S. Ballet and J. Pieltant, On the tensor rank of multiplication in any extension of <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math>, Journal of Complexity, vol.27, issue.2, pp.230-245, 2011.
DOI : 10.1016/j.jco.2011.01.008

R. Barbulescu, J. Detrey, N. Estibals, and P. Zimmermann, Finding optimal formulae for bilinear maps Arithmetic of finite fields: 4th International Workshop, Proceedings, pp.168-186, 2012.
DOI : 10.1007/978-3-642-31662-3_12

URL : http://hal.inria.fr/docs/00/67/47/08/PDF/bilinear.pdf

R. Barbulescu, J. Detrey, N. Estibals, and P. Zimmermann, Finding optimal formulae for bilinear maps URL: https, AriC Seminar, 2012.
DOI : 10.1007/978-3-642-31662-3_12

URL : http://hal.inria.fr/docs/00/67/47/08/PDF/bilinear.pdf

P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Mathematics of Computation, vol.16, issue.79, pp.363-367, 1962.
DOI : 10.1090/S0025-5718-1962-0148632-7

A. Bernardi, J. Brachat, P. Comon, and B. Mourrain, General tensor decomposition, moment matrices and applications, 2013. International Symposium on Symbolic and Algebraic Computation, pp.51-71
DOI : 10.1016/j.jsc.2012.05.012

URL : https://hal.archives-ouvertes.fr/inria-00590965

D. J. Bernstein, Multidigit multiplication for mathematicians, 2001.

L. I. Bluestein, A linear filtering approach to the computation of discrete Fourier transform. Audio and Electroacoustics, IEEE Transactions on, vol.18, issue.4, pp.451-455, 1970.
DOI : 10.1109/tau.1970.1162132

M. Bläser, On the complexity of the multiplication of matrices of small formats, Journal of Complexity, vol.19, issue.1, pp.43-6000007, 2003.
DOI : 10.1016/S0885-064X(02)00007-9

W. Bosma, J. Cannon, and C. Playoust, The Magma Algebra System I: The User Language, Computational algebra and number theory, pp.235-265, 1993.
DOI : 10.1006/jsco.1996.0125

R. P. Brent and P. Zimmerman, Modern computer arithmetic, 2010.
DOI : 10.1017/CBO9780511921698

URL : https://hal.archives-ouvertes.fr/cel-01500109

R. W. Brockett and D. Dobkin, On the optimal evaluation of a set of bilinear forms, Linear Algebra and its Applications, vol.19, issue.3, pp.207-23510, 1978.
DOI : 10.1016/0024-3795(78)90012-5

P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory, 2010.
DOI : 10.1007/978-3-662-03338-8

V. P. Burichenko, On symmetries of the Strassen algorithm. CoRR, abs/1408, 2014.

D. Chudnovsky and G. Chudnovsky, Algebraic complexities and algebraic curves over finite fields, Journal of Complexity, vol.488, issue.4, pp.285-31610, 1988.
DOI : 10.1073/pnas.84.7.1739

URL : http://www.pnas.org/content/84/7/1739.full.pdf

H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans, Group-theoretic Algorithms for Matrix Multiplication, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), pp.379-388, 2005.
DOI : 10.1109/SFCS.2005.39

URL : https://authors.library.caltech.edu/23966/1/COHfocs05.pdf

H. Cohn and C. Umans, A group-theoretic approach to fast matrix multiplication, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pp.438-449, 2003.
DOI : 10.1109/SFCS.2003.1238217

URL : http://arxiv.org/pdf/math/0307321

J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Mathematics of Computation, vol.19, issue.90, pp.297-301, 1965.
DOI : 10.1090/S0025-5718-1965-0178586-1

URL : https://www.ams.org/mcom/1965-19-090/S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf

D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Journal of Symbolic Computation, vol.9, issue.3, pp.251-28010, 1990.
DOI : 10.1016/S0747-7171(08)80013-2

URL : https://doi.org/10.1016/s0747-7171(08)80013-2

S. Covanov, Improved method to find optimal formulae for bilinear maps URL: https, 2017.

S. Covanov and E. Thomé, Fast integer multiplication using generalized Fermat primes URL: https, 2016.
DOI : 10.1090/mcom/3367

URL : http://arxiv.org/pdf/1502.02800

A. De, P. P. Kurur, C. Saha, and R. Saptharishi, Fast Integer Multiplication Using Modular Arithmetic, SIAM Journal on Computing, vol.42, issue.2, pp.685-69910, 2013.
DOI : 10.1137/100811167

URL : http://www.cmi.ac.in/%7Eramprasad/pubs/intMult08.pdf

H. F. De-groote, Lectures on the Complexity of Bilinear Problems, 1987.
DOI : 10.1007/BFb0020719

H. Dubner and Y. Gallot, Distribution of generalized Fermat prime numbers, Mathematics of Computation, vol.71, issue.238, pp.825-832, 2002.
DOI : 10.1090/S0025-5718-01-01350-3

URL : http://www.ams.org/mcom/2002-71-238/S0025-5718-01-01350-3/S0025-5718-01-01350-3.pdf

P. Elliott, Primes in progressions to moduli with a large power factor, The Ramanujan Journal, vol.15, issue.1-3, pp.241-251, 2007.
DOI : 10.1007/s11139-006-0250-4

M. Fürer, On the complexity of integer multiplication (extended abstract), 1989.

M. Fürer, Faster Integer Multiplication, SIAM Journal on Computing, vol.39, issue.3, pp.979-1005, 2009.
DOI : 10.1137/070711761

P. Gaudry, A. Kruppa, and P. Zimmermann, A GMP-based implementation of Schönhage- Strassen's large integer multiplication algorithm, Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, ISSAC '07, pp.167-174, 2007.
DOI : 10.1145/1277548.1277572

T. Granlund, . Development-team, . Gnu, and . Mp, The GNU Multiple Precision Arithmetic Library, 2016. version 6.1.0

D. Harvey, Faster polynomial multiplication via multipoint Kronecker substitution, Journal of Symbolic Computation, vol.44, issue.10, pp.1502-1510, 2009.
DOI : 10.1016/j.jsc.2009.05.004

URL : https://doi.org/10.1016/j.jsc.2009.05.004

D. Harvey and J. Van-der-hoeven, Faster integer multiplication using plain vanilla FFT primes, Mathematics of Computation, 2016.
DOI : 10.1090/mcom/3328

URL : http://arxiv.org/pdf/1611.07144

D. Harvey and J. Van-der-hoeven, Faster integer multiplication using short lattice vectors. ArXiv e-prints, Feb, 2018.
DOI : 10.1090/mcom/3328

URL : http://arxiv.org/pdf/1611.07144

D. Harvey, J. Van-der-hoeven, and G. Lecerf, Even faster integer multiplication, Journal of Complexity, vol.36, pp.1-30
DOI : 10.1016/j.jco.2016.03.001

URL : https://hal.archives-ouvertes.fr/hal-01022749

D. F. Holt, B. Eick, E. A. O-'brien-chapman, &. Hall, /. Crc et al., Handbook of computational group theory. Discrete mathematics and its applications, 2005.

J. E. Hopcroft and L. R. Kerr, On Minimizing the Number of Multiplications Necessary for Matrix Multiplication, SIAM Journal on Applied Mathematics, vol.20, issue.1, pp.30-36, 1971.
DOI : 10.1137/0120004

J. Håstad, Tensor rank is NP-complete, Journal of Algorithms, vol.11, issue.4, pp.644-654, 1990.
DOI : 10.1016/0196-6774(90)90014-6

J. Jájá, Optimal Evaluation of Pairs of Bilinear Forms, SIAM Journal on Computing, vol.8, issue.3, pp.443-46210, 1979.
DOI : 10.1137/0208037

A. Karatsuba and Y. Ofman, Multiplication of multidigit numbers on automata, Soviet Physics-Doklady, vol.7, pp.595-596, 1963.

D. E. Knuth, The art of computer programming): seminumerical algorithms, 1997.

L. Kronecker, Grundzüge einer arithmetischen theorie der algebraischen grössen. G. Reimer, p.1882

J. D. Laderman, A noncommutative algorithm for multiplying $3 \times 3$ matrices using 23 multiplications, Bulletin of the American Mathematical Society, vol.82, issue.1, pp.126-128, 1976.
DOI : 10.1090/S0002-9904-1976-13988-2

URL : http://www.ams.org/bull/1976-82-01/S0002-9904-1976-13988-2/S0002-9904-1976-13988-2.pdf

J. M. Landsberg, New Lower Bounds for the Rank of Matrix Multiplication, SIAM Journal on Computing, vol.43, issue.1
DOI : 10.1137/120880276

J. M. Landsberg, An introduction to geometric complexity theory. CoRR

F. and L. Gall, Powers of tensors and fast matrix multiplication, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC '14, pp.296-303
DOI : 10.1145/2608628.2608664

U. V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem, Rec. Math. [Mat. Sbornik] N.S, vol.15, issue.57, pp.139-178, 1944.

P. Montgomery, Five, six, and seven-term Karatsuba-like formulae, IEEE Transactions on Computers, vol.54, issue.3, pp.362-369, 2005.
DOI : 10.1109/TC.2005.49

URL : http://www.csd.uwo.ca/%7Eeschost/Exam/Montgomery--Five_six_and_seven_terms_Karatsuba-like_formulae.pdf

I. Oseledets, Optimal Karatsuba-like formulae for certain bilinear forms in GF(2) Linear Algebra and its Applications, pp.2052-2066, 2008.
DOI : 10.1016/j.laa.2008.06.004

URL : https://doi.org/10.1016/j.laa.2008.06.004

C. M. Papadimitriou, Computational complexity [48] J. Pieltant and H. Randriam. New uniform and asymptotic upper bounds on the tensor rank of multiplication in extensions of finite fields, Math. Comp, vol.84, issue.294, pp.2023-2045, 1994.

C. Pomerance, On the distribution of amicable numbers, J. Reine Angew. Math, pp.217-222, 1977.
DOI : 10.1007/978-3-319-22240-0_19

H. Randriambololona, Bilinear complexity of algebras and the Chudnovsky???Chudnovsky interpolation method, Journal of Complexity, vol.28, issue.4, pp.489-517
DOI : 10.1016/j.jco.2012.02.005

URL : https://doi.org/10.1016/j.jco.2012.02.005

A. Schönhage, Asymptotically fast algorithms for the numerical multiplication and division of polynomials with complex coeficients, Computer Algebra , EUROCAM '82, European Computer Algebra Conference, pp.5-7

V. V. Williams, Multiplying matrices faster than coppersmith-winograd, Proceedings of the 44th symposium on Theory of Computing, STOC '12, pp.887-898
DOI : 10.1145/2213977.2214056

URL : http://www.eecs.berkeley.edu/~virgi/matrixmult-f.pdf