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Résumé

Les di�érentes modalités d'imagerie par ondes présentent chacune des limi-
tations en termes de résolution ou de contraste. Dans ce travail, nous mod-
élisons l'imagerie ultrasonore ultrarapide et présentons des méthodes de re-
construction qui améliorent la précision de l'imagerie ultrasonore. Nous in-
troduisons deux méthodes qui permettent d'augmenter le contraste et de
mesurer la position superrésolue et la vitesse dans les vaisseaux sanguins.
Nous présentons aussi une méthode de reconstruction des paramètres micro-
scopiques en tomographie d'impédance électrique en utilisant des mesures
multifréquence et en s'aidant de la théorie de l'homogénisation.
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Abstract

Di�erent modalities in wave imaging each present limitations in terms of
resolution or contrast. In this work, we present a mathematical model of
the ultrafast ultrasound imaging modality and reconstruction methods which
can improve contrast and resolution in ultrasonic imaging. We introduce two
methods which allow to improve contrast and to locate blood vessels below
the di�raction limit while simultaneously estimating the blood velocity. We
also present a reconstruction method in electrical impedance tomography
which allows reconstruction of microscopic parameters from multi-frequency
measurements using the theory of homogenization.
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Introduction

In medical imaging, inverse problems are often ill-posed, or limited in their
resolution by the physics of the waves at play. There exist several tech-
niques to overcome these di�culties, using additional information about the
medium. For example, by reducing the set of admissible solutions and the
number of unknowns, by looking for a inclusions with parameters signi�cantly
di�erent from those of the surrounding medium [8].

Assuming di�erent frequency responses for di�erent tissue components,
another approach uses signal separation techniques to reconstruct robust
solutions using multi-frequency settings [6], [1], [2].

A third promising technique for improving the robustness of wave-based
imaging is to combine di�erent physical types of waves. This allows to
alleviate de�ciencies of each separate type of waves and to combine their
strengths. Example of multi-wave imaging modalities include photo-acoustic
and thermo-acoustic imaging [53], magnetic resonance elastography [41],
magneto-acousto-electrical tomography [47], magneto-acoustic tomography
with magnetic induction [54], and impediography [34].

Recently, nanoparticles have been proposed to be used as labels in molec-
ular biology. Plasmon resonant nanoparticles have unique capabilities of
enhancing the brightness and directivity of light and con�ning strong elec-
tromagnetic �elds [38]. These nonlinear optical contrast mechanisms reveal
new information from biological specimens and tissues.

Finally, one can use the speci�c dynamics of the imaged elements to im-
prove the robustness of the imaging process. For example in blood �ow imag-
ing, the blood dynamics are used to locate blood vessels [13]. Such techniques
have been successfully used in Dynamic Optical Coherence Tomography [10].

This thesis aims at investigating di�erent methods for improving the res-
olution and contrast of wave-based imaging techniques for imaging of biolog-
ical tissues. It is focused on two promising non-invasive imaging methods:
ultrafast ultrasound, based on the propagation of sound waves, and electri-
cal impedance tomography (EIT), based on the propagation of low frequency
electro-magnetic waves. Both ultrasound imaging and EIT present the ad-

9
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vantage of being fast, relatively cheap and easy to operate. These methods
are examples of the tradeo� between contrast and resolution that is encoun-
tered in many wave-based imaging techniques. Ultrasound imaging provides
a high resolution of the order of less than a millimeter, but since acoustic
impedance has a poor contrast in biological media, its contrast is very low.
On the contrary, due to its low frequency nature, EIT provides a very low
resolution, and due to its ill-posedness is very sensitive to measurements er-
rors. Contrast is not a problem though, since di�erent features in biological
tissues present very distinct conductivities.

To overcome these di�culties, several approaches are possible. Ultrafast
ultrasound is a promising imaging modality based on acoustic propagation.
Instead of using focused waves as is the case in traditional echography, ul-
trafast ultrasound is based on plane waves produced by an array of piezzo-
electrical elements. This allows for very high numbers of images per seconds,
up to 10000Hz. This method induces a worse signal-to-noise ratio (SNR)
than conventional echography, but by combining the information of a whole
sequence of images, this allows for better imaging, for example in blood �ow
imaging. Signal processing techniques can then be used to improve recon-
struction, using knowledge on dynamics of blood and tissue.

We make use of the dynamics of blood �ow, and show that it can be used
to improve the imaging of blood vessels.

In the case of a cell culture, it is impossible to directly image the micro-
structure. An idea developed in this thesis to improve the usefulness of EIT is
to use the theory of homogenization and a very precise a priori model on the
micro-structure. This model, combined with multi-frequency measurements,
will allow us to reconstruct precise information about the micro-structure.

Overview of the thesis

The thesis is divided into four chapters.

First chapter

This chapter provides a mathematical analysis of ultrafast ultrasound imag-
ing. This newly emerging modality for biomedical imaging uses plane waves
instead of focused waves in order to achieve very high frame rates. We derive
the point spread function of the system in the Born approximation for wave
propagation and study its properties.
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Second chapter

In this chapter, we consider dynamic data for blood �ow imaging, and intro-
duce a suitable random model for blood cells. We show that a singular value
decomposition method can successfully remove the clutter signal by using
the di�erent spatial coherence of tissue and blood signals, thereby providing
high-resolution images of blood vessels, even in cases when the clutter and
blood speeds are comparable in magnitude. Several numerical simulations
are presented to illustrate and validate the approach.

Third chapter

In this chapter, we introduce a signal processing method to produce simul-
taneous localization and velocity measurements of blood vessels, with super-
resolution. The method is based on L1 minimization and sparsity, with an
added dynamic parameter. Numerical experiments show that this method
allow for a reconstruction of both particle location and velocity.

Fourth chapter

In this chapter, we present a simpli�ed electrical model for tissue culture. We
derive a mathematical structure for overall electrical properties of the culture
and study their dependence on the frequency of the current. We introduce a
method for recovering the microscopic properties of the cell culture from the
spectral measurements of the e�ective conductivity. Numerical examples are
provided to illustrate the performance of our approach.

Publications

Results of chapters 1 and 2 are published in [3]. Results of chapter 4 is
published in [7]. Chapter 3 will be published in a forthcoming paper.
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Chapter 1

Modeling of Ultrafast Ultrasound
Imaging

1.1 Introduction

Conventional ultrasound imaging is performed with focused ultrasonic waves
[49, 48]. This yields relatively good spatial resolution, but clearly limits the
acquisition time, since the entire specimen has to be scanned. Over the last
decade, ultrafast imaging in biomedical ultrasound has been developed [44,
50, 23]. Plane waves are used instead of focused waves, thereby limiting the
resolution but increasing the frame rate considerably, up to 20,000 frames per
second. Ultrafast imaging has been made possible by the recent technological
advances in ultrasonic transducers, but the idea of ultrafast ultrasonography
dates back to 1977 [17]. The advantages given by the very high frame rate
are many, and the applications of this new modality range from blood �ow
imaging [12, 23], deep super-resolution vascular imaging [26] and functional
imaging of the brain [40, 39] to ultrasound elastography [29]. In this chapter
we focus on blood �ow imaging.

A single ultrafast ultrasonic image is obtained as follows [44]. A pulsed
plane wave (focused on the imaging plane � see Figure 1.1b) insoni�es the
medium, and the back-scattered echoes are measured at the receptor array,
a linear array of piezoelectric transducers. These spatio-temporal measure-
ments are then beamformed to obtain a two-dimensional spatial signal. This
is what we callstatic inverse problem, as it involves only a single wave, and
the dynamics of the medium is not captured. The above procedure yields
very low lateral resolution, i.e. in the direction parallel to the wavefront,
because of the absence of focusing. In order to solve this issue, it was pro-
posed to use multiple waves with di�erent angles: these improve the lateral

13
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resolution, but has the drawback of reducing the frame rate.
In this work, we provide a detailed mathematical analysis of ultrasound

ultrafast imaging. To our knowledge, this is the �rst mathematical study
addressing the important challenges of this emerging and very promising
modality. Even though in this work we limit ourselves to formalize the exist-
ing methods, the mathematical analysis provided gives important insights,
which we expect will lead to improved reconstruction schemes.

First, we carefully study the forward and inverse static problems. In
particular, we derive the point spread function (PSF) of the system, in the
Born approximation for ultrasonic wave propagation. We investigate the
behavior of the PSF, and analyze the advantages of angle compounding. In
particular, we study the lateral and vertical resolutions. In addition, this
analysis allows us to fully understand the roles of the key parameters of the
system, such as the directivity of the array and the settings related to angle
compounding.

This chapter is structured as follows. In Section 1.2 we describe the imag-
ing system and the model for wave propagation. In Section 1.3 we discuss the
static inverse problem. In particular, we describe the beamforming process,
the PSF and the angle compounding technique.

1.2 The Forward Problem

The imaging system is composed of a medium contained inR3
+ := f (x; y; z) 2

R3 : z > 0g and of a �xed linear array of transducers located on the line
z = 0; y = 0. This linear array of piezoelectric transducers (see [49, Chapter
7]) produces an acoustic illumination that is focused in elevation � in they
coordinates, near the planey = 0 � and has the form of a plane wave in the
direction k 2 S1 in the x; z coordinates (see Figure 1.1b). Typical sizes for
the array length and for the penetration depth are about10� 1 m.

We make the assumption that the acoustic incident �eldui can be ap-
proximated as

ui (x; y; z; t) = Az (y) f
�
t � c� 1

0 k � (x; z)
�

;

where c0 is the background speed of sound in the medium. The function
Az describes the beam waist in the elevation direction at depthz (between
4 � 10� 3 m and 10� 2 m). This is a simpli�ed expression of the true incoming
wave, which is focused by a cylindrical acoustic lens located near the receptor
array (see [49, Chapters 6 and 7]). The functionf is the waveform describing
the shape of the input pulse:

f (t) = e2�i� 0 t � (� 0t) ; � (u) = e� u 2

� 2 ; (1.1)



1.2. THE FORWARD PROBLEM 15

Time (s) # 10 -6

-1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) The real part of the input pulse f .

x

z

y

Receptor array

Imaging plane
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Figure 1.1: The pulsef of the incident wave ui and the focusing region.

where � 0 is the principal frequency and� the width parameter of the pulse
(see Figure 1.1a). Typically,� 0 will be of the order of106 s� 1. More precisely,
realistic quantities are

c0 = 1:5 � 103 m�s� 1; � 0 = 6 � 106 s� 1; � = 1: (1.2)

Let c : R3 ! R+ be the speed of sound and consider the perturbationn
given by

n (x) =
1

c2 (x)
�

1
c2

0
:

We assume that suppn � R3
+ . The acoustic pressure in the medium satis�es

the wave equation

� u (x; t) �
1

c2 (x)
@2

@t2
u (x; t) = 0 ; x 2 R3;

with a suitable radiation condition on u � ui . Let G denote the Green's
function for the acoustic wave equation inR3 [5, 52]:

G(x; t; x0; t0) = �
(4� )� 1

jx � x0j
�

�
(t � t0) � c� 1

0 jx � x0j
�

:

In the following, we will assume that the Born approximation holds, i.e. we
consider only �rst re�ections on scatterers, and neglect subsequent re�ections
[5, 21] (in cases when the Born approximation is not valid, nonlinear methods
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have to be used). This is a very common approximation in medical imaging,
and is justi�ed by the fact that soft biological tissues are almost acoustic
homogeneous, due to the high water concentration. In mathematical terms,
it consists in the linearization around the constant sound speedc0. In this
case, the scattered waveus := u � ui is given by

us (x; t) =
Z

R

Z

R3
n (x0)

@2ui

@t2
(x0; t0) G (x; t; x0; t0) dx0dt0; x 2 R3; t 2 R+ ;

since contributions fromn@2
t us are negligible. Therefore, inserting the ex-

pressions for the Green's function and for the incident wave yields

us (x; t) = �
Z

R3

(4� )� 1

jx � x0j
n (x0) Az0 (y0) f 00

�
t � c� 1

0 ((x0; z0) � k + jx � x0j)
�

dx0;

where we setx = ( x; y; z) and x0 = ( x0; y0; z0). Since the waist of the beam
in the y direction is small compared to the distance at which we image the
medium, we can make the assumption

jx � (x0; y0; z0)j ' j x � (x0; 0; z0)j ; x = ( x; 0; 0) 2 R3;

so that the following expression forus holds for x = ( x; 0; 0) 2 R3 and t > 0:

us (x; t) =
Z

R2

� (4� )� 1

jx � (x0; 0; z0)j
f 00

�
t � c� 1

0 ((x0; z0) � k + jx � (x0; 0; z0)j)
�

~n(x0; z0)dx0dz0;

where ~n is given by

~n(x0; z0) :=
Z

R
n (x0) Az0 (y0) dy0; x0 = ( x0; y0; z0) 2 R3: (1.3)

Since our measurements are only two-dimensional (one spatial dimension
given by the linear array and one temporal dimension), we cannot aim to
reconstruct the full three-dimensional refractive indexn. However, the above
identity provides a natural expression for what can be reconstructed: the
vertical averages~n of n. SinceAz is supported neary = 0, ~n re�ects the
contribution of n only near the imaging plane. In physical terms,~n contains
all the scatterers in the support ofAz; these scatterers are in some sense
projected onto y = 0, the imaging plane. For simplicity, with an abuse of
notation from now on we shall simply denote~n by n, since the original three-
dimensionaln will not play any role, due to the dimensionality restriction
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discussed above. Moreover, for the same reasons, all vectorsx and x0 will
be two-dimensional, namely,x = ( x; z) and similarly for x0. In view of these
considerations, forx = ( x; 0) 2 R2 and t > 0 the scattering wave takes the
form

us (x; t) = �
Z

R2

(4� )� 1

jx � x0j
f 00

�
t � c� 1

0 (x0 � k + jx � x0j)
�

n (x0) dx0: (1.4)

It is useful to parametrize the direction k 2 S1 of the incident wave by
k = k � = (sin �; cos� ) for some� 2 R; in practice, j� j � 0:25 [44].

1.3 The Inverse Problem

The static inverse problem consists in the reconstruction ofn (up to a con-
volution kernel) from the measurementsus at the receptors, assuming thatn
does not depend on time. This process provides a single image, and will be
repeated many times in order to obtain dynamic imaging, as it is discussed
in the next sections.

1.3.1 Beamforming

The receptor array is a segment� = ( � A; A) � f 0g for someA > 0. The
travel time from the receptor array to a point x = ( x; z) and back to a
receptor located inu0 = ( u; 0) is given by

� �
x (u) = c� 1

0 (x � k � + jx � u0j) :

The beamforming process [49, 44] consists in averaging the measured signals
on � at t = � �

x (u), which results in the image

s� (x; z) :=
Z x+ F z

x� F z
us

�
u0; � �

x (u)
�

du;x = ( x; z) 2 R2
+ := f (x; z) 2 R2 : z > 0g:

The dimensionless aperture parameterF indicates which receptors are chosen
to image the location x = ( x; z), and depends on the directivity of the
ultrasonic array (in practice, 0:25 � F � 0:5 [44]). In general,F depends
on the medium roughness and on� , but this will not be considered this
work. The above identity is the key of the static inverse problem: from the
measurementsus((u; 0); t) we reconstructs� (x; z).
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(a) The exact PSF given
in (1.6).
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(b) The approximation of
the PSF given in (1.9).
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(c) The approximation of
the PSF given in (1.10).

Figure 1.2: The real part of the point spread functiong0 and its approximations
are shown in these �gures (with parameters as in (1.1) and (1.2), andF = 0 :4).
The size of the square shown is2 mm� 2 mm, and the horizontal and vertical axes
are the x and z axes, respectively. The relative error in theL 1 norm is about
7% for the approximation shown in panel (b) and about 9% for the approximation
shown in panel (c).

We now wish to understand hows� is related to n. In order to do so,
observe that by (1.4) we may write forx 2 R2

+

s� (x; z) = �
Z

x 02 R2
n (x0)

Z x+ F z

x� F z

(4� )� 1

jx0 � u0j
f 00

�
� �

x (u) � � �
x 0 (u)

�
du dx0

=
Z

x 02 R2
g� (x; x0) n (x0) dx0;

(1.5)

whereg� is de�ned as

g� (x; x0) = �
Z x+ F z

x� F z

(4� )� 1

jx0 � u0j
f 00

�
� �

x (u) � � �
x 0 (u)

�
du; (1.6)

(see Figure 1.2a for an illustration in the case when� = 0). In other words,
the reconstructions� is the result of an integral operator given by the kernel
g� applied to the refractive indexn. Thus, the next step is the study of the
point spread function (PSF) g� (x; x0), which should be thought of as the
image corresponding to a delta scatterer inx0.

1.3.2 The point spread function

In its exact form, it does not seem possible to simplify the expression forg
further: we will have to perform some approximations. First, observe that
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setting h�
x ;x 0(u) = � �

x (u) � � �
x 0 (u) for x; x0 2 R2

+ we readily derive

(h�
x ;x 0)0(u) = c� 1

0 (
u � x

jx � u0j
�

u � x0

jx0 � u0j
)

� c� 1
0 (

u � x
jx0 � u0j

�
u � x0

jx0 � u0j
) = c� 1

0
x0 � x

jx0 � u0j
;

for x close tox0 (note that, otherwise, the magnitude of the PSF would be
substantially lower). As a consequence, by (1.6) we have

g� (x; x0) �
c0(4� )� 1

x � x0

Z x+ F z

x� F z
(h�

x ;x 0)0(u)f 00
�
h�

x ;x 0(u)
�

du

=
c0(4� )� 1

x � x0

�
f 0(h�

x ;x 0(x + Fz)) � f 0(h�
x ;x 0(x � Fz))

�
:

(1.7)

In order to simplify this expression even further, let us do a Taylor expansion
of w�

� (x; z) := h�
x ;x 0(x � Fz) with respect to (x; z) around (x0; z0). Direct

calculations show that

w�
� (x0; z0) = 0 ; r w�

� (x0; z0) =
c� 1

0

CF
(CF sin� � F; 1 + CF cos� );

where we de�ne
CF :=

p
1 + F 2:

Whence

h�
x ;x 0(x � Fz) �

c� 1
0

CF
((1 + CF cos� )(z � z0)

+( CF sin� � F )(x � x0)) :

Substituting this expression into (1.7) yields

g� (x; x0) � ~g� (x � x0); (1.8)

where

~g� (x) =
c0

4�x

�
f 0

�
c� 1

0

CF
((1 + CF cos� )z + ( CF sin� � F )x)

�

� f 0

�
c� 1

0

CF
((1 + CF cos� )z + ( CF sin� + F )x)

��
; (1.9)
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(c) The PSF with
F = 0 :4.
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F = 0 :5.

Figure 1.3: The exact PSF with di�erent values of the aperture parameter F
(with parameters as in (1.1) and (1.2), and� = 0 ). The size of the square shown is
2 mm� 2 mm, and the horizontal and vertical axes are thex and z axes, respectively.

(see Figure 1.2b for an illustration in the case� = 0), thereby allowing to
write the image s� given in (1.5) as a convolution of~g� and the refractive
index n, namely

s� (x) =
Z

x 02 R2
~g� (x � x0)n (x0) dx0 = (~g� � n)(x); x 2 R2

+ :

The validity of this approximation, obtained by truncating the Taylor
expansion ofw�

� at the �rst order, is by no means obvious. Indeed, by con-
struction, the pulsef (t) is highly oscillating (� 0 � 6 � 106 s� 1), and therefore
even small variations int may result in substantial changes inf (t). However,
this does not happen, since if(x; z) is not very close to(x0; z0) then the mag-
nitude of the PSF is very small, if compared to the maximum value. The
veri�cation of this fact is quite technical, and thus is omitted: the details
may be found in Appendix A.

Remark 1. From this expression, it is easy to understand the role of the
aperture parameterF , which depends on the directivity of the array. Ignoring
the second order e�ect inF and taking, for simplicity � = 0, we can further
simplify the above expression as

~g0(x) �
c0

4�x

�
f 0

�
c� 1

0 (2z � Fx)
�

� f 0
�
c� 1

0 (2z + Fx)
��

:

It is clear that F a�ects the resolution in the variablex: the higher F is, the
higher the resolution is. Moreover, the aperture parameter a�ects also the
orientation of the diagonal tails in the PSF. These two phenomena can be
clearly seen in Figure 1.3. In general, the higher the aperture is the better for
the reconstruction: as expected, the intrinsic properties of the array a�ects
the reconstruction.
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(a) The PSF with
� = 0 .
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(b) The PSF with
� = 0 :1.
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(c) The PSF with
� = 0 :2.
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(d) The PSF with
� = 0 :3.

Figure 1.4: The exact PSF with di�erent values of the angle� (with parameters
as in (1.1) and (1.2), andF = 0 :4). The size of the square shown is2 mm� 2 mm,
and the horizontal and vertical axes are thex and z axes, respectively.

Remark 2. It is also easy to understand the role of the angle� . In view of

~g� (x) �
c0

4�x

�
f 0

�
c� 1

0 ((1 + cos � )z + (sin � � F )x)
�

� f 0
�
c� 1

0 ((1 + cos � )z + (sin � + F )x)
��

;

an angle� 6= 0 substantially gives a rotation of the PSF; see Figure 1.4.

We have now expressedg� as a convolution kernel. In order to better
understand the di�erent roles of the variablesx and z, it is instructive to use
the actual expression forf given in (1.1). Sincef 0(t) = � 0e2�i� 0 t ~� (� 0t), with
~� (t) = 2 �i� (t) + � 0(t), we can write

f 0

�
c� 1

0

CF
((1 + CF cos� )z + ( CF sin� � F )x)

�

= � 0e
2�i� 0 c� 1

0
C F

((1+ CF cos� )z+( CF sin � � F )x)

~�
�

� 0c� 1
0

CF
((1 + CF cos� )z + ( CF sin� � F )x)

�

� � 0e2�i� 0c� 1
0 (2z+( � � F )x) ~�

�
2� 0c� 1

0 z
�

;

where we have approximated the dependence onF and � at �rst order around
F = 0 and � = 0 in the complex exponential (recall thatF and � are small)
and at zero-th order (F = 0 and � = 0) inside ~� : the di�erence in the orders
is motivated by the fact that the variations of the complex exponentials
have much higher frequencies than those of~� , since several oscillations are
contained in the envelope de�ned by� , as it can be easily seen in Figure 1.1a
(and similarly for � 0). This approximation may be justi�ed by arguing as in
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Appendix A. Inserting this expression into (1.9) yields

~g� (x) �
c0� 0

4�x

h
e2�i� 0c� 1

0 (2z+( � � F )x) ~�
�
2� 0c� 1

0 z
�
� e2�i� 0c� 1

0 (2z+( � + F )x) ~�
�
2� 0c� 1

0 z
� i

= �
i� 0c0

2�x
~�

�
2� 0c� 1

0 z
�

e4�i� 0c� 1
0 ze2�i� 0c� 1

0 �x sin(2�� 0c� 1
0 Fx);

whence for everyx = ( x; z) 2 R2

~g� (x) � � i� 2
0F ~�

�
2� 0c� 1

0 z
�

e4�i� 0c� 1
0 ze2�i� 0c� 1

0 �x sinc(2�� 0c� 1
0 Fx); (1.10)

wheresinc(x) := sin( x)=x (see Figure 1.2c). This �nal expression allows us
to analyze the PSF~g� , and in particular its di�erent behaviors with respect
to the variablesx and z. Consider for simplicity the case� = 0 (with � = 1).
In view of the term ~�

�
2� 0c� 1

0 z
�
, the vertical resolution is approximately

0:8 � � � 1
0 c0; similarly, in view of the term sinc(2�� 0c� 1

0 Fx), the horizontal
resolution is approximately 1

2F � � 1
0 c0. Even though horizontal and vertical

resolutions are comparable, in terms of focusing and frequencies of oscillations
the PSF has very di�erent behaviours in the two directions. Indeed, we can
observe that the focusing in the variablez is sharper than that in the variable
x: the decay of~� is much stronger than the decay ofsinc. Moreover, in the
variable z we have only high oscillations, while in the variablex the highest
oscillations are at least four times slower (2 = 4 1

2 � 4F ), and very low
frequencies are present as well, due to the presence of thesinc. As it is
clear from Figure 1.2, this approximation introduces evident distortions of
the tails, as it is expected from the approximationF = 0 inside ~� ; however,
the center of the PSF is well approximated. Similar considerations are valid
for the case when� 6= 0: as observed before, this simply gives a rotation.

The same analysis may be carried out by looking at the expression of
the PSF in the frequency domain. For simplicity, consider the case� = 0:
the general case simply involves a translation in the frequency domain with
respect tox. Thanks to the separable form of~g� given in (1.10), the Fourier
transform may be directly calculated, and results in the product of the Fourier
transform of ~� and the Fourier transform of the sinc. More precisely, we
readily derive

F ~g� (� x ;� z) =
Z

R2
~g� (x; z)e� 2�i (x� x + z� z ) dxdz

� � i� 2
0F

Z

R
sinc(2�� 0c� 1

0 Fx)e� 2�ix� x dx

�
Z

R
~�

�
� 0c� 1

0 z
�

e� 2�i (� 2� 0c� 1
0 + � z )z dz:
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transform of the
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(b) The Fourier
transform of the
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(c) The Fourier
transform (1.11) of
the approximation
of the PSF ~g0 given
in (1.10).
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(d) The Fourier
transform of the
PSF gac

� given
in (1.13), for
� = 0 :25.

Figure 1.5: The absolute values of the Fourier transforms of the point spread
functions and its approximations (with parameters as in (1.1) and (1.2), andF =
� = 0 ). The frequency axes are normalized by� 0c� 1

0 : the PSF is a low pass �lter
with cut-o� frequency F � 0c� 1

0 with respect to the variable x and a band pass �lter
around 2� 0c� 1

0 with respect to z.

Thus, since the Fourier transform of thesinc may be easily computed and is
a suitable scaled version of the rectangle function, we have

F ~g� (� x ; � z) � � i� 2
0F

1
2� 0c� 1

0 F
1[� F;F ]

�
c0� � 1

0 � x
�

�
Z

R
~�

�
� 0c� 1

0 z
�

e� 2�i (� 2� 0c� 1
0 + � z )z dz

= �
ic0� 0

2
1[� F;F ]

�
c0� � 1

0 � x
� 1

� 0c� 1
0

F ~�
�

� 2� 0c� 1
0 + � z

� 0c� 1
0

�
;

whence

F ~g� (� x ; � z) � � ic2
0 1[� F;F ]

�
c0� � 1

0 � x
�

F ~�
�
� 2 + � � 1

0 c0� z
�

=2: (1.11)

Therefore, up to a constant, the Fourier transform of the PSF is a low-
pass �lter in the variable x with cut-o� frequency F � 0c� 1

0 and a band pass
�lter in z around 2� 0c� 1

0 (since ~� is a low-pass �lter). This explains, from
another point of view, the di�erent behaviors of~g� with respect to x and z.
This di�erence is evident from Figure 1.5, where the absolute values of the
Fourier transforms of the di�erent approximations of the PSF are shown.

1.3.3 Angle compounding

We saw in the previous subsection that, while very focused in the direction
z, the PSF is not very focused in the directionx due to the presence of the
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sinc function, see (1.10). In order to have a better focusing, it was proposed
in [44] to use multiple measurements corresponding to many angles in an
interval � 2 [� � ; �] for some0 � � � 0:25. The reason why this technique
is promising is evident from Figure 1.4: adding up several angles together
will result in an enhancement of the center of the PSF, and in a substantial
reduction of the artifacts caused by the tails in the directionx. Let us now
analyze this phenomenon analytically.

In a continuous setting, angle compounding corresponds to setting

sac
� (x) =

1
2�

Z �

� �
s� (x) d�; x 2 R2

+ : (1.12)

Thus, by linearity, the corresponding PSF is given by

gac
� (x; x0) =

1
2�

Z �

� �
g� (x; x0) d�; x; x0 2 R2

+ : (1.13)

Let us �nd a simple expression forgac
� . By using (1.8), we may write

gac
� (x; x0) � ~gac

� (x � x0), where ~gac
� is given by ~gac

� (x) = 1
2�

R�
� � ~g� (x) d� , so

that the image may be expressed as

sac
� (x) = (~gac

� � n)(x); x 2 R2
+ : (1.14)

Thus, in view of the approximation (1.10), we can write

~gac
� (x) = �

i� 2
0F

2�

Z �

� �
~�

�
2� 0c� 1

0 z
�

e4�i� 0c� 1
0 ze2�i� 0c� 1

0 �x sinc(2�� 0c� 1
0 Fx) d�

= � i� 2
0F ~�

�
2� 0c� 1

0 z
�

e2i� 0c� 1
0 zsinc(2�� 0c� 1

0 Fx)sinc(2�� 0c� 1
0 � x):

Therefore, we immediately obtain

~gac
� (x) = ~g0(x)sinc(2�� 0c� 1

0 � x); x 2 R2: (1.15)

This expression shows that the PSF related to angle compounding is nothing
else than the PSF related to the single angle imaging with� = 0 multiplied
by sinc(2�� 0c� 1

0 � x). Thus, for � = 0 we recover~g� for � = 0, as expected.
However, for � > 0, this PSF enjoys faster decay in the variablex. See
Figure 1.6 for an illustration of gac

� and ~gac
� and a comparison withg� and

Figure 1.5d for an illustration of the Fourier transform ofgac
� .

To sum up the main features of the static problem, we have shown that
the recovered image may be written assac

� = ~gac
� � n, where ~gac

� is the PSF
of the imaging system with measurements taken at multiple angles. The
ultrafast imaging technique is based on obtaining many of these images over
time, as we discuss in the next section.
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(b) The PSF gac
� with
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(c) The PSF ~gac
� with

� = 0 :25.

Figure 1.6: A comparison of the PSF related to the single illumination with the
PSF associated to multiple angles (with parameters as in (1.1) and (1.2), and
F = 0 :4). The better focusing in the variable x for gac

� is evident, as well as the
good approximation given by ~gac

� . The size of the square shown is2 mm � 2 mm,
and the horizontal and vertical axes are thex and z axes, respectively.

1.4 Conclusion

In this chapter, we have provided for the �rst time a detailed mathematical
analysis of ultrafast ultrasound imaging. We have derived an approximate
expression for the PSF of this imaging system, which allows for a detailed
analysis of blood �ow imaging in the next chapter.
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Chapter 2

Blood Flow Imaging in Ultrafast
Ultrasound

2.1 Introduction

In this chapter, we considerdynamic imaging, that is the ultrafast ultrasound
imaging process described in the previous chapter is repeated many times,
which gives several thousand images per second. In blood �ow imaging,
we are interested in locating blood vessels. One of the main issues lies in
the removal of the clutter signal, typically the signal scattered from tissues,
as it introduces major artifacts [14]. Ultrafast ultrasonography allows to
overcome this issue, thanks to the very high frame rate. Temporal �lters [12,
40, 39], based on high-pass �ltering the data to remove clutter signals, have
shown limited success in cases when the clutter and blood velocities are close
(typically of the order of 10� 2 m�s� 1), or even if the blood velocity is smaller
than the clutter velocity. A spatio-temporal method based on the singular
value decomposition (SVD) of the data was proposed in [23] to overcome this
drawback, by exploiting the di�erent spatial coherence of clutter and blood
scatterers. Spatial coherence is understood as similar movement, in direction
and speed, in large parts of the imaged zone. Tissue behaves with higher
spatial coherence when compared to the blood �ow, since large parts of the
medium typically move in the same way, while blood �ow is concentrated only
in small vessels, which do not share necessarily the same movement direction
and speed. This explains why spatial properties are crucial to perform the
separation.

The analysis of the PSF provided in the previous chapter allows to study
the Doppler e�ect, describing the dependence on the direction of the �ow.
Moreover, we consider a random model for the movement of blood cells,

27
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which allows us to study and justify the SVD method for the separation
of the blood signal from the clutter signal, leading to the reconstruction of
the blood vessels' geometry. The analysis is based on the empirical study
of the distribution of the singular values, which follows from the statistical
properties of the relative data. We provide extensive numerical simulations,
which illustrate and validate this approach.

This chapter is structured as follows. In Section 2.2 the dynamic forward
problem is considered: we brie�y discuss how the dynamic data are obtained
and analyze the Doppler e�ect. In Section 2.3 we focus on the source separa-
tion to solve the dynamic inverse problem. We discuss the random model for
the refractive index and the method based on the SVD decomposition of the
data. In Section 2.4 numerical experiments are provided. Some concluding
remarks and outlooks are presented in the �nal section.

2.2 The Forward Problem

2.2.1 The quasi-static approximation and the construc-
tion of the data

The dynamic imaging setup consists in the repetition of the static imaging
method over time to acquire a collection of images of a medium in motion.
We consider a quasi-static model: the whole process of obtaining one image,
using the image compounding technique discussed in Subsection 1.3.3, is fast
enough to consider the medium static, but collecting several images over time
gives us a movie of the movement over time. In other words, there are two
time scales: the fast one related to the propagation of the wave is considered
instantaneous with respect to the slow one, related to the sequence of the
images.

In view of this quasi-static approximation, from now on we neglect the
time of the propagation of a single wave to obtain static imaging. The time
t considered here is related to the slow time scale. In other words, by (1.14)
at �xed time t we obtain a static images(x; t) of the medium n = n(x; t),
namely

s(x; t) = (~gac
� � n( � ; t)) ( x): (2.1)

Repeating the process fort 2 [0; T] we obtain the movies(x; t), which repre-
sents the main data we now need to process. As mentioned in the introduc-
tion, our aim is locating the blood vessels within the imaged area, by using
the fact that s(x; t) will be strongly in�uenced by movements inn.
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2.2.2 The Doppler e�ect

Measuring the medium speed is an available criterion to separate di�erent
sources; thus, we want to see the in�uence on the image of a single particle
in movement, as by linearity the obtained conclusions naturally extend to a
group of particles. For a single particle, we are interested in observing the
generated Doppler e�ect in the reconstructed image, namely peaks in the
Fourier transform away from zero.

Intuitively, Figure 1.5d shows that there is a clear di�erence in the move-
ments depending on their orientation. We want to explore this di�erence
in a more precise way. Let us considern(x; z; t) = � (0;vt )(x; z), i.e. a single
particle moving in the z direction with velocity v. The resulting image, as a
function of time, is obtained via equations (1.15) and (2.1)

s(x; z; t) �
Z

R2
~gac

� (x � x0; z � z0)� (0;vt )(x0; z0)dx0dz0

= ~gac
� (x; z � vt)

= ~g0(x; z � vt)sinc(2�� 0c� 1
0 � x):

Therefore, arguing as in (1.11), we obtain that the Fourier transform with
respect to the time variablet of the image is given by

F t (s)(x; z; � ) �
Z

R
~g0(x; z � vt)e� 2�i�t dt sinc(2�� 0c� 1

0 � x)

=
1
v

e� 2�i �z
v F2(~g0)(x; �

�
v

)sinc(2�� 0c� 1
0 � x);

whereF2 is the Fourier transform with respect to the variablez. Adopting
approximation (1.10), we obtain

F t (s)(x; z; � ) � �
1
v

i� 2
0Fe� 2�i �z

v sinc(2�� 0c� 1
0 � x)

� sinc(2�� 0c� 1
0 Fx)F (~� )

� � �
2� 0c� 1

0 v
� 1

�
:

Given the shape of~� , its Fourier transform has a maximum around 0, thus
we can see a peak ofjF t (s)(x; z; � )j when � is around � 2� 0c� 1

0 v, and so we
have the Doppler e�ect.

In the case when the particle is moving parallel to the detector array,
namely n(x; z; t) = � (vt; 0)(x; z), following an analogous procedure as before,
we obtain

s(x; z; t) � ~g0(x � vt; z)sinc(2�� 0c� 1
0 �( x � vt)) ;
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and applying the Fourier transform in time yields

F t (s)(x; z; � ) �
1
v

e� 2�i �x
v F (~g0(�; z)sinc(2�� 0c� 1

0 � �))( �
�
v

):

Using approximation (1.10), the convolution formula for the Fourier trans-
form and the known transform of thesinc function, gives

F t (s)(x; z; � ) � � i
e� 2�i �x

v

4� v
� 0c0 ~� (2� 0c� 1

0 z)e4�i� 0c� 1
0 z

� (1[� F;F ] � 1[� � ;�] )
�

�
�

v� 0c� 1
0

�
:

The convolution of these characteristic functions evaluated at� is equal to
the length of interval [� F + �; F + � ] \ [� � ; �] , because

(1[� F;F ] � 1[� � ;�] )( � )=
Z

R
1[� F;F ](� � s)1[� � ;�] (s)ds

=
Z

R
1[� F + �;F + � ](s)1[� � ;�] (s)ds:

Since both intervals are centered at0, this value is maximized for� (and
thus � ) around 0, like in the static case, and so the observed Doppler e�ect
is very small.

These di�erences are fundamental to understand the capabilities of the
method for blood �ow imaging. This phenomenon will be experimentally
veri�ed in Section 2.4.

2.2.3 Multiple scatterer random model

We have seen the e�ect on the images(x; z; t) of a single moving particle.
We now consider the more realistic case of a medium (either blood vessels or
tissue) with a large number of particles in motion. This will allow to study
the statistical properties of the resulting measurements.

We consider a rectangular domain
 = ( � L x=2; L x=2) � (0; L z), which
consists inN point particles. Let us denote the location of particlek at time
t by ak(t). In the most general case, each particle is subject to a dynamics

ak(t) = ' k (uk ; t) ; ak(0) = uk ; (2.2)

where(uk)k=1 ;:::;N are independent uniform random variables on
 and(' k)k=1 ;:::;N
are independent and identically distributed stochastic �ows: for instance,
they can be the �ows of a stochastic di�erential equation or the determinis-
tic �ows of a partial di�erential equation. Thus, the aks are independent and
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identically distributed stochastic processes. In view of these considerations,
we consider the medium given by

n (x; t) =
C

p
N

NX

k=1

� ak (t ) (x) ; (2.3)

whereC > 0 denotes the scattering intensity and 1p
N

is the natural normal-
ization factor in view of the central limit theorem.

To avoid minor issues from boundary e�ects, which are of no interest to
us in the analysis of this problem, we assume the periodicity of the medium.
In other words, we consider the periodization

np(x; t) =
X

l 2 Z2

n(x + l � L ; t); (2.4)

where L = ( L x ; L z). Let g(x) :=
P

l 2 Z2 ~gac
� (x + l � L ) be the periodic PSF,

which is more convenient than~gac
� (given by (1.15)) for a
 -periodic medium.

The dynamic images is then given by

s(x; t) = (~gac
� � np (�; t)) ( x) = ( g � n( � ; t))( x) =

C
p

N

NX

k=1

g(x � ak (t)) :

Let us also assume for the sake of simplicity that, at every timet, ak (t)
modulo 
 is a uniform random variable on
 , namely

E
X

l 2 Z2

w(ak(t) + l � L ) = j
 j � 1
Z

R2
w(y) dy; w 2 L1(R2): (2.5)

As a simple but quite general example, it is worth noting that in the case
when ak(t) = uk + F (t), where F (t) is any random process independent of
uk , the above equality is satis�ed, since

E
X

l 2 Z2

w(uk + F (t) + l � L ) = j
 j � 1E
X

l 2 Z2

Z



w(y + F (t) + l � L )dy

= j
 j � 1
Z

R2
w(y) dy;

where the expectation in the �rst term is taken with respect touk and F (t),
while in the second term only with respect toF (t).

We now wish to compute the expectation of the random variables present
in the expression fors(x; t). By (1.10) and (1.15), since~gac

� is a derivative of
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a Schwartz function in the variablez, we have
R

R2 ~gac
� (y)dy = 0. Thus, by

(2.5) the expected value may be easily computed as

E (g(x � ak (t))) = E
X

l 2 Z2

~gac
� (x � ak(t)+ l �L ) = j
 j � 1

Z

R2
~gac

� (y)dy = 0: (2.6)

Let (x i ) i =1 ;:::;m x
and (t j ) j =1 ;:::;m t

be the sampling locations and times re-
spectively. The data may be collected in the Casorati matrixSN 2 Cmx � m t

de�ned by
SN (i; j ) = s(x i ; t j ):

By (2.6), according to the multivariate central limit theorem, the matrix SN

converges in distribution to a Gaussian complex matrixS 2 Cmx � m t , the
distribution of which is entirely determined by the following correlations, for
i; i 0 = 1; : : : ; mx and j; j 0 = 1; : : : ; mt

E(S(i; j )) = 0 ;

Cov(S(i; j ); S(i 0; j 0)) = C2E (g(x i � a1 (t j )) g(x i 0 � a1 (t j 0))) ; (2.7)

Cov
�

S(i; j ); S(i 0; j 0)
�

= C2E
�

g(x i � a1 (t j )) g(x i 0 � a1 (t j 0))
�

: (2.8)

More precisely, letw 2 Cmx m t be a column vector containing all the entries
of S. Let v 2 C2mx m t and V 2 C2mx m t � 2mx m t be de�ned by

v = ( w1; w1; w2; w2; :::; wmx m t ; wmx m t )
T and V = E

�
vvT

�
:

The covariance matrixV can be easily computed from (2.7) and (2.8). Then
the probability density function f of v can be expressed as [15]:

f (v) =
1

� mx m t det (V)
1
2

exp
�

�
1
2

v� V � 1v
�

:

Moreover, it is possible to generate samples from this distribution: ifX is
a complex unit variance independent normal random vector, and if

p
V is a

square root ofV , then
p

V X is distributed like v. This allows for simulations
of sample image sequences for a large number of particles with a complexity
independent of the number of particles.

The analysis carried out here will allow us to study the distribution of
the singular value of the matrixS, depending on the properties of the �ows
' k . This will be the key ingredient to justify the correct separation of blood
and clutter signals by means of the singular value decomposition of the mea-
surements.
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2.3 The Inverse Problem: Source Separation

2.3.1 Formulation of the dynamic inverse problem

As explained in the introduction, the aim of the dynamic inverse problem
is blood �ow imaging. In other words, we are interested in locating blood
vessels, possibly very small, within the medium. The main issue is that
the signal s(x; t) is highly corrupted by clutter signal, namely the signal
scattered from tissues. In the linearized regime we consider, we may write
the refractive index n as the sum of a clutter componentnc and a blood
componentnb, namely n = nc + nb. Blood is located only in small vessels in
the medium, whereas clutter signal comes from everywhere: by (1.3), since
blood vessels are smaller than the focusing height, even pixels located in
blood vessels contain re�ections coming from the tissue. Let us denote the
location of blood vessels by
 b � 
 . The inverse problem is the following:
can we recover
 b from the data s(x; t) = sc(x; t) + sb(x; t)? Here,sc and sb

are given by (2.1), withn replaced bync and nb, respectively. In this section,
we provide a quantitative analysis of the method described in [23] based on
the singular value decomposition (SVD) ofs.

2.3.2 The SVD algorithm

We now review the SVD algorithm presented in [23]. The Casorati matrix
S 2 Cmx � m t is de�ned as in previous section by

S(i; j ) = s (x i ; t j ) ; i 2 f 1; :::; mx g; j 2 f 1; :::; mtg:

Without loss of generality, we further assume thatmt � mx . We remind the
reader that the SVD ofS is given by

S =
m tX

k=1

� kukvk
T ;

where (u1; :::; umx ) and (v1; :::; vm t ) are orthonormal bases ofCmx and Cm t ,
and � 1 � � 2 � ::: � � m t � 0. For any K � 1, SK =

P K
k=1 � kukvk

T is the
best rank K approximation of S in the Frobenius norm. The SVD is a well-
known tool for denoising sequences of images, see for example [32]. The idea
is that since singular values for the clutter signal are quickly decaying after
a certain threshold, the best rankK approximation of S will contain most
of the signal coming from the clutter, provided thatK is large enough. This
could be used to recover clutter data, by applying a �denoising� algorithm,
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and keeping onlySK . But it can also be used to recover the blood location,
by considering the �power Doppler�

Ŝb;K (i ) :=
m tX

k= K +1

� 2
k juk j2(i ) =

m tX

j =1

j(S � SK ) ( i; j )j2 ; i 2 f 1; :::; mx g:

As we will show in the following subsection, clutter signal can be well ap-
proximated by a low-rank matrix. Therefore,SK will contain most of the
clutter signal for K large enough. In this case, even if the intensity of total
blood re�ection is small, S � SK will contain more signal coming from the
blood than from the clutter and therefore high values of̂Sb;K (i ) should be
located in blood vessels.

Before presenting the justi�cation of this method, let us brie�y provide
a heuristic motivation by considering the SVD of the continuous data given
by

s(x; t) =
1X

k=1

� kuk(x)vk(t):

In other words, the dynamic datas is expressed as a sum of spatial compo-
nents uk moving with time pro�les vk , with weights � k . Therefore, since the
tissue movement has higher spatial coherence than the blood �ow, we expect
the �rst factors to contain the clutter signal, and the remainder to provide
information about the blood location via the quantity Ŝb;K .

2.3.3 Justi�cation of the SVD in 1D

We will assume that the particles of the blood and of the clutter have inde-
pendent dynamics described by (2.2)-(2.4). We add the subscriptsb and c
to indicate the dynamics of blood and clutter, respectively.

In this subsection, using the limit Gaussian model presented inx2.2.3, we
present the statistics of the singular values in a simple 1D model. These are
useful to understand the behavior of SVD �ltering. The results ofx2.2.3 allow
to simulate large number of sample signalss, given that we can compute the
covariance matrices (2.7) and (2.8). Since these matrices are very large, we
restrict ourselves to the1D case, so that all sampling locationsx i are located
at x = 0, and are thus characterized by their depthzi . We will therefore drop
all references tox in the following. We also consider very simpli�ed dynamics,
which can be thought of as local descriptions of the global dynamics at work
in the medium. Let ab = a1;b and ac = a1;c be the random variables for the
dynamics of blood and clutter particles, respectively, as introduced in (2.2).
The dynamics is modeled by a Brownian motion with drift, namely

a� (t) = u� + v� t + � � B t ; � 2 f b; cg:
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Here,u� represents the position of the particle at timet = 0, and is uniformly
distributed in (0; L � ), whereLb � L c. The deterministic quantity v� is the
mean velocity of the particles. In order to take into account the random
�uctuations of the particles in movement, we added a di�usion term� � B t ,
whereB t is a Brownian motion and� 2

� is a di�usion coe�cient quantifying
the variance of the �uctuations of the particle position relative to the mean
trajectory. We also make the simplifying assumption that the di�usion terms
are independent over di�erent particles. More precisely, we have the following
conditional expectation and variance:

E ( a� (t)j u� ) = u� + v� t; Var ( a� (t)j u� ) = t� 2
� :

The di�erence between clutter and blood dynamics is in the di�usion co-
e�cient: in the case of clutter, since it is an elastic displacement,� 2

c � 0. For
simplicity, from now on we set� c = 0. In the case of blood, which is modeled
as a suspension of cells in a �uid, we have� 2

b = � 2 > 0. This coe�cient is
expressed inm2s� 1, and models the random di�usion in a �uid transporting
red blood cells due to turbulence in the �uid dynamics and collisions between
cells. In practice, � 2 is much larger than the di�usion coe�cient of micro-
scopic particles in a static �uid, and depends on the velocityvb [19]. As for
the mean velocities, in the most extreme cases,vb and vc can be of the same
order, even though most of the timevb > v c.

Let Sb and Sc denote the data matrix constructed inx2.2.3, related to
blood and clutter signal, respectively. We now compute the covariance matrix
V of S� :

Cov(S� (i; j ); S� (i 0; j 0)) = C2
� E (g(zi � a� (t j )) g(zi 0 � a� (t j 0)))

=
C2

�

L
E

Z L

0
g

�
zi � y � v� t j � � � v� B t j

�

� g
�
zi 0 � y � v� t j 0 � � � v� B t j 0

�
dy

= C2
� E Cgg

�
zi � zi 0 + v�

�
t j 0 � t j + � � (B t j 0 � B t j )

� �
;

where Cgg (z) = 1
L

RL
0 g(y)g(z + y)dy and Cb and Cc denote the intensity

of the blood and clutter signals, respectively. The expectation operator is
taken over all possible positionsu� and all possible driftsB t j and B t j 0 in the
�rst line, and only over all drifts in the second and third lines. By standard
properties of the Brownian motion, B t j 0 � B t j is Gaussian distributed, of
expected value0 and variancejt j � t j 0j and so it has the same distribution
as B t j 0� t j . Thus, in the case of the blood, we can write

Cov(Sb(i; j ); Sb(i 0; j 0)) = C2
bE Cgg

�
zi � zi 0 + vb(t j 0 � t j + � bB t j 0� t j )

�
:
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Likewise,

Cov
�
Sb(i; j ); Sb(i 0; j 0)

�
= C2

bE Cg�g
�
zi � zi 0 + vb(t j 0 � t j + � bB t j 0� t j )

�
;

where Cg�g (z) = 1
L

RL
0 g(y)�g(z + y)dy. The tissue model is then given by

� c = 0, and is therefore deterministic given the initial position. Thus

Cov(Sc(i; j ); Sc(i 0; j 0)) = C2
c Cgg (zi � zi 0 + vc (t j 0 � t j )) ;

Cov
�
Sc(i; j ); Sc(i 0; j 0)

�
= C2

c Cg�g (zi � zi 0 + vc (t j 0 � t j )) :

On one hand, in the case of blood, sinceCg�g and Cgg are oscillating and with
very small support (see Figures 2.1a and 2.1b), the integration done when
taking the expectation in the blood case should yield small correlations as
long asjt j 0 � t j j is large enough. On the other hand, in the case of clutter,
correlations will be high between the two signals as long aszi � zi 0 and
vc (t j � t j 0) are of the same order and almost cancel out. This heuristic is
con�rmed by numerical experiments. In Figure 2.1c, we compare the clutter
model and the blood model in one dimension: velocities are in thez direction,
and we only consider points aligned on thez axis. As we can see, correlations
are quickly decaying as we move away from(0; 0) in the case of blood. In
the case of clutter, there are correlations at any times at the corresponding
displaced locations.

Once the correlation matrix is computed, we can generate a large number
of samples to study the distribution of the singular values in di�erent cases.
In Figure 2.2a, we compare the distribution in the two models (blood and
clutter), using the Gaussian limit approximation for the simulations, with
the same intensity for both models. A comparison with a white noise model
with the same variance shows that blood and noise have approximately the
same singular value distribution. On the contrary, the distribution of the
singular values of clutter presents a much larger tail. A comparison of the
distribution of the singular values for the clutter model at di�erent velocities
shows no real di�erence in the tail of the distribution (Figure 2.2b).

As a consequence, the clutter signalsc is well approximated by a low
rank matrix, and the blood signal can be thought of as if it were only noise.
Therefore, the SVD method act as a denoising algorithm and extracts the
clutter signal, according to the discussion in the previous subsection.

2.4 Numerical Experiments

In this section, we consider again a more realistic 2D model, given by (2.2).
This framework will allow us to simulate generic blood �ow imaging sequences
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(c) Absolute values of the correlations in the clutter model (� = 0 , vc =
10� 2 m�s� 1) and in the blood model (� 2 = 10 � 6 m2s� 1, vb = 10 � 2 m�s� 1).

Figure 2.1: Correlations of the Casorati matrix.
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Figure 2.2: The distribution of the singular values of the Casorati matrix S in
di�erent cases.

from particles. The dynamics of blood and clutter are modeled as follows.
Let us assume that clutter is subject to a deterministic and computable �ow
' c. The randomness of the motion of red blood cells in vessels is modeled by
a stochastic di�erential equation, given by

dy = vb (t; y) dt + � (y) dBt ; (2.9)

where B t is a two dimensional Brownian motion and� is determined by
the e�ective di�usion coe�cient K = 1

2 � 2. In blood vessels, this di�usion
coe�cient is proportional to the product _
r 2 where _
 is the shear stress in
the vessel, andr is the radius of red blood cells. As in the previous section,
let ac = a1;c and ab = a1;b. Let ' b be the �ow associated to (2.9). We assume
that ' b represents the dynamics of blood particles, relative to overall clutter
movement, so that

ac (t) = ' c (uc; t) ; ' c(uc; 0) = uc; (2.10)

and
ab (t) = ' c (' b (ub; t) ; t) ; ' b(ub; 0) = ub: (2.11)

The dynamics of all the other particles are then taken to be independent
realizations of the same dynamics. The velocity �eldvb and the clutter
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Figure 2.3: Single frame of ultrafast ultrasound (real part).

dynamics ' c are computed beforehand and correspond to the general blood
�ow velocity and to an elastic displacement, respectively. In our experiments,
we let ' c be an a�ne displacement of the medium, changing over time: a
global a�ne transformation, with slowly varying translation and shearing
applied to the medium at each frame, namely

' c(u; t) =
�

1 w1 (t )
0 1

�
u +

h
w2 (t )
w3 (t )

i
;

where wi are smooth and slowly varying (compared to' b) functions such
that wi (0) = 0 . As for the blood velocity �ow vb, it is parallel to the blood
vessels, with its intensity decreasing away from the center of the blood vessel
[49, Section 11.3]. More precisely,vb is a Poiseuille laminar �ow, namely the
mean blood �ow velocity is half of the maximum velocity, which is the �uid
velocity in the center of the vessel.

The relative blood displacementsbk;j = ' k;b (ub;k; t j ) are computed ac-
cording to the following discretization of the stochastic di�erential equa-
tion (2.9):

bk;j +1 = bk;j + �t vb (t j ; bk;j ) +
p

�t� (bk;j ) X k;j + o(�t ) ;

where(X k;j ) are centered independent Gaussian random variables and�t =
t j +1 � t j is taken to be constant. The blood particle positionsak;b (t j ) are
then computed simply by applying the precomputed �ow' c.

In order to validate the SVD approach, we explore the e�ects of the
blood velocity and of the direction of the blood vessels on the behavior of
the singular values and on the quality of the reconstruction. In each case, the
clutter displacement is the same composition of time-varying shearing and
translation, and the mean clutter velocity is1 cm�s� 1. We chooseCc = 5
and Cb = 1, for the same density of scatterers from clutter and blood: per
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(a) Maximum blood velocity: 2 cm�s� 1; mean clutter velocity:
1 cm�s� 1.
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(b) Maximum blood velocity: 1 cm�s� 1; mean clutter velocity:
1 cm�s� 1.
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(c) Maximum blood velocity: 0:5 cm�s� 1; mean clutter velocity:
1 cm�s� 1.

Figure 2.4: The SVD method for di�erent velocities and orientations. In each case,
we have from left to right: the blood velocity and location, the reconstructed blood
location, the decay of the singular values. The squares are5 mm � 5 mm, and the
horizontal and vertical axes are thex and z axes, respectively. The parameters used
are those given in (1.1) and (1.2),F = 0 :4 and � = 7 . The density of particles for
both blood and clutter is 2,000 permm2, and � = 2 :5 � 10� 5.
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Figure 2.5: Time behavior of a single pixel (real part), located in a constant velocity
�ow.

unit of area, the clutter intensity is therefore �ve times higher than the
blood intensity. A single frame of ultrafast ultrasound imaging is presented
in Figure 2.3: it is clear that without further processing, it is impossible to
locate the blood vessels.

In Figure 2.4, the results for various velocities and orientations are pre-
sented. The reconstruction intensities are expressed in decibels, relatively to
the smallest value in the image. The SVD method allows for reconstruction
of blood vessels, even if the maximum blood velocity is close to, or oven lower
than, the mean velocity of clutter. We always use the thresholdK = 20. As
we can see, due to the better resolution in thez direction discussed in Sec-
tion 1.3, vessels oriented parallel to the receptor array have a reconstruction
with a better resolution. But due to the oscillating behavior of the PSF in
the z direction, and the low-pass �lter behavior of the PSF in thex direction,
the sensitivity is better for vessels oriented perpendicularly to the receptor
array, and the SVD method is able to reconstruct smaller vessels with lower
velocities. This follows from the discussion in Subsection 2.2.2. In order to
visualize this phenomenon even better, Figure 2.5 presents the time behavior
of a single pixel from the data of Figure 2.4c. We can clearly see the Doppler
e�ect in the case when the �ow is perpendicular to the receptor array, and
the low frequency behavior of the signal in the case when it is parallel to the
receptor array.

In Figure 2.6, results of an investigation on the e�ect of the threshold
K on the reconstruction are presented. Except forK , the parameters of
Figure 2.4b are used. If the threshold is too low, the reconstruction is not
satisfactory and artifacts appear everywhere in the reconstructed image. If
the threshold is too high, the reconstruction still works but the contrast
becomes lower. With our parameters,K = 20 seems to produce the best
results.

In order to further validate the method, we consider the impact of mea-
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Figure 2.6: E�ect of the threshold K on the reconstruction. From left to right:
K = 10; 20; 30; 40.
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Figure 2.7: E�ect of noise on the reconstruction. The parameters are the same
used in Figure 2.4b.
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surement noise on the recovery. To this end, we add independent white
Gaussian noise to the data, and consider the quality of the reconstruction
as a function of the noise intensity. Let us de�ne the contrast of the recon-
struction as the ratio between the mean intensity of the reconstructed image
inside and outside the blood domain. The parameters of Figure 2.4b are
used. Blood intensity is �ve times lower than clutter intensity, and there-
fore a noise intensity of 10% corresponds to half the intensity of blood. In
Figure 2.7, sample reconstructions at di�erent noise levels are provided. We
can conclude that contrast is robust to moderate levels of noise, since blood
vessels can still be identi�ed up to 7.5% of noise if they are oriented along
the z axis, and up to 2.5% of noise if they are oriented along the x axis. Fig-
ure 2.7 also clearly quanti�es the better contrast for vessels oriented along
the z axis.

2.5 Conclusion

In this chapter, by using a random model for the movement of the blood
cells, we have shown that a SVD approach can separate the blood signal
from the clutter signal. Our model and results open a door for a mathe-
matical and numerical framework for realizing super-resolution in dynamic
optical coherence tomography [33], in ultrafast ultrasound imaging by track-
ing micro-bubbles [26], as well as in acousto-optic imaging based on the use
of ultrasound plane waves instead of focused ones, which allows to increase
the imaging rate drastically [37].



44 CHAPTER 2. BLOOD FLOW IMAGING



Chapter 3

Dynamic super-resolution

3.1 Introduction

The super-resolution problem is the following: given possibly noisy low fre-
quency measurements of a medium � Fourier coe�cients below a certain
value, convolution by a low pass �lter � is it possible to reconstruct the
original medium with a precision which exceeds the di�raction limit? This
problem is impossible in the general case, but there can be situations where
it is indeed possible, with conditions on sparsity for example.

One possible mathematical formulation for the super-resolution problem
can be the so called sparse spike reconstruction problem: let

� 0 =
NX

i =1

� i � x i

be a complex measure with �nite support de�ned on
 � Rd. Let

F : M (
) ! Rn ;

whereM (
) is the set of complex measures on
 , be the measurement op-
erator, so that the observed vectory is

y = F � 0:

The super-resolution is then that of recovering the measure� 0 given the
measurementsy. SinceM (
) is in�nite dimensional, F is not injective, and
therefore one has to use regularization to invert it. A common method for
solving such sparse problems is to use an in�nite dimensional variant of the
Lasso program:

�̂ 2 argmin� k� kTV such that F � = y: (3.1)

45
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Mathematical theory on the sparse spike recovery given low frequency mea-
surements has been �ourishing in the past years. It includes stable recon-
struction of spikes with separation in one and multiple dimensions [18], robust
recovery of positive spikes in the case of a Gaussian point spread function,
with no condition of separation [11], exact reconstruction for positive spikes
in a general settings in one dimension [22], with estimations on the stabil-
ity [24].

The resolution of ultrafast ultrasound is determined by the wavelength
of the incident wave, and by other factors such as the length of the receptor
array and the range of angles used in angle compounding [3]. Due to di�rac-
tion theory, the minimum resolution one can obtain is of the order of half a
wavelength, which is of the order of300nm. This implies that in imaging of
small blood vessels, blood vessels separated by less than300 nm cannot be
distinguished.

Localization microscopy has been shown to surpass the di�raction limit
in optical imaging [51], [31], and a similar technique has been proposed in
ultrasound imaging [27], [25]. In ultrasound imaging, this method consists in
using a contrast agent � micro-bubbles for example � which are randomly
activated in blood vessels and produce very localized spikes in the obser-
vations. If separated by at least several wavelengths, using sparse recovery
methods, it is possible to achieve sub-wavelength recovery of the position of
particles.

This motivates the introduction of our dynamic model for super-resolution.
Instead of considering a single measure� 0, we consider a time-varying mea-
sure � t , where t 2 [� �; � ]. To simplify the problem, we assume that each
point is moving with a constant velocity:

� t =
NX

i

� i � x i + vi t ; t 2 [� �; � ];

wherevi 2 Rd. The measurements vector is then composed of the measure-
ments at discrete timestk = k�; k 2 [� K; K ], whereK� = � :

yk = F � tk ; k 2 [� K; K ]:

In this work, we show that under certain conditions, we are able to recover
simultaneously the positionsx i and the velocitiesvi with in�nite precision,
using a sparse spike recovery based method. Figure 3.1 illustrates the idea
of the method in the case of 2d particles and a convolution operator.

The chapter is organized as follows: �rst, we present theoretical results
on the dynamic super-resolution problem. Second, we present numerical
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and
G� = ( h�; ' l;k i ) l;k ; � 2 M (
 x � 
 v):

In this case, the measurementsy = ( yk)k whereyk = F � tk are given by

y = G�:

This allows us to propose the following program to recover positions and
velocities:

�̂ 2 argmin� k� kTV such that G� = y: (3.2)

We will call (3.2) the dynamic recovery, whereas (3.1) will be called thestatic
recovery.

3.2.2 The perfect low-pass case

From now on to the end of this section, we consider the speci�c case of Fourier
coe�cients:


 x = [0; 1];


 v = [ � vmax ; vmax ];

' l (x) = e� 2� hx;l i ; l 2 f� f c; : : : ; f cg
d :

Analog to [18], a su�cient condition for the solution to (3.2) to be� is that for
any � 2 CN such that j� j = 1; 8j 2 1; : : : ; N , there exists a dual polynomial,
called a dual certi�cate,

q(x; v) =
KX

k= � K

X

jj l jj 1 � f c

ck;l ei 2�l �(x+ k�v ) : (3.3)

obeying: �
q(x i ; vi ) = � j ; j 2 f 1; : : : ; Ng
q(x; v) < 1; everywhere else:

(3.4)

Compared to the dual polynomials in the two dimensional case presented
in [18], the only di�erence with our case, whend = 1, is in the allowed
frequencies: whereas in the two dimensional case, all 2 dimensional low fre-
quencies are allowed, here the only allowed frequencies are

�
(l t ; k� l t ); k = � K; : : : ; K; jj l jj1 � f c

	
:

The following proposition presents the uniqueness of the reconstruction in
the case where we have uniqueness in more than3 frames:
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Proposition 1. Let � i = � i
j � i j

. Assume that there existm distinct time-
steps,m � 3, k1; k2; : : : ; km such that for all p 2 f 1; : : : ; mg0, there exist a
trigonometric polynomial qj de�ned on Rd with frequencies inf� f c; : : : ; f cgd

such that
�

qp(x i + tkp �v i ) = � j ; i 2 f 1; : : : ; Ng; p 2 f 1; : : : ; mg
jqj (x)j < 1; everywhere else:

(3.5)

Moreover, assume that for anym distinct indices i 1; i2; : : : ; im 2 f 1; : : : ; Ng
such that� i p = � i q ; for all p; q,

m\

p= i

�
(x; v) : (x � x i p ) + kp� (v � vi p ) = 0

	
= ; : (3.6)

Then the polynomialq(x; v) = 1
m

P m
p=1 qp(x + tkp �v ) satis�es (3.3) and (3.4).

Proof. It is immediate that q de�ned as such veri�es:
�

q(x i ; vi ) = � j ; i 2 f 1; : : : ; Ng
jq(x; v)j � 1; everywhere:

(3.7)

Moreover, let (x; v) be such that jq(x; v)j = 1. By the properties ofqj , this
means that each of the terms in the sum must be equal and have modulus
1=m. Therefore, there must existi 1; i2; : : : ; im such that � i p = � i q for all p; q
and:

x + kp�v = x i p + kp�v i p ; for all p 2 f 1; : : : ; mg:

By (3.6), i 1; i2; : : : ; im cannot be distinct. Therefore, at least two are equal
to somej 2 f 1; : : : ; Ng and we can conclude thatx = x j and v = vj .

Geometrically, condition (3.6) ensures that there cannot be a virtual point
hiding between a true point at each of the frames where there is separation.
Numerical experiments show indeed that such situations produce instability
in the reconstruction. Figure 3.2 illustrates the simplest of these situations:
three points are static (their velocity is0) and are equally spaced by� . In
this case, two ghost points arise. One point at the position of the center
point at t = 0 and with a velocity v = � =� , this is the point illustrated in the
�gure. The other one is the symmetric with the same location but negative
velocity.

There are also simple conditions that imply that the condition is always
veri�ed: if m > n or if all � i s have a di�erent phase. This simple result
ensures that our proposed method works at least as well as what we call the
static method, which consists in identifying the position of particles in each
frame and then estimating their velocity. In the following proposition, we
list a number of concrete cases where we can apply this result.
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Figure 3.2: Geometry of ghost points

Proposition 2. Assume that there existm distinct time-steps, m � 3,
k1; k2; : : : ; km such that for all p 2 f 1; : : : ; mg, such that (3.6) hold and
either:

i) d = 1 or d = 2 and 8p 2 f 1; : : : ; mg; 8i 6= j

jx i + tkp vi � x j � tkp vj j >
C
f c

;

whereC = 2 if d = 1 and C = 2:38 if d = 2.

ii) d = 1, � i > 0; 8i and thex i + tkp vi are all distinct.

Then � is the only solution to(3:2).

Proof. Condition i) comes from [18], condition ii) comes from [22].

3.3 Numerical simulations

3.3.1 Methods

Solving minimization problem (3.2) in all its generality is not an easy task.
Indeed, it is not linear and in�nite dimensional. It is possible to use an
analog discrete problem, where the locations and velocities are �xed on a
grid, whose size determines the resolution we want to obtain, and replacing
the TV norm by a l1 norm. However, this methods becomes intractable
for a �ne resolution. In [18], a continuous solution is obtained in the one
dimensional case, however, its not trivial to adapt their algorithm to our
method.
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In this work, we propose to use a continuous reconstruction method.
In [16], an algorithm is presented to solve the following problem:

min
~�

kF ~� � Yk2
2 subject to k~� kT V � M: (3.8)

The proposed algorithm is limited to positive weights, but this is a realistic
expectation in the case of physical signals. Let us assume that we can guess
the value ofk� kT V beforehand. Then we can setM = k� kT V . In this setting,
we have the following proposition:

Proposition 3. Assume that� is the unique solution of (3.2). Then� is
the unique solution of (3.8).

Proof. Since (3.2) admits a unique minimizer, every~� 6= � such that F ~� = Y
veri�es k~� kT V > K . Therefore, ~� is the unique minimizer of (3.8).

In order to evaluate the numerical experiments, we introduce the super-
resolution factor in space as follow:

SRFx =
xmax

f c� x
; (3.9)

wherexmax is such that 
 = [0 ; xmax ]. In the case of velocity reconstruction,
we introduce a super-resolution factor in velocity de�ned as:

SRFv =
xmax

f c� v �
: (3.10)

3.3.2 1D Fourier examples.

We consider the perfect low-pass �lter described in section 3.2. We consider
a generic example where a numberN of points are scattered in the medium
with uniform and independent positions and velocities. The parameters for
these simulations are the following:

f c = 20

xmax = 1cm

K = 2

� = 1=60s:

(3.11)

The number of points in taken between4 and 10 and their velocities are
taken between+ and � cm.s� 1. We then realize this setup1000times and
try to reconstruct using the minimization scheme described above.
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of static frames where the reconstruction is correct, whereas numerical sim-
ulations show that dynamic reconstruction works in cases where the static
reconstruction works in no single frame.

3.4 Applications to ultrafast ultrasound

This section is devoted to apply the described method to the case of blood
�ow imaging in ultrafast ultrasound (UFUS). The goal is to locate blood
vessels and compute the velocity of blood inside them.

In the case of 2D UFUS with angle compounding, the point spread func-
tion is given up to a constant by

g(x; z) = �
�
2� 0c� 1

0 z
�

exp
�
4i�� 0c� 1

0 z
�

sinc
�
2�� 0c� 1

0 Fx
�

sinc
�
2�� 0c� 1

0 � x
�

;

where F; � are constants,� 0 is the base pulsation, and� is a smooth low-
frequency function [3]. To remove high frequencies in measurements, we de-
modulate the signal by multiplying our measurements byexp

�
� 4i�� 0c� 1

0 z
�
.

Therefore, if we sample our image at points(x l ; zl ) l , the associated function
' l are given by

' l (x; z) = �
�
2� 0c� 1

0 z � zl
�

exp
�
4i�� 0c� 1

0 z
�

�

sinc
�
2�� 0c� 1

0 F (x � x l )
�

sinc
�
2�� 0c� 1

0 �( x � x l )
�

;
(3.13)

Thanks to the Shannon sampling theorem, since the demodulated sig-
nal (3.13) has almost all its energy in low frequencies, the solution to the
lasso minimization will be near the correct measure� , as long as there is
enough stability. This is the case when there is enough separation in the
static images.

Figure 3.6 illustrates reconstruction in the case of an UFUS sequence on
a small 2D patch.

3.5 Conclusion

In this chapter, we have shown that perfect reconstruction of positions and
velocity is possible with low frequency measurements. We have proven that
in the case where we have separation of the points in the static images, the
minimization procedure exactly recovers positions and velocity. We have also
shown that this procedure can be applied to ultrafast ultrasound imaging.

What remains to be done is to determine a tighter criterion to have perfect
recovery, since numerical simulations show that reconstruction works even in
the case where we have no separation in still images.





Chapter 4

Spectrography of cell cultures

4.1 Introduction

Cell culture production processes, such as those from stem cell therapy, must
be monitored and controlled to meet strict functional requirements. For
example, a cell culture of cartilage, designed to replace that in the knee,
must be organized in a speci�c way.

Hyaline cartilage is located on the joint surface and play an important
role in body movement. In normal articular cartilage, there is a depth-
dependent strati�ed structure known as zonal organization. As a simpli�ed
model, cartilage comprises three di�erent layers [42]: a super�cial zone in
outer 10%, a middle zone that is50%of the height, and a deep zone consisting
in the inner 40%. At the microscopic level, cartilage tissue is composed of
cells, collagen �bers, and glycosaminoglycans (GAGs). The concentration
and organization of each micro-structure di�ers among the three layers. In
the super�cial zone, cells are anisotropic and horizontally aligned, collagen
orientation is also horizontal and GAGs have a lower concentration than
in the other layers. In the middle zone, there are fewer cells and they are
isotropic, collagen is randomly oriented and there is a medium concentration
of GAGs. In the deep zone, cells are isotropic, cell density is higher than
in the middle zone, collagen is vertically aligned and there is a high GAG
density. As these parameters all contribute to the function of collagen in the
knee, and must be replicated in the cell culture.

It is important that the method for monitoring cell cultures is non-
destructive. Destructive methods require hundreds of samples to be cul-
tured for a single functional tissue, and for the samples to be monitored
multiple times during maturation. Here, we propose a microscopic electri-
cal impedance tomography (micro-EIT) method for monitoring cell cultures
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that exploits the distinctive dielectric properties of cells and other micro-
structures. In this method, electrodes inject a current into the medium at
di�erent frequencies and the corresponding dielectric potentials are recorded,
thus enabling reconstruction of the microscopic parameters of the medium.
The parameters of interest are cell density, collagen orientation, and GAG
density, as well as the orientation and shape of cells.

EIT uses a low-frequency current (below 500 kHz) to visualize the inter-
nal impedance distribution of a conducting domain such as a tissue sample or
the human body. Recent studies measured electrical conductivity values and
anisotropy ratios of engineered cartilage to distinguish extracellular matrix
samples containing di�ering amounts of collagen and GAGs. During chon-
drogenesis over a six-week period, these measurements could distinguish the
stages of the process and provide information regarding the internal depth-
dependent structure.

In this work, we provide a mathematical framework for determining the
microscopic properties of the cell culture from spectral measurements of the
e�ective conductivity. For simplicity, we consider a micro-structure compris-
ing two components in a background medium. One of the components has a
frequency dependent on the material parameters arising from the cell mem-
brane structure, while the other has constant conductivity and permittivity
over the frequency range. First, we derive in Theorem 4 the overall electrical
properties of the culture, which depend on the volume fraction of each com-
ponent and associated membrane polarization tensors de�ned by (4.10) and
(4.11). Then, we show that the spectral measurements of the overall electri-
cal properties of the culture can be used to determine the volume fraction of
each component and the anisotropy ratio of the �rst component. For doing
so, we study the dependence of the membrane polarization tensors on the
operating frequency and use the spectral theorem to recover in Proposition 7
from the measurement of the e�ective conductivity on a range of frequencies
the coe�cients of its expansion with respect to the frequency. Proposition 7
also provides the anisotropy ratio of the cell culture.

This chapter is organized as follows: In Section 4.2, we present a sim-
pli�ed model of the tissue culture. In Section 4.3, we derive an equivalent
e�ective conductivity for the solution at the macroscopic scale. In Section
4.4, we present a method based on spectral measurements, in which micro-
scopic properties are measured from the e�ective conductivity. This process
is known as inverse homogenization or dehomogenization. Finally, we provide
some numerical examples to illustrate our main �ndings.
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super�cial zone

middle zone

deep zone

Figure 4.1: Organization of the cells in the cartilage tissue.

4.2 The direct problem

In this section, we propose a simple electrical model for the tissue and derive
an e�ective conductivity using periodic homogenization.

4.2.1 Problem setting

We consider the domain of interest - the cell culture - to be described by a
domain 
 � R3. We assume that
 = D � (0; 1) where D � R2 denotes a
�oor of the culture medium. Following [43], we describe the conductivity of
the medium by a scalar �eld

� !;" (x) = � !

�
x;

x
"

�
;

where ! denotes the angular frequency of the injected current, and" > 0
is a small parameter representing the microscopic scale of the medium;�
is 1� periodic in every direction in the second variable. Let us consider the
following unit domain:

Y =
�

�
1
2

;
1
2

� d

:

For a �xed x, �
�
x; x

"

�
describes the conductivity in a single cartilage tissue

with cell size" at a location x 2 
 . To have a complete model of the tissue,
� must describe the conductivity of both cells and of the other inclusions,
i.e., collagen and GAGs. The biological �uid conductivity is notedk0 and
is assumed to be frequency independent. The cells are made of biological
�uid enclosed in a very thin and very resistive membrane [6] of thickness
"� for some small parameter� > 0. The conductivity of the membrane is
frequency dependent and is notedkm (! ). The cell shape varies slowly with
the parameter x 2 
 compared to the micro-scale" . The other inclusions
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Figure 4.2: Typical values of� ! on Y.

are described by some frequency independent conductivity functionki
�
x; x

"

�
.

Let
 : 
 � Rd :! R

be aC1
�

 � Rd

�
function, 1-periodic in every direction with respect to the

second variable. We assume that the function is the level set function
for the membrane boundary given by
 +

" =
�

x :  
�
x; x

"

�
> �

	
(resp. 
 �

" =�
x :  

�
x; x

"

�
< � �

	
). We also assume that the support ofki (x; y) is strictly

included in f (x; y) :  (x; y) > � g. We can now describe the conductivity� ! ,
which is schematically represented at a �xedx in Figure 4.2:

� ! (x; y) =

8
><

>:

k0 + ki (x; y) if  (x; y) > �;

k0 if  (x; y) < � �;

km (! ) else.

(4.1)

Now that we have an expression for the conductivity in the medium, as
commonly accepted in EIT, we use the quasi-static approximation for the
electrical potential. For an input current g(x) sin (!t ) on the boundary@Y,
with

R
@
 g = 0, the real part of the corresponding time-harmonic potential,

denoted byu!;" , satis�es the following problem approximately:
(

r � � !;" r u!;" = 0 in 
 ;

� !;" r u!;" � � = g on @
 :
(4.2)

where� is the outer normal vector on@
 . Here, we impose the normalizationR

 "

u!;" = 0.
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Remark 3. Let us brie�y explain how the expression of� ! in (4.1) is derived.
We should note that the frequency dependent behaviors of� !;" in (4.2) are
attributed to thin cell membranes. Imagine that we inject an oscillating
current at the angular frequency! into the cube Y. Then, the resulting
time-harmonic potential w = u + iv in Y is governed by

r � (( � 0(y) + i!� 00(y))r w(y)) = 0 for y 2 Y ;

where � 0 denotes the conductivity distribution and � 00 is the permittivity
distribution in Y. In [36], it was shown that, under some conditions on the
membrane, the real partu approximately satis�es

r �
� j� 0+ i!� 00j2

� 0
r u

�
= 0 in Y: (4.3)

Since� 00� � 0 outside the membrane, we have

j� 0+ i!� 00j2

� 0
� � 0 outside the membrane.

Hence, it is reasonable to assume that the conductivity outside the mem-
brane, as a coe�cient of the elliptic PDE (4.3), does not change with fre-
quency. On the other hand, since� 0 on the membrane is very small, the
e�ect of � 00is not negligible. Hence, the conductivity,km , on the membrane
changes with frequency as follows:

j� 0+ i!� 00j2

� 0
= � 0+

! 2� 00

� 0
on the membrane.

4.2.2 Homogenization of the tissue

We are now interested in getting rid of the micro-scale oscillations of� !;" ,
since boundary measurements will only allow us to image macro-scale varia-
tions of the conductivity. To this end, we proceed to the homogenization of
equation (4.2). Assume thatk0 + ki is bounded from below and from above:

0 <� � k0 + ki � �:

From [6], we have two-scale convergence [4, 43, 45] ofu!;" to u! , which is a
solution to 8

><

>:

r � � �
! r u! = 0 in 
 ;

� �
! r u! � � = g on @
 ;

R

 u! = 0;

(4.4)
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for an input current g(x) sin (!t ) on the boundary@
 . Here, � �
! is called the

e�ective conductivity which can be represented by [6]

� �
! (x)ep � eq =

Z

Y
� ! (x; y) r (yp + vp(y)) � eqdy; 8p; q2 f 1; :::; dg

= k0

�
� p;q +

Z

@Y

@vp
@�

yq ds(y)
�

; (4.5)

where ep := (0 ; � � � ; 1; � � � ; 0) with 0 components exceptp-th component 1,
and vp is the solution to the following equation onY for p = 1; :::; d:

8
><

>:

r � (� ! (x; y) r (vp(y) + yp)) = 0 for y 2 Y ;

vp 1-periodic,
R

Y (vp(y) + yp)dy = 0:

(4.6)

As � ! 0, vp can be approximated [35] by the solution of the following
equation, where� (! ) = �

km (! ) :
8
>>>>>><

>>>>>>:

r � (� ! (x; y) r (vp(y) + yp)) = 0 for y 2 Yn@C;

k0
@

@�(v
+
p (y) + yp) = k0

@
@�(v

�
p (y) + yp) for y 2 @C;

v+
p (y) � v�

p (y) = � (! ) k0
@

@�(v
+
p (y) + yp) for y 2 @C;

vp 1-periodic,
R

Y vp(y) + ydy = 0:

(4.7)

Here,@Cdenotes the membrane of the cellC and �k 0 is the e�ective thickness
of the membrane.

4.3 Imaging the micro-structure from e�ective
conductivity measurements

In this section, we do not care about the space dependence of� �
! , and will

therefore drop it. We will thus assume that� �
! is constant equal to some

matrix in M d (C) := f m 2 Cd� d : mi;j = mj;i for i; j = 1; 2; � � � ; dg. We
will show what kind of information on the micro-structure we can recover
from the knowledge of� �

! in a range of frequencies! 2 (! 1; ! 2). First, in
section 4.3.1, we will obtain a simple representation of the e�ective conduc-
tivity in the dilute case, where the volume fraction of both cells and other
inclusions is small compared to the volume of biological �uid. Then, in the
following sections we will use this representation and will show how to recover
information about the micro-structure using the spectral measure.
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4.3.1 E�ective conductivity in the dilute case

Here, we consider some reference cellC0 and some reference inclusionB0

with there C2 boundaries@C0 and @B0. We assume thatC = xC + � CC0 and
� (! ) = � C � 0 (! ) for some reference� 0 (! ) and let B = xB + � B B0, wherexC

and xB respectively indicate the locations of the cell and inclusion and� C

and � B their characteristic sizes. We assume that the conductivityki of the
inclusion is given by

ki (y) = ( k0 � k1) � B (y) ;

where� B denotes the characteristic function ofB .
The e�ective conductivity is therefore expressed as

� �
! ep � eq =

Z

Y
� (y) r (yp + vp(y)) � eqdy; 8p; q2 f 1; � � � ; dg;

where, forp 2 f 1; � � � ; dg,
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

r � (k0r (vp(y) + yp)) = 0 in Yn(B [ @C) ;

r � (k1r (vp(y) + yp)) = 0 in B;

k0
@

@�(v
+
p (y) + yp) = k0

@
@�(v

�
p (y) + yp) on @C;

v+
p � v�

p = � (! ) k0
@

@�(v
+
p (y) + yp) on @C;

v+
p � v�

p = 0 on @B;

k0
@

@�(v
+
p (y) + yp) = k1

@
@�(v

�
p (y) + yp) on @B;

vp periodic,
R

Y (vp(y) + y) dy = 0:

(4.8)

From now on, I denotes the inclusion mapH 1=2(@C) ! H � 1=2(@C), where
H 1=2 and H � 1=2 are the Sobolev spaces of order1=2 and � 1=2 on @C. We
will now proceed to prove the following result.

Theorem 4. Let f k = � d
k , k 2 f B; Cg and f = max ( f B ; f C ). Then we have

the following expansion:

� �
! = k0 [I + f B MB 0 + f CMC0 (! )] + o(f ) ; (4.9)

where

MC0 (! )ep � eq =
Z

@C0

� q(y)
�

1
� 0 (! ) k0

I + L # ;C0

� � 1

[� p](y)ds(y); (4.10)

and
MB 0 ep � eq =

Z

@B0

�
�I � K �

# ;B 0

�
� 1[� p](y)yq ds(y) (4.11)
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with

� =
k1 + k0

2 (k1 � k0)
:

We begin be reviewing properties of periodic layer potentials. Let us
de�ne the periodic Green's function

G# (x) = �
X

n2 Zd nf 0g

e2i�n �x

4� 2 jnj2
:

Thanks to Poisson's summation formula, in the sense of distribution,G#

satis�es
� G# (x) =

X

n2 Zd

� (x � n) � 1: (4.12)

We write G# (x; y) := G# (x � y). Let us introduce the periodic single layer
potential, for a Lipschitz domain D � Y :

S# ;D : H � 1=2 (@D) ! H 1
loc

�
Rdn@D

�

' 7! x 7!
Z

@D
G# (x; y) ' (y)ds(y);

the periodic double layer potential

D# ;D : H 1=2 (@D) ! H 1
loc

�
Rdn@D

�

' 7! x 7!
Z

@D

@G#
@�(y)

(x; y) ' (y)ds(y);

and the periodic Neumann-Poincaré operator

K# ;D : H 1=2 (@D) ! H 1=2 (@D)

' 7! x 7!
Z

@D

@G#
@�(y)

(x; y) ' (y)ds(y);

and its adjoint given by

K �
# ;D : H � 1=2 (@D) ! H � 1=2 (@D)

' 7! x 7!
Z

@D

@G#
@�(x)

(x; y) ' (y)ds(y):

We review the jump properties of the layer potentials [9].
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Lemma 1. We have the following jump relations along the boundary@D:

S# ;D [' ](x)j+ = S# ;D [' ](x)j � ;

@
@�

S
# ;D

[' ](x)

�
�
�
�
�

=
�

�
1
2

I + K �
# ;D

�
[' ](x);

D# ;D [' ](x)j � =
�

�
1
2

I + K# ;D

�
[' ](x);

@
@�

D
# ;D

[' ](x)

�
�
�
�
+

=
@
@�

D
# ;D

[' ](x)

�
�
�
�
�

:

where the subscript� meansf D (x)j � = lim t ! 0+ f D (x � t� (x)) for x 2 @D.

We denote byL # ;D the operator ' 7! @
@�D# ;D

[' ]. We write � p = � � ep on
@Band @C. Using these jump relations, we have the following representation
theorem for vp; p 2 f 1; :::; dg.

Theorem 5. We have the following representation forvp:

vp = Cp + S# ;B [' 1;p] � D # ;C [' 2;p] ; (4.13)

whereCp is a constant and(' 1; ' 2) satis�es the following system:

8
<

:

�
�I � K �

# ;B

�
[' 1;p] + @

@�D# ;C [' 2;p] = � p on @B;
�

1
�k 0

I + L # ;C

�
[' 2;p] � @

@�S# ;B [' 1;p]

�
�
�
�
+

= � p on @C:
(4.14)

Lemma 2. For any (F; G) 2 H � 1=2 (@B) � H � 1=2 (@C), the system

8
<

:

�
�I � K �

# ;B

�
[' 1] + @

@�D# ;C [' 2] = F on @B;
�

1
�k 0

I + L # ;C

�
[' 2] � @

@�S# ;B [' 1]

�
�
�
�
+

= G on @C;

admits a unique solution(' 1; ' 2) 2 H � 1=2 (@B) � H 1=2 (@C).

Proof. As shown in Appendix B, 1
� I + L # ;C and �I � K �

# ;B are invertible for
� =2 (� 1=2; 1=2]. Moreover, since

@
@�

D# ;C : H 1=2 (@C) ! H � 1=2 (@B)

and
@
@�

S# ;B : H � 1=2 (@B) ! H � 1=2 (@C)
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are compact, the operator

H � 1=2 (@
) � H 1=2 (@
) ! H � 1=2 (@
) � H � 1=2 (@
)

(' 1; ' 2) 7!
�

�
�I � K �

# ;B

�
[' 1] �

@
@�

D# ;C [' 2];
�

1
�k 0

I + L # ;C

�
[' 2] �

@
@�

S# ;B [' 1]

�
�
�
�
+

�

is a Fredholm operator. It is therefore su�cient to show that it is injective.
Let (' 1; ' 2) be such that

( �
�I � K �

# ;B

�
[' 1] + @

@�D# ;C [' 2] = 0 on @B;�
1

�k 0
I + L # ;C

�
[' 2] � @

@�S# ;B [' 1] = 0 on @C:

Let v = S# ;B [' 1] � D # ;C [' 2]. Then v is 1-periodic in every direction, andv
is a solution by construction to the following problem:

8
>>>>>>>><

>>>>>>>>:

r � (k0r (vp(y) + y)) = 0 for y 2 Yn (B [ @C) ;

r � (k1r (vp(y) + y)) = 0 for y 2 B;

k0
@

@�(v
+
p (y) + y) = k0

@
@�(v

�
p (y) + y) for y 2 @C;

v+
p (y) � v�

p (y) = � (! ) k0
@

@�(v
+
p (y) + y) for y 2 @C;

v+
p (y) � v�

p (y) = 0 for y 2 @B;

k0
@

@�(v
+
p (y) + y) = k1

@
@�(v

�
p (y) + y) for y 2 @B:

(4.15)

By the uniqueness of the solution to (4.15) up to a constant,v(x) = c; 8x 2
Y. Then, we have' 1 = 0 on @Cand ' 2 = 0 on @Bbecause they are equal
to the jumps of v (resp. @v

@�) across@B(resp. @C). This concludes the
proof.

We can now proceed to prove Theorem 5.

Proof. Let (' 1; ' 2) be a solution of (4.14), and let

vp = S# ;B [' 1] � D # ;C [' 2] :

Then using the jump relations of the layer potentials, we have thatvp is a
solution of (4.8), except that we have not necessarily

R
@Y vp = 0. We just

have to adjust Cp accordingly.

We now proceed to compute the representation of the e�ective conduc-
tivity.
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Theorem 6. We have the following representation for� �
! :

� �
! = k0 (I + M � ) ;

whereM � = ( M �
pq)

d
p;q=1 is de�ned by

(M � )pq =
Z

@B
xp' 1;qds�

Z

@C
� p' 2;qds; 8p; q2 f 1; :::; dg:

Proof. We recall the expression of� �
! in (4.5):

� �
! ep � eq = k0

�
� p;q +

Z

@Y

@vp
@�

(y)yqds(y)
�

:

Using representation (4.13), we obtain
Z

@Y

@vp
@�

(y)yqds(y) =
Z

@Y

@S# ;B [' 1;p]
@�

(y)yqds(y) �
Z

@Y

@D# ;C [' 2;p]
@�

(y)yqds(y)

and
Z

@Y

@S# ;B [' 1;p]
@�

(y)yqds(y) =
Z

@B

@S# ;B [' 1;p]
@�

�
�
�
�
+

(y)yqds(y)

�
Z

@B

@S# ;B [' 1;p]
@�

�
�
�
�
�

(y)yqds(y)

=
Z

@B
yq' 1;p(y)ds(y):

The same reasoning applies to the second part of the equation:
Z

@Y

@D# ;C [' 2;p]
@�

(y)yqds(y) =
Z

@C
D# ;C [' 2;p]j+ (y)� q(y)ds(y)

�
Z

@C
D# ;C [' 2;p]j � (y)� q(y)ds(y)

=
Z

@C
' 2;p(y)� q(y)ds(y):

Therefore,

� �
! ep � eq = k0

�
� p;q +

Z

@Y

@vp
@�

(y)yqds(y)
�

= k0

�
� p;q +

Z

@B
yq' 1;p(y)ds(y)�

Z

@C
' 2;p� q(y)(y)ds(y)

�
:
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We turn to the proof of Theorem 4. We �rst review asymptotic properties
of the periodic Green's functionG# . The following result from [9, Chapter
2] holds.

Lemma 3. We have the following expansion forG# :

G# (x) = G(x) + Rd(x);

where G is the Green function andRd is a smooth function onRd and its
Taylor expansion at0 is given by

Rd(x) = Rd(0) �
1
2d

jxj2 + O
�
jxj4

�
: (4.16)

Using this expansion, we obtain by exactly the same arguments as those
in [9, Chapter 8] the following expansion, which is uniform inz 2 @B0,

�
�I � K �

B 0

�
[ B;p ](z) = � B 0 ;p (z) + o(1)

�
1

� 0k0
I + L C0

�
[ C;p](z) = � C0 ;p(z) + o(1);

whereK �
B 0

is the standard Neumann-Poincaré operator andL C0 denotes the
operator @

@�DC0 associated with the standard double layer potentialDC0 :

K �
B 0

[� ](x) :=
Z

@B0

@G
@�(x)

(x; y)� (y)ds(y);

L C0 [� ](x) :=
@
@�

Z

@C0

@G
@�(y)

(x; y)� (y)ds(y):

Therefore, we arrive at the result stated in Theorem 4.

4.3.2 Spectral measure of the tissue

Expansion (4.9) yields

� �
! = k0

�
I + � d

B MB 0 + � d
CMC0 (! )

�
+ O

�
� d

�

with

MC0 (! )ep � eq =
Z

@C0

� q(y)
�

1
� 0 (! ) k0

I + L C0

� � 1

[� p](y) ds(y):

In order to use the spectral theorem in a Hilbert space, we have to mod-
ify the expression ofMC0 . Let L � 1

C0
be the inverse ofL C0 : H 1=2

0 (@C0) !

H � 1=2
0 (@C0). Then we write

�
1

� 0 (! ) k0
I + L C0

� � 1

[� p] =
�

1
� 0 (! ) k0

L � 1
C0

� I + I H 1=2

� � 1

L � 1
C0

[� p]:

The following result holds.
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Lemma 4. L � 1
C0

�I can be extended to a self-adjoint operatorL y : L2 (@C0) !
L2 (@C0) ; whose image is a subset ofH 1=2 (@C0).

Proof. Let J 1 : L2 (@C0) ,! H � 1=2 (@C0) and J 2 : H 1=2 (@C0) ,! L2 (@C0).
Let L y = J 2 � L � 1

C0
� J 1. Then obviously L y extendsL � 1

C0
� I and its image

is a subset ofH 1=2 (@C0). Let us show that it is self-adjoint. Let (';  ) 2
L2 (@C0) � L2 (@C0). Let h; i L 2 and h; i H 1=2 ;H � 1=2 respectively denote theL2-
scalar product and the duality pairing betweenH 1=2(@C0) and H � 1=2(@C0).
We have



L y[' ];  

�
L 2 =



L � 1

C0
[' ];  

�
L 2 =



L � 1

C0
[' ];  

�
H 1=2 ;H � 1=2

=


L � 1

C0
[ ]; '

�
H 1=2 ;H � 1=2 =



L � 1

C0
[ ]; '

�
L 2 =



L y[ ]; '

�
L 2 ;

sinceL C0 is self-adjoint from H 1=2(@C0) onto H � 1=2(@C0).

From this result, we can now proceed. From the spectral theorem, there
exists a spectral measureE such that for any z 2 C n �

�
L y

�
and for any

(';  ) 2 (L2 (@C0))2,
* �

L y

z
+ I

� � 1

[' ];  

+

L 2

=
Z

� (L y)

1
x
z + 1

' (x) (x)dE (x) : (4.17)

where�( L y) denotes the spectrum ofL y. Let

Fp;q (z) = � p;q+ � d
B MB 0 ep�eq+ � d

C

Z

� (L y)

1
x
z + 1

L � 1
C0

[� p](x)�� q(x)dE (x) : (4.18)

where� p;q = 1 if p = q and � p;q = 0 if p 6= q. Therefore, we have

� �
! ep � eq ' k0 [Fp;q (� 0 (! ) k0)] :

Since
lim
z! 0

F (z) = I + � d
B MB 0 ;

there is no singularity of F in 0. Since 0 =2 �
�
L y

�
, (4.17) is valid on a

neighborhood of0.

Proposition 7. Let F = ( Fp;q)d
p;q=1 be de�ned by (4.18). Then the following

expansion ofF in a neighborhood of0 holds:

Fp;q (z) =
1X

k=0

ak;p;qzk ; (4.19)
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where
a0;p;q = I + � d

B MB 0 ep � eq;

and
a1;p;q = � d

C � p � � q:

Proof. Identity (4.19) holds using the analyticity of F in a neighborhood of
0. We also have

a0;p;q = lim
z! 0

Fp;q(z) = � p;q + � d
B MB 0 ep � eq:

In order to obtain the next coe�cients, we begin by establishing the following
limit:

lim
z! 0

�
L y + zI

� � 1
[� p] = L C0 [� p]; p = 1; 2:

Indeed, let ' (z) =
�
L y + zI

� � 1
[� p]. Then

' (z) =
1
z

�
� p � L y' p

�
:

Since the range ofL y is a subset ofH 1=2 (@C0), ' (z) 2 H 1=2 (@C0). Therefore,

' (z) = L C0 [� p] � zL C0 [' ](z) !
z! 0

L C0 [� p]:

This yields

lim
z! 0

1
z

(Fp;q(z) � Fp;q(0)) = � d
C � p � � q:

In the following, we write

F (z) = ( Fp;q(z))p;q2f 1;:::;dg ; z 2 Cn� ( L C0 ) ;

and
Ak = ( ak;p;q)p;q2f 1;:::;dg ; k 2 N: (4.20)

SinceFp;q is analytic on Cn� ( L C0 ), the values ofak can be recovered from
the values ofFp;q on a subset ofC with a limiting point. Therefore, we can
reconstruct the valuesak;p;q from the measurements of the e�ective conduc-
tivity � �

! in a band of frequencies! 2 (! 1; ! 2). Further details on this will
be provided in the following section.
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4.4 Inverse homogenization

4.4.1 Imaging of the anisotropy ratio

The anisotropy ratio (the ratio between the largest and the lowest eigenvalue
of the e�ective conductivity tensor) depends on the frequency [6]. Further-
more, in the general case, the anisotropy orientation (the direction of the
e�ective conductivity tensor eigenvectors) depends also on the frequency.
However, in the special case where we have an axis of symmetry of a single
inclusion or a cell, the anisotropy orientation is independent of the frequency.

We denote by Od(R) := f R 2 Rd� d j RT R = 1; det(R) = 1 g the set
of rotational matrices. Here, the superscriptT denotes the transpose. For
convenience, we writeR(x) := Rx for x 2 Y and R(D) := f Rx : x 2 Dg.
We will need the following covariance result :

Lemma 5. Let R 2 O d (R) and f 2 L2 (@C0). Then

L C0 [f � R] � R = L C0 [f ]:

Proof. We have, for anyx 2 @C0,

L C0 [f � R] (R (x)) = lim
h! 0

rD C0 [f � R] (R(x) + h� (R(x))) � � (R(x)) :

Moreover,

DC0 [f � R] (R(x)) =
Z

@C0

r G (R (x) � y) � � (y) f (R (y)) ds(y)

=
Z

@C0

r G (R (x) � R (y)) � � (R (y)) f (y)ds(y) :

SinceG is isotropically symmetric,r G (R (x � y)) = R (r G (x � y)), there-
fore for any x; y 2 @C0,

r G (R (x) � R (y)) �� (R (y)) = R (r G (x � y)) �R (� (y)) = r G (x � y)�� (y)

so that
DC0 [f � R] (R(x)) = DC0 [f ] (x) ; 8x 2 @C0:

This in turn implies that

L C0 [f � R] (R (x)) = lim
h! 0

rD C0 [f � R] (R(x) + h� (R(x))) � � (R(x))

= lim
h! 0

rD C0 [f ] (x + � (x)) � � (x) = L C0 [f ] (x):

The following corollary holds immediately.

Corollary 8. Let R 2 O d (R). Then,

MR(C0 ) = RM C0 RT :
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Let us begin with the two-dimensional case.

Proposition 9. Let d = 2, and ("1; "2) be an orthonormal basis ofR2. Let
� be the orthogonal symmetry of axis"1. If � (C0) = C0, then

F (z)"1 � "2 = 0; 8z 2 C n �( L y):

Proof.

F (z)"1 � "2 = � d
C

Z

@C0

�
L y

z
+ I

� � 1

[� � "1] (x) � (x) � "2 ds(x)

= � d
C

Z

@C0

�
L y

z
+ I

� � 1

[� � "1] (� (x)) � (� (x)) � "2 ds(x)

= � � d
C

Z

@C0

�
L y

z
+ I

� � 1

[� � "1] (x) � (x) � "2 ds(x)

because� (� (x)) � "1 = � (x) � "1 and � (� (x)) � "2 = � � (x) � "2. Therefore,

F (z)"1 � "2 = 0; 8z 2 C n �( L y):

We have a similar result in three dimensions. The following proposition
holds.

Proposition 10. Let d = 3, and ("1; "2; "3) be an orthonormal basis ofR3.
Let � 1 (resp. � 2) be the orthogonal symmetry of axis"1 (resp. "2). If � 1 (C0) =
� 2 (C0) = C0, then

F (z)" j � " k = 0; 8z 2 C; 8k 6= j 2 f 1; 2; 3g:

Proof. The proof is exactly the same as in thed = 2 case and is therefore
omitted.

Remark 4. It is also true that the symmetry axes ofB0 correspond to the
eigenvectors of the polarization tensorMB 0 . Therefore, the anisotropy direc-
tion of the frequency-independent background can also be recovered as the
principal directions of MB 0 .

Remark 5. Even if each of inclusion and cell has an axis of symmetry, the
direction of eigenvectors of the e�ective conductivity tensor can be frequency
dependent. The following numerical test is conducted to show an example
of frequency dependency. There are an ellipsoidal inclusion with major axis
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C0

"1

"2

Figure 4.3: A domain presenting a symmetry. In this case, the anisotropy direction
is frequency independent.

e1 and minor axis e2 and an ellipsoidal cell with major axise2 and minor
axis e1 in the unit square as shown in Figure 4.4 (a). For the square domain
Y = ( � 1

2 ; 1
2)2, each axis length of cell and inclusion is1=8, and 1=24. The

center of ellipsoidal cell and inclusion are(1=3; 1=6) and (0; � 1=3) respec-
tively. The ratio between membrane thickness and size of a cell is5 � 10� 3.
The conductivity value of medium, membrane, inclusion are0:5 S/m, 10� 5

S/m, and 10� 12 S/m respectively. We use (4.5) to compute the e�ective con-
ductivity tensor. For the numerical computation, we take advantage of using
uj satisfying r � (� r uj ) = 0 in 
 with boundary condition uj (y)j@
 = yj j@

for y = ( y1; y2). Then, vj can be replaced withvj = uj � yj . Hence, the
eigenvectors of the e�ective conductivity can be computed and the main di-
rection of anisotropy changes in terms of the frequency as shown in Figure
4.4 (b).

4.4.2 Implementation of the inverse homogenization

Following [6], we use the following values:

ˆ The size of cells:50�m ;

ˆ Ratio between membrane thickness and size of a cell:0:7 � 10� 3;

ˆ Medium conductivity: 0:5 S=m;

ˆ Membrane conductivity: 10� 8 S=m;
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!= 2�
current 104 Hz 109 Hz

y1-direction

I 0

y2-direction

I 0

y1

y2

blue arrows for eigenvectors at frequency 104 Hz
red arrows for eigenvectors at frequency 109 Hz

(a) (b)

Figure 4.4: (a) shows voltage map with current �ows for eachy1- and y2- direction
current at 104 and 109 Hz. (b) shows eigenvectors of the e�ective conductivity.
Blue arrows represent eigenvectors at frequency!= 2� = 104 Hz while red arrows
are representing eigenvectors at frequency!= 2� = 109 Hz.

ˆ Background inclusion conductivity: 10� 7 S=m;

ˆ Membrane permittivity: 3:5 � 8:85� 10� 12 F=m;

ˆ Frequency band: != 2� 2 [104; 109] Hz.

In this case, we have values of� (! ) for != 2� 2 [104; 109] in Figure 4.5. We
consider a sample medium as follows: the cells are elliptic in shape, with axes
lengths � CaC and � CbC , with acbC � = 1. The background is composed of
elliptic inclusions, with axes lengths� B aB and � B bB , with aB bB � = 1. Their
orientation is given by the angles� C and � B respectively.

At each frequency, in order to compute the true e�ective conductivity
given by (4.5), we perform a �nite element computation using FreeFem++
[30]. Comparison between the true e�ective conductivity and the expansion
from Theorem 4.9 can be seen in Figures 4.6 and 4.7, in the case� B = 0 and
� C = 0, and � B = � C = 0:1.

To recover the moments from the e�ective conductivity, we approximate
as a rational function,

Fp;q(z) '
p0 + p1z + ::: + pN zN

q0 + q1z + ::: + qN zN
:
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Figure 4.5: Values of� (! ) for != 2� 2
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104; 109

�
.
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Figure 4.6: Real part of the e�ective conductivity.
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Figure 4.7: Imaginary part of the e�ective conductivity.
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for someN 2 N. Such an approximation ofF is called a Padé approximation
of F . Then we approximate the moments by the following values:

~a0;p;q =
p0

q0
;

~a1;p;q =
p1

q0
�

q1p0

q2
0

:

Numerically, this is done as a simple least square inversion: the coe�cients
of the polynomialsP(z) = p0+ p1z+ :::+ pN zN and Q(z) = q0+ q1z+ :::+ qN zN

are computed to minimize the quantity
KX

k=1

�
�
�
�Fp;q(zk) �

P(zk)
Q(zk)

�
�
�
�

2

;

wherez1; :::; zK are the frequency values whereF is measured.

We now consider a toy example whereC is an ellipse inR2. In this case,
if � 1 and � 2 are the eigenvalues ofA1 de�ned by (4.20) for k = 1, the ratio
r := � 2=� 1 is independent of the volume fraction and is given by

r =

R2�
0

b2 cos2 (t )p
b2 cos2 (t )+ a2 sin2 (t )

dt
R2�

0
a2 sin2 (t )p

b2 cos2 (t )+ a2 sin2 (t )
dt

=
b
a

R2�
0

cos2 (t )q
cos2 (t )+ a2

b2 sin2 (t )
dt

R2�
0

sin2 (t )q
b2

a2 cos2 (t )+sin 2 (t )
dt

: (4.21)

Since the right-hand side of (4.21) can be regarded as a function ofa=b, the
anisotropy ratio a=bcan be easily obtained by solving (4.21) with the known
valuer . In Figure 4.8 (resp. in Figure 4.9), we illustrate the reconstruction of
the ratio r using the Padé approximation ofF as a function of the anisotropy
ratio a=bcompared to its theoretical value given by the preceding formula
in the case where there is no inclusionB (resp. with an inclusion B with
� B = 0:1). As we can see, the reconstruction is almost perfect in the case
where there is no inclusion, and there is a slight bias induced by the inclusion
B.

After recovering the anisotropy ratioa=b, we can recover the volume frac-
tion � C from the product of � 1; � 2 of the eigenvalues ofA1. Indeed, we have

� 1� 2 = � 4
Cab

Z 2�

0

cos2(t)
q

cos2(t) + a2

b2 sin2(t)
dt

Z 2�

0

sin2(t)
q

b2

a2 cos2(t) + sin 2(t)
dt

=
� 4

C

�

Z 2�

0

cos2(t)
q

cos2(t) + a2

b2 sin2(t)
dt

Z 2�

0

sin2(t)
q

b2

a2 cos2(t) + sin 2(t)
dt:
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Figure 4.8: Reconstruction ofr when there is no inclusionB .
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Figure 4.9: Reconstruction ofr when there is an inclusionB with � B = 0 :1.
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Values of� C 0.01 0.02 0.03 0.05 0.1 0.2 0.3
Reconstructed 0.0098 0.0196 0.0294 0.0491 0.0981 0.1963 0.2945

Table 4.1: Reconstructed values of� C with anisotropy ratio of 2.

3B estimated

3C estimated

3B true

3C true

Figure 4.10: Reconstruction of the orientation of the inclusionsB and C.

Table 4.1 presents numerical reconstruction of the volume fraction� C using
the preceding formula, with an anisotropy ratio equal to2.

To reconstruct the angle of the inclusions, we simply use the orientation of
the eigenvalues of the moments ofA0 for B and A1 for C. This is illustrated
by results in Figure 4.10 when bothB and C are ellipses of anisotropy ratio
2 and with � B = � C = 0:1.



Appendix A

The Justi�cation of the
Approximation of the PSF

This appendix is devoted to the formal justi�cation of the PSF approximation
(1.8) which was obtained by truncating the Taylor expansion ofw�

� at the
�rst order: we shall show here that the error caused by this truncation is
small. For simplicity, we shall consider only the case whenz = z0 and � = 0:
the general case may be tackled in a similar way. Without loss of generality,
we may setx0 = 0 and supposex � 0. We also suppose that we are not too
close to the detectors, namelyz � 10� 2 m. Moreover, in order to be able to
be quantitative, we consider the particular case whenF = 0:4 and � = 1.

The expression of the PSF that we want to approximate is (see (1.7))

g(x) := g0((x; z); (0; z)) =
c0

4�x
[f 0(w+ (x)) � f 0(w� (x))] ;

wherew� (x) is given by

w� (x) := h0
x ;x 0(x � Fz) = c� 1

0

� p
1 + F 2z �

p
z2 + ( x � Fz)2

�
:

(Note that, for simplicity of notation, we have removed the dependence ofw
on � and z.) An immediate calculation shows that

w� (0) = 0 ; w0
� (0) =

� c� 1
0 F

p
1 + F 2

; w00
� (x) =

� c� 1
0 z2

((x � Fz)2 + z2)3=2
:

Hence, there exists� x 2 [0; x] such that

w� (x) =
� c� 1

0 F
p

1 + F 2
x + cx

x2

2
; jcx j = jw00

� (� x )j � c� 1
0 z� 1:

81
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Therefore, the absolute errorE(x) due to the truncation of the Taylor series
of w� at �rst order is given by

E(x) = c0(4� )� 1 [E+ (x) � E � (x)] ;

where

E � (x) =
1
x

�
f 0(

� c� 1
0 F

p
1 + F 2

x + cx
x2

2
) � f 0(

� c� 1
0 F

p
1 + F 2

x)
�

:

We now consider two cases, depending onx. First, consider the case when
x > 5 � 10� 3 m. From the above calculations we immediately have

jE(x)j � c0(4� )� 1 4
x

kf 0k1 �
2
5

c0103� 0 � 3:7 � 1012:

Next, consider the case whenx � 5 � 10� 3 m. By using again the mean
value theorem we obtain

E � (x) = cx
x
2

f 00(� x ); � x =
� c� 1

0 F
p

1 + F 2
x + � xcx

x2

2

for some� x 2 [0; 1]. Sincejf 00(t)j is even and decreasing fort > 0, we have
that

jE � (x)j � c� 1
0

x
2z

jf 00(
c� 1

0 F
p

1 + F 2
x � c� 1

0
x2

2z
)j;

since the inequality x � 5 � 10� 3 m guarantees that c� 1
0 F

p
1+ F 2 x � c� 1

0
x2

2z > 0.
Therefore we have

jE(x)j � (4� )� 1xz � 1jf 00(
c� 1

0 F
p

1 + F 2
x � c� 1

0
x2

2z
)j:

Let us look at the right hand side of this inequality. Asx ! 0 the error
tends to 0: this is expected, because of the Taylor expansion around0. On
the other hand, for big x, the value of jf 00( c� 1

0 F
p

1+ F 2 x � c� 1
0

x2

2z )j is very small,
sincejf 00(t)j decays very rapidly for larget. Therefore, the maximum of the
right hand side is attained in a pointx � 2 (0; 0:005). The value in this point
may be explicitly calculated, and we have

jE(x)j � 4 � 1012; 0 � x � 5 � 10� 3 m:

To summarize the above derivation, we have shown that the absolute
error E(x) is bounded by

jE(x)j � 4 � 1012; x � 0: (A.1)
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We now wish to estimate the relative errorkEk1 =kgk1 . In order to
do this, let us computeg(0). Since the Taylor expansion becomes exact as
x ! 0, we may very well computeg(0) by using the approximated version.
Thus, setting G = F=

p
1 + F 2 we have

g(0) = lim
x! 0

�
c0

4�x

�
f 0(c� 1

0 Gx) � f 0(� c� 1
0 Gx)

�

= lim
x! 0

� G(4� )� 1

�
f 0(c� 1

0 Gx) � f 0(0)
c� 1

0 Gx
+

f 0(� c� 1
0 Gx) � f 0(0)
� c� 1

0 Gx

�

= � 2G(4� )� 1f 00(0);

whencejg(0)j � 8:8�1013 by a direct calculation ofjf 00(0)j. Finally, combining
this inequality with (A.1) allows to bound the relative error by

kEk1

kgk1

� 5%:

We have proven that the relative error of the approximation obtained by
truncating the Taylor expansions ofw� at the �rst order is less than 5%.
This has been proven only in the particular case whenz = z0: the general
case may be done by extending the above argument to two dimensions.
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Appendix B

Spectrum of some periodic
integral operators

Let C � Rd be a C1+ � -domain for some� > 0. It is known that the non
periodic operator�I �K �

C is invertible on H � 1=2 for � =2
�
� 1

2 ; 1
2

�
[20, 28]. The

positivity of L C [46, Section 3.3] also implies that� I + L C : H 1=2 ! H � 1=2 is
invertible for � > 0. We extend these results to the case of periodic Green's
function.

Theorem 11. For any � > 0, the operator � I + L # ;C : H 1=2 (@C) !
H � 1=2 (@C) is invertible.

Proof. We �rst show that the operator L # ;C is a Fredholm operator. Note
that, L # ;C = L C + R whereR is an integral operator with a smooth kernel
and is therefore compact. Moreover, sinceL C has a dimension1 kernel and
image, it is a Fredholm operator. Therefore,L # ;C is Fredholm. Now we
show that L # ;C is positive semi-de�nite, and the result will follow from the
Fredholm alternative. Since

hL# ;C [' ];  i L 2 = � hS # ;C [curl@C' ]; curl@C i L 2

for any ';  2 H 1=2 (@C), we just have to show thatS# ;C is negative semi-
de�nite. From the expression (4.12) forG# , we compute, for any ' 2
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L2 (@C),

hS# ;C [' ]; ' i L 2 = �
X

n2 Zd nf 0g

Z

@C

Z

@C

e2i�n �(x� y)

4� 2 jnj2
' (x) ' (y) ds(x) dS(y)

= �
X

n2 Zd nf 0g

� Z

@C

e2i�n �y

2� jnj
' (y) dS(y)

� � Z

@C

e2i�n �x

2� jnj
' (x) ds(x)

�

= �
X

n2 Zd nf 0g

�
�
�
�

Z

@C

e2i�n �y

2� jnj
' (y) ds(y)

�
�
�
�

2

� 0:

Therefore,S# ;C is negative semi-de�nite, which concludes the proof.

Theorem 12. For � =2
�
� 1

2 ; 1
2

�
, the operator �I � K �

# ;C is invertible on
H � 1=2 (@C).

Proof. Since �I � K �
C is invertible, K �

# ;C � K �
C is a compact operator [9],

�I � K �
# ;C is a Fredholm operator and it is enough to show that it is one-to-

one. The proof goes exactly as in [20]. Let us assume that�I � K �
# ;C is not

one-to-one. Then there exists somef 2 H � 1=2 (@C) such that
�
�I � K �

# ;C

�
[f ] = 0:

Let us write

�
�I � K �

# ;C

�
[f ] =

�
� �

1
2

�
f +

�
1
2

I � K �
# ;C

�
[f ]:

Since

�

1
2 I � K �

# ;C

�
[f ]; 1

�
L 2 = 0, we havehf; 1i L 2 = 0. Let u = S# ;C [f ] 2

H 1 (Yn@C). Let

A =
Z

C
jr u(x)j2 dx and B =

Z

YnC
jr u(x)j2 dx:

Then A 6= 0 or B 6= 0 sincef is not identically zero. Then by Green's formula
together with the jump formulas, we have

A =
��

�
1
2

I + K �
# ;C

�
[f ]; S# ;C [f ]

�

L 2

;

and

B =
��

1
2

I + K �
# ;C

�
[f ]; S# ;C [f ]

�

L 2

:
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Since
�
�I � K �

# ;C

�
[f ] = 0, we have� = 1

2
B � A
B + A . We have therefore a con-

tradiction : we have j� j � 1
2 since A; B � 0. Therefore, � = � 1

2 which
implies that B = 0. Therefore,u is constant in Rdn [ n2 Zd f C + ng. Sinceu
is continuous across@C, u is harmonic onC and is constant on@C, and by
uniqueness of the Dirichlet problem onC, u is constant onC. Therefore,

f =
@
@�

S# ;C [f ]

�
�
�
�
+

�
@
@�

S# ;C [f ]

�
�
�
�
�

= 0;

which is a contradiction.
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