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Abstract

In this CIFRE thesis, a collaboration between the Centre de Mathématiques et leurs Applica-
tions, École Normale Supérieure Paris-Saclay, and the company DxO Labs, we tackle the problem
of the additive decomposition of an image into base and detail. Such a decomposition is a funda-
mental tool in image processing. For applications to professional photo editing in DxO Photolab, a
core requirement is the absence of artifacts. For instance, in the context of contrast enhancement,
in which the base is reduced and the detail increased, minor artifacts becomes highly visible. The
distortions thus introduced are unacceptable from the point of view of a photographer.

The objective of this thesis is to single out and study the most suitable �lters to perform this
task, to improve the best ones and to de�ne new ones. This requires a rigorous measure of the
quality of the base plus detail decomposition. We examine two classic artifacts (halo and staircas-
ing) and discover three more sorts that are equally crucial: contrast halo, compartmentalization,
and the dark halo. This leads us to construct �ve adapted patterns to measure these artifacts. We
end up ranking the optimal �lters based on these measurements, and arrive at a clear decision
about the best �lters.

In the �rst part of the dissertation we study the widely used guided and bilateral �lters. In-
depth analysis of the guided �lter and confrontation with the bilateral �lter are performed. An
asymptotic analysis of the �lter when its support tends towards zero permits to link it with the
Perona-Malik anisotropic diVusion. It is shown that the guided �lter does not have the edge am-
pli�cation term which has been proven to cause the staircase eVect; this is experimentally veri�ed
with an implementation that simulates this equation. This new �lter has no halo, nor contrast
halo. We then review the bilateral �lter along with its main fast approximations, and the solutions
to the staircase eVect provided in the literature.

The second part of the dissertation deals with multi-scale �lters. We begin by studying a
method called exposure fusion that fuses bracketed exposure sequences of images. We extend it to
contrast enhancement by simulating the sequence from a single image. The study of this particular
case leads us to identify the core principle of the contrast manipulation in exposure fusion. This
yields further improvement in the proposed algorithm. Then, we study the local Laplacian �lter,
for which we propose a compact formula when interpreted in a scale-space. This interpretation
reestablishes the translation invariance. Furthermore, the scale-space allows to replace the guide
with the result of an arbitrary edge-aware �lter, thus reducing the luminance halo. Lastly, we study
the weighted least squares �lter that also performs a multi-scale decomposition of the image. Its
main artifact is unveiled and partially corrected.

This systematic analysis of the main decomposition �lters in the literature and the identi�ca-
tion of their respective artifacts leads us to propose a quantitative method for comparing them.
For each one of the �ve proposed artifacts types, we create a pattern-measure pair. After setting
the �lter's parameters so that they extract the same amount of detail, the �lters are applied on this
collection of test-images, and the presence of each artifact is measured. We then rank the diVer-
ent method according to the quality of the decomposition and conclude. Two �lters stand out,
including one we propose.





Résumé

Dans cette thèse CIFRE en collaboration entre le Centre de Mathématiques et de leurs Appli-
cations, École Normale Supérieure Paris-Saclay et l'entreprise DxO, nous abordons le problème
de la décomposition additive d'une image en base et détail. Une telle décomposition est un outil
fondamental du traitement d'image. Pour une application à la photographie professionnelle dans
le logiciel DxO Photolab, il est nécessaire que la décomposition soit exempte d'artefact. Par ex-
emple, dans le contexte de l'amélioration de contraste, où la base est réduite et le détail augmenté,
le moindre artefact devient fortement visible. Les distorsions de l'image ainsi introduites sont
inacceptables du point de vue d'un photographe.

L'objectif de cette thèse est de trouver et d'étudier les �ltres les plus adaptés pour eVectuer cette
tâche, d'améliorer les meilleurs et d'en dé�nir de nouveaux. Cela demande une mesure rigoureuse
de la qualité de la décomposition en base plus détail. Nous examinons deux artefacts classiques
(halo etstaircasing) et en découvrons trois autres types tout autant cruciaux : les halos de con-
traste, le cloisonnement et les halos sombres. Cela nous conduit à construire cinq mires adaptées
pour mesurer ces artefacts. Nous �nissons par classer les �ltres optimaux selon ces mesures, et
arrivons à une décision claire sur les meilleurs �ltres.

Dans la première partie de la thèse nous étudions les �ltres bilatéraux et le �ltre guidé. Une
analyse approfondie du �ltre guidé et une confrontation avec le �ltre bilatéral sont réalisées. Une
analyse asymptotique du �ltre quand son support tend vers zéro permet de faire le lien avec la
diVusion anisotropique de Perona-Malik. Il est démontré que le �ltre guidé ne possède pas le
terme d'ampli�cation des contours dont il a été prouvé qu'il provoquait l'eVet d'escalier (staircase
eVect) ; cela est expérimentalement véri�é par une implémentation qui simule l'équation. Ce
nouveau �ltre ne possède pas de halo, ni de halo de contraste. Nous examinons ensuite les �ltres
bilatéraux et leurs approximations rapides, ainsi que les solutions austaircase eVectproposées dans
la littérature.

La suite de la thèse traite de �ltres multi-échelle. Nous commençons par étudier une méth-
ode baptiséeexposure fusionqui fusionne des séquences d'images avec des variations d'exposition.
Nous l'étendons au rehaussement de contraste par la simulation d'une séquence d'images. L'étude
de ce cas particulier nous mène à identi�er le principe à l'œuvre dans la manipulation de contraste
d'exposure fusion. Cela nous permet d'améliorer encore l'algorithme proposé. Nous poursuivons
avec le �ltre local Laplacian �lter, pour lequel nous proposons une formule compacte lorsque in-
terprété dans unscale-space. Cette interprétation permet de rétablir l'invariance par translation.
De plus, l'utilisation d'unscale-spacepermet de remplacer le guide par le résultat d'un �ltre de lis-
sage avec préservation des contours arbitraire, et ainsi de réduite le halo de luminance. Pour �nir,
nous étudions le �ltreweighted least squaresqui propose également une décomposition multi-
échelle d'une image. Son artefact principal est révélé et partiellement corrigé.

Cette analyse systématique des principaux �ltres de décomposition en base et détail de la lit-
térature et de ceux que nous proposons, ainsi que l'identi�cation de leurs artefacts respectifs, nous
conduit à proposer une méthode quantitative pour les comparer. Pour chacun des cinq types
d'artefacts proposés, nous créons une paire mire-mesure. Après avoir réglé les paramètres des
�ltres de sorte qu'ils produisent des décompositions comparables, les �ltres sont appliqués sur les
mires et la présence de chaque artefact est mesurée. Nous classons alors les diVérents algorithmes
selon la qualité de la décomposition et concluons. Deux �ltres sortent du rang, dont un proposé
dans cette thèse.
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1 Introduction

This CIFRE thesis has been undertaken in a collaboration of Centre de Mathématiques et leurs
Applications, École Normale Supérieure de Saclay, with the company DxO, where I worked in the
image processingteam on DxO Photolab (formerly Optics Pro), a photo editing software1. The
team is working at producing the best quality images from RAW pictures, but also from JPEG
�les produced by any camera. In this context it has been observed that it is often necessary to
decompose an image in what we intuitively call abase layerand adetaillayers.

The object of the thesis is the automatic additive decomposition of digital images in base and
details layers, with the particular purpose of local contrast manipulation. It aims at adding more
clarity to the image by enhancing its detail. This problem is directly related to the so-calledretinex
theory, [LM71] originally proposed in the seventies as a theory of the human perception of color.
This theory has later been used to enhance digital images. In this context retinex enhancement
algorithms try to transform the digital images so that the result is close to what a human observer
would have seen by looking at the original scene [JRW97a,PSM14,Get12]. This goal has often been
simpli�ed as “seeing in the shadows” (of the digital image). Thetone-mappingoperators also
belong to that category. The tone-mapping problem has the contradictory objectives of reducing
the dynamic of an image while preserving the local contrast. This is needed in high-dynamic
range imaging, where the dynamic range of an image must be reduced prior to display or printing
(because of the small dynamic range of standard screens and printers). Retinex and tone-mapping
operators can be divided in two categories: those which perform a base and detail decomposition;
those which do not and deliver directly a enhanced image.

The simplest available tool for that is the combination of a low-pass �lter and of high-pass �l-
ter, which decompose an image in its low frequencies (base) and high frequencies (detail) content.
This is used for example in the unsharp mask technique, [MLLY91, PRM00] which can be com-
puted with the Fourier transform. Wavelet transforms localize the frequency analysis in the image
and can thus be used as well [Mal99]. Morphological �lters like the grain �lter and the area �l-
ters [Vin94,MG00] are another class of �lter that can be used for enhancement. Closing, opening
(used in the top hat �lter for example) or the median �lter are another option [Ser88]. Anisotropic
diVusion PDE �lters [PM90] are another classical option to compute a base. They have the double
objective of smoothing and simultaneously enhance the image (Coherence-Enhancing DiVusion
Filtering [Wei99] for example). Denoising �lters can also be viewed as methods for decomposing
an image into base and detail, the noise standard deviation playing then the role of a scale param-
eter. The base is the recovered image while the detail corresponds to the removed noise. This is
the case of the bilateral �lter, which usage for base and detail decomposition is widespread, but
was originally designed as an image denoiser. The total variation regularization [ROF92] was also
originally intended as a denoising algorithm but also adapts excellently to a base-detail separation,
often called cartoon+texture decomposition [Mey01,Gue14].

1Seehttp://www.dxo.com/us/photography/photo-software/dxo-photolab
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In brief, there is a wide panoply of image �lters that may be used with the purpose of decom-
posing an image into base and detail. In this thesis, our purpose is to review the most relevant
such decomposition methods, to �nd and improve the best ones and possibly de�ne new ones.
This requires rigorous measurements evaluating the quality of the results. As we shall see, we will
be led to measure the various artifacts produced by each sort of �lter.

The diY culty of the problem lies in our notion of “base” and “detail”. Indeed, while linear �l-
tering would smooth them out, our notion of base may retain sharp edges in the base and exclude
them from the detail. Thus, such a decomposition is both additive and in essence non-linear. Our
research methodology is to understand, improve and evaluate edge-preserving smoothing �lters,
i.e. �lters that compute a base. During the study we shall de�ne the artifacts, speci�c to a �lter
or, more often, typical of a class of �lters. We shall base our de�nition of the artifacts on the
subjective feedback of DxO image experts, that we aim at transforming into rigorous quantitative
measurements. Those ratings are highly non-linear. We �rst systematically try in this thesis to
correct the unveiled artifacts for each �lter. Notably, no �lter is actually exempt of artifacts, as we
shall de�ne them. However, the artifacts are not equivalently annoying from the point of view of a
photographer, and the pregnancy of each defect may vary, so that many an artifact may fall below
a subjective “objectionable” threshold.

We eventually select the algorithms that oVer the best compromise among those artifacts,
thanks to a quantitative measure carried out on the artifacts we isolated. In our �nal ranking, we
take into account the complexity of each �lter. Indeed, this parameter, though often in contradic-
tion with the quality of the decomposition, may be decisive when it comes to select a �lter in an
already long and complex image processing pipeline.

In short, this dissertation develops a methodology for the quantitative evaluation of the quality
of the base and detail decompositions of any image �lter. After a careful examination of many
�lters and of their artifacts, we end up creating a set of test-patterns, one for each of the �ve
identi�ed artifacts, and �ve metrics that go along the proposed test-patterns. The method takes
in input any �lter with its parameters �xed, except for one that controls the quantity of detail
extracted by the algorithm. This last parameter is set so that theL 2 norm of the produced detail
matches a predetermined number. The value of thisL 2 norm is in fact an average of the values
of detailL 2 norms obtained with a representative test set of natural images. The equalization of
theL 2 norms of the detail proposed by each �lter ensures that the �lters can be fairly compared.
This leads to evaluate quantitatively the �ve artifact measures for all �lters on all test-patterns and
eventually to propose a ranking method and a �nal ranking for all examined �lters. As we shall
see, two classic – but improved by us – emerge from this study.
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1.1 Retinex methods

The Retinex theory was �rst formulated by Edwin H. Land in1964[Lan64]. It was a ground
breaking attempt to model how the human visual system (HSV) perceives colors in a scene. This
theory was further formalized by Land and McCann [LM71]. They established that the visual
system does not perceive an absolute lightness but rather a relative lightness, namely the varia-
tions of lightness in local image regions. This was proven by the experiments using Mondrian
patterns [Lan77, Lan83], were they showed that color sensation is not directly linked to the spec-
tral characteristics of the perceived signal: patches with diVerent re�ectance are perceived with
diVerent colors even when they have the same spectral light distribution because of a change in
the spatial illumination. This is what A. Rizziet al.calledcolor constancy[RM07]. In early results,
Land assumed that three independent sets of receptors exist and that the comparison of these
three receptor outputs gives the sense of color. He named this system Retinex, a neologism made
of retina and cortex. Although the original work did not involve digital images, Retinex can be
used to enhance digital images, as suggested by Land himself.

Implementations and derivations of Retinex have been an active research �eld which now
counts a wealth of publications. As explained in a recent overview of Retinex methods by Petroet
al. [PSM14], the many implementations can be divided in two groups. The �rst group explores the
image relative lightness using a variety of image paths or comparing the current pixel color to a
set of random pixels [Lan77], [Lan83], [FM83], [MR00], [PFR+ 07]. The second group uses a con-
volution mask or variational techniques to compute a locally enhanced image [Lan83], [JRW97b],
[JRW97a], [KES+ 03], [BF99], [MPS10], [MMOC 11], [BCP09].

Nowadays, the most prominent retinex implementation is an alternative to the initial random
walk algorithm published by Land [Lan86]. This implementation computes the lightness as the
ratio between the value of a pixel and the average value of the surrounding samples. Taking for
example a Gaussian �lterG� , the operation amounts to setL (x) := I (x)

(I � G� )( x) , which implies

logL(x) := log I (x) � log(I � G� )(x): (1.1)

This equation (1.1) is the so-calledsingle-scale retinex(SSR) method, explored by Jobsonet al.
in [JRW97b] and later extended by the same authors to multiple scales [JRW97a]. The last is
calledmultiscale retinex(MSR) and its formula is

MSRf ug(x; i ) =
NX

n=1

wnSSRf u; n; i g(x)

=
NX

n=1

wn
�
log

�
u(x; i )

�
� log

�
(G� n � u(i ))( x)

��
; (1.2)

whereN is the number of scales,wn is the weight of each scale andG� n (x) = Cn exp(�k xk2=2� 2
n ),

a Gaussian kernel with normalization factorCn . An excellent overview of the retinex theory and
algorithms can be found in Bertalmío's book of [Ber14], along with connection to percetually-
based variationnal techniques [PAPBC09,FBPC11] and ACE.

The Automatic Color Enhancement(ACE) proposed by Gattaet al.[GRM02] is strongly re-
lated to Retinex. It was further developed in [RGM03, RGM04, BCPR07]. It has been proven
by Bertalmíoet al. in their excellent paper [BCP09], that “can be seen as a particular anti-
symmetrization of the KBR [Kernel-Based Retinex] model”. This last method, compared to Retinex,
has the advantage of improving the contrast in both the dark and bright parts of an image, whereas
Retinex has a tendency to move the histogram to the right, and thus to shrink contrast in the bright
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Figure 1.1: Plot of the functions� used in ACE

regions. It is de�ned as follows:

ACEf ug(x) =
X

y2 
 nx

s�
�
u(x) � u(y)

�

kx � yk
; x 2 
 ; (1.3)

whereu : 
 ! [0; 1] is the input image ands� : [� 1; 1] ! R is the slope function

s� (t) = min
�

maxf �t; � 1g; 1
	

; (1.4)

where� is a user-set parameter (displayed in Figure1.1). The �nal result is a stretching of ACEf ug
to [0; 1], as many of its values are negative. We shall analyze in Chapter4 the link between ACE
and the bilateral �lter.

The retinex �lters create objectionable halo artifacts. For this reason, they are not acceptable
for contrast enhancement in professional photography. Figure1.2 illustrates this fact and shows
the superiority of �lters performing a base + detail decomposition, like the �lter MGF which will
be developed in this thesis. In the next sections, we detail our contributions chapter by chapter.
Chapters2to 12proceed to detailed analyses of �lters and to the detection, explanation, and when
possible correction of their artefacts. The long Chapter13gives the �nal evaluation methodology.
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input image MGF, base and detail

MSR MGF, enhanced

Figure 1.2: MSR and the mutli­scale guided �lter (MGF). Multi­scale retinex introduces a halo around the lighthouse,
but MGF does not. The multi­scale guided �lter is a base and detail decomposition algorithm; the decomposition
obtained for the luminance part of the input image is displayed on the �rst line. Both algorithms work on the
luminance only. Note that MSR does not manage to preserve the contrast of the lighthouse facade, while MGF
does; besides, the base and detail decomposition gives much �exibility to the algorithms, which could be used for
example to further increase the local contrast.
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1.2 Chapter2: Guided �lter

In Chapter2, we start our analysis of the guided �lter [HST10b]. Its artifacts, a contrast halo and a
luminance halo, are explained. A comparison of the �lter's performance is made with the related
bilateral �lter. We show that attempts to �nd a correspondence between the parameters of both
�lters are vain; the guided �lter does not have the edge-preserving capability of the bilateral �lter.

We however present in Chapter3 a new �lter based on GF that reduces its artifacts while
keeping the very desirable property of being a locally aY ne transformation of the guide image,
which avoids the staircase eVect.

The guided �lter The guided �lter (GF) has two steps: the �rst one computes a linear transform
of a guidance image in small patches. In each patch! , GF solves:

E
�
a(y); b(y)

�
=

X

x2 ! (y)

� �
a(y)v(x) + b(y) � u(x)

� 2 + �a (y)2
�

; (1.5)

whereu is the input image,v the guide,� a smoothing parameter and! the patch. This model en-
sures that the gradients in the �ltered patches are proportional to the gradients of the guide image,
and avoids the staircase eVect of the bilateral �lter. On another hand, it introduces a contrast halo
and a luminance halo. The second step aggregates the �ltered values of all overlapping patches.
This is equivalent to averaging the coeY cients(a; b) of the overlapping window so the �nal output
is

GFf ug(x) = �a(x)v(x) + �b(x); (1.6)

where(�a; �b) are the aggregated linear coeY cients. Equation (1.5) has an analytic solution, making
the �lter extremely fast to compute, since it requires only local averages, that can be computed in
linear time thanks to integral images.

The contrast halo artifact in GF This main artifact of the guided �lter comes from the fact that
the edges are preserved, but the area around them is preserved too. We show an example of the
resulting phenomenon in Figure1.3. It is especially present when the �lter is used with a large
radius. Indeed, the guided �lter can't smooth out half of a window and keep the other half as it
is; the choice is often an intermediate decision: half smoothed, half kept. Thus, it also creates a
luminance halo artifact.

The luminance halo artifact in GF The luminance halo artifact arises when edges are not well
preserved by the �lter. This is the case with the guided �lter, as shown in Figure1.4. Compared to
its competitor the bilateral �lter, the guided �lter smooths less the textures that should be removed
and smooths more the edges that should be preserved.

1.3 Chapter3: Iterated guided �lter

Chapter2 introduces the guided �lter and its artifacts, namely, the contrast halo and the lumi-
nance halo. A comparison to the bilateral �lter shows that its edge-preserving and smoothing
property does not put the bilateral �lter in the shade. On another hand, the guided �lter has the
neat advantage not to exhibit the staircase eVect. This makes this �lter particularly desirable for
contrast enhancement.
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Figure 1.3: Contrast halo artifact in the guided �lter: the smoothing is reduced near strong edges. On the left:
step­edge 1D­signal with a small noise (blue line) and its smoothed version with the guided �lter (red line). On
the right, we show the detail layer: difference between the two signals on the left: input ­ �ltered (green line). The
detail layer is almost �at in its center, where the input signal has its step­edge. For comparison, to input noise of
the test­pattern (expected detail) is displayed below (blue line). The difference between these two signals is also
presented (red bottom line), showing that the obtained detail almost perfectly equals the noise everywhere except
at the middle where the difference contains the input noise. Parameter used arer = 16 and � = 0 :032 .

(a)� = ( � r
2 )2 (b) � = � 2

r

(c) Zoom in (a) (d) Zoom in (b)

(e) Zoom in (a) (f ) Zoom in (b)

Figure 1.4: Comparison of the bilateral and guided �lter for a test pattern containing a step edge and a sawtooth
structure. In the left row, the parameter equivalence is� = ( � r

2 )2 , in the right row it is � = � 2
r . The spatial parameter

used here isr = � s = 3 and the range parameter is� r = 50 . Obtaining the same reduction of the oscillating
structure as the bilateral forces the guided �lter to lose more contrast on edges.
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A Partial DiVerential Equations Analysis of the Guided Filter

In [BCM06] the authors proved the presence of a staircase eVect in the bilateral �lter by showing
that it is asymptotically equivalent to a Perona-Malik equation containing a reverse heat equation
term creating shocks along zero-crossings of the Haralick edge detector [Har84]. Following the
same methodology, we prove in Chapter3 that the guided �lter is equivalent to one iteration of
an anisotropic diVusion partial diVerential equation, that can be interpreted as the �rst, diVusive,
term of a Perona-Malik equation. This explains why the guided �lter does not show staircase
artifacts.

Theorem1.1. Consider a2D imageu(x; y) 2 C3(
) . Let f 1(x; y) be a nonnegative compactly
supported radial kernel. We assume that the �lter is normalized, namely

R
f 1(x; y)dxdy = 1 ; and

symmetric
R

xf 1(x; y)dx =
R

yf 1(x; y)dy = 0 . Set~� = �=M 20 where� is the edge preserving
parameter of the guided �lter, andM 20 =

R
f 1(x; y)x2dxdy =

R
f 1(x; y)y2dxdy. Finally, letf �

be the scaled kernel:f � (x; y) = � � 2f 1(x=�; y=� ).
Then, for(x; y) 2 
 ,

GF� f ug(x; y) � u(x; y) =
� 2M 20~�

jr u(x; y)j2 + ~�
� u(x; y) + O(� 3) : (1.7)

Remark1.1. Theorem1.1means that the image edges are preserved when~� � jr u(x; y)j2, because
� 2M 20~�=jr u(x; y)j2 ' 0. On the other hand, the �lter is a diVusion by the isotropic heat equation
when~� � jr u(p)j2. The transition between both behaviors is smooth, and a half-half compromise
is observed when~� = jr u(p)j2.

1. if ~� � jr u(x; y)j2,

GF� f ug(x; y) � u(x; y) =
� 2M 20~�

jr u(x; y)j2
� u(x; y) + O(� 3) ;

2. if ~� = jr u(x; y)j2,

GF� f ug(x; y) � u(x; y) =
� 2M 20

2
� u(x; y) + O(� 3) ;

3. if ~� � jr u(x; y)j2,

GF� f ug(x; y) � u(x; y) = � 2M 20� u(x; y) + O(� 3) :

Following the interpretation of this theorem, we implement an iterated guided �lter with a
small radius that simulates this equation and prove that it is halo free. This �lter can be simply
written

IGF� f ug(t; x) = �a� (t; x)IGF(1)
� f ug(t � 1; x) + �b� (t; x): (1.8)

In Figure1.5, a confrontation of the results of this �lter to the ones obtained by the classic bilateral
�lter shows that it is no longer aVected by any staircase eVect. As a consequence of the absence of
the edge reinforcement term, the smoothing eVect is stronger.

Furthermore, we propose two other versions of the �lter. One involves a guide image and
another accelerates the �lter by computing the linear coeY cienta only once.
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(a) Input (b) Iterated bilateral (c) Iterated guided

Figure 1.5: The iterated guided �lter causes no staircase artifact. Parameters used here:� = � 2
r = 0 :012 with the

input dynamic range in[0; 1]; r = � s = 1 with the input image of size250� 250; number of iterationsT = 50 . The
bottom graph displays the restrictions of the three above images to the vertical straight lines drawn on the images.
The staircase effect of the bilateral �lter (orange line) doesn't appear on the guided �lter version (red line).

1.4 Chapter4: Bilateral �lter

Chapters2and3are dedicated to the fast and recent guided �lter, link it to the anisotropic diVusion
and compare it to the bilateral �lter. Those two last �lters are the most widespread �lters for the
computation of an image base.

In Chapter4, we present the bilateral �lter. We recall its long history, and describe its main
descendants: the joint (or cross) bilateral �lter [ED04,PSA+ 04], the bilateral �lter with regression
[BCM06], the unnormalized bilateral �lters [APH+ 11, APH+ 14, MT16]. Furthermore, we make
the link between the bilateral �lter and ACE (the Automatic Color Enhancement), that belongs
to the retinex family. We also explain the staircase eVect �rst described, and solved, by Buadeset
al. [BCM06].

Two others chapters dedicated to the bilateral �lters follow this one. A review of the numerous
schemes proposed to correct the staircase eVect (Chapter5), and a review of the fast approxima-
tions, particularly usefull when the �lter is used with large spatial neighborhood as in the base and
detail decomposition problem (Chapter6). However, since the unnormalized bileral �lter is de-
�ned in this chapter, we get ahead and present its fast approximations here. Likewise, we propose
in this Chapter4 a fast approximation of the bilateral �lter with regression and a multi-scale �lter
based on it. This last �lter gives us the opportunity to de�ne and explain thedark haloartifact.

This chapter, along with the two following ones on the staircasing corrections and the fast
approximations of the bilateral �lter, is directly inspired by the book by S. Paris, P. Kornprobst, J.
Tumblin and F. Durand [PKTD09]. Whereas this book aims at giving an extensive presentation
of the bilateral �lter and its applications, we concentrate on its usage for base and detail decom-
position. Nonetheless, we approach several points already reviewed in the2009book, e.g., the
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diVerent proposed extensions and its fast approximations. We highlight below the main diVer-
ences between our Chapters4, 5, 6 and Paris, Kornprobst, Tumblin and Durand book.
Concerning this Chapter4 on the bilateral �lters, we present supplementary �lters and links:

� we make the link with ACE (Automatic Color Enhancement) [GRM02];

� we review the unnormalized bilateral �lters [APH+ 11,MT16], along with their fast approxi-
mations;

� we propose a fast approximation for the bilateral �lter with regression;

� we propose a multi-scale bilateral �lter with regression.

We pursue the review of the bilateral �lter with the staircase eVect corrections in Chapter5. There
are two kinds of corrections: the �rst modify the bilateral �lter so that the slopes are taken into
account,e.g., the bilateral with regression �lter, the trilateral �lter, the symmetric bilateral �lter;
these have been reviewed in Pariset al.book, so the diVerences comes down to:

� a more detailed presentation of the trilateral �lter, with pseudo-codes;

� the introduction of a symmetric bilateral �lter similar to Elad's one [Ela02].

The second kind of approximations however is not described in [PKTD09]. It consist in post-
processing the �ltered image to correct the staircase artifact. The described corrections are:

� the blending described by Durand and Dorsey [DD02];

� the minimal isotropic smoothing eVect in the separable kernel approximation [PVV05];

� the Poisson correction proposed by Baeet al.[BPD06];

� the selective diVusion of Kass and Solomon [KS10].

Concerning the fast approximations, most of them are reviewed in the book. Nonetheless, we add
to the list �lters posterior to2009and sometimes give more detailed descriptions:

� in the local histograms, Weiss [Wei06] approximation is described in the book, yet we give
of it a more in-depth description: we present the earlier Huang's algorithm and give for both
pseudo-codes. Furthermore, we review Porikli's2008version that uses integral histograms,
and discuss the usage of box spatial kernels;

� the fast approximations of the unnormalized bilateral �lter and to the bilateral �lter with
regression are given in Chapter4;

� we present a supplementary class of fast approximations based on the usage of polynomials
range kernels;

� the domain transform is also reviewed, this �lter can be thought as a bilateral �lter when
used with a small spatial kernel.
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The bilateral �lter The principle of bilateral �ltering appeared with Yaroslavsky (1985) [Yar12]
and Lee (1983) [Lee83]. The variant we study was proposed by Smith and Brady who called it “SU-
SAN” (1995) [SB97]. It was re-proposed by Tomasi and Manduchi under the name “bilateral �lter”
in 1998[TM 98]. All of these similar �lters can be termed neighborhood �lters; the only diVerences
lies in the shape of the range and space kernels. The performance of these algorithms is justi�ed
by the same arguments: inside a homogeneous region, the gray level values slightly �uctuate be-
cause of noise or texture. In that case, the bilateral �lter computes a mean. At a contrasted edge
separating two regions, if the gray level diVerence between both regions is signi�cantly larger than
� r , then the algorithm computes averages of pixels belonging to the same region as the reference
pixel. Thus, the algorithm does not blur the edges, which is its main scope.

The version popularized by Smith and Brady and Tomasi and Manduchi uses a Gauss weight-
ing function depending on a �ltering parameter� r (range kernel), as well as a Gauss spatial kernel:

BFf ug� r ;� s (x) =
1

C(x)

Z



u(y)e

�j y� xj 2

2� 2
s e

�j u ( y) � u ( x) j 2

2� 2
r dy; (1.9)

whereC(x) =
R


 e
�j y� xj 2

2� 2
s e

�j u ( y) � u ( x) j 2

2� 2
r dy is the normalization factor and� s is now a spatial �lter-

ing parameter.
The cross bilateral �lter [ED04], or joint bilateral �lter [PSA+ 04], computes its range kernel

according to a second guide imagev:

CBFf ug� r ;� s (x) =
1

C(x)

Z



u(y)e

�j y� xj 2

2� 2
s e

�j v ( y) � v ( x) j 2

2� 2
r dy; (1.10)

where the normalization factorC is computed accordingly. This is used for example for �ash/no
�ash image denoising, where the edge information of the �ash image are used to �lter the no �ash
image, with better colors but more noise.

Staircasing The staircase artifact is illustrated in �gure1.6 . In this �gure we simpli�ed the range
and spatial kernels by using simple boxes. This allows a simple visualization, in the1-dimensional
case, of what pixels are taken into account in the averaging process. The blue arrows are the
intensity diVerencesu(x) � u(y). The dotted box shows the boundaries of the rangeandspatial
kernels: outside of this box, all the bilateral weights are zero. Then, it is easy to see that for the
current pixel (namely the intersection of the two blue dotted lines at the center of the box) the
averaged value has a higher intensity than the initial one. By applying the bilateral averaging on
each pixel of the blue line, one obtains the red line. The “propagation of the plateau” that one can
observe is what we call the “staircase artifact”. It amounts to an undesirable edge enhancement.

The unnormalized bilateral �lter Recently introduced by Aubryet al.in [APH+ 11], the unnor-
malized bilateral �lter reads:

UBFf ug(x) = u(x) +
X

y2 


G� s (x � y)G� r

�
u(y) � u(x)

��
u(y) � u(x)

�
: (1.11)

Averaging the diVerences(u(y) � u(x)) using the bilateral weights actually directly computes the
detail layer. Because this layer intensities oscillate around zero, the normalization factor can be
removed without distorting the �ltered image. This accelerates the �lter and reduces staircasing;
however it also reduces its smoothing properties and introduce a small, guided �lter like contrast
halo. This can be understood with the alternative de�nition of the unnormalized bilateral �lter
based on BF:

UBFf ug(x) = C(x)BFf ug(x) +
�
1 � C(x)

�
u(x); (1.12)

whereC is the bilateral �lter normalization factor.
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(b) Range kernel

(a) (c) Spatial kernel

Figure 1.6: Explanation of the staircase effect for a bilateral �lter with simpli�ed range and spatial kernels. The
current pixel is at the intersection of the vertical and horizontal blue dotted lines. The dotted black rectangle
indicates which pixels will be considered in the average. Light blue vertical arrows stand for the intensity difference
between the current pixels and the pixels in the rectangle. Since the current pixel has more neighbors (in the
bilateral de�nition) on the right side of the edge, its bilaterally averaged value gets up and closer to the plateau's
value.

The bilateral �lter with regression This �lter, introduced by Buadeset al. in [BCM06], esti-
mates a regression plane at each pixel. Unlike the standard bilateral �lter that estimates a constant,
the �lter, used with small� s, no longer causes staircase artifacts. We callk = k(x; y) the weights
of the bilateral �lter at point(0; 0) for the imageu = u(x; y). The bilateral �lter with regression
does �nd

arg min
a;b;c

X

x;y

k(ax + by+ c � u)2: (1.13)

The �nal result is simply BFRf ug(x) = c(x). We complete this chapter by analyzing a last candi-
date to attenuate the staircase eVect, the unnormalized bilateral �lter.

1.5 Chapter5: Staircase eVect corrections

In Chapter4 we showed that the bilateral �lter not only preserves the edges, but is prone to
sharpening them. This eVect has been described and mathematically justi�ed by Buadeset al.
in 2006[BCM06], who call it the staircase eVect. Indeed, bilateral-based �lters tend to create
piece-wise constant signals separated by numerically created edges, thus adopting the aspect of
a staircase. From the contrast enhancement and tone-mapping point of view the same eVect is
sometimes called thegradient reversal artifact, because the complementary detail layer, at places
where edges have been reinforced in the base layer, contains reverted gradients. The problem is
that when using the bilateral �lter for contrast enhancement and tone-mapping, the detail layer
gets stretched and the base layer compressed. The recombination of their results causes the gradi-
ent reversal artifact.

Since this artifact is particularly annoying in contrast manipulation methods, many authors
have tried to correct it. The solutions can be divided in two categories. The �rst category of
correction does not modify the �lter, but corrects the artifact in a post-processing step. The second
one directly modi�es the �lter to make it handle smoothly the slopes. We review in this chapter
both categories of corrections.
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(a) intput image (b) without selective diffusion (c) with selective diffusion

Figure 1.7: Effect of the selective diffusion. Images are enhanced with DxO's contrast enhancement tool using the
standard bilateral �lter (b) or the bilateral �lter with the selective diffusion (c). Most of the gradient reversal artifact
has been removed thanks to the selective diffusion.

This chapter is inspired by the Pariset al. book on the bilateral �lter [PKTD09]. The diVer-
ences with our review are highlighted in the previous Section1.4.

Example: Durand-Dorsey correction In the manner of the Durand-Dorsey correction, most of
the post-processing step that aim at removing the staircase eVect of the bilateral �lter apply Gauss
�lters to the bilateral-smoothed image. The diY culty is then to �nd the right standard-deviation
of the Gauss �lter and where to apply it.

Durand and Dorsey in [DD02] brought a simple answer; they apply only one Gauss �lter
with small standard-deviation and then blend between this blurred image and the non-blurred
one in function of the normalization factor of BF. Let� be the linear interpolation coeY cient
between the bilateral �lter result FBFf ug and its blurred versionFBFf ug. This coeY cient varies
with logC. The function� = f

�
log(C)

�
is de�ned as� (x) = log

�
C(x)

�
=log

�
Cmax

�
, where

Cmax is the maximal possible value forC, i.e. Cmax =
P

y G� s (x � y). The corrected image is
then

FBFf ugcorr(x) = � (x)FBFf ug +
�
1 � � (x)

�
FBFf ug(x): (1.14)

Another correction iteratively smooths the bilateral results, with Gaussian �lters of increasing
width. This is the selective diVusion of Kass and Solomon [KS10]. At each iteration, they choose
between the image before and after blurring by measuring locally the distance to the original
image, and keeping the closest one. The idea is that if blurring the bilateral result brings it closer
to the original image, then the blurred version should be preferred.

Example result with the selective diVusion Figure1.7 displays the result of the selective diVu-
sion applied to the bilateral �lter, in the context of contrast enhancement. It succeeds in removing
a large part of the gradient reversal artifact (a consequence of the staircase eVect) visible as a dark
and white bands along the top of the trees. Although this method works globally well, it seems
unable to remove the staircases everywhere, especially in the corners (see Figure1.7(c)). Further-
more, it is not computationally eY cient. Indeed, numerous iterations are needed to correct the
staircase eVect, and this computation time adds to the computation time of the �lter itself.

1.6 Chapter6: Fast bilateral �lters

The bilateral �lter has rapidly become ubiquitous in image processing and is now used in a tremen-
dous number of applications. The original �lter needs to compute a diVerent kernel at each pixel
which makes it slow, nay not aVordable for large images and (consequently) large spatial support.
Hence the need for a fast implementation.
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In Chapter6 we review the numerous fast bilateral �lters proposed in the literature. The
history of the fast bilateral �lter starts with the fast Durand and Dorsey approximation (2002)
[DD02], who presented the original idea, that would be extensively explored later, of sampling the
intensity range so as to linearize the convolution. The Gaussian convolution can then be com-
puted using one of the numerous fast schemes available. No fastand exact implementation of
the bilateral �lter has been proposed yet. Thus the competition between the numerous proposed
schemes not only lies in the speed but also on the precision and the unavoidable artifacts. Fur-
thermore, for several schemes the speed depends on the parameters used and on the dimension
in which the �lter operates. Thus we eventually present a palette of eVective �lters rather than a
de�nitive winner.

This chapter is also inspired by the Pariset al. book on the bilateral �lter [PKTD09]. The
diVerences with our review are highlighted in Section1.4.

The piecewise-linear approximation The Durand-Dorsey fast approximation scheme is based
on the discretization of the possible values ofu(x) in the bilateral kernel. Consider the bilateral
�lter equation (1.15) for a �xed pixel x

BFf ug(x) =
1

C(x)

X

y2 


G� s (x � y)G� r

�
u(y) � u(x)

�
u(y); (1.15)

whereC is the normalization factor. This is equivalent to the (x dependent) convolution of the
function H

�
u(x)

�
: y ! G� r

�
u(y) � u(x)

�
u(y) by the kernelG� s . Similarly, the normalization

factorC is the convolution ofI
�
u(x)

�
: y ! G� r

�
u(y) � u(x)

�
by G� s . The only dependency

on pixel x that makes it diVer from a convolution. Starting from this observation, the authors'
acceleration strategy is to discretize the set of possible signal intensities intoN layersvaluesf 
 (i )g,
and to compute a linear Gaussian convolution for each such value:

v(x; i ) =
1

C(x; i )

X

y2 


G� s (x � y)G� r

�
u(y) � 
 (i )

�
u(y) (1.16)

=
1

C(x; i )

X

y2 


G� s (x � y)H (y; i ) (1.17)

and

C(x; i ) =
X

y2 


G� s (x � y)G� r

�
u(y) � 
 (i )

�
(1.18)

=
X

y2 


G� s (x � y)I (y; i ): (1.19)

This formulation of the bilateral is exact, and shows that it can be computed by series of linear
convolutions: one per possible value ofu(x). The acceleration strategy is then to compute the
exact result for a limited number of intensities only. This amounts to sampling the intensity range
and to linearly interpolate between theselayersv(x; i ) andC(x; i ) for values that lie between the
samples.

The bilateral grid The piece-wise linear method has later been improved by Pariset al.[PD06,
CPD07] in the bilateral grid. This method also linearizes the convolution and downsamples the
signal to reduce computational complexity, but also gives a more formal de�nition of this fast
approximation thanks to a high dimensional interpretation of images, and a gain in precision due
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Figure 1.8: Illustration reproduced from [PD06]. Bilateral �lter with the bilateral grid for a 1D signal. A �rst step is to
�ll the S � R domain with the signal values: the second line displays the resulting values� on the grid. The third
line displays it after the convolution by the Gaussian kernel with standard deviation� s ; � r . Then, the fourth line
shows the result of the division of the two above grid values (the bilateral �lter's normalization). The orange dots
depict the pixel's positions. The last line is the reconstructed �ltered signal, after the “slicing” operation.

to a better subsampling in the range domain. This approximation is probably one of the most
eVective, and one of the most representative of the literature on the fast bilateral �lters. We quote
the excellent review by Paris, Kornprobst, Tumblin and Durand [PKTD09] to give a brief overview
of the bilateral grid:

The authors consider theS � R domain [S is the spatial domain andR the range
domain] and represent a gray-scale imageu as de�ned on a3D grid as a3D function
� by

�( x; y; z) =
� �

u(x; y); 1
�

if z = u(x; y);
(0; 0) otherwise.

(1.20)

With this representation, they demonstrate that bilateral �ltering amounts to con-
volving� with a3D Gaussian whose parameters are(� s; � s; � r ) : �� = � � G� s ;� s ;� r .
They show that the bilateral �lter output is BFf ug(x; y) = ��

�
x; y; u(x; y)

�
. This

process is illustrated in Figure1.8.

The acceleration strategy is then to subsample the gridbeforethe application of the Gaussian �lter;
this step can use a fast box subsampling that does not respect the Shannon condition because of
the ensuing low-pass �lter. Hence the convolution with the separable kernel is computed using
consecutive3 � 1 kernels on a much small volume, which largely compensates for the cost of
subsampling and tri-linear upsampling.
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Local histograms Other fast schemes [Por08] are based on the interpretation of the bilateral
�lter as an average of local histograms. Indeed, for uniform spatial kernels, BF can be rewritten

FBFloc.hist.(x) =
1

C(x)

X

j

h
 (j )G� r

�
j � u(x)

�
j ; (1.21)

C(x) =
X

j

h
 (j )G� r

�
j � u(x)

�
;

wherej belongs to the discrete intensity range of the input image andh
 (j ) is the local histogram
value at pixelx and for intensityj .

Polynomial approximations A last class of fast �lters use polynomials range kernels [Por08,
CSU11]. Let's explain this with a trigonometric polynomial. Assume the range kernel has the form

kM
� r

(t) =
MX

n= � M

� n exp(i2�t )n ; (1.22)

with i 2 = � 1. Here,� r stands for the range parameter of the bilateral �lter. Set
 the neighbor-
hood of the pixelx andG� s the spatial Gaussian kernel with standard-deviation� s. With such a
range kernel, the bilateral �lter can be written

BFpoly.f ug(x)

=
1

K (x)

X

y2 


G� s (y)

"
MX

n= � M

� n exp
�

i2n�
�
u(x � y) � u(x)

�
� #

u(x � y)

=
1

K (x)

MX

n= � M

� n exp
�

� i2�nu (x)
� X

y2 


G� s (y) exp
�
i2�nu (x � y)

�
u(x � y):

(1.23)

The decomposition is the same for the normalization factor,

K (x) =
X

y2 


G� s (y)kM
� r

�
u(x � y) � u(x)

�
: (1.24)

The last equation involves a convolution of the imageexp
�
i2�nu (x)

�
u(x) with the spatial Gaus-

sian kernelG� s . In other terms, the bilateral �lter is obtained by a series of Gaussian convolutions.

1.7 Chapter7: Exposure fusion

In Chapter7 we explore an alternative option for contrast enhancement, in which no base and
detail decomposition is involved.

Exposure Fusion is a high dynamic range imaging technique to fuse a bracketed exposure
sequence into a high quality image. We show that one can extend this method to the more gen-
eral context of improving the overall contrast of any image, turning Exposure Fusion into a new
and simple contrast and color enhancement operator. To do so, bracketed images are simulated
from a single output and fused by exposure fusion. We demonstrate that the resulting algorithm
competes with state of the art retinex methods.

Furthermore, we unveil a serious drawback of the original fusion technique. Indeed, it tends
to create, albeit unexpectedly, an output image which dynamic range is higher than any of the
input images. This �aw of the method forces either to clip the fused image, thus to loose precious
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Figure 1.9: Simulated exposure fusion method (SEF).

information from the (potentially simulated) bracketed sequence, or to compress the dynamic
range, which provokes a loss of contrast with respect to the input images. We show and explain
this eVect. After careful diagnosis, we arrive at the important and counter-intuitive conclusion that
exposure fusion does not have the faculty to reduce the edges' amplitude. The eVectively operated
tone-mapping is the consequence of two eVects: the haloing due to the Laplacian pyramid, and
the saturation (i.e., clipping) of the input LDR images of the sequence.

This saturation �aw, also present in the introduced simulated exposure fusion, is solved in
Chapter8.

Furthermore, Chapter7introduces Burt and Adelson's Laplacian pyramid [BA83] in the con-
text of tone-mapping; we see in Chapter9 that this has been successfully reused in more recent
multi-scale base and detail decomposition �lters. We now summarize the exposure fusion process.

The exposure fusion This method fuses the best parts of the diVerent images in an input se-
quence into a high quality image. Three metrics are used to determine what pixels are the best
and should be kept in the �nal result: contrast, saturation and well-exposedness. Each measure
is pixel-wise. The �rst measures the amount of local contrast using a small Laplacian kernel. The
second is the standard-deviation of the color channels at each pixel. The last one measures the dis-
tance to the mean value0:5. Those three values are multiplied, then normalized so that the weight
maps of all images in the input sequence sum to one. Rather than directly fusing the images us-
ing these weiht maps, the authors propose a multiscale fusion, using the method introduced by
Ogdenet al.[OABB85]. This technique builds the Laplacian pyramid [BA83] of the output image
by blending the Laplacian pyramids of the input images according to the Gaussian pyramid of the
weight maps. We will denoteLpyrf ug the Laplacian pyramid of the input imageu, Gpyrf wg the
Gaussian pyramid of the weights, and` the scale. The blending operation is then

Lpyrf v; `g(x) =
NX

k=1

Gpyrf bw; `gk (x)Lpyrf u; `gk (x): (1.25)

The fused image is obtained by collapsing the constructed pyramidLpyrf vg.
Starting from this fusion method, our single image contrast enhancement algorithm consists

in the simulation of the bracketed exposure sequence, which is then merged using Equation (1.25),
as shown in Figure1.9. We call this thesimulated exposure fusion.

Saturation in the exposure fusion As we prove, saturation occurs in the original methods by
Mertenset al.. Even though weights are normalized and none of the input images exceed the
�nal dynamic range, the fused image can inherit a larger dynamic range than any of the input
images. We illustrate this phenomenon using the authors' demonstration image in Figure1.10.
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(a) lines of the input sequence (b) 3rd input image

(c) lines of the fused result (d) fused result

Figure 1.10: We show here a section taken in the input sequence (represented on the images on the right column).
All input images are in the correct dynamic range. The fused result however has a greater dynamic. The experiment
is carried out with gray levels images for the sake of clarity; we thus do not use the saturation metric:! s = 0 . The
other parameters are! c = 1 ; ! e = 1 . We clipped out­of­range values in (d).

The original exposure fusion method [MKR07] simply clips the values that exceed the dynamic
range, but this results in saturated areas in the �nal image. One can obviously shift and scale the
intensity to make them �t the output dynamic range, but then incurs into the risk of loosing part
of the contrast gains on the input images. We are then stuck in the unpleasant situation where
either we decide to compress the dynamic, but lose contrast, or we apply again a tone-mapping
operator, which is what our method was initially designed for! We present in Chapter8 a more
natural way to avoid this problem.

1.8 Chapter8: Edge reduction in the simulated exposure fusion

In Chapter8, we improve on the method presented in Chapter7 in two ways: �rst we correct the
saturation artifact that we proved to be inherent to the classic exposure fusion method. Second, we
propose a smarter way to simulate the bracketed exposure sequence by automatically choosing the
number of brightened and darkened images, so that images with unequally distributed histograms
between their left and right sides are better enhanced. We uncover a novel artifact of our method,
namely the creation of spurious edges in areas with smooth contrast changes (smooth edges). The
issue is solved by replacing the sharp threshold (i.e. clipping) in the remapping function by a
smoother function.

Furthermore, the general algorithm thus designed can be used to improve on itself in the
HDR context. In this generalized version of the fusion, additional simulated bracketed images are
built from the input, thus yielding a richer choice of contrasts than those provided by the physical
brackets.

The proposed method eventually resembles the local Laplacian �lter, being also a multi-scale
edge-aware smoothing �lters. The similarities and dissimilarities of both �lters are discussed in
Chapter9.
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(a) original remapping functions

(c) ACE with� = 8 (d) MSR on luminance (e) SEF with� = 8

Figure 1.11: Comparison of SEF (b) with ACE (c) and MSR (d) (with chromaticity preservation, [PSM14]). The remap­
ping functions and the corresponding parameters are speci�ed in Figure 8.4 (c).

Simulated exposure fusion method For the Laplacian pyramid blending is not capable of dy-
namic range compression, the solution to the out-of-range artifact of the simulated exposure fu-
sion method is to reduce the dynamic range of the input images. We thus design remapping func-
tions that improve the contrast where needed while keeping the overall dynamic of the simulated
exposure in a smaller range than the output one. We show in Figure1.11, in the top right corner,
the clipped remapping functions used for the output shown below, and compare it to two retinex
methods: multi-scale retinex (MSR) and automatic color enhancement (ACE). Some other im-
provements are applied to the remapping functions: in function of the input image histogram,
we generate more or less dark or bright images, so as to improve the contrast where needed only.
Furthermore, using smooth remapping functions helps obtaining cleaner smooth edges.

1.9 Chapter9: Local Laplacian �lter and connection to other operators

In Chapter7and Chapter8we describe the exposure fusion method and the framework proposed
to extend it to the single image case through the generation of a simulated bracketed exposure
sequence. This fusion algorithm is based on the manipulation of Laplacian pyramids, and has
demonstrated the usefulness of such a multi-scale image representation. We focus in Chapter9on
the local Laplacian �lters. They use the same Laplacian pyramid but in the context of multi-scale
local contrast manipulation.

The local Laplacian �lters have originally been proposed in2011by Paris, HasinoV and Kautz
[PHK11]. A fast version was proposed the same year by Aubry, Paris, HasinoV, Kautz and Durand
[APH+ 11]. The initial conference papers were extended to journal papers in2014for the Aubry
et al. fast local Laplacian �lters [APH+ 14] and in 2015for the Pariset al. original local Laplacian
�lters [PHK15]. Local Laplacian �lters could roughly be explained either as a single image exposure
fusion algorithm similar to the method described in Chapter8, or as a multi-scale unnormalized
bilateral �lter. The latter interpretation was given by Aubryet al. in their analysis of the �lter,
where they made the link with the bilateral �lter and the multi-scale version of the anisotropic
diVusion [Ela02,BC04].

The local Laplacian �lter (LLF) is versatile and can be used for a wide variety of contrast
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manipulations tasks, ranging from edge-aware smoothing to local contrast enhancement with dy-
namic reduction. Unlike most �lters, LLF constructs the Laplacian pyramid of the output image;
a �nal operationcollapsesthe pyramid and builds the �ltered image. Each Laplacian coeY cient is
computed independently using a dedicatedremapping function, which shape is chosen in function
of the application. The fast version (FLL) uses the Durand-Dorsey [DD02] slicing strategy. It
greatly speeds up the execution by computing only a reduced number of remapped images.

In Chapter9, we �rst expound the local Laplacian �lters and their fast approximation. Then,
we show their strong connection with the exposure fusion method [MKR07, MKVR09]. We see
that a fast local Laplacian �lter can be computed using the exposure fusion framework with very
little diVerence in the �nal result. Finally, we describe the artifacts of these �lters. Indeed, although
they have proven to be one of the best suited �lters for base plus detail decomposition for contrast
manipulation, the local Laplacian �lters have some drawbacks, the major ones being a loss of
translation-invariance and luminance halos. We now proceed to give a formal de�nition of these
�lters.

The fast local Laplacian �lter output pyramid We have seen in Equation (1.25) that the output
Laplacian pyramidLpyrf vefg of the exposure fusion (EF) method is a weighted combination of
the Laplacian pyramids of theK imagesuk of the bracketed exposure input sequence. In FLL,
interpolation weights are computed at each scale and for each remapped images. They can be
pre-computed too. DenotingA i the interpolation weight pyramid associated with the remapped
imageu0

i , we have

Lpyrf v�l ; `g(x) =
SX

i =1

A i (l; x)Lpyrf u0
i ; `g(x): (1.26)

This shows structure similarities of FLL and EF: both blend a sequence of images according to
contrast weights.

Similarity with the exposure fusion The fast local Laplacian �lter and Exposure fusion can be
written in an extremely similar way. But are they equivalent? Although FLL does not use as input
a sequence of images, it actually generates several images from the input, and merges diVerent
pieces of the latter using Laplacian pyramid decompositions. More precisely, FLL needs no quality
measurement, because it knows which intensity band has been corrected and therefore must be
retained for the �nal image. As in EF, FLL constructs the Laplacian pyramid of the �nal image.
A signi�cant diVerence, however, is that local Laplacian �lters recompute the weight maps at each
scale, while EF calculates them only at the �nest scale and then subsamples them.

In Figure1.12we examine the diVerence between �ltering results of EF and FLL's weighting
methods. Put another way, we try to reproduce the output of FLL with EF. In order to do so,
we generatedK images with the remapping functions of FLL and fused them with weights con-
structed as in FLL. We shall denote this modi�ed EF version by~EF. Finally the only diVerence
between~EF and ~FLL are the weights in the multi-scale blending. The resulting processed images
are visually very similar, but not identical. There are more low frequency halos in the FLL re-
sult. We measured for this experiment apsnr (peak signal-to-noise ratio) of40dB between both
results, meaning that they are very similar indeed.

Translation invariance in the local Laplacian �lter Due to the Laplacian pyramid, FLL is not
translation invariant. We realized the following experiment: a test-pattern was constructed using
a single line repeated several times to make it two-dimensional, this test-pattern is denoted #0.
This test-pattern was then shifted by one pixel to the right, we denote it #1. Figure1.13displays
these test-pattern in blue in the plots (b) and (c). We �ltered these test-pattern with LLF and
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(a) original (b)~EFf ug (c):5 + 3 � (u � ~EFf ug)

(d) ~FLLf ug (e):5 + 3 � (u � ~FLLf ug)

Figure 1.12: First row: original image (a), base layer (b) with the modi�ed exposure fusion (~EF) and corresponding
detail layer (c). Second row: base (d) and detail (e) layers obtained with the modi�ed fast local Laplacian �lters
( ~FLL). The range parameter used is� r = 25=255. More low­frequency halos are visible in the FLL output. Overall,
the difference between both results is minor.

(a) remapping function (b) test­pattern #1 (c) test­pattern #1 plus shift of
the edge by 1 pixel to the right

Figure 1.13: Loss of translation invariance with LLF. The (a) remapping function preserves the local contrast but
reduces the edges amplitude. Test­pattern #1: The spurious bounce didn't disappear. In illustration (b), I the edge
was shifted by one pixel on the right, and the position of the bounce changed.

superimposed in red the result on the input image. Noticeably, the red lines in (b) and (c) diVer,
which evidences that the �lter is not translation invariant. We show in Chapter9 that the mean-
shift an low-frequency oscillations visible in this experiment are additional symptoms of the loss
of translation invariance caused by the downsampling.

1.10 Chapter10: Compact formula and scale-space local Laplacian �l-
ter

In Chapter9, we presented the local Laplacian �lter (LLF) and scanned its structural analogy with
exposure fusion [MKR07, MKVR09]. We showed that despite some excellent results, LLF suVers
from three artifacts, namely, its lack of translation-invariance, its luminance halos and a slight
staircase eVect. The lack of translation-invariance is particularly annoying because it creates irreg-
ularities, small bounces and a mean-shift. Fortunately, all of these issues are solved in Chapter10
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by ourscale-space local Laplacian �lter.
We start by dissecting the local Laplacian �lter and proposing a compact formula by reformu-

lating the local Laplacian �lter in a scale-space setting. This amounts to removing the downsam-
pling and upsampling steps of the original �lter. Besides giving a clean mathematical description
of the �lter, a welcome outcome of this re-interpretation of the �lter is the reinstatement of the
translation invariance property which LLF lacked. Furthermore, this interpretation puts in evi-
dence the implicit guide used in LLF ; this guide, that we calloracle, can then be replaced by the
result of an arbitrary previous �lter. We therefore explore the in�uence of the oracle in this new
framework. We show that edge-aware smoothing �lters used as oracle reduce the luminance halo
but increase the staircase eVect, while a simple Gaussian �ltered oracle (as used in the original
�lter) has no staircase eVect but sometimes visible luminance halos. We �nally compare the re-
sults of this extended scale-space local Laplacian �lter with the standard local Laplacian �lter in
the context of base plus detail image decomposition.

A compact formula The scale-space local Laplacian �lter (SLF) has a compact formulation that
fully describes the �lter. DenotingD ` = G� ` � G� ` +1 the diVerence-of-Gaussian operator and
g(x; `) =

�
G� ` � u

�
(x) the reference intensity in~r the remapping function we get

SLFf ug(x) =
`max � 1X

`=0

�
D ` � ~r

�
u � g(x; `)

� �
(x) +

�
G� ` max

� u
�
(x): (1.27)

Second compact formula using slicing We can express the exact scale-space local Laplacian �l-
ter using the “sliced” formulation of the bilateral �lter introduced by Durand and Dorsey [DD02].
This actually completes our previous expression of SLF by providing another compact and in-
sightful formulation.

8
<

:

SLFf ug(x) =
P `max � 1

`=0 ~v
�
x; `; (G� ` � u)(x)

�
+ ( G� ` max

� u)(x)

~v(x; `; g) =
�
(G� ` � G� ` +1 ) � ~r (u � g)

�
(x)

(1.28)

In this equation,~v is what we could call a “Laplacian layer”: Laplacian coeY cients at scalè of
the remapped input image according to the reference intensityg. The output image SLFf ug is
constructed from these layers, by selecting at each pixel the Laplacian coeY cients in a particular
layer, depending on the value(G� ` � u)(x). This value acts as a guide indicating for each pixel and
each scalehow the input image should be remappedto get the enhanced �nal result. Put another
way, the guide(G� ` � u) is used to pick the value of the Laplacian coeY cient in the “right layer”.
There are as many layers as the number of possible intensities for the guide, and constructing
SLF amounts to collect the “correct” values in the pre-computed layers. The fast approximation
consists in pre-computing only a reduced set of Laplacian layers, and, for values of the guide that
have no pre-computed layer, to linearly interpolate between the two closest pre-computed values.
As we shall see in Section10.3, this guide is implicit in the original local Laplacian �lters, whereas
our scale-space interpretation reveals its presence and allows its replacement.

Implicit oracle-based single-scale �lter

In [APH+ 11], Aubry et al. introduced the unnormalized bilateral �lter (UBF), given in Equa-
tion (1.11). They show that this is the �lter used in LLF when the pyramid has only one scale,i.e.,
the �nest ones and the residual. Thanks to the scale-space interpretation of the �lter, we can de�ne
the �lter that is used in SLF for an arbitrary pyramid depth. We call this �lter the unnormalized
oracle-based bilateral �lter (UOBF), because it uses anoracle, in a similar way to the joint image
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Figure 1.14: Test­pattern (light blue) and its �ltered version by the bilateral �lter (orange); the unnormalized bi­
lateral �lter (green); and the unnormalized oracle­based bilateral �lter (red). The same parameters are used for all
�lters: � l = 2 pixels and� r = :2. The oracle used in UOBF isG� l � u. It is drawn in dark blue. Compared to BF,
UBF has a lighter smoothing effect. On the contrary, UOBF has a stronger smoothing than both BF and UBF. In
fact, UOBF closely follows its oracle, except at the edge where most of the differences averaged have the same sign
(positive at the top of the edge, negative at the bottom).

in CBF. The unnormalized bilateral �lter is a spacial case of UOBF where the oracle is the input
itself. It is de�ned as:

UOBFf u; vg(x) = v(x) +
X

y

G� s (x � y)G� r

�
u(y) � v(x)

��
u(y) � v(x)

�
: (1.29)

We callv the oracle because it is the value that controls, for each pixelx, whether a pixely in its
neighborhood will participate a lot in the computation of the result or not. We shall explore in
Section10.5the diVerent �lters and the improvements we can derive from the replacement of this
oracle by more sophisticated ones.

This leads to a third and last compact formulation of SLF:

SLFf ug(x) = u(x) �
`max � 1X

`=0

�
UOBF� ` f u; g(x; `)g(x) � UOBF� ` +1 f u; g(x; `)g(x)

�
; (1.30)

in which it becomes clear that the local Laplacian �lter belongs to the bilateral pyramid family.
Indeed in Equation (1.30), the right-hand term collapses a pyramid made of bilateral �lters. We
display in Figure1.14the application of the new oracle-based �lter UOBF on a noisy edge.

Edge-aware oracles in SLFThe oracle used in SLF isg(x; `) = G� ` � u. We show in Figure1.15
that it can be replaced by other �lters, and in particular edge-preserving ones. This helps reducing
the luminance halo but increases staircasing.

1.11 Chapter11: Weighted least squares �lter

We have presented in Chapter9and Chapter10two multi-scale approaches based on the Laplacian
pyramid of Burt and Adelson [BA83]. We present in Chapter11another eVective multi-scale �lter,
the weighted least squares �lter (WLS). It was proposed by Farbman three years before in2008
[FFLS08] and does not involve pyramids.

Unlike other schemes based on the bilateral �lter [FAR07,CPD07], this edge-preserving smooth-
ing approach is grounded on the weighted least squares optimization framework. It is de�ned as
the minimization of an energy composed of a data term that minimizes the distance between the
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(a) guide = gaussian (b) guide = guided �lter (c) guide = ssllf (d) guide = bilateral �lter

Figure 1.15: First row: differences (� 5) – Second row: Tone­Mapping:uT M = :125 + :750� ESLFf ug + 5 � (u �
ESLFf ug)

input image and the result, and of a regularization term that penalizes the gradients of the output,
except across signi�cant gradientsof the input image. Hence, the resulting image follows the input
image on its edges and is smoothed elsewhere. The authors proposed two diVerent strategies to
build a multi-scale edge-preserving decomposition of an image on this concept.

We show that WLS has objectionable artifacts. The most serious is the compartmentalization
eVect, that breaks the homogeneity of �at regions when they are split in smaller regions with
diVerent areas (e.g.branches of a tree with uniform sky as background). The second one is an
asymmetric halo. We present two ways to correct these artifacts.

The �rst proposed solution remedies to compartmentalization by adding in the functional
“remote gradients” terms, so that disconnected regions with similar values are linked and move
together. The second solution directly prevents important intensity shifts in �at regions. This
works well because these are the places where compartmentalization is mostly visible.

Despite our �ndings and the improvements, we conclude that this �lter is not well adapted to
contrast enhancement. Indeed, it remains heavy in terms of memory usage and not computation-
ally eY cient. Furthermore, our corrections add to its complexity. Nevertheless, for applications
on small images or for which computational time is not an issue, one can �nd in this chapter new
good options for an additive base and detail decomposition.

Filter de�nition As presented by Farbmanet al.[FFLS08], given the input imageu, edge-aware
�ltering consist in seeking a new imagev, which, on the one hand, is as close as possible tou,
and, at the same time, is as smooth as possible everywhere, except across signi�cant gradients in
u. This translates into seeking the minimum of

arg min
v

X

x

 
�
v(x) � u(x)

� 2 + �
�

ax (u; x)
�

@v
@x

� 2

(x) + ay(u; x)
�

@v
@y

� 2

(x)
� !

; (1.31)

wherex denotes the spatial location of a pixel. The data term minimizes the distance between
v and u, while the regularization term strives to achieve smoothness by minimizing the partial
derivatives ofv. The smoothness requirement is enforced in a spatially varying manner via the
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(a) original (b) base (c) detail

Figure 1.16: Decomposition of the luminance of (a) in base (b) plus detail (c) with the WLS �lter. The parameters
used are� = 1 :2 and � = 6 :4. The compartmentalization artifact is clearly visible in the branches of the tree on
the right hand side of the detail image.

smoothness weightsax anday , which depend onu, and are de�ned as

ax (u; x) =
� �

�
�
�
@`
@x

(x)

�
�
�
�

�

+ �
� � 1

and ay(u; x) =
� �

�
�
�
@`
@y

(x)

�
�
�
�

�

+ �
� � 1

; (1.32)

where the imagè is thelog-luminancechannel ofu.

The compartmentalization artifact The WLS �lter has two noticeable artifacts. The �rst one
is compartmentalization, which happens when a large region with a constant intensity (e.g.the
sky) is compartmented by a thin network in the foreground, typically the branches of a tree.
This creates small regions with the same constant intensity as the underlying large region, yet
disconnected. Because WLS takes into account the direct neighbors only, these small regions are
then free to evolve independently. The smaller their area, the lower the steadying in�uence of the
data term compared to the gain obtained by reducing the gradients at the edge of that element.
Thus, the lower its area/perimeter ratio, the stronger a small region will aVected. Obviously this
eVect increases with� . In Figure1.16, this compartmentalization occurs with the sky fragments
between tree's branches, that become brighter than the rest of the sky. The second artifact is a
luminance halo on the dark side of the edges only. This is also visible in Figure1.16at the horizon.

Super-connected WLS �lter Among other modi�cations of the energy, we propose to solve the
compartmentalization artifact by adding “remote gradients”. They are intensity diVerences com-
puted with pixels which are not direct neighbors ofx. This ensure that close yet separated elements
with the same intensity will move together. We can write the new regularization term

�

 
nmaxX

n=1

ax (u; x; n) (v(x + nvx ) � v(x))2 +
nmaxX

n=1

ay(u; x; n) (v(x + nvy) � v(x))2

!

;

where we considernmax neighbors (in the original WLS �lter,nmax = 1 ), vx = (0 ; 1) andvy =
(1; 0) are unit vectors, and the smoothness coeY cients in directionsx andy become

ax (u; x; n) =
�

ju(x + nvx ) � u(x)j2 + �
� � 1

; (1.33)

ay(u; x; n) =
�

ju(x + nvy) � u(x)j2 + �
� � 1

: (1.34)
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(a) input color (b) MGF detail layer (c) MGF enhancement

Figure 1.17: Detail layer (b) computed with MGF with parameters:r = 2 , maximal number of scales possible, no
iterations, and� = 0 :42 . In (c), the enhancement algorithm we use is simply enhance(u) = 0 :125+0:750MGFf ug+
3(u � MGFf ug). The input image dynamic range is in[0; 1], and we treat the luminance only.

1.12 Chapter12: Multi-scale guided �lter

In the previous Chapter11, we looked at the weighted least squares �lter, which proposes a multi-
scale decomposition of an image by successive applications of the �lter without downsampling,
similarly to previous multi-scale decomposition based on the bilateral �lter – apart from the local
Laplacian �lter. This last �lter and the one we introduce here are based on the local Laplacian
pyramid.

In this chapter, we propose a simple multi-scale implementation of the guided �lter based
upon the Laplacian pyramid of an image. As we shall see, a straightforward implementation leads
to the creation of the dark halo artifact, typical of the multi-scale �lters based on the Laplacian
pyramid. We encountered the same artifact in the multi-scale bilateral �lter with regression, de-
scribed in Chapter4. We show that a simple modi�cation in the pyramid reconstruction solves the
problem. This correction takes advantage of the guided �lter linear model. It leads to a fast �lter
giving a very clean base and detail decomposition. The comparison we carried out on thirteen
�lters in Chapter13showed that this �lter is eVectively one of the best options available.

The mutli-scale guided �lter is a direct transposition of the mutli-scale bilateral �lter with
regression (see Section4.7) where BFR have been replaced by the guided �lter. Indeed, we observe
that the guided �lter gives a direct measure of the edge reduction with its coeY cient �a. Since the
dark halo artifact is created when an edge is reduced but the corresponding Laplacian coeVcients
in the next �ner scale are not, a simple correction is to apply the same coeY cient �a to them.
Including this modi�cation, the multi-scale guided �lter (MGF) is de�ned as

(
z`max = GFf Lpyrf u; `maxgg

z` = GFf Upsample(z`+1 ) + Upsample(�a`+1 )Lpyrf u; `gg;
(1.35)

where�a`+1 is the guided �lter's coeY cient at scalè+ 1 . The �nal result is given byz0. We display
in Figure1.17the detail layer produced with this �lter.

1.13 Chapter13: Final evaluation and comparison of the �lters

At this stage of the dissertation, we have presented and examined the virtues and defects of the
most prominent existing �lters, and proposed several new ones. From the bilateral �lters, in
Chapter4, 6 and 5, to the local Laplacian �lter in Chapter9 and 10, passing by the guided �l-
ter, Chapter2, 3 and 12, the weighted least squares �lter in Chapter11, the exposure fusion in
Chapter7 and 8, we explored a large part of the literature on the edge-aware smoothing �lter,
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Luminance halo Staircase effect Compartmentalization

Contrast halo Dark halo

Figure 1.18: Five �nal test­patterns used to measure the presence of the different artifacts: the luminance halo, the
staircase effect, the compartmentalization, the contrast halo and the dark halo.

concentrating on the ones causing the least artifact and, is possible, low computation needs. Fur-
thermore, for each studied �lter, we named and de�ned its most cruel defects and proposed at
least one alternative version diminishing these artifacts.

In Chapter13, we compare the �lters that we presented in the previous chapters. We perform a
quantitative evaluation of the �ve main artifacts of the contrast enhancement we met during this
thorough review, namely, the simple (luminance) halo, the contrast halo, the staircase eVect (edge
sharpening), the compartmentalization (closing eVect) and the dark halo (described in Chapter4,
seen in Chapters9 and12). For each of these artifacts we propose a test-pattern speci�cally de-
signed to reveal it, along with a way of quantifying it. This evaluation gives a clear overview of the
capacity of the tested �lter to perform a clean base and detail decomposition. Based on the pro-
posed measures, we eventually propose a ranking of twelve representative �lters in the literature
along with those proposed in this thesis. However, not all contrast enhancement �lters are based
on base-detail decomposition. For the sake of completeness, additional comparisons are provided
with well established tone-mapping �lters that do not perform this decompositione.g., multi-
scale retinex (MSR), automatic color correction (ACE) and simpler methods based on histogram
equalization.

Methodology for the artifact evaluation We �rst design a set of �ve test-patterns, one for each
identi�ed artifact. Each one is paired with a measurement method giving a quantitative evaluation
of the presence of the artifact for each �lter. Then, we establish of short list of �lters, that we
believe to be representative of the variety of �lters proposed in the literature. In order to fairly
compare the �lters, we propose a rule to set their parameters. To that aim we develop a general
procedure, based on the averageL 2 norm for the detail of a small set of representative natural
images. Once these preparing steps are accomplished, we evaluate the presence of artifacts for the
twelve selected �lters. This study yields an objective �lter ranking, and leads to declare winners
three �lters achieving a clean base and detail decomposition. We apply those �lters on natural
images and con�rm the ranking. We now describe summarily these �lters.
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1.14 Synopsis of analyzed �lters, contributions

We just presented a synthesis of the dissertation, but not of its conclusions (which are revealed
in Chapter13). Since our above synthesis is nothing but short, and the dissertation considerably
longer, we feel compelled to present a synopsis of the �lters and of our contributions on their
understanding and improvement.

List of �lters in order of apparition, of their abbreviations, and our contribution All �lters
mentioned below are formally de�ned in the thesis, their artifacts are identi�ed and they are com-
pared in the �nal contest; quantitatively if a they give a base + detail, and qualitatively otherwise.
For most of them we propose improved variants.

� MSR (mutli-scale retinex): de�ned and compared in the �nal contest;

� ACE (automatic contrast enhancement): de�ned, compared in the �nal contest, a formal
relation to the bilateral �lter established;

� GF (guided �lter): de�ned, compared in the �nal contest, leads to uncover the contrast
halo, compared to the bilateral �lter, improved with a multi-scale scheme;

� IGF (iterated guided �lter): proposed a new �lter, compared in the �nal contest, analyzed
and linked to the Perona-Malik anisotropic diVusion;

� BF (bilateral �lter), and variants: de�ned, compared in the �nal contest, leads to de�ne
the staircase eVect, reviewed its variants and the staircase eVect corrections;

� FBF (fast bilateral �lters): reviewed the fast approximations of the bilateral �lters, proposed
a fast bilateral �lter with regression, proposed a multi-scale implementation of the same
�lter, leads to de�ne the dark halo artifact;

� EF (exposure fusion): de�ned, leads to uncover its out-of-range eVect, identi�ed the core
principle in the contrast manipulation;

� SEF (simulated exposure fusion): proposed an extension of EF to single-image contrast
enhancement, compared in the �nal contest;

� LLF (local Laplacian �lter): de�ned, compared in the �nal contest, linked to the exposure
fusion, explored the diVerent and undesired eVects of the pyramidal structure;

� SLF (scale-space local Laplacian �lter): proposed a new �lter, introduced a compact for-
mulation, introduced the oracle-based unnormalized bilateral �lter UOBF implicitly used
and extended Aubry's LLF analysis and link to the bilateral �lter;

� WLS (weighted least squares �lter): de�ned, compared in the �nal contest, leads to de�ne
the compartmentalization artifact, improved in two new �lters, one that penalizes gradients
at a greater distance, one that detects and preserves the �at areas;

� BGRF (bilateral grain �lter): proposed a new �lter based on the morphological grain �lter,
compared in the �nal contest;

� DT (domain transform): de�ned, compared to the bilateral �lter and compared in the �nal
contest;

� L 0-IS (L 0 image smoothing): de�ned and compared in the �nal contest.
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1 Introduction en français

Nous donnons dans ce chapitre une traduction des premières sections de l'introduction en
anglais du Chapitre1. Nous présentons ainsi à nouveau les méthodes retinex (Section1.1),
l'analyse du �ltre guidé et la proposition d'un �ltre guidé itéré (Sections1.2 et 1.3), et les
trois chapitres sur le �ltre bilatéral (Sections1.4, 1.5 et 1.6), où nous présentons le �ltre et
ses variantes, l'eVet destaircasinget les diVérentes manières de le corriger et pour �nir les
approximations rapide du �ltre. Nous renvoyons au Chapitre1précédent pour la partie de
l'introduction qui concerne la fusion d'exposition et pour notre proposition desimulated
exposure fusion(Section1.7et Section1.8), l'analyse dulocal Laplacian �lteret son extension
(Section1.9 et Section1.10), du �ltre weighted least squares(Section1.11), la proposition du
multi-scale guided �lter (Section1.12), mais aussi pour la comparaison �nale des méthodes
entre elles (introduite en Section1.13). Nous redonnons toutefois le résumé et la liste des
contributions, en Section1.14.

Cette thèse CIFRE a été réalisée en collaboration entre le Centre de Mathématiques et de leurs
Applications de l'École Normale Supérieure Paris-Saclay et la société DxO, où j'ai travaillé avec
l'équipe de traitement d'images sur le logiciel de développement de photos DxO Photolab1 (an-
ciennement DxO Optics Pro). L'équipe travaille à produire des images de grande qualité à partir
d'images RAW, mais aussi à partir de �chiers JPEG produits par n'importe quelle caméra. Dans ce
contexte, il a été observé qu'il est souvent nécessaire de décomposer une image dans ce que nous
appelons intuitivement la base et le détail.

L'objet de la thèse est la décomposition additive automatique des images numériques en couches
de base et de détail, avec comme but la manipulation du contraste local. Cette opération vise à
ajouter plus de clarté à l'image en améliorant ses détails. Ce problème est directement lié à la
théorie dite retinex. Initialement proposée dans les années soixante-dix comme théorie de la
perception humaine de la couleur, cette théorie a ensuite été utilisée pour améliorer les images
numériques. Dans ce contexte, les algorithmes d'amélioration retinex tentent de transformer les
images numériques de sorte que le résultat soit proche de ce qu'un observateur humain aurait vu
en regardant la scène originale. Cet objectif a souvent été simpli�é comme “voir dans les ombres”.

Les opérateurs detone mapping(mise en correspondance des tonalités ou mappage des tons en
français) appartiennent également à cette catégorie. Le problème dutone mappinga les objectifs
contradictoires d'en même temps réduire la dynamique d'une image et de préserver le contraste
local. Une telle opération est nécessaire dans l'imagerie à grande gamme dynamique (HDR), où
la plage dynamique d'une image doit être réduite avant l'aY chage ou l'impression (en raison de la
faible plage dynamique des écrans et des imprimantes standard). Les opérateurs retinex et detone

1Voir http://www.dxo.com/us/photography/photo-software/dxo-photolab
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mappingpeuvent être divisés en deux catégories : ceux qui eVectuent une décomposition en base
et détail ; ceux qui ne le font pas et produisent directement une image améliorée.

L'outil le plus simple disponible est la combinaison d'un �ltre passe-bas et passe-haut, qui
décomposent l'image en son contenu de basse fréquences (base) et de haute fréquences (détail).
Ceci est utilisé par exemple dans la technique de rehaussement de contraste localunsharp mask,
qui peut être calculé avec la transformée de Fourier. Les transformées en ondelettes localisent
l'analyse fréquentielle dans l'image et peuvent ainsi être utilisées aussi. Les �ltres morphologiques
comme le �ltre de grains et les �ltres de surface sont une autre classe de �ltre qui peut être utilisée
pour cette décomposition. La fermeture, l'ouverture (utilisée dans le top hat �lter par exemple)
ou le �ltre médian sont une autre option. Les �ltres EDP comme la diVusion anisotropique sont
une autre option classique pour calculer une base. Ils ont l'objectif de simultanément lisser et
améliorer l'image (coherence-enhancing diVusion �lteringpar exemple). Les �ltres de débruitage
peuvent également être considérés comme des méthodes de décomposition d'une image en base
et en détail, l'écart type du bruit jouant alors le rôle d'un paramètre d'échelle. La base est l'image
�ltrée tandis que le détail correspond au bruit supprimé. C'est le cas du �ltre bilatéral, dont
l'utilisation pour la décomposition de base et de détail est très répandue, mais qui à l'origine a été
conçu pour le débruitage d'image. La régularisation par la variation totale est également conçue à
l'origine comme un algorithme de débruitage mais s'adapte parfaitement à une séparation base-
détail, alors souvent appeléecartoon + texture.

En bref, il existe une vaste panoplie de �ltres d'image qui peuvent être utilisés dans le but de
décomposer une image en base et en détail. Dans cette thèse, notre objectif est de passer en revue
les méthodes de décomposition les plus pertinentes, de trouver et d'améliorer les meilleures et
éventuellement d'en dé�nir de nouvelles. Cela nécessite des mesures rigoureuses pour évaluer la
qualité des résultats. Comme nous le verrons, nous serons amenés à mesurer les diVérents artefacts
produits par chaque sorte de �ltre.

La diY culté du problème réside dans notre notion de “base” et de “détail”. En eVet, alors que
le �ltrage linéaire les lisserait, notre notion de base conserve les contours principaux dans la base
et les exclut du détail. Ainsi, une telle décomposition est à la fois additive et non linéaire. Notre
méthodologie de recherche consiste à comprendre, améliorer et évaluer les �ltres de lissage qui
préservent les contours, c'est-à-dire les �ltres qui calculent une base. Au cours de l'étude, nous
allons dé�nir les artefacts, spéci�ques à un �ltre ou, plus souvent, typiques d'une classe de �ltres.

Nous baserons notre dé�nition des artefacts sur l'évaluation qualitative des experts en image
de DxO, que nous visons à transformer en mesures quantitatives rigoureuses. Ces évaluations sont
hautement non-linéaires. Nous essayons d'abord systématiquement dans cette thèse de corriger
les artefacts dévoilés pour chaque �ltre. Notamment, aucun �ltre n'est réellement exempt des
artefacts, tels que nous allons les dé�nir. Cependant, les artefacts ne sont pas tous également gê-
nants du point de vue d'un photographe, et la présence de chaque défaut peut varier, de sorte que
beaucoup d'artefacts peuvent tomber au-dessous d'un seuil subjectif “inacceptable” (trop visible
pour être acceptable).

Nous sélectionnons �nalement les algorithmes qui oVrent le meilleur compromis parmi ces
artefacts, grâce à une mesure quantitative réalisée sur les artefacts que nous avons isolés. Dans
notre classement �nal, nous prenons en compte la complexité de chaque �ltre. En eVet, ce paramètre,
bien que souvent en contradiction avec la qualité de la décomposition, peut être décisif lorsqu'il
s'agit de sélectionner un �ltre dans une chaîne de traitement d'images déjà longue et complexe.

En bref, cette thèse développe une méthodologie pour l'évaluation quantitative de la qualité
des décompositions en base et détail de tout �ltre d'image. Après un examen attentif de nombreux
�ltres et de leurs artefacts, nous �nissons par créer un ensemble de mires, une pour chacun des
cinq artefacts identi�és, et cinq métriques associées aux mires proposées. La méthode prend en
entrée n'importe quel �ltre avec ses paramètres �xes, à l'exception de celui qui contrôle la quan-
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tité de détails extraite par l'algorithme. Ce dernier paramètre est �xé de façon que la normeL 2

du détail produit corresponde à un nombre prédéterminé. La valeur de cette normeL 2 est en
fait une moyenne des valeurs des normesL 2 du détail obtenues avec un ensemble représentatif
d'images naturelles. L'égalisation des normesL 2 du détail extrait par chaque �ltre assure que les
algorithmes peuvent être comparés équitablement. Cela conduit à évaluer quantitativement les
cinq mesures d'artefacts pour tous les �ltres sur toutes les mires et à proposer �nalement une
méthode de classement ainsi qu'un classement �nal de tous les �ltres examinés. Comme nous le
verrons, deux �ltres classiques – mais améliorés par nous – émergent de cette étude.
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1.1 Les méthodes retinex

La théorie Retinex a été formulée pour la première fois par Edwin H. Land en1964dans [Lan64].
C'était une tentative révolutionnaire de modéliser comment le système visuel humain (SVH)
perçoit les couleurs dans une scène. Cette théorie a été formalisée par Land et McCann [LM71]. Ils
ont établi que le système visuel ne perçoit pas une luminosité absolue mais plutôt une luminosité
relative, à savoir, les variations de luminosité dans des régions locales de l'image. Cela a été prouvé
par les expériences utilisant des formes “de Mondrian” [Lan77, Lan83], où ils montrèrent que la
sensation de couleur n'est pas directement liée aux caractéristiques spectrales du signal perçu : les
patchs de ré�ectances diVérentes sont perçus avec des couleurs diVérentes même lorsqu'ils émet-
tent la même distribution spectrale de lumière à cause d'un changement local dans l'illumination.
C'est ce que A. Rizziet al.appellentcolor constancy(la constance de la couleur) [RM07].

Dans ses premiers résultats, Land a supposé que trois ensembles indépendants de récepteurs
existent et que la comparaison de ces trois sorties de récepteurs donne le sens de la couleur. Il
a appelé ce système Retinex, un néologisme fait de rétine et de cortex. Bien que le travail orig-
inal n'implique pas d'images numériques, Retinex peut être utilisé pour améliorer les images
numériques, comme suggéré par Land lui-même.

Les implémentations et dérivations de Retinex ont été un domaine de recherche actif qui
compte maintenant une multitude de publications. Comme expliqué dans un récent aperçu des
méthodes Retinex par Petroet al. [PSM14], les nombreuses implémentations peuvent être di-
visées en deux groupes. Le premier groupe explore la luminosité relative de l'image en utilisant
un grand nombre de chemins dans l'image ou en comparant la couleur du pixel courant à un
ensemble de pixels aléatoires [Lan77]. Le second groupe utilise un masque de convolution ou
des techniques variationnelles pour calculer une image améliorée localement [Lan83], [JRW97b],
[JRW97a], [KES+ 03], [BF99], [MPS10], [MMOC 11], [BCP09].

De nos jours, l'implementation la plus répandue de Retinex est une alternative à l'algorithme
initial par marche aléatoire publié par Land [Lan86]. Cette implémentation calcule la luminosité
comme le rapport entre la valeur d'un pixel et la valeur moyenne des échantillons environnants.
Prenant pour exemple un �ltre gaussienG� , l'opération revient à dé�nirL (x) := I (x)

(I � G� )( x) , ce
qui implique

logL(x) := log I (x) � log(I � G� )(x): (1.1)

Cette équation (1.1) est la méthode dite du Retinex à une seule échelle (single scale retinex
ou SSR en anglais), explorée par Jobsonet al.dans [JRW97b] et plus tard étendue par les mêmes
auteurs à plusieurs échelles [JRW97a]. Cette dernière est appelée Retinex multi-échelles (multiscale
Retinexou MSR en anglais) et sa formule est :

MSRf ug(x; i ) =
NX

n=1

wnSSRf u; n; i g(x)

=
NX

n=1

wn
�
log

�
u(x; i )

�
� log

�
(G� n � u(i ))( x)

��
; (1.2)

où N est le nombre d'échelles,wn le poids de chaque échelle etG� n (x) = Cn exp(�k xk2=2� 2
n ),

un noyau gaussien avec son facteur de normalisationCn . Un excellent aperçu de la théorie et des
algorithmes de Retinex peut être trouvé dans le livre de Bertalmío [Ber14], ainsi que la connex-
ion aux techniques variationnelles basée sur la perception [PAPBC09, FBPC11] et ACE, que nous
abordons maintenant.

L'Automatic Color Enhancement(ACE, Rehaussement Automatique de Couleur en français)
proposé par Gattaet al. [GRM02] est fortement lié à Retinex. Il a été développé plus avant

56



Figure 1.1: Tracé de la fonctions� utilisée dans ACE

dans [RGM03, RGM04, BCPR07]. Il a été prouvé par Bertalmíoet al.[BCP09], qu'il peut être
vu comme une anti-symétrisation particulière du modèle KBR [Kernel-Based Retinex]. Cette
dernière méthode, comparée à Retinex, a l'avantage d'améliorer le contraste dans les parties claires
comme dans les parties sombres de l'image, alors que Retinex a tendance à déplacer l'histogramme
vers la droite, et donc à réduire le contraste dans les régions claires. Il est dé�ni comme suit :

ACEf ug(x) =
X

y2 
 nx

s�
�
u(x) � u(y)

�

kx � yk
; x 2 
 ; (1.3)

où u : 
 ! [0; 1] est l'image d'entrée ets� : [� 1; 1] ! R est la fonction de pente

s� (t) = min
�

maxf �t; � 1g; 1
	

; (1.4)

où � est un paramètre dé�ni par l'utilisateur (montré sur la Figure1.1). Le résultat �nal est obtenu
après un étirement de ACEf ug à [0; 1], car beaucoup de ses valeurs sont négatives. Nous analy-
serons dans le Chapitre4 le lien entre ACE et le �ltre bilatéral.

Les �ltres retinex créent des artefacts de halo. Pour cette raison, ils ne sont pas acceptables pour
l'amélioration du contraste dans la photographie professionnelle. La Figure1.2 illustre ce fait et
montre la supériorité des �ltres eVectuant une décomposition base + détail, comme le �ltre MGF
qui sera développé dans cette thèse. Dans les sections suivantes, nous détaillons nos contributions
chapitre par chapitre. Les Chapitres2 à 11procèdent à des analyses détaillées des �ltres et à la
détection, l'explication et, si possible, la correction de leurs artefacts. Le long Chapitre13donne la
méthodologie d'évaluation �nale.
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image d'entrée MGF, base et detail

MSR MGF, contraste amélioré

Figure 1.2: MSR et le �ltre guidé multi échelles (MGF) introduit dans cette thèse. Retinex multi­échelles introduit
un halo autour du phare, mais pas MGF. Le �ltre guidé multi­échelle est un algorithme de décomposition en base
et détail ; la décomposition obtenue pour la partie luminance de l'image d'entrée est af�chée sur la première
ligne, à gauche. Les deux algorithmes ne prennent en compte que la luminance pour l'amélioration de contraste.
Noter que MSR ne parvient pas à préserver le contraste de la façade du phare, contrairement à MGF ; de plus, la
décomposition de base et de détail donne beaucoup de �exibilité aux algorithmes, ce qui pourrait être utilisé par
exemple pour augmenter encore le contraste local.
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1.2 Chapitre2: Le �ltre guidé

Dans le Chapitre2, nous commençons notre analyse du �ltre guidé [HST10b]. Ses artefacts, un
halo de contraste et un halo de luminance, sont expliqués. Une comparaison des performances
du �ltre est eVectuée avec un �ltre apparenté, le �ltre bilatéral. Nous montrons que les tentatives
de mise en correspondance des paramètres des deux �ltres sont vaines ; le �ltre guidé n'a pas la
même capacité de préservation des contours que le �ltre bilatéral.

Nous présentons cependant dans le Chapitre3 un nouveau �ltre basé sur GF qui réduit ses
artefacts tout en gardant sa propriété très désirable d'être localement une transformation aY ne de
l'image guide, ce qui évite l'eVet d'escalier (staircase eVecten anglais).

Le �ltre guidé Le �ltre guidé (guided �lter, GF) a deux étapes : la première calcule dans des
patchs les coeY cients qui minimisent la distance entre une transformation linéaire de l'image
guide et l'image d'entrée. Dans chaque fenêtre (patch) ! , GF résout :

E
�
a(y); b(y)

�
=

X

x2 ! (y)

� �
a(y)v(x) + b(y) � u(x)

� 2 + �a (y)2
�

; (1.5)

où u est l'image d'entrée,v le guide,� un paramètre de lissage et! une fenêtre.
Ce modèle garantit que dans les patchs �ltrés, les gradients sont proportionnels aux gradients

de l'image guide, ce qui évite l'eVet escalier présent dans le �ltre bilatéral, par exemple. D'un autre
côté, il introduit un halo de contraste et un halo de luminance. La deuxième étape agrège les
valeurs �ltrées de tous les patches qui se chevauchent. C'est équivalent à la moyenne des coeY -
cients(a; b) des patchs qui se chevauchent, ainsi l'image �ltrée s'écrit

GFf ug(x) = �a(x)v(x) + �b(x); (1.6)

où (�a; �b) sont les coeY cients linéaires agrégés. L'équation (1.5) a une solution analytique, rendant
le �ltre extrêmement rapide à calculer, puisqu'il ne nécessite que des moyennes locales. De plus,
ces dernières peuvent être calculées en temps linéaire grâce à des images intégrales.

L'artefact du halo de contraste dans GFL'artefact principal du �ltre guidé vient du fait que les
contours sont conservés, et la zone alentour également. Nous montrons un exemple du phénomène
qui en résulte dans la Figure1.3. L'artefact est particulièrement présent lorsque le �ltre est utilisé
avec un grand rayon. En eVet, le �ltre guidé ne peut pas lisser la moitié d'une fenêtre et garder
l'autre moitié telle quelle ; le choix qui est fait est souvent une décision intermédiaire : à moitié
lissée, à moitié conservée. Ainsi, il crée également l'artefact du halo (que nous appelons halo de
luminance pour le distinguer clairement du halo de contraste).

L'artefact du halo de luminance dans GF L'artefact du halo de luminance apparaît lorsque les
bords ne sont pas bien conservés par le �ltre. C'est le cas du �ltre guidé, comme le montre la
Figure1.4. Comparé à son concurrent le �ltre bilatéral, le �ltre guidé lisse moins les textures qui
doivent être enlevées et lisse davantage les bords qui devraient être conservés.

1.3 Chapitre3: Le �ltre guidé itéré

Le Chapitre2 introduit le �ltre guidé et ses artefacts, à savoir le halo de contraste et le halo de
luminance. Une comparaison avec le �ltre bilatéral montre que ses propriétés de préservation des
contours et de lissage ne font pas d'ombre au �ltre bilatéral. D'autre part, le �ltre guidé présente
l'avantage de ne pas avoir l'eVet d'escalier. Cela rend ce �ltre particulièrement souhaitable pour
l'amélioration du contraste.
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Figure 1.3: Artefact de halo de contraste dans le �ltre guidé : le lissage est réduit près des contours de fort contraste.
A gauche : signal 1D en marche d'escalier avec un bruit faible (ligne bleue) et sa version lissée avec le �ltre guidé
(ligne rouge). Sur la droite, nous montrons la couche de détail. En haut, nous avons la différence entre les deux
signaux de gauche : entrée ­ �ltrée (ligne verte). La couche de détail est presque plate en son centre, où le signal
d'entrée a son bord d'étape. Pour comparaison, le bruit d'entrée du motif de test (c'est le détail attendu) est af�ché
dessous (au milieu, ligne bleue). La différence entre ces deux signaux est également présentée (en bas, ligne
rouge), qui montre que le détail obtenu est presque partout égal au bruit sauf au milieu, où la différence contient
le bruit d'entrée. Le paramètre utilisé estr = 16 et � = 0 :032 .

(a)� = ( � r
2 )2 (b) � = � 2

r

(c) Zoom in (a) (d) Zoom in (b)

(e) Zoom in (a) (f ) Zoom in (b)

Figure 1.4: Comparaison des �ltres bilatéraux et guidés pour une mire qui contient un bord en marche d'escalier et
une structure en dents de scie. Dans la ligne de gauche, l'équivalence utilisée pour les paramètres est� = ( � r

2 )2 .
Dans la ligne de droite, elle est� = � 2

r . Le paramètre spatial utilisé estr = � s = 3 et le paramètre d'intensité
est � r = 50 . Pour obtenir le même lissage de la structure oscillante avec les deux �ltres (colone de droite), le �ltre
guidé préserve moins bien le contour.
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Une analyse du �ltre guidé avec les équations aux dérivées partielles

Dans [BCM06] les auteurs ont prouvé la présence d'un eVet d'escalier dans le �ltre bilatéral en
montrant qu'il est asymptotiquement équivalent à une équation de Perona-Malik contenant un
terme d'équation de la chaleur inverse créant des chocs le long des passages par zéro du détecteur
de bord de Haralick [Har84]. En suivant la même méthodologie, nous prouvons dans le Chapitre3
que le �ltre guidé est équivalent à une itération d'une équation diVérentielle partielle de diVu-
sion anisotropique, qui peut être interprétée comme le premier terme, diVusif, d'une équation de
Perona-Malik. Cela explique pourquoi le �ltre guidé ne montre pas l'artefact d'escalier.

Theorem1.1. Considérons une image2D u(x; y) 2 C3(
) . Soitf 1(x; y) un noyau radial nonnégatif
de support compact. Nous supposons que le �ltre est normalisé, c'est-à-dire que

R
f 1(x; y)dxdy = 1 ;

et qu'il est symétrique, c'est-à-dire
R

xf 1(x; y)dx =
R

yf 1(x; y)dy = 0 . Nous posons~� = �=M 20,
où � est le paramètre de préservation des contours du �ltre guidé, etM 20 =

R
f 1(x; y)x2dxdy =R

f 1(x; y)y2dxdy. Pour �nir, soitf � le noyau mis à l'échelle :f � (x; y) = � � 2f 1(x=�; y=� ).
Alors, pour(x; y) 2 
 ,

GF� f ug(x; y) � u(x; y) =
� 2M 20~�

jr u(x; y)j2 + ~�
� u(x; y) + O(� 3) : (1.7)

Remark1.1. Le théorème1.1signi�e que les contours de l'image sont préservés lorsque~� � jr u(x; y)j2,
car� 2M 20~�=jr u(x; y)j2 ' 0. Au contraire, le �ltre est une diVusion par l'équation isotropique de la
chaleur lorsque~� � jr u(p)j2. La transition entre les deux comportements est douce, et un compro-
mis moitié-moitié est observé à~� = jr u(p)j2.

1. if ~� � jr u(x; y)j2,

GF� f ug(x; y) � u(x; y) =
� 2M 20~�

jr u(x; y)j2
� u(x; y) + O(� 3) ;

2. if ~� = jr u(x; y)j2,

GF� f ug(x; y) � u(x; y) =
� 2M 20

2
� u(x; y) + O(� 3) ;

3. if ~� � jr u(x; y)j2,

GF� f ug(x; y) � u(x; y) = � 2M 20� u(x; y) + O(� 3) :

Suite à l'interprétation de ce théorème, nous implémentons un �ltre guidé itéré avec un petit
rayon qui simule cette équation et prouve qu'il est sans halo. Ce �ltre peut être simplement écrit

IGF� f ug(t; x) = �a� (t; x)IGF(1)
� f ug(t � 1; x) + �b� (t; x): (1.8)

Dans la Figure1.5, une confrontation des résultats de ce �ltre avec ceux obtenus par le �ltre bilatéral
classique montre qu'il n'est aVecté par aucun eVet d'escalier. En conséquence de l'absence du
terme de renforcement des bords, l'eVet de lissage est plus fort.

De plus, nous proposons deux autres versions du �ltre. L'une implique une image guide et
l'autre accélère le �ltre en calculant le coeY cient linéairea une seule fois.
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(a) Input (b) Iterated bilateral (c) Iterated guided

Figure 1.5: Le �ltre guidé itéré ne provoque aucun artefact d'escalier. Paramètres utilisés ici :� = � 2
r = 0 :012

avec la plage dynamique d'entrée dans[0; 1] ; r = � s = 1 avec l'image d'entrée de taille250� 250 ; nombre
d'itérations T = 50 . Le graphique du bas af�che une superposition des trois images au­dessus, pour les lignes
verticales tracées sur les images. L'effet escalier du �ltre bilatéral (ligne orange) n'apparaît pas sur la version du
�ltre guidé (ligne rouge).
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1.4 Chapitre4: Le �ltre bilatéral

Les Chapitres2 et 3sont dédiés au �ltre guidé, un �ltre de lissage récent et rapide préservant les
contours. Ils le relient à la diVusion anisotrope et le comparent au �ltre bilatéral. Ces deux derniers
�ltres sont les �ltres les plus répandus pour le calcul d'une base, dans le cadre de la décomposition
d'une image en base et détail.

Dans le Chapitre4, nous présentons le �ltre bilatéral, ses avantages et ses inconvénients.
Nous rappelons sa longue histoire, et décrivons ses principaux descendants : le �ltre bilatéral
conjoint (ou croisé,joint and cross bilateral �lters) [ED04, PSA+ 04], le �ltre bilatéral avec régres-
sion [BCM06], et les �ltres bilatéraux non normalisés [APH+ 11, APH+ 14, MT16]. De plus, nous
faisons le lien entre le �ltre bilatéral et ACE (Automatic Color Enhancement, Amélioration Au-
tomatique de la Couleur en français), qui appartient à la famille retinex.

Nous décrivons et montrons l'eVet d'escalier, suivant sa description et sa solution par Buades
et al.[BCM06]. Les nombreux schémas proposés pour corriger cet artefact seront passés en revue
dans le Chapitre5.

Son principal inconvénient en pratique étant sa lourdeur en calculs, nous poursuivons dans le
Chapitre6 par une revue des approximations rapide du �ltre bilatéral. La version rapide du �ltre
bilatéral avec régression et du �ltre bilatéral non normalisé sont décrites au Chapitre4.

Ce chapitre, avec les deux suivants sur la correction de l'eVet d'escalier et les approximations
rapides du �ltre bilatéral, est inspiré par le livre de S. Paris, P. Kornprobst, J. Tumblin et F. Durand
[PKTD09]. Alors que ce livre vise à donner une présentation détaillée du �ltre bilatéral et de ses
applications, nous nous concentrons sur son utilisation pour la décomposition en base et détail.
Néanmoins, nous abordons plusieurs points déjà passés en revue dans le livre,e.g., les diVérentes
extensions proposées et ses approximations rapides. Nous soulignons ci-dessous les principales
diVérences entre nos Chapitres4, 5, 6 et le livre de Paris, Kornprobst, Tumblin et Durand.

Concernant ce chapitre sur les �ltres bilatéraux, nous présentons des �ltres supplémentaires :

� le �ltre bilatéral non normalisé [APH+ 11,MT16], avec ses approximations rapides ;

� nous proposons une approximation rapide pour le �ltre bilatéral avec regression ;

� nous faisons le lien entre le �ltre ACE (Automatic Color Enhancement, rehaussement au-
tomatique de couleur), et le �ltre bilatéral.

Nous poursuivons la revue du �ltre bilatéral avec les corrections de l'eVet d'escalier dans le Chapitre5.
Il existe deux types de corrections : la première modi�e le �ltre bilatéral de sorte que les pentes
soient prises en compte, par exemple le �ltre bilatéral avec régression, le �ltre trilatéral, le �ltre
bilatéral symétrique ; ceux-ci ont été revus dans le livre de Pariset al.. Les diVérences entre cette
partie et le livre se résument donc à :

� une description plus détaillée du �ltre trilatéral, avec des pseudo-codes ;

� l'introduction d'un �ltre bilatéral symétrique similaire à celui proposé par Elad [Ela02].

Le deuxième type d'approximations n'est toutefois pas décrit dans le livre [PKTD09]. Il consiste à
traiter l'image déjà �ltrée pour corriger l'artefact d'escalier. Les corrections décrites sont :

� le mélange (blend) décrit par Durand et Dorsey [DD02] ;

� l'eVect de lissage isotropique minimal dans �ltre bilatéral avec l'approximation du noyau
séparable [PVV05] ;

� la correction de Poisson proposée par Baeet al.dans [BPD06] ;
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� la diVusion sélective (selective diVusion) de Kass et Solomon [KS10].

En ce qui concerne les approximations rapides, la plupart d'entre elles sont examinées dans le
livre. Néanmoins, nous ajoutons des �ltres postérieurs à2009à la liste, et donnons parfois des
descriptions plus détaillées. Notamment :

� dans les histogrammes locaux, l'approximation de Weiss [Wei06] est décrite dans le livre,
mais nous en donnons une description plus détaillée : nous présentons l'algorithme de
Huang antérieur et donnons pour les deux les pseudo-codes. En outre, nous passons en re-
vue la version de Porikli qui utilise des histogrammes intégraux, et discutons de l'utilisation
des noyaux spatiaux carrés ;

� l'approximation rapide du �ltre bilatéral non normalisé est donnée dans le Chapitre4 ;

� nous présentons une classe supplémentaire d'approximations rapides basées sur l'utilisation
de noyaux d'intensité polynomiaux ;

� la domain transform[GO11] est également revue, ce �ltre peut être vu comme un �ltre bi-
latéral quand il est utilisé avec un petit noyau spatial.

Le �ltre bilatéral Le principe du �ltrage bilatéral est apparu avec Yaroslavsky (1985) [Yar12] et
Lee (1983) [Lee83]. La variante que nous étudions a été proposée par Smith et Brady qui l'ont
appelée “SUSAN” (1995) [SB97]. Il a été re-proposé par Tomasi et Manduchi sous le nom de “�ltre
bilatéral” en1998[TM 98]. Tous ces �ltres similaires peuvent être appelés �ltres de voisinage ; les
seules diVérences résident dans la forme du noyau d'intensité et du noyau spatial. La performance
de ces algorithmes est justi�ée par les mêmes arguments : à l'intérieur d'une région homogène, les
valeurs du niveau de gris �uctuent légèrement en raison du bruit ou de la texture. Dans ce cas, le
�ltre bilatéral calcule une moyenne. À un bord contrasté séparant deux régions, si la diVérence de
niveau de gris entre les deux régions est signi�cativement plus grande que� r , alors l'algorithme
calcule des moyennes de pixels appartenant à la même région que le pixel de référence. Ainsi,
l'algorithme ne rend pas les bords �ous, ce qui est son objectif principal.

La version popularisée par Smith et Brady et Tomasi et Manduchi utilise une fonction de
pondération gaussienne dépendant d'un paramètre de �ltrage� r (noyau d'intensité), ainsi qu'un
noyau spatial gaussien :

BFf ug� r ;� s (x) =
1

C(x)

Z



u(y)e

�j y� xj 2

2� 2
s e

�j u ( y) � u ( x) j 2

2� 2
r dy; (1.9)

où C(x) =
R


 e
�j y� xj 2

2� 2
s e

�j u ( y) � u ( x) j 2

2� 2
r dy est le facteur de normalisation et� s est un paramètre de

�ltrage spatial.
Le cross bilateral �lter(�ltre bilateral “croisé” ou “transversal”) [ED04], ou le joint bilateral

�lter (�ltre bilatéral “conjoint” ou “partagé”) [PSA+ 04], calcule son noyau d'intensité en fonction
d'une seconde image, une image guidev :

CBFf ug� r ;� s (x) =
1

C(x)

Z



u(y)e

�j y� xj 2

2� 2
s e

�j v ( y) � v ( x) j 2

2� 2
r dy; (1.10)

où le facteur de normalisationC est calculé en conséquence. Cela est utilisé par exemple pour le
débruitage d'un couple d'image avec �ash / sans �ash, où l'information des contours de l'image
prise avec �ash est utilisée pour �ltrer l'image sans �ash, qui a de meilleures couleurs mais aussi
plus de bruit.
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(b) Range kernel

(a) (c) Spatial kernel

Figure 1.6: Explication de l'effet escalier pour un �ltre bilatéral avec des noyaux spatial et d'intensité simpli�és.
Le pixel courant est à l'intersection des lignes pointillées bleues verticales et horizontales. Le rectangle noir en
pointillé indique quels pixels seront pris en compte dans la moyenne. Les �èches verticales bleues représentent
la différence d'intensité entre le pixel courant et les autres pixels du rectangle. Puisque le pixel courant a plus de
voisins (dans le sens bilatéral) du côté droit du bord, sa valeur bilatéralement moyennée se rapproche de la valeur
du plateau.

EVet d'escalier (staircasing eVect) L'artefact d'escalier est illustré dans la Figure1.6. Dans cette
�gure, nous avons simpli�é les noyaux spatial et d'intensité en utilisant de simple fenêtres. Cela
permet une visualisation simple, dans le cas à une seule dimension, des pixels pris en compte dans
le processus de moyennage. Les �èches bleues sont les diVérences d'intensitéu(x) � u(y). La
zone délimitée par la ligne en pointillés montre les limites des noyaux spatiaux et d'intensité : en
dehors de cette zone, tous les poids bilatéraux sont nuls. Il est alors facile de voir que pour le pixel
courant (à savoir, l'intersection des deux lignes pointillées bleues au centre de la boîte), la valeur
moyenne a une intensité plus élevée que la valeur initiale. En appliquant la moyenne bilatérale
sur chaque pixel de la ligne bleue, on obtient la ligne rouge. La “propagation du plateau” que l'on
peut observer est ce que nous appelons l'artefact d'escalier (staircasing eVect). Cela revient à un
renforcement indésirable des contours principaux.

Le �ltre bilatéral avec regréssion Ce �ltre, introduit par Buadeset al. dans [BCM06], estime
un plan de régression à chaque pixel. Contrairement au �ltre bilatéral standard qui estime une
constante, le �ltre, utilisé avec de petits� s, ne provoque plus l'artefact d'escalier. Nous appelons
k = k(x; y) les poids du �ltre bilatéral au point(0; 0) pour l'imageu = u(x; y). Le �ltre bilatéral
avec régression trouve

arg min
a;b;c

X

x;y

k(ax + by+ c � u)2: (1.11)

Le résultat �nal est simplement BFRf ug(x) = c(x). Nous complétons ce chapitre en analysant un
dernier candidat pour atténuer l'eVet d'escalier, le �ltre bilatéral non normalisé.

Le �ltre bilatéral non normalisé Introduit récemment par Aubryet al. in [APH+ 14], le �ltre
bilatéral non normalisé est dé�nit comme :

UBFf ug(x) = u(x) +
X

y2 


G� s (x � y)G� r

�
u(y) � u(x)

��
u(y) � u(x)

�
: (1.12)
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La moyenne des diVérences(u(y) � u(x)) , en utilisant les poids bilatéraux, calcule directement
la couche de détail. Parce que les intensités du détail oscillent autour de zéro, le facteur de nor-
malisation peut être supprimé sans déformer l'image �ltrée. Cela accélère le �ltre et réduit l'eVet
d'escaliers ; cependant, il réduit également la quantité de lissage et introduit un léger halo de con-
traste comme dans �ltre guidé. On peut le comprendre avec cette dé�nition alternative du �ltre
bilatéral non normalisé basée sur BF :

UBFf ug(x) = C(x)BFf ug(x) +
�
1 � C(x)

�
u(x); (1.13)

où C est le facteur de normalisation du �ltre bilatéral.

1.5 Chapitre5: Corrections de l'eVet d'escalier

Dans le Chapitre4 nous avons montré que le �ltre bilatéral ne préserve pas seulement les bords,
mais qu'il est aussi enclin à les renforcer. Cet eVet a été décrit et justi�é mathématiquement par
Buadeset al. en 2006[BCM06], qui lui ont donné le nom d'eVet d'escalier (staircasing). En
eVet, les �ltres basés sur le bilatéral ont tendance à créer des signaux constants par morceaux
séparés par des arêtes créées numériquement, prenant ainsi l'aspect d'un escalier. Du point de
vue du rehaussement de contraste et du mappage de tons, le même eVet est parfois appelé artefact
d'inversion de gradient (gradient reversal artifact), car la couche de détail complémentaire, aux
endroits où les bords ont été renforcés dans la couche de base, contient des gradients inversés. Le
problème est que lorsque le �ltre bilatéral est utilisé pour l'amélioration du contraste et le mappage
de tons, la couche de détail est étirée et la couche de base compressée. La recombinaison de leurs
résultats provoque l'artefact d'inversion de gradient.

Puisque cet artefact est particulièrement gênant dans les méthodes de manipulation de con-
traste, de nombreux auteurs ont essayé de le corriger. Les solutions peuvent être divisées en deux
catégories. La première catégorie de correction ne modi�e pas le �ltre, mais corrige l'artefact dans
une étape de post-traitement. La seconde modi�e directement le �ltre pour lui permettre de gérer
drectement les pentes. Nous passons en revue dans ce chapitre les deux catégories de corrections.

Ce chapitre a été inspiré par l'excellent ouvrage de Pariset al.sur le �ltre bilatéral [PKTD09].
Les diVérences avec notre revue sont mises en évidence dans la précédente Section1.4.

Exemple: la correction de Durand et DorseyÀ la manière de la correction de Durand-Dorsey,
la plupart des étapes de post-traitement visant à supprimer l'eVet escalier du �ltre bilatéral ap-
pliquent des �ltres gaussiens à l'image lissée bilatéralement. La diY culté est alors de trouver le
bon écart-type du �ltre et de savoir où l'appliquer.

Durand et Dorsey dans [DD02] ont apporté une réponse simple ; ils appliquent seulement un
�ltre gaussien avec un petit écart-type, puis font un mélange entre cette image �oue et la non-
�oue en fonction du facteur de normalisation de BF. Soit� le coeY cient d'interpolation linéaire
entre le résultat du �ltre bilatéral FBFf ug et sa version �outéeFBFf ug. Ce coeY cient varie avec
logC. La fonction� = f

�
log(C)

�
est dé�nie comme� (x) = log

�
C(x)

�
=log

�
Cmax

�
, où Cmax

est la valeur maximale possible pourC, i.e.Cmax =
P

y G� s (x � y). L'image corrigée est alors

FBFf ugcorr(x) = � (x)FBFf ug +
�
1 � � (x)

�
FBFf ug(x): (1.14)

Une autre correction itérative lisse les résultats bilatéraux, avec des �ltres gaussiens de largeur
croissante. C'est la diVusion sélective de Kass et Salomon [KS10]. À chaque itération, ils choisis-
sent entre l'image avant et après le �ou en mesurant localement la distance à l'image originale,
et en gardant la plus proche. L'idée est que si �outer le résultat bilatéral le rend plus proche de
l'image originale, alors cette version �oue devrait être préférée.
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(a) image d'entrée (b) sans la diffusion selective (c) avec la diffusion selective

Figure 1.7: Effet de la diffusion sélective. Les images sont améliorées avec l'outil d'amélioration de contraste de
DxO utilisant le �ltre bilatéral standard (b) ou le �ltre bilatéral avec la diffusion sélective (c). La majeure partie de
l'artefact d'inversion de gradient a été supprimée grâce à la diffusion sélective.

Exemple de résultat avec la diVusion selective La Figure1.7 aY che le résultat de la diVusion
sélective appliquée au �ltre bilatéral, dans le cadre de l'amélioration du contraste. Cette méthode
réussit à enlever une grande partie de l'artefact d'inversion de gradient (qui, comme nous l'avons
vu, est une conséquence de l'eVet d'escalier) visible sous la forme de bandes foncées et blanches à
la lisière des arbres. Bien que cette méthode fonctionne globalement bien, il semble impossible de
retirer l'eVet d'escalier partout, en particulier dans les coins (voir Figure1.7(c)). En outre, il n'est
pas eY cace sur le plan du temps de calcul. En eVet, de nombreuses itérations sont nécessaires
pour corriger l'eVet escalier, et ce temps de calcul s'ajoute au temps de calcul du �ltre lui-même.

1.6 Chapitre6: Filtres bilatéraux rapides

Le �ltre bilatéral est rapidement devenu omniprésent dans le traitement d'image et est maintenant
utilisé dans un très grand nombre d'applications. Le �ltre original doit calculer un noyau diVérent
à chaque pixel, ce qui le rend lent, voire non abordable pour de grandes images et (par conséquent)
un large support spatial. D'où la nécessité d'une implémentation rapide.

Dans le Chapitre6 nous passons en revue les nombreux �ltres bilatéraux rapides proposés
dans la littérature. L'histoire du �ltre bilatéral rapide commence avec l'approximation rapide de
Durand et Dorsey (2002) [DD 02]. Ils ont présenté l'idée originale, qui sera largement explorée
plus tard, d'échantillonnage de la gamme d'intensités a�n de linéariser la convolution. La con-
volution gaussienne peut alors être calculée en utilisant l'un des nombreux algorithmes rapides
disponibles. Aucune implementation rapide et exacte du �ltre bilatéral n'a encore été proposée.
Ainsi, la concurrence entre les nombreux schémas proposés réside non seulement dans la vitesse
mais aussi dans la précision et les inévitables artefacts qu'ils introduisent. De plus, pour plusieurs
schémas, la vitesse dépend des paramètres utilisés et de la dimension dans laquelle le �ltre fonc-
tionne. Ainsi, nous présentons �nalement une palette de �ltres eY caces plutôt qu'un gagnant
dé�nitif.

Ce chapitre a été inspiré par l'excellent ouvrage de Pariset al.sur le �ltre bilatéral [PKTD09].
Les diVérences avec notre revue sont mises en évidence dans la précédente Section1.4.

L'approximation linéaire par morceaux (piecewise-linear BF) Le schéma d'approximation rapide
de Durand-Dorsey est basé sur la discrétisation des valeurs possibles deu(x) dans le noyau bi-
latéral. Considérons l'équation (1.15) du �ltre bilatéral pour un pixel �xe x :

BFf ug(x) =
1

C(x)

X

y2 


G� s (x � y)G� r

�
u(y) � u(x)

�
u(y); (1.15)
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où C est le facteur de normalisation. C'est équivalent à la convolution de la fonctionH
�
u(x)

�
:

y ! G� r

�
u(y) � u(x)

�
u(y) par le noyauG� s . De la même manière, le facteur de normalisation

C est la convolution deI
�
u(x)

�
: y ! G� r

�
u(y) � u(x)

�
parG� s . La dépendance àx dansG� r

est la seule chose qui diVère d'avec une convolution. A partir de cette observation, la stratégie
d'accélération des auteurs est de discrétiser l'ensemble des intensités de signal possibles dans les
N layersvaleursf 
 (i )g, et de calculer une convolution gaussienne linéaire pour chacune de ces
valeurs :

v(x; i ) =
1

C(x; i )

X

y2 


G� s (x � y)G� r

�
u(y) � 
 (i )

�
u(y) (1.16)

=
1

C(x; i )

X

y2 


G� s (x � y)H (y; i ) (1.17)

et

C(x; i ) =
X

y2 


G� s (x � y)G� r

�
u(y) � 
 (i )

�
(1.18)

=
X

y2 


G� s (x � y)I (y; i ): (1.19)

Cette formulation du bilatéral est exacte et montre qu'elle peut être calculée par une série de con-
volutions linéaires : une par valeur possible deu(x). La stratégie d'accélération consiste alors à
calculer le résultat exact pour un nombre limité d'intensités seulement. Cela revient à échantil-
lonner la plage d'intensité et à interpoler linéairement entre ces couchesv(x; i ) etC(x; i ) pour les
valeurs comprises entre les échantillons.

The bilateral grid La méthode linéaire par morceaux a ensuite été améliorée par Pariset al.
[PD06,CPD07] dans la grille bilatérale. Cette méthode linéarise également la convolution et sous-
échantillonne le signal pour réduire la complexité de calcul, mais donne également une dé�nition
plus formelle de cette approximation rapide grâce à une interprétation dans une dimension plus
élevée des images et un gain de précision grâce à un meilleur sous-échantillonnage. Cette approx-
imation est probablement l'une des plus eY caces et l'une des plus représentatives de la littérature
sur les �ltres bilatéraux rapides. Nous citons l'excellente revue de Paris, Kornprobst, Tumblin et
Durand [PKTD09] pour donner un bref aperçu de la grille bilatérale :

The authors consider theS � R domain [S is the spatial domain andR the range
domain] and represent a gray-scale imageu as de�ned on a3D grid as a3D function
� by

�( x; y; z) =
� �

u(x; y); 1
�

if z = u(x; y);
(0; 0) otherwise.

(1.20)

With this representation, they demonstrate that bilateral �ltering amounts to con-
volving� with a3D Gaussian whose parameters are(� s; � s; � r ) : �� = � � G� s ;� s ;� r .
They show that the bilateral �lter output is BFf ug(x; y) = ��

�
x; y; u(x; y)

�
. This

process is illustrated in Figure1.8.

La stratégie d'accélération consiste alors à sous-échantillonner la grille avant l'application du �ltre
gaussien ; cette étape peut utiliser un sous-échantillonnage rapide qui ne respecte pas la condition
de Shannon parce qu'il est suivi d'un �ltre passe-bas. Par conséquent, la convolution avec le noyau
séparable est calculée en utilisant des noyaux3 � 1 consécutifs sur un très petit volume, ce qui
compense largement le coût du sous-échantillonnage et du suréchantillonnage tri-linéaire.
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Figure 1.8: Illustration reproduite à partir de [PD06]. Filtre bilatéral avec la grille bilatérale pour un signal 1D. Une
première étape consiste à remplir le domaineS � R avec les valeurs du signal : la deuxième ligne af�che les
valeurs résultantes� sur la grille. La troisième ligne l'af�che après la convolution par le noyau gaussien avec l'écart­
type � s ; � r . Ensuite, la quatrième ligne montre le résultat de la division des deux valeurs des grille ci­dessus (la
normalisation du �ltre bilatéral). Les points orange représentent les positions des pixels. La dernière ligne est le
signal �ltré reconstruit, après l'opération de découpage (slicing).

Local histograms D'autres schémas rapides [Por08] sont basés sur l'interprétation du �ltre bi-
latéral comme moyenne des histogrammes locaux. En eVet, pour les noyaux spatiaux uniformes,
BF peut être réécrit

FBFloc.hist.(x) =
1

C(x)

X

j

h
 (j )G� r

�
j � u(x)

�
j ; (1.21)

C(x) =
X

j

h
 (j )G� r

�
j � u(x)

�
;

où j appartient à la gamme d'intensités discrètes de l'image d'entrée eth
 (j ) est la valeur de de
l'histogramme local au pixelx et pour l'intensitéj .

Polynomial approximations Une dernière classe de �ltres rapides utilise des noyaux d'intensité
polynômiaux [Por08, CSU11]. Nous l'expliquons ici avec un polynôme trigonométrique. Sup-
posons que le noyau de la gamme a la forme

kM
� r

(t) =
MX

n= � M

� n exp(i2�t )n ; (1.22)
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aveci 2 = � 1. Ici, � r représente le paramètre d'intensité du �ltre bilatéral. Soit
 le voisinage du
pixelx etG� s le noyau gaussien d'écart-type� s. Avec un tel noyau, le �ltre bilatéral peut être écrit

BFpoly.f ug(x)

=
1

K (x)

X

y2 


G� s (y)

"
MX

n= � M

� n exp
�

i2n�
�
u(x � y) � u(x)

�
� #

u(x � y)

=
1

K (x)

MX

n= � M

� n exp
�

� i2�nu (x)
� X

y2 


G� s (y) exp
�
i2�nu (x � y)

�
u(x � y):

(1.23)

La décomposition est la même pour le facteur de normalisation,

K (x) =
X

y2 


G� s (y)kM
� r

�
u(x � y) � u(x)

�
: (1.24)

La dernière équation implique une convolution de l'imageexp
�
i2�nu (x)

�
u(x) avec le noyau

Gaussien spatialG� s . Autrement dit, le �ltre bilatéral est obtenu par une série de convolutions
gaussiennes.

Nous renvoyons au Chapitre1précédent (introduction en anglais) pour la partie de l'introduction
qui concerne :

� la fusion d'exposition et son application à une seule image (Section1.7et Section1.8) ;

� l'analyse du local Laplacian �lter et son extension (Section1.9et Section1.10) ;

� le �ltre weighted least squares (Section1.11) ;

� la comparaison �nale des méthodes entres elle (introduite en Section1.13).

Nous résumons toutefois ci-dessous la liste de nos contributions.
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1.14 Synopsis des �ltres analysés, contributions

Nous venons de présenter une synthèse de la thèse, mais pas de ses conclusions (qui sont révélées
au Chapitre13). Puisque notre synthèse ci-dessus est tout sauf courte, et la thèse considérablement
plus longue, nous nous sentons obligés de présenter une synopsis des �ltres et de nos contributions
à leur compréhension et amélioration.

Liste des �ltres dans l'ordre d'apparition, de leurs abréviations, et de notre contribution Tous
les �ltres mentionnés ci-dessous sont formellement dé�nis dans la thèse, leurs artefacts sont iden-
ti�és et comparés dans le concours �nal ; quantitativement s'ils donnent une décomposition en
base + détail, et qualitativement sinon. Pour la plupart d'entre eux, nous proposons des variantes
qui les améliorent.

� MSR (mutli-scale retinex): dé�ni et comparé dans le concours �nal ;

� ACE (automatic contrast enhancement): dé�ni, comparé dans le concours �nal, une rela-
tion formelle avec le �ltre bilatéral est établie ;

� Guided �lter, GF : dé�ni, comparé dans le concours �nal, conduit à découvrir le halo de
contraste, comparé en détail avec le �ltre bilatéral, amélioré avec le schema multi-échelle ;

� Iterated Guided �lter, IGF : proposition d'un nouveau �ltre, comparé dans le concours
�nal, analysé et relié à la diVusion anisotropique de Perona-Malik ;

� bilateral �lter, BF, and variants : dé�ni, comparé dans le concours �nal, conduit à dé�nir
l'eVet d'escalier, revu en détail ainsi que ses variantes et les corrections de l'eVet d'escalier ;

� fast bilateral �lters, FBF: revue des approximations rapides du �ltre bilatéral, proposition
d'un �ltre bilatéral avec régression rapide, proposition d'une implémentation multi-échelle
de ce même �ltre, qui conduit à la découverte et la dé�nition de l'artefact du halo sombre ;

� exposure fusion, EF: dé�ni, conduit à découvrir son artefact de dépassement de la dy-
namique, identi�cation du principe fondamental pour la manipulation du contraste ;

� simulated exposure fusion, SEF: proposition d'une extension de EF au rehaussement de
contraste pour une seule image (SEF), comparé dans le concours �nal ;

� local Laplacian �lter, LLF : dé�ni, comparé dans le concours �nal, relié àexposure fusion;
exploration des diVérents eVets indésirables de sa structure pyramidale ;

� scale-space local Laplacian �lter, SLF: proposition d'un nouveau �ltre, introduction d'une
formulation compacte, introduction du �ltre bilatéral non normalisé basé sur un oracle
(UOBF) complétion de l'analys de LLF faite par Aubryet al.;

� weighted least squares �lter, WLS: dé�ni, comparé dans le concours �nal, conduit à dé�nir
l'artefact de cloisonnement, amélioré dans deux nouveaux �ltres, l'un pénalisant les gradi-
ents à une grande distance et l'autre détectant et préservant les zones plates ;

� bilateral grain �lter, BGRF : proposition d'un nouveau �ltre basé sur le �ltre morphologique
de grain, comparé dans le concours �nal ;

� domain transform, DT : dé�ni, comparé au �ltre bilatéral et comparé dans le concours
�nal ;

� L 0 Image Smoothing,L 0-IS : dé�ni et comparé dans le concours �nal.
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2 The Guided �lter

In this chapter, we present a thorough description of the guided �lter. Its artifacts, a contrast
and a luminance halos, are explained. A comparison of the �lter's performance is made with
the related bilateral �lter. We show that attempts to �nd equivalence between the parameters
are vain; the guided �lter does not have equivalent edge-preserving capability to the bilateral
�lter.

We shall however present in the next chapter a new �lter based on GF that reduces its artifacts
while keeping the very desirable property of being a linear transformation of the guide image
in each patch, which avoids the staircase eVect.

2.1 Introduction

The Guided Filter (GF) was proposed by K. He, J. Sun and X. Tang in2013in “Guided Image
Filtering” [HST13]. A preliminary conference version of this paper had been published in2010
[HST10b]. It is closely related to image matting and in particular to the matting Laplacian matrix
[LLW08], [HST10a]. GF has since been widely used in image processing. The main reason for
such a success is that this �lter is able to achieve high quality results, remains close to the bilateral
�lter, while drastically reducing the computational time. The �lter was further accelerated in
2015[HS15] by its inventors. It also avoids the appearance of staircase artifacts, also called by
the authors “gradient reversal”. One can actually view the Guided Filter as a simpli�ed version
of the bilateral �lter, where the pixel-wise intensity diVerence weighting is replaced by a global
measurement of the pixels intensity variation computed as a local variance. This change speeds
up the �lter but also causes some “contrast halo artifacts” as we shall see.
The authors of the guided �lter described their invention in the following terms.

In this paper, we propose a novel explicit image �lter called guided �lter. The �ltering
output is locally a linear transform of the guidance image. On one hand, the guided
�lter has good edge-preserving smoothing properties like the bilateral �lter, but it
does not suVer from the gradient reversal artifacts. On the other hand, the guided
�lter can be used beyond smoothing: With the help of the guidance image, it can
make the �ltering output more structured and less smoothed than the input.

The Guided Filter has been used in many areas such as: stereo vision, for cost-volume re-
�nement in [TM 14], stereo-matching in [HBR+ 11]; high-quality real-timeO(N ) stereo matching
algorithm [HRB+ 13], [DMMVC 11]. It has been used for image matting in [HST10a] and image
dehazing algorithms in [HST11]. As a base/detail decomposition algorithm it has been used for im-
provement of the Exposure Fusion [MKVR09] algorithm in [SKB14a] but also for �ash/non-�ash
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Figure 2.1: Guided �lter principle and comparison with the bilateral �lter. Figure reproduced from [HST13].

image fusion (see e.g. [SM12]). Several other applications can bene�t from GF: demosaicing in
[MTO12], optical �ow estimation [HRB+ 13], interactive image segmentation [HRB+ 13], saliency
detection [DXY11], and illumination rendering [BEM11]. Some generalizations of the guided �l-
ters have also been proposed, for example a weighted version of the guided �lter [LZZ+ 15] with
adaptive� parameter and a “gradient domain” version [KCWL15], where the gradients are �ltered
by the guided �lter. A generalization of the guided �lter with a “shape-adaptive local support” has
also been considered [LSM+ 12]. In [ZSXJ14] (the “Rolling Guidance Filter”) the authors intro-
duce an iterative scheme based on the joint bilateral �lter where the guide is recursively �ltered.
They present a version using the guided �lter. This last work is related to our proposition of an
iterated guided �lter. The above mentioned paper [SM12] also uses an iterative scheme.

2.2 Guided Filter

Perhaps the most important aspect of the guided �lter is the local linear relation that is established
between the guidance imagev and the output imageGF rawf ug in a window! (y). We use the
notation GF raw to denote the �rst step of the guided �lter. At this step, and in each window
indepently, the guided �lter output is a linear transformation of the guide. For each window! (y)
of radiusr (size is(2r + 1) 2), we have

GF rawf ug(x) = a(y)v(x) + b(y); 8x 2 ! (y) ; (2.1)

where
�
a(y); b(y)

�
are some linear coeY cients assumed to be constant in! (y). This local linear

model ensures thatGF rawf ug has an edge only ifv has an edge, because

r GF rawf ug(x) = a(y)r v(x); 8x 2 ! (y) : (2.2)

In each window! (y), the raw guided �lter is the result of �tting a linear model (2.1) to the input
imageu by minimizing the cost function

E
�
a(y); b(y)

�
=

X

x2 ! (y)

� �
a(y)v(x) + b(y) � u(x)

� 2 + �a (y)2
�

: (2.3)

Here,� is a regularization parameter penalizing large values ofa(y). The underlying model is a
decompositionu(x) = GF rawf ug(x)+ n(x) wheren is a component such as noise or texture that
we want to separate from the baseGF rawf ug(x). The minimization of the energy (2.3) amounts
to minimizing the diVerence betweenu and the baseGF rawf ug, i.e. n, in while maintaining
the linear model in (2.1). Moreover, the parameter� penalizes large values of coeY cient a and
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thus helps removing the small variations inu. Equation (2.3) is the linear ridge regression model
[DS81], [FHT01] and its solution is given by

a(y) =
1

j! j

P
x2 ! (y) v(x)u(x) � � (y)�u(y)

� 2(y) + �
; (2.4)

b(y) = �u(y) � a(y)� (y): (2.5)

Here,� (y) and � 2(y) are respectively the mean and variance ofv in ! (y), j! j is the number of
pixels in! (y), and�u(y) = 1

j! j

P
x2 ! (y) u(x) is the mean ofu in ! (y). Once the linear coeY cients

�
a(y); b(y)

�
have been obtained, the �ltering outputGF rawf ug(x) can be computed by (2.1).

Interestingly, the numerator in equation (2.4) is the empirical covariance between the input
imageu and the guidev and� is the empirical variance ofv. Thusa(y) andb(y) can be expressed
as

a(y) =
Covf v; ug(y)
Varf vg(y) + �

; (2.6)

b(y) = Meanf ug(y) � a(y)Meanf vg ; (2.7)

where Mean denotes the mean in the window! .
However, a pixelx is involved in all the overlapping windows! (y) containing it. Thus the

value ofGF rawf ug(x) in (2.1) varies when computed in diVerent windows. A simple strategy is
to average all the possible values ofGF rawf ug(x). Thus, after computing

�
(a(y); b(y)

�
for all

windows! (y) in the image, the �lter's output is given by

GF f ug(x) =
1

j! j

X

yjx2 ! (y)

�
a(y)v(x) + b(y)

�
: (2.8)

Due to the symmetry of the box window, the linear coeY cients can be averaged instead, so that

GF f ug(x) = �a(x)v(x) + �b(x) (2.9)

with

�a(x) =
1

j! j

X

y2 ! (x)

a(y) (2.10)

�b(x) =
1

j! j

X

y2 ! (x)

b(y) (2.11)

where (2.10) and (2.11) are the average coeY cients of all windows overlappingx.
Considering the modi�cation introduced by (2.9), GF f ug(x) is no longer a scaling ofv(x) in

! (x), because the linear coeY cients
�
�a(x); �b(x)

�
vary spatially. But as

�
�a(x); �b(x)

�
are the output

of a mean �lter, their gradients can be expected to be much smaller than the gradient ofv near
strong edges. Thus, we still expect thatr GF f ug ' �ar v, meaning that abrupt intensity changes
in v are mostly preserved inGF f ug.

2.3 Variants and their pseudo-code

2.3.1 Guided �lter

We give in Algorithm1the pseudo-code of the original guided �lter. All the operations in the
pseudo-code are pixel-wise. The Mean! operator is the sample mean in a window! , de�ned as

Mean! f vg(y) =
1

j! j

X

x2 ! (y)

v(x) : (2.12)
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The four �rst lines of the algorithm compute the mean, variance and covariance of each window
in imagesu and v. We obtain the imageC of the local covariance betweenv and u along with
the image of the local variance ofv. The coeY cients

�
a(k); b(k)

�
of the local linear model are

computed at lines5 and 6, in which the coeY cient of each window! (k) is stored at pixelk.
At lines7 and8, the coeY cients of the overlapping windows are aggregated, and the �nal image
GF f ug is computed at line9.

Algorithm 1: Guided Filter algorithm(All operations are pixel-wise)

input : input imageu
input : guide imageGF f ug
input : smoothing parameter�
input : window radiusr (box window will have size(2r + 1) 2)
output: �ltered imageR

1 �u  Mean! f ug // Empirical mean of u in windows !

2 �v  Mean! f vg // Empirical mean of v in windows !

3 C  Mean! f vug � �v�u // Empirical covariance of v and u in !

4 V  Mean! f v2g � �v2 // Empirical variance of v in windows !

5 a  C=(V + � ) // equation (2.4)

6 b  �u � a�v // equation (2.5)

7 �a  Mean! f ag // Average overlapping estimators a: equation (2.10)

8 �b  Mean! f bg // Average overlapping estimators b: equation (2.11)

9 return GF f ug  �av + �b // equation (2.9)

The authors of the guided �lter [HST13] suggest the use of a box �lter for the mean computa-
tion. It can be implemented with integral images, making the �lterO(N) with N the number of
pixels in the image.

2.3.2 Fast guided �lter

A Fast Guided Filter [HS15] has more recently been proposed in2015by the same authors. It
speeds up the �lter by making computations on a down-sampled version of the image for the
computation of the variance and for the coeY cientsa, b, �a and�b. This reduces the �lter complexity
to O(N=s2), wheres denotes the sub-sampling factor. Indeed, when applied to large images, the
guided �lter is often used with a large radiusr . One can then subsample the images submitted
to the mean �lter and therefore substantially reduce the amount of memory involved and the
required computations. The images used in the algorithm are indeed low-frequency whenr is
large. This version is described in the pseudo-code Algorithm2. This fast guided �lter is an
approximation using nearest-neighbor or bilinear interpolation for sub-sampling. Yet the results
are indistinguishable for larger , for instance whenr = 16 ands = 4 , the execution time is10�
smaller according to the authors.

2.3.3 Guided �lter for color images

The guided �lter can be extended to color images. This is useful when an edge to preserve has
strong color contrast but light gray level contrast. One can then �lter each channel of the input
color imageu according to the color guidev. The color edges are then transfered to each channel
and color edges are well preserved. The color cost function is:

E col� a(k); b(k)
�

=
X

x2 ! (y)

� �
a(y)Tv(x) + b(y) � u(x)

� 2 + � a(y)Ta(y)
�

: (2.13)
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Algorithm 2: Fast Guided Filter (GF fast) (All operations are pixel-wise)

input : input imageu
input : guide imagev
input : smoothing parameter�
input : window radiusr
input : subsampling factors
output: �ltered imageGF fastf ug

1 u#  subsamplef u; sg
2 v#  subsamplef v; sg
3 r #  r=s // window ! has size (2r # + 1) 2

4 �u#  Mean! f u#g // Empirical mean of u#

5 �v#  Mean! f v#g // Empirical mean of v#

6 cov#  Mean! f v#u#g � �v# �u# // Empirical covariance of v# and u#

7 var#  Mean! f v#2g � �v#2 // Empirical variance of v#

8 a#  cov#=(var# + � ) // equation (2.4)

9 b#  �u# � a#�v# // equation (2.5)

10 �a#  Mean! f a#g // equation (2.10)

11 �b#  Mean! f b#g // equation (2.11)

12 �a  upsamplef �a#; sg
13 �b  upsamplef �b#; sg
14 return GF fastf ug  �av + �b // equation (2.9)

where the bold face is used to denote vectors. Its minimum is obtained for

a(y) = (�( y) + �I ) � 1

0

@ 1
j! j

X

x2 ! (y)

v(x)u(x) � � (y)�u(y)

1

A (2.14)

with I is the identity matrix and�( y) the variance-covariance matrix de�ned as:

�( y) =
1

j! j

X

x2 ! (y)

v(x)v(x)T � � (y)� (y)T ; (2.15)

with � = �v. The coeY cientbis given by

b(y) = �u(y) � a(y)T� (y) : (2.16)

The linear coeY cient
�
a(y); b(y)

�
of overlapping windows are then averaged as in equation (2.10)

and (2.11) to give on couple per pixel
�
�a(x); �b(x)

�
. The output (gray) image is �nally obtained

with:
GF colf ug(x) = �a(x)Tv(x) + �b(x) : (2.17)

A pseudo-code fo the color version of the guided �lter is given in Algorithm3.

2.4 Understanding the guided �lter and its artifacts

The guided �lter can be used in two diVerent ways:
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Algorithm 3: Guided Filter algorithm with a color guide
input : input imageu
input : color guide imagev
input : smoothing parameter�
input : window radiusr (box window will have size(2r + 1) 2)
output: �ltered imageGF colf ug

1 �u  Mean! f ug // mean of u in !

2 �v  Mean! f vg // mean of v in ! ( 3 � 1 vector)

3 c  Mean! f vug � �v �u // covariance of v and u in ! ( 3 � 1 vector)

4 �  Mean! f vv Tg � �v �vT // equation (2.15)

5 a  � =(s + � ) // equation (2.14)

6 b  �u � aT �v // equation (2.16)

7 �a  Mean! f ag // equation (2.10)

8 �b  Mean! f bg // equation (2.11)

9 return R  �aTG + �b // equation (2.17)

1. v 6= u: the guide image is diVerent from the input image. This allows to transfer the
edges of the guide on the input image (eventually with a little smoothing depending on
the parameter� ) and is used for example in dehazing applications [HST11], where one can
re�ne the haze transmission map using the color input image as a guide.

2. v = u: the guide is the input image itself. This case correspond to edge-aware image
smoothing, and the parameter� is set according to amount of detail to be removed.

We will focus on this second use: indeed, the edge-aware smoothing eVect of the guided �lter
is particularly interesting for our main application, contrast manipulation.

Thanks to its local linear model, the guided �lter withv = u avoids the sharpening eVect of
the bilateral �lter. Indeed, rewriting equation (2.4) for v = u gives

a(y) = Varf ug(y)=(Varf ug(y) + � ): (2.18)

Hencea � 1, which means that edge magnitudes can only be reduced by the �lter. Moreover,
the averaging process in equation (2.10) can only reduce the gradient conservation ofv at edges,
because edges are generally surrounded by �at areas (thus the surrounding coeY cienta are smaller
than the coeY cients localized on the edge).

The main artifact of the Guided Filter is what we will call the “contrast halo artifact”, which
comes from the fact that the edges are preserved, but the area around them is preserved too. We
show an example of the resulting phenomenon in Figure2.2. A second artifact is the appearance of
luminance halos. See �gure2.10. This happens when the edge is not well preserved. The contrast
halo appears close to the edges, when the variance is high. It is especially present when the �lter is
used with a large radius. Indeed, the guided �lter can't smooth out half of a window and keep the
other half as it is ; the choice is often an in-between decision : half smoothed, half kept.

Structure transfer with the guided �lter

The joint bilateral �lter (also called the cross bilateral �lter) can also be used for this kind of
structure transfer with a very similar result (see Figure2.3).
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Figure 2.2: Illustration of the �rst guided �lter artifact: detail smoothing is reduced near strong edges. On the left:
step­edge 1D­signal with a small noise (blue line) and its smoothed version with the guided �lter (red line). On
the right, we show the detail layer: difference between the two signals on the left: input ­ �ltered (green line). The
detail layer is almost �at in its center, where the input signal has its step­edge. For comparison, to input noise of
the test­pattern (expected detail) is displayed below (blue line). The difference between these two signals is also
presented (red bottom line), showing that the obtained detail almost perfectly equals the noise everywhere except
at the middle where the difference contains the input noise. Parameter used arer = 16 and � = 0 :033 .

Inputs Guided �lter Joint bilateral �lter

u=(d),v=(a)

(a)

u=(a),v=(d)

(d)

Figure 2.3: Structure transfert with the guided �lter (b) and (e) (r = 3 and � = 0 ) and with the joint bilateral �lter
(c) and (f ) (� s = 3 and � r = 10).
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(a) input (b)r = 4 (c)r = 16 (d) r = 64

Figure 2.4: Effect of the radiusr on the �ltering effect. The bottom row displays the difference between the input
image and the �ltered one, i.e.the detail layer. A factor 6 is applied for visualization. The contrast halo appears as
an area where the detail is null. With a small radius, the contrast halo is less present, but the detail can not contain
low frequencies. The guided �lter is used here with parameter� �xed to 0:062 (image dynamic is in[0; 1]).

Evolution of the linear coeY cients
�
a(x); b(x)

�
as a function ofr , � and the image content

Note that whenv 6= u, since we want to transfer a structure, we need a coeY cienta that is diVerent
from zero everywhere, otherwise the value maintained in the output would be�b = �u � a�v, i.e.the
output would be smoothed out. Thus, we will prefer to keep� very small. With� close to zero, the
guided �lter scalesthe guide imagev to the input imageu. Indeed, we have

GF f ug '
Covf u; vg

Varf vg
(v � �v) + �u ;

if we consider the approximation(�a; �b) ' (a; b). One can see in that formulation that the guided
�lter �rst removes the high frequencies inu, then adds the high frequencies of the guide image
v � �v, with a coeY cient Covf u; vg=Varf vg, which adapts the amplitude of this high frequency
component to the scale ofu. For example, it is then possible to use two images with diVerent
dynamic range, or a negative image,e.g.� u. On the other hand whenv = u, we want to have
a = 0 most of the time, anda = 1 at edges. Thus, the parameter� should be set to a larger value.

Furthermore, the local linear model is valid in square windows of size(2r + 1) 2 and one must
keep in mind that the coeY cients

�
a(y); b(y)

�
before aggregation are constant in that window.

Hence, in a window containing both an edge to preserve and some texture to smooth out, the
�lter cannot do both well, and must take a balanced decision. This explains the apparition of the
“contrast halo artifact”. This also shows the importance of the parameterr in the �lter: with a
larger more contrast halo will appear, but with a smallr the smoothing eVect in �at windows is
very light (only very high frequency texture can be removed with a tight window). The Figure2.4
shows this contrast halo artifact in function ofr .

Concerning the averaging of the estimators in equation (2.10) and (2.11). Due to this averag-
ing, the outputGF f ug do not respect the linear model in (2.1) any longer. But this gives more
robustness to the �lter. Once again, we can distinguish two cases:

80



(a) line of a real image (cameraman) (b) zoom in (a)

(c) line of a real image (cameraman) (d) zoom in (c)

Figure 2.5: In each graph we superimpose the original line of a real image (blue line) with the results of the guided
�lter (red line) and the bilateral �lter (green line). One can easily see the two artifacts of the guided �lter: �rst, the
amplitude of the edge in the guided �lter results is always smaller than the original edge. This is the luminance
halo artifact. Second, the structures are preserved around the edges, much more with the guided �lter than with
the bilateral �lter, as seen in graph (d). This is the contrast halo artifact. The parameters used arer = � s = 6 ,
� 2 = � r = 30 .

� When the variance in the input image is homogeneous, the linear coeY cients
�
a(y); b(y)

�

have only small variations. In that case, the second mean �lter in equation (2.10) and (2.11)
gives indeed a more robust estimation against the noise, because more values are aggregated
for the computation of�b(equivalent to a larger window).

� When the variance is not homogeneous, for example at the interface between two almost
constant areas but with diVerent intensities (step edge): Then the aggregation process will
smooth the variations of the linear coeY cients

�
a(y); b(y)

�
so that the edge-preserving

property is diminished: indeed, the edge-preserving coeY cienta can only be reduced.

This second averaging process thus helps in the smoothing part but diminishes the capacity of the
�lter to maintain edges.

EVect of the window content

We have �
�a(x); �b(x)

�
! (0; 0) for Varf vg(p) � ��

�a(x); �b(x)
�

! (0; �u(x)) for Varf vg(p) � �

Let us express the edge-preserving capability of the guided �lter in function of the heighth of
a step edge (see Fig.2.6). Consider the window! (y) of size(2r + 1) 2, centered on the step edge.
This window can't be perfectly centered because the center of the edge lies between two pixels. The
variance of the window is Varf vg(y) = ( h

1 )2(1 � 1
(2r +1) 2 ) This value tends rapidly towards( h

2 )2

whenr gets larger so we will keep that value in the following.
The linear coeY cients

�
a(y); b(y)

�
can therefore be rewritten using these relations as

a(y) =
h2

h2 + 4 �

81



Figure 2.6: A step edge with heighth. The red frame delimits the window! (y). Its radius isr = 6 . The orange
frame shows what other pixels are taken into account during the aggregation process.

Figure 2.7: We draw here the evolution of the coef�cienta for v = u and a window centered on a step edge.
We present four different curves, for four different values� . The values of� are chosen so that the coef�cienta is
exactly 0.5 for a speci�c edge height, using� � = ( h� =2)2 . It follows that we know, for a speci�c� � , that edges
with a height inferior to h� will be smoothed, and edges with height superior toh� will be preserved. We used
h1 = 10 , h2 = 20 , h3 = 40 and h4 = 80 . Those values are shown on the �gure with the vertical dashed lines.

b(y) = (1 � a(y))�u(x)

and we can now have a closer look at the behavior of those coeY cients for a speci�c heighth.
Furthermore, one can show that for a speci�c� � set so thata = 0 :5 for h� , then

a = 0 :9 for h = 3h1

a = 0 :1 for h =
1
3

h1 :

This means that there is an interval of width8
3h1 in which the windows are neither really preserved

nor smoothed. In other terms, there is a ratio equal to9between the height of an edge that will be
smoothed and the height of an edge that will be preserved. This is interesting because we can now
precisely set the parameter� : We know that for a speci�c� � , the step edge height1 that will be half
smoothed, half kept ishmid

� = 2
p

� � . The preserved edge heights arehpreserved
� = 6

p
� � and the

well smoothed heights arehsmoothed
� = 2

3
p

� � .
To give an example, a typical value for the bilateral �lter parameter� r is 10. In that case,

following the authors recommandation, we use� = 102. This leads to preserve edges of height60
and to smooth edges of height7. On the other hand, the bilateral �lter will smooth edges of height
10and preserve edges of height3� r = 30. Hence, the guided �lter has more luminance halo than
the guided �lter. This can be observed in Figure2.10and Figure2.12.

The same conclusion can be turned in another way: using the guided �lter for base + detail
decomposition without luminance haloes need a small� , and thus the detail it produces will be of
very low variance.

1or actually any window with variance� � , but with our relation we can think with intensities diVerences, which is
more intuitive
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Figure 2.8: Effect of the averaging of the linear coef�cients.

EVect of the coeY cients aggregation

In Figure2.8, one can see the eVect of the aggregation step on the linear coeY cienta. While the
smooth increase of its value at strong edges is desirable, the fact that its amplitude is also reduced
is not, as it causes a luminance halo.

Guided �lter kernel and comparison with bilateral �lter's one

We recall the bilateral �lter's kernelW BF(x; y; u):

W BF(x; y; u) =
1

jW BF(x; y; u)j
exp

�
�

kx � yk2

2� 2
s

�
exp

�
�

ju(x) � u(y)j2

2� 2
r

�
: (2.19)

The authors of the guided �lter [HST13] show that their �lter has an explicit kernel, that can be
expressed by

W GF(x; y; u) =
1

j! j2
X

z:(x2 ! z;y2 ! z)

 

1 +

�
u(x) � � (z)

��
u(y) � � (z)

�

� 2(z) + �

!

(2.20)

which shows some analogy to the bilateral �lter kernel.

Proof. (as given by the authors in [HST13]). Due to the linear dependance betweenu andGF f ug,
the �lter kernel is given byW (x; y) = @GFf ug(x)=@u(y). Putting (2.5) into (2.9) and eliminating
b, we obtain

GF f ug(x) =
1

j! j

X

z2 ! x

�
a(z)

�
v(x) � � (z)

�
+ �u(z)

�
: (2.21)

The derivative gives

@GFf ug(x)
@u(y)

=
1

j! j

X

z2 ! (x)

�
@a(z)
@u(y)

�
v(x) � � (z)

�
+

@�u(z)
@u(y)

�
: (2.22)

In this equation, we have

@�u(z)
@u(y)

=
1

j! j
�
�
y 2 ! (z)

�
=

1
j! j

�
�
z 2 ! (y)

�
(2.23)
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Figure 2.9: Spatial kernels of the bilateral �lter (red line) and the guided �lter (blue line) in a smooth area. Parame­
ters:� s = 6 (bilateral) andr = 6 (guided). The equivalence� s = r is good.

where�
�
y 2 ! (z)

�
is one wheny is in the window! (z) and zero otherwise. On the other hand,

the partial derivative@a(z)=@u(y) in (2.22) can be computed from (2.4):

@a(z)
@u(y)

=
1

� 2(z) + �

0

@ 1
j! j

X

x2 ! (z)

@u(x)
u(y)

v(x) �
@�u(z)
@u(y)

� (z)

1

A

=
1

� 2(z) + �

�
1

j! j
v(y) �

1
j! j

� (z 2 ! (y))
�

: (2.24)

Putting (2.23) and (2.24) into (2.22), we obtain

@GFf ug(x)
@u(y)

=
1

j! j2
X

z2 ! (x);z2 ! (y)

 

1 +

�
u(x) � � (z)

��
u(y) � � (z)

�

� 2(z) + �

!

: (2.25)

This is the expression of the �lter kernelW (x; y).

Comparison with the bilateral �lter

Concerning the parameter equivalence, the authors in [HST13] suggest to use

r $ � s

� $ � 2
r :

The spatial equivalence is clear (Figure2.9), but we will see here that the edge preserving property
is diVerent in the two �lters.

Concerning the second equivalence� $ � 2
r , the problem is more complicated. As we already

saw, the guided �lter is less “selective” than the bilateral �lter. First, the choice is made diVerently.
The bilateral �lter compares pixel intensities in a one-to-one way. On the other hand, the guided
�lter measures the variance of the whole window and takes its decision accordingly. This is why a
contrast halo appears. Second, the guided �lter in less selective,i.e.for the same smoothing eVect
on an edge with a certain gradient, another edge with a stronger gradient will be better preserved
by the bilateral �lter than with the guided �lter.

Figure2.10shows that a cross-equivalence of parameters between the guided and the bilateral
is hard to establish. In �gure2.10(d), the smoothing is too strong. In �gure2.10(c), it is not strong
enough. Figure2.11shows the step edge case behavior of the �lter.

Figure2.12, along with �gures2.10and2.11, clearly show the impossibility to set� in the guided
�lter to ensure similar edge preserving properties for both �lters. The �lters are diVerent, and this
goal is unattainable. The setting proposed by the authors [HST13] (right row in the Figure2.12)
gives the same amount of smoothing in the texture part, yet exhibits a strong luminance halo for
the edge, which is not present for the bilateral. The second setting� = ( � r

2 )2 better protects the
edge but also fails to �lter enough the textural part. Once again, the bilateral �lter proves to be
more selective that the guided �lter.
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(a) input (c) guided �lter � = ( � R
2 )2

(b) bilateral �lter (d) guided �lter � = � 2
R

Figure 2.10: Comparison between the bilateral and the guided �lter results for two different parameter settings:
standard equivalence� = � 2

r and another equivalence� = ( � R
2 )2 . The spatial parameter is set so thatr = � s . We

used here� r = 27 and � s = 3 .

Figure 2.11: Step edge preservation with the bilateral �lter (blue line) and the guided �lter (green line). The ab­
scissa shows the edge height, and the ordinate its “amount of preservation”. The closer its value to zero, the more
preserved the edge is. For the bilateral �lter, this preservation comes from the fact that pixels from the opposite
side of the edge will not be used in the averaging. For the guided �lter, edge preservation relies on the multiplica­
tive coef�cient a. Note that this result is shown before aggregation, after whicha often gets smaller. On the left,
the �gure shows the results for the standard equivalence� = � 2

r . On the right, with the parameter equivalence
� = ( � r

2 )2 .
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(a)� = ( � r
2 )2 (b) � = � 2

r

(c) Zoom in (a) (d) Zoom in (b)

(e) Zoom in (a) (f ) Zoom in (b)

Figure 2.12: Comparison of the bilateral and guided �lter for a test pattern containing a step edge and a sawtooth
structure. In the left row, the parameter equivalence is� = ( � r

2 )2 , in the right row it is � = � 2
r . The spatial parameter

used here isr = � s = 3 and the range parameter is� r = 50 . Obtaining the same reduction of the oscillatory
structure as the bilateral forces the guided �lter to more contrast loss in edges.
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3 Iterated Guided �lter and the Perona­
Malik equation

In the previous chapter have been introduced the guided �lter and its artifacts, namely, the
contrast halo and the luminance halo. A comparison to the bilateral �lter showed that its
edge-preserving and smoothing property does not put the bilateral �lter in the shade. On
another hand, the guided �lter has the neat advantage not to exhibit the staircase eVect. This
makes the �lter particularly desirable for contrast enhancement.

By performing an asymptotic analysis for the guided �lter when its support tends to zero,
we obtain its tangent partial diVerential equation and prove that it is similar to the Perona-
Malik diVusion equation, but deprived of its edge enhancement term that was shown to cause
staircase artifacts. This explains why the guided �lter actually has no such staircase artifacts.
This analysis also yields a simple solution to reduce the guided �lter's halos. We de�ne an
iterated guided �lter that simulates the found nonlinear parabolic equation, and show that
its solutions are halo free. A practical application to local detail enhancement con�rms the
eVectiveness of the new �lter.

3.1 Guided �lter relation to anisotropic di Vusion

A Partial DiVerential Equations Analysis of the Guided Filter

We now analyze the guided �lter with partial diVerential equations. We refer to [BCM06] for a
similar methodology applied to the bilateral �lter, in which the authors explain the apparition
of the staircase eVect by the fact that the bilateral �lter is asymptotically equivalent to a Perona-
Malik equation containing a reverse heat equation term creating shocks along zero-crossings of
the Haralick edge detector [Har84]. The same paper proposes a modi�cation of the bilateral �lter
avoiding this shock-creating term. We prove here that the guided �lter is equivalent to one iter-
ation of an anisotropic diVusion partial diVerential equation, that can be interpreted as the �rst,
diVusive, term of a Perona-Malik equation. This explains why the guided �lter does not show
staircase artifacts.

3.1.1 The Perona-Malik anisotropic diVusion

The early Perona-Malik [PM90] “anisotropic diVusion” reads

ut = div(g(jDu j2)Du) (3.1)
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whereu = u(t; x) is the time-dependent image andDu(t; x) its derivative atx = ( x; y), and
g : [0; +1 ) ! [0; +1 ) is a smooth decreasing function satisfyingg(0) = 1 , lim

s! + 1
g(s) = 0 . For

example the function

g(z) =
S

z + S
(3.2)

satis�es these conditions. The role ofg is to stop the diVusion process at edges, where the image
gradient is is high. Inserting (3.2) in (3.1),

ut = div
�

DuS
jDu j2 + S

�
(3.3)

one observes the following asymptotic behaviors:

� If jDu j2 � S, thenut ' � u

� If jDu j2 � S, thenut ' div(S r u
jr uj2 )

The �rst case leads back to the classic heat equation; the second case however contains a term for
edge accentuation, as shown in equation (3.4). Developping equation (3.3), we have

ut =
@

@x
uxS

jDu j2 + S
+

@
@y

uyS
jDu j2 + S

=
S

jDu j2 + S
(uxx + uyy ) �

S
(jDu j2 + S)2 (ux

@
@x

(u2
x + u2

y) + uy
@
@y

(u2
x + u2

y))

=
S

jDu j2 + S
� u �

2S
(jDu j2 + S)2

�
ux (uxx ux + uyx uy) + uy(uxy ux + uyyuy)

�

=
S

jDu j2 + S
� u �

2S
(jDu j2 + S)2 Du TD 2uDu (3.4)

where theDu TD 2uDu term is a diVusion in the gradient direction, but is inverted by the minus
sign. To understand this term, it is enough to consider the Taylor expansion ofu in the gradient
direction at a pointx,

u(x + �Du ) � u(x) = Du:�Du +
1
2

D 2u(�Du; �Du ) + O(� 2) ;

and to notice thatDu TD 2uDu = 1
� 2 D 2u(�Du; �Du ). Thus, the second term of equation (3.4)

is (up to a factor) the opposite second derivative ofu in the gradient direction and therefore
a reverse one-dimensional heat equation. Its order of magnitude is the same as the �rst term
(because of the squaring inDu TD 2uDu) so its in�uence can't be neglected. We show in �gure3.1
the shock eVects caused by the presence of this term. Note that the directional second derivative
term Du TD 2uDu is nothing but the Haralick [Har84] edge detector. Indeed its zero-crossings
characterize the in�exion points of the gradient in the direction of the gradient.

To summarize, the Perona-Malik anisotropic diVusion smooths the image in direction orthog-
onal to the gradient and enhances it in the gradient direction. We will demonstrate that the guided
�lter loses this edge-enhancement property. On the negative size, it therefore smooths more the
image across its edges. On the positive side, it has no staircase eVect.

3.1.2 Asymptotic behavior of the guided �lter when it is localized

A pseudo-code of the guided �lter is presented in Algorithm1. For the asymptotic study of the
�lter, we focus on the (main) case of usagev = u and will work with a continuous de�nition of
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Figure 3.1: Effect of the second derivative term when it is inverted. It creates shocks.

the guided �lter. It will be denoted byGF� f ug(x; y), were(x; y) are the horizontal and vertical
coordinates of a pixelp and� is the width of its kernel. We shall de�ne for any functionv(x; y)
its local mean, weighted by a �lterf � , by

�v(x; y) =
Z

f � (h; l )v(x � h; y � l )dhdl; (3.5)

wheref � (x; y) stands for the local window! of the guided �lter. The authors in [HST13] sug-
gested to use a square window in order to take advantage of the integral images, but mention that
any kernel form can be used. We consider here a general case. Hence, our continuous de�nition
of the guided withv = u will be

GF� f ug(x; y) = �a(x; y)u(x; y) + �b(x; y) (3.6)

where

a(x; y) =
Varf ug(x; y)

Varf ug(x; y) + �
(3.7)

and
b(x; y) =

�
1 � a(x; y)

�
u(x; y) ; (3.8)

where the local variance Varf ug(x; y) is de�ned as

Varf ug(x; y) =
Z

f � (h; l )u2(x � h; y � l )dhdl � �u2(x; y) : (3.9)

Theorem3.1. Consider a2D imageu(x; y) 2 C3(
) . Let f 1(x; y) be a nonnegative compactly
supported radial kernel. We assume that the �lter is normalized, namely

R
f 1(x; y)dxdy = 1 ; and

symmetric
R

xf 1(x; y)dx =
R

yf 1(x; y)dy = 0 . Set~� = �=M 20 where� is the edge preserving
parameter of the guided �lter, andM 20 =

R
f 1(x; y)x2dxdy =

R
f 1(x; y)y2dxdy. Finally, letf �

be the scaled kernel:f � (x; y) = � � 2f 1(x=�; y=� ).
Then, for(x; y) 2 
 ,

GF� f ug(x; y) � u(x; y) =
� 2M 20~�

jr u(x; y)j2 + ~�
� u(x; y) + O(� 3) : (3.10)

Remark3.1. Theorem3.1means that the image edges are preserved when~� � jr u(x; y)j2, because
� 2M 20~�=jr u(x; y)j2 ' 0. On the other hand, the �lter is a diVusion by the isotropic heat equation
when~� � jr u(p)j2. The transition between both behaviors is smooth, and a half-half compromise
is observed when~� = jr u(p)j2.
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1. if ~� � jr u(x; y)j2,

GF� f ug(x; y) � u(x; y) =
� 2M 20~�

jr u(x; y)j2
� u(x; y) + O(� 3) ;

2. if ~� = jr u(x; y)j2,

GF� f ug(x; y) � u(x; y) =
� 2M 20

2
� u(x; y) + O(� 3) ;

3. if ~� � jr u(x; y)j2,

GF� f ug(x; y) � u(x; y) = � 2M 20� u(x; y) + O(� 3) :

Proof. We �rst analyze the raw guided �lter before the aggregation of coeY cients performed in
equations (2.10) and (2.11). We can then write the �lter outputGF raw

� f ug(x; y)

GF raw
� f ug(x; y) = a(x; y)u(x; y) + b(x; y) : (3.11)

We now study the behavior of the �lter when� ! 0.
Let us denote byux (x; y) the �rst derivative ofu(x; y) in x anduxx (x; y) its second derivative

in x. Without loss of generality by changing the axes and the origin and adding a constant tou,
we can assume that(x; y) = (0 ; 0), thatu(0; 0) = 0 , and that the gradient ofu at (x; y) is null in
the direction ofy, so thatuy(0; 0) = 0 . Let us now consider the Taylor expansion to the second
order ofu at (0; 0),

u(x; y) = �x + �x 2 + 
xy + �y 2 + O(� 2) ; (3.12)

with � = ux (0; 0), � = 2uxx (0; 0), 
 = uxy (0; 0), and � = 2uyy (0; 0). By developing the
expression�u(0; 0) we get

�u(0; 0) =
Z

1
� 2 f

� x
�

;
y
�

�
u(x; y)dxdy

=
Z

1
� 2 f

� x
�

;
y
�

�
(�x + �x 2 + 
xy + �y 2 + O(� 2))dxdy

=
Z

1
� 2 f

� x
�

;
y
�

�
(�x 2 + �y 2) dxdy + O(� 3)

= � 2M 20(� + � ) + O(� 3) ; (3.13)

The terms with odd exponent cancel out because of the kernel's symmetry. Equation (3.13) is
obtained by substituting the variablex=� byx0andy=� byy0so that

Z
1
� 2 f

� x
�

;
y
�

�
x2dxdy =

Z
1
� 2 f (x0; y0)( �x 0)2�dx 0�dy 0

= � 2
Z

f (x0; y0)x02dx0dy0

= � 2M 20 ;

and the same substitution is used for
R 1

� 2 f
� x

� ; y
�

�
y2dxdy. Similarly,

�u2(0; 0) =
Z

1
� 2 f

� x
�

;
y
�

�
(�x + �x 2 + 
xy + �y 2 + O(� 2))2 dxdy

=
Z

1
� 2 f

� x
�

;
y
�

�
(� 2x2 + 2 ��x 2y2 + 
 2x2y2) dxdy + O(� 3)

= � 2� 2M 20 + (2 �� + 
 2)� 4M 22 + O(� 3) ;
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whereM 22 =
R

f (x; y)x2y2dxdy. Finally,

Varf ug(0; 0) = �u2(0; 0) � �u2(0; 0)

= � 2� 2M 20 + (2 �� + 
 2)� 4M 22 � (� + � )2� 4M 2
20 + O(� 3)

= � 2� 2M 20 + O(� 3) : (3.14)

From equations (3.7) and (3.14) follows that

a(0; 0) =
� 2

� 2 + ~�
+ O(� 3) ; (3.15)

using~� = �=(� 2M 20), and from equation (3.8) we obtain

b(0; 0) =
� 2M 20~�
� 2 + ~�

(� + � ) + O(� 3) : (3.16)

Let us recall equation (3.6):

GF raw
� f ug(x; y) = a(x; y)u(x; y) + b(x; y) :

Hence,GF raw
� f ug(0; 0) � u(0; 0) = b(0; 0) becauseu(0; 0) = 0 . Furthermore, we have� 2 =

jr uj2 and(� + � ) = � u, therefore from equation (3.16) we obtain

GF raw
� f ug(0; 0) � u(0; 0) =

� 2M 20~�
jr u(0; 0)j2 + ~�

� u(0; 0) + O(� 3) : (3.17)

This equation is therefore valid for any(x; y).
Let us now extend the above asymptotic result toGF� . The guided �lter aggregates the linear

coeY cients of overlapping windows. It therefore performs an additional averaging step by the
same windowf � , namely computes

�
�a(0; 0) � 1

�
u(0; 0) + �b(0; 0) = �b(0; 0) : (3.18)

Thus, we just have to convolve the coeY cientb(x; y) by the windowf � and obtain the result of
the convolution at(0; 0):

GF� f ug(0; x0) � u(0; 0) = f � �
�

� 2M 20~�
jr u(x; y)j2 + ~�

� u(x; y) + O(� 3)
�

(0; 0)

= � 2f � �
�

M 20~�
jr u(x; y)j2 + ~�

� u(x; y)
�

(0; 0) + O(� 3)

where� denotes the convolution. Sinceu isC3 in 
 , by expanding at(0; 0) the function M 20 ~�
jr u(x;y )j2+~� � u(x; y),

which is thereforeC1, we �nally obtain

GF� f ug(0; 0) � u(0; 0) =
� 2M 20~�

jr u(0; 0)j2 + ~�
� u(0; 0) + O(� 3) : (3.19)

This ends the proof as this relation is valid for every(x; y).

Remark3.2. Equation(3.19) can be interpreted as one step of the evolution of the �ltering process. We
can express this evolution as a time evolution by settingdt = � 2 (andt = ndt if we wish to consider
n iterations). So we get the evolution

GFdt (x; y) � u(x; y)
dt

=
M 20~�

jr u(x; y)j2 + ~�
� u(x; y) + O(dt

1
2 )

which can be considered as the �rst step of a Perona-Malik like equation,

du(t; x; y )
dt

=
M 20~�

jr u(t; x; y )j2 + ~�
� u(t; x; y ); with u(0; x; y) = u(x; y):
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3.2 Iterated Guided Filter

We introduce here the Iterated Guided Filter as a straightforward derivation implementation of the
mathematical analysis led in the preceding section, which showed that the guided �lter is asymp-
totically equivalent to a well posed Perona Malik equation when the �ltering neighborhood size�
tends to zero. This opens the way to a much more local iterated �lter and raises the hope to get rid
of all artifacts (in particular the halos) caused by the use of a �xed neighborhood. Meanwhile, the
iteration can ensure that the �lter keeps a similar �ltering eVect compared to the original guided
�lter. In other words, the iterated guided �lter solves the guided �lter's artifacts at the price of
more iterations and therefore more computational time. The �ltered results of the iterated guided
�lter are noticeably diVerent from the Guided Filter results as we shall see. This is not attributable
only to the artifact correction, but also to the diVerent edge detection. As it uses a smaller radius,
the edge detection is done at a �ner scale. As a result, the preserved parts of the �ltered image can
be signi�cantly diVerent, but generally for the better, as �ner results will be detected as part of the
base.

Algorithm description

Basically, the iterated guided �lteriteratesthe guided �lter. However, we shall also examine strate-
gies to reduce the computational time, leading to three diVerent versions that will be distinguished
by a diVerent superscripts for the three versionsIGF (1)

� , IGF (2)
� andIGF (3)

� .

De�nition 3.1. We use the superscriptt to denote the iterations and set

IGF (1)
� f ug(t; x) = �a� (t; x)IGF (1)

� f ug(t � 1; x) + �b� (t; x) ; (3.20)

where�: is the local mean de�ned in Equation(3.5),

a(t; x) =
Var

�
IGF (1)

� f ug
	

(t � 1; x)

Var
�

IGF (1)
� f ug

	
(t � 1; x) + �

; (3.21)

and
b(t; x) =

�
1 � a(t; x)

�
Mean

�
IGF (1)

� f ug(t � 1)
	

(x) ; (3.22)

with IGF (1)
� f ug(t = 0) = u. This is just the guided �lter de�nition withv = u and where the input

u used at each iteration is the �ltered output at the previous iterationIGF (1)
� f ug(t � 1). Formally,

we therefore have
IGF v1f ug(t; x) = GF

�
IGF (1)

� f ug(t � 1)
	

(x) ; (3.23)

where the guided �lter's guide is the input itself.

Algorithm 4 gives the pseudo-code of theIGF (1)
� . We compare the results of this �lter to

the classic bilateral �lter in Figure3.2 to verify that it is not aVected by any staircase eVect. As a
consequence of the absence of the edge reinforcement term, the smoothing is stronger.

The iterated guided �lter in this �rst version can't be guided by another image than itself. We
therefore introduce a second versionIGF (2)

� where the guidev can be diVerent from the inputu.
Thus, even in thev = u con�guration the input/output image will evolve with time but not the
guide, thus avoiding the very sharp edge-stopping aspect of the �rst version (see Figure3.2).
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Algorithm 4: Iterated guided �lter v1(IGF (1)
� )

input : imageu
input : smoothing parameter�
input : radiusr
input : number of iterationsT
output: IGF (1)

� f ug
1 IGF (1)

� f ug(t = 0)  u // Initialization

2 for t = 1 ; : : : ; T do
// Apply GF with given parameters � , r and v = u

3 IGF (1)
� f ug(t)  GF

�
IGF (1)

� f ug(t � 1)
	

(a) Input (b) Iterated bilateral (c) Iterated guided

Figure 3.2: The iterated guided �lter causes no staircase artifact. Parameters used here:� = � 2
r = 0 :012 with the

input dynamic range in[0; 1]; r = � s = 1 with the input image of size250� 250; number of iterationsT = 50 . The
bottom graph displays the restrictions of the three above images to the vertical straight lines drawn on the images.
The staircase effect of the bilateral �lter (orange line) doesn't appear on the guided �lter version (red line).
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De�nition 3.2. IGF (2)
� : Iterated guided �lter with a constant guide. Here, the guidev stays unmod-

i�ed over the iterations.IGF (2)
� f ug(t) is both the �ltered output at iterationt and the input att +1 ,

with u is the input image andIGF (2)
� f ug(t = 0) = u.

IGF (2)
� f ug(t; x) = �a(t; x)v(x) + �b(t; x) (3.24)

where

a(t; x) =
Cov

�
v; IGF (2)

� f ug(t � 1)
	

(x)
Varf vg(x) + �

(3.25)

and

b(t; x) = Mean
�

IGF (2)
� f ug(t � 1)

	
(x) � a(t; x)�v(x) ; (3.26)

with IGF (2)
� f ug(t = 0) = u. This can also be written

IGF (2)
� f ug(t) = GF

n
IGF (2)

� f ug(t � 1)
o

; (3.27)

where the guided �lter is used with the guidev.

Algorithm 5: Iterated guided �lter v2(IGF (2)
� )

input : imageu
input : guidev
input : smoothing parameter�
input : radiusr
input : number of iterationsT
output: IGF (2)

� f ug
1 IGF (2)

� f ug(t = 0)  u // Initialization

2 for t = 1 ; : : : ; T do
// Apply GF with given parameters � , r and guide v

3 IGF (2)
� f ug(t)  GF

�
IGF (2)

� f ug(t � 1)
	

Algorithm 5 gives the pseudo-code ofIGF (2)
� . An illustration is given for this �lter in Fig-

ure 3.3(c). It smooths less than the previous version, because the texture from the guide are pre-
served and keep being transfered over the iterations. However, because the linear coeY cient a
measures the covariance between the two images, its value will decrease in �at regions. (By �at
region we mean a region with low variance with respect to� .) Indeed, the imageIGF (2)

� f ug(t)
gets smoother and smoother, and therefore diVers more and more from the guide. At edges, since
they are preserved, the linear coeY cients do not change. Thus, the smoothing eVect in �at areas
increases (although it is a slight increase in comparison withIGF (1)

� ) at each iteration.
The coeY cient �a in equation (3.25) does not participate to the smoothing nor evolve much

over the iterations. Thus, the third version of the iterated guided �lter gives up computing it at
each iteration. This saves several convolutions and is therefore more eY cient. Indeed, the iterated
guided �lter with v 6= u (IGF (2)

� ) needs six mean �lters per iterations, whereas this third version
(IGF (3)

� ) only needs two. So the �lter is approximatively three times faster, as the mean �lters are
the most computationally demanding operations of the guided �lter (see Algorithm6).

94



De�nition 3.3. IGF (3)
� : Fast approximation of the iterated guided �lter with a constant guide. Com-

pared toIGF (2)
� , this �lter computes only once the coeYcient�a. We remind that imagev is the guide

and is kept unmodi�ed over the iterations;u is original input image andIGF (3)
� f ug(t) is both the

�ltered output at iterationt and the input at iterationt + 1 .

IGF (3)
� f ug(t) = �a(t; x)v(x) + �b(t; x) (3.28)

where

a(t; x) =
Covf v; ug(x)
Varf vg(x) + �

(3.29)

and
b(t; x) = Mean

�
IGF (3)

� f ug(t � 1)
	

(x) � a(x)�v(x) ; (3.30)

with IGF (3)
� f ug(t = 0) = u.

This last �lter has a lower smoothing power compared to versionsv1 andv2. Indeed, the edge
(and structure) preserving coeY cienta is computed only once, at the �rst iteration of the �lter.
One therefore needs to modify the parameter� to achieve the same “amount of smoothing”.

A pseudo-code for the third version of the iterated guided �lter is given in Algorithm6. It is
straightforward to deduce from the guided �lter pseudo-code in Algorithm1the �rst and second
versions, using equations (3.23) (v1) and (3.27) (v2). All three algorithms have aO(TN ) complex-
ity, with T the number of iterations andN the number of pixels. Mean �lters can be implemented
with integral images which makes the �lter complexity independent from the window's radius.
However, this argument is not as crucial as in the original guided �lter case, because the iterated
guided �lter is designed to use small radii (typically between1and5). For the same reason, the
down-sampling strategy doesn't apply here.

Algorithm 6: Iterated guided �lter algorithm
input : input imageu
input : guide imagev
input : smoothing parameter�
input : window radiusr (box window will have size(2r + 1) 2)
input : number of iteration T
output: �ltered imageIGF (3)

� f ug
1 �u  Mean! f ug // mean of u in windows !

2 �v  Mean! f vg // mean of v in windows !

3 C  Mean! f vug � �v�u // covariance of v and u in windows !

4 V  Mean! f v2g � �v2 // variance of v in windows !

5 a  C=(V + � ) // equation (2.4)

6 �a  Mean! f ag // equation (2.10)

7 IGF (3)
� f ug(t = 0)  u // Initialization

8 for t = 1 ; : : : ; T do

9 IGF (3)
� f ug(t)  Mean! f IGF (3)

� f ug(t � 1)g // mean of IGF (3)
� f ug(t) in !

10 b(t)  IGF (3)
� f ug(t) � a�v // equation (2.5)

11 �b(t)  Mean! f b(t)g // equation (2.11)

12 IGF (3)
� f ug(t)  �av + �b(t)

13 return IGF (3)
� f ug
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(a) Input (b)IGF (1)
� (t = 50) (c)IGF (2)

� (t = 50)

(d) IGF (3)
� (t = 50) (e)IGF (3)

� (t = 50) , � = 0 :042

Figure 3.3: Different versions of the �lter. Parameters are:� = 0 :012 (unless noti�ed otherwise);r = 1 andT = 50 .
The last versionIGF (3)

� need a higher� to achieve a similar smoothing effect. This is due to the fact that coef�cient
a is not updated across the iterations.
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We show in Figure3.3 the �ltering results with the three diVerent versions. Noticeably, the
amount of smoothing diVers from one to the other. Indeed, in the �rst version (v1), the guide is
more and more smooth across the iterations, whereas the guide stays the same in the second ver-
sion (v2). In the third (v3) version three, the gradient-preserving coeY cient �a is kept unchanged
across the iterations, whereas in v2 it takes the smoothness of the input image into account (co-
variance term).

Tuning the parameters to get equivalent smoothing eVects

To get similar the spatial smoothing, we set eitherT andr according to the equivalent Gaussian
kernel we want. Indeed, the Gaussian convolution can be approximated byK passes of box �l-
tering. Wells [Wel86] suggested to selectr according to� 2 = 1

12K
�
(2r + 1) 2 � 1

�
. Since each

iteration of the guided �lter corresponds to two box �lters, we can use the relation

rGF =
�

1
6

T
�
(2r IGF + 1) 2 � 1

�
� 1=2

; (3.31)

whererGF is the radius of the guided �lter andr IGF the radius of the iterated guided �lter.
Concerning the edge-preserving parameter� , there is no clear equivalence, yet using�=T in

the �rst two versions of the iterative guided �lter seems to work in practice. The third iterative
version has no dependence on the number of iterationsT, yet has a stronger smoothing eVect
than the original guided �lter. For this reason we use�=2 in our experiments.

3.3 Results

Figure3.4 displays results obtained with all presented versions of the guided �lter. The very left
column (except from the top image which is the input) shows �ltering and contrast enhancement
results with the original guided �lter. The contrast halo artifact is clearly visible in the zoomed-in
part displayed in the bottom image. The next columns present the same results obtained with
the iterated versions. The contrast halo artifact is solved. The detail layers produced by the three
versions are rather diVerent. As seen in Figure3.3 the �rst version smooths more than the other
two; this is particularly visible on the dark bars. The second iterated version keeps a small contrast
halo related to window's width: We used herer = 4 and this remaining contrast halo would be
smaller with a smallerr . One reason to chooser > 1 is that the largerr , the less iterations we need
for a �xed �nal spatial smoothing. We therefore use the largestr for which the contrast halo is not
objectionable. This value might nevertheless depend on the viewer and on the image resolution.
We found thatr = 3 or r = 4 are acceptable. The third (fast) iterated version stays close to the
second one but presents a small luminance halo.

Figure3.5presents another application to a gray scale image. The input and �ltered images are
displayed on the top row, and detail (input - �ltered) is showed on the bottom row, with a contrast
factor of6 for visualization. The iterated guided �lter solves the issues of the guided �lter. Another
example is given in �gure3.6, where each channel of the input color image is �ltered according to
the luminance channel (= 0 :2989� Red+0 :5870� Green+0 :1140� Blue). We compute the color
coeY cients before the �lter usingucolor=uluminanceand add them back after �ltering. Thus, only
luminance contrast is enhanced in this experiment. The texture of the table is better enhanced
with the iterative version around.

We show in Figure3.7 the results for color �ltering. Note that the guided �lter with color is
slower than the guided �lter by a factor of almost9. Indeed, the computational cost for using a
color guide is slightly less than3 times the cost of a gray guide, and one needs to �lter each of
the three channels of the color image. This is also valid for the iterated versions v1and v2, but
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(a)GF (b) IGF (1)
� (c)IGF (2)

� (d) IGF (3)
�

Figure 3.4: Parameter used are� = 0 :062 for GF ; �=T for IGF (1)
� and IGF (2)

� and �=2 for IGF (3)
� . Radius ofGF

is r GF = 26 and r IGF = 4 for the iterative versions, with the number of iterationsT = 50 . r GF is computed
from equation (3.31), so that the spatial smoothing of all �lters is the same. The detail in the “detail layer” row
in multiplied by 6 for visualization purposes. The “enhanced” images are computed as: enhancef ug = 0 :125 +
0:750� u + 6 � (u � GF f ug). The last row displays a zoomed in part of the enhanced images.
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(a) inputu (b)GF f ug (c)IGF v3f ug
r = 28 , � = 0 :062 r = 3 , � = 0 :062=2, T = 100

Figure 3.5: The top line displays the input image (on the left) followed by the �ltered versions. The bottom line
displays the detail layers obtained (with a factor 6 for visualization). The iterated version of the guided �lter gets
rid of both luminance and contrast halos of the guided �lter.

99



G
F

IG
F

(3
)

�

(a) Input (b) Base layer (c) Detail layer (d) Enhanced

Figure 3.6: We use here the luminance channel of the color image as guide for the �ltering of each color channel.
We use theIGF (3)

� in that experiment. Parameters arer GF = 28 ; r IGF = 3 ; T = 100; � GF = 0 :062 and
� IGF = � GF =2. The detail is better enhanced in the iterated version: the contrast halos around the objects of the
scene are removed.

diVerent for the fast version (v3), which does not require recomputing the linear coeY cienta at
each iteration. So these coeY cients are only computed once, and in comparison with the number
of iterations (often more than50) this cost can be neglected, making this third version only three
times slower (due to the �ltering of three channels). Hence, compared to the original color guided
�lter, the �rst two iterated color guided �lters have a complexity factorT, whereas the third one
has a factorT=3 (as for the gray versions).

Artifacts

The Iterated Guided Filter still produces a small luminance halo. Moreover, according to the radius
used, it can still show the contrast halo we observed with the Guided Filter. Obviously, a contrast
halo made with a radius of4 is still way less visible than with a radius of40, which is a standard
value for the original Guided Filter.

3.4 Conclusion

In this chapter, we presented the guided �lter. Its main advantages are a fast and exact imple-
mentation, a structure transfer capability and the absence of over-sharpening (staircase) artifacts.
We demonstrated the last property by showing the link between the guided �lter and the Perona-
Malik anisotropic diVusion. Furthermore, our proposition of an iterated guided �lter solves the
two main inconveniences of the �lter, namely the contrast halo and luminance halo. We also
went farther and proposed two variants of the iterated guided �lter: the �rst variant, version two
(v2), accepts a guide diVerent from the input image and can then be used for structure transfer;
the third version (v3) is a fast approximation of the second one, that unfortunately reintroduces
some luminance halo. We then showed the eY ciency of the new �lter in the case of extreme local
contrast enhancement.

Although the authors in [HST13] defend themselves of proposing a fast approximation to the
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Figure 3.7: Each �lter can handle a color guide.IGF (1)
� is a special case here because it requires a �ltered color

image at each iteration, thus it �lters each color channel at each pass, unlike the other ones that �lter each color
channel independentely (but still using the same color guide). Parameters are:� GF = 0 :062 and �

IGF (1)
�

=
�

IGF (2)
�

= � GF =T; �
IGF (3)

�
= � GF =2; r GF = 26 ; r IGF = 4 and T = 50 .
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bilateral �lter, one can argue that the goals and tools of both classes of �lters are closely related.
Indeed, the idea of the bilateral �lter is to prevent averaging pixels with distant intensities, even
if they are spatially close. The guided �lter, by measuring the local variance, applies the same
principle: high variance areas,i.e.where pixels intensity variations are strong, are not averaged.
Furthermore, it was proven in [Bar02] that the underlying PDE of the bilateral �lter is a variant
of the Perona-Malik equation. Hence, both �lter belongs to the same family of edge-stopping
diVusion �lters.

The next chapter will concentrate on the bilateral �lter, and review its numerous fast approxi-
mations proposed since2002.
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4 Bilateral �lter

The previous Chapters2and3are dedicated to the fast and recent guided �lter, link it to the
anisotropic diVusion and compare it to the bilateral �lter. Those two last �lters are the most
widespread �lters for the computation of an image base.

In this chapter, we present the bilateral �lter. We recal its long history, and describe its main
descendants: the joint (or cross) bilateral �lter [ED04,PSA+ 04], the bilateral �lter with regres-
sion [BCM06], the unnormalized bilateral �lters [APH+ 11,APH+ 14,MT16]. Furthermore, we
make the link between the bilateral �lter and ACE (Automatic color enhancement) that be-
longs to the retinex family. We also explain the staircase eVect �rst described, and solved, by
Buadeset al.[BCM06].

Two others chapters dedicated to the bilateral �lters will follow. A review of the numerous
schemes proposed to correct the staircase eVect (Chapter5), and a review of the fast approx-
imations, particularly usefull when the �lter is used with large spatial neighborhood as in
the base and detail decomposition problem (Chapter6). However, since the unnormalized
bileral �lter will be de�ned in this chapter, we get ahead and present its fast approximations
here. Likewise, we propose in this Chapter4 a fast approximation of the bilateral �lter with
regression and a multi-scale �lter based on it. This last �lter gives us the opportunity to de�ne
and explain thedark haloartifact.

Paris, Kornprobst, Tumblin and Durand2009book “Bilateral �lter: theory and appli-
cations”

This chapter, along with the two following ones on the staircasing corrections and the fast approx-
imations of the bilateral �lter, is directly inspired by the S. Paris, P. Kornprobst, J. Tumblin and
F. Durand book [PKTD09]. Whereas this book aims at giving an extensive presentation of the
bilateral �lter and its applications, we concentrate on its usage for base and detail decomposition.
Nonetheless, we approach several points already reviewed in the2009book,e.g., the diVerent pro-
posed extensions and its fast approximations. We highlight below the main diVerences between
our Chapters4, 5, 6 and Paris, Kornprobst, Tumblin and Durand book. Concerning this chapter
on the bilateral �lters, we present supplementary �lters:

� the unnormalized bilateral �lters [APH+ 11,MT16], along with their fast approximations;

� we propose a fast approximation for the bilateral �lter with regression;

� we establish a formal link with the �lter ACE (Automatic Color Enhancement) [GRM02].

We pursue the review of the bilateral �lter with the staircase eVect corrections in Chapter5. There
are two kinds of corrections: the �rst modify the bilateral �lter so that the slopes are taken into
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account,e.g., the bilateral with regression �lter, the trilateral �lter, the symmetric bilateral �lter;
these have been reviewed in Pariset al. book, so the diVerences between our review and theirs
comes down to:

� a more detailed presentation of the trilateral �lter, with pseudo-codes;

� the introduction of a symmetric bilateral �lter similar to Elad's one [Ela02].

The second kind of approximations however is not described in [PKTD09]. It consist in post-
processing the �ltered image to correct the staircase artifact. The described corrections are:

� the blending described by Durand and Dorsey [DD02];

� the minimal isotropic smoothing eVect in the separable kernel approximation [PVV05];

� the Poisson correction proposed by Baeet al.[BPD06];

� the selective diVusion of Kass and Solomon [KS10].

Concerning the fast approximations, most of them are reviewed in the book. Nonetheless, we add
to the list �lters posterior to2009and sometimes give more detailed descriptions:

� in the local histograms, Weiss [Wei06] approximation is described in the book, yet we give
of it a more in-depth description: we present the earlier Huang's algorithm and give for both
pseudo-codes. Furthermore, we review Porikli's2008version that uses integral histograms,
and discuss the usage of box spatial kernels;

� the fast approximations of the unnormalized bilateral �lter is given in Chapter4;

� we present a supplementary class of fast approximations based on the usage of polynomials
range kernels;

� the domain transform is also reviewed, this �lter can be thought as a bilateral �lter when
used with a small spatial kernel.

4.1 Introduction

The principle of bilateral �ltering appeared with Yaroslavsky (1985) [Yar12] and Lee (1983) [Lee83].
The variant we study was proposed by Smith and Brady who called it “SUSAN” (1995) [SB97]. It
was re-proposed by Tomasi and Manduchi under the name “bilateral �lter” in1998[TM 98]. All
of these similar �lters can be termed neighborhood �lters.

We call neighborhood �lter any �lter which computes a pixel by taking an average of the
values of neighboring pixels with a similar grey level value. In Yaroslavsky (1985) [Yar12] and Lee
(1983) [Lee83] it is proposed to average pixels belonging to the neighborhoodG(x; � r ) \ B � s (x).
This �lter can be rewritten in a more continuous form as

YF� r ;� s u(x) =
1

C(x)

Z

B � s (x)
u(y)e

� j u ( y) � u ( x) j 2

2� 2
r dy (4.1)

wherex 2 
 andC(x) =
R

B � s (x) e
� j u ( y) � u ( x) j 2

2� 2
r dy is the normalization factor. Only pixels inside

B � s (x) are averaged. In later versions the gray level threshold was replaced by a Gauss weighting
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Figure 4.1: Bilateral �lter principle. Figure reproduced from [TM98]

function depending on a �ltering parameter� r [SB97], [TM 98]. These algorithms, instead of
considering a �xed spatial neighborhoodB � s (x), weigh the distance to the reference pixelx,

BF� r ;� s u(x) =
1

C(x)

Z



u(y)e

� j y� xj 2

2� 2
s e

� j u ( y) � u ( x) j 2

2� 2
r dy ; (4.2)

whereC(x) =
R


 e� j y� xj 2

2� s 2 e
� j u ( y) � u ( x) j 2

2� 2
r dy is the normalization factor and� s is now a spatial �lter-

ing parameter. We show in �gure4.1(b) a representation of the bilateral kernel at an edge. There
is no signi�cant diVerence between YFh;� s and BFh;� s . The performance of both algorithms is
justi�ed by the same arguments. Inside a homogeneous region, the gray level values slightly �uc-
tuate because of the noise or texture. In that case, the �rst strategy computes an arithmetic mean
of the neighborhood and the second strategy a Gaussian mean. At a contrasted edge separating
two regions, if the gray level diVerence between both regions is signi�cantly larger than� r , both
algorithms compute averages of pixels belonging to the same region as the reference pixel. Thus,
the algorithm does not blur the edges, which is its main scope.

We refer to [PKTD09] for a extensive review of the applications of the bilateral �lter. Quot-
ing it: “[The bilateral �lter] has been used in various contexts such as denoising [ASG06], [BM05],
[LFSK06], texture editing and relighting [OCDD01], tone management [BPD06], [BM05], [DD 02],
[ED04], [Ela05], [PSA+ 04], demosaicking [RS03], stylization [WOG06], and optical-�ow estima-
tion [ST08], [XCS+ 06].”. This overview gives an idea of the wide adoption of this �lter in the
community, and more generally the usefulness of base and detail decomposing �lters image pro-
cessing.

4.2 The bilateral �lter and its implementation

The bilateral �lter, as de�ned in equation (4.2), has a simple implementation withO(N 2) com-
plexity. It is usual to reduce it toO(r 2N ) by restricting the convolution to a(2r + 1) � (2r + 1)
window (usuallyr = 2 � S). But the complexity remains high when the �lter is used with large
spatial support.

Algorithm 7presents an implementation of the bilateral �lter. Numerous fast approximations
have been proposed to accelerate this �lter. However, none of them is able to reproduce the exact
bilateral �lter. Nevertheless, some of them have turned out to be really close. They will be detailed
in the next section6 on the main fast approximations.
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Algorithm 7: StandardO(r 2N ) bilateral �lter (BF)
input : input u
input : range standard deviation� r

input : spatial standard-deviation� s

input : window widthr (usually2� s)
output: BFf ug
// First loop on the whole image

1 foreachpixelx do
// Second loop on the current pixel's window

2 foreachpixely in thex-centered window of size(2r + 1) 2 do
3 k(x; y) = G� s (x � y)G� r

�
u(x) � u(y)

�
// Compute current pixel's weights

4 ! (x) =
P

y k(x; y) // Normalization factor

5 BFf ug(x) = ! (x) � 1 P
y k(x; y)u(y) // Compute output value

6 return BFf ug

Limitations and artifacts of the bilateral �lter

The �rst limitation of the original bilateral �lter is its execution time. Since it needs to recompute
the kernel at each pixel, the execution is very slow for large images or a large spatial standard devi-
ation � s. The second limitation is the so-called staircase artiofact [BCM06] – namely a tendency
of the �lter to create jumps (staircases) along the in�exion lines of smooth regions.

The staircase artifact is illustrated in �gure4.2 and �gure 4.3. In this �gure we simpli�ed
the range and spatial kernels by using simple boxes. This allows a simple visualization, in the1-
dimensional case, of what pixels are taken into account in the averaging process. The blue arrows
are the intensity diVerencesu(x) � u(y). The dotted box shows the boundaries of the rangeand
spatial kernels: outside of this box, all the bilateral weights are zero. Then, it is easy to see that for
the current pixel (namley the intersection of the two blue dotted lines at the center of the box) the
averaged value has a higher intensity than the initial one. By applying the bilateral averaging on
each pixel of the blue line, one obtains the red line. The “propagation of the plateau” that one can
observe is what we call the “staircase artifact”.

This spurious edge reinforcement causes a staircase, or “contrast reversal” artifact when the
�lter is used for contrast enhancement. This eVect is visible in �gure4.4.

4.3 On the link between ACE and the bilateral �lter

In this section we demonstrate that ACE has the same formula as the residual of the bilateral �lter.
The diVerence is that the spatial kernel has slow decay, in1=jjxjj and that the range kernel does not
discard values with distant intensity but rather limits their in�uence. To the best of our knowledge,
such a link has not been suggested yet.

Theorem4.1. Letu : 
 ! [0; 1] be the input image,F : R2 ! [0; 1] the �lter kernel,H : R !
[0; 1] an in�uence function andC : 
 ! [0; 1] the normalization factor. Denotex = ( x1; x2) and
y = ( y1; y2) the2D-coordinates of pixels in
 . ACE and the bilateral residualu � BFf ug are both
written in the same form:

v(x) =
1

C(x)

X

y2 


F (x � y) H (u(y) � u(x))
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(b) Range kernel

(a) (c) Spatial kernel

Figure 4.2: Explanation of the staircase effect for a bilateral �lter with simpli�ed range and spatial kernels. The
current pixel is at the intersection of the vertical and horizontal blue dotted lines. The dotted black rectangle
indicates which pixels will be considered in the average. Light blue vertical arrows stand for the intensity difference
between the current pixels and the pixels in the rectangle. Since the current pixel has more neighbors (in the
bilateral de�nition) on the right side of the edge, its bilaterally averaged value will be closer to the plateau's value.

Figure 4.3: The number of neighbors is unbalanced for concave signals. This causes the staircase artifact. Figure
reproduced from [BCM06].

(a) Input (b) Enhanced

Figure 4.4: Contrast reversal with the bilateral �lter and local contrast enhancement. In (b) the detail layer has been
multiplied by a factor � > 1.
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Proof. Let recall the bilateral �lter de�nition:

BFf ug(x) =
1

CBF(x)

X

y2 


G� s (x � y)G� r

�
u(x) � u(y)

�
u(y); (4.3)

whereG� s is the Gaussian spatial kernel,G� r the range Gaussian kernel, andCBF(x) =
P

y2 
 G� s (x�
y)G� r

�
u(x) � u(y)

�
the normalization factor. As presented in the unnormalized bilateral �l-

ter [APH+ 11,APH+ 14] Section4.4, equation (4.3) can be written

BFf ug(x) = u(x) �
1

CBF(x)

X

y2 


G� s (x � y)G� r

�
u(x) � u(y)

��
u(x) � u(y)

�
: (4.4)

We thus have

u � BFf ug(x) =
1

CBF(x)

X

y2 


FBF(x � y)HBF(u(y) � u(x)) ; (4.5)

whereFBF(x) = G� s (x) andHBF(t) = G� r (t)t. As for ACE, it is de�ned as

ACEf ug(x) =
X

y2 
 nx

1
kx � yk

s�
�
u(x) � u(y)

�
; (4.6)

thus

ACEf ug(x) =
1

CACE(x)

X

y2 


FACE(x � y)HACE(u(y) � u(x)) (4.7)

with

FACE(x)

(
1=kxk x 2 
 n(0; 0)

0 x = (0 ; 0);
(4.8)

HACE(t) = s� (t), andCACE(x) = 1 everywhere in
 .

In summary, the only essential diVerence between ACE and BF is that the former computes
the detail layer (and directly enhances it, as we shall see) whereas the latter computes the base
layer. Another diVerence lies in the absence of normalization in ACE, allowed by the point we
just mentioned. Indeed, similarly to the unnormalized bilateral �lter (see Section4.4), averaging
intensity diVerences(u(y) � u(x)) that oscillate around zero permits to remove the normalization
term. The other diVerence between both �lters is the form of the functionsF (:) and H (:). As
such, ACE can be expressed asthe detail layer given by an unnormalized bilateral �lter with modi�ed
spatial and range kernels.

The diVerence between the kernels is relevant: in ACE the spatial kernel is scale-invariant and
the range kernel, rather than excluding pixels with distant intensity from the averaging, limits their
in�uence by a threshold. Various range functions for the bilateral �lter have been investigated in
the context of robust statistical estimation by Durandet al.[DD02] in 2002. The range function
used in ACE is known as the Huber minimax [Hub11]. It was previously studied in the context of
anisotropic diVusion by Blacket al.in 1998[BSMH98]. We reproduce in Figure4.6 an illustration
from [BSMH98] showing Huber'sminmaxnorm � (:), its derivative (:), and the edge-stopping
function g(:). The derivative (:) is proportional to the in�uence function [HRRS11]. In Theo-
rem4.1we denoted it byH (:). This function characterizes the bias that a particular measurement
has on the solution [BSMH98]. The Huberminmax edge-stopping functiong() is de�ned as
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Figure 4.5: Huberminimaxnorm � (:), its derivative (:) and the corresponding edge­stopping functiong(:). This
norm is a modi�cation of the L 1 norm with a quadratic part around zero. See Equation(4.9), Equation(4.10) and
Equation(4.11), respectively. Figure reproduced from [BSMH98].

Figure 4.6: Figure reproduced from [DD02]. The ACE method uses the Huber minimax in�uence function, while the
classic bilateral �lter uses a Gaussian. In ACE the� parameter is1=� .

g(x) = � 0(x)=x. We have

� (x; � ) =

(
x2=2� + �= 2 jxj � �;

jxj jxj > �;
(4.9)

 (x; � ) =

(
x=� jxj � �;

sign(x) jxj > �;
(4.10)

g(x; � ) =

(
1=� jxj � �;

sign(x)=x jxj > �:
(4.11)

Remark that (x; 1=� ) = s� (x). We report in Figure4.6 (reproduced from [DD02]) the plot
of diVerent in�uence functions considered in Durandet al. paper. The Gauss function from the
bilateral �lter (green line) and the Huber one (red line) show the diVerent treatment of outliers
made by BF and ACE.

Remarkably, ACE range kernel prevents the �lter from creating staircase patterns in the �ltered
image, that is, contrast reversal artifacts in the result. This is because outliers are not rejected but
simply clipped. On the other hand, it makes ACE prone to halos artifacts, particularly visible
when the used spatial kernel is Gaussian. However, with the1=kxk kernel, the halo is somehow
“dissolved” because of its width, thus not visible. We display some results of ACE in Figure4.7.

1The experiments are available online athttp://demo.ipol.im/demo/g_ace/archive/?key=
F4C4D864C59529A061E700065CF0B566 and http://demo.ipol.im/demo/g_ace/archive/?key=
B71D56923F60444C748E73A32E7AC09F. They are part of the publicationhttps://doi.org/10.5201/ipol.
2012.g-ace .
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(a) input image (b) Gaussian spatial kernel (c)1=kxk spatial kernel

Figure 4.7: Contrast enhancement with ACE for two different spatial kernels: Gaussian (b) and1=kxk (c). The con­
trast factor used here is� = 5 . These results are taken from the IPOL archive1 of Getreuer's ACE implementa­
tion [Get12].

4.4 Unnormalized bilateral �lter

The unnormalized bilateral �lter (UBF) was proposed by Mathieu Aubry in his articles on the local
Laplacian �lter [APH+ 11], [APH+ 14]. It is extensively described in Chapter9. His observation is
that the bilateral �lter can be rewritten in a way that keeps the average intensity of the image even if
the normalization factor is removed. On the other hand, removing the normalization factor allows
to reduce the �ltering eVect in the vicinity of the edges and then to reduce the staircasing artifact.
And because one no longer needs to compute this normalization factor, the �lter is faster than the
original one. From this point of view, the unnormalized bilateral �lter is the only �lter that with
a unique modi�cation both accelerates the bilateral �lter and diminishes its sharpening property.
Furthermore, it can bene�t from several acceleration schemes dedicated to the bilateral �lter. We
shall see however that removing the normalization is not without drawbacks. In particular, the
UBF smoothing strength is lowered, especially at edges and for small or thin objects.

The unnormalized bilateral �lter has the simple expression

UBFf ug(x) = u(x) +
X

y2 


G� s (x � y)G� r

�
u(y) � u(x)

��
u(y) � u(x)

�
: (4.12)

Compared to the bilateral �lter (cf. equation (4.2)), the unnormalized version averages the in-
tensity diVerencesu(y) � u(x) rather than the intensityu(y) themselves, and the input image is
added to keep the overall intensity of the image. With the normalization factor, this would just
be a rewriting of the bilateral �lter. Yet in equation (4.12) is it safe to removeC because when the
sum tends towards zero the output value tends to the input value, so there is no intensity shift.
Contrarily to the bilateral �lter, the spatial kernelG� S has to be normalized:

G� s (x) = exp
�

�
kxk2

2� 2
s

�
0

@
X

y2 


exp
�

�
kyk2

2� 2
s

�
1

A

� 1

; (4.13)

because the removed normalization factor doesn't compensate it any more. The de�nition (4.12)
can be rewritten as a blend between the original imageu and the bilateral �lter result BFf ug
involving the bilateral normalization factorC that we recall is de�ned as

C(x) =
X

y2 


G� s (x � y)G� r

�
u(y) � u(x)

�
: (4.14)

This leads to a second de�nition of the unnormalized bilateral �lter:

UBFf ug(x) = C(x)BFf ug(x) +
�
1 � C(x)

�
u(x): (4.15)
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The de�nition of BF is given in equation (4.2). Equation (4.15) makes it easy to understand the
behavior of the �lter: the normalization factorC is large in �at areas (where the range kernel gives
values close to one to most pixels), and gets smaller when it comes across image edges (where the
range kernel gives values close to zero to many pixels). This results in keeping the original image
at the edges and the bilateral �lter result on the �at areas. This behavior resembles the one of the
guided �lter (see Chapter2). We shall elaborate later on “contrast halo artifact” that UBF is prone
to create.

We provide the pseudo-code of the �lter in Algorithm8. This is the “brute force” version,
and we shall present later its fast approximation. However, note that because the normalization
factor is removed, this version is nearly twice faster than the original bilateral �lter. The algorithm,
for each pixel of the input image (line1), starts by computing the bilateral weights (line3) in the
window
 . Finally, it computes the weighted sum of the diVerencesu(x � y) � u(x) in 
 and adds
it to the input intensityu(x) to obtain the output value UBFf ug(x) (line 4).

Algorithm 8: Unnormalized Bilateral Filter (UBF)
input : imageu
input : spatial parameter� s

input : range parameter� r

input : radius of the windowr
output: �ltered image UBFf ug

1 foreachpixelx do
2 foreachpixely in thex-centered window
 of size(2r + 1) 2 do

// Compute bilateral weights for current pixel

3 k(x; y) = G� s (x � y)G� r

�
u(y) � u(x)

�

// Compute output value using equation (4.12)

4 UBFf ug(x) = u(x) +
P

y2 
 k(x; y)
�
u(y) � u(x)

�

This algorithm can be accelerated using separable kernels, polynomials range kernels or the
layered approximations. Since this last approximation is used by M. Aubryet al.[APH+ 14] for the
fast local laplacian �lter, we concentrate on this fast approximation of the unnormalized bilateral
�lter.

Algorithm 9 describes its pseudo-code. This algorithm requires to set the number of intensity
samplesS. This number is usually chosen in function of the range parameter� r , as this layering
can be interpreted as a sampling of the range kernel. Thus, a small kernel requires a small “range
period” and therefore a large number of layers. On the contrary, a big parameter� r won't need a
large number of layers to acheive a good approximation. The authors in [APH+ 14] recommend to
sample the intensity range every� r . The algorithm starts by computing the “range period” (line1)
according to the dynamic range and the chosen parameterS. Then, for each intensity sample, it
computes the layer (line6), then convolves it by the Gaussian spatial kernel (line7). The output
image UBFfastf ug is then updated (line8) using the interpolation weights (computed at line5):
the output pixels which value do not correspond to an intensity sample are linearly interpolated
from the two closest layers.

We show in Figure4.8 the diVerence between the bilateral �lter (red line) and the unnormal-
ized bilateral �lter (orange line) in two diVerent con�gurations: the �rst (image a) is the �ltering
of a smooth edge. This �gure shows the reduction of the staircase artifact: the over-sharpening is
less present with UBF (the orange line stays closer to the blue one at the edge). The second con-
�guration (image b) is the �ltering of the same test-pattern where we added noise. It shows that
UBF smoothes less than BF. This last property is often a drawback because one needs to increase
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Algorithm 9: Unnormalized Bilateral Filter, Fast approximation using layers
input : imageu
input : spatial parameter� s

input : range parameter� r

input : radiusr : window
 has size(2r + 1) 2

input : number of samples of the intensity rangeS
output: �ltered image UBFfastf ug

1 � =
�

min(u) � max(u)
�
=(S � 1) // gap between two intensity samples

2 UBFfastf ug = u // initialization

3 foreachintensity samplej 2 f 0; 1; :::; S � 1g do
4 
 j = min( I ) + j � � // value of intensity sample

// Following operations are pixel-wise:

5 � j = max(0 ; 1 � j u � 
 j j=� ) // interpolation weights

6 H j = G� r (u � 
 j )(u � 
 j ) // layer at 
 j

7 �H j = G� s � H j // convolve the layer with the truncated

// normalized spatial Gaussian kernel

8 UBFfastf ug = UBFfastf ug + � j �H j // update output image

(a) Filtering of a smooth edge (b) Filtering of a smooth edge with noise

Figure 4.8: Filtering with the bilateral �lter and the unnormalized bilateral �lter. We show here the pro�le of a test­
pattern (abscissa for pixel position; ordinate for pixel intensity). Parameters:� s = 16 and � r = 0 :20. Compared to
BF, UBF reduces the staircasing artefact (a) but smoothes less (b).

the value of� r to obtain a similar smoothing eVect, which reduces the edge-preserving property
of the �lter.

Furthermore, as we see in equation (4.15), UBF keeps the original image values where the
normalization factor is small. This happens at edges and thin lines. These parts of the image are
thus not �ltered, which makes a contrast halo to appear in contrast enhancement applications.

“A new class of image �lters without normalization”

Peyman Milanfar and Hossein Talebi recently published a paper on �lters without normaliza-
tion [MT 16]. While they claim to present a new class of �lters, replacing the normalized by the un-
normalized ones, the idea behind is basically the same as presented by M. Aubryet al.[APH+ 14].
The authors' proposition is to use a constant normalization factor� for the entire image. In the
unnormalized bilateral �lter, this constant factor is implicitly set to1(with a normalized spatial
Gaussian kernel). The authors in [MT16] set � so that it is the closest to the original normaliza-
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(a) input (b) BF (c) UBF (d) UBF (e) UBF
� r = :05 � r = :05 � r = :10 � r = :15

Figure 4.9: First row, displays in (a) the input, then the �ltered images. The middle row displays the detail layer, with
a ampli�cation factor of 6 for visibility purposes. The bottom row shows an example of contrast enhancement:
enhanced= input+5 � detail. Parameter� s = 16 and image size is400� 400. For this image, while UBF succeeds in
removing the edge­sharpening effect of BF (visible along the bars), it looses the ability to �lter inside thin elements,
because the number of similar pixels is too small.

113



tion factors everywhere. They provide (quoting [MT16]) “an analytically sound and numerically
tractable choice for the scalar� > 0 that gives the best approximation to [the �lter] in the least-
squares sense”. They eventually give this value:

� =
1

1
N

P
x2 u C(x)

; (4.16)

with N the number of pixels in the imageu. Thus, the best constant� to approximate the nor-
malized �lter is the mean of all the normalization factors in the image. We adopt the notations
from [MT 16] for the few formulas reported below. As de�ned in the original paper (quoting):

Consider the vectorized imagey of sizen as the input, and the vectorized imagez
as the output of the �ltering process. The general construction of a �lter begins by
specifying a symmetric positive semi-de�nite (PSD) kernelkij � 0 that measures the
similarity, or aY nity, between individual or groups of pixels.

Indicesi andj are pixels. The kernelkij is for example the bilateral one. The normalized weights
are de�ned as

wij =
kijP n

j =1 kij
: (4.17)

Still following the paper notation, the output with matrix notation is:

z = Wy ; (4.18)

where thei -th row of the �lter matrix W is the vector[wi 1; :::; win ] and produces thei -th output
pixel. As said in [MT16], “the �lter matrix W is a normalized version of the symmetric positive
de�nite aY nity matrix K constructed from the unnormalized aY nitieskij ; 1 � i; j � n”. They
then writeW as a product of two matrices

W = D � 1K (4.19)

whereD is a diagonal matrix with diagonal elements[D ]ii =
P n

j =1 kij = di . Whereas the nor-
malized �lter (4.19) can be written

W = I + D � 1(K � D ); (4.20)

they replace the normalization matrixD � 1 by the constant� , what de�ned the approximation
cW :

cW = I + � (K � D ): (4.21)

By minimizing the following cost function using the matrixFrobeniusnorm:

min
�

kW � cW (� )k2; (4.22)

and with some approximations they get

� =
1

P n
i =1 di

: (4.23)

Noticeably, prior to un-normalizing the �lter they need to compute the normalization factors at
each pixels.

The key properties of this approximate �lter, as they give, are (quoting):

� Regardless of the value of� , the rows ofcW always sum to one.

114



� While the �lter W is not necessarily symmetric, the approximatecW is always
symmetric. The advantages of having a symmetric �lter matrix are many, as
documented in the recent work [Mil13].

� The normalized �lter weights inW are typically non-negative valued. The ele-
ments incW however, can be negative valued, meaning that the behavior of the
approximate �lter may diVer from its reference value.

We observe that the unnormalized bilateral �lter can be written in the exact same way, with
� = 1 . Let recall UBF with notations from [MT16]:

zubf
i = yi +

nX

j =1

kij (yj � yi ) (4.24)

That is, in matrix notations:

zubf = y + ( K � D )y (4.25)

= ( I + ( K � D )) y : (4.26)

The properties given above then apply to UBF. Concerning the symmetric �lter matrixcW , ac-
cording to P. Milanfar in [Mil13] (quoting):

Symmetrizing the smoothing operator is not just a mathematical nicety; it can have
interesting practical advantages as well. In particular, three such advantages are that
(1) given a smoother, its symmetrized version generally results in improved perfor-
mance; (2) symmetrizing guarantees the stability of iterative �lters based on the smoother;
and (3) symmetrization enables us to peer into the complex behavior of smoothing
�lters in the transform domain using principal components.

The same authores later published [TM16] a method for image enhancement based on the
Laplacian operator using this un-normalization strategy.

4.5 Bilateral Filter with regression

The bilateral �lter with regression [BCM06] incorporate a way to estimate a plan rather than a
constant for each pixel, thus handeling better the slopes where, as proven by the authors, the
original bilateral �lter has a staircase eVect. They alos proved that the bilateral �lter with regression
has not this artefact when the size of the spatial neighborhood tends towards zero.

The bilateral �lter with regression (BFR) was introduced by Buades et al. [BCM06] as an ex-
tension of the standard bilateral �lter reducing its staircase eVect (see section “Artifact” in4.2). It
consists in the estimation, for each pixel, of the best �tting plane according to the bilateral weights.

The bilateral �lter with regression is de�ned as follows in [BCM06].

We call BFR� r ;� s f ug the value obtained atx = ( x1; x2) by �nding the plane locally
approximatingu in the following sense

min
�;�;


Z



k(x; y)

�
u(y) � �y 1 � �y 2 � 


� 2dy (4.27)

where

k(x; y) = e
� ky� xk2

2� 2
s e

� j u ( y) � u ( x) j 2

2� 2
r : (4.28)
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Then, the restored value atx is given by�x 1 + �x 2 + 
 . The weights used to de�ne
the minimization problem are the same as the ones used by the neighborhood �lter.
Thus, the points with a grey level value close tou(x) will have a stronger in�uence
in the minimization process. The only diVerence with BF is the replacement of an
average by a linear regression. The minimization process is made explicit, since we
can easily derive the normal equations. Thus, the computation of the above linear
regression reduces to the solution of a3� 3 linear system.

One should not confuse this regression strategy with the strategy used in the DA3D denoising
algorithm [PRMF15], where this regression plane is subtracted from the patch before a second
�ltering step is applied with new bilateral weights. A similar two-step method (estimation of
a plan, then �ltering after subtraction of this plan) is used in the trilateral �lter. This �lter is
described in Section5.7.

We callk = k(x; y) the weights of the bilateral �lter at point(0; 0) for the imageu = u(x; y).
The bilateral �lter with regression does �nds

arg min
a;b;c

X

x;y

k(ax + by+ c � u)2: (4.29)

DiVerentiating this energy with respect toa; b; cand equating the result to zero gives the following
system of equations,

2

4
� x2 � xy � x

� xy � y2 � y

� x � y �

3

5

2

4
a
b
c

3

5 =

2

4

P
xkuP
ykuP
ku

3

5 ; (4.30)

where� x =
P

x;y xk(x; y), � xy =
P

x;y xyk(x; y), etc.and in all equationsu, k stand foru(x; y),
k(x; y).

Algorithm 10: Bilateral �lter with regression (BFR). (Exact)
input : imageu
input : spatial standard-deviation� s

input : range standard-deviation� r

output: BFRf ug the �ltered image
1 foreachpixelx = ( x; y) do
2 Compute bilateral �lter weightsk = G� s (x � y)G� r (u(x) � u(y))
3 Compute� x2 , � y2 , � xy , � x , � y and� in x
4 Compute

P
xku,

P
yku and

P
ku in x

5 Find coeY cients(a; b; c) at x by solving the linear system of equations in (4.30)
6 Give to the output the value ofc: BFRf ug(x) = c

A pseudo-code of the standardO(r 2N ) implementation of the bilateral �lter with regression
is given in algorithm10.

4.6 Fast bilateral �lter with regression

The bilateral with regression can be accelerated easily using the piecewise-linear approximation
or the bilateral grid. Algorithm11present the pseudo-code of the regression bilateral �lter imple-
mented approximated with the piecewise-linear strategy.
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Algorithm 11: Fast bilateral �lter with regression (BFR fast)
input : imageu
input : spatial standard-deviation� s

input : range standard-deviation� r

input : number of layersN
output: BFR fastf ug

1 foreachlayer with itensitys do
2 Compute a layer of the image ats: layer(u; s) = uG� r (u � s)
3 Compute� x2 , � y2 , � xy , � x , � y and� : convolve the layer with6 diVerent kernels
4 Compute

P
xwu,

P
ywu and

P
wu (3more convolutions of the layer)

5 And update the nine images computed at the previous layer using linear
interpolation.

6 foreachpixelx do
7 Find coeY cients(a; b; c) at x by solving the linear system of equations in (4.30)
8 Give to the output the value ofc: BFRfastf ug(x) = c

4.7 Multi-scale bilateral �lter with regression

For the time of this short section, we move ahead to the multi-scale �lters, presented in details
starting at Chapter7. In particular, we refer to the Section9.1for a precise prensentation of the
Laplacian pyramid used in the following.

The multi-scale bilateral �lter with regression is a straightforward multi-scale implementation
of BFR using the Laplacian Pyramid. It is described in Algorithm12. The exact bilateral �lter with
regression is used at each scale (no need to use the fast one, because the spatial standard deviation
is only1 pixels). This �lter is described in Algorithm10.

Algorithm 12: Multi-scale guided �lter with regression (MBR)
input : imageu
input : parameters� s, � r andr
input : parameterlmax

output: �ltered imagev
1 Lpyrf ug  LaplacianPyramid (u) // compute Laplacian pyramid until scale lmax

2 vlmax  BFRf Lpyrf u; lmaxgg // initialization: filter residual

3 for scalel fromlmax � 1 to 0 do // from coarsest to finest scale

4 vl  Upsample(vl � 1) + Lpyrf u; lg // upsample and add Laplacian coefficients

5 vl  BFRf vl g // filter the new image using � s , � r and r

We display in Figure4.10the �ltering result of this algorithm and compare it to the original
bilateral �lter with regression. The parameters we used are the same except for the spatial standard
deviation� s: for the single-scale version we used� s = 32 and for the multi-scale� s = 1 and
lmax = 5 . But since the input image is downsampled in the (dyadic) pyramid the spatial support
is 25 = 32 in BFR too. The single-scale version presents staircasing (see Figure4.10(e) at the
edges of the obelisk and top of the trees), because� s = 32 is a large spatial support. In this
case indeed, estimating a regression plane rather than a constant does not help much because the
bilateral weights constraint the plane to have very low �rst order coeY cients (the weights used
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in BFR are the same as in BF). However, the multi-scale version uses very small windows (� s is
typically between1 and3) so the plane estimation is eVective and the �lter therefore successfully
removes the staircase eVect. This is clearly visible in Figure4.10(c). In return the luminance halo
slightly increases, but stays contained (see results with the test-pattern in Section13.4, Table13.6).

But the manipulation of the coeY cients in the Laplacian Pyramid is not without dangers.
Indeed, the pyramid is constructed so that the exact image can be recovered by collapsing the
pyramid, that is, the Laplacian coeY cients at each scale perfectly match the upsampled image
from the previous scale until the �nest one. The procedures for Gaussian and Laplacian pyramid
construction are described in Chapter8. Yet in our algorithm the diVerent levels of the pyramid
are smoothed independently. Thus when we upsample the smoothed image and add the Laplacian
coeY cients of the subsequent level, they may not properly compensate their respective oscillations.
This eVect has been described in the excellent paper by Faccioloet al.[FPM17]. In our �lter, it
creates what we called the “dark halo” artifact. This is in fact an inverted luminance halo, dark
around dark objects (in the detail layer) and bright around bright objects. We display a case where
it is particularly visible in Figure4.11. It arises at thin object, for example the streetlight and the
top to the signboard. We show a zoom in those two parts in (f). The enhanced result presented
in (e) shows that it creates a strongly visible incoherence.

Conclusion The multi-scale bilateral �lter with regression has two advantages, namely, the cor-
rection of the staircase eVect and the speed, but one unacceptable drawback: the dark halo artifact.
In [FPM17] the authors eliminate those spurious oscillatory patterns by removing, at each scale,
the high frequencies, which are eventually �ltered at a �ner scale – because they progressively
become the medium and low frequencies as the image gets recursively upsampled. In our case
however we cannot apply this strategy, because this would mean increasing� s, otherwise this �l-
ter's work would be discarded by the additional low-pass �lter. Therefore the computational time
and the staircase eVect would both increase.

In Chapter12we consider the replacement of the bilateral �lter with regression by the guided
�lter. As we shall see, this �lter is more appropriate for this multi-scale scheme.
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(a) input (b) MBR: base layer (c) MBR: detail layer (� 4)

(d) BFR: base layer (e) BFR: detail layer (� 4)

Figure 4.10: Results obtained with the multi­scale bilateral �lter with regression (MBR). Parameters:� s = 1 , � r =
0:05, r = 2 , lmax = 5 . Concerning the exact bilateral �lter with regression, all the parameters are equal except for
� s = 2 5 = 32 , which is equivalent to the spatial support of MBR. It is clear from the comparison of the detail layers
that MBR can both �lter with a large spatial support and remove the staircase effect. The multi­scale �lter is also
faster to compute because the kernel used at each scale is drastically smaller (only5 � 5 pixels in this example).

(a) input (luminance channel) (b) MBR: base layer (c) MBR: detail layer (� 4)

(d) input (color) (e) enhanced result (f ) zoom in (c)

Figure 4.11: “Dark­halo” artifact in the multi­scale bilateral �lter with regression. This distortion is due to the
suppression of the (necessary) ringing in the Laplacian pyramid. The enhancement algorithm we use is simply
enhance(u) = 0 :125 + 0:750

p
MBRf ug + 3( u � MBRf ug). The input image dynamic range is in[0; 1].
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5 Staircase effect corrections

In the previous chapter on the bilateral �lter, we have seen that BF not only preserves the
edges, but also is prone to sharpening them. This eVect has been described and mathe-
matically justi�ed by Buadeset al. in 2006[BCM06], who call it the staircase eVect. In-
deed, bilateral-based �lters tend to create piece-wise constant signals separated by numeri-
cally created edges, thus adopting aspect of a staircase. From the contrast enhancement and
tone-mapping point of view the same eVect is sometimes called thegradient reversal artifact,
because the complementary detail layer, at places where edges have been reinforced in the
base layer, contains reverted gradients. The problem is that when using the bilateral �lter for
contrast enhancement and tone-mapping, the detail layer gets stretched and the base layer
compressed. The recombination of their results causes the gradient reversal artifact.

Since this artifact is particularly annoying in contrast manipulation methods, many authors
have tried to correct it. The solutions can be divided in two categories. The �rst category
of correction does not modify the �lter, but corrects the artifact in a post-processing step.
The second one directly modi�es the �lter to make it handle smoothly the slopes. We review
in this chapter both categories of corrections. Nevertheless we shall skip two of the correc-
tions, namely the bilateral �lter with regression [BCM06] and the unnormalized bilateral
�lter [APH + 14]. Both have already been presented in Chapter4.

5.1 Introduction

Several authors have presented a post-�ltering correction step to remove the staircase artifact. F.
Durand and J. Dorsey [DD02] proposed a blend between a low-pass version of the input image
and its bilaterally �ltered one weighted by the normalization term. They justify this choice by
explaining that the bilateral �ler is not robust at edges because it misses information. The au-
thors of the separable kernel bilateral �lter [PVV05] also proposed to prevent the staircase eVect
by enforcing a minimal isotropic smoothing eVect everywhere. We shall review this correction
method in section5.2. In 2006, Baeet al.[BPD06] use Poisson reconstruction on the �ltered im-
age; this solution is presented in Section5.4. One another important proposition was made by
Kass and Solomon, the authors of the smoothed local histogram �lters [KS10], where they itera-
tively smooth the bilaterally �ltered image according to the distance to the input image. Roughly,
its idea is that if after a Gaussian �lter has been applied to the bilateral output, the image get closer
to the input image than to the bilaterally �ltered one, then one should keep the Gaussian �ltered
one. The decision is local, and the process is done in an iterative manner with increasing standard
deviations. We shall review this process in section5.5.

Other approaches modify the bilateral �lter so that it handles piece-wise linear signals rather
than piecewise constant ones, as implicitly assumed in the standard de�nition. The2005trilat-
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eral �lter [CT05] also aims at “smoothing signals towards a sharply-bounded, piecewise-linear
approximation”. It is a two-step �lter, where the local slopes are estimated �rst, then used to “tilt”
the bilateral kernel. This algorithm is analyzed in section5.7. The2002paper by M. Elad [Ela02]
also proposed to handle the piecewise-line case by symmetrizing the bilateral kernel. We review
this method in section5.6. The2006paper “The staircasing eVect in the neighborhood �lters and
its solution” [BCM06] proves that the staircase eVect can be removed by computing at each pixel
the regression plane that best �ts the signal using the bilateral weights, rather that a simple scalar.

We developped a methodology for measuring the staircasing amplitude. This is presented in
Chapter9 on the local Laplacian �lter, in Section9.4.3.

This chapter is again inspired by Pariset al. for its in depth presentation of the bilateral �lter
[PKTD09]. The diVerences with our review are highlighted in Chapter4 on the bilateral �lter.

5.2 A minimal isotropic smoothing eVect in the separable bilateral �l-
ter

In the 2005fast approximation of the bilateral �lter by separable kernel [PVV05] (reviewed in
section6.2), the authors describe a trick to avoid the bilateral staircase eVect. The idea is to compel
a minimal isotropic smoothing eVect everywhere in the image, independently from the image
content. This is realized by constraining the bilateral kernel.

In the separable kernel method, the �ltering is realized through a horizontal1D �lter followed
by a vertical1D �lter. In both 1D kernels, independently from the spatial parameter� s, the authors
consider a centered sub-window with one pixel radius. Thus, they consider the three pixels at the
center of the kernel. Their values are constrained in order to ensure a minimal smoothing eVect:
the two side pixels values are set to be greater than or equal� -times that of the center pixel. They
chose� = 0 :25in their implementation, so that the minimum smoothing kernel (in the centered
sub-window with3pixels width) is1

6 [1; 4; 1].
This way, the authors force a minimal smoothing eVect everywhere, even at very sharp edges.

This trick, however, cannot help for more low-frequency edge sharpening. We do not integrate this
kernel modi�cation in Algorithm16(in section6.2) in order to keep it simple. The modi�cation
would be simply to add after line4 (before the normalization):

wd(x; x � d)  max f �w d(x; x); wd(x; x � d)g

wd(x; x + d)  max f �w d(x; x); wd(x; x + d)g;

with d = (1 ; 0) when processing in the horizontal direction, andd = (0 ; 1) when processing the
vertical one.

5.3 Blending at edges in the piece-wise linear bilateral �lter

In [DD 02], bilateral �lter is interpreted as a robust estimator. The authors state that at edges, the
estimator, namely the bilateral �lter, has not enough information available for a precise estimation
of the base layer: the statistical estimator computed at these pixels has access to little data, leading
to a high uncertainty. Hence, their correction is to blend the �ltered signal with the original image
where the number of neighbors used for the average computation is small. This number is di-
rectly given by the normalization factor. More precisely, the authors' idea is to linearly interpolate
between the �ltered image FBFf ug andFBFf ug, according to the logarithm of the normalization
factor logC, whereFBFf ug = G� corr � FBFf ug is a smoothed version of the �ltered image. We
call the interpolated image FBFf ugcorr. One has FBFf ugcorr ! FBFf ug whenC is high (which
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(a) inputu (b)3(u� FBFf ug) (c)
p

u+3( u� FBFf ug)

(d) coef�cient � (e)3(u � FBFcorrf ug) (f )
p

u+3( u� FBFcorrf ug)

Figure 5.1: Parameters are� s = 20 , � r = 0 :02 (image dynamic in [0;1]) and� corr = 2 . The dynamic in �gure (d) is
[0;1] also. The colormap goes from dark blue (zero) to dark red (one) through green and yellow.

means a large number of neighbors, in the bilateral de�nition) and FBFf ugcorr ! G� corr � FBFf ug
whenC is small (for edges, corners, isolated pixels). The authors take� corr = 2 in practice. They
use the logarithm ofC “because it better extracts uncertain pixels”.

We recall the de�nition of the normalization factor (given in equation4.2):

C(x) =
X

y

k(x; y) =
X

y

G� s (x � y)G� r

�
u(x) � u(y)

�
: (5.1)

Let � be the linear interpolation coeY cient between FBFf ug andFBFf ug. This coeY cient varies
with logC. The function� = f

�
log(C)

�
missing in the paper, we de�ne

� (x) =
log

�
C(x)

�

log
�
Cmax

� ; (5.2)

whereCmax is the maximal possible value forC, i.e.Cmax =
P

y G� s (x � y). The corrected image
is then

FBFf ugcorr(x) = � (x)FBFf ug +
�
1 � � (x)

�
FBFf ug(x) (5.3)

This correction resembles the unnormalized bilateral �lter, extensively described in Section4.4,
in that it blends the �lter's result and its second smoothed version according to the normalization
term. In UBF, the second image is the input image itself and the blend term the normalization
term itself. Note that UBF reduces indeed the staircase artifact yet does not completely avoid it.

We show in Figure5.1and Figure5.2 that this correction is not well adapted to correct the
staircase eVect. Although it indeed alleviates the staircase eVect at thin and sharp edges, it fails to
remove it in the other cases. A smoothing with� corr = 2 seems to be often too small to compensate
for the over-sharpening created by the bilateral �lter, and, more importantly, the normalization
factor seems not to be a good detector for the staircase eVect, because it principally detects the
center of the edges, whereas the staircase correction should concentrate on the borders of the
edges.
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(a) inputu (b)3(u � FBFf ug) (c)
p

u + 3( u � FBFf ug)

(d) coef�cient � (e)3(u � FBFcorrf ug) (f )
p

u + 3( u � FBFcorrf ug)

Figure 5.2: Parameters are� s = 20 , � r = 0 :04 (image dynamic in [0;1]) and� corr = 2 . The dynamic in �gure (d) is
[0;1] also. The colormap goes from dark blue (zero) to dark red (one) through green and yellow.

5.4 Gradient reversal removal with the Poisson equation

The algorithm for tone management published by Baeet al. in 2006[BPD06] uses the bilateral
�lter to decompose the image in two layers (base and detail), which histogram are modi�ed so as
to match the style of a target image. Because of the bilateral �lter, and because their technique
can strongly increase the detail, their result presents gradient reversals. The authors address this
problem by constraining the gradients of the detail layer to be of the same sign and inferior than
or equal to the gradients of the input image. Letu be the input image andd the detail: they build
the gradient �eldv = ( xv ; yv ) :

xv =

8
><

>:

0 if sign(@d=@x) 6= sign(@u=@x)

@u=@xif j@d=@xj > j@u=@xj

@d=@xotherwise;

(5.4)

and similarly for the componentyv . The corrected detail layer is obtained by solving the cor-
responding Poisson equation. We reproduce in Figure5.3 the illustration given by the authors,
showing the correction of the gradient reversal artifacts in the output images.

5.5 Selective diVusion

In their excellent paper [KS10], M. Kass and J. Solomon generalized the fast strategies brought
by the literature for the bilateral �lter using local histograms [Por05, Por08, Wei06, PH07] and
proposed a wide variety of eY cient �lters that can be expressed in terms of local histogram opera-
tions (median �lter, erosion, dilatation, bilateral �lter, mean-shift and a novel closest-mode �lter,
dominant-mode �lter, histogram equalizationetc.) with arbitrary spatial kernel, and in particular
they show how all of these �lter can be computed in constant time (O(N ), whereN is the num-
ber of pixels) using a Gaussian spatial kernel. Moreover, they present a particularly clever way of
removing the over-sharpening (that we call here the staircase artifact for the bilateral �lter) arising
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Figure 5.3: Figure reproduced from [BPD06]. From left to right: input image, image enhanced without correction,
image enhanced with the Poisson correction.

in most of those �lters. We quote below the authors (we updated the notation for the sake of this
dissertation's consistency):

Local image histograms alone say nothing at all about the spatial layout of their data
samples [Koenderink and Doorn1999]. They contain no indication of a gradual spa-
tial shift from one mode to another. Thus, in order to track a blurred edge accurately,
more information must be extracted from the original images. We propose extract-
ing this information by supplementing edge-preserving histogram-based �lters with
a diVusion step. Our basic observation is that wherever blurring our edge-preserving
�lter causes it to get closer to the original, the blurred version is preferable as a base
layer.

Let F f ug be the output of an edge-preserving smoothing �lter. Our goal is to con-
struct a modi�ed output image~F f ugwhich is diVused fromF f uganywhere that dif-
fusion causes it to agree more closely with the original input imageu. We will do this
iteratively, considering a variety of diVerent Gaussian blurring kernelsG� i in turn. In
our experience, sampling the blurs by ratios of

p
2 works well. Let~F f ug0 = F f ug

be the original output of the �lter. Then we will construct~F f ugi from ~F f ugi � 1 by
selectively blending between~F f ugi � 1 and a blurred versionbi = ~F f ugi � 1 � G� i . An
important observation is that we only want to update a pixel with a blurred version if
an entire region around that pixel of size� i is improved by the blurring. Accordingly
we construct error metrics to measure the localL 2 deviation of the unblurred and
blurred versions from the original image:

err u =
� ~F f ugi � u

� 2 � G�� i (5.5)

err b =
�
bi � u

� 2 � G�� i (5.6)

where� controls the region size. We have found� = :2 works well. Letr =
err b=erru be the ratio of the error of the blurred version to the unblurred version.
Wherer is larger then one, we prefer the unblurred version. Wherer is smaller, we
blend towards the blurred one. The exact blending is probably unimportant. The
particular formula we use is

~F f ugi =

8
<

:

bi r < : 5
2(r � :5)( ~F f ugi � 1 � bi ) + bi r 2 [:5; 1)
~F f ugi � 1 r � 1

(5.7)
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(a) intput image (b) without selective diffusion (c) with selective diffusion

Figure 5.4: Effect of the selective diffusion. Images are enhanced with DxO's contrast enhancement tool using the
standard bilateral �lter (b) or the bilateral �lter with the selective diffusion (c). Most of the gradient reversal artifact
has been removed thanks to the selective diffusion.

Figure5.4 displays the result of the selective diVusion applied to the bilateral �lter, in the con-
text of contrast enhancement. It succeeds in removing a large part of the gradient reversal artifact
(a consequence of the staircase eVect) visible as a dark and white bands along the top of the trees.
Although this method works globally well, it seems unable to remove the staircases everywhere,
especially in the corners (see Figure5.4(c)). Furthermore, it is not computationally eY cient. In-
deed, numerous iterations are needed to correct the staircase eVect, and this computation time
adds to the computation time of the �lter itself. Algorithm13describes the pseudo-code of this
method.

5.6 Symmetric bilateral �lter

In 2002, M. Elad [Ela02] proposed an improvement of the bilateral �lter in order to treat piecewise-
linear signals. As described by Pariset al.in their excellent book [PKTD09], the modi�cation
consists in comparing the intensity of the �ltered pixel with the average of another pixel and its
symmetric point

BFsymf ug(x) =
1

Csym(x)

X

y

G� s (x � y)G� r (v(y) � u(x))v(y); (5.8)

wherev(y) =
�
u(y)+ u(2x� y)

�
=2 is the average between the two symmetric pixels (with respect

to x).
In a very similar way to Elad's symmetric bilateral �lter, we shall introduce here a method to

prevent the bilateral �lter from creating staircases. The modi�cation is rather simple, but unfor-
tunately not well adapted to fast implementations.

The symmetric bilateral �lter (SBF) computes the actual bilateral �lter kernel at each pixel,
then takes the minimal kernel value for each pair of symmetric pixels of the kernel. In other terms,
the bilateral �lter kernel is made symmetric by taking only the minimal values, which ensures that
the edge-preserving property is kept. Indeed, this process can only reduce the weights associated
to neighborings pixel, which means that their in�uence can only be reduced in the averaging (or
kept as it is, if the symmetric weight is identical). But pixels with large intensity diVerence do not
see their weight increased (before normalization), thus SBF still preserves the edges.

On the other hand, as the bilateral �lter's kernel cannot be asymmetric after this modi�cation,
the staircase eVect is removed. Indeed, it is precisely the asymmetry of the bilateral kernel that
produces staircase eVects at strong edges (see Figures4.2 and 4.3, in Section6 on the staircase
eVect).
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Algorithm 13: Selective diVusion [KS10]
input : �ltered imageF f ug
input : input u
input : Ratio for sampling the blur� (recommended� =

p
2)

input : Size of the region for the error metric� (recommended=� = :2)
output: corrected image without over-sharpening~F f ug

1 �  � min // initialization

2 ~F f ug0  u // initilalization

3 i  1
4 while � � � max do
5 bi  ~F f ugi � 1 � G� // smooth previously corrected image

6 err u  ( ~F f ugi � 1 � u)2 � G�� // equation 5.5

7 err b  (bi � u)2 � G�� // equation 5.6

8 r  err u=errb // ratio of errors

9 foreachpixelx 2 u do
// blending using equation 5.7

10 if r (x) < : 5 then
11 ~F f ugi (x)  bi (x)
12 else ifr (x) 2 [:1; 1) then
13 ~F f ugi (x)  2

�
r (x) � :5

�� ~F f ugi � 1(x) � bi (x)
�

+ bi (x)
14 else
15 ~F f ugi  ~F f ugi � 1

16 i  i + 1
17 �  ��

18 ~F f ug  ~F f ugi � 1

19 return ~F f ug
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The only diVerence with Elad's symmetric bilateral �lter [Ela02] is that we take the minimal
value taken by the range kernel on the two symmetric values, rather than computing both values
according to the distance between their mean value and the central pixel.

We recall the form of the bilateral kernel (before normalization):

k(x; y) = G� s (x � y)G� r

�
u(x) � u(y)

�
: (5.9)

Starting fromk, the symmetric bilateral kernelksym is de�ned as

ksym(x; y) = min
�

k(x; y); k(x; x � (y � x))
	

: (5.10)

As usual, the kernel is normalized by setting

wsym(x; y) =

 
X

z

ksym(x; z)

! � 1

ksym(x; y): (5.11)

We show in Figure5.5some examples of kernels of the originalversussymmetric bilateral �lters.
In Figure5.6 we present the results of �ltering for two images and experimentally verify that the
staircase eVect is removed.

However, since the number of pixels averaged at each position of the output image is generally
smaller (it cannot be greater, and often symmetrizing the kernel leads to the “exclusion” – weights
put to zero – of many pixels), the �lter's capacity to remove noise is diminished. More speci�cally,
near a strong edge one can expect that the �ltering of the noise or texture will be inexistent. Indeed,
near the edge, for each strong coeY cient there will be a very small coeY cient on the other side of
the edge. Thus the smoothing eVect is altered and one should observe a texture halo artifact.
In Figure5.7, we display the �ltering result of SBFversusBF. One can verify that the denoising
capacity of the symmetric bilateral �lter is seriously diminished at borders. In particular at the
corners of the light gray square, the number of neighbors used in the averaging is reduced to zero.
Hence, these pixels are simply not denoised. The structure halo is, however, less visible than the
one observed with the guided �lter (discussed in Chapter2). Indeed, unlike the guided �lter which
completely stop �ltering when contrasted regions enter its neighborhood, the symmetric bilateral
�lter continue averaging in the direction parallel to the edge. In other terms, the guided �lter stops
�ltering at edges and the symmetric bilateral �lter simply reduce its robustness to noise (because
the mean is estimated with fewer pixels), to such an extent that some pixels are not denoised at all.
Furthermore, one can expect this situation to be rather common in more complex images, where
the content is rarely symmetrical. For this reason and the unsuitability to fast implementation, we
do not consider this method as a valid option for base+detail decomposition.

5.7 Trilateral �lter

The trilateral �lter consists in two bilateral �lters: the �rst one is a standard bilateral �lter on the
gradients of the input imager u, the second one is a slightly modi�ed bilateral �lter where the
range weights are computed using the intensity diVerence between the current pixel and a plane
P rather than the central pixel of the current window. Let BFfr ug(x) be the output of the �rst
step,i.e.the �ltering of the gradient of the input image:

BFfr ug(x) =
1

C(x)

X

y

G� s (x � y)G� r

�
r u(y) � r u(x)

�
r u(y); (5.12)

whereC is the normalization factor computed using the gradients as well,

C(x) =
X

y

G� s (x � y)G� r

�
r u(y) � r u(x)

�
: (5.13)
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(a) input image (b) symmetric bf kernel (c) original bf kernel

Figure 5.5: Comparison of the symmetric bilateral �lter kernel (b) with the original one (c) (both normalized), for
the position indicated by a red square in the input image (a). The symmetric bilateral kernel still adapts well to
the image content. Thanks to its symmetry, the staircase effect is avoided. On the other hand, the number of
pixels used in the averaging process is systematically less than or equal to the number of pixels used in the original
bilateral �lter, thus reducing its denoising property.

The �ltered gradient �eld is then used to de�ne a planeP at each pixel:

P(x; y) = u(x) + yBFfr ug(x): (5.14)

This plane is used in the second step. It is removed from the data in the modi�ed bilateral �lter that
we denote by TF (for trilateral �lter, although it is rather de�ned by the association of two �lters).
By removing the planeP that locally approximates the signal, the authors “tilt” the bilateral kernel,
as shown in Figure5.8(c). The second bilateral �lter would normally be de�ned as

TFf ug(x) = u(x) +
1

C(x)

X

y

G� s (x � y)G� s

�
u(y) � P(x; y)

��
u(y) � P(x; y)

�
; (5.15)

with C updated accordingly as

C(x) =
X

y

G� s (x � y)G� s

�
u(y) � P(x; y)

�
: (5.16)

But the authors add in this modi�ed bilateral kernel a third term, the functionf � . This function
aims at avoiding the averaging of pixels with dissimilar gradients. Quoting them: “Tilting greatly
improves smoothing abilities of the trilateral �lter in high gradient regions, but also ensures that
the �lter window can extend beyond local boundaries into regions of dissimilar gradients. Un-
less we exclude these regions from the �lter window, the trilateral �lter will blunt or blur sharp
ridges and corner-like features where the bilaterally smoothed gradient BFf ug changes abruptly
(e.g.arrow1in Figure5.9(b))” [CT 05]. The functionf � then excludes pixels which gradient is too
diVerent from the current pixel's gradient. It is de�ned as follows:

f � (x; y) =
�

1 if kBFfr ug(y) � BFf ug(x)k < R
0 otherwise.

(5.17)

Yet this de�nition does not ensure that the neighborhood is a connected region, as they require.
Rather than computing this function (which is also time consuming), the authors use a “stack of
min-max gradient images”, a pyramid-based structure (where each level keeps the original image
size) where in each level is stored, for each pixel, the values min and max in neighborhood with
increasing size. We refer to the author's paper [CT05] for a more detailed description1. To �nd the
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(a) input images (b) symmetric BF (c) original BF

Figure 5.6: Comparison of the symmetric bilateral �lter with the original one (with an exact implementation), for
two images. Column (a) displays the input images, column (b) the results (base and detail layers) obtained with
the symmetric bilateral �lter and column (c) displays the results (base and detail layers) of the original bilateral
�lter. The detail layers are multiplied by a factor 6 for visualization purposes. The parameters used for �ltering are:
� r = 0 :1 (dynamic range in[0; 1]),� s = 12 (images size is330� 330for top one and250� 250for the bottom one).
Comparing the detail layers of the top image (2nd row), it appears that the symmetric bilateral �lter removes the
staircase effect. This effect can be observed in the original bilateral �lter detail layer as alternating dark and bright
lines along the vertical black column. The bottom image con�rms that the �ltering in a more general case is not
altered by the symmetrization. The edge­preserving property is preserved.
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(a) inputu (b) BFf ug (d) SBFf ug (c) SBFf ug� BFf ug

Figure 5.7: A simple experiment with a noisy square makes SBF's halo artifacts visible: the borders, and more
particularly the corners of the light gray square are less denoised with SBF than BF. This is due to the lack of
neighbors; for the corners's pixels, the number of neigbors in the averaging is reduced to zero. Parameter used:
� r = 0 :15 (image dynamic in [0;1] and noise std= 0 :05); � s = 8 (image size is64� 64). Difference in (c) is
enhanced with a factor 6 for visualization purposes.

Figure 5.8: (reproduced from [CT05]) Filter extent for one scan­line of an image.

Figure 5.9: (reproduced from [CT05]) Dif�cult image features: (1) Ridge­like and valley­like edges, (2) high­gradient
regions, (3) similar intensities in disjoint regions.
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largest (connected) region wheref � = 1 , one simply needs to �nd, for each pixel, the highest level
of the pyramid in which the min and max values are within BFfr ug(x) � R. The �nal trilateral
�lter is thus de�ned as

TFf ug(x) = u(x) +
1

C(x)

X

y

G� s (x � y)G� s

�
u� (x; y)

�
f � (x; y)u� (x; y); (5.18)

whereu� (x; y) = u(y) � P(x; y). The normalization factor is updated accordingly as

C(x) =
X

y

G� s (x � y)G� s

�
u� (x; y)

�
f � (x; y): (5.19)

Due to this modi�cation, the trilateral �lter averages only connected pixels. The output of this
�lter, rather than piecewise constant, is piecewise linear. The shocks are moved to the2nd order
derivative.

Although this algorithm has seven internal parameters, only one (� �c ) is left to the user; the
authors proposed strategies to automatically set the others. Algorithm14and Algorithm15care-
fully detail each algorithmic step of the method2.

f

1 We found an error in the paper: according to their description of the min-max stack construction,i.e.“each pixel
(m; n ) in any nonzero levelK holds min and max values for the3� 3 surrounding pixels found in level(K � 1) at
(m + [0 ; � 2K � 1 ]; n + [0 ; � 2K � 1 ])”, the size of the equivalent window at level0 is (2K +1 � 1) � (2K +1 � 1) and
not (2K + 1) � (2K + 1) as given is the paper [CT05]. Indeed, theradiusr of the min or max �lter at a levelK is
r (K ) = 2 K � 1 , and then the equivalent radius at level0 is ~r (K ) =

P K
n =1 r (n) = 2 K � 1 (geometric series with ratio

2). Hence, the width of the square equivalent neighborhood is2~r + 1 = 2 K +1 � 1.
2 The authors' implementation (“example code” given athttp://www.cs.northwestern.edu/~jet/

publications.html ) is inconsistent with the paper description of the minStack algorithm. Indeed, the neigh-
borhood they consider in the min and max �lters at pixel(m; n ) is (m + [0 ; � 1]; n + [0 ; � 1]) instead of(m +
[0; � 2K � 1 ]; n + [0 ; � 2K � 1 ]) as explained in the paper [CT05]. Its makes the equivalent neighborhood size at level0
fall to (2K + 1) � (2K + 1) . We take this implementation as a reference in the pseudo-code we give here.
The implementation diVers for the computation of� r� too: the averaging in a circular neighborhood mentioned in the
paper is absent from the implementation.
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Algorithm 14: Trilateral �lter [CT05]
input : input u
input : spatial parameter� s�

output: trilateral �ltered image TFf ug
// Compute the image gradients r u using forward differences

1 foreachpixelx do
2 r xu(x) = u(x + 1 ; y) � u(x; y)
3 r yu(x) = u(x; y + 1) � u(x; y)

// Compute parameter � s�

4 k(� s� )  unit disk with radius� s�

5 �  0:15 // Set � between .1 and .2

6 r u  k(� c� ) � r u // average gradient

7 � r� = � k max
�
r u

�
� min

�
r u

�
k // "range" std. for gradients

8 R  � r� // Parameter for function f �

// Apply bilateral filter to r u

9 foreachpixelx do
10 num(x)  

P
y G� s (x � y)G� r

�
r u(y) � r u(x)

�
r u(y)

11 denom(x)  
P

y G� s (x � y)G� r

�
r u(y) � r u(x)

�

12 BFfr ug(x)  num(x)=denom(x) // equation (5.12)

13 ComputeminStack fkr ukg // Algorihtm 15

14 ComputemaxStackfkr ukg // Algorihtm 15

// Apply trilateral filter to u

15 foreachpixelx do
16 K  largestK that sati�es both conditions:

minStack fkr ukg(x; K ) � BFfr ug(x) � R and
maxStackfkr ukg(x; K ) � BFfr ug(x) + R

17 f � (x)  unit square centered inx of width 2K + 1
18 u� (x; y)  u(y) � u(x) � yBFfr ug(x) // "un-slanted" image

19 num(x)  
P

y G� s (x � y)G� s

�
u� (x; y)

�
f � (x; y)u� (x; y)

20 denom(x)  
P

y G� s (x � y)G� s

�
u� (x; y)

�
f � (x; y)

21 TFf ug(x)  u(x) + num=denom // equation (5.18)

22 return TFf ug

Algorithm 15: minStack and maxStack algorithms
input : input u
input : number of levelsN
input : �lter (min or max)
output: stack of �ltered image with heightN

1 stackf u; 0g  u // initialization

2 foreachlevelk 2 f 1; 2; : : : ; N g do
3 foreachpixelx do
4 stackf u; kg(x)  stackf u; k � 1g(x)
5 foreachpixely in a 3� 3 windowdo
6 stackf u; kg(x)  �lter f stackf u; kg(x); u(y)g

7 return stack{u}
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6 Fast bilateral �lters

As we saw in the previous chapters, the bilateral �lter has rapidly become ubiquitous in image
processing and is now used in a tremendous number of applications. The original �lter,
invented by Yaroslavsky (1985) [Yar12] and Lee (1983) [Lee83], studied by Smith and Brady
(1995) [SB97], and reproposed by Tomasi and Manduchi (1998) [TM 98] needs to compute
a diVerent kernel at each pixel which makes it slow, nay not aVordable for large images and
(consequently) large spatial support. Hence the need for a fast implementation of the �lter.

In this chapter, we review the numerous fast bilateral �lter of the literature. The history of
the fast bilateral �lter starts with the fast Durand and Dorsey approximation (2002) [DD 02],
who presented the original idea, that would be extensively explored later, of sampling the
intensity range so as to linearize the convolution. The Gaussian convolution can then be
computed using one of the numerous fast schemes available. As we shall see, no fastandexact
implementation of the bilateral �lter has been proposed yet. Thus the competition between
the numerous proposed schemes not only lies in the speed but also on the precision and the
unavoidable artifacts. Furthermore, for several schemes the speed depends on the parameters
used and on the dimension in which the �lter operates. Thus we eventually present a palette
of eVective �lters rather than a de�nitive winner.

6.1 Introduction

The �rst fast bilateral �lter was proposed by F. Durand and J. Dorsey in2002[DD02]. They in-
troduced the fundamental idea of linearizing the convolution by applying the formula only on a
reduced set of intensity samples. This method is called the piece-wise linear approximation, or
layered approximation [PKTD09]. This is a layered approximation where each intensity sample
de�nes a layer on which a linear convolution can be applied. One can then use the fast Fourier
transform or appropriate sub-sampling to speed-up the linear Gaussian �ltering step. The �ltered
layers are combined to produce the approximated bilateral �lter. This work is fundamental and
paved the way to later accelerations. T.Q. Pham and L.J. Van Vliet [PVV05] proposed in2005a
diVerent way to accelerate the �lter by presenting a separable bilateral �lter. The following year
B. Weiss [Wei06] introduced an acceleration of both median and bilateral �lters using distribu-
tive histograms. S. Pariset al.proposed improvements of the layered approximation in two others
publications, with the article of S. Paris and F. Durand in2006[PD06] (extended in a2009journal
paper [PD09]) and the bilateral grid of J. Chen, S. Paris and F. Durand in2007[CPD07]. Concur-
rently, G. Guarnieri [GMR06] improved the2002Durand method both in quality and execution
time, by inverting the order of the division and the linear convolution (as in [PD06]) and sug-
gested to use recursive �ltering for the Gaussian �ltering implementation. In2008came out the
�rst O(N ) bilateral �lter by F. Porikli [Por08], using integral histograms, thus improving upon
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Weiss's2006�lter. It is followed one year later by anotherO(N ) �lter by Q. Yang, K.H. Tan and
N. Ahuja [YTA09] that extends Durand and Dorsey's2002paper.

Another kind of fast approximation uses the Gauss-polynomial decomposition. This started in
2011by the publication of anotherO(N ) bilateral �lter by Chaudhury, Sage and Unser [CSU11]. It
gave rise to other papers using the same idea [Cha11], [Cha13], [Cha15], [SK15] [GC16b], [GC16a].

Using the “range-space” domain introduced by Durand and Paris [DD02], [PD06], some
extended it to higher dimensions, allowing fast color-weighted bilateral �ltering. In2009, A.
Adams, N. Gelfand, J. Dolson and M. Levoy [AGDL09] published the Gaussian kd-tree. In2010
the same authors published a similar approach for fast bilateral �ltering in high-dimensional
spaces [ABD10], still using slicing.

One main interest of those high-dimensional �lters is to accelerate the non-local means algo-
rithm. Indeed, this denoising �lter is a bilateral �lter where the weights are computed according
to the distance between patches rather than between pixels intensity values. The performance of
these methods is not competitive for gray-scale bilateral �lters because they spend much extra
time preparing the data structures. These �lters are specially useful for denoising, where it makes
sense to use color information. In the base + detail decomposition, we generally do not work with
color, as it contains little useful additional information compared to the luminance. So we shall
consider that those high dimensional �lters are out of our current scope.

Given the limitations of the bilateral �lter, many new designs of fast edge-preserving �lters
have been investigated. TheO(N ) time Edge-Avoiding Wavelets (EAW) [Fat09] are wavelet trans-
forms with explicit image-adaptive weights. But the kernels of the wavelets are sparsely distributed
in the image plane, with constrained kernel sizes (to powers of two), which may limit the appli-
cations. In2011, Gastal and Oliveira [GO11] proposed anotherO(N ) time �lter known as the
Domain Transform �lter. The key idea is to iteratively and separably apply1D edge-aware �lters.
TheO(N ) time complexity is achieved by integral images or recursive �ltering. This �lter is par-
ticularly useful for color images. Although this �lter is not an approximation of the bilateral �lter,
it is worth considering, in this review, as its smoothing eVect is relatively similar and its execution
time very small. This �lter, as well as the guided �lter, can be considered as an alternative to fast
bilateral �lters. We summarize in Table6.1the list of fast approximations and give their complexity.

This chapter has been inspired by the book by Pariset al.on the bilateral �lter [PKTD09]. The
diVerences with our review are highlighted in Chapter4 on the bilateral �lter.

6.2 Separable kernel

In 2005, T. Q. Pham and L. J. Van Vliet [PVV05] proposed the separable bilateral �lter. This very
simple acceleration applies two consecutive one-dimensional bilateral �lters to the input image,
one for each dimension. Although the bilateral �lter is not separable, the results aren't very far
from the true bilateral. But this fast �lter remains a poor approximation and acceleration. Its
main inconvenience is its inability to properly �lter the textures.

Algorithm 16works as follows: �rst, a horizontal bilateral �lter is applied to the input image
(lines1-6). The output image FBFsep.is obtained by applying a second one-dimensional bilateral
�lter in the vertical direction to the previous result (lines1-6 again). The intermediary image
is denoted byv in the pseudo-code (line7). This separable version has aO(N� sd) complexity
instead ofO(N� d

s ) for the true bilateral �lter (where� s is the radius of the window andd is the
dimensionality).

Used with a small radius or a small intensity parameter� r , this approximation is faster than
the layered approximation [DD02]. Indeed, the complexity of this last approximation decreases
with these parameters: when� r is large, the number of required layers become smaller. As for the
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Section Name and authors Complexity

4.2 Brute force [SB97], [TM 98] O
�
N� d

s

�

6.2 Separable kernel [PVV05] O
�
N� sd

�

6.3 Local histograms [Wei06] O
�
N log(� s)

�

6.3 Integral histograms [Por08] O
�
Nb

�

6.4 Layered approximations and the bilateral grid [DD02],
[GMR06], [PD06], [PD09], [YTA09], [CPD07]

O
�
N + N

� 2
s

R
� r

�

6.5 Polynomial range kernels [CSU11], [SK15], [Cha15],
[Cha11], [Cha13], [GC16b], [GC16a], [NPC17]

O
�
NM

�

6.6 Domain transform (not really bilateral) [GO11] O
�
N

�

Table 6.1: List of the fast bilateral �lters and their complexities (inspired from [PKTD09]).N stands for the number
of pixels andR for the dynamic range. � s is the spatial smoothing parameter and� r the range parameter. The
dimension isd (often d = 2 ) and b is the number of intensity samples considered in the histogram­based �lters.
For the trigonometric range kernels approximations,M is the number of coef�cients required in the polynomial
range kernel.

Algorithm 16: Separable Bilateral Filter (FBFsep.) for a 2D image
input : imageu
input : range standard deviation� r

input : spatial standard-deviation� s

input : window widthr (usually2� s)
output: FBFsep.f ug

1 foreachdimensiond 2 f horizontal,verticalg do
2 foreachpixelx do
3 foreachpixely in thex-centered window of size(2r + 1) and directiond do

// Compute current pixel's weights

4 wd(x; y)  G� s (x � y)G� r (u(x) � u(x � y)) ;
// Normalization factor

5 Cd(x)  
P

y w(x; y);
// Compute output value

6 v(x)  Cd(x) � 1 P
y wd(x; y)u(x � y)

7 u  v ; // The input takes the filtered output in direction d

8 return v
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(a) True bilateral �lter (b) Separable Bilateral Filter

(c) Zoom in (a) (d) Zoom in (b)

Figure 6.1: Filtering with the bilateral �lter and the separable bilateral �lter (SBF) (algo. 16). The parameters are
� r = :08(dynamic in[0; 1]),� s = 10 and r = 25 . The SBF result is not really clean: one can see in (d) some vertical
lines created by the second pass of SBF. On the other hand, the strong edges are still well preserved (see the dark
object in (d) and (c)).

spatial parameter� s, when it is set to a large value, one can subsample the layers more aggressively
and then reduce the computational complexity. This algorithm is described in Section6.4. On
the other hand, the complexity of the separable kernel approximation increases slowly with the
dimensionality, unlike other implementations. This separable kernel idea is also used in the more
recent work by Gastalet al.[GO11], where they describe an eVective way to avoid the apparition of
vertical or horizontal lines by iterating the �lter while reducing its spatial parameter� s. We refer
to Section6.6 for more details on this trick.

We present in Figure6.1the results of the application of the separable bilateral �lter and com-
pare it to the exact bilateral �lter. One can see some vertical lines appearing. This is the drawback
of this implementation. The very sharp transitions are nevertheless well preserved.

Figure 6.2: (Reproduced from [PVV05]) Scheme for the separable kernel bilateral �lter.
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Staircase eVect correction

As discussed in section6, the bilateral suVers from an “over-sharpening” at strong edges. In-
terestingly, the authors brought their own solution: they compel a minimum smoothing eVect
everywhere by constraining the shape of the bilateral kernel. We shall describe it in section5.2.

6.3 Local histograms

In this section, we present two methods [Wei06], [Por08] , to accelerate bilateral �lters using
constant spatial �lters (box �lters), and arbitrary range kernels. Their key observation is that
when using constant spatial weights, a bilateral �ltering amounts to a weighted average of the local
histogram (namely the histogram of the current patch). Thus eY cient non redundant schemes to
compute local histograms yield fast bilateral �lters.

In the �rst publication using that strategy [Wei06], B. Weiss was more concerned by the me-
dian �lter than by the bilateral �lter. Nonetheless, as the method – by using a hierarchy of partial
histograms – computes eY ciently local histograms, the bilateral �lter is presented as an extension
of his work. Two years later, F. Porikli [Por08] published three eY cient ways to compute bilateral
�lters. Among them, one relates to the bilateral �lter with a spatial box kernel. It uses integral
histograms, another fast way to compute local histograms.

In the special case of a spatial box �lter, the bilateral �lter weights do not depend on the
distance to the center of the patch: they only depend on the intensity of the pixels in the patch.
Then a histogram of the current patch is suY cient to compute the bilaterally �ltered value. Let us
assume that at each image pixelx the intensity histogramh
 is computed from anx-centered box
window
 with radiusr and width2r +1 . The spatial box kernelkS allows rewriting the standard
bilateral �lter's equation

FBFloc.hist.(x) =
1

C(x)

X

y2 


kS
�
y
�
G� r

�
u(x � y) � u(x)

�
u(x � y) ;

C(x) =
X

y2 


kS
�
y
�
G� r

�
u(x � y) � u(x)

�
;

using the local histogram:

FBFloc.hist.(x) =
1

C(x)

X

j

h
 (j )G� r

�
j � u(x)

�
j ; (6.1)

C(x) =
X

j

h
 (j )G� r

�
j � u(x)

�
;

wherej belongs to the discrete intensity range of the input image andh
 (j ) is the local histogram
value at pixelx and for intensityj .

The sum over the intensityj doesn't depend on the window size any more, thus making the
equation6.1run in constant time per pixel. What determines the overall complexity of the algo-
rithm is the dynamic range and the way the local histogram is computed.

The two methods we are going to present are based on the storage of intermediate local his-
tograms. Let us start with B. Weiss's algorithm. This method succeeds in reducing the number
of needed operations to update a row of local histograms. It improves on the idea underlying
Huang's algorithm [Hua81]. Huang's algorithm strategy is to compute the output column per
column, with a sliding window along the rows. The local histogram of the current column is up-
dated at each new row by adding and subtracting the few pixels that entered or left the current
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window. Weiss's observation is that this scheme still has a lot of redundant operations: for two
consecutive columns, the major part of the added and removed pixels to the local histogram are
the same. Thus, while keeping the sliding window idea, he proposes to compute all the columns at
the same time, using a wisely designedsetof histograms. Indeed, updating a local histogram for
each column does not reduce the complexity; whereas updating the set of histograms (by adding
and removing a row of pixels) requires less updates, because of the structure of this set. This set
of histograms is composed of one large histogram that is a rough approximation of the local his-
tograms, and of several smaller histograms that re�ne that histogram to the exact one. On the
other hand, Porikli's algorithm uses integral histograms: as the integral image enables the compu-
tation of the mean of any rectangle in an image with very few operations, the integral histograms
give a quick way to obtain the histogram of any rectangle in the image, and from this to derive a
fast bilateral �lter.

Weiss's algorithm

Ben Weiss [Wei06] introduced in 2006a fast algorithm for median �ltering, also useful for bilat-
eral �ltering with a spatial box kernel. This fast median �lter isO(N logr ) instead ofO(Nr ) for
the fastest previous method (Huang,1981[Hua81]), wherer denotes the radius. The proposed
fast bilateral �lter is an exact implementation of a bilateral �lter with spatial box kernel and any
range kernel. This implementation is only valid for gray scale images. It could be extended to
color images by using three-dimensional histograms. Note that this would considerably increase
the computational time, as the convolution of the histogram would be in3D (a local histogram is a
256� 256� 256volume for a8bits color image) instead of1D. Its complexity isO(N logr ). This
paper was published after the Durand-Dorsey [DD02] approximation in 2002but also after the
2006Paris-Durand [PD06] improvement of the above-named paper. B. Weiss explains that the
Paris-Durand-Dorsey approximation suVers from drawbacks that his methods have not: �rst, the
layered approximation “is not translation-invariant: the exact output is dependent on the phase
of the subsampling grid”. Second: “the discretization may lead to a further precision loss, par-
ticularly on high-dynamic-range images with narrow intensity-weighting functions”. It is indeed
remarkable that although the box-shaped spatial kernel isn't standard, B. Weiss's algorithm is a
fast yet exact implementation of a bilateral �lter.

Let us start with Huang's fast median �lter [Hua81], which has inspired the B. Weiss version.
The pseudo-code is given in algorithm17. Note that indices in this pseudo-code may be negative
or higher than the size of the input imageI . We deliberately choose to not handle the image
borders, in order to clarify the pseudo-code. This algorithm can actually be used to compute a
bilateral �lter (with constant spatial kernel) by replacing line15with 3lines:

1. Compute numerator: num 
P

j h
 (j )G� r

�
j � u(l; c)

�
j

2. Compute denominator: denom 
P

j h
 (j )G� r

�
j � u(l; c)

�

3. FBFloc.hist.(l; c)  num=denom,

wherej is an intensity andh
 (j ) the local histogram value of the square window
 of size(2r +1) 2

for the intensityj .
Huang's algorithm proceeds column per column (line8), with a sliding window (line10)

which direction changes (line22) from one column to the next one, so as to minimize the number
of updates needed to get the correct histogramh
 . With such a “snake-shaped” path, the number
of pixels to be added or subtracted at each window displacement (that is to say: for each output
pixel) is2 � (2r + 1) . Once the local histogramh
 is computed (lines12and 13), it is easy to
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Algorithm 17: Huang's Fast Median �lter [Hua81] (1981) (FMF)
input : imageu
input : window radiutsr (width = 2 r + 1 )
output: FMFfastf ug

1 c  0; r  0 // Initialize columns and rows

2 d  +1 // Initialize direction: first row is processed from top to bottom

3 h
  compute histogram ofu for columnsc � r to c + r and linesl � r to l + r
4 foreachcolumnc do
5 foreachlinesl do

// Update histogram (shift of one row)

6 Add values ofu for line l + d(r + 1) and columnsc � r to c + r to h


7 Subtract values ofu for line l � d(r + 1) and columnsc � r to c + r from h


8 Rfmf(l; c)  �nd median value ofh
 // Retrieve median value

9 l  l + d // Update row r in the right direction

// Update histogram (shift of one column to the right)

10 Add values ofu for columnc + r + 1 and linesl � r to l + r to h


11 Subtract values ofu for columnc � r � 1 and linesl � r to l + r from h


12 d  � d // Update direction

retrieve the median value (line15): it lies in the �rst index for which the sum of values to that
index reaches2r 2 + 2 r + 1 .

B. Weiss's observation concerning Huang's algorithm is that there are still a great amount
of redundant calculations: although we save time by wisely updating the histogram when go-
ing through the rows, each pixel is still added and subtracted from2r + 1 windows because the
process is repeated for each column. B. Weiss then proposes an eY cient scheme that avoids this
redundancy.

First, the only way to save calculations is to compute all the columns at the same time. This
means that instead of updating one histogram like in Huang's version, Weiss's version updates all
histograms of the current line (that is to say: updates the histogram of each row). But at this point,
as B. Weiss says, this is just a rearrangement of operations; the runtime is unchanged. Note that
this rearrangement needs to store one histogram for each row of the output image. On the other
hand, the median �lter is local, so its exact computation can be obtained from the original image
cropped in several smaller images, leading to less memory consumption.

Weiss's algorithm takes advantage of the distributive property of the histogram:

HA[ B (u) = HA (u) + HB (u)

to reduce the number of operations required to update the histograms of a row. The main idea
is to store one largepartial histogram and several small otherpartial histograms, creating a “set
of histograms”H � . The histogramHc of the columnc is obtained by the distributivity property,
which amounts to add several histograms. The histogram values can be negative.

In function of the numberT of histograms used to decompose each row histogram, the com-
plexity of this algorithm isO(N

p
r ) with T = 2 ; O(N 3

p
r ) with T = 3 ; O(N logr ) with

T = O(log r ). The general pseudo-code, valid for any of the above-mentioned algorithms, is
described in algorithm18. As in algorithm17, the fast median �lter can easily be transformed in
a fast bilateral �lter by replacing at lines8 and16the “�nd median value” by “compute bilateral
output from local histogram using equation6.1”.

At lines3and12we add a line to the set of histogramsH � . This is done simply by adding or
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Figure 6.3: Figure reproduced from Weiss' paper [Wei06]. This �gure shows a layout for processing sixty­three
columns at once. It is the three­tiered analogue of Figure 4, this time “viewed” from the side. There is a single
shared histogram P31 [yellow] corresponding to the central window; eight partial histograms [orange] at seven­
pixel intervals; and for each of these, six small partial histograms [red] at unit intervals; sixty­three histograms
altogether. Each input pixel is added/subtracted to each histogram intersecting its column.

subtracting each pixel of this line to each histogram containing it. The subtraction of a line from
H � done at line13in the pseudo-code works in the same way.

Algorithm 18: Weiss' fastO(N logr ) median �lter (FMFloc.hist., 2006)

input : imageu with size= ( N + 2 r )2

input : window radiusr
output: FMFloc.hist.f ug
// Initialization of H � for the first line

1 foreach rows from index0 to 2r do
2 Add rowl of I to H �

3 foreach columnc of the �rst rowdo
// Find median values along the first row of pixels

4 Compute histogramHc of the current column fromH �

5 FMFloc.hist.(0; c)  �nd median value ofHc

// Process the rest of the image:

6 foreach rowl from index1to N � 1 do
7 Add new (bottom) rowl + 2 r of I to H �

8 Subtract (top) rowl � 1 of I from H �

9 foreach columnc do
10 Compute histogramHc of the current column fromH �

11 FMFloc.hist.(l; c)  �nd median value ofHc

For the caseN = 63; T = 3 , whereP31 is a big central histogram,P7bc=7c+3 are medium-size
histograms andPc are small-size histograms, the histogram of a speci�c columnc is

Hc = P31 + P7bc=7c+3 + Pc; (6.2)

where the second and third terms are ignored if they match earlier terms (e.g.H24 = P31 + P24).
As the author [Wei06] say,

the central [...] histogram forms a rough approximation to any particularHc; the
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[medium-size] histograms re�ne that approximation, and the [small-size] histograms
provide the �nal correction to make the sum exact.

An illustration is provided in Figure6.3.

Porikli's algorithm

Following his2005paper that provides a strategy to eY ciently compute local histograms [Por05],
Fatih Porikli published in2008a paper describing a fast bilateral �lter with a box spatial kernel,
that takes advantage of the local histograms [Por08]. This paper actually gives three eY cient ways
to approximate the bilateral �lter. We just introduced the �rst one, which we are going to present
in this section. The second one uses a polynomial range kernel. This is described in section6.5.
In the third proposition, F. Porikli shows that Gaussian range and arbitrary spatial kernels can be
expressed by Taylor series as linear �lter decompositions.

The single modi�cation F. Porikli brought in B. Weiss's algorithm is the integral histogram.
But this nevertheless allows to decrease the complexity fromO(N logr ) to O(N ), as extracting
local histograms from the integral histogram has a complexity independent of the window radius
r .

The integral histogram is the storage, at each pixel, of the histogram of the (rectangle) region
between the origin and the current pixel. The last pixel therefore is the histogram of the whole
image. From this integral histogram, it is easy to extract local histograms of any radius, by using
the four histograms disposed at the corners of that region. Let's writeH (x; y; b) the integral
histogram at position(x; y), and 
 the rectangular region, which goes from the top-left pixel
(x top; ytop) to the bottom-right pixel(xbot; ybot). The local histogram value at any binb is then
denotedh
 (b) and obtained as follows:

h
 (b) = H (x top � 1; ytop � 1; b) � H (xbot; ytop � 1; b)

� H (x top � 1; ybot; b) + H (xbot; ybot; b) :
(6.3)

Hence, one needs only three arithmetic operations per bin to compute the local histogram of
a rectangle window of any size. Now, all this would be useless if the integral histogram con-
struction needed to literally compute each region histogram from the origin to the current pixel.
Fortunately, it can be computed recursively, in a way that avoids any redundant calculation. Call
Q(u(x; y)) the bin of the current pixel, then

H (x; y; b) = H (x � 1; y; b) + H (x; y � 1; b) � H (x � 1; y � 1; b) + Q(u(x; y)) (6.4)

with the initial conditionH (0; 0; b) = 0 . Hence the integral histogram at a pixel(x; y) is obtained
�rst by copying the histogram value of the previous pixel, then by the propagation operation
shown in equation6.4, i.e.with three arithmetic operations per bin and per pixel.

The pseudo-code given in Algorithm19describes this fast bilateral �lter. First comes the com-
putation of the integral histogram (line1), then for each pixel, the extraction of the local histogram
(line 5) with the desired radius. Finally, it computes at each pixel the bilateral �ltered value using
Equation (6.1) (line 7).

Using a smaller number of bins in the histogram

One can use less bins in the histogram than the actual number of intensity values in the input
image. This results in less memory consumption and a faster computation. The complexity of
this histogram-based fast approximations is indeed dependant of the number of binsb used in
the histograms, so that we write itO(Nb). For example, B. Weiss suggests either to dither high-
precision data into8-bits before processing, and notes that it “introduces surprisingly little error”,
or to downsample the intensity into the histogram which “yields better accuracy”.
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Algorithm 19: Local Histograms Bilateral Filter (FBFint.hist.) for a 2D gray image
input : imageu
input : range standard deviation� r

input : window radiusr
output: FBFint.hist.f ug

1 H  compute the integral histogram // equation (6.4)

2 foreachpixelx andx-centered window
( x) do
// Retrieve local histogram with radius r

3 h
  compute local histogram in
( x) // equation (6.3)

// Compute bilateral output value

4 v(x)  
P

b h
 (b)G� r

�
b� u(x)

�
b // bilateral-weighted average

5 C(x)  
P

b h
 (b)G� r

�
b� u(x)

�
// normalization

6 FBFint.hist.f ug(x)  v(x)=C(x)

Usage of a box spatial kernel

The two algorithms we just presented use box spatial kernels. And one would probably ask: is
there any visible diVerence between a Gaussian kernel and a box kernel? B. Weiss's answer is
that it may indeed create “visual artifacts [that] may resemble faint Mach bands”, but adds “these
artifacts tend to be drowned out by the signal of the preserved image”. Actually, an imperfect
frequency response is particularly visible when there is a lot of contrast in the signal (imagine a
white pixel alone in a dark region and the box-�ltered result). Yet the bilateral precisely avoids
to blend contrasted regions, thus makes this artifact less visible. In fact, the smaller the range
parameter, the lesser this spurious appearance visibility. As proposed by B. Weiss, an iterative
scheme would make the box-�lter converge to a Gaussian �lter. To avoid the cartoonish look, he
suggests to iterate the �ltering while keeping at each iteration the original intensity to guide the
intensity weights.

Related methods

In the same vein, JJ. Francis and G De Jager published in2003a paper on abilateral median
�lter [FDJ03]. They propose to replace the weighted mean of pixels by a weighted median of
pixels. We won't present this algorithm further; we just mention here its existence and note that
the local histogram implementation of the bilateral �lter seems very suitable to this modi�cation.

In 2010, M. Kass and J. Solomon [KS10] generalized the use of those local histograms, so
that the spatial kernel can have any form. They apply their method to several �lters, namely the
median, min and max �lters, closest mode �lter, a “dominant mode” �lter and the bilateral �lter.
They introduce their paper in those words:

Here, we present an eY cient and practical method for computing accurate derivatives
and integrals of locally-weighted histograms over large neighborhoods. The method
allows us to compute the location, height, width and integral of all local histogram
modes at interactive rates. Among other things, it enables the �rst constant-time
isotropic median �lter, robust isotropic image morphology operators, an eY cient
“dominant mode” �lter and a non-iterative alternative to the mean shift.

In addition they present a method to “combat the over-sharpening that is typical of histogram-
based edge-preserving smoothing” (and bilateral �ltering). This last part is presented in Section6.
They call it theselective diVusion.
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Perreaultet al.[PH07] presented in2007another paper for fast median smoothing using local
histograms, that can also be used for accelerating the bilateral �lter.

6.4 Piecewise-linear and bilateral grid approximations

S. Paris and F. Durand have been major contributors to the accelerations of the bilateral �lter. F.
Durand and J. Dorsey were the �rst to propose a fast approximation [DD02]. Their original idea
would later inspire other fast schemes [PD06], [PD09] and [CPD07] and [YTA09] to approximate
BF.

F. Durand and J. Dorsey [DD02] started by the “piecewise-linear bilateral �lter”. They re-
marked that �xing the reference pixel intensity in the formula de�ning the bilateral gives back a
regular convolution. One can then compute the exact bilateral �lter withR convolutions, whereR
is the number of intensity values in the image. But this would not accelerate the �lter. Hence, the
authors proposed to compute the exact bilateral result for a small subset of image intensity values,
and to derive the other values by interpolation. To further accelerate the �lter, the convolutions
are computed on sub-sampled images.

In the bilateral grid [PD06, PD09, CPD07], Paris and Durand present the bilateral �lter as a
Gaussian �lter on the image's graph, hence adding a dimension. Filtering a gray (2-dimensional)
image with the bilateral �lter is therefore equivalent to �ltering the graph of the image, viewed
as a3D sparse image (or in continuous as a HausdorV measure), with a standard Gaussian ker-
nel. For a color image this leads to �ltering a5D sparse image. The voxel coordinates in this
high-dimensional space are the initial spatial coordinates followed by the color channels treated
as coordinates. But these channels are also taken as the image values at the same voxel.

The piecewise-linear approximation

The bilateral �lter is nota priori �t to fast computation because its kernel is diVerent at each pixel.
This is due to the edge-stopping functionG� r

�
u(y) � u(x)

�
. However, consider the bilateral �lter

equation (6.5) for a �xed pixel x

BFf ug(x) =
1

C(x)

X

y2 


G� s (x � y)G� r

�
u(y) � u(x)

�
u(y); (6.5)

with C(x) =
P

y2 
 G� s (x � y)G� r

�
u(y) � u(x)

�
. This is equivalent to the (x dependent) con-

volution of the functionH
�
u(x)

�
: y ! G� r

�
u(y) � u(x)

�
u(y) by the kernelG� s . Similarly, the

normalization factorw is the convolution ofI
�
u(x)

�
: y ! G� r

�
u(y) � u(x)

�
by G� s . The only

dependency on pixelx that makes it diVer from a convolution is the presence of thex-dependent
valueu(x) in G� r . Starting from this observation, the authors' acceleration strategy [DD02] is to
discretize the set of possible signal intensities intoN layersvaluesf 
 (i )g, and to compute a linear
Gaussian convolution for each such value:

v(x; i ) =
1

w(x; i )

X

y2 


G� s (x � y)G� r

�
u(y) � 
 (i )

�
u(y) (6.6)

=
1

w(x; i )

X

y2 


G� s (x � y)H (y; i ) (6.7)
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and

w(x; i ) =
X

y2 


G� s (x � y)G� r

�
u(y) � 
 (i )

�
(6.8)

=
X

y2 


G� s (x � y)I (y; i ) (6.9)

The �nal output FBFpiecewiseof the �lter for a pixel x is then a linear interpolation between
the outputv(x; i ) of the two closest values
 (i ) of u(x). This corresponds to a piecewise-linear
approximation of the original bilateral �lter (note however that it is a linearization of the whole
functional, not of the in�uence function). The pseudocode is given in Algorithm20. All opera-
tions in that pseudo-code are pixel-wise. At line5the intensity sample is computed, and used at
lines6and7to compute what we call alayerof the image at the intensy
 (i ) (layerI is the normal-
ization). The layers are convolved with the Gaussian spatial kernel (lines8and9) then divided to
get the bilateral result for the current layer (line10). The output image is updated at each layering
(line 12) using linear interpolation weights (line11).

Algorithm 20: Piecewise-linear fast bilateral �lter (FBFpiecewise) for a 2D gray image
input : imageu
input : range standard deviation� r

input : spatial standard deviation� s

input : Number of layersN layers

output: FBFpiecewisef ug
1 FBFpiecewise 0 // initialization

2 a = (max u � min u)=N layers // gap between two intensity samples

3 b = min u
4 foreachsampled intensity
 (i ) with i 2 f 0; 1; : : : ; N layersg do
5 
 (i )  ai + b // current intensity sample

6 H (i )  G� r

�
u � 
 (i )

�
u // compute layers H and I

7 I (i )  G� r

�
u � 
 (i )

�

8 �H (i )  H (i ) � G� s // convolve layers

9 �I (i )  I (i ) � G� s

10 v(i ) = �H (i )=�I (i ) // bilaterally filtered layer i

11 � (u; i ) = max(0 ; 1 � j 
 (i ) � uj=a) // interpolation weights

12 FBFpiecewise FBFpiecewise+ � (u; i )v(i ) // update output

13 return FBFpiecewise

The recommended number of layers isD=� r , whereD = max u� min u is the image dynamic
range of the input image. Thus the minimal allowed sampling rate of the range Gaussian kernel is
1=� r . Indeed, one needs enough layers in order to correctly interpolate the �ltered values that fall
between the layers. The authors [DD02] use linear interpolation.

These same authors propose two diVerent strategies for the Gaussian convolution. The �rst,
exact, uses the fast Fourier transform, withO(N logN ) complexity. This makes the �lter com-
plexity fall fromO(N� 2

s ) (for the original bilateral �lter with truncated spatial kernel) toO(N layersN logN ).
But the �lter can be further accelerated by computing the convolutions on subsampled versions of
the images. The strategy is then to strongly subsample the image without respecting the Nyquist–Shannon
sampling theorem, which allows a very fast subsampling. The authors [DD02] use the nearest-
neighbor algorithm, “because it does not modify the histogram”. Remark that this is a dangerous
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procedure particularly in presence of noise. It was replaced in the2006paper [PD06] by a box
downsampling described in the next section (see Equation (6.11)). Then, a Gaussian �lter with
very small kernel is applied on the subsampled images. The bilaterally �ltered layer is then up-
sampled before the output image is updated. The authors do not specify the method used for
upsampling. However, the closely-relatedbilateral griduses bilinear interpolation with good re-
sults, so this method can be safely used here as well. Algorithm21presents the pseudo-code of this
�lter. The main diVerences between Algorithm20and Algorithm21appear in red.

Algorithm 21: Piecewise-linear FBF with subsampling (FBFpw.sub.)
input : imageu
input : range standard deviation� r

input : spatial standard deviation� s

input : Number of layersN layers

input : subsampling factors
output: FBFpw.sub.f ug

1 FBFpw.sub. 0 // initialization

2 a = (max u � min u)=N layers // gap between two intensity samples

3 b = min u
4 u#  subsample

�
u; s

�

5 foreachsampled intensity
 (i ) with i 2 f 0; 1; : : : ; N layersg do
6 
 (i )  ai + b // current intensity sample

7 H #(i )  G� r

�
u# � 
 (i )

�
u // compute layers H and I

8 I #(i )  G� r

�
u# � 
 (i )

�

9 �H #(i )  H #(i ) � G� s =s // convolve layers

10 �I #(i )  I #(i ) � G� s =s

11 v#(i ) = �H #(i )=�I #(i ) // bilaterally filtered layer i

12 v(i )  upsample
�
v#(i ); s

�

13 � (u; i ) = max(0 ; 1 � j 
 (i ) � uj=a) // interpolation weights

14 FBFpw.sub. FBFpw.sub.+ � (u; i )v(i ) // update output

15 return FBFpw.sub.

The bilateral grid

Although the piecewise-linear approximation [DD02] does not use the “range-space” domain as
presented in [PD06], it uses the same ideas. Indeed, they both linearize the convolution and
downsample the signal to reduce computational complexity. Moreover, the piecewise-linear ap-
proximation can be seen as a layering of this range-space domain. From this point of view, the
improvements brought by Pariset al.[PD06] are: a more formal de�nition of this fast approxima-
tion thanks to a high dimensional interpretation of images, and a gain in precision due to a better
subsampling in the range domain. However, they do not gain more speed-up for the bilateral
�lter. This is done in2007by Chenet al.[CPD07] through GPU parallelization.

For the presentation of the bilateral grid, we quote Paris, Kornprobst, Tumblin and Durand
[PKTD08,PKTD09]. Notations have been updated.

Inspired by the layered approximation of Durand and Dorsey [DD02], Paris and Du-
rand [PD06] have reformulated the bilateral �lter in a higher dimensional homoge-
neous space. They described a new image representation where a gray-level image
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is represented in a volumetric data structure that they named the bilateral grid. In
this representation, a2D imageu is represented by a3D grid � where the �rst two
dimensions of the grid correspond to the pixel positionx = ( x; y) and the third
dimension corresponds to the pixel intensityu(x). In addition, this3D grid stores
homogeneous values, that is, the intensity valueu is associated with a non-negative
weightw and stored as a homogeneous vector(wu; w). Using this concept, Paris and
Durand [PD06] showed that the bilateral �lter corresponds to a Gaussian convolu-
tion applied to the grid, followed by sampling and normalization of the homogeneous
values.

More precisely, the authors consider theS � R domain [S is the spatial domain and
R the range domain] and represent a gray-scale imageu as de�ned on a3D grid as a
3D function � by

�( x; y; z) =
� �

u(x; y); 1
�

if z = u(x; y);
(0; 0) otherwise.

(6.10)

With this representation, they demonstrate that �ltering bilateral exactly corresponds
to convolving� with a 3D Gaussian whose parameters are(� s; � s; � r ) : �� = � �
G� s ;� s ;� r . They show that the bilateral �lter output is BFf ug(x; y) = ��

�
x; y; u(x; y)

�
.

This process is illustrated in Figure6.4.

Using the same arguments as in Durand-Dorsey [DD02], the authors subsample the grid (us-
ing nearest neighbors) before �ltering it with a high-dimensional Gaussian kernel. They recom-

mend using the parameters� s and� r to subsample the grid. This yields a complexityO
�

jSj + jSj
� 2

s

jRj
� 2

r

�
,

wherejSj is the size of the spatial domain (number of pixels) andjRj is the size of the range do-
main.

Algorithm 22describes the pseudo-code of this method. The grid� is constructed at line1
and convolved at line3, after box subsampling (line2). Lines1and2 can actually be replaced by
one single operation:

�([ x=� s]; [y=� s]; [z=� r ])  �([ x=� s]; [y=� s]; [z=� r ]) +
�
u(x; y); 1

�
; (6.11)

with � initialized with zeros and where[:] is the closest-integer operator. Upsampling is realized
at line4. Authors use linear upsampling; Algorithm23describes the pseudo-code of theupsample
function. Note that it is not necessary to upsample�� 0everywhere but only at voxels

�
x; y; u(x; y)

�
.

In fact, the upsampling can be done on the �y at line6and line7. By using equation (6.11) at lines1
and2and upsampling on the �y at lines6 and7, one avoids the storage of the full resolution grid,
and thus saves a large amount of memory. Lines6 to 7 perform the slicing step and the output
values are obtained at line8 after normalization. In Algorithm23, d:e and b:c are the closest
superior integer and closest inferior integer operators, respectively.

In their book [PKTD09], Pariset al. explain the diVerence between this approximation and
the piecewise-linear one [DD02]:

The major diVerence is in the way the downsampling is performed. The layered ap-
proximation encounters diY culties at discontinuities: it averages adjacent pixels with
diVerent values,e.g., a white and a black pixel ends up being represented by one gray
value that poorly represents the original signal. In comparison, the bilateral grid sub-
sampling strategy preserves adjacent pixels with diVerent intensities, because they are
far apart along the intensity axis. In the white and black pixels case, the bilateral grid
retains the two diVerent values involved and thus is able to produce better results.
Figure6.5 illustrates this behavior. The bilateral grid should be preferred over the
layered approximation, because both approaches perform equivalently fast.
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Figure 6.4: Illustration reproduced from [PD06]. Bilateral �lter with the bilateral grid for a 1D signal. A �rst step is to
�ll the S � R domain with the signal values: the second line displays the resulting values� on the grid. The third
line displays it after the convolution by the Gaussian kernel with standard deviation� s ; � r . Then, the fourth line
shows the result of the division of the two above grid values (the bilateral �lter's normalization). The orange dots
depict the pixel's positions. The last line is the reconstructed �ltered signal, after the “slicing” operation.

Algorithm 22: Fast bilateral �lter with the bilateral grid [PD06] (FBFgrid)
input : imageu
input : smoothing parameters� s (space),� r (range)
output: FBFgridf ug

1 �  build the bilateral grid using equation (6.10)
2 � 0  subsample(� ; � s; � s; � r ) // equation (6.11)

3 �� 0  � 0� G1;1;1 // 3D Gaussian convolution. Each

// component is filtered independently

4 ��  upsample( �� 0; � s; � s; � r ) // Algorithm 23

5 foreachpixel (x,y)do // slicing and division

6 num(x; y)  �� wu
�
x; y; u(x; y)

�
// �� wu is the 1st component of ��

7 denom(x; y)  �� w
�
x; y; u(x; y)

�
// �� w is the 2nd component of ��

8 FBFgridf ug(x; y)  num (x;y )
denom(x;y )
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Algorithm 23: upsamplefunction: tri-linear upsampling.

input : downsampled grid� 0

input : position(x; y; z) of the full resolution voxel
input : down and up-sampling parameters� s and� r

output: linearly interpolated value�( x; y; z)
1 x0  d x

� s
e � x

� s

2 y0  d y
� s

e � x
� s

3 z0  d z
� r

e � z
� r

4 �( x; y; z)  P
i 2f 0;1g

P
i 2f 0;1g

P
k2f 0;1g � 0(b x

� s
c + i; b y

� s
c + j; b z

� r
c + k)jx0� i jj y0� j jj z0� kj

5 return �( x; y; z)

Figure 6.5: This �gure is reproduced from the Paris­Durand paper [PD06]. In the piecewise­linear approximation
(a), the downsampling is realized before the layering step. In this con�guration, discontinuities are represented by
only one intensity value which poorly approximates them. On the other hand, in the bilateral grid scheme (b), the
discontinuities are represented by two distinct values in the downsampledS�R domain, even after downsampling.
The original function (in red) is the same as in Figure 6.4. The corresponding downsampled representation of the
intensity is shown under (a) or behind (b).
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The bilateral grid can be extended to cross bilateral �lter [ED04], [PSA+ 04] (also called joint
bilateral �lter) and �ltering of color images. Color �ltering however is not well suited for the GPU
implementation of Chenet al.[CPD07]. For the cross bilateral �lter, one simply need to construct
the grid� with the guide imagev giving the position of the pixels and the inputu giving its value:

�( x; y; z) =
� �

u(x; y); 1
�

if z = v(x; y)
(0; 0) otherwise

: (6.12)

As S. Pariset al.observed in [PD06], Felsberget al.[FFS06] present a method calledchannel
smoothingthat is closely related to the bilateral grid. Quoting:

Channel Smoothing Felsberg et al. [FFS06] described an eY cient smoothing method
based on a careful design of the intensity weighting function. They showed that B-
splines enable the discretization of the intensity range into a small set of channels.
Filtering these channels yields smooth images with preserved edges akin to the out-
put of the bilateral �lter. B-splines allowed for a precise theoretical characterization
of their �lter using robust statistics. The downside of B-splines is the higher compu-
tational eVort required to handle them.

We refer to their excellent paper for further details.

6.5 Polynomials approximations

The �rst paper using a polynomial range kernel for the bilateral �lter is [Por08], in 2008. Follow-
ing this, the main contributions on this way of approximating the bilateral �lter are provided by
K.N. Chaudhury. He �rst published [CSU11] with D. Sage and M. Unser. This article generalizes
Porikli's work and gives the key element of the next papers: [Cha11], [Cha13], [Cha15], [GC16b],
[GC16a]. One can also �nd contributions in [SK15]. The same method was used in [Get12] in
automatic color enhancement(ACE), in2012, to accelerate the �lter.

Porikli started with a polynomial function and explained that “a bilateral �lter can be inter-
preted as a weighted sum of the spatial �ltered responses of the powers of the original image”.
Although the following papers use diVerent polynomial functions to approximate the Gaussian
range kernel of the bilateral �lter, this is the key idea of those approximations. As we will explain
soon, choosing the right polynomial function allows to perform a bilateral �lter with a series of
simple Gaussian convolutions. Those “right polynomial function” have what K. N. Chaudhury
called the “shiftability property”.

Let's explain this with a trigonometric polynomial. Assume the range kernel has the form

kM
� r

(t) =
MX

n= � M

� n exp(i2�t )n ; (6.13)

with i 2 = � 1. Here,� r stands for the range parameter of the bilateral �lter. Set
 the neighbor-
hood of the pixelx andG� s the spatial Gaussian kernel with standard-deviation� s. With such a
range kernel, the bilateral �lter

BFpoly.f ug(x) =
1

K (x)

X

y2 


G� s (y)kM
� r

�
u(x � y) � u(x)

�
u(x � y) (6.14)
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can be written

BFpoly.f ug(x)

=
1

K (x)

X

y2 


G� s (y)

"
MX

n= � M

� n exp
�

i2n�
�
u(x � y) � u(x)

�
� #

u(x � y)

=
1

K (x)

MX

n= � M

� n exp
�

� i2�nu (x)
� X

y2 


G� s (y) exp
�
i2�nu (x � y)

�
u(x � y):

(6.15)

The decomposition is the same for the normalization factor,

K (x) =
X

y2 


G� s (y)kM
� r

�
u(x � y) � u(x)

�
: (6.16)

The last equation involves a convolution of the imageexp
�
i2�nu (x)

�
u(x) with the spatial Gaus-

sian kernelG� s . In other terms, the bilateral �lter is obtained by a series of Gaussian convolutions.
Because the range kernel is even, one only needsM + 1 convolutions, whereM is the order of the
polynomial. Numerous fast algorithms can be used for a fast approximation of the Gaussian con-
volution (in general with a complexity independent of the spatial parameter� s, which explains
why those algorithms are often referred asO(N ) algorithms). The challenge is then to obtain
a good approximation of the range kernel with the smallest possible orderM . Indeed, the �nal
complexity of the algorithm isO(MN ) whereN is the number of pixels in the image.

K.N. Chaudhury describes in [Cha11] what he calls the “shiftability property” that allows to use
this sort of approximations. Trigonometric polynomials have the desiredshiftabilityproperty, like
any function of the form� (x) = c1 exp(� 1x) + ::: + cM exp(� M x), along with the polynomials
� (x) = c0 + c1x + ::: + cM xM . Here is how he de�nes a shiftable function:

We say that a function� (x) is shiftablein Rd if there exists a �xed (�nite) collection
of function � 1(x); :::; � M (x) such that, for every translation� in Rd, we can write

� (x � � ) = c1(� )� 1(x) + ::: + cM (� )� M (x):

We call the �xed function� 1(x); :::; � M (x) the basis functions, c1(� ); :::; cM (� ) the
interpolating coeYcients, andM the orderof shiftability. Note that the coeY cients
depend on� , and are responsible for capturing the [action of the translation].

We report in Algorithm24the pseudo-code of the method presented in [GC16b, GC16a]. In
this paper, the authors use the complex exponential to approximate a Gaussian range kernel, with
orderM :

kM
� r

(t) =
MX

n= � M

cn exp(in!t ) : (6.17)

The bilateral �lter numerator can then be written as

MX

n= � M

cn exp
�

� in!u (x)
� �Fn (x) (6.18)

with
�Fn (x) =

X

y2 


G� s (y)u(x � y) exp
�
in!u (x � y)

�
(6.19)
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and with a normalization factor (denominator)

MX

n= � M

cn exp
�

� in!u (x)
� �Gn (x) (6.20)

with
�Gn (x) =

X

y2 


G� s (y) exp
�
in!u (x � y)

�
: (6.21)

In the mentioned paper [GC16a, GC16b], the authors compute the coeY cientscn by minimizing
the error between this complex trigonometric polynomialkM

� r
and a target Gaussian for a �xed

orderM . One can also compute the Fourier series of the Gaussian range kernel and only use theM
�rst terms. The largerM , the more precise the approximation, but also the more computationally
expensive the �lter. In Algorithm24, the symbol “� ” stands for “complex conjugate”.

Algorithm 24: Fast bilateral �lter using a polynomial range kernel as presented in
[GC16b,GC16a]: “Shiftable Bilateral Filtering” (FBFpoly.)

input : imageu
input : orderM and coeY cientscn of the range kernel (� M � n � M )
input : standard deviation� s of the spatial kernelG� s

output: Approximation FBFpoly.f ug
1 SetP(x) = 0 andQ(x) = 0 for all x
2 foreachn = � M; :::; M do
3 G(x) = exp( in!u (x))
4 F (x) = G(x)u(x)
5 H (x) = cnG(x) �

6 Compute �F = F � G� s and �G = G � G� s

7 P(x) = P(x) + H (x) �F (x)
8 Q(x) = Q(x) + H (x) �G(x)

9 Set FBFpoly.f ug = P(x)=Q(x).

Fast Gaussian convolution algorithms

One needs a fast Gaussian convolution to achieve a fast running time for the algorithm. P. Ge-
treuer [Get13] made an excellent survey of the fast Gaussian convolution algorithms that details
the �lters. Here is his conclusion:

There is no single Gaussian convolution algorithm that is clearly best; the right choice
is a consideration of aspects like accuracy, speed, memory, and ease of implementa-
tion. The results from this survey suggest the following recommendations (whereT
is a threshold roughly equal to2):

� For high accuracy, use FIR (�nite impulse response �lter) for� < T and De-
riche or Vliet–Young–Verbeek for� � T .

� For the best accuracy, use FIR for� < T and DCT for� � T .

� For the best speed, use SII (stacked integral images) or box �ltering.

� For ease of implementation, use extended box �ltering or Alvarez–Mazorra.

We refer to the original article for a description of these diVerent methods. Most paper use FIR
and Vliet–Young–Verbeek approximations for the polynomials approximations.
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Figure 6.6: Figure from [NPC17]. The visual artifacts in (c) are cluttered around sharp edges in the original image.
This can be explained by the fact that the Fourier approximation is relatively poor (often assuming negative values)
on the tails compared to that around the origin. Since the operating region for large pixel differences is precisely
the tail, this can result in artifacts around edges.

6.6 Domain transform

Around the same time of the publication of the guided �lter [HST10b, HST13] by Kaiming Heet
al. (2010and2013), Eduardo S. L. Gastal and Manuel M. Oliveira published the domain transform
[GO11]. Their paper presents a new edge-aware smoothing �lter with very short running time. As
for the guided �lter, it is not an approximation of the bilateral �lter. However, as the visual result
is close and the running time small, the algorithm is worth considering.

The domain transform's key idea is the de�nition of a1D transform that preserves the geodesic
distance between points of the graph

�
x; v(x)

�
(with v a one-dimensional signal) and the real

line. That is, the one-dimensional signalv : 
 ! R, respectivelyv : 
 ! R3 (color image), is
expressed in the higher dimensional spaceR2, respectivelyR4, then adaptively wrapped toR so
that the geodesic distance between samples is preserved.

This method is related to the high-dimensional interpretation of the edge-preserving �lters
proposed (among others) in [Bar02] and in the bilateral grid [PD06, CPD07]. Furthermore, it
has been shown in [SKB01] that for a small window, one obtains a bilateral eVect by a direct
Gaussian diVusion on the image's manifold. Although the domain transform uses thel1-norm
metric on the manifold rather than the Euclidean one, a similar interpretation is possible for one-
dimensional signals. However, the domain transform is not de�ned for two-dimensional signals,
thus we cannot generalize this interpretation further.

Once this isometric transform applied to the signal, a convolution with an isotropic Gaussian
kernel can be applied. This convolution is done on a one-dimensional signal, leading to short
execution time.

One way to see this transformation is that the intensity diVerences between adjacent pixels are
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transformed into spatial distances by using the geodesic distance on the image's graph. As a result,
pixels with distant intensities fall apart. Hence, an isotropic Gaussian �lter averages them but little.
A diY culty of this process is that the transformed signal is no longer uniformly sampled, which
requires speci�c algorithms for the Gaussian convolution. The authors suggest three diVerent
methods, all implementable with anO(N ) complexity (withN the number of pixels).

Filtering of two-dimensional signals is performed in a separable fashion, through successive
applications of vertical and horizontal isometric transform and Gaussian diVusion. This strategy
resembles the separable kernel approximation [PVV05]. The two-passes �ltering process (hor-
izontal then vertical or vice-versa) is iterated so that the information is well propagated. The
authors recommend three iterations. To avoid the separable kernel approach typical artefact, that
is, stripes along the last �ltered axis, they come up with a new stratagem: they observe that “the
length of the stripes is proportional to the size of the �lter support used in the last pass” and
thus propose to reduce the �lter's standard deviation at each iteration, which successfully remove
stripes. The transformation, however, is computed only once in each direction.

Domain transform

The domain transform relies on the vision of the bilateral �lter as operating in a5D space [SKB01,
Bar02]. For a2D RGB color image, this de�nes a manifold inR5. Letx̂ =

�
x; u(x)

�
be a point on

this manifold: it is described by its spatial coordinatesx and its intensity valuesu(x). LetF (x̂; ŷ)
be an edge-preserving �lter kernel in5D and DTf ug the �ltered image. It can be generically
expressed as

DTf ug(x) =
Z



u(y)F

�
x̂; ŷ)dy; (6.22)

where
R


 F (x̂; ŷ)dy = 1 . The authors [GO11] propose to compute the coeY cientsF (x̂; ŷ) of
the �lter in a transformed domain with reduced number of dimensions, so that the evaluation is
faster. LetH be the equivalent �lter kernel in the transformed domain: they want

DTf ug(x) =
Z



u(y)F

�
x̂; ŷ

�
dy =

Z



u(y)H

�
t(x); t(y)

�
dy; (6.23)

where evaluatingt andH is faster than evaluatingF .
As the authors explain, such a transformation for a2D signal does not exist in general [GO11],

but exists in the1D case. The domain transform then de�nes an isometry between curves on the
1D manifold in R2 (gray image) orR4 (for RGB color image) and the real line. This transform
preserves the geodesic distances between points on theses curves. Denotingct(x) = t(x), the
authors de�ne an isometry that preserves the distance

jct(x + h; u(x + h) � ct(x; u(x)) j = j
�
x + h; u(x + h)

�
�

�
x; u(x)

�
j (6.24)

= h + ju(x + h) � u(x)j: (6.25)

Dividing both sides of equation (6.25) by h and takingh ! 0 yields

ctx (x) = 1 + jux (x)j; (6.26)

where the absolute value was removed because the authors constrainct to be monotonically in-
creasing. The functionctx (x) is the derivative ofct(x) with respect tox. Integrating on both sides
and takingct(0) = 0 gives

ct(z) =
Z z

0
1 + jux (x)j dx: (6.27)

For a signal withc channels the transformation becomes
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Figure 6.7: Figure reproduced from the original paper [GO11]. CurveC de�ned by the graph
�
x; u (x)

�
; x 2 


(left). Inl1 norm, k
�
x + h; u(x + h)

�
�

�
x; u (x)

�
k = h + d = h + ju(x + h) � u(x)j (center). Arc length ofC,

from u to w (right).

Figure 6.8: Figure reproduced from original paper [GO11]. 1D edge­preserving usingct(z) (noted ct(u) int the
plot). (a) Input signalu. (b)ct(z). (c) Signalu plotted in the transformed domain (
 w ). Signalu �ltered in 
 w with
a 1D Gaussian (d) and plotted in
 (e).

ct(z) =
Z z

0
1 +

cX

k=1

jux;k (x)jdx; (6.28)

whereuk denotes the imageu taken at itsk-th channel andux;k is the derivative ofuk in x.
Quoting the authors:

By reducing the dimensionality of the �lter from c +1to 1, it may seem that we lost
the ability to control its support over the signal's space and range (i.e., to control the
values of� s and� r , in bilateral �lter notation). But, as we show, one can encode the
values of� s and� r in the transformation itself.

The key idea here is that scaling the �lter amounts to scaling the signal. They therefore scale
the signal before computing the domain transform, which allows to scale diVerently the diVerent
dimensions, and then gives a total control over the smoothing parameters. When scaling the �lter
with a coeY cient1=a, its standard-deviation is multiplied by the same factor1=a. Denoting by
� H the standard deviation of the1D smoothing �lter, one obtains� d = � H =a, hence:

ad =
� H

� d
; (6.29)

whered stands fors or r k (spatial or range parameter, respectively). The authors �x� H = � s,
so thatas = 1 . For simplicity, they also use a single value� r for every channel. One then has
ar = � s=� r . Inserting these factors in equation (6.25) (i.e.ash + ar ju(x + h) � u(x)j ) yields the
�nal domain transform

ct(z) =
Z z

0
1 +

� s

� r

cX

k=1

jux;k (x)jdx: (6.30)

For detail concerning the Figure6.8reproduced from [GO11], we report the authors' explanations:

Figure6.8illustrates the use of a domain transform for �ltering the1D signal I, shown
in (a) in its original domain
 . (b) shows the associated domain transformct(z)
computed using Equation (6.30). (c) shows signalu in the transformed domain
 w

or, more compactly,uw
�
ct(z)

�
= u(z). The result of �lteringu with a Gaussian �lter

H in 
 w is shown in (d). (e) shows the desired �ltered signal obtained by reversing
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ct(z) for the signal shown in (d). The small-scale variations were eliminated and the
strong edges preserved.

Algorithm 25: O(N ) domain transform �lter (DT)
input : input u
input : range and spatial standard deviation� r and� s

input : number of iterationsN
output: DTf ug

1 Computeux;k for k 2 f 1; :::; cg // horizontal derivative

2 Computeuy;k for k 2 f 1; :::; cg // verical derivative

3 ctx  1 + � s=� r
P c

k=1 jux;k j // derivative of ct in hor. direction

4 cty  1 + � s=� r
P c

k=1 juy;k j // derivative of ct in ver. direction

5 Computecthor. where8x; ct(x)  
P x

0 ctx // hor. domain transform

6 Computectver. where8y; ct(y)  
P y

0 cty // ver. domain transform

7 v  u // initialization

8 for i 2 1; :::; N do
9 � H i  � H

p
3 2N � i

� p
4N � 1 // filter std: equation 14 in [GO11]

// Apply a smoothing filter for non-uniformly sampled signal: normalized

convolution, interpolated convolution or recursive filtering

10 v  1D-Gaussian-�lter-along-x
�
v; cthor.; � H i

�

11 v  1D-Gaussian-�lter-along-y
�
v; ctver.; � H i

�

12 return v

Smoothing irregularly sampled points in the transformed domain

Once the signal is transformed through the domain transform,i.e. uw(ct(x)) = u(x), it is no
longer regularly sampled. The authors [GO11] propose three diVerent methods for �lteringuw .

Normalized convolution The signal is considered uniformly sampled with missing samples. By
taking advantage of the fact thatct(x) is monotonically increasing, the authors implement this
eY ciently using a “moving-average” approach with a box �lter (withO(N ) complexity,N is the
number of pixels). This can be further accelerated using GPU [GO11].

v(x) =
1

C(x)

X

y2 D (
)

u(y)H (ct(x); ct(y)) ; (6.31)

whereC(x) =
P

y2 D (
) H (ct(x); ct(y)) is the normalization factor, and the kernel is de�ned as

H (ct(x); ct(y)) = � fj ct(x) � ct(y)j � r g; (6.32)

wherer is the radius of the box �lter, and the Boolean function� returns1where the condition
is true and0 elsewhere. The pseudo-code of this algorithm is presented in Algorithm26. The
version with the moving average strategy is in Algorithm27.

Interpolated convolution Implemented with a box �lter inO(N ) too. As the authors state:
“Interpolated convolution has an interesting interpretation: a linear diVusion process working on
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Algorithm 26: Normalized convolution (NC)
input : input u (uniformly sampled)
input : ct: distances between samples in the transformed domain
input : �lter standard deviation� H

output: box �ltered imagev in the transformed domain (uniformly sampled)
1 r  � H

p
3 // radius of the box filter

2 foreachrow of imageu do
3 foreachpixelx of the rowdo
4 
  f x � r; x � r + 1 ; : : : ; x; : : : ; x + r g // window

5 H (x)  � fj ct(x) � ct(y)j � r g for y 2 
 // kernel

6 v(x)  
P

y2 
 H (y)u(y)
� P

y2 
 H (y)

Algorithm 27: Normalized convolution (NC) with moving average
input : input u (uniformly sampled)
input : ct: distances between samples in the transformed domain
input : �lter standard deviation� H

output: box �ltered imagev in the transformed domain (uniformly sampled)
1 r  � H

p
3 // radius of the box filter

2 foreachrow of imageu do
3 s  integral “image” (integral line) of the the current row
4 foreachpixelx of the rowdo
5 ylow  smallesty s.t.ct(x) � ct(y) � r
6 yup  greatesty s.t.ct(y) � ct(x) � r
7 v(x)  

�
s(yup) � s(ylow � 1)

�
=(yup � ylow + 1)
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Figure 6.9: Indices for the interpolated convolution described in Algorithm 28

the signal. [...] This is the same interpretation as the1D Beltrami �ow PDE [SKB01].” With a box
kernel, the output imagev is computed as

v(x) =
1
2r

Z ct(x)+ r

ct(x)� r
L ! (y)dy; (6.33)

whereL ! is the linearly-interpolated signal in the transformed domain. As the authors state, it
“does not need to be uniformly resampled, since the area under its graph can be explicitly com-
puted using the trapezoidal rule”. The pseudo-code is given in Algorithm28. Pixel values outside
the bounds of the image are assumed to equal the nearest pixel border value.

Recursive �ltering The recursive �lter is de�ned in the transformed domain asv[n] = (1 �
ad)u[n] + adv[n � 1], with d = ct(xn ) � ct(xn� 1). This causal �lter is applied twice, �rst left to
right, second right to left to obtain a symmetric response. As the authors prove the feedback co-
eY cient is computed in function of� H asa = exp( �

p
2=� H ). Its implementation is alsoO(N ).

It is presented in Algorithm29.

We give the pseudo-code in Algorithm25. It begins with the computation of the derivative
along thex andy axis for each color channel (lines1and2), used to compute the derivatives of
the domain transform (lines3 and 4) and then the �nal domain transform at lines5 and 6. At
lines10and11the imagev is smoothed with a one-dimensional Gaussian kernel in horizontal and
vertical directions successively, according to the distance between points in the transformed signal.
The output image is obtained after theN iterations of these two1D Gaussian �lters. Borders are
handled by setting the domain transform values atinf , so that the averaging is stopped. Figure6.11
displays the result of the application of the domain transform to a gray image and compares it to
the exact bilateral �lter.

Artifacts

There are some restrictions. The distance considered between points is geodesic, instead of Eu-
clidean for the bilateral �lter. This means that pixels from two opposite sides of a thin but con-
trasted edge will not be averaged together whereas the bilateral �lter would use them all for the
computation of the output value. This may be seen as an advantage of as an inconvenience accord-
ing to the context; concerning tone-mapping, this is not a desired property. Think for example
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Algorithm 28: Interpolated convolution (IC)
input : input imageu
output: �ltered imagev

1 r  � H
p

3 // box filter radius

2 foreachrow of imageu do
3 foreachpixelx in the current rowdo

// Compute trezoids areas

4 area(x)  
�
u(x + 1) + u(x)

��
ct(x + 1) � ct(x)

�
=2

5 s(x)  
P x

y=1 areas(y) = s(x � 1) + area(x)
6 x low  smallestx s.t.ct(x) � ct(x low) � r
7 xup  greatestx s.t.ct(xup) � ct(x) � r

// for center part only (see Figure 6.9)

8 cp  s(xup) � s(x low � 1)
// left part (see Figure 6.9)

9 �  
�
(ct(x) � r ) � ct(x low � 1)

���
ct(x low) � ct(x low � 1)

�

10 u0
�
ct(x) � r

�
 u(x low � 1) + �

�
u(x low) � u(x low � 1)

�

11 lp  
�
u0

�
ct(x) � r

�
+ u(x low)

�
(1 � � )

�
ct(x low) � ct(x low � 1)

�
=2

// right part (see Figure 6.9)

12 �  
�
(ct(x) + r ) � ct(xup)

���
ct(xup + 1) � ct(xup)

�

13 u0
�
ct(x) + r

�
 u(xup) + �

�
u(xup + 1) � u(xup)

�

14 rp  
�
u0

�
ct(x) + r

�
+ u(xup)

�
�

�
ct(xup + 1) � ct(xup)

�
=2

// final value

15 v(x)  (lp + cp+ rp)=(2r )

Algorithm 29: Recursive �ltering (RF) algorithm
input : imageu
input : smoothing parameter� H

input : ct: distance between samples in the domain transform
output: �ltered imagev

1 a  exp(�
p

2=� H ) ; // feedback coefficient (see [GO11])

2 foreachrowr do // left to right filter

3 foreachpixelx of the current rowdo
4 v(x)  u(x) + act0(x)

�
v(x � 1) � u(x)

�
;

5 u  v ; // replace u by filtered signal in first direction

6 foreachrowr do // right to left filter

7 foreachpixelx of the current rowdo
8 v(x)  u(x) + act0(x+1)

�
v(x + 1) � u(x)

�
;

9 return v
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Figure 6.10: As well as the bilateral �lter, the domain transform has a staircase effect. This creates gradient reversal
when used for contrast enhancement. Figure reproduced from [HST13].

of a part of the sky that is disconnected by the branches of a tree. One does not want to have the
disconnected parts treated in a diVerent way than the rest of the sky.

As explained by K. Heet al. in the guided �lter paper [HST13], the domain transform has a
staircase eVect, which causes the gradient reversal artifact when used for contrast enhancement,
as shown in the Figure6.10reproduced from [HST13].

Moreover, as mentioned by the domain transform authors: “One feature of our �lters is that
their responses stop at strong edges. This is in contrast with the bilateral �lter, whose kernel can
cross edges”. Indeed, the geodesic distance used to weigh the pixels averaging can be severely
diVerent from the Euclidean distance in regions with strong gradients. This can be seen as an
artifact or not, depending on the context. Concerning the local contrast ampli�cation, it may
cause a “compartmentalization” artifact: some adjacent but disconnected components with the
original same color can be treated diVerently. Furthermore, this property makes the �lter not
suitable for denoising. For noisy images, the domain transform will actually smooth very little
the image, because the small gradients induced by the noise arti�cially separate pixels that should
be averaged together, because the geodesic distance is very sensitive to noise. Furthermore, as
demonstrated in Figure6.12, the domain transform is helpless for contrasted patterns.

6.7 Conclusion and recommendations on the fast bilateral �lters

To decide for a “winner” among the considered approximations of the bilateral �lter is no easy
task. Indeed, the choice depends on the application in view. Hence, we are going here to compare
them by their degree of approximation and by their complexity. Depending on both factors, this
will give some clues on the choice to make, according to the considered application. Table6.1
gives the complexities of the reviewed �lters of this section; Table6.2 reports the execution times
evaluated by the authors of the diVerent methods. This last table can give an idea of the order
of magnitude one can expect from these approximations; however, it does not ranks the �lters
by their speed. This is an impossible goal, for this highly depends on the complex interaction
between software optimization and hardware con�guration. Furthermore, fast �lters sacri�ce
accuracy, and each method has its drawbacks: this should be taken into account while comparing
the �lters.

Strictly speaking of bilateral �lter's approximations (i.e. excluding the guided �lter and the
domain transform), the smallest execution times are obtained with the local histograms approx-
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Figure 6.11: Base+detail decomposition with the domain transform (center column) and the exact bilateral �lter
(right column). Detail is ampli�ed by a factor 3 for visualization. Enhanced images are obtained with0:125 +
0:750� base+ 3 � detail. The separation is different with the two �lters. For this image with a lot of gradients,
the domain transform produces a detail of lower amplitude. On the other hand, the staircase effect (sharpening of
strong edges) in domain transform is smaller than in the bilateral �lter result. Parameters are:� s = 8 (image size is
280� 420pixels) and� r = 0 ; 125(image dynamic in[0; 1]). For the domain transform, the number of iterations for
the two­passes 1D �lter isN = 3 , and the recursive strategy is used.

(a) input (b) input ­ noise BFf (a)g DTf (a)g

(c) noise (a) ­ BFf (a)g (a) ­ DTf (a)g

Figure 6.12: Chessboard experiment. Parameters:� s = 8 (image size is32� 32),� r = 2 � noise, with � noise = :08and
image dynamic in[0; 1]. The recursive �lter is used for the domain transform, with 3 iterations as recommended by
the authors [GO11].

162



imations of Porikliet al.[Por08] and the layered approximation of Yanget al.[YTA09], followed
by the bilateral grid of Paris, Chenet al.[CPD07]. The association of the moving histogram of
Perreaultet al. [PH07] with Porikli's method was proposed by Heet al. in their paper on the
guided �lter [HST10b, HST13]. It uses the modern processor's SIMD instructions (“Single in-
struction, multiple data”). When a GPU is available, however, the bilateral grid seems to be the
fastest method. Contrarily to the other methods, the execution time of this last method is depen-
dent on the parameters� s and � r : its execution is inversely proportional to them thanks to the
downsampling step, so it might be a good option even with CPUs when dealing with large radii.

The local histogram approximations suVer from the fact that their spatial kernel is a square
(the authors propose an approximation for “arbitrary spatial kernels” but this is at the cost of more
computation time), and also from the memory consumption. Indeed, one needs to store several
histograms at the same time, and for the integral histogram, this means one per pixel. However,
they are faster than the layered approximations for small spatial kernels. (One should not use the
layered approximations for small parameters� s and� r because the subsampling strategy will not
apply).

Viewed as a fastErsatzof the bilateral �lter, the guided �lter can be a good choice, as it is faster
than any other fast bilateral for gray scale image processing. It has an exact and fast implementa-
tion, and Bauszat [BEM11] showed that it can be further accelerated with graphic hardware, before
the publication of the fast guided �lter [HS15]. If color matters, we recommend the domain trans-
form or the color guided �lter that might be faster for large radii, because it allows downsampling
(and therefore a fast guided �lter algorithm). However, these two very fast �lters do not actually
perform a bilateral �lter. In particular, they lose the ability to gather pixels that have the save in-
tensities but are separated by another group of pixels with diVerent intensities (e.g.the panes of a
window). Furthermore, both �lters introduce their own drawbacks: the contrast halo artifact for
GF and the geodesic distance for DT. Concerning the guided �lter, it has been extensively explored
in Chapter2. The high-dimensional approximations by Adamset al.[AGDL09] and [ABD10] are
not faster than those two non-bilateral �lters. The bilateral grid can be used for color but is not
well suited for GPU acceleration; the local-histogram �lters cannot be guided by a color image.

If precision matters, the polynomial approximations are a good option. Indeed, the diVerence
with the original bilateral �lter can be controlled and the �lter is still fast with a high precision. The
bilateral grid approximation is also able to control the precision by choosing the downsampling
factors, but for the bilateral grid particularly, it considerably increases the computational time and
memory needs. Their results is also rather close to the original bilateral �lter. The speed depends
on the �lter parameters, as well as on the polynomial approximations.
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Method ms/Mp

Gray,CPU

Integral histograms, Weiss2006[Wei06] 225�

Bilateral grid (2007) [PD06,CPD07] 200y

Constant time BF, Porikli2008[Por08]
B = 16 90y

B = 32 155y

B = 64 310y

Porikli 2008[Por08] with moving histogram[PH07]
and SSE

B = 32 40?

B = 64 80?

Constant time BF, Yanget al.2009[YTA09]
B = 4 (box) 65?

B = 8 (box) 120?

B = 8 (gaussian) 1000?

Edge-avoiding wavelets, Fattalet al.2009[Fat09] 12y

Weighted least squares, Farbmanet al.2008[FFLS08] 3500��

Trigonometric, Chaudhuryet al.2011[CSU11] (� r =30) 550y

Domain transform, Gastalet al.2011[GO11] (3
iterations)

NC 55z

RF 30z

Guided �lter, Heet al.[HST10b,HST13] 40y

Fast guided �lter, Heet al.[HS15] (s = 4 ) 4zz

Gray,GPU

Bilateral grid, Chenet al.2007[CPD07] 7y

Constant time BF, Yang2009[YTA09] 30y

Weighted Least Squares, Farbanet al.2008[FFLS08] 1000��

Domain transform [GO11] (NC) 3z

Guided �lter, Bauzsatet al.2011[BEM11] 21y

Color,CPU

Gaussian KD-tree, Adamset al.2009[AGDL09] � 10000y

Permutohedral Lattice, Adamset al.2010[ABD10] � 1000y

Domain transform, Gastalet al.2011[GO11] (3
iterations)

NC 160y

RF 60y

Guided �lter, Heet al.[HST10b,HST13] 150y

Fast guided �lter, Heet al.[HS15] 15zz

Adaptive manifolds, Gastalet al.2012[GO12] 200y

Color,GPU

Domain transform, Gastalet al.2011[GO11] (NC) 7y

Guided �lter, Bauzsatet al.2011[BEM11] 95y

Permutohedral lattice, Adams2010[ABD10] 200���

Adaptive manifolds, Gastalet al.2012[GO12] 1-36y
y : given by the authors.
? : measured by Heet al.[HST13].
� : reported by Chenet al.in [CPD07].
�� : reported by Fattalet al.in [Fat09].
z : no execution time is given for the gray case in [GO11], but one can expect to have little more than one third of the
color execution time.
zz : Heet al.in [HS15] report a “> 10� speedup” for theirO(N=s2) fast guided �lter.
�� : reported by Gastalet al.in [GO11].
��� : reported by Gastalet al.in [GO12].

Table 6.2: Execution time of several fast edge­aware �lters
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7 Exposure fusion and the simulated ex­
posure fusion

In the previous chapters, we studied the two most important edge-preserving soothing �lters
in the literature, namely, the bilateral �lter and the guided �lter. In this chapter, we explore
an alternative option for contrast enhancement, in which no base and detail decomposition
is involved.

Exposure Fusion is a high dynamic range imaging technique to fuse a bracketed exposure
sequence into a high quality image. We show that one can extend this method to the more
general context of improving the overall contrast of any image, turning Exposure Fusion into
a new and simple contrast and color enhancement operator. To do so, bracketed images
are simulated from a single output and fused by exposure fusion. We demonstrate that the
resulting algorithm competes with state of the art retinex methods.

Furthermore, we shall unveil a serious drawback of this fusion technique. Indeed, it tends to
create, unlike expected, an output image which dynamic range is higher than any of the input
images. This artifact forces either to clip the fused image, thus to loose precious informa-
tion from the (potentially simulated) bracketed sequence, or to compress the dynamic range,
which provokes a loss of contrast with respect to the input images. We shall show and explain
this eVect in the last section of the chapter. After careful diagnosis, we arrive at the important
and counter-intuitive conclusion that exposure fusion does not have the faculty to reduce the
edges' amplitude. The eVectively operated tone-mapping is the consequence of two eVects:
the haloing due to the Laplacian pyramid, and the saturation of the input LDR images of the
sequence.

The saturation artifact, also present in the introduced simulated exposure fusion, will be
solved in the next chapter.

This chapter introduce Burt and Adelson's Laplacian pyramid [BA83] in the context of tone-
mapping; we shall see in Chapter9 that this has been successfully reused in more recent
multi-scale base and detail decomposition �lters.

7.1 Introduction

The dynamic range of real scenes is generally higher than the one of our camera sensors. To
capture the entire dynamic range, photographers are led to acquire a sequence of images with
diVerent exposure times: long times capture information in dark parts of the scene and saturate
the brights ones, while short exposures time capture relevant information in the brights parts.
The result of this acquisition is called a bracketed exposure sequence. This sequence must then
be merged into a high dynamic range (HDR) image, which gets a far higher number of bits than
those that can be displayed on normal screens. Thus the HdR image needs to be remapped to the
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low dynamic range (LDR) of most displays through a tone-mapping operator, which alters the
colors to make them �t all in the8bits Procrustean bed.

Exposure Fusion [MKR07,MKVR09] was introduced by T. Mertens, J. Kautz and F. Van Reeth
in 2009as an alternative way of constructing an LDR image of a bracketed exposure sequence.
This method does not build an intermediate HDR picture. In a nutshell, it directly selects for
each pixel the values, among the provided pictures, which should be kept in the �nal image. As
a result, the fused image combines the best areas of the several input images. Although similar
techniques already existed [BK93], this technique has brought interesting and successful answers
to two crucial questions: how to detect the best pixel from the provided set of images, and how to
seamlessly merge those pixels in the �nal image.

In this chapter, we introduce the new technique of simulating a bracketed exposure sequence
acquisition from a single LDR image, extending Exposure Fusion to color and contrast enhance-
ment methods. We will �rst review the wide literature on contrast enhancement, often called
retinex method. We then examine the basic ideas of exposure fusion. Modeling the eVect on the
underlying physical image of bracketing, leads us to propose simulated bracketing as a way to arti-
�cially enrich image information. Using Exposure fusion on simulated bracketed images delivers
a new retinex like algorithm. The last part of the chapter shows results and compares them to the
state-of-the-art Multiscale Retinex. We also demonstrate that this algorithm improves on itself
when served with bracketed images.

7.2 Exposure Fusion methods

For a review of the work that Exposure Fusion [MKR07,MKVR09] has inspired, we cite the excel-
lent state-of-the-art review of the Exposure Fusion literature in Hafner and Weickert2016[HW16]
(Section “2.3. Exposure fusion”):

Classical high dynamic range (HDR) methods combine several low dynamic range
(LDR) images to one HDR image with the help of the exposure times and the camera
response function; see,e.g.[MPMP95], [DM 97], [MN 99], [TKTS11]. However, dis-
playing those HDR results on standard monitors or printing them requires to com-
press the HDR again. This process is called tone mapping; see [RHD+ 10] for a survey
and [ �CWNA08] for a discussion and evaluation of various tone mapping operators.
Since tone mapping is not the focus of this work, we restrict our discussion to the
most related operators. In their gradient domain tone mapper, Fattal et al. [FLW02]
account for the local contrast adaption of the visual system by attenuating large gra-
dients, and maintaining or even enhancing the smaller ones. Similarly, Durand and
Dorsey [DD02] decompose the HDR image into a base and a detail layer. Then, they
compress the base while keeping the details. Reinhard et al. [RSSF02] apply �rst
a global transform, and locally increase the contrast afterwards. Also, Mantiuk et
al. [MMS06] show and discuss the importance of the contrast adaption of the human
visual system w.r.t. tone mapping. Most related to our work is the two-stage tone
mapper of Ferradans et al. [FBPC11] that applies a variational contrast enhancement
in the second stage.

However, if the goal is a displayable and well-exposed LDR image, there is a popular
alternative to the described two-step procedure of HDR imaging and tone mapping,
namely exposure fusion [MKVR09]. Here, the task is to skip the HDR image gen-
eration by a direct fusion of the diVerently exposed LDR images to an overall well-
exposed composite. Such an exposure fusion approach has several advantages: First,
there is no need to know the exposure times or the camera response function. It is
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even possible to include images that do not follow the HDR imaging model, e.g. �ash
and no �ash photographs or images from diVerent cameras. Second, this one-step
approach allows a direct tuning of the �nal results without the detour via an interme-
diate HDR image. Obviously, exposure fusion is related to tone mapping. However,
the diVerent types of input data ask for diVerent algorithmic requirements and dif-
ferent model assumptions.

In the meantime, exposure fusion has even developed to an own research area with
various publications that we review next. Most existing exposure fusion methods
pursue the following processing pipeline: In the �rst step, based on exposure fusion-
speci�c quality measures, weighting maps are determined for each of the input im-
ages. Such quality measures are, for instance, the magnitude of the Laplacian [Bog00],
[MKVR09], the entropy [Gos05], [HP10], or the colour saturation [MKVR09], [SCSB11],
[SKB14b]. Another idea,e.g.applied by Raman and Chaudhuri [RC09] or by Singh
et al.[SCSB11], is to decompose the input images into base and detail layers. Then,
the amount of detail is considered as measure to determine the input image weights.
In the second step, these weighting maps are com- bined with the input images to
form the �nal composite. Here, the fusion strategies vary from region-based blend-
ing [Gos05] and pixel-wise weighted averaging [RC09], [HP10], [SCSB11], [SCB13],
[SKB14b] to gradient domain fusion [hCH04], [STC+ 12] and pyramid-based tech-
niques [BK93], [Bog00], [MKVR09]. DiVerent to those two-step approaches, Ra-
man and Chaudhuri [RC07] propose a variational method to directly compute the
fused composite. However, this requires a smoothness constraint of the �nal image
that may lead to over-smoothed blurry results. A more suitable idea by Kotwal and
Chaudhuri [KC11] is to formulate the output image as a weighted average of the input.
Then, they design an energy on this composite.

To summarize, the classic approach is to construct a high dynamic range image from a series
of low dynamic range ones taken with diVerent exposition times (but all other parameters of the
camera must be kept �xed). Several papers propose methods for the fusion, of which the most
used is probably Debevec and Malik's method [DM97]. Then, the HDR image must be compressed
to LDR through a tone-mapping operator. Several techniques again are available in the literature,
for example Fattalet al. in 2002[FLW02] and Durand and Dorsey,2002also [DD02]. On the
other hand the exposure fusion approach is diVerent, in the sense that the HDR image is not
constructed: the output image is directly constructed out of the input bracketed sequence. The
critical points are then to wisely select what part of which image will be used in the fused result
(often several images are used simultaneously for a pixel, so blending weights must be computed),
but also to seamlessly fuse those diVerent parts of the input images. Several propositions are made
in the exposure-fusion literature, recapitulated in the above review by Hafner and Weickert. One
very popular is the “exposure fusion” method by Mertenset al., published in2009, and to which
we bring an extension here. We �rst review this method, then propose our extension.

7.3 Exposure Fusion

Exposure fusion �rst measures the perceptual quality of each pixel in each image of the input
sequence. Three pixel-wise metrics are used: the contrastC, saturationS and well-exposedness
E. We will denote in the following byij the position of the pixel in a image, byc the color
channel, and byk the position of the image in the input sequence. Thecontrast metricuses the
absolute value of a discrete Laplacian �lter applied to the grayscale version of the image. Denoting
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byK Laplaciana Laplacian kernel, we set

Cij;k =
�
�
�
� 1

3

3X

c=1

I ij;c;k
�

� K Laplacian

�
�
� : (7.1)

The authors use forK Laplacianthe sum of diVerences over the four nearest neighbors. Thesatura-
tion metricis the standard-deviation of the pixel's color,

Sij;k =

vu
u
t 1

3

3X

c0=1

(I ij;c 0;k �
1
3

3X

c=1

I ij;c;k )2 : (7.2)

Finally, thewell-exposednessmetric measures how close the pixel's value is to the median value0.5
using a Gauss curve:

E ij;k =
3Y

c=1

exp�
(I ij;c;k � 0:5)2

2� 2 ; (7.3)

with � = 0 :2. To account for multiple color channels, this measure is made on each channel
separately and the results are multiplied.

The quality measure of each pixel is �nally obtained as a product of these three metrics. By
using the product, the authors force their method to only keep pixels which are acceptable for the
three qualities simultaneously. To allow the user to choose the importance given to each quality
measure, they added a power function to each one, with parameters! c, ! s and ! e (by default
equal to1):

Wij;k = ( Cij;k )! c :(Sij;k )! s :(E ij;k )! e : (7.4)

For the blending process, the resulting weights need to be normalized as

cWij;k =

 
NX

k0=1

Wij;k 0

! � 1

:Wij;k : (7.5)

At this point, each input image has its normalized weight map. As the authors explain, one
could directly use them to fuse the images. But such an operation would lead to strong seams due
to the sharp variations in the weights. They instead propose a multiscale fusion, using the method
introduced by Ogdenet al.[OABB85]. This technique builds the Laplacian pyramid [BA83] of the
output image by blending the Laplacian pyramids of the input images according to the Gaussian
pyramid of the weight maps. The fused image is obtained by collapsing the constructed pyramid.
We will denoteL f I g the Laplacian pyramid of the input imageI , Gf W g the Gaussian pyramid
of the weights, andl the scale. The blending operation is then:

L f Rgl
ij =

NX

k=1

Gf cW gl
ij;k :L f I gl

ij;k : (7.6)

The algorithm30describes the whole process, from the quality measurements to the multiscale
fusion.

While the sum of the weights is guaranteed for every pixel to be equal to1, this does not
imply that the reconstructed image belongs to the initial interval. In fact it may well happens
that saturations occur in the dark or bright part. Avoiding them is possible by applying an aY ne
rescaling of the image's dynamic to �t it to the standard interval[0; 255]. In our experiments, the
resulting image generally presented no artifacts. The authors however present a case where the
output image suVers from a very low frequency halo, giving an unnatural sensation (see �g.6 of
their paper [MKVR09]). We describe and explain this eVect in Section7.6.
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Algorithm 30: Exposure Fusion
input : input sequence of imagesI
input : ! s; ! c; ! e: weights for saturation, contrast and well-exposedness measures,

respectively
output: fused imageR

1 foreachimage at positionk 2f 1; 2; :::; N g in the input sequencedo
2 Compute contrast metricC using eq. (7.1)
3 Compute saturation metricS using eq. (7.2)
4 Compute well-exposedness metricE using eq. (7.3)
5 Compute weight mapWk of the current image using eq. (7.4)

6 Normalize weights using eq. (7.5)
7 foreachimage at positionk 2f 1; 2; :::; N g in the input sequencedo
8 Compute Gaussian pyramid of weightsGf cW gk

9 Compute Laplacian pyramid of input imagesL f I gk

10 foreachcoeYcient at positionij and scalel do
11 Update Laplacian pyramid of the output image:

L f Rgl
ij  L f Rgl

ij + Gf cW gl
ij;k :L f I gl

ij;k

12 R  collapse Laplacian pyramidL f Rg

Figure 7.1: Simulated exposure fusion method (SEF).

7.4 Simulated exposure fusion: fusion from a single image

The diY culty in local tone-mapping operators is to adapt the contrast modi�cation to diVerent
areas and avoid unnatural behaviors at edges such as halo or edge sharpening. Since Exposure
Fusion achieves very successfully the similar task of selecting and seamlessly merging areas from
images with signi�cant exposure changes, we propose to adapt the algorithm to make it work for
a single image. The idea is to generate an input sequence simulating for this sole image its under-
exposed or overexposed versions, tuning Exposure Fusion into an image enhancement operator.
This process is displayed in Figure7.1. The �rst question we encountered is: how to generate the
sequence? We found that the choice of the over- or under-exposure processes is not that critical.
Indeed Exposure Fusion metrics are designed to always select the best pixels among the available
input images. In other words, Exposure Fusion will measure what correction, among the pro-
posed ones, is the best for each input pixel. It is therefore only necessary to present a sequence
which enhances the contrast at all levels of the dynamic.
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Figure 7.2: Approximation of the image capture process

In the RAW case, the captured image is

uij = min
�

[E ij :� t0 � s]+ ; S
	

; (7.7)

whereE is the scene irradiance,� t0 is the exposure time, ands andS are respectively the black
level and the white saturation value.[:]+ denotes the positive part. From this model we can
estimate the irradiance of the scene:

fE ij =
uij + s

� t0
: (7.8)

The parts ofE saturated inu are lost. We callvk an image generated fromu with the exposure
time � tk . Using (7.8),

vij;k = min
nh � tk

� t0
uij +

� tk � � t0

� t0
s
i +

; S
o

:

The values is small and can be neglected. In addition, taking the positive part is unnecessary as all
terms are positive. We therefore obtain a simple expression for the generating a bracketed image,

vij;k = min
n � tk

� t0
uij ; S

o
: (7.9)

Most cameras use powers of two for the exposure time. To keep generality we will use� tk =
� k � t0 with k 2 Z and� a parameter superior to one, for example� = 2 . Hence:

vij;k = min
n

� kuij ; S
o

: (7.10)

When we do not have access to the raw picture, the problem is slightly diVerent because non-
linearities, typically a gamma-correction and a color balance, have been previously applied to the
pictureu. Adapting the model gives

uij = f (min
�

[E ij � t0 � s]+ ; S
	

) ; (7.11)

wheref () is the composition of all the non-linearities of the aquisition process. In that case, the
generated images should be obtained using

vij;k = f (min
n

� k f � 1(uij ); S
o

) : (7.12)

However, although it is possible to recoverf from the sequence of images [DM08], this is impossi-
ble from a single one. The only option is then to make a guess about the form off and to simulate
enough bracketed images compatible with it. Most JPEG images have undergone a multiplicative
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Figure 7.3: Remapping functions used to generate the input “bracketed” sequence, here with parameter� = 6
and N = 4 .

color balance and a gamma-correction, which is a power function. Thus, approximatingf by a
power function seems appropriate. Denoting byp the exponent, we deduce from (7.12) that the
input sequence can be generated by setting

vij;k = min
n

� pkuij ; Sp
o

:

The image will again be saturated atS and we don't need to saturate below this value so the �nal
expression is

vij;k = min
n

� pkuij ; S
o

: (7.13)

This leads to the favorable conclusion that the generation process is simply the same for RAW and
JPEG images: we just use the identity for the functionf by settingp = 1 in the RAW case. To
arti�cially increase the exposure time (there is no reason to decrease it as we can't recover saturated
parts) we therefore must usek > 0.

For a more intuitive use of the algorithm, we propose a way to compute� from another pa-
rameter: the maximal contrast ampli�cation factor authorized in the algorithm,� . This value is
reached when generating the last images of the sequence,i.e.whenk = N , whith N the number

of paris to generate (see below).� is then determined from� by � = �
1

pN .
Each used multiplier generates a pair of images. Indeed, applying a multiplier� pk > 1 creates

saturation. In order to prevent this information loss, we propose two functions:f dark saturates
the image in the dark parts, whilef bright saturates it in the bright parts. The important parameters
thus left to the user are the maximal multiplicative factor� applied to the input image, and the
total numberN of images to generate. Denoting byt an intensity, the remapping function are:

f dark(t; k ) = max f 0; � k=N (t � 1) + 1g

f bright(t; k ) = min f 1; � k=N tg

Because factors are equal or superior to1the fused image is guaranteed not to loose contrast.
We drew these functions for the various values ofk (denoting the position in the generated input
sequence) in �gure7.3. The pseudo-code31describes the very simple steps of our algorithm: �rst,
the generation of the input sequence, and then the application of Exposure Fusion.

7.5 Results

Our experiments indicate that this method challenges the well known and very eVective Multiscale
Retinex [LM71,JRW97a,PSM14]. It seems indeed able to increase both the lighting and contrast in
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Algorithm 31: Exposure fusion from a single image
input : u input image
input : N number of image pairs to generate
input : f dark andf bright the remapping functions
input : ! s; ! c; ! e: exposure fusion parameters
output: R: fused image

1 for k 2 f� N; : : : ; 0; : : : ; N g do
2 if k � 0 then
3 bI ij;k  f bright(I ij ; � k)

4 else
5 bI ij;k  f dark(I ij ; k)

6 R  Apply exposure fusion to sequencebI with parameters! s; ! c; ! e

(a) input image (b) single­image exposure fusion

(c) MSR (gray) (d) ACE,� = 8

Figure 7.4: Tone­Mapping with the “Simulated Exposure Fusion”: original (top left) and tone­mapped (top right)
with the proposed method. The remapping functions displayed in Figure 7.3 were used: 5 images in the sequence
(including the input one) and maximal contrast factor� = 6 . Comparison with Multiscale Retinex on the intensity
channel [PSM14] (bottom left), with0:1% of saturation in both black and white values for the �nal “Simplest Color
Balance”. Comparison with Automatic Color Enhancement (ACE) [Get12] (bottom left) with parameter� = 8 (max­
imal authorized contrast enhancement). The generated images of our method and their corresponding weights
are displayed in Figure 7.5.
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Figure 7.5: Tone­Mapping with the “Simulated Exposure Fusion”: generated input sequence (top row) and the
corresponding weights (bottom row).

dark areas, thus revealing information in the shadows. Furthermore, even the bright parts of the
input image are improved. This is particularly relevant as Multiscale Retinex tends to compress
details in the bright areas, and generally gives grayish skies. These observations are con�rmed by
�gure 7.4. Concerning the colors, exposure fusion from a single image shows more saturation.

However, our result presents the “out-of-range” artifact. White-saturated values are observ-
able in the Figure7.4 (b) on the girl's hair and in the sky. Black-saturated values are more diY cult
to spot, but are most probably present in the trees shadows in the re�ect on the pickup's window.
We discuss this artifact in the next section, and give its solution in next chapter.

An IPOL workshop is available athttp://ipolcore.ipol.im/demo/clientApp/demo.html?id=
77777000007, letting the user try the two presented methods on his own images and explore the
eVect of each parameter.

7.6 Saturation in the exposure fusion method

Saturation occurs in the original methods by Mertenset al., as shown in Figure7.7and Figure7.8.
Even though weights are normalized and none of the input images exceed the �nal dynamic range,
the fused image can inherit a larger dynamic range than any of the input images. The origi-
nal exposure fusion method [MKR07, MKVR09] simply clips the values that exceed the dynamic
range, but this results in saturated areas in the �nal image. The authors added in their2009pa-
per [MKVR09] the following remark: “Another issue concerns out-of-range artifacts. The pyra-
mid reconstruction does not guarantee that the resulting intensities lie within[0; 1], even if the
original intensities were restricted to this domain. (. . . ) One can simply �x this issue by shifting
and scaling the intensities, at the risk of reducing contrast.” We are then stuck in the unpleas-
ant situation where either we decide to compress the dynamic, but lose contrast (see for example
Figure7.7(b)), or we apply again a tone-mapping operator, which is speci�cally what our method
was initially designed for. We shall however present an alternative way to avoid this saturation.
But we shall �rst explain the apparition of this artefact. As will soon become clear, it is due to the
multiscale blending.

Constructing an image that combines the most contrasted, saturated and well-exposed parts
of each image of a given sequence supposes that the method is able to keep the small variations,
the local contrast (i.e. structures and textures – the detail). Exposure fusion succeeds in selecting
these “best” parts and to fuse them seamlessly. However, constraining the fused result to respect
the initial dynamic range is more complex: it requires the method to be able to reduce the edges'
amplitude. But exposure fusion is fully based on the computation of averages of Laplacian co-
eY cients. Thus, the exposure fusion mechanism that might reduce the edges' amplitude is the
blending of high amplitude Laplacian coeY cients (from high amplitude edges) with lower ampli-
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Figure 7.6: Input sequence (top row) and the corresponding normalized weights maps (bottom row). The default
parameters were used for this experiment:! c = 1 ; ! s = 1 ; ! e = 1 . (Images courtesy of Min H. Kim.)

(a) exposure fusion output (clipped) (b) normalized output

Figure 7.7: Result of the exposure fusion method (a) with the default parameters given in Figure 7.6:! c = 1 ; ! s =
1; ! e = 1 . Saturation occurs in the brights parts of the windows, despite the fact that the input image used in these
areas were not saturated. The information is preserved by the fusion but the image is clipped at the end of the
process, thus incurring information loss. In this experiment, the dynamic range of the fused image is[� 0:38; 1; 35],
that is, almost1:75� larger than the input dynamic range. For comparison, we display the linearly­compressed
result on the right (b). It is not saturated, yet contrast is reduced compared to the input images of the bracketed
sequence.
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(a) lines of the input sequence (b) 3rd input image

(c) lines of the fused result (d) fused result

Figure 7.8: We show here a section taken in the input sequence (represented on the images on the right column).
All input images are in the correct dynamic range. The fused result however has a greater dynamic. The experiment
is carried out with gray levels images for the sake of clarity; we thus do not use the saturation metric:! s = 0 . The
other parameters are! c = 1 ; ! e = 1 . We clipped out­of­range values in (d).

tude Laplacian coeY cients (from lower amplitude edges). This seldom happens because weights
are designed to select the most contrasted regions. Thus, in the same way as exposure fusion
preserves the local contrast of each input images, it preserves their edges. In Figure7.10we exper-
imentally show this eVect. We designed an input sequence composed of two test-patterns. The
�rst one has values equal to zero everywhere except in a small band in its center; this band is not
saturated and has some local contrast (noise) so that exposure fusion will assign large weights to
it. The second test pattern is well-exposed and contrasted for its most part, except in the same
centered band where it is saturated to white. Thus, exposure fusion will fuse the center band of
the input 1with the side parts of input2. These inputs are displayed in Figure7.10(a), (b). We
display the center line in the plot of the same �gure. The fused image's (yellow line) edges height
is the average of the two input heights. If the same or another image of the sequence has large
edges in the reverse direction, then the fused image can overstep the input dynamic range: see
Figure7.11.

In fact, we just demonstrated that saturation is a vital element of exposure fusion. A bracketed
exposure sequence obviously contains saturation; such a method would not be used otherwise.
But it is also clipping (i.e. saturation) that allows exposure fusion to produce an image with re-
duced dynamic range compared to the potential HDR image one could compute using the same
bracketed exposure sequence. Understanding this is of prime importance when thinking about
our simulated exposure fusion(SEF) method: indeed, we have the choice to clip the input images
or not. It is now apparent that without clipping, our simulated exposure fusion would not be able
to enhance any image. This clari�cation also leads us to a simple solution to the “out-of-range
artifact”: to reduce the dynamic range of the input sequence.
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Figure 7.9: Laplacian coef�cients for a line of the input sequence and the fused result (same line as in Figure 7.8).
The Laplacian coef�cients are displayed by scale, from the �nest one (top row) and in descending order of �neness
towards the bottom. The fused Laplacian coef�cients (dark green) are a weighted combination of the input Lapla­
cian coef�cients (the weights are not showed here). The fused Laplacian coef�cients often follow the coef�cients
of the input image that has the greatest amplitude. As a result, the fused image combines the greatest variations
(and edges!) of each different input image, which explains its increased dynamic range.
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(a) input 1

(b) input 2

(c) fused result

Figure 7.10: Fusion of input 1 and input 2 with exposure fusion. Parameters:! c = 1 , ! s = 0 (gray level images),
! e = 1 . This simple experiment shows that exposure fusion cannot reduce edge amplitude at will. In fact, edge
reduction is a consequence of the blending of large Laplacian coef�cients (from input 1) with smaller Laplacian
coef�cients (from input 2). In this experiment, this is not enough to prevent a saturation of the fused result (c).
Figure 7.11 displays a more complex case where three input images are fused.

Figure 7.11: Edge preservation in exposure fusion and dynamic extension. In this experiment, the input sequence
has three images and two contrasted bands: input 1 holds the “well­exposed” �rst band (saturated in the other
images); input 3 holds the well­exposed second band (saturated in the other images); input 2 holds the well­
exposed parts between the bands. By blending the well­exposed parts together, exposure fusion creates an image
too contrasted to �t in the input dynamic range.
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8 Edge reduction in the simulated ex­
posure fusion

In this chapter, we improve on the method presented in chapter7in two ways: �rst we correct
the saturation artifact that we proved to be inherent to the classic exposure fusion method.
Second, we propose a smarter way to simulate the bracketed exposure sequence by automati-
cally choosing the number of brightened ant darkened images, so that images with unequally
distributed histograms between their left and right sides are better enhanced. We shall also
uncover a novel artifact of our method, namely the creation of spurious edges in areas with
smooth contrast changes (smooth edges). We solve the issue by replacing the sharp threshold
(i.e.clipping) in the remapping function by a smoother function.

Furthermore the general algorithm thus designed can be used to improve on itself in the
HDR context. In that case of application more simulated bracketed images are built from the
input, thus permitting to obtain more contrasted regions than those provided by the physical
brackets.

The proposed method eventually resembles to the local Laplacian �lter, member of the multi-
scale edge-aware smoothing �lters. The similarities and dissimilarities shall be discussed in
the next chapter.

8.1 Clipping the remapping functions

As demonstrated in Chapter7, Section7.6, the exposure fusion method [MKR07, MKVR09] has
a dynamic extension artifact. This extension is problematic because the fused result often does
not �t the typical 8-bits dynamic range, thus requiring either a simple clipping of the out-of-
range values or a problematic additional tone-mapping step. For our single-image exposure fusion
method however, a simple �x is to reduce the dynamic range of the input images in the generated
sequence. We show here that this can be done in a way that preserves relevant information of each
input image, and that it allows to reduce the edges' amplitude. This method can be extended to
real bracketed exposure sequences, thus correcting the dynamic extension artifact.

Let us recall the remapping function we de�ned for our single-image exposure fusion method.
There are two parameters:� is the maximum contrast factor used in the sequence generation;N
is the number of bracketed pairs of images to simulate from the input one. We use positive and
negative indexes for a pair of images with the same contrast factor but clipping in the bright or
dark side; so the pair of images with the largest contrast factor is(� N; N ). We keep the input
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(a) no saturation (b) with saturation

Figure 8.1: Modi�ed remapping functions aimed at reducing the dynamic of the input images. So as to preserve
important information, the saturation must be done wisely. In particular, we keep values that are the most bright­
ened for the far left part of the histogram, values that are the most darkened for the far right part of the histogram,
and proceed gradually for values in­between. Here, the number of generated images is4 (�fth image is the input
one); the maximal contrast factor is4 and the “allowed” dynamic range of the input image is� = 2 =3 of the �nal
dynamic range.

image, which index is0.

f remap(t; k ) =
�

f bright(t; k ) = min f 1; � � k=N tg if k � 0
f dark(t; k ) = max f 0; � k=N (t � 1) + 1g if k > 0

(8.1)

Notation and terminology

We shall use the convention that in the simulated bracketed exposure sequence, images are num-
bered from� N to N . The reason is that images which number has the same absolute value have
the same contrast enhancement factor (see Figure8.1). The negative numbers correspond to im-
ages that enhance the left hand part of the histogram, and thus saturate the bright pixels (right
side of the histogram). Theses images are brighter, so we called the generative functionf bright.
The image with positive index in the generated sequence enhance the right hand side of the his-
togram and saturate the dark pixels of the input images. They are generated using the function
f dark. We keep the (unmodi�ed) input image in the sequence; its index is0. The total number of
images in the sequence is then2N + 1 .

In order to reduce the dynamic of the generated images while keeping enough relevant infor-
mation, we need to adapt the clipping process to the generated images. This leads to clip the bright
values of the image with index� N that enhance the dark values the most, to clip the dark values
of the image with indexN that enhance contrast of the bright pixels, and to equally distribute the
non-saturated intervals for in-between images. Formally, the clipping function is de�ned by

clip(t; k ) = max
�

oVset(k); minf oVset(k) + �; t g
	

; (8.2)

with

oVset(k) =
k + N

2N
(1 � � ); (8.3)

andk 2 f� N; � N + 1 ; : : : ; N g. The new parameter� controls the dynamic range of the simu-
lated bracketed images. We then use

f rem,clip(t; k ) = clip
�
f remap(t; k ); k

�
(8.4)

An illustration of these clipped remapping functions is given in Figure8.1.
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In Figure8.2we show the result of single-image exposure fusion when the clipped remapping
functions are used and compare it to the result without clipping. We used a similar test-pattern
than the one used in Figure7.10, of which we display the central line. This original line appears
in Figure8.2 (a) and (b) as the orange line in the bottom plot. The fused result (dark blue) is
superimposed. The same lines taken in the generated images are displayed in the top plots of (a)
and (b). The couple of plots in (a) uses the remapping functions of Figure8.1(a), which produce
a fused result with extended dynamic range. On the other hand, the couple of plots in (b) uses the
remapping functions of Figure8.1(b) and does not create out-of-range values.

Figure8.3 presents the result of this method for a real image. This improved generation
method prevents saturation indeed. However, the colors seems to be aVected by this speci�c gen-
eration method. Indeed, the clipping process actually alters colors, because they can have very
diVerent values and thus it often happens that one channel is saturated but nevertheless consid-
ered as a good pixel (because clipping reduces the number of good pixels in the input sequence).
The simple workaround we use is to work on luminance only: we �rst convert the input to a
gray-level image using

ulum = 0 :2989� ured + 0 :5870� ugreen+ 0 :1140� ublue; (8.5)

then enhance the luminance only, and �nally reintroduce the color coeY cients

cchan = uchan=(ulum + � ); (8.6)

with

� =
�

1 if ulum = 0
0 otherwise.

(8.7)

Due to this modi�cation, we can no longer use the color saturation parameter of the Mertens
et al. method. Although this trick gives slightly less vivid results, it successfully resolves the
color alteration artifact previously introduced. The result using luminance only is displayed in
Figure8.3(c).

8.2 Asymmetric bracketed exposure

We shall further improve the bracketed image sequence generation by authorizing a diVerent num-
ber for darkened or brightened images. Indeed, placing the input image at the center of the se-
quence implicitly assumes that the image needs contrast enhancement in the bright areas as much
as in the dark ones. But this is rarely the case. Hence, in order to decide the proper number of
images to generate in the left and right side of the input images in the sequence, we use the me-
dian value of the input (luminance) image, because it gives a good estimation of the proportion
of dark and bright pixels. Formally, we de�neNb and Nd for the number of bright and dark
images to generate, respectively. The total number of images (including the input one) is then
Nb + Nd + 1 = 2 N + 1 . The values ofNb andNd are computed from the user-set parameterN
and the median value Medianf ug:

Nb = [2N (1 � Medianf ug)] (8.8)

Nd = 2N � Nb; (8.9)

where[:] denotes the closest-integer operator and the input image dynamic in[0; 1]. We rede�ne
the remapping function usingNmax = max f Nb; Ndg:

~f remap(t; k ) =
� ~f bright(t; k ) = min f 1; � � k=Nmax tg if k � 0

~f dark(t; k ) = max f 0; � k=Nmax (t � 1) + 1g if k > 0:
(8.10)
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(a) input sequence (top) and result (bottom) without saturation, using
remapping functions from Figure 8.1(a)

(b) input sequence (top) and result (bottom) with saturation, using
remapping functions from Figure 8.1(b)

Figure 8.2: The used test­patterns are similar to the one used in Figure 7.10. Input sequences are generated using
remapping fonctions displayed in Figure 8.1 (a) (top) and Figure 8.1 (b) (bottom), that is, the bottom couple of plots
use the remapping function with a reduced dynamic. Comparing top and bottom results: out­of­range values are
almost completely removed.
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(a) original (b) usingf remap

(c) usingf rem,clip on luminance only (d) usingf rem,clip

Figure 8.3: To clip the images of the input sequence allows to reduce saturation in the fused images. Image (c)
preserves the re�ections in the girl's hair and does not saturate the sky, whereas image (b) is clipped in these areas.
Parameters used here are� = 4 , N = 4 , and � = 2 =3 (for image (c) and (d)), as in Figure 8.1. Exposure fusion
parameters are! c = 1 , ! s = 1 , ! e = 1 (except from image (c) which uses! s = 0 ).

Therefore, the remapping functions with clipping are:

~f rem,clip(t; k ) = clip
� ~f remap(t; k ); k

�
; (8.11)

with k 2 f� Nb; � Nb + 1 ; : : : ; Ndg andoVsetrede�ned as

]oVset(k) =
k + Nb

Nb + Nd
(1 � � ): (8.12)

We show in Figure8.4 the remapping functions with this asymmetric distribution of contrast-
enhanced images in the generated input sequence and the corresponding fused results. This mod-
i�cation avoids increasing contrast when it is not necessary, for example on the white columns of
the house.

8.3 Introducing smooth clipping functions

An issue we encountered is the creation of shocks in areas with smooth gradients, as shown in
Figure8.5. This artifact is caused by the arti�cial edges introduced when clipping in the generation
process.

In order to avoid this distortion of the original image, we modi�ed the saturation process so
that it does not create edges: the brutal clipping is replaced by a smooth transition. When the val-
ues exceed the allowed dynamic (� ), we progressively reduce the remapping function's derivative
(the decay behaves like1=x) until it reaches zero. The exact formulation is unimportant but we
give it for the sake of completeness. The clipping function only is modi�ed.

smooth-clip(t; k ) = max
�

0; minf 1; g(t � oVset(k) �
�
2

) + oVset(k) +
�
2

g
	

(8.13)
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f remap,clip
~f remap,clip

(a) original (b) symmetric generation (c) asymmetric generation

Figure 8.4: The original image in (a) is enhanced using a symmetric sequence (b) and an asymmetric one (c).
The asymmetric sequence better enhances contrast in originally dark regions while having a limited effect on the
columns. It produces a globally better exposed output (with value around .5). Parameters used for sequence gen­
eration: � = 8 , N = 6 and � = 1 =2. Exposure fusion parameters:! c = 1 , ! s = 0 , ! e = 1 . The luminance only
was processed.

(a) original (b) fused (sharp) (c) zoom in (b) (d) zoom in (b)

(e) fused (smooth) (f ) zoom in (e) (g) zoom in (e)

Figure 8.5: Illustration of the edge creation artifact of simulated exposure fusion, and its solution. The top line
displays the original image (a) and the result using sharp saturation in the remapping functions. The two zoom­ins
in (c) and (d) show the artifacts. The bottom row uses the smoothly saturated remapping functions (displayed in
Figure 8.6 (b)). Zoom­ins in (f ) and (g) show that the problem is solved.
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(a) ~f rem,clip (sharp) (b)~f rem,clip (smooth)

Figure 8.6: In (a) (sharp saturation) the parameters are:N = 5 , � = 8 , � = 1 =2. In (b) (smooth saturation), the
parameters are the same except for� , set to 1=3. Indeed, since the saturation it not brutal, the dynamic range
�nally exceeds� , hence the need to reduce this parameter in order to have comparable dynamic ranges between
(a) and (b).

g(t) =

(
t if jt j � �

2

sign(t)
h

�
2(� � 1) + log

�
jt j � � (� � 2) exp( � � 1)

2(� � 1)

�
2(� � 1)

�

i
if jt j > �

2 ;
(8.14)

where� a parameter controlling the speed of the derivative decay. We set� = 5 , because it worked
well in our experiments.

8.4 Results

We now compare the results we obtained with those of the Retinex methods shown in Figures8.7,8.8
and8.9. We shall also compare the “new” simulated exposure fusion presented in this chapter, to
the version proposed earlier in Chapter7, so that the cumulated improvements due to the clip-
ping in the generated sequence, the asymmetric generation and luminance-only eVects can be
observed simultaneously. Furthermore, we shall compare our output with thelocal Laplacian
�lters [APH+ 11,APH+ 14], that is described in Chapter9.

It has been often observed that Retinex tends to shrink contrast in bright areas. This is partic-
ularly visible in Figure8.9 (c) in the sky, but also on the lighthouse in Figure8.8(e). Furthermore,
on this last image the retinex output contains visible luminance halos around the lighthouse. On
the contrary, our simulated exposure fusion method improve the contrast even in the bright parts
of the image and does not create halo artifacts. Concerning ACE, we shall produce a better en-
hancement of the faint variations. Indeed, our method better reveals the details, as can be observed
in Figure8.7, for the bushes and the part of the front house behind the columns particularly.

The third row in Figure8.9 displays a result obtained with the fast local Laplacian �lter (fast
LLF) [APH+ 11, APH+ 14]. In images (g) and (h) we enhanced the local contrast using� = 8 and
two diVerent parameters� . This parameter controls the height of the edges, like� in our method.
The number of imagesN is directly computed from� usingN = 1=� . The output image with
LLF largely exceeds the input dynamic range, thus we added a �nal stretching step. We used the
Simplest Color Balancealgorithm (SCB) [LLM+ 11] that allows saturation of a small percentage of
black and white pixels. We set this percentage to1%. The last image (i) is the result of the Durand-
Dorsey tone-mapping algorithm [DD02] where the bilateral �lter is replaced by fast LLF. Alog
function was applied to the base layer obtained with� = � 1and the detail layer was added back; a
�nal stretching maintained the output image in[0; 1]. We used SCB here too. More speci�cally, the
displayed image (i) is:SimplestColorBalance

�
log(255� LLFf ug+1) =log(256)+(u � LLFf ug)

�
.

All of these LLF results use the color images, not the luminance only. In images (g) and (h) it
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(a) original (b) SEF with� = 8

(c) ACE with� = 8 (d) MSR on luminance

Figure 8.7: Comparison of SEF (b) with ACE (c) and MSR (d) (with chromaticity preservation, [PSM14]).The remap­
ping functions and the corresponding parameters are speci�ed in Figure 8.4 (c).
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(a) original (b) SEF with� = 8 and ~f rem,clip

(d) ACE with� = 8 (e) MSR on luminance

Figure 8.8: Comparison of SEF (b) with ACE (d) and MSR (e) (with chromaticity preservation, [PSM14]). The remap­
ping functions used in (b) are displayed in (c). The SEF parameters are� = 8 , � = 1 =2, N = 4 , smooth clipping
function, luminance only modi�ed.
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clearly appears that a simple increase of the local contrast along with a reduction of the underlying
base layer (because of the �nal normalization step) is not enough to enhance the darkest areas of
the original image. On the other hand, this method is good at enhancing local contrast. The
result in (i) improves the visibility in originally dark areas of the image, but lacks contrast. In
comparison, our result in (e) has a better visibility and contrast everywhere.

The simulated exposure method we presented ends being comparable to the fast local Lapla-
cian �lters [APH+ 11, APH+ 14]. In a few words, this last method fuses Laplacian coeY cients of
several modi�ed versions of the input image; the modi�cations consist in increasing contrast in
a particular intensity range and compressing it elsewhere. This �lter is presented in Chapter9.
Although it would seem at �rst sight that we just re-created LLF, at least three notable diVerences
tell to the contrary. The most important one is that we use diVerent contrast factors between the
diVerent images. This allows to reduce the number of images to generate, because it speci�cally
depends on these factors, because images with high factors quickly exceed the authorized dynamic
range and that it is indispensable to produce at least one image that improves the contrast in every
diVerent part of the input intensity range. Hence, our method generally needs fewer simulated
images, because it reserves the large contrast factors to areas that need it (often the far left part of
the histogram) and keep smaller contrast factor in areas that do not need strong enhancement (the
lighthouse in Figure8.8 for example). And because the number of images to fuse is smaller, our
method is faster and less memory-demanding. A second diVerence resides in the physically-based
simulation process. This gives the result a more natural aspect, as can be seen in the �gures of this
section. The third notable diVerence lies in the brightening/darkening property of our method.
Unlike LLF that only increases the local contrast, the simulated exposure fusion also improves the
global exposition of the original image, thanks to exposure fusion metrics and an appropriate sim-
ulated bracketed exposure sequence. Furthermore, our method builds a bridge between exposure
fusion and the local Laplacian �lters. To the best of our knowledge, this has not been remarked
yet.

To conclude this comparison section, the proposed method seems to outperform state-of-the-
art retinex algorithms as MSR and ACE, because it is able to both greatly improve visibility in
dark areas and preserve (and enhance!) contrast in bright areas. Furthermore, no artifact were
observed in the results. The local Laplacian �lters method can be considered as a retinex-like
method: indeed, we showed in Section4.3the link between ACE and the unnormalized bilateral
�lter, and, as will become clear in Chapter9, the local Laplacian �lter is based on the unnormalized
bilateral �lter. Compared to LLF results, our algorithm produces more natural images but also
generally more contrasted and with a better exposition correction.

We believe that our method could be further improved on two points: �rst, the number of
images to generate should be automatically computed as the smallest integer that avoids non-
enhanced zones1. Second, the fusion weights could be computed more eY ciently: the quality
metrics may not be really useful because most of the time there are only one or two images that
are not clipped for each portion of the input dynamic range; so the fusion weights could be directly
given in the generation process to the image with the higher contrast factor for this range portion.
We did not try this option yet. However, we suspect that it would need for some further tuning to
properly handle transition between images for example.

1 Actually, I did try to solve this problem but because of the speci�c way the simulation process is designed, this
results in a rather complex equation:� � 1=N log N � 1� �

2� , whereN is the number of images,i.e. the unknown,
� > 1 the contrast parameter and� 2 (0; 1] the allowed dynamic range in the input sequence. The problem is that
the enhancement coeY cients are diVerent between two consecutive images and that they themselves depend on the
parameterN that we want to �nd.
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(a) SEF,� = 8 , N tot = 7 (b) SEF,� = 8 , N tot = 5 (c) SEF,� = 8 , N tot = 5

(d) original (e) ACE with� = 8 (f ) MSR on luminance

(g) fast LLF,� = 8 (h) fast LLF,� = 8 (i) fast LLF (tone­mapping)
� = :100, N = 10 � = :250, N = 4 � = � 1, � = :167, N = 6

Figure 8.9: Comparison of SEF (a), (b), (c) with ACE (e) and MSR (f) (with chromaticity preservation, [PSM14]). The
remapping functions used in each SEF result are displayed on the corresponding images. All SEF results use� = 8 .
Image (a) uses� = 1 =3 and N tot = 2 N + 1 = 7 with the smooth clipping; image (b) uses� = 1 =2, N tot =
2N + 1 = 4 with smooth clipping too. Image (c) displays results obtained in Chapter 7, except that we applied the
method to the luminance only for a fairer comparison with the other results – so (c) uses hard clipping in[0; 1], and
sequence generation is symmetric. The respective remapping functions are displayed above the SEF results. The
third row displays results obtained with fast LLF. Images (g) and (h) are a direct outputs of fast LLF whereas image
(i) uses LLF ability to decompose the input in base+detail and Durand and Dorsey's tone­mapping [DD02].
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input 1 input 2 input 3 input 4

Figure 8.10: Input sequence constructed by applying the remapping functions to each image of the original brack­
eted exposure sequence. The parameters used are� =

p
2, N = 2 and � = 1 =2. The remapping functions are

displayed on the top right corner of the �gure. Each column correspond to an image of the original sequence,
and each row to the remapped version of this image: top row increase contrast of dark range values, middle row
increase contrast of middle range values and bottom row increase contrast of high range values. The fused result
is displayed in Figure 8.11

8.5 Application to natural bracketed exposure sequences

In this section, we apply the generation process to each image of a real bracketed exposure se-
quence. First of all, we correct the dynamic expansion artifact of the original method. Then we
show that further improved results can be obtained with a direct application of our method. We
call this algorithmsimulated exposure fusion(SEF).

In the case of an already existing bracketed exposure sequence, strong contrast enhancement
factors are no longer required. Indeed, each region of the input dynamic range is supposed to be
well-exposed in at least one image of the sequence. Hence, unlike the presented methodsimu-
lated exposure fusionthat simulates longer exposition times, we simply want here to improve the
contrast of the already well-exposed parts of the input images to be fused.

As in our simulation-based method, the solution to the dynamic expansion artifact is brought
by the dynamic reduction of the input images. In other words, the application of the remapping
functions allows to both increase local contrast of the result and reduce its dynamic. We shall
see that further local contrast enhancement can be drawn from this speci�c dynamic reduction
strategy by forcing the fused result to �t a reduced range dynamic and applying a �nal stretching
step.

We extended the input sequence by simulating more contrasted images for each input of the
bracketed exposure sequence. We used the remapping functions with the smooth clipping de�ned
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(a) SEF with normalization (b) EF with normalization

Figure 8.11: Comparison of the standard result (b) obtained with exposure fusion [MKR07,MKVR09] with the result
(a) obtained with an “extended” sequence (shown in Figure 8.10). A �nal normalization step has been performed
for both images. We used the “Simplest Color Balance” algorithm [LLM+ 11] which allows a small percentage of
clipping for both white and black values. We �xed this percentage to:5%, so that a maximum of1% of the pix­
els values (a color pixel counts 3 values) is clipped in the displayed results. Our result (a) has more contrast and
saturation than for the Mertenset al.output (b).

in Section8.3with a small contrast parameter, for example� =
p

2 in Figure8.11. To prevent the
dynamic expansion artifact presented in Section7.6, we set the parameter� < 1. This amounted
to reduce the dynamic of the input images.

In Figure8.10we show the extended sequence generated from a four-images sequence (dis-
played in Figure7.6): we generated three images for each input of the sequence with a reduced
dynamic range. The remapping functions are displayed at the bottom left corner of the �gure.
The fused image is compared to the original exposure fusion method in Figure8.11. We used the
Simplest Color Balance(SCB) algorithm [LLM+ 11] which authorizes a small percentage of clipping
for both white and black values. We �xed this percentage to:5%, so that a maximum of1%of the
pixels values (a color pixel counts3values) is clipped in the displayed results. This has the eVect
of reducing the contrast in the standard exposure fusion result because of its dynamic expansion
and can enhance contrast in our result depending on the parameter� . The fused image with SEF
has more local contrast than with EF: for the clouds in the small top window, but also the content
of the shelf on the left.

We did not work with luminance here, because it is unclear how to handle the color coeY cients
of the diVerent input images. The parameters for exposure fusion were �xed to! c = ! s = ! e =
1: we equally weight the contrast, saturation and well-exposedness measures.

We present in Figure8.12(a) and (b) two further examples of application of the method. An
input sequence is displayed on the top row; the EF result is displayed in (c). It was normalized with
SCB as for the previous example, as well as the SEF fused results. The �rst one (a) was obtained
with the same remapping function as in Figure8.11. The second result (b) did not enhance contrast
in the input images but simply (and greatly) reduced their dynamic. The fused result got then a
small dynamic range that was �nally extended by the normalization step. Both methods better
enhance the local contrast than EF. The �rst result (a) looks slightly better exposed because the
brightest picture of the input sequence contains dark parts that are enhanced by the contrast factor.
On the other hand, the second result (b) got more local contrast because the allowed dynamic
range of the input sequence was smaller – hence the �nal stretching was larger.

The Figure8.13shows that despite still present, the improvement brought by our method is
less visible for sequences with more images. Indeed, among the generated images, a lot of them
remain unused, because they do not contain relevant information. Moreover, the application of
SEF on such sequences rapidly yields to very long sequences (20images in this example), which is

2Images copyright owner: Jacques JoVre. http://www.hdrsoft.com/examples2.html
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input 1 input 2 input 3

(a) SEF with normalization (b) SEF with normalization (c) EF with normalization

Figure 8.12: Second example2 of application of the generative functions to a real bracketed exposure sequence.
The three input images are displayed on the top row. The bottom row shows the result of simulated exposure fu­
sion (SEF) for two sets of parameters, in (a) and (b) (the remapping function are displayed above the corresponding
result). The result obtained with the original method of Mertenset al. is displayed in (c). Each output image has
been normalized using the method described in Figure 8.11. The parameters used in (a) are� =

p
2, N = 2 and

� = 1 =2; in (b) � = 1 ,N = 2 and � = 1 =3. The exposure fusion parameters are the same for the three images:
! c = ! s = ! e = 1 . The SEF results have more contrast than with EF.
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input 1 input 2 input 3 input 4 input 5

(a) SEF with normalization (b) SEF with normalization (c) EF with normalization

Figure 8.13: Application of SEF to a sequence with �ve images3 , displayed on the top row. We show two different
results of SEF in (a) and (b) and the standard EF result in (c). The remapping functions used in (a) and (b) are
displayed above the respective results. The EF parameters are! c = ! s = ! e = 1 ; the parameters for SEF are
� = 3 , � = 1 =3 and N tot = 5 in (a),� = 1 , � = 1 =4 and N tot = 4 in (b). The SEF results are better than for EF, but
the improvement for this sequence is smaller than it would be for a shorter one.

an inconvenient for large images.
We believe that this method could be further improved by a wiser generation of the extended

sequence, by taking into account the relevant information of each image. This may allow to reduce
the length of the simulated sequence and thus the eY ciency of the algorithm.

3Images owner is unknown. Sequence can be found at http://www.hdrsoft.com/examples2.html
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9 Local Laplacian �lters and connection
to other operators

In Chapter7and Chapter8we described the exposure fusion method and proposed a frame-
work to extend it to the single image case through the generation of a simulated bracketed
exposure sequence. This fusion algorithm is based upon the manipulation of Laplacian pyra-
mids, and has demonstrated the usefulness of such a multi-scale image representation. We
focus in this chapter on the local Laplacian �lters. They use the same Laplacian pyramid but
in the context of multi-scale local contrast manipulation.

The local Laplacian �lters have originally been proposed in2011by Paris, HasinoV and Kautz
[PHK11]. A fast version was proposed the same year by Aubry, Paris, HasinoV, Kautz and
Durand [APH+ 11]. The initial conference papers were extended to journal papers in2014for
the Aubryet al. fast local Laplacian �lters [APH+ 14] and in 2015for the Pariset al. original
local Laplacian �lters [PHK15]. Local Laplacian �lters could roughly be explained either as
a single image exposure fusion algorithm similar to the method we described in Chapter8,
or as a multi-scale unnormalized bilateral �lter. The latter interpretation was given by Aubry
et al. in their analysis of the �lter, where they made the link with the bilateral �lter and the
multi-scale version of the anisotropic diVusion [Ela02,BC04].

The local Laplacian �lter (LLF) is versatile and can be used for a wide variety of contrast
manipulations tasks, ranging from edge-aware smoothing to local contrast enhancement with
dynamic reduction. Unlike most �lters, LLF constructs the Laplacian pyramid of the output
image; a �nal operationcollapsesthe pyramid and builds the �ltered image. Each Laplacian
coeY cient is computed independently using a dedicatedremapping function, which shape is
chosen in function of the application. The fast version (FLL) uses the Durand-Dorsey [DD02]
slicing strategy. It greatly speeds up the execution by computing only a reduced number of
remapped images.

In this chapter, we �rst expound the local Laplacian �lters and their fast approximation. Then,
we show their strong connection with the exposure fusion method [MKR07, MKVR09]. We
shall see that a fast local Laplacian �lter can be computed using the exposure fusion frame-
work with very little diVerence in the �nal result. Finally, we describe the artifacts of these
�lters. Indeed, although they have proven to be one of the best suited �lters for base plus
detail decomposition for contrast manipulation, the local Laplacian �lters have some draw-
backs, the major ones being a loss of translation-invariance and luminance halos.

9.1 The local Laplacian �lter

We describe in this section the Local Laplacian �lters (LLF). Two pseudo-codes are given: the
O(N 2) version, and its accelerated version withO(N logN ) complexity, both proposed by Paris
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et al.[PHK11, PHK15]. The next section will present the fasterO(sN ) version (s is the number
of slices) proposed by Aubryet al.[APH+ 11, APH+ 14]. This one is called the fast local Laplacian
�lter (FLL). It uses the Durand, Pariset al.[DD02,PD06,PD09,CPD07] slicing method.

In its original version, the local Laplacian �lter modi�es (almost) independently each pixel of
the input image by constructing the “appropriate” Laplacian pyramid.

Let us denote byx = ( x1; x2) the position of a pixel in the image. The Gaussian and Lapla-
cian pyramids of an imageu at pixelx and scalel will be respectively writtenGpyrf u; lg(x) and
Lpyrf u; lg(x). The Burtet al.[BA83], Gaussian pyramid ofu is constructed by recursively down-
sampling the image by factors of two until its size is only one pixel. The last scale, the coarser one,
will be denoted bylmax . The Laplacian pyramid at scalel corresponds to the diVerence between
two scalesl andl + 1 of the Gaussian pyramid, the second one being upsampled by a factor two.
The last scale of the Laplacian pyramid is called the residual. It simply is the coarsest scale of the
Gaussian pyramid. Formally,

Gpyrf u; lg(x) =
�

u(x) if l = 0
Downsample

�
Gpyrf u; l � 1g

�
(x) if l > 0

(9.1)

Lpyrf u; lg(x) =
�

Gpyrf u; lg(x) � Upsample
�
Gpyrf u; l + 1g

�
(x) if l < l max

Gpyrf u; lg(x) if l = lmax
(9.2)

where theDownsampleand Upsampleoperators are de�ned in Algorithm32and Algorithm33,
respectively. The �lterK used for downsampling and upsampling is the one de�ned by Burtet
al.in 1983[BA83]:

k = [ :05; :25; :4; :25; :05] (in 1D)

K = kTk (in 2D). (9.3)

The input image can be recovered by “collapsing” the Laplacian pyramid, that is, recursively up-
sampling and adding the Laplacian coeY cients, starting from the residual. Indeed,Gpyrf u; lg =
Lpyrf u; lg + Upsample

�
Gpyrf u; l + 1g

�
andGpyrf u; 0g = u. TheCollapseoperator is presented

in Algorithm 34. In order to handle images with arbitrary height and width,Upsampleadds a line
and/or a column when needed so that the height and width of the upsampled image are the same
than before downsampling (parameters oddh and oddw at line9). When performing the convo-
lution in the downsampling procedure, the borders are replicated. In the upsampling procedure,
border handling is made explicit at lines4 and9.

Algorithm 32: Downsample
input : imageu
output: v the downsampled image

1 H  height ofu
2 W  width of u
3 K  Burt and Adelson's kernel de�ned in (9.3)
4 �u  u � K // convolve the image

5 foreachpixel(x1; x2); x1 2 f 1; : : : ; bH=2c � 1g; x2 2 f 1; : : : ; bW=2c � 1g do
6 v(x1; x2)  �u(2x1; 2x2) // re-sample

7 return v
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Algorithm 33: Upsample
input : imageu of size(H; W )
input : parameters oddh, oddw

output: �u" the upsampled image of size(2H + oddh; 2W + oddw).
1 H  height ofu
2 W  width of u
3 K  Burt and Adelson's kernel de�ned in (9.3)
4 upad  increase size ofu by replicating its �rst and last lines and columns

5 u"
pad  initialize with zeros an image of size(H 0; W 0) = (2 H + 4 ; 2W + 4)

6 foreachpixel(x1; x2) with x1 2 f 0; : : : ; H + 1g andx2 2 f 1; : : : ; W + 1g do
7 u"

pad(2x1; 2x2)  4 � upad(x1; x2) // factor 4 for normalization

8 �u"
pad  u"

pad � K // interpolate with the same filter K

9 �u"  remove2�rst and (2 � oddh) last lines and2�rst and (2 � oddw) last columns

from �u"
pad // remove padding

Algorithm 34: Collapse
input : Laplacian pyramidLpyrf ug
output: imageu

1 ulmax  Lpyrf u; lmaxg // residual

2 for scalel fromlmax � 1 to 0 do
3 oddh  height(Lpyrf u; lg) � 2 � height(ul+1 )
4 oddw  width(Lpyrf u; lg) � 2 � width(ul+1 )
5 ul  Lpyrf u; lg + Upsample

�
ul+1 ; oddh; oddw

�

6 return u0
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Figure 9.1: Simplistic illustration of the principle used in LLF: on the top line, a one­dimensional signal with an
edge, and below two scales of its (rescaled) Laplacian pyramid. On the top left is the original image and in the
top middle are the two remapped versions. Below them, two scales of their (rescaled) Laplacian pyramid (middle
and bottom rows). The right hand side of the illustration is obtained by merging the “non­clipped” parts of the
Laplacian coef�cients of the remapped signals (middle columns), and the �nal output (top right) after collapsing
the Laplacian pyramid. Figure reproduced from [PHK15].

The local Laplacian �lter constructs directly the Laplacian pyramid of the �nal imageLpyr
�

LLFf ug
	

.
Its result is then obtained by collapsing the pyramid: LLFf ug = Collapse

�
Lpyr

�
LLFf ug

	�
.

The Laplacian coeY cients contain a space and scale-localized information. This means that
a “good” Laplacian coeY cient is obtained when the input image has the desired properties at the
corresponding space location and scale. The LLF method makes the most of this observation by
computing each Laplacian coeY cient of the �nal pyramid from an improved version of the input
image – improved so that it has the desired properties at the particular space and scale localization
of the Laplacian coeY cient. In other words, a modi�ed version of the input image is computed for
each output Laplacian coeY cient, and this modi�cation depends both on the spatial position and
the scale of the concerned coeY cient. Then the “good” coeY cients are copied from the Laplacian
pyramid of the corresponding modi�ed input into the output Laplacian pyramid. This process in
described in Algorithm35.

Figure9.1gives a visual explanation in a simpli�ed case. An input1D signal is given on the
top left; along with two scales of its Laplacian pyramid (L 0 andL 1, bottom left). Two modi�ed
versions of this input signal (with two scales of their Laplacian pyramids) are given in the center
columns. In this illustration, we want to reduce the edge amplitude, thus each pixel on the left
of the edge has the same modi�ed version of the input signal : unmodi�ed on the left part but
clipped on the right one (in green); and each pixel on the right has the same remapped signal:
unmodi�ed on the right, clipped on the left (in purple). Then, the “good” coeY cients from the
green and purple pyramids are copied in the output Laplacian pyramid (bottom right) and the
�nal signal (top right) is obtained by collapsing this pyramid. Figure9.3gives a visual explanation
in the2D case.

The modi�ed versions are obtained through the application of a “remapping function”, on
which the user has full control. This remapping function gives, in the spatial and scale support
of the considered Laplacian coeY cient, the properties that one wants to obtain in the �nal image,
i.e.edge reduction or enhancement, detail reduction or enhancement. We call this remapping
function r () . S. Pariset al.[PHK11,PHK15] proposed

r (t) =
�

g + sign(t � g)� r (jt � gj=� r ) � if jt � gj � � r

g + sign(t � g)( � (jt � gj � � r ) + � r ) if jt � gj > � r
(9.4)

where� r distinguishes between edges from detail,� is a parameter for smoothing (� > 1) or am-
plifying (� < 1) the details, and� a parameter to decrease (� < 1) or increase (� > 1) the height
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Algorithm 35: Local Laplacian �lters (LLF).O(N 2) algorithm.
input : u the input image
input : r the remapping function
output: LLFf ug

1 Compute the Gaussian pyramidGpyrf ug of u
2 Create an empty Laplacian pyramidLpyrf ~ug // initialization

3 foreachpixelx and scalel do
4 g = Gpyrf u; lg(x)
5 u0 = r (u; g) // remap the input image in function of g

6 Compute the Laplacian pyramidLpyrf u0g of u0

7 Lpyrf ~u; lg(x)  Lpyrf u0; lg(x) // update output Laplacian pyramid

8 LLFf ug  Collapse
�

Lpyrf ~ug
	

Figure 9.2: Figure and legend reproduced from [PHK15]. Family of point­wise functions for edge­aware manipu­
lation (. . . ). The parameters� and � control how detail and tone are processed respectively. To compute a given
Laplacian coef�cient in the output, the original image is �ltered point­wise using a nonlinear functionr (t) of the
form shown. This remapping function is parameterized by the Gaussian pyramid coef�cient g, describing the local
image content, and a threshold� r used to distinguish �ne details (red) from larger edges (blue).

of edges. Finally,g is the �xed point ofr and is used along with� r to separate the �ne variations
from the large ones, which are treated diVerently. Pixels which intensity is further than� r from
the reference intensityg are considered as part of the large variations, while the others belong to
the �ne variations. The authors call this parameterg to represent the Gaussian pyramid value
corresponding to the same position as the current Laplacian coeY cient. The remapping functions
one can obtain with diVerent parameters are displayed in Figure9.2.

In this method, many pixels are remapped and Laplacian coeY cients computed, but not used.
Aware of this drawback, the authors [PHK11,PHK15] presented a way to accelerate the algorithm by
avoiding the computation of remapped pixels and Laplacian coeY cients that would not be used.
It simply consists in limiting the considered neighborhood to the pixels that have an in�uence
on the current Laplacian coeY cient. The pseudo-code of this method is given in Algorithm36;
the operations performed on sub-regions only of the input images are marked in red. The com-
plexity of this method isO(N logN ) whereN is the number of pixels. Pariset al.also suggest
to further reduce the computational cost of their method by remapping a downsampled version
of the input image for coarse scales. We do not describe this version here. We shall however
describe in the following the fast approximation of LLF published by M. Aubryet al.in 2011and
2014[APH+ 11,APH+ 14].
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Figure 9.3: Figure and legend reproduced from [PHK15]. “Overview of the basic idea of our approach. For each
pixel in the Gaussian pyramid of the input (red dot), we look up its valueg. Based ong, we remap the input image
using a point­ wise function, build a Laplacian pyramid from this intermediate result, then copy the appropriate
pixel into the output Laplacian pyramid. This process is repeated for each pixel over all scales until the output
pyramid is �lled, which is then collapsed to give the �nal result. For more ef�cient computation, only parts of the
intermediate pyramid need to be generated.”

Algorithm 36: Local Laplcian Filters (LLF),O(N logN ) version.
input : u the input image
input : r the remapping function
output: LLFf ug

1 Compute the Gaussian pyramidGpyrf ug of u
2 Create an empty Laplacian pyramidLpyrf ~ug // initialization

3 foreachcoeYcient at positionx and scalel do
4 g  Gpyrf u; lg(x) // center of remapping function

5 Determine sub-region! of u needed to evaluateLpyrf ~u; lg(x)
6 u!  Crop(u; ! )
7 u0

!  r (u! ; g) // remap the sub-region only

8 Compute the Laplacian pyramidLpyrf u0
! g of u0

!
9 Lpyrf ~u; lg(x)  Lpyrf u0

! ; lg(x) // update output pyramid

10 LLFf ug  Collapse
�
Lpyrf ~ug

�
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9.2 Fast approximation of the local Laplacian �lters using the slicing
method

Right after the publication of the Local Laplacian Filters in2011, M. Aubry, F. Durand and the
authors of LLF published the “Fast Local Laplacian Filers”, an approximation of FLL that allows
acceleration “on the order of50”. Furthermore, they show the relation with anisotropic diVusion
and the bilateral �lter, and introduce theunnormalized bilatearl �lterthat we described in Sec-
tion 4.4.

The fast version speeds up the execution by computing onlyS remapped images (whereS is
about10) instead of computing a remapped image for each diVerent output Laplacian coeY cient.
The authors recommend to take a number of slices equals to (1+ dynamic/� r ). This number of
slices is an important parameter for the approximation. Indeed, with a too reduced number of
slices, artifacts like luminance halos can appear and notably alter the result. The pseudo-code of
this fast method is given in Algorithm37.

Algorithm 37: Fast Local Laplacian �lters (FLL)
input : imageu
input : remapping functionr
input : number of slicesS
output: image FLLf ug

1 Compute the Gaussian pyramidGpyrf ug of the inputu
2 Regularly sample the intensity range withS valuesf 
 1; 
 2; 
 3; :::; 
 Sg
3 foreachintensity sample
 i do
4 u0

i = r (u; 
 i ) // remap u in function of 
 i

5 Compute Laplacian pyramidLpyrf u0
i g

6 foreachpyramid coeYcient at positionx and scalel do
7 g  Gpyrf u; lg(x) // same coefficient but in the Gaussian pyr.

8 Find i such that
 i and
 i +1 are the closest intensity samples fromg
9 Computea such thatg = (1 � a)
 i + a
 i +1

// Linearly interpolate the output Laplacian coefficient from the precomputed

pyramids

10 Lpyrf ~u; lg(x)  (1 � a)Lpyrf u0
i ; lg(x) + aLpyrf u0

i +1 ; lg(x)

11 FLLf ug  Collapse
�
Lpyrf ~ug

�

In Aubry et al.[APH+ 11, APH+ 14], the proposed remapping function is diVerent from Paris
et al.[PHK11,PHK15]. They use a Gaussian-based one, thus closer to the bilateral �lter:

f (t) = t + � (t � g) exp� (t � g)2=2� 2
r : (9.5)

where� and � r are two parameters: the �rst one allows to choose between local contrast en-
hancement (� > 0) and edge-aware smoothing (� = � 1), the second one makes the distinction
between small variations (which amplitude is below� r ) and large ones (amplitude above� r ).
More generally it can be writtenf (t) = t + � (t � g)f 0(t � g) wheref 0 is a continuous function.
As the authors say, it includes the functionsr () of Pariset al.with f 0(t � g) = ( t � r (t))=(t � g).
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9.3 Similarities and diVerences between local Laplacian �lter and ex-
posure fusion

The fast LLF (FLL) is actually very similar to the exposure fusion (EF, see Section7.3). Although
it does not use as input a sequence of images, it actually generates several images from the input,
and merges diVerent pieces of the latter using Laplacian pyramid decompositions. More precisely,
FLL needs no quality measurement, because it knows which intensity band (i.e.“slice”, or “layer”)
has been corrected (with the appropriate contrast modi�cation function) and therefore must be
retained for the �nal image. As in EF, LLF and FLL construct the Laplacian pyramid of the �nal
image. A signi�cant diVerence, however, is that local Laplacian �lters recompute the weight maps
at each scale, while EF calculates them only at the �nest scale and then subsamples them.

We review exposure fusion (EF) in Chapter7. We have seen that the output Laplacian pyra-
mid Lpyrf ~uEFg is a weighted combination of the Laplacian pyramids of theK imagesuk of the
bracketed exposure input sequence. The normalized weight map associated to each input image
is denotedcWk . With these notations, EF can be written

Lpyrf ~uEF; lg(x) =
KX

k=1

Gpyrf cWk ; lg(x)Lpyrf uk ; lg(x): (9.6)

The fused image EFf ug is �nally obtained by collapsing the pyramidLpyrf ~uEFg. Observe that the
fast local Laplacian algorithm can be written in pretty much the same way: Line10in Algorithm 37
reads

Lpyrf ~uFLL; lg(x)  (1 � a)Lpyrf u0
i ; lg(x) + aLpyrf u0

i +1 ; lg(x); (9.7)

where FLLf ug = Collapse(Lpyrf ~uFLLg). The interpolation weight mapa in Equation (9.7) de-
pends onGpyrf u; lg(x), as for the positioni of the blended images in the pre-computed sequence.
Although it is not equivalent, it plays the same role asGpyrf cWkg in Equation (9.6). These interpo-
lation weights can be pre-computed too. DenotingA i the interpolation weight pyramid associated
with the remapped imageu0

i (according to the intensity sample
 i ), we have

Lpyrf ~uFLL; lg(x) =
SX

i =1

A i (l; x)Lpyrf u0
i ; lg(x): (9.8)

Hence, the structures of FLL and EF are similar. Both blend a sequence of images according to
some weights. But, unlike EF, the local Laplacian �lters build their own sequence of images from
a single one, like in the extension of EF proposed in Chapter7. Furthermore, the computation
of the weights is diVerent: in EF the weights are computed from quality metrics, and at the �nest
scale. Then they are downsampled in a Gaussian pyramid. In FLL however, weights are computed
at each scale, henceA i (l; x) 6= Gpyrf A i (0); lg(x).

In Figure9.4 we examine the diVerence between �ltering results of EF and FLL's weighting
methods. Put another way, we try to reproduce the output of FLL with EF. In order to do so,
we generatedK images with the remapping functions of FLL and fused them with weights con-
structed as in FLL. We shall denote this modi�ed EF version by~EF. In EF the last scale is processed,
so we processed it in LLF too. We denote this version~LLF. Finally the only diVerence between~EF
and ~LLF are the weights in the multi-scale blending. The resulting processed images are visually
very similar, but not identical. There are more low frequency halos in the FLL result. We measured
for this experiment apsnr (peak signal-to-noise ratio) of40dB between both results, meaning that
they are very similar indeed.
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(a) original (b)~EFf ug (c):5 + 3 � (u � ~EFf ug)

(d) ~FLLf ug (e):5 + 3 � (u � ~FLLf ug)

Figure 9.4: First row: original image (a), base layer (b) with the modi�ed exposure fusion (~EF) and corresponding
detail layer (c). Second row: base (d) and detail (e) layers obtained with the modi�ed fast local Laplacian �lters
( ~FLL). The range parameter used is� r = 25=255. More low­frequency halos are visible in the FLL output. Overall,
the difference between both results is minor.

9.4 Artifacts in the local Laplacian �lters

The local Laplacian �lters present several problems that we have attempted to correct. On the
one hand, we have seen that the Gaussian pyramid introduces artefacts, in the form of a rebound
near the contours or a slight change in the average intensity of the image. These are in fact two
symptoms of the same problem: the sub-sampling introduces an approximation, and the sampled
values are used to guide the contrast corrections applied to the image. The approximations are
then apparent in the �nal image in the form of asymmetries and “rebounds”. The scale-space
version of LLF that we introduce in the sequel solves this problem. On the other hand, depending
on the contrast correction function used, LLF produces either a slight halo of luminance or a
little reinforcement of the contours. Our proposal to work in a Gaussian scale-space allows us to
use diVerent “oracles”, allowing to limit the luminance halo. Moreover, this new interpretation
of the �lter makes it possible to propose a compact formula. We shall introduce this scale-space
interpretation and the compact formula in the Chapter10.

9.4.1 A translation-variant �lter

We realized the following experiment: a test-pattern was constructed using a single line repeated
several times to make it two-dimensional. There is no variation in the vertical direction. We name
this test-pattern #0. This test-pattern was then shifted by one pixel to the right – we extend the
plateau on the left part and remove a column on the right, so that both have the same size. We
name this test-pattern #1. Figure9.5displays these test-pattern in blue in the plots (b) and (c).
We �ltered these test-pattern with LLF and superimposed in red the result on the input image.
The remapping function used in LLF is displayed in Figure9.5(a); it preserves the local contrast
but reduces the edges' amplitude (dynamic compression). Noticeably, the red lines in (b) and (c)
diVer. Hence, the �lter is not translation invariant.

But that's not all: two more observations can be made from this experiment. First, although
the input test-pattern #0 is perfectly symmetric, its �ltered result is not: the red line in plot (a)
has a negative high-frequency bounce on the right hand side of the edge, whereas on the left
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(a) remapping function (b) test­pattern #1 (c) test­pattern #1 plus shift of
the edge by 1 pixel to the right

Figure 9.5: Loss of translation invariance with LLF. The (a) remapping function preserves the local contrast but
reduces the edges amplitude. Test­pattern #1: The spurious bounce didn't disappear. In illustration (b), I the edge
was shifted by one pixel on the right, and the position of the bounce changed.

hand side the edge is slightly smoothed. The same asymmetry, yet inverted, appears in plot (b).
Second, there is a shift in the mean value of the results. Indeed, both �ltered signals have their
average intensity higher than the input test-patterns. In fact, both of these artifacts are additional
symptoms of the loss of translation invariance caused by the downsampling.

In the local Laplacian �lters, the output Laplacian coeY cients are computed from remapped
images, and this remapping depends on the valueGpyrf u; lg(x) (for the Laplacian coeY cient
Lpyrf ~u; lg(x)). Because the pyramid is not translation-invariant, the values used in the remap-
ping can change severely, even for a very small modi�cation of the input image,e.g.experiment
in Figure9.4. Moreover, when an edge or other structure is not aligned with the sampling grid,
which is the more common situation, this results in its asymmetric deformation. In our experi-
ment, this creates at �ne scales the high-frequency bounce close to the edge, from one side or the
other depending on the position of the edge relatively to the sampling grid. At coarser scales, the
same artifact creates the shift in the mean value of the result compared to the input. In short, the
only diVerence between both observed artifacts is a diVerence of scale.

9.4.2 Staircase eVect and halo

The Local Laplacian Filter suVers from the staircase eVect. We presented this artifact in Chapter5.
This eVect is particularly visible in the iterated bilateral �lter, where it creates a staircase in the
intensities. The same eVect creates an “plateau expansion”, that is also known as an oversharpening
artifact. For not perfectly sharp edges, both sides are expanded by the �lter, resulting in a sharper
transition than in the original image. In a way, this is the contrary of the halo artifact. Indeed, the
halo comes from an averaging of pixels from both sides of an edge ; whereas the oversharpening
arises when the �lter chooses to replace the edge's transition values by an average of values that all
belong to one side or the other, therefore expanding the plateaus.

Compared to the bilateral �lter, this artifact in LLF is seriously reduced, to such an extent
that it is barely noticeable. However, it still exists. More importantly, we frequently observed a
luminance halo. This halo is visible for example in the clouds, and we called it the “black clouds
eVect”. The authors themselves discuss this artefact in their article [PHK11], [PHK15]. As we shall
explain in the upcoming chapter, this phenomenon is due to the remapping function's reference
g, because it is set to be a blurred version of the input.

Staircasing measurementsWe used a unique test-pattern for each edge width (i.e.the smooth-
ness of the edge). We �nally combined all the test-patterns to get a result (an image) that allows
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(a) BF (b) BFR

(c) SLF (d) ESLF

Figure 9.6: Each �gure above is the difference between the reference and the �ltered version of the test­pattern,
ampli�ed with a factor 4 for visualization. Diff= :5 + 4 � (I ref � I �ltered ). We recall the results of the Bilateral Filter
(BF) and the Bilateral Filter with regression in the �rst row. In the second row, we show the results for our two Local
Laplacian Filters. Parameters:� r = 0 :20;nbscales= 6 (max� s = 16);nbsamples = 64 (and last scale is not processed).
Test­pattern parameters: standard­deviations for blurring go from 0 to 30 pixels.

to see the evolution of the staircasing as a function of the edge smoothness. To reword, each line
observed in the �nal image was extracted from a test-pattern with a1D edge (made with an1D
horizontal signal repeated along the vertical axis). Thus, we �ltered as many test-patterns as the
number of lines in the displayed images.

For a better comparison between ESLF and the bilateral �lters, we used the following remap-
ping functions:

�
~r1(t) = t � t expf� t2=(2� 2

R )g
~r2(t) = ~r1(t)

(9.9)

which have a closer form to the Bilateral range kernel and allow to use the same parameter� r .
We give in Figure9.6 a preview of the results obtained with the bilateral �lter (BF), the bilateral
�lter with regression (BFR) as proposed by Buadeset al.[BCM06], the scale-space local Laplacian
�lters (SLF) and the extended scale-space local Laplacian �lters (ESLF). The last two �lters are
introduced in the upcoming chapter.

Interpretation The test-pattern used in these experiments is black on the left side and white on
the right side. The transition is sharp in the test-pattern used for the top lines of the displayed
images, and is progressively smoothed with a Gaussian kernel to get the following lines. These
images display the diVerence between the input and the �ltered image,i.e.the detail layer. A dark
area on the left and a light area on the right are the evidence of a halo. On the contrary, a light zone
on the left and a dark one on the right are the evidence of a staircase eVect. From the top to the
bottom, we observe the proportion of each artifact for smooth edges of increasing width. What
appears �rst is the strong staircase eVect of the bilateral �lter, especially for thin edges. On the
other hand, this is the �lter with the faintest halo. Concerning the bilateral �lter with regression
(BFR) the staircase eVect is greatly reduced but does not disappear. The halo is slightly increased
relatively to the standard BF. While ESLF better preserves a step-edge (see the uppermost line of
the test-pattern) and slightly diminish the halo, it increases the staircase eVect compared to SLF
(compare Figure9.6 (c) and (d)). We shall explain this in the next chapter.
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(a)~r 1 (b) ~r 2 (c)nbscales= 3 (d)nbscales= 5 (e)nbscales= 7

(f ) ~r 1 (g) ~r 2 (h)nbscales= 3 (i)nbscales= 5 (j) nbscales= 7

Figure 9.7: Some �ltering results by SLF and ESLF. The �rst line shows our result for edge­reduction. The remapping
function ~r 1 is used to get the oracle for the second �ltering step with ESLF, which uses the remapping function~r 2 .
The bottom row is our result for detail­reduction. In our experiment, there is no detail, the �lter is then supposed
to let the input image unmodi�ed. ESLF is plotted in orange, while SLF appears in red. Our modi�cation succeeds
in removing artifacts we observed before (see Section� 9.4).

9.4.3 Oscillations

Figure9.7shows some �ltering results by SLF and ESLF. The line of ESLFf ug is plotted in orange,
while SLFf ug appears in red; the input test-pattern is plotted in blue. Our interest here is in the
spurious oscillations that are visible near the edge in plots (d), (h), (i) and (j). For the last three
ones indeed, the remapping function used is designed for local contrast reduction. So why is the
�ltered result diVerent from the input? In a few words, the edge in this test-pattern is considered
as a detail in some pixels during the �ltering process. Indeed, the distinction between base and
detail variations is made according to the reference intensityg in the remapping function: we have
seen that in Section9.1of this chapter. Since this “guide”g is nothing but a blurred version of the
input image (Gaussian pyramid), at edges,g is not close to the input image anymore. Therefore,
when getting closer to the edge the image is considered as detail before, by getting even closer to
the edge the interpretation changes to base, creating those spurious oscillations.
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10 Compact formula for the local Lapla­
cian �lter and its scale­space exten­
sion

In the previous chapter, we presented the local Laplacian �lter (LLF) and scanned its struc-
tural analogy with exposure fusion [MKR07, MKVR09]. We showed that despite some ex-
cellent results, LLF suVers from three artifacts, namely, its lack of translation-invariance, its
luminance halos and a slight staircase eVect. The lack of translation-invariance is particularly
annoying because it creates irregularities, small bounces and a mean-shift. Fortunately, all of
these issues will be solved in this chapter by ourscale-space local Laplacian �lter.

We start by dissecting the local Laplacian �lter and proposing a compact formula by refor-
mulating the local Laplacian �lter in a scale-space setting. This amounts to removing the
downsampling and upsampling steps of the original �lter. Besides giving a clean mathemat-
ical description of the �lter, a welcomed outcome of this re-interpretation of the �lter is the
reinstatement of the translation invariance property which LLF lacked. Furthermore, this
interpretation puts in evidence the implicit guide used in LLF; this guide, that we shall call
oracle, can then be replaced by the result of an arbitrary previous �lter. We therefore explore
the in�uence of the oracle in this new framework. As we shall see, edge-aware smoothing �l-
ters used as oracle reduce the luminance halo but increase the staircase eVect, while a simple
Gaussian �ltered oracle (as used in the original �lter) has no staircase eVect but sometimes
visible luminance halos. We �nally compare the results of this extended scale-space local
Laplacian �lter with the standard local Laplacian �lter in the context of base plus detail image
decomposition.

10.1 The scale-space point of view

Our goal is to give a clean interpretation of the local Laplacian �lters by reformulating them in a
Gaussian a scale-space rather than in a Gaussian pyramid. This amounts to removing the down-
sampling and upsampling steps in the local Laplacian �lters. One should remark that the Gaussian
pyramid is not identical to a downsampled Gaussian scale-space. Indeed, the upsampling step (in-
terpolation) is not a convolution because it gives a diVerent kernel at even and odd positions. In
fact in an image this gives four diVerent �lters, one for each con�guration of even and odd lines
and columns. We can get a representation of the Gaussian pyramid �lters at scale1 for the diVer-
ent positions by successively downsampling and upsampling a Kronecker delta. Let� (x; y) be a

207



Figure 10.1: Kernels at scale1 in the Gaussian scale­space (blue line) and the Gaussian pyramid. There are four
different kernels, one for each different con�guration of even and odd line and column. The shift between the
yellow and green kernels with respect to the other ones is for visualization purposes only.

Kronecker delta at position(x; y). The Gaussian pyramid kernel is

kGpyr(x; y) = Upsample(Downsample(� (x; y))) : (10.1)

The downsampling and upsampling procedures are described in Algorithm32and Algorithm33;
they use Burt and Adelson's [BA83] �lter f = [ :05; :25; :4; :25; :05]. On the other hand, the kernel
in the Gaussian scale-space is the convolution of the same Kronecker delta in the Fourier domain
with � = 1 . We display in Figure10.1the kernelkGpyr in the four possible con�gurations and
compare it to the unique �lter in the Gaussian scale-space.

The Gaussian scale-spaceGssf ug of the input imageu is de�ned as

Gssf ug(x; l ) =
�

u(x) if l = 0�
u � G� l

�
(x) if l > 0

; (10.2)

where� denotes the convolution,l is the scale (or level) andG� l is a normalized Gaussian kernel
with standard deviation� l . The total number of levels in the discrete Gaussian and Laplacian
scale-space, taking into account the �nest one, is thenlmax + 1 . We use standard deviations
powers of two:� l = 2 l � 1� ref and � ref = 1 . The Laplacian scale-space is the diVerence between
two consecutive scales of the Gaussian scale-space. Its last scale, the residual, is the same as the
Gaussian scale-space:

Lssf ug(x; l ) =
�

Gssf ug(x; l ) � Gssf ug(x; l + 1) if l < l max

Gssf ug(x; l ) if l = lmax
: (10.3)

For the sake of simplicity in the upcoming developments, letG0 be the Dirac mass� 0. This way,
the notationGssf ug(x; l ) =

�
G� l � u

�
(x) is true in general.

In the same way as for the Laplacian pyramid, the input image can be recomposed from its
Laplacian scale-space by collapsing it. In the scale-space case, it simply amounts to summing all
levels:

u(x) =
lmaxX

l=0

Lssf ug(x; l ): (10.4)

Pseudo-codes

We now present the pseudo-code of the exact and fast versions of the scale-space local Laplacian
�lters. Indeed, the �lter bene�ts from the same fast approximation as the standard LLF (slicing).
However, the complexity and the memory consumption are higher with this �lter, because in the
scale space each scale has the same size as the highest resolution image (whereas the sub-sampling
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process in the Gaussian Pyramid allows to save time and memory).

In Algorithm 38we present the exact version of the scale-space local Laplacian �lter. The
only diVerence with the exact version (see Algorithm35) of LLF is the absence of down and up-
sampling because of the Gaussian scale-space. Algorithm40 describes how this scale-space is
computed. The operation at line4 is optional but allows to reduce the complexity fromO(N 2)
to O(N log(N )) with N the number of pixels. This technique is proposed by Pariset al.[PHK11,
PHK15]. At line 5the remapping is pixel-wise.

The fast approximation of SLF is described in Algorithm39. Likewise, this is an adaptation
of the Aubryet al. method (which pseudo-code is given in Algorithm37) where we replace the
Gaussian and Laplacian pyramids by scale-spaces. We recall that this fast approximation relies on
the computation of the exact result of the �lter for only a reduced set of samples of the intensity
range. The obtained images are calledlayers(a layer is associated to each intensity sample). Finally,
each pixel which intensity does not correspond to any sample is interpolated between the two
closest layers (i.e. the two layers which corresponding intensities are the closest to the current
pixels' intensity).

Operations at lines5, 8, 9, 10and 12are performed pixel-wise. This fast algorithm has an
additional parameterS. As advised by Aubryet al.[APH+ 11,APH+ 14], one can take� r as interval
between two intensity samples, that is,S = dD=� r e+ 1 whered:e is the closest superior integer
operator,D the dynamic range and� r the range parameter, for remapping function~r (t) = t +
�tG � r (t).

The number of scales used is the maximum possible in the Gaussian pyramid sense. In the
Gaussian (dyadic) pyramid, the last levellmax is attained when whether the height or the width of
the image is1 pixel. That is,lmax is such thatdmin (lmax ) = 1 with

dmin (l ) = ddmin (l � 1)=2e; (10.5)

with dmin (0) = min f height(u); width(u)g. We kept this de�nition in our scale-space method.
Following the implementation provided by the authors of the original LLF and of the fast version
FLL, the residual is not modi�ed.

Algorithm 38: Scale-space Local Laplacian Filter
input : imageu
input : remapping function~r
output: �ltered image SLFf ug

1 Compute the Gaussian scale-spaceGssf ug of u // Algorithm 40

2 foreachcoeYcient at positionx and scalel do
// Get Gaussian scale-space value for the remapping function

3 g  Gssf ug(x; l )
4 Determine sub-imagev of u needed to evaluateLssf vremapg(x; l )
5 vremap  ~r (v � g) // apply remapping function

6 Compute Laplacian scale-spaceLssf vremapg of vremap

7 Lssf ~ug(x; l )  Lssf vremapg(x; l ) // update output Laplacian scale-space

8 Obtain SLFf ug by collapsing Laplacian scale-spaceLssf ~ug // Equation 10.4

Complexity The complexity of the fast Fourier transform (FFT) isO
�
N log(N )

�
, with N the

number of pixels of the image. Thus, the complexity of the algorithm used to compute the Gaus-
sian Scale-Space representation of the image (see Algorithm40) is O

�
N log(N )lmax

�
, because
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Algorithm 39: Fast scale-space local Laplacian �lters (fast SLF)
input : imageu
input : remapping function~r
input : numberS of intensity samples
output: �ltered image SLFf ug

1 Compute Gaussian scale-spaceGssf ug of input imageu
2 Sample the intensity range betweenmin(u) andmax(u) with S valuesf 
 0; 
 1; :::; 
 S� 1g

regularly spaced
3 �  
 1 � 
 0 // intensity step between two samples

4 for each intensity sample
 i with i 2 f 0; 1; : : : ; S � 1g do
5 uremap  ~r (u � 
 i ) // apply remapping function

6 Compute the Gaussian scale-spaceGssf uremapg of uremap

7 for each scalel from1 to lmax � 1 do
8 �  max(0; 1 � j 
 i � Gssf ug(l)j=� ) // interpolation weights

// Compute the Laplacian scale-space at scale l

9 Lssf uremapg(l)  Gssf uremapg(l) � Gssf uremapg(l + 1)
// Update output Laplacian scale-space (initialized with zeros)

10 Lssf ~ug(l)  Lssf ~ug(l) + � Lssf uremapg(l)

11 Lssf ~ug(lmax )  Gssf ug(lmax ) // residual is not modified

12 SLFf ug  
P lmax

l=0 Lssf ~ug(l) // collapse output scale-space

Algorithm 40: Computation of the Gaussian scale-space of an image
input : imageu
input : number of scaleslmax (�nest scale is0 and coarsest one islmax )
output: Gssf ug the Gaussian scale-space ofu

1 � ref = 1 // fixed

2 Gssf ug(0)  u // finest scale (l=0) of Gssf ug is the input image itself

3 Makeu periodic by symmetrization; getuper with double size
4 ûmirror = FFTf uperg // Fourier transform of uper

5 for each scalel from1 to lmax do
6 �  2l � 1� ref // Gaussian standard-deviation for the current scale

7 Ĝ�  expf� (2� 2� 2)k� k2g // Gaussian kernel in the Fourier domain

8 �u  FFT� 1f ûper � Ĝ� g // convolution in Fourier Domain

9 Gssf ug(l)  crop(�u) // we only need the first quarter of the result
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we need to compute the FFT of the input image andlmax inverse FFT (total number of scales is
lmax + 1 , taking the �nest into account). Our algorithm (see Algorithm39) requires the compu-
tation of a Gaussian Scale-Space for the input image and for each remapped image. The overall
complexity of our method is thenO

�
N log(N )Slmax

�
, with S the number of samples.

10.2 Compact formula for the local Laplacian �lters

Let us now build the local Laplacian �lter in the scale-space. The scale-space local Laplacian �lter
(SLF) algorithm, described in Algorithm38, is simply the exact LLF (which pseudo-code is given in
Algorithm 35) where we replaced the Gaussian and Laplacian pyramids by Gaussian and Laplacian
scale-spaces. This pseudo-code will help us to construct the formal description of SLF. Starting
at line 8, we progressively unfold the expression of the scale-space local Laplacian �lter for an
arbitrary pixelx. The output is given by collapsing the scale-space progressively constructed at
line 7. That is,

SLFf ug(x) =
lmaxX

l=0

Lssf ~ug; (10.6)

which can be written

SLFf ug(x) =
lmax � 1X

l=0

�
(G� l � G� l +1 ) � u0� (x) +

�
G� l max

� u
�

(x); (10.7)

whereu0is the remapped input image. The rightmost part of Equation (10.7) is the residual of the
Laplacian scale-space. The Laplacian scale-spaceLssf ~ug in Equation (10.6) represents the Lapla-
cian scale-space of the �nal image under construction. For a speci�c couple(x; l ), the Laplacian
coeY cientLssf ~ug(x; l ) is computed line6 from u0. The imageu0 is the result of the application of
~r to the inputu according to the reference intensity

�
G� l � u

�
(x):

u0 = ~r (u � (G� l � u) (x)) : (10.8)

This is obtained by merging together lines3and5. There is one diVerent imageu0 for each pixel
of each scale, because it is remapped according tog, the Gaussian coeY cient at scalel and pixel
x. We use here a remapping function~r with the same form as used by the authors of thefast
local Laplacian �lters [APH+ 11, APH+ 14]. This function is nevertheless equivalent to the Pariset
al. function: r (t; g) = ~r (t � g) + g. It will be useful in the coming developments. There is no
need to add the constantg after remapping the intensity diVerences with~r . Indeed, in the local
Laplacian �lter the remapped images are used for the computation of Laplacian coeY cients, which
are insensitive to this constant. Inserting Equation10.8 in Equation10.7gives the �nal equation:

SLFf ug(x) =
lmax � 1X

l=0

�
(G� l � G� l +1 ) � ~r

�
u �

�
G� l � u

�
(x)

� �
(x) +

�
G� l max

� u
�
(x): (10.9)

By denotingD l = G� l � G� l +1 the diVerence-of-Gaussian operator andg(x; l ) =
�
G� l � u

�
(x)

the reference intensity in~r we get

SLFf ug(x) =
lmax � 1X

l=0

�
D l � ~r

�
u � g(x; l )

� �
(x) +

�
G� l max

� u
�
(x): (10.10)

This formula is our more compact formula for the Local Laplacian Filter.
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Second compact formula using the fast LLF point of view

The fast version of local Laplacian �lters by Aubryet al.is based on the piecewise linear interpre-
tation of the bilateral �lter (described in Section6.4), transposed to FLL. Although this scheme is
meant to accelerate the �lter by downsampling in the space and range domains, this formulation
is exact. We can express the scale-space local Laplacian �lters from the same point of view. This
actually completes our previous expression of SLF by providing another compact and insightful
formulation:

8
<

:

SLFf ug(x) =
P lmax � 1

l=0 ~v
�
x; l; (G� l � u)(x)

�
+ ( G� l max

� u)(x)

~v(x; l; g) =
�
(G� l � G� l +1 ) � ~r (u � g)

�
(x):

(10.11)

In this equation,~v is what we could call a “Laplacian layer”: Laplacian coeY cients at scalel of
the remapped input image according to the reference intensityg. The output image SLFf ug is
constructed from these layers, by selecting at each pixel the Laplacian coeY cients in a particular
layer, depending on the value(G� l � u)(x). This value acts as a guide indicating for each pixel and
each scalehow the input image should be remappedto get the enhanced �nal result. Put another
way, the guide(G� l � u) is used to pick the value of the Laplacian coeY cient in the “right layer”.
There are as many layers as the number of possible intensities for the guide, and constructing SLF
amounts to collect the “correct” values in the pre-computed layers. The fast approximation con-
sists in pre-computing only a reduced set of Laplacian layers, and, for values of the guide that have
no pre-computed layer, to linearly interpolate between the two closest pre-computed values. As
we shall see in Section10.3, this guide is implicit in the original local Laplacian �lters, whereas our
scale-space interpretation reveals its presence and allows its replacement.

A quick review of Aubryet al. analysis of the local Laplacian �lter (and why ours eVectively go
further)

In their paper [APH+ 11, APH+ 14], Aubry et al.make the link between the local Laplacian �lters,
the bilateral �lter, and the anisotropic diVusion. They also present a new �lter, theunnormalized
bilateral �lter, that we review in Section10.3. In the following, we put ourselves back in the context
of (Gaussian and Laplacian) pyramids and reproduce and review the steps of Aubryet al.analysis
of the local Laplacian �lters. Their work suggests the form of the single-scale �lter used in LLF.
Yet our scale-space interpretation, besides the exact and compact formulation of the �lter, allows
a deeper understanding of the edge-aware manipulation of the Laplacian coeY cients that occurs
at scales superior to zero.

The authors in [APH+ 11,APH+ 14] �rst consider a remapping function of the form

r (t) = t � (t � g)f (t � g) (10.12)

wheref is a continuous function. In order to make the link with the bilateral �lter, we take
f (t) = G� r (t) = exp

�
� t2=(2� 2

r )
�

with � r the range parameter,i.e.the standard deviation of the
range Gaussian kernel, as in the bilateral �lter. They then consider a pyramid with only two scales,
that is,Lpyrf ~u; 0g andLpyrf ~u; 1g. The residual is not processed, soLpyrf ~u; 1g = Lpyrf u; 1g. At
the �nest scale, the Laplacian pyramid of the output is

Lpyrf ~u; 0g(x) = r
�
u(x)

�
�

�
G� 1 � r (u)

�
(x); (10.13)
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where� is the convolution andG� 1 a normalized approximately Gaussian kernel. Indeed, in LLF
this Gaussian convolution is in practice performed by successively downsampling and upsampling
r (u). By expanding the remapping functionr , we have

Lpyrf ~u; 0g(x) = u(x) � (u(x) � g)G� r

�
u(x) � g

�

�
�
G� 1 �

�
u � (u � g)G� r

�
u � g

���
(x); (10.14)

which, usingLpyrf u; 0g(x) = u(x) �
�
G� 1 � u

�
(x) and replacingg(x) byu(x) since we are at the

�nest scale, can be simpli�ed as

Lpyrf ~u; 0g(x) = Lpyrf u; 0g(x) +
�

G� 1 �
�
u � u(x)

�
G� r

�
u � u(x)

� �
(x): (10.15)

This reduction is possible only for the �nest scale, because we used the fact thatg(x) = u(x),
which is not true for the other scales. By upsampling the residual and adding it to the equation
(collapsing the pyramid), we get

LLFf ug(x) = u(x) +
�

G� s �
�
u � u(x)

�
G� r

�
u � u(x)

� �
(x); (10.16)

where we replaced� 1 by � s to stress the resemblance with the bilateral �lter. With the same
objective in mind, we re-write Equation (10.16) as

LLFf ug(x) = u(x) +
X

y

G� s (x � y)G� r

�
u(y) � u(x)

��
u(y) � u(x)

�
: (10.17)

This is the de�nition of theunnormalized bilateral �lter. The authors observe that “one may
achieve cross �ltering” with LLF, but let this case for further studies. We shall come back to the
“guidance” process in LLF soon (see Section10.3).

Concerning deeper pyramids (more than two levels, the �nest and the residual), the authors
give, in a similar spirit, the �lter that computes the output Laplacian coeY cients.

Lpyrf ~u; lg(x) =
�

D l �
�
u � g(x)

�
G� r

�
u � g(x)

� �
(x); (10.18)

whereg(x) = ( G� l � u)(x) andD l = G� l � G� l +1 . Written in a closer form to the bilateral �lter,

Lpyrf ~u; lg(x) =
X

y

D l (x � y)G� r

�
u(y) � g(x)

��
u(y) � g(x)

�
: (10.19)

Becauseg(x) 6= u(x) the expression cannot be collapsed as above. As the authors conclude their
analysis, “this shows that each level of the output pyramid is a local average of diVerences over a
neighborhood ofx”. We shall reveal in the next section the implicit �lter that is used for scales
superiors to zero in LLF.

Note however that Equation (10.18) does not exactly describe the local Laplacian �lter. As we
said before, although the diVerence-of-Gaussian operatorD l is described as the diVerence between
two Gaussian kernels, in practice the blurred versions of the input are obtained through successive
downsampling and upsampling, using the methods described in Algorithm32and Algorithm33,
respectively. Using the de�nition ofGpyrand Lpyr given in Equation (9.1) and Equation (9.2),
respectively, the exact Laplacian coeY cients of the �nal image are written

Lpyrf ~u; lg(x) = Lpyrf ~r
�
u � Gpyrf u; lg(x)

�
; lg(x): (10.20)
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Thus, using theUpsampleoperator (Algorithm33), the �nal result is obtained from the previous
Equation (10.20) and the following recurrence relation (collapsing):

(
~ul = Upsample(~ul+1 ) + Lpyrf ~u; lg

~ulmax = Gpyrf u; lmaxg
; (10.21)

where the �nest scale is the output image: LLFf ug = ~u0. Although this is already a compact
formulation of the local Laplacian �lter, it does not have the clarity and completeness of the scale-
space formulations given in Equation (10.9).

To conclude on the LLF analysis carried out by the authors in [APH+ 11,APH+ 14], they demon-
strate that LLF is actually the unnormalized bilateral �lter when the pyramid is only2scales deep.
They consequently also make the link with the anisotropic diVusion. In the multi-scale case how-
ever, they only give the form under which the Laplacian coeY cients are computed. In our analysis
we go further and present the underlying single-scale �lter, that is, as will soon become clear, a sort
of “guided” unnormalized bilateral �lter: indeed, it is situated between the unnormalized bilateral
�lter and the unnormalized cross bilateral �lter. Furthermore, while the last Equation10.19is al-
ready a compact formulation, it only expresses an intermediary result – the Laplacian coeY cients.
Our formulation with the scale-space in Equation10.9 is more complete as it expresses the �nal
�lter directly.

10.3 Oracle-based unnormalized bilateral �lter

First of all, we recall the de�nition of the unnormalized bilateral �lter proposed by Aubryet al.in
2011[APH+ 11,APH+ 14]. We shall indeed refer to this �lter many times in this section.

UBFf ug(x) = u(x) �
X

y

G� s (x � y)G� r

�
u(y) � u(x)

��
u(y) � u(x)

�
: (10.22)

Alternatively, this �lter can be written

UBFf ug(x) =
�
1 � C(x)

�
u(x) + C(x)BFf ug(x); (10.23)

whereC(x) is the bilateral �lter normalization factor inx and BF the bilateral �lter.

The cross or joint bilateral �lter [ED04], [PSA+ 04], uses a second image (we call itv), re-
lated to the image to be �ltered, for the computation of the range weights. For example with a
�ash/no-�ash pair of images in a low-light context: the no-�ash image, noisy but with better col-
ors, is �ltered (denoised) according to the �ash image with higher signal-to-noise ratio. In the
unnormalized case, this �lter can be written

UCBFf u; vg(x) = u(x) �
X

y

G� s (x � y)G� r

�
v(y) � v(x)

��
u(y) � u(x)

�
; (10.24)

where in our exampleu is the input no-�ash image andv the �ash image from with the range
weights are computed. Like the unnormalized bilateral �lter, UCBF has an alternative form sim-
ilar to Equation (10.23); the only diVerence being the replacement of the bilateral �lter BFf ug by
the cross bilateral �lter CBFf u; vg.
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Furthermore, let us introduce the remapping function

~r (t) = t + �tf (t); (10.25)

wheref is a continuous odd function and� a parameter that allows to choose between detail
ampli�cation (� > 0) and detail reduction (� < 0). In practice we restrict ourselves to the detail
smoothing case,i.e. � = � 1, which places SLF in the bilateral �ltering context. For the same
reason we usef (t) = G� r (t) = exp

�
� t2=(2� 2

r )
�
. That is,

~r (t) = t � tG � r (t): (10.26)

We shall prefer this writing rather thanr de�ned in Equation (10.12) because it makes the ref-
erence intensity explicit and thus clarify our developments. Both expressions are equivalent:
r (t) = ~r (t � g) + g. Remark that the addition of the constantg will often be omitted because it
is discarded when convolving with the diVerence-of-Gaussian operatorD l = G� l � G� l =1 (both
Gaussian kernels are normalized).

On the importance of the oracle in the local Laplacian �lters

Let's now have a closer look at the impact of the “reference intensity”g used in the remapping
function of the local Laplacian �lter. Indeed, this guideG� l � u depends on the scalel . As a
consequence, it is not possible to collapse the pyramid in the de�nition of SLF in Equation10.9,
although it would be possible if the guide were identical at each scale. For example, using the input
imageu in place ofG� l � u and collapsing the pyramid leads to

SLFf ug(x) =
lmax � 1X

l=0

�
(G� l � G� l +1 ) � ~r

�
u � u(x)

� �
(x) +

�
G� l max

� u
�
(x); (10.27)

which is in fact the same as

SLFf ug(x) =
�

(G� 0 � G� l max
) � ~r

�
u � u(x)

� �
(x) +

�
G� l max

� u
�
(x) (10.28)

because the Gaussian convolutions cancel each other between the diVerent scales. SinceG� 0 is a
Kronecker delta, it can be simply removed because~r (u � u(x)) in x is zero. By expanding the
remapping function using~r (t) = t � tG � r (t), we get

SLFf ug =
�
G� l max

� u
�
(x) �

�
G� l max

�
��

u � u(x)
�

� G� r

�
u � u(x)

��
u � u(x)

�� �
(x): (10.29)

TheG� l max
� u terms cancel each other and the constantu(x) can be taken out the convolution.

Finally, by expanding the convolution:

SLFf ug = u(x) +
X

y

G� l max
(x � y)G� r

�
u(y) � u(x)

��
u(y) � u(x)

�
: (10.30)

This is nothing but the unnormalized bilateral �lter.
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Interpretation The local Laplacian �lters, when the guideG� l � u is replaced by the input image,
simply is the unnormalized bilateral �lter with spatial parameter� lmax . This gives an idea of the
importance of this guide in LLF. Indeed, UBF as well as BF loose their ability to �lter when used
with large spatial standard deviation, because the number of neighbors with the same intensity
increase. This makes the weights given to pixels with slightly diVerent intensity to decrease, and,
in turn, the �lter tends to average only pixels that have the same intensity. Hence, the eVectiveness
of LLF is due to the guide introduced in the (unnormalized) bilateral �lter. From now on, we shall
call this guide anoracle.

In the next section, we study the single-scale �lter implicitly used in SLF. As we shall see, this
oraclede�nes a new (unnormalized) �lter diVerent both from the bilateral �lter and the cross bi-
lateral �lter.

10.3.1 Implicit edge-aware �lter in the scale-space local Laplacian �lters

Our compact formulation of the scale-space local Laplacian �lter is given in Equation10.9. How-
ever, we remind it here for the sake of readability:

SLFf ug(x) =
lmax � 1X

l=0

�
(G� l � G� l +1 ) � ~r

�
u �

�
G� l � u

�
(x)

� �
(x) +

�
G� l max

� u
�
(x): (10.31)

At a speci�c scalel and pixelx, the Laplacian scale-space SLFf ug can be written

Lssf ~ug(x; l ) =
X

y

�
G� l � G� l +1

�
(x � y)~r

�
u(y) � g(x; l )

�
(10.32)

whereg(x; l ) =
�
G� l � u

�
(x). Using~r (t) = t � tG � r (t), Equation (10.32) can be rewritten

Lssf ~ug(x; l ) =
X

y

�
G� l � G� l +1

�
(x � y)u(y)

�
X

y

�
G� l � G� l +1

�
(x � y)G� r

�
u(y) � g(x; l )

��
u(y) � g(x; l )

�
; (10.33)

because the Gaussian kernels are normalized so the constantg(x; l ) in the left part of the equation
is discarded. This constant cannot be removed in the right part because of the range kernel.

Interpretation: This equation shows thatLssf ~ug(x; l ) is actually the diVerence between two
Laplacian coeY cients. The �rst term in the equation is the standard Laplacian scale-space, made of
the diVerence between two successive scales of the Gaussian scale-space. The second term however
is the diVerence between two successive scales of a bilateral-like �lter. This particular �lter has the
form of the unnormalized bilateral �lter proposed by Aubryet al.in [APH+ 11,APH+ 14], but is dif-
ferent: it uses anoracleg. This is not a cross or joint unnormalized bilateral �lter [ED04,PSA+ 04]
either, because the oracle would be used in the range kernel only (see Equation (10.24)). This is a
new �lter. We shall call it in the following theunnormalized oracle-based bilateral �lter1 (UOBF).
It is de�ned as:

UOBFf u; vg(x) = v(x) +
X

y

G� s (x � y)G� r

�
u(y) � v(x)

��
u(y) � v(x)

�
: (10.34)

We callv the oracle because it is the value that controls, for each pixelx, whether a pixely in its
neighborhood will participate a lot in the computation of the result or not. It can be considered as
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a general framework including the unnormalized bilateral �lter as a particular case: indeed, using
the input itself as oracle brings UOBF back to the unnormalized bilateral �lter (see its de�nition
in Equation (10.22)). The oraclev used in SLF isg(x; l ) = G� l � u. We shall explore in Section10.5
the diVerent �lters and the improvements we can derive from the replacement of this oracle by
more sophisticated ones.

Inserting Equation (10.34) in Equation (10.33), the Laplacian coeY cients can be rewritten

Lssf ~ug(x; l ) =
�
(G� l � G� l +1 ) � u

�
(x)

�
�
UOBF� l f u; g(x; l )g(x) � UOBF� l +1 f u; g(x; l )g(x)

�
; (10.35)

where the indices indicates the spatial standard-deviation of the �lters. Hence, by collapsing the
scale-space we get

SLFf ug(x) = u(x) �
lmax � 1X

l=0

�
UOBF� l f u; g(x; l )g(x) � UOBF� l +1 f u; g(x; l )g(x)

�
: (10.36)

This is yet another compact and complete formula for the scale-space local Laplacian �lter. In
Equation (10.36) the two terms of the additive base and detail decomposition of the inputu can
be easily identi�ed: SLF is used for detail smoothing, thus SLFf ug is the base layer; the rightmost
part of the equation is then the detail layer. Intuitively, the detail layer is obtained by collapsing
an edge-aware scale-space constructed from this new bilateral-like oracle-based �lter. We show
in Section10.4 the multi-scale decomposition obtained with it. But we �rst concentrate on its
properties in a single-scale context.

10.3.2 The single-scale unnormalized oracle-based bilateral �lter

In Equation (10.34) the �lter is unnormalized; in the same way as for the unnormalized bilateral
�lter (see Equation (10.22) and Equation (10.23)), it can be rewritten in function of a normalized
�lter,

UOBFf u; vg(x) =
�
1 � ~C(x)

�
v(x) + ~C(x)OBFf u; vg(x); (10.37)

where~C(x) =
P

y G� s (x� y)G� r

�
u(y) � v(x)

�
is the normalization term and0 � ~C � 1because

the spatial kernelG� s is normalized. Finally, OBF is the (normalized) oracle-based bilateral �lter:

OBFf u; vg(x) =
1

~C(x)

X

y

G� s (x � y)G� r

�
u(y) � v(x)

�
u(y): (10.38)

Once again, using the input image itself as oracle brings OBF back to the bilateral �lter.
In the same way as for the unnormalized bilateral �lter, this �lter does not �lter where the

normalization factor ~C is small (generally at edges). Instead, it takes the oracle value (Equa-
tion (10.38)). Figure10.2 compares the �ltered results of UOBF, UBF and BF for a test-pattern.
This allows to appreciate the importance of the oracle since this is the sole diVerence between UBF
and UOBF.

The fact that the edges ofu are replaced by those of the oracle by UOBF is not problematic in
the case of SLF. Indeed, for SLF we are only interested in the diVerence between two applications
of UOBF. Since only the spatial parameter changes between the two �lters (i.e. the oracle is the

1This name might not be the greatest name for this �lter. However, among the �ourishing bilateral �lter descen-
dants, namely the joint [ED04], cross [PSA+ 04], dual [BMM07] and even the guided [CTC15] bilateral �lters, not
to mention other trilateral [CT05], multilateral [BR09] or joint multilateral [LTL10] �lters, we decided to go for this
(unnormalized) oracle-based bilateral �lter(UOBF, OBF) so as not to pick one already existing name.
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Figure 10.2: Test­pattern (light blue) and its �ltered version by the bilateral �lter (orange); the unnormalized bi­
lateral �lter (green); and the unnormalized oracle­base bilateral �lter (red). The same parameters are used for all
�lters: � l = 2 pixels and� r = :2. The oracle used in UOBF isG� l � u. It is drawn in dark blue. Compared to BF,
UBF has a lighter smoothing effect. On the contrary, UOBF has a stronger smoothing than both BF and UBF. In
fact, UOBF closely follows its oracle, except at the edge where most of the differences averaged have the same sign
(positive at the top of the edge, negative at the bottom).

same), the diVerence is null at places where UOBF returnsv. This �lter is thus particularly well
suited for the computation of edge-aware Laplacian coeY cients. We examine in the next section
the edge-aware multi-scale decomposition allowed by the oracle-based unnormalized bilateral �l-
ter.

Conclusion on the scale-space local Laplacian �ltersThe scale-space local Laplacian �lters are
closely related to the bilateral �lter; in fact, as demonstrated by Aubryet al., it is a multi-scale un-
normalized bilateral �lter. The normalization can be removed in a “safe” way as one manipulates
Laplacian coeY cients, which in average are null. We showed however that the authors inserted
a guide, that we call an oracle in order to make the distinction with the cross (or joint) bilateral
�lter. This oracle allows an eVective multi-scale decomposition of the detail layer, which is not
possible with the bilateral �lter (nor the unnormalized one), as explained in2008by Farbmanet
al. [FFLS08]. We examine in the next section the multi-scale base+detail decomposition realized
in SLF and compare it to the bilateral pyramid.

10.4 Bilateral pyramids

The history of multi-scale bilateral image decomposition is relatively recent and also fairly short.
In 2007, two papers are published, one by Fattalet al. [FAR07] and the other by Chenet al.
[CPD07]. They use a bilateral pyramid as a tool for, respectively, image fusion and transfer of
photographic look. However, the proposed schemes are diVerent, as we shall see very soon. The
following contributions on the multi-scale edge-aware base+detail decomposition topic showed
the imperfections of the bilateral �lter and proposed alternative schemes. This is the case with
the weighted least squares(WLS) �lter proposed by Farbmanet al. in 2008[FFLS08] and a lo-
cal extrema-based �lter proposed by Subret al. in 2009[SSD09]. Fattal's edge-avoiding wavelets
[Fat09] in 2009also enter this category, with the older paper by Liet al.in 2005[LSA05]. Still on
the wavelet topic, Hanikaet al.propose in2011an “edge-optimized à-trous wavelets” [HDL11] that
allows a mutli-scale base+detail decomposition and avoids the artifacts due to the decimation in
Fattal's method. This work is in continuation of the2010paper by Dammertzet al.[DSHL10]. Our
interest here is in the usage of the bilateral �lter for multi-scale decomposition, so we concentrate
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Figure 10.3: Four scales of the multiscale bilateral decomposition on a 1D row of pixel intensities. Black lines indi­
cate pixels at scalej � 1 that are used by the fast algorithm to compute the value of the pixel in column 3 at scalej .
In contrast, the basic algorithm also considers all the pixels marked with green lines. Atj = 3 the basic algorithm
averages in the gray pixel in column 6, but the fast algorithm never sees a contribution from that pixel. Illustration
and caption reproduced from [FAR07].

on the two2007papers.

Fattal et al. bilateral pyramid In this method the input image is recursively �ltered with in-
creasing spatial parameter� s;j , adjusted so that the combined eVect of the successive �lters has a
spatial standard-deviation of2j � s, with j the level of the pyramid. To preserve edges during this
process, the range parameter is reduced at each iteration. They set� r;j = � r =2j . That is,

vj +1 = BF� s;j ;� r;j f vj g; (10.39)

wherev0 is the input image. As explained by the authors [FAR07] (quoting)

(. . . ) we do not subsample thevj because such downsampling would blur the edges
in vj . In addition downsampling would prevent the decomposition from being trans-
lation invariant and could introduce grid artifacts when the coarser scales are manip-
ulated.

We recognize here the artifacts we described in Chapter9. The detail layers at diVerent scales
are then simply computed by the diVerence between two consecutive scales of the pyramid. The
author proposes an eY cient scheme for the computation of this pyramid, based on thealgorithme
à trousmethod [Mal99, HKMMT90]. The key idea is to constantly use kernels with a very few
non-zero entries. This is possible thanks to the recursive aspect of the method, as demonstrated
for Gaussian kernels in [Bur81]. In fact, the authors use for each level a kernel with5 � 5 non-
zero coeY cients: those coeY cients are separated by more and more zeros, as shown in Figure10.3.
This scheme saves many operations and the author reports shorter running times than the2006
bilateral grid fast approximation [PD06].

The Chenet al. bilateral pyramid The bilateral �ltering in this method is applied to the input
image with increasing space and range parameters. This is particularly adapted to the fast approx-
imation proposed by the same authors, the bilateral grid. It is described in Chapter6. Indeed, the
complexity of this method decreases when the smoothing parameters increase.

Both schemes are not well suited for multi-scale base and detail image decomposition. As ex-
plained by Farbmanet al.[FFLS08], Chen's method does not well preserve the edges in the high
scales, and Fattal's scheme oversharpens the edges, creating diVerence layers with reversed gradi-
ents with respect to the initial image. In fact, this is a consequence of the staircase eVect, reinforced
by the recursive application of the bilateral �lter. Compared to these methods, the local Laplacian
�lter has two advantages: �rst, it does not present a strong staircase eVect as in [FAR07] and its
luminance halo is smaller than in [CPD07], because its range parameter� r is not modi�ed across
the scales. As we have seen, the scale-dependent oracle is used instead to give the range weights in
the oracle-based unnormalized bilateral �lter. Second, LLF allows downsampling, therefore sav-
ing a large amount of memory and computations. Figure10.4 shows the decomposition obtained
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Figure 10.4: Progressively coarsening a signal using different edge­preserving schemes. The coarsened versions
are shown superimposed on the signal (using different shades of blue: lighter is coarser). The corresponding detail
signals are plotted in shades of red below. Figure and caption reproduced from [FFLS08].

with Chen's and Fattal's schemes. Theweighted least squares(WLS) �lter displayed in the middle
is proposed by Farbmanet al. in that same paper as an eVective way to achieve better multi-scale
decomposition. It is reviewed in Chapter11.

We display in Figure10.5the pyramids obtained with a Gaussian �lter, BF, UBF, and eventually
with UOBF. The �ltered images at diVerent scales are superimposed for each �lter and displayed
in the column on the left. The “Laplacian” coeY cients,i.e.the diVerence between two consecutive
levels of the pyramids2are in the right column. In order to compare the results with SLF, the range
parameter� r used in the bilateral �lter is kept unchanged over the scales. Each method �lters the
input image to produce the diVerent scales (no recursion). The �rst row shows the classic Gaussian
and Laplacian pyramids. The two middle rows show the multi-scale decomposition generated by
the bilateral �lter and its unnormalized version. As the scale increases, these �lters do not produce
smoother images; in practice the “Laplacian” coeY cients between two coarse scales can have high
frequencies; Yet it is quite unsettling for a multi-scale decomposition to present roughly the same
frequency content at each scale of the decomposition. We have seen that Fattalet al. and Chen
et al. suggested ways to get around this, but their solutions present unacceptable artifacts. The
last row presents the results obtained with UOBF. The right side plot is obtained in a diVerent
way than above. Indeed, this pyramid is computed using a scale-dependent oracleG� l � u, like the
Gaussian pyramid displayed in the top left plot. But the “Laplacian” coeY cients are obtained from
the diVerence between two scales of a pyramid that uses thesame oracle(see Equation (10.36)). As
seen in Figure10.2the UOBF �lter does not respect the input edges but those of the oracle, which
explains that the bottom left plot resembles the top left one. As for the SLF detail coeY cients in
the bottom right plot, they accurately capture the details at multiple scales.

Put another way, the insertion of an oracle in the bilateral �lter allows a proper multi-scale
base plus detail decomposition. This proves the importance of such an oracle in the local Lapla-
cian �lters. However the previous contributions on LLF [PHK11, PHK15, APH+ 11, APH+ 14] do
not discuss it: the default oracle is the Gaussian pyramid. We explore in the next section some
decomposition produced using diVerent oracles.

10.5 A new framework using diVerent oracles in the scale-space local
Laplacian �lters

The interpretation of the local Laplacian �lters in a Gaussian scale-space allowed us to propose
a complete, clean and compact formula for the �lter. It also helped to reveal the implicit oracle-
based bilateral �lter used in SLF. We showed that this modi�ed bilateral �lter succeeds in creating

2Note that unlike other sections we use the term “pyramid” or scale-space indistinctly here, by reference to [CPD07,
FAR07]. For the sake of clarity, we shall soon return to “scale-space” for methods that does not involve re-sampling .
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Figure 10.5: The �rst column shows the pyramid obtained by �ltering at different scales the input image. The
second column shows the difference between two consecutive levels of the pyramid (for the pyramid on the same
row), except for the last row concerning UOBF. For this �lter indeed, an oracle is used in the �ltering, and this oracle
depends on the scale. The Laplacian coef�cients in the bottom right plot are obtained by the difference between
two consecutive levels of a pyramid that usesthe same oraclefor those levels, whereas in the bottom left a different
oracle is used at each scale. The oracle used isg(l ) = G� l � u, i.e. the Gaussian scale­space displayed in the top
left plot. This is coherent with Equation(10.36). Thus, the bottom right plot displays the detail layer's Laplacian
coef�cients of UOBF. The parameter� r remains unchanged over the scales. Unlike with BF or UBF, the Laplacian
coef�cients obtained with UOBF effectively contains only low­scale variations in the low levels; moreover, they do
not contain large oscillations due to edges like with the Gaussian �lter.
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(a) test­pattern (b) test­pattern with a 1­pixel shift

Figure 10.6: Restoration of the translation invariance in SLF. Compared to results shown in Figure 9.5 our �lter
produces a better result. The spurious bounce and mean­shift we observed before are not present any more.
Furthermore, we saw that the previous algorithms weren't translation­invariant, whereas our algorithm is. (com­
pare illustrations (a) and (b)). Parameter used: remapping functionr presented in Figure 9.5 (a);nbscales = 7 ;
nbsamples = 128.

an edge-aware pyramidal decomposition, unlike previous schemes based on the bilateral �lter.
Furthermore, our scale-space interpretation of the local Laplacian �lters has the desirable prop-
erty of translation invariance, in which the original LLF is lacking, causing several artifacts (see
Section9.4). We shall verify its disappearance in this section. But that is not all: after the discovery
of an oracle in LLF's skeleton we decided to make some experiments with it. We shall discover that
the luminance halo artifact of the original method can be alleviated by edge-preserved smoothed
oracles. This, unfortunately, is paid by the reappearance of a staircase eVect and an increased com-
plexity. Once again, we face the dilemma where we have on the one hand a good preservation of
edges that comes with the staircase eVect and, on the other hand, no staircase but a luminance
halo. The improvement brought by our general framework lies in that this decision is left to the
user.

Translation invariance Before extending the scale-space local Laplacian �lter to diVerent ora-
cles, let examine is behavior with respect to translation. In Chapter9 we saw that LLF was not
invariant by translation. This creates two artifacts, namely, small bounces and an intensity shift
(see Figure9.5 in Chapter9). They are in fact the same artifact at two diVerent scales, and are
originated in the sampling of the pyramid. Indeed, the oracle used to remap the input image and
compute the output pyramid in LLF is downsampled. Hence, the remapping itself strongly de-
pends on the downsampling grid, which, in turn, causes strong discrepancy between the �ltered
results of an image and its translated version – even for small translation,e.g., 1 pixel. Figure10.6
shows the result of the application of SLF to our simple test pattern. This test-pattern has already
been used in the Chapter9 when we described the artifacts that the non-translation-invariance
gives rise to in LLF. It is constituted of the same step-edge repeated along the vertical axis. We
used the standard oracle,i.e. (G� l � u). Unlike the previous result obtained with LLF, there is
no diVerence between the two plots (a) and (b) in Figure10.6. In other terms, the scale-space
interpretation in translation-invariant. Furthermore, the absence of the bounce and “mean-shift”
we observed in LLF prove that they indeed come from the sampling of the pyramid.

One could think that the oracle does not bring much freedom in the original �lter because of
the down-sampling. But, although using the Gaussian pyramid is particularly convenient because
it is already computed, nothing forces the oracle to be down-sampled. Indeed, it is used to remap
the intensity of the full resolution input image at any scale. We want to solve the luminance halo
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