.. Influence-du-programme-thermique, , p.62

R. Elimination-des-composés-volatils-du-pdms-n, , p.67

R. Influence-du, , p.69

.. Influence-de-la-quantité-de-catalyseur, , p.71

.. Optimisation-du-programme-thermique, , p.72

.. Bilan-des-matériaux-synthétisés, , p.74

C. , , p.76

I. Chapitre and R. Caractérisations-des-matériaux-si-n, , p.79

.. Influence-de-la-nature-de-l-'espaceur, , p.84

I. , , p.88

.. , Détermination des énergies d'activation, p.96

D. Influence-du-nombre-de-motifs and P. Du-précurseur, 99 1.2.1. Effet sur les propriétés mécaniques, p.101

T. and .. , , p.105

C. , , p.107

P. and .. , Chapitre IV : Synthèse et caractérisation des matériaux Si 9 éther, p.111

L. and U. , , p.113

.. Le-carbonate-de-calcium, , p.113

.. Le-noir-de-carbone, , p.113

.. La-silice-fonctionnalisée-par-des-chaînes-octadécyle, , p.114

.. Synthèse-des-matériaux-chargés, , p.114

S. Protocole-de, , p.115

.. Caractérisation-des-matériaux-chargés, , p.118

C. and .. , , p.118

.. , , p.118

.. , , p.119

P. and .. , , p.120

P. Vieillissement-thermique-des-matériaux-si-n, , p.159

P. Caractérisations-du-matériau-vieilli-si-8, , p.166

C. , , p.167

C. and .. , , p.173

.. Partie-expérimentale, , p.177

U. Produits-chimiques, , p.177

.. Précurseur-alcool, , p.177

.. Précurseur-isocyanate, , p.177

.. Précurseurs-amine, , p.178

C. , , p.178

S. , , p.178

I. , , p.178

S. , , p.178

O. Synthèse-des-précurseurs-pdms-n-propyle, , p.178

R. Synthèse-des-matériaux-si-n, , p.179

P. and .. , Synthèse des matériaux Si 9 éther, p.180

P. Synthèse-des-matériaux-si-n, , p.181

.. Techniques-de-caractérisation, , p.181

). , , p.182

/. Extraction-solide and .. , , p.182

C. and .. , , p.183

L. Mesure-de, , p.183

.. Mesure-du-temps-de-gel, , p.183

.. Mesure-du-module-Élastique, , p.184

C. and .. , , p.184

.. , , p.184

.. Analyses-thermiques-et-thermomécaniques, , p.185

T. , , p.185

I. , , p.186

Z. S. Petrovic, Z. Zavargo, J. H. Flynn, and W. J. Macknight, Thermal degradation of segmented polyurethanes, Journal of Applied Polymer Science, vol.51, issue.6
DOI : 10.1002/app.1994.070510615

. Polym and . Sci, , pp.1087-1095, 1994.

Y. Zhang, S. Shang, X. Zhang, D. Wang, and D. J. Hourston, Influence of structure of hydroxyl-terminated maleopimaric acid ester on thermal stability of rigid polyurethane foams, Journal of Applied Polymer Science, vol.58, issue.10, pp.1803-1809, 1995.
DOI : 10.1002/app.1995.070581019

N. Grassie and G. A. Mendoza, Thermal degradation of polyether-urethanes: 5. Polyether-urethanes prepared from methylene bis(4-phenylisocyanate) and high molecular weight poly(ethylene glycols) and the effect of ammonium polyphosphate, Polymer Degradation and Stability, vol.11, issue.4, pp.359-379, 1985.
DOI : 10.1016/0141-3910(85)90039-4

H. K. Lee and S. W. Ko, Structure and thermal properties of polyether polyurethaneurea elastomers, Journal of Applied Polymer Science, vol.50, issue.7, pp.1269-1280, 1993.
DOI : 10.1002/app.1993.070500718

L. G. Lage and Y. Kawano, Thermal degradation of biomedical polyurethanes?A kinetic study using high-resolution thermogravimetry, Journal of Applied Polymer Science, vol.61, issue.5, pp.910-919, 2001.
DOI : 10.1016/S0141-3910(97)00118-3

E. Dyer and G. Wright, Thermal Degradation of Alkyl N-Phenylcarbamates, Journal of the American Chemical Society, vol.81, issue.9, pp.2138-2181, 1959.
DOI : 10.1021/ja01518a030

S. J. Backus and J. K. , Thermal degradation and flammability of urethan, Rubber Chem. Technol, vol.39, pp.461-80, 1966.

W. P. Yang, C. W. Macosko, and S. T. Wellinghoff, Thermal degradation of urethanes based on 4,4???-diphenylmethane diisocyanate and 1,4-butanediol (MDI/BDO), Polymer, vol.27, issue.8, pp.1235-1240, 1986.
DOI : 10.1016/0032-3861(86)90012-1

K. Pielichowski, K. Kulesza, and E. M. Pearce, Thermal degradation studies on rigid polyurethane foams blown with pentane, Journal of Applied Polymer Science, vol.38, issue.65, pp.2319-2330, 2003.
DOI : 10.1366/0003702844554567

A. D. Jenkins, P. Kratochvil, R. F. Stepto, and U. W. Suter, Glossary of Basic Terms in Polymer, IUPAC Recommendations Pure Appl. Chem, vol.68, p.2300, 1996.

R. Benrashid, G. L. Nelson, J. H. Linn, K. H. Hanley, and W. R. Wade, Surface characterization of segmented siloxane???urethane block copolymers, Journal of Applied Polymer Science, vol.49, issue.3, pp.523-537, 1993.
DOI : 10.1002/app.1993.070490316

F. Chuang, H. Tsi, J. Chow, and W. Tsen, Thermal degradation of poly(siloxane-urethane) copolymers, Polymer Degradation and Stability, vol.93, issue.10, pp.1753-1761, 2008.
DOI : 10.1016/j.polymdegradstab.2008.07.029

J. Yeh and Y. Shu, Characteristics of the Degradation and Improvement of the Thermal Stability of Poly

. Copolymers, Journal of Applied Polymer Science, vol.115, pp.2616-2628, 2009.

J. V. Alemán, A. V. Chadwick, J. He, M. Hess, K. Horie et al., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials, IUPAC Recommendations Pure Appl. Chem, vol.79, pp.1814-1857, 2007.

J. R. Ebdon, D. J. Hourston, and P. G. Klein, Polyurethane-polysiloxane interpenetrating polymer networks: 1. A polyether urethane-poly(dimethylsiloxane) system, Polymer, vol.25, issue.11, pp.1633-1639, 1984.
DOI : 10.1016/0032-3861(84)90159-9

J. R. Ebdon, D. J. Hourston, and P. G. Klein, Polyurethane-polysiloxane interpenetrating polymer networks: 2. Morphological and dynamic mechanical studies, Polymer, vol.27, issue.11, pp.1807-1814, 1986.
DOI : 10.1016/0032-3861(86)90280-6

A. Lapprand, F. Boisson, F. Delolme, F. Méchin, and J. P. Pascault, Reactivity of isocyanates with urethanes: Conditions for allophanate formation, Polymer Degradation and Stability, vol.90, issue.2, pp.363-373, 2005.
DOI : 10.1016/j.polymdegradstab.2005.01.045

URL : https://hal.archives-ouvertes.fr/hal-02045556

I. C. Kogon, Journal of the American Chemical Society, vol.78, issue.19, pp.4911-4958, 1956.
DOI : 10.1021/ja01600a027

D. J. Lyman, Polyurethanes. I. The solution polymerization of diisocyanates with ethylene glycol, Journal of Polymer Science, vol.45, issue.145, pp.49-59, 1960.
DOI : 10.1002/pol.1960.1204514505

P. G. Klein, J. R. Ebdon, and D. J. Hourston, Polyurethane-polysiloxane interpenetrating networks: 3. Polyetherurethane-poly(phenylmethylsiloxane) systems, Polymer, vol.29, issue.6, pp.1079-1085, 1988.
DOI : 10.1016/0032-3861(88)90018-3

S. Vlad, A. Vlad, and S. Oprea, Interpenetrating polymer networks based on polyurethane and polysiloxane, European Polymer Journal, vol.38, issue.4, pp.829-835, 2002.
DOI : 10.1016/S0014-3057(01)00233-6

A. Vuillequez, J. Moreau, M. R. Garda, B. Youssef, and J. M. Saiter, Polyurethane methacrylate/silicone interpenetrating polymer networks synthesis, thermal and mechanical properties, Journal of Polymer Research, vol.40, issue.21, pp.89-96, 2008.
DOI : 10.1007/s10965-007-9147-1

J. V. Alemán, A. V. Chadwick, J. He, M. Hess, K. Horie et al., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials, IUPAC Recommendations Pure Appl. Chem, vol.79, pp.1815-52, 2007.

I. Yilgör and J. E. Mcgrath, Polysiloxane containing copolymers: A survey of recent developments, Adv. Polym. Sci, pp.1-86, 1988.
DOI : 10.1007/BFb0025274

J. V. Dzunuzovic, M. V. Pergal, V. V. Vodnik, B. R. Simonovic, M. Spirkova et al., Analysis of dynamic mechanical, thermal and surface properties of poly(urethane-ester-siloxane) networks based on hyperbranched polyester, Journal of Non-Crystalline Solids, vol.358, issue.23, pp.3161-3169, 2012.
DOI : 10.1016/j.jnoncrysol.2012.09.013

K. Madhavan and B. S. Reddy, Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties, Journal of Polymer Science Part A: Polymer Chemistry, vol.8, issue.9, pp.2980-2989, 2006.
DOI : 10.1002/pola.21401

?. Byczy?ski, M. Dutkiewicz, and H. Maciejewski, Thermal degradation studies of poly(urethane???siloxane) thermosets based on co-poly(dimethyl)(methyl, hydroxypolyoxyethylenepropyl) siloxane, Thermochimica Acta, vol.589, pp.252-261, 2014.
DOI : 10.1016/j.tca.2014.05.040

S. M. Cakic, I. S. Ristic, M. Marinovic-cincovic, and M. Spirkova, The effects of the structure and molecular weight of the macrodiol on the properties polyurethane anionic adhesives, International Journal of Adhesion and Adhesives, vol.41, pp.132-139, 2013.
DOI : 10.1016/j.ijadhadh.2012.11.001

D. Kim, S. Lee, K. Doh, and Y. Nam, Synthesis of urethane graft copolymers with perfluoroalkyl and silicone-containing side chains and their surface properties, Journal of Applied Polymer Science, vol.13, issue.8, pp.2029-2038, 1999.
DOI : 10.1002/(SICI)1097-4628(19991121)74:8<2029::AID-APP18>3.0.CO;2-K

I. Yilgör and J. E. Mcgrath, Polysiloxane containing copolymers: A survey of recent developments, Adv. Polym. Sci, pp.1-86, 1988.
DOI : 10.1007/BFb0025274

V. Darras, Élaboration de réseaux interpénétrés à partir de polymères fluorés, Thèse de l, p.178, 2005.

J. R. Ebdon, D. J. Hourstont, and P. G. Klein, Polyurethane-polysiloxane interpenetrating polymer networks: 2. Morphological and dynamic mechanical studies, Polymer, vol.27, issue.11, pp.1807-1814, 1986.
DOI : 10.1016/0032-3861(86)90280-6

D. K. Chattopadhyay and D. C. Webster, Thermal stability and flame retardancy of polyurethanes, Progress in Polymer Science, vol.34, issue.10, pp.1068-1133, 2009.
DOI : 10.1016/j.progpolymsci.2009.06.002

P. G. Klein, J. R. Ebdon, and D. J. Hourstont, Polyurethane-polysiloxane interpenetrating networks: 3. Polyetherurethane-poly(phenylmethylsiloxane) systems, Polymer, vol.29, issue.6, pp.1079-1085, 1988.
DOI : 10.1016/0032-3861(88)90018-3

M. V. Sobolevskii, I. I. Skorokhodov, V. Ditsent, L. V. Sobolevskaya, E. I. Vovshin et al., Pol. Sci. USSR, vol.16, pp.735-741, 1974.

C. M. Murphy, C. E. Saunders, and D. C. Smith, Thermal and Oxidation Stability of Polymethylphenylsiloxanes, Thermal and oxidation stability of polymethylphenylsiloxanes, pp.2462-2468, 1950.
DOI : 10.1021/ie50492a024

B. Boutevin, F. Guida-pietrasanta, A. Ratsimihety, R. G. Jones, W. Ando et al., Silicone-Containing Polymers, p.80, 2000.

J. Matisons, Hydrosilylation: A Comprehensive Review on Recent Advances, p.432, 2008.

S. Boileau, L. Bouteiller, and A. Kowalewska, Telechelic polydimethylsiloxanes with terminal acetylenic groups prepared by phase-transfer catalysis, Polymer, vol.44, issue.21, pp.6449-6455, 2003.
DOI : 10.1016/j.polymer.2003.08.023

URL : https://hal.archives-ouvertes.fr/hal-01696754

. Fouet, Matériaux polymères pour l'encapsulation de l'électronique de puissance, Thèse de l, p.p, 2015.

D. R. Lide, CRC handbook of chemistry and physics, pp.3-12, 1986.

K. Hayashida, S. Tsuge, and H. Ohtani, Flame retardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography, Polymer, vol.44, issue.19, pp.5611-5616, 2003.
DOI : 10.1016/S0032-3861(03)00622-0

N. Grassie and I. G. Macfarlane, The thermal degradation of polysiloxanes???I. Poly(dimethylsiloxane), European Polymer Journal, vol.14, issue.11, pp.875-884, 1978.
DOI : 10.1016/0014-3057(78)90084-8

I. Yilgor and E. Yilgor, Thermal stabilities of hydroxyalkyl terminated polydimethylsiloxane oligomers, Turkish J. Chem, vol.21, pp.277-285, 1997.

C. Vancaeyzeele, O. Fichet, J. Laskar, S. Boileau, and D. Teyssié, Polyisobutene/polystyrene interpenetrating polymer networks: Effects of network formation order and composition on the IPN architecture, Polymer, vol.47, issue.6, pp.2046-2060, 2006.
DOI : 10.1016/j.polymer.2006.01.026

J. Yeh and Y. Shu, Characteristics of the Degradation and Improvement of the Thermal Stability of Poly

. Copolymers, Journal of Applied Polymer Science, vol.115, pp.2616-2628, 2009.

F. Chuang, H. Tsi, J. Chow, and W. Tsen, Thermal degradation of poly(siloxane-urethane) copolymers, Polymer Degradation and Stability, vol.93, issue.10, pp.1753-1761, 2008.
DOI : 10.1016/j.polymdegradstab.2008.07.029

?. Byczy?ski, M. Dutkiewicz, and H. Maciejewski, Thermal degradation studies of poly(urethane???siloxane) thermosets based on co-poly(dimethyl)(methyl, hydroxypolyoxyethylenepropyl) siloxane, Thermochimica Acta, vol.589, pp.252-261, 2014.
DOI : 10.1016/j.tca.2014.05.040

, Références bibliographiques 1

T. Dollase, H. W. Spiess, M. Gottlieb, and R. Yerushalmi-rozen, Crystallization of PDMS: The effect of physical and chemical crosslinks, Europhysics Letters (EPL), vol.60, issue.3, pp.390-396, 2002.
DOI : 10.1209/epl/i2002-00276-4

. Fouet, Matériaux polymères pour l'encapsulation de l'électronique de puissance, Thèse de l, p.287, 2015.

K. Madhavan and B. S. Reddy, Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties, Journal of Polymer Science Part A: Polymer Chemistry, vol.8, issue.9, pp.2980-2989, 2006.
DOI : 10.1002/pola.21401

A. Soisson, Développement de polymères hydrophobes résistants à haute température pour l'encapsulation de module de puissance, Thèse de l, p.220, 2016.

?. Byczy?ski, M. Dutkiewicz, and H. Maciejewski, Thermal degradation studies of poly(urethane???siloxane) thermosets based on co-poly(dimethyl)(methyl, hydroxypolyoxyethylenepropyl) siloxane, Thermochimica Acta, vol.589, pp.252-261, 2014.
DOI : 10.1016/j.tca.2014.05.040

S. Hamdani-deverennes, Etude fondamentale du comportement au feu de composites silicones : stabilité thermique, résidus sous pyrolyse et tests calorimétriques, Thèse de l, p.p, 2011.

T. S. Radhakrishnan, New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies: Thermal degradation of polydimethylsiloxanes, Journal of Applied Polymer Science, vol.71, issue.3, pp.441-450, 1999.
DOI : 10.1002/pol.12005315841

C. Camino, S. M. Lomakin, and M. Lazzari, Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects, Polymer, vol.42, issue.6, pp.2395-2402, 2001.
DOI : 10.1016/S0032-3861(00)00652-2

F. Chuang, H. Tsi, J. Chow, and W. Tsen, Thermal degradation of poly (siloxane-urethane ) copolymers. Polymer Degradation and Stability, pp.1753-1761, 2008.

P. Budrugeac and E. Segal, On the kinetics of the thermal degradation of polymers with compensation effect and the dependence of activation energy on the degree of conversion, Polymer Degradation and Stability, vol.46, issue.2, pp.203-210, 1994.
DOI : 10.1016/0141-3910(94)90052-3

M. Berrebi, I. Fabre-francke, B. Lavédrine, and O. Fichet, Development of organic glass using Interpenetrating Polymer Networks with enhanced resistance towards scratches and solvents, European Polymer Journal, vol.63, pp.132-140, 2015.
DOI : 10.1016/j.eurpolymj.2014.12.010

URL : https://hal.archives-ouvertes.fr/hal-01206469

J. V. Dzunuzovic, M. V. Pergal, R. Por?ba, V. V. Vodnik, B. R. Simonovi?d et al., Analysis of dynamic mechanical, thermal and surface properties of poly(urethane-ester-siloxane) networks based on hyperbranched polyester, Journal of Non-Crystalline Solids, vol.358, issue.23, pp.3161-3169, 2012.
DOI : 10.1016/j.jnoncrysol.2012.09.013

, Références bibliographiques 1

C. Naudin, C. Clozza, and . Charges, , pp.1-11, 1987.

, Centre d'animation régional en matériaux avancés, Glossaire Des Matériaux Composites, p.32, 2004.

J. Ramier, Comportement mécanique d'élastomères chargés, Influence de l'adhésion charge ? polymère , Influence de la morphologie, Thèse de l'Institut National des Sciences Appliquées de Lyon, 2004.

F. Khedimi, Modélisation micromécanique des élastomères chargés, Thèse de l, 2011.

A. Vidal, E. Papirer, W. Meng, and J. J. Donnet, Modification of silica surfaces by grafting of alkyl chains. I ??? Characterization of silica surfaces by inverse gas-solid chromatography at zero surface coverage, Chromatographia, vol.77, issue.2, pp.121-128, 1987.
DOI : 10.1007/BF02312887

B. B. Boonstra, Role of particulate fillers in elastomer reinforcement: a review, Polymer, vol.20, issue.6, pp.691-704, 1979.
DOI : 10.1016/0032-3861(79)90243-X

G. Kraus, Reinforcement of Elastomers by Carbon Black, Rubber Chemistry and Technology, vol.51, issue.2, pp.297-321, 1978.
DOI : 10.5254/1.3545836

K. S. Kwan, D. A. Harrington, P. A. Moore, J. R. Hahn, J. V. Degroot et al., Synthesis and Use of Colloidal Silica for Reinforcement in Silicone Elastomers, Rubber Chemistry and Technology, vol.74, issue.4, pp.630-644, 2001.
DOI : 10.5254/1.3544963

D. Baker, A. Charlesby, and J. Morris, Reinforcement of silicone elastomer by fine particles, Polymer, vol.9, pp.437-448, 1968.
DOI : 10.1016/0032-3861(68)90053-0

J. W. Harder, Flame resistant silicone elastomers containing carbon black and platinum, p.4, 1972.

S. Benli, U. Yilmazer, F. Pekel, and S. Ozkar, Effect of fillers on thermal and mechanical properties of polyurethane elastomer, Journal of Applied Polymer Science, vol.68, issue.7, pp.1057-1065, 1998.
DOI : 10.1002/(SICI)1097-4628(19980516)68:7<1057::AID-APP3>3.0.CO;2-E

P. C. Watts, P. K. Fearon, W. K. Hsu, N. C. Billingham, H. W. Kroto et al., Carbon nanotubes as polymer antioxidants, Journal of Materials Chemistry, vol.13, issue.3, pp.491-495, 2003.
DOI : 10.1039/b211328g

K. Cavalier, Carbonate de calcium, additif multifonctionnel. dans : Techniques de l'ingénieur, Ref. AM3222, pp.1-10, 2007.

A. Crié, Caractérisation et lois rhéologiques d 'élastomères chargés à basse température pour la simulation du procédé d'extrusion. Thèse de l'École nationale supérieure des Mines de Paris, p.287, 2015.

, 15 Carbon Black -A Global Market Overview, 2016.

I. , Noir de Carbone ? Fiche toxicologique n°264 Disponible sur :< http, 2007.

K. Ohkita, N. Tsubokawa, E. Saitoh, and M. Noda, The free radical polymerization of vinyl monomers in the presence of carbon black, Carbon, vol.13, issue.5, pp.443-448, 1975.
DOI : 10.1016/0008-6223(75)90017-2

F. Askari, M. Barikani, and M. Barmar, Study on thermal stability of polyurethane-urea based on polysiloxane and polycaprolactone diols, Korean Journal of Chemical Engineering, vol.207, issue.11, pp.2093-2099, 2013.
DOI : 10.1002/macp.200600375

W. Lin and W. Lee, Effects of the NCO/OH molar ratio and the silica contained on the properties of waterborne polyurethane resins, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.522, pp.453-460, 2017.
DOI : 10.1016/j.colsurfa.2017.03.022

T. D. Lam, T. V. Hoang, D. T. Quang, and J. S. Kim, Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, pp.87-93, 2009.
DOI : 10.1016/j.msea.2008.09.060

, 21

F. Morel, Compréhension des phénomènes interfaciaux dans les composites à base de charges carbonate de calcium précipité : influence du traitement de surface et du procédé de mise en oeuvre, Thèse de l'Université Claude Bernard - Lyon1, 2012.

, Références bibliographiques 1

G. Rokicki, P. G. Parzuchowski, and M. Mazurek, Non-isocyanate polyurethanes: synthesis, properties

, Polym. Adv. Technol, vol.26, pp.707-761, 2015.

I. , Phosphogène ? fiche toxicologique n°72 [en ligne] Disponible sur : < http, 2016.

S. Merenyi, REACH: Regulation (EC) No) with an introduction and future prospects regarding the area of Chemicals legislation. GRIN Verlag, 1907.

D. Bello, C. A. Herrick, T. J. Smith, S. R. Woskie, R. P. Streicher et al., Skin Exposure to Isocyanates: Reasons for Concern, Environmental Health Perspectives, vol.115, issue.3, pp.328-335, 2007.
DOI : 10.1289/ehp.9557

URL : http://europepmc.org/articles/pmc1849909?pdf=render

A. Maître, A. Perdrix, and . Isocyanates, EMC -Toxicol, vol.1, pp.186-193, 2004.

C. A. Krone, J. T. Ely, T. Klinger, and R. J. Rando, Isocyanates in Flexible Polyurethane Foams, Bulletin of Environmental Contamination and Toxicology, vol.70, issue.2, pp.328-335, 2003.
DOI : 10.1007/s00128-002-0195-2

D. C. Allport, D. S. Gilbert, and S. M. Outterside, MDI and TDI: A Safety, Health and the Environment: A Source Book and Practical Guide, 2003.

P. W. Morgan, Low-temperature solution polycondensation, Journal of Polymer Science Part C: Polymer Symposia, vol.5, issue.2, pp.1075-1096, 1963.
DOI : 10.1002/polc.5070040225

N. Yamazaki, T. Iguchi, and F. Higashi, The reaction of diphenyl carbonate with amines and its application to polymer synthesis, Journal of Polymer Science: Polymer Chemistry Edition, vol.17, issue.3, pp.835-841, 1979.
DOI : 10.1002/pol.1979.170170322

J. A. Lovell, Polyurethane elastomers from a polyether bis-chloroformate and a diamine. US Pat, pp.245-056, 1966.

J. Thiem and H. Lueders, Synthesis and properties of polyurethanes derived from diaminodianhydroalditols Makromol

, Chemie, vol.187, pp.2775-2785, 1986.

J. R. Schaefgen, H. Koontz, and R. F. Tietz, Interfacial polycondensation. VIII. Application to A???B-type monomers, Journal of Polymer Science, vol.40, issue.137
DOI : 10.1002/pol.1959.1204013708

. Sci and . Xl, , pp.377-387, 1959.

A. Cornille, R. Auvergne, O. Figovsky, B. Boutevin, and S. Caillol, A perspective approach to sustainable routes for non-isocyanate polyurethanes, European Polymer Journal, vol.87, pp.535-552, 2016.
DOI : 10.1016/j.eurpolymj.2016.11.027

URL : https://hal.archives-ouvertes.fr/hal-01464067

J. S. Nowick, N. A. Powell, T. M. Nguyen, and G. Noronha, An improved method for the synthesis of enantiomerically pure amino acid ester isocyanates, The Journal of Organic Chemistry, vol.57, issue.26, pp.7364-7366, 1992.
DOI : 10.1021/jo00052a069

F. Ragaini, M. Gasperini, and S. Cenini, Phosphorus Acids as Highly Efficient Promoters for the Palladium-Phenanthroline Catalyzed Carbonylation of Nitrobenzene to Methyl Phenylcarbamate???, Advanced Synthesis & Catalysis, vol.346, issue.1, pp.63-71, 2004.
DOI : 10.1002/adsc.200303143

F. Paul, Catalytic synthesis of isocyanates or carbamates from nitroaromatics using Group VIII transition metal catalysts, Coordination Chemistry Reviews, vol.203, issue.1, pp.269-323, 2000.
DOI : 10.1016/S0010-8545(99)00230-1

B. Chen and S. S. Chuang, In situ infrared study of oxidative carbonylation of aniline with methanol on Cu-based catalysts, Green Chemistry, vol.5, issue.4, pp.484-489, 2003.
DOI : 10.1039/b303283c

Y. Ono, Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block, Applied Catalysis A: General, vol.155, issue.2
DOI : 10.1016/S0926-860X(96)00402-4

, Appl. Catal. A Gen, vol.155, pp.133-166, 1997.

O. Kreye, H. Mutlu, and M. R. Meier, Sustainable routes to polyurethane precursors, Green Chemistry, vol.4, issue.205, pp.1431-1455, 2013.
DOI : 10.1039/c3py00004d

D. Chaturvedi, Perspectives on the synthesis of organic carbamates, Tetrahedron, vol.68, issue.1, pp.15-45
DOI : 10.1016/j.tet.2011.10.001

C. Hahn, H. Keul, and M. Möller, Hydroxyl-functional polyurethanes and polyesters: synthesis, properties and potential biomedical application, Polymer International, vol.296, issue.46, pp.1048-1060, 2012.
DOI : 10.1002/masy.201051050

S. M. Arce, A. A. Kolender, and O. Varela, Synthesis of ??-amino-??-phenylcarbonate alkanes and their polymerization to [n]-polyurethanes, Polymer International, vol.200, issue.9, pp.1212-1220, 2010.
DOI : 10.1002/pi.2850

J. N. Argyropoulos and D. Bhattacharjee, Ambient temperature curable isocyanate-free compositions for preparing crosslinked polyurethanes, pp.2397506-2397507, 2011.

J. F. Kinstle and L. E. Sepulveda, A novel ???apparent sublimation??? of a polymer, Journal of Polymer Science: Polymer Letters Edition, vol.15, issue.8, pp.467-469, 1977.
DOI : 10.1002/pol.1977.130150804

S. Neffgen, H. Keul, and H. Höcker, Cationic Ring-Opening Polymerization of Trimethylene Urethane:?? A Mechanistic Study, Macromolecules, vol.30, issue.5, pp.1289-1297, 1997.
DOI : 10.1021/ma9610774

S. Neffgen, H. Keul, and H. Höcker, Ring-opening polymerization of cyclic urethanes and ring-closing depolymerization of the respective polyurethanes, Macromolecular Rapid Communications, vol.17, issue.6, pp.373-382, 1996.
DOI : 10.1002/marc.1996.030170602

O. Ihata, Y. Kayaki, and T. Ikariya, Synthesis of Thermoresponsive Polyurethane from 2-Methylaziridine and Supercritical Carbon Dioxide. Angew. Chemie -Int, pp.717-719, 2004.
DOI : 10.1002/ange.200352215

J. S. Tian, J. Q. Wang, Y. Du, and L. N. He, Copolymerization of carbon dioxide with 1,2-epoxides, Prog. Chem, vol.18, pp.74-79, 2006.

, membered cyclic carbonate and diamine based on the model reaction, J. Polym. Sci. Part A Polym. Chem, vol.39, pp.851-859, 2001.

J. Guan, Y. Song, Y. Lin, X. Ying, M. Zuo et al., Progress in study of non-isocyanate polyurethane

, Ind. Eng. Chem. Res, vol.50, pp.6517-6527, 2011.

J. H. Clements, Reactive Applications of Cyclic Alkylene Carbonates, Industrial & Engineering Chemistry Research, vol.42, issue.4, pp.663-674, 2003.
DOI : 10.1021/ie020678i

S. J. Groszos and E. K. Drechsel, Method of preparing a polyurethane. US Pat, pp.802-824, 1957.

E. Delebecq, J. P. Pascault, B. Boutevin, and F. Ganachaud, On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane, Chemical Reviews, vol.113, issue.1, pp.80-118, 2013.
DOI : 10.1021/cr300195n

URL : https://hal.archives-ouvertes.fr/hal-00825156

H. Blattmann, M. Fleischer, M. Bähr, and R. Mülhaupt, Isocyanate- and Phosgene-Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide, Macromolecular Rapid Communications, vol.84, issue.14, pp.1238-1254, 2014.
DOI : 10.1002/1521-3900(200209)187:1<325::AID-MASY325>3.0.CO;2-L

M. S. Kathalewar, P. B. Joshi, A. S. Sabnis, and V. C. Malshe, Non-isocyanate polyurethanes: from chemistry to applications, RSC Advances, vol.47, issue.1, pp.4110-4129, 2013.
DOI : 10.1002/app.1993.070470105

O. Figovsky, L. Shapovalov, A. Leykin, O. Birukova, and R. Potashnikova, Advances in the field of nonisocyanate polyurethanes based on cyclic carbonates, Chem. Chem. Technol, vol.7, pp.79-87, 2013.

H. Tomita, F. Sanda, and T. Endo, Polyaddition of bis(seven-membered cyclic carbonate) with diamines: A novel and efficient synthetic method for polyhydroxyurethanes, Journal of Polymer Science Part A: Polymer Chemistry, vol.197, issue.23, pp.4091-4100, 2001.
DOI : 10.1098/rspa.1949.0055

H. Tomita, F. Sanda, and T. Endo, Polyaddition behavior of bis(five- and six-membered cyclic carbonate)s with diamine, Journal of Polymer Science Part A: Polymer Chemistry, vol.197, issue.6, pp.860-867, 2001.
DOI : 10.1098/rspa.1949.0055

A. Cornille, A. Guillet, S. Benyahya, S. Negrell, B. Boutevin et al., Room temperature flexible isocyanate-free polyurethane foams, European Polymer Journal, vol.84, pp.873-888, 2016.
DOI : 10.1016/j.eurpolymj.2016.05.032

URL : https://hal.archives-ouvertes.fr/hal-01409561

O. Figovsky, L. Shapovalov, and F. Buslov, Ultraviolet and thermostable non-isocyanate polyurethane coatings, Surface Coatings International Part B: Coatings Transactions, vol.15, issue.1, pp.67-71, 2005.
DOI : 10.1007/BF02699710

B. Nohra, L. Candy, J. Blanco, C. Guerin, Y. Raoul et al., From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes, Macromolecules, vol.46, issue.10, pp.3771-3792, 2013.
DOI : 10.1021/ma400197c

R. M. Garipov, V. A. Sysoev, V. V. Mikheev, A. I. Zagidullin, R. Deberdeev et al., Reactivity of Cyclocarbonate Groups in Modified Epoxy???Amine Compositions, Doklady Physical Chemistry, vol.393, issue.1-3, pp.289-292, 2003.
DOI : 10.1023/B:DOPC.0000003463.07883.c9

V. Besse, F. Camara, F. Méchin, E. Fleury, S. Caillol et al., How to explain low molar masses in PolyHydroxyUrethanes (PHUs), European Polymer Journal, vol.71, pp.1-11, 2015.
DOI : 10.1016/j.eurpolymj.2015.07.020

URL : https://hal.archives-ouvertes.fr/hal-01181343

N. Kihara and T. Endo, Synthesis and properties of poly(hydroxyurethane)s, Journal of Polymer Science Part A: Polymer Chemistry, vol.31, issue.11, pp.2765-2773, 1993.
DOI : 10.1002/pola.1993.080311113

V. Besse, G. Foyer, R. Auvergne, S. Caillol, and B. Boutevin, Access to nonisocyanate poly(thio)urethanes: A comparative study, Journal of Polymer Science Part A: Polymer Chemistry, vol.44, issue.15, pp.3284-3296, 2013.
DOI : 10.1021/ma2016584

URL : https://hal.archives-ouvertes.fr/hal-00843274

A. Boyer, E. Cloutet, T. Tassaing, B. Gadenne, C. Alfos et al., Solubility in CO2 and carbonation studies of epoxidized fatty acid diesters: towards novel precursors for polyurethane synthesis, Green Chemistry, vol.108, issue.12, p.2205, 2010.
DOI : 10.1039/c0gc00371a

URL : https://hal.archives-ouvertes.fr/hal-00679371

H. Tomita, F. Sanda, and T. Endo, Reactivity comparison of five- and six-membered cyclic carbonates with amines: Basic evaluation for synthesis of poly(hydroxyurethane), Journal of Polymer Science Part A: Polymer Chemistry, vol.193, issue.1, pp.162-168, 2001.
DOI : 10.1002/macp.1992.021930624

B. Ochiai, S. Inoue, and T. Endo, Salt effect on polyaddition of bifunctional cyclic carbonate and diamine, Journal of Polymer Science Part A: Polymer Chemistry, vol.39, issue.24, pp.6282-6286, 2005.
DOI : 10.1295/koron.41.151

G. 49-proempers, H. Keul, and H. Höcker, Polyurethanes with pendant hydroxy groups: polycondensation of 1,6-bis-O-phenoxycarbonyl-2,3???4,5-di-O-isopropylidenegalactitol and 1,6-di-O-phenoxycarbonylgalactitol with diamines, Green Chem., vol.8, issue.5, p.467, 2006.
DOI : 10.1039/jr9500000047

M. Caplow, Kinetics of carbamate formation and breakdown, Journal of the American Chemical Society, vol.90, issue.24, pp.6795-6803, 1968.
DOI : 10.1021/ja01026a041

T. Huntsman and . Bulletin, Jeffsol alkylene carbonates synthesis of hydroxyalkyl urethanes, 2005.

L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Isocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s, Chemical Reviews, vol.115, issue.22, pp.12407-12439, 2015.
DOI : 10.1021/acs.chemrev.5b00355

URL : https://hal.archives-ouvertes.fr/hal-01365096

Y. He, H. Keul, and M. Möller, Synthesis, characterization, and application of a bifunctional coupler containing a five- and a six-membered ring carbonate, Reactive and Functional Polymers, vol.71, issue.2, pp.175-186, 2011.
DOI : 10.1016/j.reactfunctpolym.2010.11.031

B. Ochiai, M. Matsuki, T. Miyagawa, D. Nagai, and T. Endo, Kinetic and computational studies on aminolysis of bicyclic carbonates bearing alicyclic structure giving alicyclic hydroxyurethanes, Tetrahedron, vol.61, issue.7, pp.1835-1838, 2005.
DOI : 10.1016/j.tet.2004.12.014

A. Yuen, A. Boission, E. Gomez-bengoa, F. Ruipérez, M. Isik et al., Room temperature synthesis of non-isocyanate polyurethanes (NIPUs) using highly reactive N-substituted 8-membered cyclic carbonates, Polymer Chemistry, vol.70, issue.11, pp.2105-2111, 2016.
DOI : 10.1016/j.eurpolymj.2015.07.011

A. Cornille, J. Serres, G. Michaud, F. Simon, S. Fouquay et al., Syntheses of epoxyurethane polymers from isocyanate free oligo-polyhydroxyurethane, European Polymer Journal, vol.75, pp.175-189, 2016.
DOI : 10.1016/j.eurpolymj.2015.12.017

URL : https://hal.archives-ouvertes.fr/hal-01248896

G. A. Olah, G. K. Prakash, and A. Goepper, Anthropogenic Chemical Carbon Cycle for a Sustainable Future, Journal of the American Chemical Society, vol.133, issue.33
DOI : 10.1021/ja202642y

, Soc, vol.133, pp.12881-12898, 2011.

H. Tomita, F. Sanda, and T. Endo, Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine, Journal of Polymer Science Part A: Polymer Chemistry, vol.53, issue.21, pp.3678-3685, 2001.
DOI : 10.1021/cr60165a003

O. Lamarzelle, P. L. Durand, A. L. Wirotius, G. Chollet, E. Grau et al., Activated Lipidic Cyclic Carbonates for
DOI : 10.1039/c5py01964h

URL : https://hal.archives-ouvertes.fr/hal-01364916

, Isocyanate Polyurethane Synthesis. Polym. Chem, vol.7, pp.1439-1451, 2016.

C. D. Diakoumakos and D. L. Kotzev, Non-Isocyanate-Based Polyurethanes Derived upon the Reaction of Amines with Cyclocarbonate Resins, Macromolecular Symposia, vol.216, issue.1, pp.37-46, 2004.
DOI : 10.1002/masy.200451205

D. C. Webster and A. L. Crain, Synthesis and applications of cyclic carbonate functional polymers in thermosetting coatings, Progress in Organic Coatings, vol.40, issue.1-4, pp.275-282, 2000.
DOI : 10.1016/S0300-9440(00)00114-4

T. Buergel, M. Fedtke, and M. Franzke, Reaction of cyclic carbonates with amines: Linear telechelic oligomers, Polymer Bulletin, vol.147, issue.2, pp.155-162, 1993.
DOI : 10.1007/BF00296844

B. Nohra, L. Candy, J. F. Blanco, Y. Raoul, and Z. Mouloungui, Aminolysis Reaction of Glycerol Carbonate in Organic and Hydroorganic Medium, Journal of the American Oil Chemists' Society, vol.67, issue.6, pp.1125-1133, 2012.
DOI : 10.1016/j.tet.2004.12.014

A. Corma and H. Garcia, Lewis Acids:?? From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis, Chemical Reviews, vol.103, issue.11, pp.4307-4365, 2003.
DOI : 10.1021/cr030680z

M. Helou, O. Miserque, J. M. Brusson, J. F. Carpentier, and S. M. Guillaume, Organocatalysts for the Controlled ???Immortal??? Ring-Opening Polymerization of Six-Membered-Ring Cyclic Carbonates: A Metal-Free, Green Process, Chemistry - A European Journal, vol.44, issue.46, pp.13805-13813, 2010.
DOI : 10.1002/pola.10289

URL : https://hal.archives-ouvertes.fr/hal-00589214

N. E. Kamber, W. Jeong, R. M. Waymouth, R. C. Pratt, B. G. Lohmeijer et al., Organocatalytic Ring-Opening Polymerization, Chemical Reviews, vol.107, issue.12, pp.5813-5840, 2007.
DOI : 10.1021/cr068415b

M. K. Kiesewetter, E. J. Shin, J. L. Hedrick, and R. M. Waymouth, Organocatalysis: Opportunities and Challenges for Polymer Synthesis, Macromolecules, vol.43, issue.5, pp.2093-2107, 2010.
DOI : 10.1021/ma9025948

P. Ashton, P. Calcagno, N. Spencer, K. Harris, and D. Philp, Using Polarization Effects to Alter Chemical Reactivity:??? A Simple Host Which Enhances Amine Nucleophilicity, Organic Letters, vol.2, issue.10, pp.1365-1373, 2000.
DOI : 10.1021/ol005604m

Y. Miao, Y. Phuphuak, C. Rousseau, T. Bousquet, A. Mortreux et al., Ring-opening polymerization of lactones using binaphthyl-diyl hydrogen phosphate as organocatalyst and resulting monosaccharide functionalization of polylactones, Journal of Polymer Science Part A: Polymer Chemistry, vol.24, issue.43, pp.2279-2287, 2013.
DOI : 10.1016/S0079-6700(99)00028-3

URL : https://hal.archives-ouvertes.fr/hal-01688084

K. S. Bisht, Y. Y. Svirikin, L. A. Henderson, R. A. Gross, D. L. Kaplan et al., Macromolecules, vol.30, issue.25, pp.7735-7742, 1997.
DOI : 10.1021/ma9708858

S. Kobayashi, H. Kikuchi, and H. Uyama, Lipase-catalyzed ring-opening polymerization of 1,3-dioxan-2-one, Macromolecular Rapid Communications, vol.18, issue.7, pp.575-579, 1997.
DOI : 10.1002/marc.1997.030180707

M. Blain, L. Jean-gérard, R. Auvergne, D. Benazet, S. Caillol et al., Rational investigations in the ring opening of cyclic carbonates by amines, Green Chem., vol.62, issue.9, pp.4286-4291, 2014.
DOI : 10.1016/j.tet.2006.09.066

URL : https://hal.archives-ouvertes.fr/hal-01064226

M. Blain, H. Yau, L. Jean-gérard, R. Auvergne, D. Benazet et al., Urea- and Thiourea-Catalyzed Aminolysis of Carbonates, ChemSusChem, vol.133, issue.16, pp.2269-2272, 2016.
DOI : 10.1021/ja110685k

URL : https://hal.archives-ouvertes.fr/hal-01356889

R. H. Lambeth and T. J. Henderson, Organocatalytic synthesis of (poly)hydroxyurethanes from cyclic carbonates and amines, Polymer, vol.54, issue.21, pp.5568-5573, 2013.
DOI : 10.1016/j.polymer.2013.08.053

A. Steblyanko, W. Choi, F. Sanda, and T. Endo, Addition of five-membered cyclic carbonate with amine and its application to polymer synthesis, Journal of Polymer Science Part A: Polymer Chemistry, vol.193, issue.13, pp.2375-2380, 2000.
DOI : 10.1002/macp.1992.021930624

M. Kim, H. Kim, C. Ha, D. Park, and J. Lee, Syntheses and thermal properties of poly(hydroxy)urethanes by polyaddition reaction of bis(cyclic carbonate) and diamines, Journal of Applied Polymer Science, vol.4, issue.11, pp.2735-2743, 2001.
DOI : 10.1295/polymj.20.499

C. Carré, H. Zoccheddu, S. Delalande, P. Pichon, and L. Avérous, Synthesis and characterization of advanced biobased thermoplastic nonisocyanate polyurethanes, with controlled aromatic-aliphatic architectures, European Polymer Journal, vol.84, pp.759-769, 2016.
DOI : 10.1016/j.eurpolymj.2016.05.030

G. Rokicki and M. Lewandowski, Epoxy Resins Modified by Carbon Dioxide, Angewandte Makromolekulare Chemie, vol.148, issue.1, pp.53-66, 1987.
DOI : 10.1002/apmc.1987.051480105

O. L. Figovsky, Hybrid nonisocyanate polyurethane network polymers and composites formed therefrom, US Pat, 1998.

O. L. Figovsky and L. D. Shapovalov, Nonisocyanate polyurethanes for adhesives and coatings. First Int
DOI : 10.1109/polytr.2001.973291

. Adhes and . Microelectron, Proc. (Cat. No.01TH8592), pp.257-264, 2001.

O. Figovsky, Improving the Protective Properties of Nonmetallic Corrosion-Resistant Materials and Coatings, Journal of Mendeleev Chemical Society, vol.33, issue.3, pp.31-36, 1988.

O. Birukov, O. Figovsky, A. Leykin, and L. Shapovalov, Epoxy-amine composition modified with hydroxyalkylurethane, pp.7989553-7989555, 2011.

O. Birukov, O. Figovsky, A. Leykin, and L. Shapovalov, Hybrid epoxy-amine hydroxyurethane-grafted polymer, p.20150353683, 2014.

B. Ochiai, H. Kojima, and T. Endo, Synthesis and properties of polyhydroxyurethane bearing silicone backbone, Journal of Polymer Science Part A: Polymer Chemistry, vol.549, issue.072
DOI : 10.1016/j.tca.2012.09.008

, Sci. Part A Polym. Chem, vol.52, pp.1113-1118, 2014.

K. Hanada, K. Kimura, O. Takahashi, M. Kawakami, and . Uruno, Polysiloxane-modified polyhydroxy polyurethane resin, method for producing same, heat sensitive recording material using the resin, imitation leather, thermoplastic polyolefin resin skin material, material for weather strip, and weather strip US Pat, pp.703-648, 2014.

B. Ochiai and T. Utsuno, Non-isocyanate synthesis and application of telechelic polyurethanes via polycondensation of diurethanes obtained from ethylene carbonate and diamines, Journal of Polymer Science Part A: Polymer Chemistry, vol.7, issue.8, pp.525-533, 2013.
DOI : 10.1002/marc.201100223

C. Li, S. Li, J. Zhao, Z. Zhang, J. Zhang et al., Synthesis and characterization of aliphatic poly(amide urethane)s having different nylon 6 segments through non-isocyanate route, Journal of Polymer Research, vol.50, issue.7, 2014.
DOI : 10.1016/j.polymer.2009.07.019

M. H. Elrehim and . Abd, Synthesis and characterization of hyperbranched poly (urea-urethane) s, p.p, 2004.

S. Oprea, Effect of structure on the thermal stability of curable polyester urethane urea acrylates, Polymer Degradation and Stability, vol.75, issue.1, pp.9-15, 2002.
DOI : 10.1016/S0141-3910(01)00200-2

E. A. Werner, Urea as a Hygroscopic Substance, Nature, vol.139, issue.3516, pp.512-512, 1937.
DOI : 10.1038/139512a0

, Synthèse 2.1. Synthèse des précurseurs PDMS n propyle OH

P. Les, 21 propyle OH sont synthétisés par réaction d'hydrosilylation entre un ?,?-dihydrogéno polydiméthylesiloxane et l'alcool allylique. Pour cela, le PDMS n H et l'alcool allylique sont introduits en ratio 3

, de réaction pour la synthèse des matériaux Si n R PU a été réalisée par DSC à l'aide d'un analyseur TA Instruments DSC Q100. Le logiciel de traitement des données est Universal Analysis

, réaction, l'échantillon est refroidi sans contrôle de la vitesse à 20 °C, température à laquelle une isotherme de 2 min est réalisée, puis il subit une chauffe, à 10°C/min jusqu'à 200°C. Un second balayage est appliqué une nouvelle fois à l'échantillon afin de s'assurer de la réticulation complète du matériau

, réaction, un nouvel échantillon est chauffé jusqu'à la température de la réaction, sans contrôle de la vitesse de chauffe. Une fois la température atteinte, une isotherme est réalisée. Le temps de réaction est déterminé à la fin du signal exothermique

, Les analyses thermogravimétriques ont été réalisées à l'aide d'un analyseur thermogravimétrique TA Instruments Q50. Le logiciel de traitement des données est Universal Analysis

, sont soumis à une rampe de température de 20 °C/min de 25 à 700 °C. Le gaz de balayage est de l'air synthétique (60 mL/min) La température de dégradation (Td) est mesurée pour une perte, Les échantillons dont la masse est comprise entre 15 et 25 mg