVsetk) + Eg (813
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f remap,clip fAFemap,cIip

(a) original (b) symmetric generation (c) asymmetric generation

Figure 8.4: The original image in (a) is enhanced using a symmetric sequence (b) and an asymmetric one (c).
The asymmetric sequence better enhances contrast in originally dark regions while having a limited effect on the
columns. It produces a globally better exposed output (with value around .5). Parameters used for sequence gen-
eration:. =8,N =6 and = 1=2. Exposure fusion parameters;c = 1,!s =0,! . = 1. The luminance only

was processed.

(a) original (b) fused (sharp) (c) zoomin (b) (d) zoomiin (b)

(e) fused (smooth) (f) zoom in (e) (g) zoomin (e)

Figure 8.5: lllustration of the edge creation artifact of simulated exposure fusion, and its solution. The top line
displays the original image (a) and the result using sharp saturation in the remapping functions. The two zoom-ins
in (c) and (d) show the artifacts. The bottom row uses the smoothly saturated remapping functions (displayed in
Figure 8.6 (b)). Zoom-ins in (f) and (g) show that the problem is solved.

184



(@)fremciip (Sharp) (b)Vem,ciip (sMooth)

Figure 8.6: In (a) (sharp saturation) the parameters aké:= 5, =8, = 1=2. In(b) (smooth saturation), the
parameters are the same except for, set to 1=3. Indeed, since the saturation it not brutal, the dynamic range
nally exceeds , hence the need to reduce this parameter in order to have comparable dynamic ranges between
(a) and (b).

" BRIV
( 2)exp( 1) 2( 1)

. - I 81
sign(t) ﬂ+Iog it 1) if jtj > »; (819

g(t) =

where a parameter controlling the speed of the derivative decay. We=sé&t, because it worked
well in our experiments.

84 Results

We now compare the results we obtained with those of the Retinex methods shown in BigLiés
and8.9. We shall also compare the “new” simulated exposure fusion presented in this chapter, to
the version proposed earlier in Chaptérso that the cumulated improvements due to the clip-
ping in the generated sequence, the asymmetric generation and luminanceveclg ean be
observed simultaneously. Furthermore, we shall compare our output withotted Laplacian
lters [APH" 1JAPH" 14, that is described in Chaptéx

It has been often observed that Retinex tends to shrink contrast in bright areas. This is partic-
ularly visible in Figure.9 (c) in the sky, but also on the lighthouse in Figut& (e). Furthermore,
on this last image the retinex output contains visible luminance halos around the lighthouse. On
the contrary, our simulated exposure fusion method improve the contrast even in the bright parts
of the image and does not create halo artifacts. Concerning ACE, we shall produce a better en-
hancement of the faint variations. Indeed, our method better reveals the details, as can be observed
in Figure8.7, for the bushes and the part of the front house behind the columns particularly.

The third row in Figure8.9 displays a result obtained with the fast local Laplacian lIter (fast
LLF) [APH" 11APH" 14. In images (g) and (h) we enhanced the local contrast using8 and
two diVerent parameters. This parameter controls the height of the edges, likeour method.
The number of imageB! is directly computed from usingN = 1= . The output image with
LLF largely exceeds the input dynamic range, thus we added a nal stretching step. We used the
Simplest Color Balanakgorithm (SCB) [LLM 1] that allows saturation of a small percentage of
black and white pixels. We set this percentagt4o The last image (i) is the result of the Durand-
Dorsey tone-mapping algorithm [DOZ] where the bilateral Iter is replaced by fast LLF.Id%y
function was applied to the base layer obtained with 1 and the detail layer was added back; a
nal stretching maintained the outputimage [0; 1]. We used SCB here too. More speci cally, the
displayed image (i) isSimplestColorBalandeg(255 LLH ug+1)=log(256)+(u LLFug) .
All of these LLF results use the color images, not the luminance only. In images (g) and (h) it
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(a) original (b) SEF with =8

(c) ACEwith =8 (d) MSR on luminance

Figure 8.7: Comparison of SEF (b) with ACE (c) and MSR (d) (with chromaticity preservation, [PSM14]).The remap-
ping functions and the corresponding parameters are speci ed in Figure 8.4 (c).
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(a) original (b) SEF with = 8 and fTem,ciip

(d) ACEwith =8 (e) MSR on luminance
Figure 8.8: Comparison of SEF (b) with ACE (d) and MSR (e) (with chromaticity preservation, [PSM14]). The remap-

ping functions used in (b) are displayed in (¢). The SEF parametersare 8, = 1=2,N = 4, smooth clipping
function, luminance only modi ed.
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clearly appears that a simple increase of the local contrast along with a reduction of the underlying
base layer (because of the nal normalization step) is not enough to enhance the darkest areas of
the original image. On the other hand, this method is good at enhancing local contrast. The
result in (i) improves the visibility in originally dark areas of the image, but lacks contrast. In
comparison, our result in (e) has a better visibility and contrast everywhere.

The simulated exposure method we presented ends being comparable to the fast local Lapla-
cian lters [APH" 11APH" 14. In a few words, this last method fuses LaplacianYocients of
several modi ed versions of the input image; the modi cations consist in increasing contrast in
a particular intensity range and compressing it elsewhere. This Iter is presented in Chapter
Although it would seem at rst sight that we just re-created LLF, at least three notatdectlices
tell to the contrary. The most important one is that we us@adient contrast factors between the
diVerent images. This allows to reduce the number of images to generate, because it speci cally
depends on these factors, because images with high factors quickly exceed the authorized dynamic
range and that it is indispensable to produce at least one image that improves the contrast in every
diVerent part of the input intensity range. Hence, our method generally needs fewer simulated
images, because it reserves the large contrast factors to areas that need it (often the far left part of
the histogram) and keep smaller contrast factor in areas that do not need strong enhancement (the
lighthouse in Figures.8 for example). And because the number of images to fuse is smaller, our
method is faster and less memory-demanding. A secovierdnce resides in the physically-based
simulation process. This gives the result a more natural aspect, as can be seen in the gures of this
section. The third notable §erence lies in the brightening/darkening property of our method.
Unlike LLF that only increases the local contrast, the simulated exposure fusion also improves the
global exposition of the original image, thanks to exposure fusion metrics and an appropriate sim-
ulated bracketed exposure sequence. Furthermore, our method builds a bridge between exposure
fusion and the local Laplacian lters. To the best of our knowledge, this has not been remarked
yet.

To conclude this comparison section, the proposed method seems to outperform state-of-the-
art retinex algorithms as MSR and ACE, because it is able to both greatly improve visibility in
dark areas and preserve (and enhance!) contrast in bright areas. Furthermore, no artifact were
observed in the results. The local Laplacian Iters method can be considered as a retinex-like
method: indeed, we showed in Sectidfithe link between ACE and the unnormalized bilateral
Iter, and, as will become clear in Chapt@rthe local Laplacian Iteris based on the unnormalized
bilateral Iter. Compared to LLF results, our algorithm produces more natural images but also
generally more contrasted and with a better exposition correction.

We believe that our method could be further improved on two points: rst, the number of
images to generate should be automatically computed as the smallest integer that avoids non-
enhanced zonés Second, the fusion weights could be computed mofeiently: the quality
metrics may not be really useful because most of the time there are only one or two images that
are not clipped for each portion of the input dynamic range; so the fusion weights could be directly
given in the generation process to the image with the higher contrast factor for this range portion.
We did not try this option yet. However, we suspect that it would need for some further tuning to
properly handle transition between images for example.

! Actually, | did try to solve this problem but because of the speci ¢ way the simulation process is designed, this
results in a rather complex equation: *™ logN 12— whereN is the number of images.e. the unknown,
> 1the contrast parameter and 2 (0; 1] the allowed dynamic range in the input sequence. The problem is that
the enhancement cdecients are dierent between two consecutive images and that they themselves depend on the
parameteN that we wantto nd.
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(@) SEF, =8, Ny = 7 (b) SEF, =8,N =5 (c) SEF, =8,Nit =5

(d) original (e) ACEwith =8 (f) MSR on luminance
(g)fastLLF, =8 (h)fastLLF, =8 (i) fast LLF (tone-mapping)
= :100,N =10 = 250N =4 = 1, =:167,N =6

Figure 8.9: Comparison of SEF (a), (b), (c) with ACE (e) and MSR (f) (with chromaticity preservation, [PSM14]). The
remapping functions used in each SEF result are displayed on the corresponding images. All SEF results as®.

Image (@) uses = 1=3and N = 2N + 1 = 7 with the smooth clipping; image (b) uses = 1=2, Nyt =

2N +1 =4 with smooth clipping too. Image (c) displays results obtained in Chapter 7, except that we applied the
method to the luminance only for a fairer comparison with the other results — so (c) uses hard clippind® 1], and
sequence generation is symmetric. The respective remapping functions are displayed above the SEF results. The
third row displays results obtained with fast LLF. Images (g) and (h) are a direct outputs of fast LLF whereas image

(i) uses LLF ability to decompose the input in base+detail and Durand and Dorsey's tone-mapping [DDO02].
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input 1 input 2 input 3 input 4

Figure 8.10: Input sequence constructed by applying thﬁ remapping functions to each image of the original brack-
eted exposure sequence. The parameters used are= = 2,N = 2 and = 1=2. The remapping functions are
displayed on the top right corner of the gure. Each column correspond to an image of the original sequence,
and each row to the remapped version of this image: top row increase contrast of dark range values, middle row
increase contrast of middle range values and bottom row increase contrast of high range values. The fused result
is displayed in Figure 8.11

8.5 Application to natural bracketed exposure sequences

In this section, we apply the generation process to each image of a real bracketed exposure se-
guence. First of all, we correct the dynamic expansion artifact of the original method. Then we
show that further improved results can be obtained with a direct application of our method. We
call this algorithmsimulated exposure fusi@kEF).

In the case of an already existing bracketed exposure sequence, strong contrast enhancement
factors are no longer required. Indeed, each region of the input dynamic range is supposed to be
well-exposed in at least one image of the sequence. Hence, unlike the presented simativod
lated exposure fusitmt simulates longer exposition times, we simply want here to improve the
contrast of the already well-exposed parts of the input images to be fused.

As in our simulation-based method, the solution to the dynamic expansion artifact is brought
by the dynamic reduction of the input images. In other words, the application of the remapping
functions allows to both increase local contrast of the result and reduce its dynamic. We shall
see that further local contrast enhancement can be drawn from this speci ¢ dynamic reduction
strategy by forcing the fused result to t a reduced range dynamic and applying a nal stretching
step.

We extended the input sequence by simulating more contrasted images for each input of the
bracketed exposure sequence. We used the remapping functions with the smooth clipping de ned
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(a) SEF with normalization (b) EF with normalization

Figure 8.11: Comparison of the standard result (b) obtained with exposure fusion [MKR07, MKVR09] with the result
(a) obtained with an “extended” sequence (shown in Figure 8.10). A nal normalization step has been performed
for both images. We used the “Simplest Color Balance” algorithm [LLI/L] which allows a small percentage of
clipping for both white and black values. We xed this percentage t05%, so that a maximum of1% of the pix-

els values (a color pixel counts 3 values) is clipped in the displayed results. Our result (a) has more contrast and
saturation than for the Mertenset al. output (b).

in Section8.3with a small contrast parameter, for example= P 2in Figure8.11 To prevent the
dynamic expansion artifact presented in SectiGhwe set the parametex 1. This amounted
to reduce the dynamic of the input images.

In Figure8.10we show the extended sequence generated from a four-images sequence (dis-
played in Figure/6): we generated three images for each input of the sequence with a reduced
dynamic range. The remapping functions are displayed at the bottom left corner of the gure.
The fused image is compared to the original exposure fusion method in FRigLiré&Ve used the
Simplest Color Balan(&CB) algorithm [LLM 1] which authorizes a small percentage of clipping
for both white and black values. We xed this percentagest, so that a maximum o1% of the
pixels values (a color pixel courdgsalues) is clipped in the displayed results. This has Yeete
of reducing the contrast in the standard exposure fusion result because of its dynamic expansion
and can enhance contrast in our result depending on the paramet€he fused image with SEF
has more local contrast than with EF: for the clouds in the small top window, but also the content
of the shelf on the left.

We did not work with luminance here, because itis unclear how to handle the colgraests
of the dMerent input images. The parameters for exposure fusion were xédto ! g = 1 ¢ =
1. we equally weight the contrast, saturation and well-exposedness measures.

We present in Figur&.12(a) and (b) two further examples of application of the method. An
input sequence is displayed on the top row; the EF result is displayed in (c). It was normalized with
SCB as for the previous example, as well as the SEF fused results. The rst one (a) was obtained
with the same remapping function as in Figuiré1 The second result (b) did not enhance contrast
in the input images but simply (and greatly) reduced their dynamic. The fused result got then a
small dynamic range that was nally extended by the normalization step. Both methods better
enhance the local contrast than EF. The rst result (a) looks slightly better exposed because the
brightest picture of the input sequence contains dark parts that are enhanced by the contrast factor.
On the other hand, the second result (b) got more local contrast because the allowed dynamic
range of the input sequence was smaller — hence the nal stretching was larger.

The FigureS.13shows that despite still present, the improvement brought by our method is
less visible for sequences with more images. Indeed, among the generated images, a lot of them
remain unused, because they do not contain relevant information. Moreover, the application of
SEF on such sequences rapidly yields to very long sequ@tdemes in this example), which is

2Images copyright owner: Jacque¥rdo http://www.hdrsoft.com/exampl2sitmi
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input 1 input 2 input 3

(a) SEF with normalization (b) SEF with normalization (c) EF with normalization

Figure 8.12: Second examplef application of the generative functions to a real bracketed exposure sequence.
The three input images are displayed on the top row. The bottom row shows the result of simulated exposure fu-
sion (SEF) for two sets of parameters, in (a) and (b) (the remapping function are displayed above the corresponding
result). The result obtained with the original method of Mertenst al. is displayed in (c). Each Bujput image has
been normalized using the method described in Figure 8.11. The parameters used in (a) are = 2,N =2 and

=1=2;in(b) =1N =2 and = 1=3. The exposure fusion parameters are the same for the three images:
1c=1s=1¢=1.The SEF results have more contrast than with EF.
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input 1 input 2 input 3 input 4 input 5

(a) SEF with normalization (b) SEF with normalization (c) EF with normalization

Figure 8.13: Application of SEF to a sequence with ve imagedisplayed on the top row. We show two different
results of SEF in (a) and (b) and the standard EF result in (c). The remapping functions used in (a) and (b) are
displayed above the respective results. The EF parametersbge= ! s = | = 1; the parameters for SEF are

=3, =1=3andNy =5in(@), =1, =1=andNw: =4 in(b). The SEF results are better than for EF, but
the improvement for this sequence is smaller than it would be for a shorter one.

an inconvenient for large images.

We believe that this method could be further improved by a wiser generation of the extended
sequence, by taking into account the relevant information of each image. This may allow to reduce
the length of the simulated sequence and thus theiency of the algorithm.

Slmages owner is unknown. Sequence can be found at http://www.hdrsoft.com/examipés

193



194



9 Local Laplacian Iters and connection
to other operators

In Chapter7 and ChapteBwe described the exposure fusion method and proposed a frame-
work to extend it to the single image case through the generation of a simulated bracketed
exposure sequence. This fusion algorithm is based upon the manipulation of Laplacian pyra-
mids, and has demonstrated the usefulness of such a multi-scale image representation. We
focus in this chapter on the local Laplacian Iters. They use the same Laplacian pyramid but
in the context of multi-scale local contrast manipulation.

The local Laplacian Iters have originally been proposed0a by Paris, Hasind and Kautz
[PHK1]. A fast version was proposed the same year by Aubry, Paris, Nadfawutz and
Durand [APH" 1). The initial conference papers were extended to journal pape28ldfor

the Aubryet al. fast local Laplacian lters [APH14 and in 2015or the Pariset al. original
local Laplacian lters [PHK. Local Laplacian lters could roughly be explained either as
a single image exposure fusion algorithm similar to the method we described in Clapter
or as a multi-scale unnormalized bilateral Iter. The latter interpretation was given by Aubry
et al. in their analysis of the lter, where they made the link with the bilateral Iter and the
multi-scale version of the anisotropic\ision [ElD2, BCD4].

The local Laplacian lter (LLF) is versatile and can be used for a wide variety of contrast
manipulations tasks, ranging from edge-aware smoothing to local contrast enhancement with
dynamic reduction. Unlike most lters, LLF constructs the Laplacian pyramid of the output
image; a nal operatiorcollapsethe pyramid and builds the ltered image. Each Laplacian
coe€Y cient is computed independently using a dedicatemhapping functigrwhich shape is
chosen in function of the application. The fast version (FLL) uses the Durand-Dorsey4DD
slicing strategy. It greatly speeds up the execution by computing only a reduced number of
remapped images.

In this chapter, we rst expound the local Laplacian Iters and their fast approximation. Then,
we show their strong connection with the exposure fusion method [MKRIKVR09. We

shall see that a fast local Laplacian Iter can be computed using the exposure fusion frame-
work with very little dVerence in the nal result. Finally, we describe the artifacts of these
lters. Indeed, although they have proven to be one of the best suited lters for base plus
detail decomposition for contrast manipulation, the local Laplacian Iters have some draw-
backs, the major ones being a loss of translation-invariance and luminance halos.

9.1 Thelocal Laplacian lter

We describe in this section the Local Laplacian Iters (LLF). Two pseudo-codes are given: the
O(N ) version, and its accelerated version wittiN log N ) complexity, both proposed by Paris
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et al.[PHK11PHK13. The next section will present the fast@(sN) version § is the number
of slices) proposed by Aubst al.[APH" 1JAPH" 14. This one is called the fast local Laplacian
Iter (FLL). It uses the Durand, Parist al.[DD 02, PDO6, PD09, CPD07] slicing method.

In its original version, the local Laplacian Iter modi es (almost) independently each pixel of
the input image by constructing the “appropriate” Laplacian pyramid.

Let us denote by = ( X1; X2) the position of a pixel in the image. The Gaussian and Lapla-
cian pyramids of an image at pixelx and scalé will be respectively writte@pyif u; lg(x) and
Lpyif u; lg(x). The Burtet al.[BA83, Gaussian pyramid ai is constructed by recursively down-
sampling the image by factors of two until its size is only one pixel. The last scale, the coarser one,
will be denoted bymax. The Laplacian pyramid at scdleorresponds to the dference between
two scales andl + 1 of the Gaussian pyramid, the second one being upsampled by a factor two.
The last scale of the Laplacian pyramid is called the residual. It simply is the coarsest scale of the
Gaussian pyramid. Formally,

) _ux) if 1=0
Gpyfulol) = pownsampleGpyfu:l  1g () if 1> 0 (43
Lpyif u: Ig(x) = Gpyfu;lg(x) UpsampleGpyrfu;l+1g (x) if |<Imax (92)

Gpyf u; l1g(x) if 1= lmax

where theDownsampland Upsampleperators are de ned in Algorithn32and Algorithm 33
respectively. The IteK used for downsampling and upsampling is the one de ned by Rdirt
alin 1983BA83:

k =[:05;:25;:4;:25;:05](in ID)
K = k'k (in 2D). (9.3

The input image can be recovered by “collapsing” the Laplacian pyramid, that is, recursively up-
sampling and adding the Laplacian dogents, starting from the residual. Inded8lpyff u;lg =

Lpyrfu; g+ UpsampleGpyffu;l + 1g andGpyif u; Og = u. TheCollapseperator is presented

in Algorithm 34 In order to handle images with arbitrary height and widthpsampledds a line
and/or a column when needed so that the height and width of the upsampled image are the same
than before downsampling (parameters qdahd odd, at line 9). When performing the convo-

lution in the downsampling procedure, the borders are replicated. In the upsampling procedure,
border handling is made explicit at linésand9.

Algorithm 32 Downsample
input : imageu
output: v the downsampled image
1H heightofu
2 W  width ofu
3 K Burtand Adelson's kernel de ned irB(3)

4u u K /I convolve the image
5 foreachpixel(x1;x2);x1 2 f1;:::;bH=2c 1g;x> 2f1;:::;bW=2c 1gdo

6 L V(X1;X2)  U(2X1;2X2) Il re-sample
7 return v
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Algorithm 33 Upsample

input : imageu of size(H; W)
input : parameters odg odd,
output: u” the upsampled image of sig2H + odd,; 2W + odd,).
1 H heightofu
2 W  width ofu
3 K Burtand Adelson's kernel de ned ird(3)
4 Upad Increase size afby replicating its rst and last lines and columns

5U initialize with zeros an image of sigd W9 = (2 H +4;2W + 4)

pad

7 t u;ad(le;ZXZ) 4 Upad(X]_;Xz) /I factor 4 for normalization
8 u;ad u;ad K /I interpolate with the same filter K
9 u remove2 rstand (2 odd,) lastlinesan@ rstand (2 odd,) last columns

fromu

pad /I remove padding

Algorithm 34 Collapse

input : Laplacian pyramid.pyif ug
output: imageu
1ulme Lpyfu;Imaxg /I residual
2 for scalé fromlnax 1toOdo
3 odd, heigh{Lpyfu;lg) 2 heigh(u'*1)
4 odd, width(Lpyfu;lg) 2 width(u'*!)
5 | u Lpyfu;lg+ Upsampleu'*!: oddy; odd,

6 return u®
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Figure 9.1: Simplistic illustration of the principle used in LLF: on the top line, a one-dimensional signal with an
edge, and below two scales of its (rescaled) Laplacian pyramid. On the top left is the original image and in the
top middle are the two remapped versions. Below them, two scales of their (rescaled) Laplacian pyramid (middle
and bottom rows). The right hand side of the illustration is obtained by merging the “non-clipped” parts of the
Laplacian coef cients of the remapped signals (middle columns), and the nal output (top right) after collapsing
the Laplacian pyramid. Figure reproduced from [PHK15].

Thelocal Laplacian Iter constructs directly the Laplacian pyramid of the nalimage LLF ug .
Its result is then obtained by collapsing the pyramid: tug= CollapseLpyr LLF ug

The Laplacian coécients contain a space and scale-localized information. This means that
a “good” Laplacian cogécient is obtained when the input image has the desired properties at the
corresponding space location and scale. The LLF method makes the most of this observation by
computing each Laplacian céeient of the nal pyramid from an improved version of the input
image — improved so that it has the desired properties at the particular space and scale localization
of the Laplacian coécient. In other words, a modi ed version of the input image is computed for
each output Laplacian c¥ecient, and this modi cation depends both on the spatial position and
the scale of the concerned dbeent. Then the “good” coécients are copied from the Laplacian
pyramid of the corresponding modi ed input into the output Laplacian pyramid. This process in
described in Algorithns5

Figure9.1gives a visual explanation in a simpli ed case. An infiidtsignal is given on the
top left; along with two scales of its Laplacian pyranii@ @ndL 1, bottom left). Two modi ed
versions of this input signal (with two scales of their Laplacian pyramids) are given in the center
columns. In this illustration, we want to reduce the edge amplitude, thus each pixel on the left
of the edge has the same modi ed version of the input signal : unmodi ed on the left part but
clipped on the right one (in green); and each pixel on the right has the same remapped signal:
unmodi ed on the right, clipped on the left (in purple). Then, the “good” céeients from the
green and purple pyramids are copied in the output Laplacian pyramid (bottom right) and the
nal signal (top right) is obtained by collapsing this pyramid. Fig@réggives a visual explanation
in the 2D case.

The modi ed versions are obtained through the application of a “remapping function”, on
which the user has full control. This remapping function gives, in the spatial and scale support
of the considered Laplacian ¢6eient, the properties that one wants to obtain in the nal image,
i.eedge reduction or enhancement, detail reduction or enhancement. We call this remapping
functionr(). S. Pariet al.[PHK1]1PHK1} proposed

(= 9+ st 9) .t g=r) ifjt g«
g+signt o (t g )+ ) ifjt g>

where | distinguishes between edges from detaik a parameter for smoothing ¢ 1) or am-
plifying ( < 1)the details, and a parameter to decrease 1) orincrease (> 1) the height

(9.4)
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Algorithm 35 Local Laplacian lters (LLFYO(N 2) algorithm.
input : uthe inputimage
input : r the remapping function
output: LLF ug
1 Compute the Gaussian pyram@@pyif ug of u
2 Create an empty Laplacian pyramigyff ug /I initialization
3 foreachpixelx and scaledo

4 g = Gpyru;lg(x)

5 u= r(u;Q) /I remap the input image in function of g
6 | Compute the Laplacian pyramidgpyif u% of u®
7 Lpyfe;lg(x)  Lpyrfu®lg(x) /I update output Laplacian pyramid

8 LLHug Collapselpyff ug

Figure 9.2: Figure and legend reproduced from [PHK15]. Family of point-wise functions for edge-aware manipu-
lation (...). The parameters and control how detail and tone are processed respectively. To compute a given
Laplacian coef cient in the output, the original image is Itered point-wise using a nonlinear functiom (t) of the
form shown. This remapping function is parameterized by the Gaussian pyramid coef cient g, describing the local
image content, and a threshold ; used to distinguish ne details (red) from larger edges (blue).

of edges. Finallg is the xed point ofr and is used along with; to separate the ne variations
from the large ones, which are treated/@iently. Pixels which intensity is further thap from

the reference intensity are considered as part of the large variations, while the others belong to
the ne variations. The authors call this parametgto represent the Gaussian pyramid value
corresponding to the same position as the current Laplaciai cant. The remapping functions
one can obtain with dferent parameters are displayed in Figtite

In this method, many pixels are remapped and Laplacialy adents computed, but not used.
Aware of this drawback, the authors [PHEPHK1) presented a way to accelerate the algorithm by
avoiding the computation of remapped pixels and Laplaciaryagents that would not be used.

It simply consists in limiting the considered neighborhood to the pixels that have an in uence
on the current Laplacian cdecient. The pseudo-code of this method is given in Algorit&f

the operations performed on sub-regions only of the input images are marked in red. The com-
plexity of this method iO(N logN) whereN is the number of pixels. Paret alalso suggest

to further reduce the computational cost of their method by remapping a downsampled version
of the input image for coarse scales. We do not describe this version here. We shall however
describe in the following the fast approximation of LLF published by M. Awdirglin 2015nd
2014APH" 1]JAPH" 14.
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Figure 9.3: Figure and legend reproduced from [PHK15]. “Overview of the basic idea of our approach. For each
pixel in the Gaussian pyramid of the input (red dot), we look up its valug Based org, we remap the input image
using a point- wise function, build a Laplacian pyramid from this intermediate result, then copy the appropriate
pixel into the output Laplacian pyramid. This process is repeated for each pixel over all scales until the output
pyramid is lled, which is then collapsed to give the nal result. For more ef cient computation, only parts of the
intermediate pyramid need to be generated.”

Algorithm 36 Local Laplcian Filters (LLFD(N logN) version.
input : uthe inputimage
input : r the remapping function
output: LLF ug

1 Compute the Gaussian pyram@@pyif ug of u

2 Create an empty Laplacian pyramigyf ug /I initialization

3 foreachcoé cient at positiow and scaledo

4 g Gpyrfu;lg(x) /I center of remapping function
5 Determine sub-regioh of u needed to evaluatepyif t; 1g(x)

6 u Crof(u;!)

7 UP r(ur;g) /I remap the sub-region only
8 | Compute the Laplacian pyramidpyif u? g of u?

9 Lpyrf e, 1g(x)  Lpyrfu?;lg(x) /I update output pyramid

10 LEFf ug Collapsd_pyff ug
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9.2 Fast approximation of the local Laplacian Iters using the slicing
method

Right after the publication of the Local Laplacian Filter®i,1M. Aubry, F. Durand and the
authors of LLF published the “Fast Local Laplacian Filers”, an approximation of FLL that allows
acceleration “on the order &0 Furthermore, they show the relation with anisotropid/dsion

and the bilateral Iter, and introduce thennormalized bilatearl ltethat we described in Sec-
tion 4.4

The fast version speeds up the execution by computing 8mmapped images (wheg&is
about1(Q instead of computing a remapped image for eadVedént output Laplacian co€cient.
The authors recommend to take a number of slices equal$-tadfnamic/ ;). This number of
slices is an important parameter for the approximation. Indeed, with a too reduced number of
slices, artifacts like luminance halos can appear and notably alter the result. The pseudo-code of
this fast method is given in Algorithia’

Algorithm 37 Fast Local Laplacian lters (FLL)
input : imageu
input : remapping functiorr
input : number of slice$
output: image FLEug
1 Compute the Gaussian pyrami@pyif ug of the inputu

2 Regularly sample the intensity range w&lvalued 1; 2; 3;::; sgO
3 foreachintensity samplg do
4 ui0= r(u; ) /I remap u in function of i

5 | Compute Laplacian pyramidpyif uiog

6 foreachpyramid co¥cient at positior and scaledo

g Gpyrfu;lg(x) Il same coefficient but in the Gaussian pyr.

8 Findi such that ; and j+1 are the closest intensity samples frgm

Computeasuchthag=(1 a) j+ a i«

/I Linearly interpolate the output Laplacian coefficient from the precomputed
pyramids

10 | Lpyferlg(x) (1 a)Lpyfullg(x)+ aLpyful,;lg(x)

11FLLfug Collapsepyrf bg

In Aubry et al.[APH" 11APH" 14, the proposed remapping function is\#rent from Paris
etal.[PHK1]1PHK1Y. They use a Gaussian-based one, thus closer to the bilateral lter:

f(t)y=t+ (t gexp ¢ 97=27; (9.5

where and , are two parameters: the rst one allows to choose between local contrast en-
hancement (> 0) and edge-aware smoothing & 1), the second one makes the distinction
between small variations (which amplitude is beloy and large ones (amplitude above).

More generally it can be writteh(t) = t+ (t g)f Yt g) wheref %is a continuous function.

As the authors say, it includes the functiar of Pariset alwith f {t  g)=(t r(t))=(t g).
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9.3 Similarities and diVerences between local Laplacian lter and ex-
posure fusion

The fast LLF (FLL) is actually very similar to the exposure fusion (EF, see S&gtigxithough
it does not use as input a sequence of images, it actually generates several images from the input,
and merges dierent pieces of the latter using Laplacian pyramid decompositions. More precisely,
FLL needs no quality measurement, because it knows which intensity batgli¢e”, or “layer”)
has been corrected (with the appropriate contrast modi cation function) and therefore must be
retained for the nal image. As in EF, LLF and FLL construct the Laplacian pyramid of the nal
image. A signi cant d¥erence, however, is that local Laplacian lters recompute the weight maps
at each scale, while EF calculates them only at the nest scale and then subsamples them.

We review exposure fusion (EF) in ChapierWWe have seen that the output Laplacian pyra-
mid Lpyif tgrg is a weighted combination of the Laplacian pyramids of kthémagesuy of the
bracketed exposure input sequence. The normalized weight map associated to each input image
is denoted®,. With these notations, EF can be written

X
Lpyrf bver IgX) = Gpyff Wi; IgdX)Lpyrf uy; IgX): (9.6)
k=1

The fused image Ekgis nally obtained by collapsing the pyramlgpyif terg. Observe that the
fast local Laplacian algorithm can be written in pretty much the same way 1Dinélgorithm 37
reads

Lpyferlg(x) (1 a)Lpyfullgx)+ aLpyfu’,,;ldx); (9.7

where FLEug = Collaps@.pyif tr1g). The interpolation weight maj in Equation ©.7) de-
pends onGpyif u; Ig(x), as for the position of the blended images in the pre-computed sequence.
Although itis not equivalent, it plays the same rolé&my f Wy gin Equation ©.6). These interpo-
lation weights can be pre-computed too. Denotigthe interpolation weight pyramid associated
with the remapped image? (according to the intensity sample), we have

xS
Lpyff e 1g(X) = Ai(I; X)Lpyrf uio; Igx): (9.8
i=1

Hence, the structures of FLL and EF are similar. Both blend a sequence of images according to
some weights. But, unlike EF, the local Laplacian Iters build their own sequence of images from
a single one, like in the extension of EF proposed in Chaptéfurthermore, the computation

of the weights is dlerent: in EF the weights are computed from quality metrics, and at the nest
scale. Then they are downsampled in a Gaussian pyramid. In FLL however, weights are computed
at each scale, hengg(l; x) 8 Gpyrf A;(0); I1g(x).

In Figure 9.4 we examine the 8Merence between ltering results of EF and FLL's weighting
methods. Put another way, we try to reproduce the output of FLL with EF. In order to do so,
we generate® images with the remapping functions of FLL and fused them with weights con-
structed as in FLL. We shall denote this modi ed EF versioBEByIn EF the last scale is processed,
so we processed it in LLF too. We denote this versioi. Finally the only dference betweeF
andLCF are the weights in the multi-scale blending. The resulting processed images are visually
very similar, but not identical. There are more low frequency halos in the FLL result. We measured
for this experiment @snr (peak signal-to-noise ratio) @f0dB between both results, meaning that
they are very similar indeed.
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(a) original (b)ER ug (c))5+3 (u ERug)

(d)FLIlf ug (e):)5+3 (u Ftlfug)

Figure 9.4: First row: original image (a), base layer (b) with the modi ed exposure fusi@Fj and corresponding
detail layer (c). Second row: base (d) and detail (e) layers obtained with the modi ed fast local Laplacian lters
(FLL). The range parameter used is = 25=255. More low-frequency halos are visible in the FLL output. Overall,
the difference between both results is minor.

9.4 Artifacts in the local Laplacian lters

The local Laplacian lters present several problems that we have attempted to correct. On the
one hand, we have seen that the Gaussian pyramid introduces artefacts, in the form of a rebound
near the contours or a slight change in the average intensity of the image. These are in fact two
symptoms of the same problem: the sub-sampling introduces an approximation, and the sampled
values are used to guide the contrast corrections applied to the image. The approximations are
then apparent in the nal image in the form of asymmetries and “rebounds”. The scale-space
version of LLF that we introduce in the sequel solves this problem. On the other hand, depending
on the contrast correction function used, LLF produces either a slight halo of luminance or a
little reinforcement of the contours. Our proposal to work in a Gaussian scale-space allows us to
use dverent “oracles’, allowing to limit the luminance halo. Moreover, this new interpretation

of the Iter makes it possible to propose a compact formula. We shall introduce this scale-space
interpretation and the compact formula in the Chapti

9.4.1 Atranslation-variant lter

We realized the following experiment: a test-pattern was constructed using a single line repeated
several times to make it two-dimensional. There is no variation in the vertical direction. We name
this test-pattern 8. This test-pattern was then shifted by one pixel to the right — we extend the
plateau on the left part and remove a column on the right, so that both have the same size. We
name this test-pattern# Figure9.5 displays these test-pattern in blue in the plots (b) and (c).
We ltered these test-pattern with LLF and superimposed in red the result on the input image.
The remapping function used in LLF is displayed in Figiitg(a); it preserves the local contrast
but reduces the edges' amplitude (dynamic compression). Noticeably, the red lines in (b) and (c)
diVer. Hence, the Iter is not translation invariant.

But that's not all: two more observations can be made from this experiment. First, although
the input test-pattern 8 is perfectly symmetric, its Itered result is not: the red line in plot (a)
has a negative high-frequency bounce on the right hand side of the edge, whereas on the left
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(a) remapping function (b) test-pattern #1 (c) test-pattern #1 plus shift of
the edge by 1 pixel to the right

Figure 9.5: Loss of translation invariance with LLF. The (a) remapping function preserves the local contrast but
reduces the edges amplitude. Test-pattern #1: The spurious bounce didn't disappear. In illustration (b), | the edge
was shifted by one pixel on the right, and the position of the bounce changed.

hand side the edge is slightly smoothed. The same asymmetry, yet inverted, appears in plot (b).
Second, there is a shift in the mean value of the results. Indeed, both ltered signals have their
average intensity higher than the input test-patterns. In fact, both of these artifacts are additional
symptoms of the loss of translation invariance caused by the downsampling.

In the local Laplacian lters, the output Laplacian dbeients are computed from remapped
images, and this remapping depends on the vayf u; g x) (for the Laplacian coécient
Lpyif &;1g(x)). Because the pyramid is not translation-invariant, the values used in the remap-
ping can change severely, even for a very small modi cation of the input ineag@xperiment
in Figure9.4. Moreover, when an edge or other structure is not aligned with the sampling grid,
which is the more common situation, this results in its asymmetric deformation. In our experi-
ment, this creates at ne scales the high-frequency bounce close to the edge, from one side or the
other depending on the position of the edge relatively to the sampling grid. At coarser scales, the
same artifact creates the shift in the mean value of the result compared to the input. In short, the
only diVerence between both observed artifacts is/amince of scale.

9.4.2 Staircase ¥ectand halo

The Local Laplacian Filter $rs from the staircas&/ect. We presented this artifact in Chapter

This é/ect is particularly visible in the iterated bilateral Iter, where it creates a staircase in the
intensities. The samé&/ect creates an “plateau expansion’, that is also known as an oversharpening
artifact. For not perfectly sharp edges, both sides are expanded by the lter, resulting in a sharper
transition than in the original image. In a way, this is the contrary of the halo artifact. Indeed, the
halo comes from an averaging of pixels from both sides of an edge ; whereas the oversharpening
arises when the lter chooses to replace the edge's transition values by an average of values that all
belong to one side or the other, therefore expanding the plateaus.

Compared to the bilateral lter, this artifact in LLF is seriously reduced, to such an extent
that it is barely noticeable. However, it still exists. More importantly, we frequently observed a
luminance halo. This halo is visible for example in the clouds, and we called it the “black clouds
eVect” The authors themselves discuss this artefact in their article [JHRHK 13. As we shall
explain in the upcoming chapter, this phenomenon is due to the remapping function's reference
0, because it is set to be a blurred version of the input.

Staircasing measurementsWe used a unique test-pattern for each edge widththe smooth-
ness of the edge). We nally combined all the test-patterns to get a result (an image) that allows
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(@) BF (b) BFR

(c) SLF (d) ESLF

Figure 9.6: Each gure above is the difference between the reference and the lItered version of the test-pattern,
ampli ed with a factor 4 for visualization. Diff= :5+4 (1™ | ") We recall the results of the Bilateral Filter
(BF) and the Bilateral Filter with regression in the rstrow. In the second row, we show the results for our two Local
Laplacian Filters. Parameters; = 0:20; Nbscaes= 6 (Max s = 16);Nbsamples = 64 (and last scale is not processed).
Test-pattern parameters: standard-deviations for blurring go from 0 to 30 pixels.

to see the evolution of the staircasing as a function of the edge smoothness. To reword, each line
observed in the nal image was extracted from a test-pattern witb @dge (made with adD
horizontal signal repeated along the vertical axis). Thus, we ltered as many test-patterns as the
number of lines in the displayed images.

For a better comparison between ESLF and the bilateral lters, we used the following remap-
ping functions:

()=t texpf t?=(2 2)g
(1) = +4(1) " (09

which have a closer form to the Bilateral range kernel and allow to use the same parameter
We give in Figur®.6 a preview of the results obtained with the bilateral Iter (BF), the bilateral
Iter with regression (BFR) as proposed by Buadeal.[BCMO0€], the scale-space local Laplacian
Iters (SLF) and the extended scale-space local Laplacian lters (ESLF). The last two lters are
introduced in the upcoming chapter.

Interpretation The test-pattern used in these experiments is black on the left side and white on
the right side. The transition is sharp in the test-pattern used for the top lines of the displayed
images, and is progressively smoothed with a Gaussian kernel to get the following lines. These
images display the derence between the input and the ltered image,the detail layer. A dark

area on the leftand a light area on the right are the evidence of a halo. On the contrary, a light zone
on the left and a dark one on the right are the evidence of a stair&&s#. é~rom the top to the
bottom, we observe the proportion of each artifact for smooth edges of increasing width. What
appears rstis the strong staircaseeet of the bilateral Iter, especially for thin edges. On the
other hand, this is the Iter with the faintest halo. Concerning the bilateral Ilter with regression
(BFR) the staircaseé/ect is greatly reduced but does not disappear. The halo is slightly increased
relatively to the standard BF. While ESLF better preserves a step-edge (see the uppermost line of
the test-pattern) and slightly diminish the halo, it increases the staird4se eompared to SLF
(compare Figur®.6 (c) and (d)). We shall explain this in the next chapter.
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(a)F (b) 2 (c)nbscaes= 3 (d) Nbscales= 5 (e)nbscates= 7

f)r Q) (h)Nbscales= 3 () Nbscates= 5 () Nbscates= 7

Figure 9.7: Some ltering results by SLF and ESLF. The rstline shows our result for edge-reduction. The remapping
function r is used to get the oracle for the second Itering step with ESLF, which uses the remapping functien

The bottom row is our result for detail-reduction. In our experiment, there is no detail, the Iter is then supposed

to let the input image unmodi ed. ESLF is plotted in orange, while SLF appears in red. Our modi cation succeeds
in removing artifacts we observed before (see Section 9.4).

9.4.3 Oscillations

Figure9.7shows some Itering results by SLF and ESLF. The line of H#}iB plotted in orange,

while SLFug appears in red; the input test-pattern is plotted in blue. Our interest here is in the
spurious oscillations that are visible near the edge in plots (d), (h), (i) and (j). For the last three
ones indeed, the remapping function used is designed for local contrast reduction. So why is the
Itered result diVerent from the input? In a few words, the edge in this test-pattern is considered
as a detail in some pixels during the Itering process. Indeed, the distinction between base and
detail variations is made according to the reference integsitythe remapping function: we have

seen that in Sectiof 1of this chapter. Since this “guidg’is nothing but a blurred version of the

input image (Gaussian pyramid), at edggss not close to the input image anymore. Therefore,
when getting closer to the edge the image is considered as detail before, by getting even closer to
the edge the interpretation changes to base, creating those spurious oscillations.
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10 Compactformulaforthe local Lapla-
cian lter and its scale-space exten-
sion

In the previous chapter, we presented the local Laplacian Iter (LLF) and scanned its struc-
tural analogy with exposure fusion [MKR, MKVRO09. We showed that despite some ex-
cellent results, LLF Mers from three artifacts, namely, its lack of translation-invariance, its
luminance halos and a slight staircasee&. The lack of translation-invariance is particularly
annoying because it creates irregularities, small bounces and a mean-shift. Fortunately, all of
these issues will be solved in this chapter bysmale-space local Laplacian.lIter

We start by dissecting the local Laplacian Iter and proposing a compact formula by refor-
mulating the local Laplacian Iter in a scale-space setting. This amounts to removing the
downsampling and upsampling steps of the original lter. Besides giving a clean mathemat-
ical description of the Iter, a welcomed outcome of this re-interpretation of the Iter is the
reinstatement of the translation invariance property which LLF lacked. Furthermore, this
interpretation puts in evidence the implicit guide used in LLF; this guide, that we shall call
oraclecan then be replaced by the result of an arbitrary previous Iter. We therefore explore
the in uence of the oracle in this new framework. As we shall see, edge-aware smoothing |-
ters used as oracle reduce the luminance halo but increase the staifeasevhile a simple
Gaussian ltered oracle (as used in the original Iter) has no stairc&¥eetebut sometimes
visible luminance halos. We nally compare the results of this extended scale-space local
Laplacian lter with the standard local Laplacian Iter in the context of base plus detail image
decomposition.

101 The scale-space point of view

Our goal is to give a clean interpretation of the local Laplacian lters by reformulating them in a
Gaussian a scale-space rather than in a Gaussian pyramid. This amounts to removing the down-
sampling and upsampling steps in the local Laplacian lters. One should remark that the Gaussian
pyramid is not identical to a downsampled Gaussian scale-space. Indeed, the upsampling step (in-
terpolation) is not a convolution because it gives ¥atent kernel at even and odd positions. In

fact in an image this gives four\drent Iters, one for each con guration of even and odd lines

and columns. We can get a representation of the Gaussian pyramid Iters afidoalihe diVer-

ent positions by successively downsampling and upsampling a Kronecker deltéx;yotbe a
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Figure 10.1: Kernels at scalkin the Gaussian scale-space (blue line) and the Gaussian pyramid. There are four
different kernels, one for each different con guration of even and odd line and column. The shift between the
yellow and green kernels with respect to the other ones is for visualization purposes only.

Kronecker delta at positio(x; y). The Gaussian pyramid kernel is

KepydX;y) = UpsampléDownsample (x;y))): (101

The downsampling and upsampling procedures are described in Algofittand Algorithm33
they use Burt and Adelson's [BY lter f =[:05;:25;:4;:25;:05]. On the other hand, the kernel
in the Gaussian scale-space is the convolution of the same Kronecker delta in the Fourier domain
with = 1. We display in Figure.O1the kernelkgpyrin the four possible con gurations and
compare it to the unique lter in the Gaussian scale-space.

The Gaussian scale-sp&sfug of the input imageu is de ned as

u(x) if 1=0

GsbugiD=" "\ o if 1>0°

(102

where denotes the convolution,is the scale (or level) ar@ | is a normalized Gaussian kernel

with standard deviation|. The total number of levels in the discrete Gaussian and Laplacian
scale-space, taking into account the nest one, is thgg + 1. We use standard deviations

powers of two: | = 2' 1 and . = 1. The Laplacian scale-space is théedénce between

two consecutive scales of the Gaussian scale-space. Its last scale, the residual, is the same as the
Gaussian scale-space:

Gssug(x;l) Gssug(x;1+1) if I<Ipax

Lssug(x;1) = Gssug(x; 1) if 1= lmax

(103
For the sake of simplicity in the upcoming developments@gte the Dirac mass. This way,
the notationGs$ug(x;1) = G, u (x)istrueingeneral.

In the same way as for the Laplacian pyramid, the input image can be recomposed from its
Laplacian scale-space by collapsing it. In the scale-space case, it simply amounts to summing all
levels:

Pygax

u(x) = Lssug(x;1): (104
1=0
Pseudo-codes

We now present the pseudo-code of the exact and fast versions of the scale-space local Laplacian
Iters. Indeed, the lter bene ts from the same fast approximation as the standard LLF (slicing).
However, the complexity and the memory consumption are higher with this Iter, because in the

scale space each scale has the same size as the highest resolution image (whereas the sub-sampling
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process in the Gaussian Pyramid allows to save time and memory).

In Algorithm 38we present the exact version of the scale-space local Laplacian Iter. The
only diVerence with the exact version (see AlgoritBfof LLF is the absence of down and up-
sampling because of the Gaussian scale-space. Algotithdascribes how this scale-space is
computed. The operation at linéis optional but allows to reduce the complexity fra@(N 2)
to O(N log(N)) with N the number of pixels. This technique is proposed by Ratred.[PHK 1]
PHK1%. At line 5the remapping is pixel-wise.

The fast approximation of SLF is described in AlgoritBn Likewise, this is an adaptation
of the Aubryet al. method (which pseudo-code is given in Algorith®d where we replace the
Gaussian and Laplacian pyramids by scale-spaces. We recall that this fast approximation relies on
the computation of the exact result of the Iter for only a reduced set of samples of the intensity
range. The obtained images are calégerga layer is associated to each intensity sample). Finally,
each pixel which intensity does not correspond to any sample is interpolated between the two
closest layerd.€. the two layers which corresponding intensities are the closest to the current
pixels' intensity).

Operations at line$, 8, 9, 10and 12are performed pixel-wise. This fast algorithm has an
additional paramete8. As advised by Aubrgt al.[APH" 1]JAPH" 14, one can take ; as interval
between two intensity samples, that$sz dD= ;e+ 1 whered:.eis the closest superior integer
operator,D the dynamic range and; the range parameter, for remapping functieft) = t +
tG | (1).

The number of scales used is the maximum possible in the Gaussian pyramid sense. In the
Gaussian (dyadic) pyramid, the last leigl is attained when whether the height or the width of
the image id pixel. That is)nax is such thatnin (Imax) = 1 with

Amin (1) = ddmin (I 1)=2e; (105

with dmin (0) = min f heigh{u); width(u)g. We kept this de nition in our scale-space method.
Following the implementation provided by the authors of the original LLF and of the fast version
FLL, the residual is not modi ed.

Algorithm 38 Scale-space Local Laplacian Filter
input : imageu
input : remapping functior=
output: Itered image SLFug
1 Compute the Gaussian scale-sp@s$sug of u Il Algorithm 40

2 foreachcog cient at positior and scalédo
/I Get Gaussian scale-space value for the remapping function

g Gssug(x;l)

Determine sub-image of u needed to evaluates$ viema(X; 1)

Viemap MV 0) /I apply remapping function
Compute Laplacian scale-spd$ Viemad Of Viemap

Ls$ug(x;1)  Ls$Viemag(X; 1) /I update output Laplacian scale-space

N o o A w

8 Obtain SLFug by collapsing Laplacian scale-sphastg /I Equation 10.4

Complexity The complexity of the fast Fourier transform (FFT)dsN log(N) , with N the
number of pixels of the image. Thus, the complexity of the algorithm used to compute the Gaus-
sian Scale-Space representation of the image (see Algotithim O N log(N)Inhax , because
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Algorithm 39 Fast scale-space local Laplacian Iters (fast SLF)

input : imageu
input : remapping functiorr
input : numbersS of intensity samples
output: Itered image SLFug
1 Compute Gaussian scale-sp&sfug of input imageu

2 Sample the intensity range betwaain(u) andmax(u) with S values %; 1:::; S 1g
regularly spaced

3 1 0 /I intensity step between two samples

4 for each intensity samplbwithi 2f0;1;:::;S 1gdo

5 Uremap HU N /I apply remapping function

6 Compute the Gaussian scale-sp&@e$uremadd Of Uremap
7 for each scaldfroml1tolnax 1do
8

max(0;1 j ' Gssug(l)j=) /I interpolation weights
/I Compute the Laplacian scale-space at scale I
9 Ls$ Uremarg(l) GSEUremarg(l) GSEUremarg(l +1)
/I Update output Laplacian scale-space (initialized with zeros)
10 Ls$ug(l) Ls$ug(l) + Ls$uremad(l)
11 Ls$tg(Ima Gssug(Imax) /I residual is not modified
12 SLR ug :28* Ls$ug(l) /I collapse output scale-space

Algorithm 40: Computation of the Gaussian scale-space of an image

input : imageu
input : number of scaleknax ( Nest scale i and coarsest oneligax)
output: Gssugthe Gaussian scale-spaceiof

1 =1 I fixed
2 Gssug(0) u /Il finest scale (I=0) of Gs$ug is the input image itself

3 Makeu periodic by symmetrization; geter with double size

4 Omirror = FFT Uperg /I Fourier transform of Uper
5 for each scaldrom1tolyax dO

6 21 ref /I Gaussian standard-deviation for the current scale

7 G expf (2 2 2k kg /I Gaussian kernel in the Fourier domain

8 u FFT 1f Oper G g /I convolution in Fourier Domain

9 Gssug(l)  crop(u) /I we only need the first quarter of the result
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we need to compute the FFT of the input image dpgx inverse FFT (total number of scales is

Imax + 1, taking the nestinto account). Our algorithm (see Algorith®s) requires the compu-

tation of a Gaussian Scale-Space for the input image and for each remapped image. The overall
complexity of our method is the® N log(N )Slmax , with S the number of samples.

102 Compact formula for the local Laplacian Iters

Let us now build the local Laplacian lter in the scale-space. The scale-space local Laplacian lter
(SLF) algorithm, described in AlgorithB8 is simply the exact LLF (which pseudo-code is givenin
Algorithm 35 where we replaced the Gaussian and Laplacian pyramids by Gaussian and Laplacian
scale-spaces. This pseudo-code will help us to construct the formal description of SLF. Starting
at line 8, we progressively unfold the expression of the scale-space local Laplacian lter for an
arbitrary pixelx. The output is given by collapsing the scale-space progressively constructed at
line7. Thatis,

bﬁax
SLRF ug(x) = Ls$ug; (106)
1=0
which can be written

Iy 1
SLF ug(x) = G, G,.) W+ G, uX; (107)
1=0

whereu®is the remapped inputimage. The rightmost part of Equatibfif) is the residual of the

Laplacian scale-space. The Laplacian scale-kpéég in Equation (L06) represents the Lapla-
cian scale-space of the nal image under construction. For a speci ¢ cquplg the Laplacian

coeY cientLs$ug(x; 1) is computed lings from u® The imageuCis the result of the application of
f-to the inputu according to the reference intensit§g |, u (x):

W=+@u (G, uX): (108)

This is obtained by merging together lingand5. There is one dierent imageu®for each pixel

of each scale, because it is remapped accordiggttte Gaussian cdecient at scalé and pixel

X. We use here a remapping functienwith the same form as used by the authors of thst
local Laplacian Iters [APFI 11APH" 14. This function is nevertheless equivalent to the Patis
al. function: r(t;g) = +(t g) + g. It will be useful in the coming developments. There is no
need to add the constaigtafter remapping the intensity Yerences with~ Indeed, in the local
Laplacian lter the remapped images are used for the computation of Laplacidiciemts, which
are insensitive to this constant. Inserting Equatiai® in Equation107 gives the nal equation:

ImX‘ 1
SLF ug(x) = G, G,) Fu G, u(x (N+ G
=0

u(x): (109

I'max

By denotingD; = G, G ,,; the dVerence-of-Gaussian operator agk;1) = G|, u (X)
the reference intensity irwe get

Iy 1
SLREug(x) = Dy Fu gxI) 0+ G, u(X: (1019
1=0

This formula is our more compact formula for the Local Laplacian Filter.
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Second compact formula using the fast LLF point of view

The fast version of local Laplacian lters by Aulatyal.is based on the piecewise linear interpre-
tation of the bilateral Iter (described in Sectidiv), transposed to FLL. Although this scheme is
meant to accelerate the Iter by downsampling in the space and range domains, this formulation
is exact. We can express the scale-space local Laplacian Ilters from the same point of view. This
actually completes our previous expression of SLF by providing another compact and insightful
formulation:

2 P iy 1
SLF ug(x) = e xE(G, u)(x) +(G

wx;1;9) (G, G,.,) Hu 9 X¥:

mac W) (101)

In this equation,w is what we could call a “Laplacian layer”: LaplacianYcgients at scale of

the remapped input image according to the reference interggitYhe output image Slfkig is
constructed from these layers, by selecting at each pixel the Laplacioieoss in a particular

layer, depending on the val& , u)(x). This value acts as a guide indicating for each pixel and
each scalbow the input image should be remappedet the enhanced nal result. Put another

way, the guid€¢G , u) is used to pick the value of the Laplacian ¥agent in the “right layer”.

There are as many layers as the number of possible intensities for the guide, and constructing SLF
amounts to collect the “correct” values in the pre-computed layers. The fast approximation con-
sists in pre-computing only a reduced set of Laplacian layers, and, for values of the guide that have
no pre-computed layer, to linearly interpolate between the two closest pre-computed values. As
we shall see in Sectid3, this guide is implicit in the original local Laplacian Iters, whereas our
scale-space interpretation reveals its presence and allows its replacement.

A quick review of Aubryet al. analysis of the local Laplacian Iter (and why ours¥ectively go
further)

In their paper [APH 1]1APH" 14, Aubry et al. make the link between the local Laplacian lters,

the bilateral Iter, and the anisotropic Yusion. They also present a new lIter, thenormalized
bilateral Iter, that we review in Sectioh03 In the following, we put ourselves back in the context

of (Gaussian and Laplacian) pyramids and reproduce and review the steps ofékabignalysis

of the local Laplacian Iters. Their work suggests the form of the single-scale lter used in LLF.
Yet our scale-space interpretation, besides the exact and compact formulation of the lIter, allows
a deeper understanding of the edge-aware manipulation of the Laplacixrcierds that occurs

at scales superior to zero.

The authors in [APH 11APH" 14 rst consider a remapping function of the form

r=t (t of( g (1013

wheref is a continuous function. In order to make the link with the bilateral Iter, we take
f(t)= G, (t)=exp t2=2 ?) with , the range parameterge.the standard deviation of the
range Gaussian kernel, as in the bilateral Iter. They then consider a pyramid with only two scales,
that is,Lpyrf t; Og and Lpyif &; 1g. The residual is not processed,luoyif o, 1g = Lpyrf u; 1g. At

the nest scale, the Laplacian pyramid of the output is

Lpyfe; Og(x) = r u(x) G, r(u) (X); (1013
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where is the convolution ands , a normalized approximately Gaussian kernel. Indeed, in LLF
this Gaussian convolution is in practice performed by successively downsampling and upsampling
r (u). By expanding the remapping functionwe have

Lpyrf & 0g(x) = u(x) (u(x) 9)G, u(x) g
G, u (u 9G6,u g (x; (1019

which, using.pyrfu; 0Og(x) = u(x) G , u (x) and replacingy(x) by u(x) since we are at the
nest scale, can be simpli ed as

Lpyf&; 0g(x) = Lpyfu;0g(x)+ G, u u(x) G, u u(x) (x): (1015

This reduction is possible only for the nest scale, because we used the fag{that u(x),
which is not true for the other scales. By upsampling the residual and adding it to the equation
(collapsing the pyramid), we get

LLFug(X) = ux)+ G, u ux) G, u ux) (x); (1019

where we replaced; by s to stress the resemblance with the bilateral lter. With the same
objective in mind, we re-write Equatiori(Q16 as
X
LLFug(x) = u(x)+ G (x y)G, u(y) u(x) ufy) u(x): (1017
y

This is the de nition of theunnormalized bilateral Iter The authors observe that “one may
achieve cross ltering” with LLF, but let this case for further studies. We shall come back to the
“guidance” process in LLF soon (see Secfiog).

Concerning deeper pyramids (more than two levels, the nest and the residual), the authors
give, in a similar spirit, the Iter that computes the output Laplacian ¥aeents.

Lpyftilg(x)= D u 9(x) G, u 9(x) (xX); (1019
whereg(x) = (G, u)(x)andD, =G, G , .Writtenina closer formto the bilateral lter,
X
Lpyferlg(x) = Di(x y)G, u(y) 9(x) u(y) 9(x) : (1019

y

Becausg(x) 6 u(x) the expression cannot be collapsed as above. As the authors conclude their
analysis, “this shows that each level of the output pyramid is a local averagemdriies over a
neighborhood ofx” We shall reveal in the next section the implicit lter that is used for scales
superiors to zero in LLF.

Note however that Equation.Q19 does not exactly describe the local Laplacian lter. As we
said before, although thedérence-of-Gaussian operar is described as the\dérence between
two Gaussian kernels, in practice the blurred versions of the input are obtained through successive
downsampling and upsampling, using the methods described in Algorithamd Algorithm33
respectively. Using the de nition dpyrand Lpyr given in Equation ¢.1) and Equation 9.2),
respectively, the exact Laplacian¥a@&nts of the nal image are written

Lpyff o lgx) = Lpyfr-u Gpyfu;ldx) ;lgXx): (1020
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Thus, using theJpsampl®perator (Algorithm33, the nal result is obtained from the previous
Equation (L020) and the following recurrence relation (collapsing):

| — 1+1 .
g = Upsampl + Lpyif &1
| p ples™) py g ; (1029
trma = Gpyf u;Imaxg
where the nest scale is the output image: EuF = +°. Although this is already a compact
formulation of the local Laplacian lter, it does not have the clarity and completeness of the scale-
space formulations given in Equatioh@9).

To conclude on the LLF analysis carried out by the authors in [AREAPH" 14, they demon-
strate that LLF is actually the unnormalized bilateral Iter when the pyramid is @slyales deep.
They consequently also make the link with the anisotropiudion. In the multi-scale case how-
ever, they only give the form under which the Laplacianvccients are computed. In our analysis
we go further and present the underlying single-scale lter, thatis, as will soon become clear, a sort
of “guided” unnormalized bilateral Iter: indeed, it is situated between the unnormalized bilateral
Iter and the unnormalized cross bilateral lter. Furthermore, while the last Equaifiomis al-
ready a compact formulation, it only expresses an intermediary result — the Laplaciacients.
Our formulation with the scale-space in Equati®fi9 is more complete as it expresses the nal
Iter directly.

103 Oracle-based unnormalized bilateral lter

First of all, we recall the de nition of the unnormalized bilateral Iter proposed by Aubtyl.in
201JAPH™ 11APH" 14. We shall indeed refer to this Iter many times in this section.

X
UBH ug(x) = u(x) G.(x G, uly) ux) uly) ux): (1029
y

Alternatively, this Iter can be written
UBFRug(x)= 1 C(X) u(x)+ C(x)BF ug(x); (1023
whereC(x) is the bilateral Iter normalization factor irx and BF the bilateral Iter.

The cross or joint bilateral lter [ED4], [PSA" 04], uses a second image (we cal/)t re-
lated to the image to be Itered, for the computation of the range weights. For example with a
ash/no- ash pair of images in a low-light context: the no- ash image, noisy but with better col-
ors, is Itered (denoised) according to the ash image with higher signal-to-noise ratio. In the
unnormalized case, this Iter can be written

X
UCBH u; vg(x) = u(x) G.(x yG, v(y) v(x) uly) u(¥); (1024
y

where in our example is the input no- ash image and the ash image from with the range
weights are computed. Like the unnormalized bilateral Iter, UCBF has an alternative form sim-
ilar to Equation (L023; the only dVerence being the replacement of the bilateral Iteif B§ by

the cross bilateral Iter CBFu; vg.
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Furthermore, let us introduce the remapping function
Ht)= t+ tf (t); (1025

wheref is a continuous odd function and a parameter that allows to choose between detail
ampli cation ( > 0) and detail reduction (< 0). In practice we restrict ourselves to the detail
smoothing casd,e. = 1, which places SLF in the bilateral ltering context. For the same
reasonwe usk(t) = G ,(t)=exp  t?=2 ?) . Thatis,

K=t G ,(t): (1026

We shall prefer this writing rather than de ned in Equation (L01) because it makes the ref-
erence intensity explicit and thus clarify our developments. Both expressions are equivalent:
r(t) = +(t g)+ g. Remark that the addition of the constagill often be omitted because it

is discarded when convolving with thevirence-of-Gaussian operatiof = G, G ,_, (both
Gaussian kernels are normalized).

On the importance of the oracle in the local Laplacian lters

Let's now have a closer look at the impact of the “reference intengitysed in the remapping
function of the local Laplacian lter. Indeed, this guide , u depends on the scale As a
consequence, it is not possible to collapse the pyramid in the de nition of SLF in EquEtign
although it would be possible if the guide were identical at each scale. For example, using the input
imageu in place ofG , u and collapsing the pyramid leads to

Iy 1
SLF ug(x) = G, G,) rFu ux (N+ G, u(); (1027
1=0

which is in fact the same as

SLRug(x)= (G, G Fu ux) X+ G u (x) (1028

I'max ) I'max

because the Gaussian convolutions cancel each other betweeienendliscales. Sin€ , is a
Kronecker delta, it can be simply removed becayse u(x)) in x is zero. By expanding the

remapping function using{t) = t tG , (t), we get
SLRug= G uixx G

u ux) G, u ux u ukx (x: (1029

r

Imax I'max

TheG , ~ uterms cancel each other and the constafx) can be taken out the convolution.
Finally, by expanding the convolution:

X
SLRug=u(x)+ G, (x y)G,  uly) u() ufy) u(x): (1030
y

This is nothing but the unnormalized bilateral lter.
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Interpretation The local Laplacian Iters, when the guite, uis replaced by the inputimage,
simply is the unnormalized bilateral Iter with spatial parametegy,, . This gives an idea of the
importance of this guide in LLihdeed, UBF as well as BF loose their ability to Iter when used
with large spatial standard deviation, because the number of neighbors with the same intensity
increase. This makes the weights given to pixels with slighiBreint intensity to decrease, and,
inturn, the Iter tends to average only pixels that have the same intensity. Henceyélotveeness

of LLF is due to the guide introduced in the (unnormalized) bilateral Iter. From now on, we shall
call this guide amracle

In the next section, we study the single-scale lter implicitly used in SLF. As we shall see, this
oraclede nes a new (unnormalized) Iter dierent both from the bilateral Iter and the cross bi-
lateral Iter.

1031 Implicitedge-aware lterin the scale-space local Laplacian lters

Our compact formulation of the scale-space local Laplacian lter is given in EquatienHow-
ever, we remind it here for the sake of readability:

|mX( 1
SLR ug(x) = G, G,,) ru G, ux ¥+ G, u(x): (103}
1=0
At a speci c scaleéand pixelx, the Laplacian scale-space 8ldrcan be written
X
Lssug(;l)= G, G, (x yruy) oxl (1033

y

whereg(x;1)= G, u (x).Usingt)=t tG ,(t), Equation (L032 can be rewritten

X
Ls$ug(x; 1) = G, G, (x yuy
y
X
G, G, (x G, uy axl) uy) oaxl); (1033
y

because the Gaussian kernels are normalized so the cogétahtin the left part of the equation
is discarded. This constant cannot be removed in the right part because of the range kernel.

Interpretation: This equation shows thdis$ug(x;1) is actually the dference between two
Laplacian co¥écients. The rsttermin the equation is the standard Laplacian scale-space, made of
the diVerence between two successive scales of the Gaussian scale-space. The second term however
is the dVerence between two successive scales of a bilateral-like Iter. This particular lter has the
form of the unnormalized bilateral Iter proposed by Aubeyal.in [APH™ 1JAPH" 14, but is dif-
ferent: it uses anracley. This is not a cross or joint unnormalized bilateral Iter [E2, PSA 04]
either, because the oracle would be used in the range kernel only (see Equatid).(This is a
new lter. We shall call it in the following thennormalized oracle-based bilateral {&fOBF).
Itis de ned as:
X
UOBHK u; vg(x) = v(x) + G.x yG, uly) v(xX) u(y) v(x : (1039
y
We callv the oracle because it is the value that controls, for each pjxehether a pixey in its
neighborhood will participate a lot in the computation of the result or not. It can be considered as
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a general framework including the unnormalized bilateral lter as a particular case: indeed, using
the input itself as oracle brings UOBF back to the unnormalized bilateral Iter (see its de nition
in Equation (L022). The oracler used in SLFig(x;1) = G , u. We shall explore in Sectidr)5
the diVerent Iters and the improvements we can derive from the replacement of this oracle by
more sophisticated ones.

Inserting Equation {039 in Equation (1033, the Laplacian coécients can be rewritten

Lssug(x)= (G, G ,.,) u(®
UOBF fu;g(x;1)g(x) UOBF ., fu;g(x;1)g(x) ; (1039

where the indices indicates the spatial standard-deviation of the Iters. Hence, by collapsing the
scale-space we get

ImX( 1
SLF ug(x) = u(x) UOBF fu;g(x;1)g(x) UOBF ., fu;g(x;Dg(x) : (1039
1=0

This is yet another compact and complete formula for the scale-space local Laplacian lter. In
Equation (L0036 the two terms of the additive base and detail decomposition of the injpcan

be easily identi ed: SLF is used for detail smoothing, thusf 8gks the base layer; the rightmost

part of the equation is then the detail layer. Intuitively, the detail layer is obtained by collapsing
an edge-aware scale-space constructed from this new bilateral-like oracle-based Iter. We show
in Section104 the multi-scale decomposition obtained with it. But we rst concentrate on its
properties in a single-scale context.

1032 The single-scale unnormalized oracle-based bilateral Iter

In Equation (L0349 the Iter is unnormalized; in the same way as for the unnormalized bilateral
Iter (see Equation (022 and Equation (023), it can be rewritten in function of a normalized
Iter,

UOBFRu;vg(x)= 1 C(x) v(x)+ C(x)OBH u;vg(x); (10379

P
whereC(x) = e (X yY)G, u(y) v(x) isthenormalizationterman@ C 1because
the spatial kerneb | is normalized. Finally, OBF is the (normalized) oracle-based bilateral lter:

OBF u; vg(x) = G.(x G, uy) v(x) u(y: (1038

1
0
Once again, using the input image itself as oracle brings OBF back to the bilateral Iter.

In the same way as for the unnormalized bilateral Iter, this Iter does not Iter where the
normalization factorC is small (generally at edges). Instead, it takes the oracle value (Equa-
tion (1039). Figure102 compares the ltered results of UOBF, UBF and BF for a test-pattern.
This allows to appreciate the importance of the oracle since this is the Seledce between UBF
and UOBF.

The fact that the edges ofare replaced by those of the oracle by UOBF is not problematic in
the case of SLF. Indeed, for SLF we are only interested inVeesttice between two applications
of UOBF. Since only the spatial parameter changes between the two ilerghé oracle is the

This name might not be the greatest name for this Iter. However, among the ourishing bilateral lter descen-
dants, namely the joint [ED4], cross [PSA04], dual [BMMO07 and even the guided [CTC} bilateral lters, not
to mention other trilateral [CDY, multilateral [BRO9] or joint multilateral [LTL1Q lters, we decided to go for this
(unnormalized) oracle-based bilateral [lg©OBF, OBF) so as not to pick one already existing name.
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Figure 10.2: Test-pattern (light blue) and its ltered version by the bilateral Iter (orange); the unnormalized bi-
lateral Iter (green); and the unnormalized oracle-base bilateral Iter (red). The same parameters are used for all
lters: | = 2 pixelsand ; = :2. The oracle used in UOBF& |, u. Itis drawn in dark blue. Compared to BF,
UBF has a lighter smoothing effect. On the contrary, UOBF has a stronger smoothing than both BF and UBF. In
fact, UOBF closely follows its oracle, except at the edge where most of the differences averaged have the same sign
(positive at the top of the edge, negative at the bottom).

same), the dierence is null at places where UOBF retwnsThis lIter is thus particularly well
suited for the computation of edge-aware Laplacianyodents. We examine in the next section

the edge-aware multi-scale decomposition allowed by the oracle-based unnormalized bilateral |-
ter.

Conclusion on the scale-space local Laplacian ItersThe scale-space local Laplacian Iters are
closely related to the bilateral lter; in fact, as demonstrated by Aethiy, it is a multi-scale un-
normalized bilateral Iter. The normalization can be removed in a “safe” way as one manipulates
Laplacian co¥ cients, which in average are null. We showed however that the authors inserted
a guide, that we call an oracle in order to make the distinction with the cross (or joint) bilateral
Iter. This oracle allows an\éective multi-scale decomposition of the detail layer, which is not
possible with the bilateral Iter (nor the unnormalized one), as explainedd08by Farbmaret

al. [FFLg. We examine in the next section the multi-scale base+detail decomposition realized
in SLF and compare it to the bilateral pyramid.

104 Bilateral pyramids

The history of multi-scale bilateral image decomposition is relatively recent and also fairly short.
In 2007 two papers are published, one by Fatalal.[FARO7 and the other by Cheret al.
[CPDO7. They use a bilateral pyramid as a tool for, respectively, image fusion and transfer of
photographic look. However, the proposed schemes aferdit, as we shall see very soon. The
following contributions on the multi-scale edge-aware base+detail decomposition topic showed
the imperfections of the bilateral Iter and proposed alternative schemes. This is the case with
the weighted least squaf@¢LS) Iter proposed by Farbmamet al. in 2008[FFLDE and a lo-

cal extrema-based Iter proposed by Swdiral. in 2009[SSDY]. Fattal's edge-avoiding wavelets
[Fai09 in 2009also enter this category, with the older paper bgtal.in 2005L.SA0. Still on

the wavelet topic, Haniket al.propose in201Aan “edge-optimized a-trous wavelets” [HD].that

allows a mutli-scale base+detail decomposition and avoids the artifacts due to the decimation in
Fattal's method. This work is in continuation of tR®1(Maper by Dammertet al.[DSHL1J. Our
interest here is in the usage of the bilateral Iter for multi-scale decomposition, so we concentrate
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Figure 10.3: Four scales of the multiscale bilateral decomposition on a 1D row of pixel intensities. Black lines indi-
cate pixels atscal¢ 1thatare used by the fast algorithm to compute the value of the pixel in column 3 at scaje

In contrast, the basic algorithm also considers all the pixels marked with green linesj At 3 the basic algorithm
averages in the gray pixel in column 6, but the fast algorithm never sees a contribution from that pixel. lllustration
and caption reproduced from [FARO7].

on the two2007papers.

Fattal et al. bilateral pyramid In this method the input image is recursively Itered with in-
creasing spatial parametey; , adjusted so that the combinedect of the successive lters has a
spatial standard-deviation & ¢, withj the level of the pyramid. To preserve edges during this
process, the range parameter is reduced at each iteration. They set =2 Thatis,

vitt = BF . fvig (1039
whereVC is the input image. As explained by the authors [EA{quoting)

(--.) we do not subsample thé because such downsampling would blur the edges
in V. In addition downsampling would prevent the decomposition from being trans-
lation invariant and could introduce grid artifacts when the coarser scales are manip-
ulated.

We recognize here the artifacts we described in ChéaptéFhe detail layers at Werent scales

are then simply computed by the\drence between two consecutive scales of the pyramid. The
author proposes an¥cient scheme for the computation of this pyramid, based ordtigerithme

a trousmethod [MalR9 HKMMT 9(]. The key idea is to constantly use kernels with a very few
non-zero entries. This is possible thanks to the recursive aspect of the method, as demonstrated
for Gaussian kernels in [B8{. In fact, the authors use for each level a kernel viith 5 non-

Zero co¥ cients: those coécients are separated by more and more zeros, as shown in Eigftire

This scheme saves many operations and the author reports shorter running times ttz006he
bilateral grid fast approximation [PO4].

The Chenet al. bilateral pyramid The bilateral ltering in this method is applied to the input
image with increasing space and range parameters. This is particularly adapted to the fast approx-
imation proposed by the same authors, the bilateral grid. It is described in Chagteteed, the
complexity of this method decreases when the smoothing parameters increase.

Both schemes are not well suited for multi-scale base and detail image decomposition. As ex-
plained by Farbmaet al.[FFL®4], Chen's method does not well preserve the edges in the high
scales, and Fattal's scheme oversharpens the edges, cre#&negck layers with reversed gradi-
ents with respect to the initial image. In fact, this is a consequence of the staMeaseeinforced
by the recursive application of the bilateral Iter. Compared to these methods, the local Laplacian
Iter has two advantages: rst, it does not present a strong staircdseteas in [FAR7 and its
luminance halo is smaller than in [CRL], because its range parameteris not modi ed across
the scales. As we have seen, the scale-dependent oracle is used instead to give the range weights in
the oracle-based unnormalized bilateral Iter. Second, LLF allows downsampling, therefore sav-
ing a large amount of memory and computations. Figlitg shows the decomposition obtained
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Figure 10.4: Progressively coarsening a signal using different edge-preserving schemes. The coarsened versions
are shown superimposed on the signal (using different shades of blue: lighter is coarser). The corresponding detail
signals are plotted in shades of red below. Figure and caption reproduced from [FFLS08].

with Chen's and Fattal's schemes. Wneighted least squaf@i.S) Iter displayed in the middle
is proposed by Farbmaet al.in that same paper as aWective way to achieve better multi-scale
decomposition. Itis reviewed in Chaptéet

We display in Figuré05the pyramids obtained with a Gaussian lter, BF, UBF, and eventually
with UOBF. The ltered images at Werent scales are superimposed for each Iter and displayed
in the column on the left. The “Laplacian” c¥eients,i.ethe diVerence between two consecutive
levels of the pyramidare in the right column. In order to compare the results with SLF, the range
parameter . used in the bilateral Iter is kept unchanged over the scales. Each method lters the
inputimage to produce the tferent scales (no recursion). The rstrow shows the classic Gaussian
and Laplacian pyramids. The two middle rows show the multi-scale decomposition generated by
the bilateral Iter and its unnormalized version. As the scale increases, these Iters do not produce
smoother images; in practice the “Laplacian”¥aéents between two coarse scales can have high
frequencies; Yet it is quite unsettling for a multi-scale decompaosition to present roughly the same
frequency content at each scale of the decomposition. We have seen thaeFattaind Chen
et al. suggested ways to get around this, but their solutions present unacceptable artifacts. The
last row presents the results obtained with UOBF. The right side plot is obtained Meeedt
way than above. Indeed, this pyramid is computed using a scale-dependent®racle like the
Gaussian pyramid displayed in the top left plot. But the “LaplacianYaments are obtained from
the diVerence between two scales of a pyramid that usesatine oraclsee Equationi(036). As
seen in Figuré02the UOBF Iter does not respect the input edges but those of the oracle, which
explains that the bottom left plot resembles the top left one. As for the SLF det¥it@ds in
the bottom right plot, they accurately capture the details at multiple scales.

Put another way, the insertion of an oracle in the bilateral Iter allows a proper multi-scale
base plus detail decomposition. This proves the importance of such an oracle in the local Lapla-
cian lters. However the previous contributions on LLF [PHKPHKL5APH" 11APH" 14 do
not discuss it: the default oracle is the Gaussian pyramid. We explore in the next section some
decomposition produced using\dtrent oracles.

105 A new framework using derent oracles in the scale-space local
Laplacian lters

The interpretation of the local Laplacian Iters in a Gaussian scale-space allowed us to propose
a complete, clean and compact formula for the Iter. It also helped to reveal the implicit oracle-
based bilateral lter used in SLF. We showed that this modi ed bilateral lter succeeds in creating

Note that unlike other sections we use the term “pyramid” or scale-space indistinctly here, by reference@ [CPD
FARD7). For the sake of clarity, we shall soon return to “scale-space” for methods that does not involve re-sampling .
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Gaussian lter

bilateral lter

unnorm. bilateral lter

oracle-based UBH.€.UOBF)

Figure 10.5: The rst column shows the pyramid obtained by ltering at different scales the input image. The
second column shows the difference between two consecutive levels of the pyramid (for the pyramid on the same
row), except for the last row concerning UOBF. For this lterindeed, an oracle is used inthe ltering, and this oracle
depends on the scale. The Laplacian coef cients in the bottom right plot are obtained by the difference between
two consecutive levels of a pyramid that usethe same oracléor those levels, whereas in the bottom left a different
oracle is used at each scale. The oracle used)(}) = G , u,i.e.the Gaussian scale-space displayed in the top
left plot. This is coherent with Equation(1036. Thus, the bottom right plot displays the detail layer's Laplacian
coef cients of UOBF. The parameter, remains unchanged over the scales. Unlike with BF or UBF, the Laplacian
coef cients obtained with UOBF effectively contains only low-scale variations in the low levels; moreover, they do
not contain large oscillations due to edges like with the Gaussian lter.
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(a) test-pattern (b) test-pattern with a 1-pixel shift

Figure 10.6: Restoration of the translation invariance in SLF. Compared to results shown in Figure 9.5 our lter
produces a better result. The spurious bounce and mean-shift we observed before are not present any more.
Furthermore, we saw that the previous algorithms weren't translation-invariant, whereas our algorithm is. (com-
pare illustrations (a) and (b)). Parameter used: remapping functiorpresented in Figure 9.5 (a)nbscales = 7 ;
Nbsamples = 128.

an edge-aware pyramidal decomposition, unlike previous schemes based on the bilateral lter.
Furthermore, our scale-space interpretation of the local Laplacian lters has the desirable prop-
erty of translation invariance, in which the original LLF is lacking, causing several artifacts (see
Sectiorb.4). We shall verify its disappearance in this section. But that is not all: after the discovery
of an oracle in LLF's skeleton we decided to make some experiments with it. We shall discover that
the luminance halo artifact of the original method can be alleviated by edge-preserved smoothed
oracles. This, unfortunately, is paid by the reappearance of a staiket@ad an increased com-
plexity. Once again, we face the dilemma where we have on the one hand a good preservation of
edges that comes with the stairca¥ea and, on the other hand, no staircase but a luminance
halo. The improvement brought by our general framework lies in that this decision is left to the
user.

Translation invariance Before extending the scale-space local Laplacian IterVereint ora-

cles, let examine is behavior with respect to translation. In Chéptes saw that LLF was not
invariant by translation. This creates two artifacts, namely, small bounces and an intensity shift
(see Figur®.5in Chapter9). They are in fact the same artifact at two/drent scales, and are
originated in the sampling of the pyramid. Indeed, the oracle used to remap the input image and
compute the output pyramid in LLF is downsampled. Hence, the remapping itself strongly de-
pends on the downsampling grid, which, in turn, causes strong discrepancy between the ltered
results of an image and its translated version — even for small translatmt, pixel. Figurel06

shows the result of the application of SLF to our simple test pattern. This test-pattern has already
been used in the Chaptérwhen we described the artifacts that the non-translation-invariance
gives rise to in LLF. It is constituted of the same step-edge repeated along the vertical axis. We
used the standard oracle¢. (G, u). Unlike the previous result obtained with LLF, there is

no diVerence between the two plots (a) and (b) in Figl®5. In other terms, the scale-space
interpretation in translation-invariant. Furthermore, the absence of the bounce and “mean-shift”
we observed in LLF prove that they indeed come from the sampling of the pyramid.

One could think that the oracle does not bring much freedom in the original lter because of
the down-sampling. But, although using the Gaussian pyramid is particularly convenient because
it is already computed, nothing forces the oracle to be down-sampled. Indeed, it is used to remap
the intensity of the full resolution input image at any scale. We want to solve the luminance halo
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