]. G. Whitesides, P. Vennemann, R. Lindken, J. Westerweel, M. Draijer et al., In vivo whole-field blood velocity measurement techniques Review of laser speckle contrast techniques for visualizing tissue perfusion [4] V. V. Tuchin, Handbook of Coherent Domain Optical Methods: Biomedical Diagostics, Environment and Material Science Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media Micro-Particle Image Velocimetry (µPIV): Recent developments, applications, and guidelines A particle image velocimetry system for microfluidics On-line volume flow rate and velocity profile measurement for blood in microvessels Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens, Nature Exp. Fluids Lasers Med. Sci. Opt. Lett. Lab Chip Exp. Fluids Microvasc. Res. Appl. Opt, vol.442, issue.44 12, pp.368-73, 1974.

U. Zabit, F. Bony, T. Bosch, and A. D. Rakic, A Self-Mixing Displacement Sensor With Fringe-Loss Compensation for Harmonic Vibrations, IEEE Photonics Technology Letters, vol.22, issue.6, pp.410-412, 2010.
DOI : 10.1109/LPT.2010.2040825

U. Zabit, O. D. Bernal, and T. Bosch, A self-mixing displacement sensor compensating parasitic vibration with a MEMs accelerometer, 2011 IEEE SENSORS Proceedings, pp.1386-1389, 2011.
DOI : 10.1109/ICSENS.2011.6126997

A. Ashrif, A. Bakar, Y. L. Lim, S. J. Wilson, M. Fuentes et al., On the feasibility of self-mixing interferometer sensing for detection of the surface electrocardiographic signal using a customized electro-optic phase modulator, Physiol. Meas, vol.34, pp.281-289, 2013.

R. Michalzik and K. J. Ebeling, Operating Principles of VCSELs, Vertical-Cavity Surface-Emitting Laser Devices, pp.53-98, 2003.
DOI : 10.1007/978-3-662-05263-1_3

A. Kazutaka, K. Otsuka, and J. Ko, Self-mixing laser Doppler vibrometry with high optical sensitivity : application to real-time sound, New J. Phys, vol.59, pp.8-9, 2003.

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode, Applied Optics, vol.25, issue.9, p.1417, 1986.
DOI : 10.1364/AO.25.001417

U. Zabit, O. D. Bernal, T. Bosch, and F. Bony, MEMS accelerometer embedded in a self-mixing displacement sensor for parasitic vibration compensation, Optics Letters, vol.36, issue.5, pp.612-616, 2011.
DOI : 10.1364/OL.36.000612

G. Giuliani, S. Bozzi-pietra, and S. Donati, Self-mixing laser diode vibrometer, Measurement Science and Technology, vol.14, issue.1, pp.24-32, 2003.
DOI : 10.1088/0957-0233/14/1/304

M. Nikolid, Y. L. Lim, K. Bertling, T. Taimre, and A. D. Rakid, Multiple signal classification for self-mixing flowmetry, Applied Optics, vol.54, issue.9, pp.2193-2198, 2015.
DOI : 10.1364/AO.54.002193

M. Nikolic, Y. Lim, and S. Wilson, Flow profile measurement in micro-channels using changes in laser junction voltage due to Self-mixing effect, 2011 IEEE SENSORS Proceedings, pp.1394-1397, 2011.
DOI : 10.1109/ICSENS.2011.6127217

M. Nikolid, D. P. Jovanovid, Y. L. Lim, K. Bertling, T. Taimre et al., Approach to frequency estimation in self-mixing interferometry: multiple signal classification, Applied Optics, vol.52, issue.14, p.3345, 2013.
DOI : 10.1364/AO.52.003345

L. Scalise, W. Steenbergen, and F. De-mul, Self-mixing feedback in a laser diode for intra-arterial optical blood velocimetry, Applied Optics, vol.40, issue.25, pp.4608-4623, 2001.
DOI : 10.1364/AO.40.004608

Y. Yeh and H. Z. Cummins, LOCALIZED FLUID FLOW MEASUREMENTS WITH AN He???Ne LASER SPECTROMETER, Applied Physics Letters, vol.4, issue.10, pp.176-178, 1964.
DOI : 10.1109/PROC.1963.2510

E. W. Washburn, The Dynamics of Capillary Flow, Physical Review, vol.42, issue.3, pp.273-283, 1921.
DOI : 10.1021/ja01448a006

J. W. Foreman, R. D. Lewis, J. R. Thornton, and H. J. Watson, Laser Doppler velocimeter for measurement of localized flow velocities in liquids, Proc. IEEE, pp.424-425, 1966.
DOI : 10.1109/PROC.1966.4732

E. R. Pike, D. A. Jackson, P. J. Bourke, and D. I. Page, Measurement of turbulent velocities from the Doppler shift in scattered laser light, Journal of Physics E: Scientific Instruments, vol.1, issue.7, p.306, 1968.
DOI : 10.1088/0022-3735/1/7/306

W. K. George and J. L. Lumley, The laser-Doppler velocimeter and its application to the measurement of turbulence, Journal of Fluid Mechanics, vol.9, issue.02, pp.321-362, 1973.
DOI : 10.1063/1.1761356

C. Riva, B. Ross, and G. B. Benedek, Laser Doppler measurements of blood flow in capillary tubes and retinal arteries, Invest. Ophthalmol, vol.11, issue.11, pp.936-944, 1972.

J. B. Abbiss, Principles and practice of laser-Doppler anemometry, Optics & Laser Technology, vol.8, issue.5, pp.236-237, 1976.
DOI : 10.1016/0030-3992(76)90012-8

J. König, A. Voigt, L. Büttner, and J. Czarske, Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing, Measurement Science and Technology, vol.21, issue.7, p.74005, 2010.
DOI : 10.1088/0957-0233/21/7/074005

T. J. Essex and P. O. Byrne, A laser Doppler scanner for imaging blood flow in skin, Journal of Biomedical Engineering, vol.13, issue.3, pp.189-194, 1991.
DOI : 10.1016/0141-5425(91)90125-Q

G. Michelson, M. Groh, M. Langhans, and B. Schmauss, Zweidimensionale Kartierung der retinalen und papill??ren Mikrozirkulation mittels Scanning-Laser-Doppler-Flowmetrie, Klinische Monatsbl??tter f??r Augenheilkunde, vol.207, issue.09, pp.180-90, 1995.
DOI : 10.1055/s-2008-1035365

S. A. Pape, C. A. Skouras, and P. O. Byrne, An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth, Burns, vol.27, issue.3, pp.233-239, 2001.
DOI : 10.1016/S0305-4179(00)00118-2

A. Fischer, U. Wilke, R. Schlüßler, D. Haufe, T. Sandner et al., Extension of frequency modulated Doppler global velocimetry for the investigation of unsteady spray flows, Optics and Lasers in Engineering, vol.63, pp.1-10, 2014.
DOI : 10.1016/j.optlaseng.2014.06.002

D. R. Cadel and K. T. Lowe, Cross-correlation Doppler global velocimetry (CC-DGV), Optics and Lasers in Engineering, vol.71, pp.51-61, 2015.
DOI : 10.1016/j.optlaseng.2015.03.012

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson et al., Optical coherence tomography. Science, vol.254, issue.5035, pp.1178-81, 1991.

A. M. Rollins, S. Yazdanfar, J. K. Barton, and J. Izatt, Real-time in vivo color Doppler optical coherence tomography, Journal of Biomedical Optics, vol.67, issue.1, pp.123-129, 2002.
DOI : 10.1093/ptj/67.4.526

B. Cense, N. Nassif, T. Chen, M. Pierce, and S. Yun, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography, Optics Express, vol.12, issue.11, pp.2435-2447, 2004.
DOI : 10.1364/OPEX.12.002435.m003

R. J. Adrian, Twenty years of particle image velocimetry, Experiments in Fluids, vol.10, issue.2, pp.159-169, 2005.
DOI : 10.1007/978-3-662-03637-2

F. Sarrazin, K. Loubière, L. Prat, C. Gourdon, T. Bonometti et al., Experimental and numerical study of droplets hydrodynamics in microchannels, AIChE Journal, vol.16, issue.80, pp.4061-4070, 2006.
DOI : 10.1002/aic.11033

A. K. Prasad, Particle Image Velocimetry, Curr. Sci, vol.1, pp.51-60, 2000.

M. Riethmuller, L. David, and B. Lecordier, Particle Image Velocimetry, Laser Velocimetry in Fluid Mechanics, pp.159-281, 2012.
DOI : 10.1364/AO.36.008738

D. B. Barker and M. E. Fourney, Measuring fluid velocities with speckle patterns, Optics Letters, vol.1, issue.4, p.135, 1977.
DOI : 10.1364/OL.1.000135

T. D. Dudderar and P. G. Simpkins, Laser speckle photography in a fluid medium, Nature, vol.16, issue.5632, pp.45-47, 1977.
DOI : 10.1038/270045a0

R. Grousson and S. Mallick, Study of flow pattern in a fluid by scattered laser light, Applied Optics, vol.16, issue.9, p.2334, 1977.
DOI : 10.1364/AO.16.002334

R. Meynart, Convective flow field measurement by speckle velocimetry, Revue de Physique Appliqu??e, vol.13, issue.E, pp.301-305, 1982.
DOI : 10.1051/rphysap:01982001705030100

URL : https://hal.archives-ouvertes.fr/jpa-00245000

R. Meynart, Equal velocity fringes in a Rayleigh-Benard flow by a speckle method, Applied Optics, vol.19, issue.9, p.1385, 1980.
DOI : 10.1364/AO.19.001385

R. Meynart, Speckle velocimetry study of vortex pairing in a low-Re unexcited jet, Physics of Fluids, vol.26, issue.8, p.2074, 1983.
DOI : 10.1063/1.864411

R. Meynart, Equal velocity fringes in a Rayleigh-Benard flow by a speckle method, Applied Optics, vol.19, issue.9, p.1385, 1980.
DOI : 10.1364/AO.19.001385

R. J. Adrian, Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry, Applied Optics, vol.23, issue.11, p.1690, 1984.
DOI : 10.1364/AO.23.001690

R. Lindken, J. Westerweel, and B. Wieneke, Stereoscopic micro particle image velocimetry, Experiments in Fluids, vol.39, issue.2, pp.161-171, 2006.
DOI : 10.1007/s00348-004-0790-6

S. T. Wereley and C. D. Meinhart, Micron-Resolution Particle Image Velocimetry, Microscale Diagnostic Techniques, pp.51-112, 2005.
DOI : 10.1007/3-540-26449-3_2

S. W. Stone, C. D. Meinhart, and S. T. Wereley, A microfluidic-based nanoscope, 2002.
DOI : 10.1007/978-94-017-2264-3_18

C. L. Asbury, A. H. Diercks, and G. Van-den-engh, Trapping of DNA by dielectrophoresis, ELECTROPHORESIS, vol.23, issue.16, pp.2658-2666, 2002.
DOI : 10.1002/1522-2683(200208)23:16<2658::AID-ELPS2658>3.0.CO;2-O

S. Yao and J. G. Santiago, Porous glass electroosmotic pumps: theory, Journal of Colloid and Interface Science, vol.268, issue.1, pp.133-142, 2003.
DOI : 10.1016/S0021-9797(03)00731-8

A. Günther and K. F. Jensen, Multiphase microfluidics: from flow characteristics to chemical and materials synthesis, Lab Chip, vol.6, issue.1???3, pp.1487-503, 2006.
DOI : 10.1016/0009-2509(57)85021-0

B. J. Kim, Y. Z. Liu, and H. J. Sung, Micro PIV measurement of two-fluid flow with different refractive indices, Measurement Science and Technology, vol.15, issue.6, pp.1097-1103, 2004.
DOI : 10.1088/0957-0233/15/6/008

A. Günther, S. A. Khan, M. Thalmann, F. Trachsel, and K. F. Jensen, Transport and reaction in microscale segmented gas???liquid flow, Lab Chip, vol.17, issue.6, pp.278-286, 2004.
DOI : 10.1002/0471725137

Y. Sugii, S. Nishio, and K. Okamoto, PIV measurement of red blood cell velocity field in microvessels considering mesentery motion, Physiological Measurement, vol.23, issue.2, pp.403-416, 2002.
DOI : 10.1088/0967-3334/23/2/315

J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevedo-bolton, S. E. Fraser et al., Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis, Nature, vol.203, issue.6919, pp.172-177, 2003.
DOI : 10.1002/aja.1002030302

J. H. Jeong, Y. Sugii, M. Minamiyama, H. Takeuchi, and K. Okamoto, Interaction between liposomes and RBC in microvessels in vivo, Microvascular Research, vol.73, issue.1, pp.39-47, 2007.
DOI : 10.1016/j.mvr.2006.05.001

P. K. Wong, Y. Lee, and C. Ho, Deformation of DNA molecules by hydrodynamic focusing, Journal of Fluid Mechanics, vol.497, pp.55-65, 2003.
DOI : 10.1017/S002211200300658X

J. Leyton-mange, S. Yang, M. H. Hoskins, R. F. Kunz, J. D. Zahn et al., Design of a Side-View Particle Imaging Velocimetry Flow System for Cell-Substrate Adhesion Studies, Journal of Biomechanical Engineering, vol.36, issue.2, p.271, 2006.
DOI : 10.1161/01.RES.36.1.173

URL : http://europepmc.org/articles/pmc2777620?pdf=render

B. J. Gemmell, H. Jiang, and E. J. Buskey, A new approach to micro-scale particle image velocimetry (??PIV) for quantifying flows around free-swimming zooplankton, Journal of Plankton Research, vol.1, issue.5, pp.1396-1401, 2014.
DOI : 10.1093/plankt/fbq164

URL : https://academic.oup.com/plankt/article-pdf/36/5/1396/16838453/fbu067.pdf

T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature, vol.187, issue.4736, pp.493-494, 1960.
DOI : 10.1103/PhysRevLett.4.564

D. A. Kleinman and P. P. Kisliuk, Discrimination Against Unwanted Orders in the Fabry-Perot Resonator, Bell System Technical Journal, vol.41, issue.2, pp.453-462, 1962.
DOI : 10.1002/j.1538-7305.1962.tb02418.x

J. S. Graham and R. K. George, Apparatus for measurement of lengths and of other physical parameters which are capable of altering an optical path length, 1968.

X. Dai, M. Wang, Y. Zhao, and J. Zhou, Self-mixing interference in fiber ring laser and its application for vibration measurement, Optics Express, vol.17, issue.19, p.16543, 2009.
DOI : 10.1364/OE.17.016543

H. Lee, Spectral Characteristics of Vertical-Cavity Surface-Emitting Lasers with External Optical Feedback, IEEE Photonics Technol. Lett, vol.3, issue.7, pp.597-599, 1991.

S. Blaize, B. Bérenguier, I. Stéfanon, A. Bruyant, G. Lérondel et al., Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry, Optics Express, vol.16, issue.16, p.11718, 2008.
DOI : 10.1364/OE.16.011718

S. Okamoto, H. Takeda, and F. Kannari, microchip laser, Review of Scientific Instruments, vol.66, issue.5, pp.3116-3120, 1995.
DOI : 10.1364/JOSA.61.001301

R. P. Green, J. Xu, L. Mahler, A. Tredicucci, F. Beltram et al., Linewidth enhancement factor of terahertz quantum cascade lasers, Applied Physics Letters, vol.264, issue.7, p.71106, 2008.
DOI : 10.1063/1.2211301

Y. Mitsuhashi, J. Shimada, and S. Mitsutsuka, Voltage change across the self-coupled semiconductor laser, IEEE Journal of Quantum Electronics, vol.17, issue.7, pp.1216-1225, 1981.
DOI : 10.1109/JQE.1981.1071267

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, Self-Mixing Laser Diode Velocimetry: Application to Vibration and Velocity Measurement, IEEE Transactions on Instrumentation and Measurement, vol.53, issue.1, pp.223-232, 2004.
DOI : 10.1109/TIM.2003.822194

URL : https://hal.archives-ouvertes.fr/hal-01166445

T. Bosch, I. C. Bes, L. Scalise, and G. Plantier, Optical Feedback Interferometry, Encyclopedia of Sensors, pp.1-20, 2006.
DOI : 10.1117/1.1330701

URL : https://hal.archives-ouvertes.fr/hal-01611659

S. Donati, Developing self-mixing interferometry for instrumentation and measurements, Laser & Photonics Reviews, vol.36, issue.8, pp.393-417, 2012.
DOI : 10.1364/OL.36.002587

S. Ma, F. Xie, L. Chen, Y. Z. Wang, L. L. Dong et al., Development of dual-wavelength fiber ring laser and its application to step-height measurement using self-mixing interferometry, Optics Express, vol.24, issue.6, p.5693, 2016.
DOI : 10.1364/OE.24.005693

P. Dean, J. T. Keeley, A. Valavanis, K. Bertling, Y. L. Lim et al., Active phase-nulling of the self-mixing phase in a terahertz frequency quantum cascade laser, Optics Letters, vol.40, issue.6, p.950, 2015.
DOI : 10.1364/OL.40.000950

R. Kliese, Y. L. Lim, K. Bertling, A. A. Bakar, T. Bosch et al., Self-mixing displacement sensing using the junction voltage variation in a GaN laser, 2008 Conference on Optoelectronic and Microelectronic Materials and Devices, pp.23-25, 2008.
DOI : 10.1109/COMMAD.2008.4802083

M. T. Fathi and S. Donati, Thickness measurement of transparent plates by a self-mixing interferometer, Optics Letters, vol.35, issue.11, pp.1844-1850, 2010.
DOI : 10.1364/OL.35.001844

Y. Gao, Y. Yu, J. Xi, Q. Guo, J. Tong et al., Improved method for estimation of multiple parameters in self-mixing interferometry, Applied Optics, vol.54, issue.10, p.2703, 2015.
DOI : 10.1364/AO.54.002703

F. F. De-mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse et al., A semiconductor laser used for direct measurement of the blood perfusion of tissue, IEEE Transactions on Biomedical Engineering, vol.40, issue.2, pp.208-210, 1993.
DOI : 10.1109/10.212062

L. Rovati, S. Cattini, and N. Palanisamy, Measurement of the fluid-velocity profile using a self-mixing superluminescent diode, Measurement Science and Technology, vol.22, issue.2, p.25402, 2011.
DOI : 10.1088/0957-0233/22/2/025402

L. Campagnolo, M. Nikolid, J. Perchoux, Y. L. Lim, K. Bertling et al., Flow profile measurement in microchannel using the optical feedback interferometry sensing technique, Microfluidics and Nanofluidics, vol.7, issue.6, pp.113-119, 2013.
DOI : 10.1088/1464-4258/7/6/029

URL : https://hal.archives-ouvertes.fr/hal-00757538

Y. L. Lim, R. Kliese, K. Bertling, K. Tanimizu, P. A. Jacobs et al., Self-mixing flow sensor using a monolithic VCSEL array with parallel readout, Opt. Express, vol.18, issue.11, pp.11720-11727, 2010.

E. E. Ramrez-miquet, J. Perchoux, K. Loubière, C. Tronche, L. Prat et al., Optical feedback interferometry for velocity measurement of parallel liquidliquid flows in a microchannel, Sensors, vol.16, issue.8, 2016.

R. Kliese, Y. Lim, T. Bosch, and A. Rakid, GaN laser self-mixing velocimeter for measuring slow flows, Optics Letters, vol.35, issue.6, pp.814-816, 2010.
DOI : 10.1364/OL.35.000814

V. Contreras, J. Lönnqvist, and J. Toivonen, Detection of single microparticles in airflows by edge-filter enhanced self-mixing interferometry, Optics Express, vol.24, issue.8, p.8886, 2016.
DOI : 10.1364/OE.24.008886

S. K. Ozdemir, S. Shinohara, S. Takamiya, and H. Yoshida, Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: <italic>in vitro</italic> and <italic>in vivo</italic> experiments, Optical Engineering, vol.12, issue.9, p.2574, 2000.
DOI : 10.1109/50.320940

S. K. Ozdemir, S. Takamiya, S. Ito, S. Shinohara, and H. Yoshida, Self-mixing laser speckle velocimeter for blood flow measurement, IEEE Transactions on Instrumentation and Measurement, vol.49, issue.5, pp.1029-1035, 2000.
DOI : 10.1109/19.872925

S. K. Ozdemir, I. Ohno, and S. Shinohara, A Comparative Study for the Assessment on Blood Flow Measurement Using Self-Mixing Laser Speckle Interferometer, IEEE Transactions on Instrumentation and Measurement, vol.57, issue.2, pp.355-363, 2008.
DOI : 10.1109/TIM.2007.909473

F. F. De-mul, L. Scalise, A. L. Petoukhova, M. Van-herwijnen, P. Moes et al., Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis, Applied Optics, vol.41, issue.4, pp.658-67, 2002.
DOI : 10.1364/AO.41.000658

M. Norgia, A. Pesatori, and L. Rovati, Self-Mixing Laser Doppler Spectra of Extracorporeal Blood Flow: A Theoretical and Experimental Study, IEEE Sensors Journal, vol.12, issue.3, pp.552-557, 2012.
DOI : 10.1109/JSEN.2011.2131646

E. Figueiras, R. Oliveira, C. F. Lourenco, R. Campos, A. Humeau-heurtier et al., Self-mixing microprobe for monitoring microvascular perfusion in rat brain, Medical & Biological Engineering & Computing, vol.63, issue.1-2, pp.103-112, 2013.
DOI : 10.1016/S0924-4247(97)01549-5

URL : https://hal.archives-ouvertes.fr/hal-00845937

A. Quotb, E. E. Ramirez-miquet, C. Tronche, and J. Perchoux, Optical Feedback Interferometry sensor for flow characterization inside ex-vivo vessel, IEEE SENSORS 2014 Proceedings, pp.362-365, 2014.
DOI : 10.1109/ICSENS.2014.6985009

URL : https://hal.archives-ouvertes.fr/hal-01090224

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson et al., Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry to Improve Skin Cancer Imaging: A Monte Carlo Model and Experimental Validation, Sensors, vol.55, issue.9, p.1411, 2016.
DOI : 10.1111/j.1751-1097.2008.00443.x

URL : http://www.mdpi.com/1424-8220/16/9/1411/pdf

M. Norgia, A. Pesatori, and L. Rovati, Self-mixing laser Doppler: a model for extracorporeal blood flow measurement, 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings, 2010.
DOI : 10.1109/IMTC.2010.5488031

H. W. Jentink, F. F. De-mul, H. E. Suichies, J. G. Aarnoudse, and J. Greve, Small laser Doppler velocimeter based on the self-mixing effect in a diode laser, Applied Optics, vol.27, issue.2, pp.379-85, 1988.
DOI : 10.1364/AO.27.000379

R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection laser properties, IEEE Journal of Quantum Electronics, vol.16, issue.3, pp.347-355, 1980.
DOI : 10.1109/JQE.1980.1070479

W. M. Wang, W. J. Boyle, K. T. Grattan, and A. W. Palmer, Self-mixing interference in a diode laser: experimental observations and theoretical analysis, Applied Optics, vol.32, issue.9, p.1551, 1993.
DOI : 10.1364/AO.32.001551

G. Plantier, C. Bes, and T. Bosch, Behavioral model of a self-mixing laser diode sensor, IEEE Journal of Quantum Electronics, vol.41, issue.9, pp.1157-1167, 2005.
DOI : 10.1109/JQE.2005.853364

URL : https://hal.archives-ouvertes.fr/hal-01166469

K. Petermann, Laser Diode Modulation and Noise, 1988.
DOI : 10.1007/978-94-009-2907-4

P. J. De-groot, G. M. Gallatin, and S. H. Macomber, Ranging and velocimetry signal generation in a backscatter-modulated laser diode, Applied Optics, vol.27, issue.21, pp.4475-4480, 1988.
DOI : 10.1364/AO.27.004475

G. Liu, S. Zhang, J. Zhu, and Y. Li, Theoretical and experimental study of intensity branch phenomena in self-mixing interference in a He???Ne laser, Optics Communications, vol.221, issue.4-6, pp.4-6, 2003.
DOI : 10.1016/S0030-4018(03)01495-0

A. Larsson, Advances in VCSELs for Communication and Sensing, IEEE Journal of Selected Topics in Quantum Electronics, vol.17, issue.6, pp.1552-1567, 2011.
DOI : 10.1109/JSTQE.2011.2119469

A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench et al., VCSEL-based miniature laser-Doppler interferometer Vertical- Cavity Surface-Emitting Lasers XII, Proc. SPIE, pp.69080-69080, 2008.
DOI : 10.1117/12.775131

A. Pruijmboom, S. Booij, M. Schemmann, K. Werner, P. Hoeven et al., VCSEL-based miniature laser-self-mixig interferometer with integrated optical and electronic components, Proc. SPIE, pp.72210-72210, 2009.
DOI : 10.1117/12.808810

A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, Towards VCSEL-based integrated optical traps for biomedical applications, Electronics Letters, vol.42, issue.2, p.93, 2006.
DOI : 10.1049/el:20063821

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps et al., Miniaturized Scanning Near-Field Microscope Sensor Based on Optical Feedback Inside a Single-Mode Oxide-Confined Vertical-Cavity Surface-Emitting Laser, Japanese Journal of Applied Physics, vol.42, issue.Part 2, No. 12A, pp.1469-1471, 2003.
DOI : 10.1143/JJAP.42.L1469

URL : https://hal.archives-ouvertes.fr/hal-00094078

L. M. Lechuga, J. Tamayo, M. Álvarez, L. G. Carrascosa, A. Yufera et al., A highly sensitive microsystem based on nanomechanical biosensors for genomics applications, Sensors and Actuators B: Chemical, vol.118, issue.1-2, pp.2-10, 2006.
DOI : 10.1016/j.snb.2006.04.017

URL : https://eprints.soton.ac.uk/262924/1/SA-Optonanogen-in_press.pdf

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook et al., Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing, IEEE Journal of Quantum Electronics, vol.40, issue.5, pp.491-498, 2004.
DOI : 10.1109/JQE.2004.826440

Y. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. Rakic, Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout, Optics Express, vol.17, issue.7, pp.5517-5525, 2009.
DOI : 10.1364/OE.17.005517.m001

R. S. Matharu, J. Perchoux, R. Kliese, Y. L. Lim, and A. D. Rakid, Maintaining maximum signal-to-noise ratio in uncooled vertical-cavity surface-emitting laser-based self-mixing sensors, Optics Letters, vol.36, issue.18, pp.3690-3692, 2011.
DOI : 10.1364/OL.36.003690

URL : https://hal.archives-ouvertes.fr/hal-00757555

J. Albert, M. C. Soriano, I. Veretennicoff, K. Panajotov, J. Danckaert et al., Laser Doppler Velocimetry With Polarization-Bistable VCSELs, IEEE Journal of Selected Topics in Quantum Electronics, vol.10, issue.5, pp.1006-1012, 2004.
DOI : 10.1109/JSTQE.2004.836011

L. Campagnolo, S. Roman, and J. Perchoux, A new optical feedback interferometer for measuring red blood cell velocity distributions in individual capillaries: a feasibility study in microchannels, Computer Methods in Biomechanics and Biomedical Engineering, vol.22, issue.sup1, pp.104-105, 2012.
DOI : 10.1109/2944.401232

URL : https://hal.archives-ouvertes.fr/hal-00714045

J. Perchoux and T. Bosch, Multimode VCSELs for Self-Mixing Velocity Measurements, 2007 IEEE Sensors, pp.419-422, 2007.
DOI : 10.1109/ICSENS.2007.4388425

M. Grabherr, P. Gerlach, R. King, and R. Jager, Integrated photodiodes complement the VCSEL platform, Vertical-Cavity Surface-Emitting Lasers XIII, pp.72290-72290, 2009.
DOI : 10.1117/12.808847

W. M. Wang, K. T. Grattan, A. W. Palmer, and W. J. Boyle, Self-mixing interference inside a single-mode diode laser for optical sensing applications, Journal of Lightwave Technology, vol.12, issue.9, pp.1577-1587, 1994.
DOI : 10.1109/50.320940

T. Taimre, M. Nikolid, K. Bertling, Y. L. Lim, T. Bosch et al., Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing, Advances in Optics and Photonics, vol.7, issue.3, p.570, 2015.
DOI : 10.1364/AOP.7.000570.v004

C. H. Henry, Theory of the linewidth of semiconductor lasers, IEEE Journal of Quantum Electronics, vol.18, issue.2, pp.259-264, 1982.
DOI : 10.1109/JQE.1982.1071522

M. Slot, M. H. Koelink, F. G. Scholten, F. F. De-mul, A. L. Weijers et al., Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser:in vivo andin vitro measurements, Medical and Biological Engineering and Computing, vol.14, issue.4, pp.441-446, 1992.
DOI : 10.1364/AO.14.000189

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Optical Engineering, vol.36, issue.2, p.616, 1997.
DOI : 10.1117/1.601191

URL : http://onlinelibrary.wiley.com/doi/10.1002/9781118148167.fmatter/pdf

Y. L. Lim, J. R. Tucker, and A. D. Rakic, Distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect, North. Opt. Conf. Proc, vol.6038, pp.73-77, 2006.

A. A. Bakar, J. Z. Flores, Y. L. Lim, R. Kliese, and A. D. Rakid, Self-mixing interferometer technique based on VCSEL under the Effect of Polarization Mode switching, International Conference On Photonics 2010, pp.0-3, 2010.
DOI : 10.1109/ICP.2010.5604438

A. Quirantes, F. Arroyo, and J. Quirantes-ros, Multiple Light Scattering by Spherical Particle Systems and Its Dependence on Concentration: A T-Matrix Study, Journal of Colloid and Interface Science, vol.240, issue.1, pp.78-82, 2001.
DOI : 10.1006/jcis.2001.7641

M. I. Mishchenko, J. W. Hovenier, and D. W. Mackowski, Single scattering by a small volume element, Journal of the Optical Society of America A, vol.21, issue.1, p.71, 2004.
DOI : 10.1364/JOSAA.21.000071

H. Zhao, Optical ensemble analysis of intraocular lens performance through a simulated clinical trial with zemax, Optics Letters, vol.34, issue.1, pp.7-9, 2009.
DOI : 10.1364/OL.34.000007

X. Lee and C. Wang, Optical design for uniform scanning in MEMS-based 3D imaging lidar, Applied Optics, vol.54, issue.9, pp.2219-2223, 2015.
DOI : 10.1364/AO.54.002219

P. Abgrall, V. Conedera, H. Camon, A. Gue, and N. Nguyen, SU-8 as a structural material for labs-on-chips and microelectromechanical systems, ELECTROPHORESIS, vol.17, issue.8, pp.4539-4551, 2007.
DOI : 10.1016/j.sna.2005.03.025

M. Spiga and G. L. Morino, A symmetric solution for velocity profile in laminar flow through rectangular ducts, International Communications in Heat and Mass Transfer, vol.21, issue.4, pp.469-475, 1994.
DOI : 10.1016/0735-1933(94)90046-9

M. Born, Principles of Optics, 1980.
DOI : 10.1017/CBO9781139644181

F. Xu, K. F. Ren, X. Cai, and J. Shen, Extension of geometrical-optics approximation to on-axis Gaussian beam scattering II By a spheroidal particle with end-on incidence, Applied Optics, vol.45, issue.20, pp.5000-5009, 2006.
DOI : 10.1364/AO.45.005000

M. Norgia, A. Pesatori, and L. Rovati, Low-Cost Optical Flowmeter With Analog Front-End Electronics for Blood Extracorporeal Circulators, IEEE Transactions on Instrumentation and Measurement, vol.59, issue.5, pp.1233-1239, 2010.
DOI : 10.1109/TIM.2009.2038015

E. Hecht and E. , Optics 4th Edition, 1998.

P. A. Porta, D. P. Curtin, and J. G. Mcinerney, Laser Doppler velocimetry by optical self-mixing in vertical-cavity surface-emitting lasers, IEEE Photonics Technology Letters, vol.14, issue.12, pp.1719-1721, 2002.
DOI : 10.1109/LPT.2002.804666

J. Roumy, J. Perchoux, Y. L. Lim, T. Taimre, A. D. Rakid et al., Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer, Applied Optics, vol.54, issue.2, p.312, 2015.
DOI : 10.1364/AO.54.000312

URL : https://hal.archives-ouvertes.fr/hal-01187185

S. Sankar, B. J. Weber, D. Y. Kamemoto, and W. D. Bachalo, Sizing fine particles with the phase Doppler interferometric technique, Applied Optics, vol.30, issue.33, pp.4914-4934, 1991.
DOI : 10.1364/AO.30.004914

S. Sankar and W. D. Bachalo, Response characteristics of the phase Doppler particle analyzer for sizing spherical particles larger than the light wavelength, Applied Optics, vol.30, issue.12, pp.1487-96, 1991.
DOI : 10.1364/AO.30.001487

W. M. Farmer, Measurement of Particle Size, Number Density, and Velocity Using a Laser Interferometer, Applied Optics, vol.11, issue.11, pp.2603-2615, 1972.
DOI : 10.1364/AO.11.002603

C. Zakian, M. Dickinson, and T. King, Particle sizing and flow measurement using self-mixing interferometry with a laser diode, Journal of Optics A: Pure and Applied Optics, vol.7, issue.6, pp.445-452, 2005.
DOI : 10.1088/1464-4258/7/6/029

H. Wang and J. Shen, Fast and economic signal processing technique of laser diode self-mixing interferometry for nanoparticle size measurement, Applied Physics B, vol.28, issue.2, pp.285-291, 2014.
DOI : 10.1007/s00340-011-4700-3

L. Campagnolo, Flow profile measurement in microchannel using the optical feedback interferometry sensing technique, Microfluidics and Nanofluidics, vol.7, issue.6, 2013.
DOI : 10.1088/1464-4258/7/6/029

URL : https://hal.archives-ouvertes.fr/hal-00757538

Y. Zhao, J. Perchoux, L. Campagnolo, T. Camps, R. Atashkhooei et al., Optical feedback interferometry for microscale-flow sensing study: numerical simulation and experimental validation, Optics Express, vol.24, issue.21, p.23849, 2016.
DOI : 10.1364/OE.24.023849

URL : https://hal.archives-ouvertes.fr/hal-01446494

Z. D. Popovic, R. A. Sprague, and G. A. Connell, Technique for monolithic fabrication of microlens arrays, Applied Optics, vol.27, issue.7, pp.1281-1284, 1988.
DOI : 10.1364/AO.27.001281

H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne et al., Two-dimensional plastic microlens arrays by deep lithography with protons: fabrication and characterization, Journal of Optics A: Pure and Applied Optics, vol.4, issue.4, p.354, 2002.
DOI : 10.1088/1464-4258/4/4/354

URL : http://www.leosbenelux.org/symp03/s03p281.pdf

P. Ruther, B. Gerlach, J. Göttert, M. Ilie, J. Mohr et al., Fabrication and characterization of microlenses realized by a modified LIGA process, Pure and Applied Optics: Journal of the European Optical Society Part A, vol.6, issue.6, pp.643-653, 1999.
DOI : 10.1088/0963-9659/6/6/006

C. Croutxé-barghorn, O. Soppera, and D. J. Lougnot, Fabrication of microlenses by direct photo-induced crosslinking polymerization, Applied Surface Science, vol.168, issue.1-4, pp.1-4, 2000.
DOI : 10.1016/S0169-4332(00)00597-3

C. H. Tien, C. H. Hung, and T. H. Yu, Microlens Arrays by Direct-Writing Inkjet Print for LCD Backlighting Applications, Journal of Display Technology, vol.5, issue.5, pp.147-151, 2009.
DOI : 10.1109/JDT.2009.2013874

W. Chen, T. Wu, W. Wu, and G. J. Su, Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement, Journal of Micromechanics and Microengineering, vol.23, issue.6, p.65008, 2013.
DOI : 10.1088/0960-1317/23/6/065008

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon et al., Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique, Optical Materials Express, vol.1, issue.2, p.259, 2011.
DOI : 10.1364/OME.1.000259

S. Biehl, R. Danzebrink, P. Oliveira, and M. Aegerter, Refractive Microlens Fabrication by Ink-Jet Process, J. Sol-Gel Sci. Technol, vol.182, pp.177-182, 1998.

D. J. Hayes, M. E. Grove, D. B. Wallace, T. Chen, and W. R. Cox, Inkjet printing in the manufacture of electronics, photonics, and displays, Nanoscale Optics and Applications, p.94, 2002.
DOI : 10.1117/12.451029

A. Braeuer, P. Dannberg, U. Zeitner, G. Mann, and W. Karthe, Application oriented complex polymer microoptics, Microsystem Technologies, vol.9, issue.5, pp.304-307, 2003.
DOI : 10.1007/s00542-002-0234-2

V. Bardinal, B. Reig, T. Camps, C. Levallois, E. Daran et al., Spotted Custom Lenses to Tailor the Divergence of Vertical-Cavity Surface-Emitting Lasers, IEEE Photonics Technology Letters, vol.22, issue.21, pp.1592-1594, 2010.
DOI : 10.1109/LPT.2010.2071861

URL : https://hal.archives-ouvertes.fr/hal-00589356

R. Herloski, S. Marshall, and R. Antos, Gaussian beam ray-equivalent modeling and optical design, Applied Optics, vol.22, issue.8, p.1168, 1983.
DOI : 10.1364/AO.22.001168

T. Li, H. Kogelnik, and T. Li, Laser Beams and Resonators, IEEE, pp.1312-1329, 1966.

M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach et al., Volume production of polarization controlled single-mode VCSELs, Vertical-Cavity Surface-Emitting Lasers XII, p.690803, 2008.
DOI : 10.1117/12.760411

B. Reig, V. Bardinal, J. B. Doucet, E. Daran, T. Camps et al., Study of SU-8 reliability in wet thermal ambient for application to polymer micro-optics on VCSELs, SPEC. ISSUE 2, 2014.
DOI : 10.7567/JJAP.53.08MC03

URL : https://hal.archives-ouvertes.fr/hal-01103136

D. Barat, V. Bardinal, I. Dika, O. Soppera, B. Rumyantseva et al., Microlens self-writing on vertical laser diodes by Near Infra-Red photo-polymerization, Microelectronic Engineering, vol.111, pp.204-209, 2013.
DOI : 10.1016/j.mee.2013.03.155

B. Reig, V. Bardinal, T. Camps, Y. G. Boucher, C. Levallois et al., Polymer tunable microlens arrays suitable for VCSEL beam control, Micro-Optics 2012, pp.84280-84280, 2012.
DOI : 10.1117/12.922616

URL : https://hal.archives-ouvertes.fr/hal-00725891

A. Hasni, S. Pfirrmann, A. Kolander, E. Yacoub-george, M. König et al., Six-layer lamination of a new dry film negative-tone photoresist for fabricating complex 3D microfluidic devices, Microfluidics and Nanofluidics, vol.136, issue.3, p.41, 2017.
DOI : 10.1039/c1an15019g

S. Abada, L. Salvi, R. Courson, E. Daran, B. Reig et al., Comparative study of soft thermal printing and lamination of dry thick photoresist films for the uniform fabrication of polymer MOEMS on small-sized samples, Journal of Micromechanics and Microengineering, vol.27, issue.5, p.55018, 2017.
DOI : 10.1088/1361-6439/aa6a27

URL : https://hal.archives-ouvertes.fr/hal-01677496

B. Derby, Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution, Annual Review of Materials Research, vol.40, issue.1, pp.395-414, 2010.
DOI : 10.1146/annurev-matsci-070909-104502

L. Jacot-descombes, M. R. Gullo, V. J. Cadarso, and J. Brugger, Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing, Journal of Micromechanics and Microengineering, vol.22, issue.7, p.74012, 2012.
DOI : 10.1088/0960-1317/22/7/074012

URL : https://infoscience.epfl.ch/record/180246/files/JMM22-7cover_UK_cropped.pdf

F. Chen, J. Lu, and W. Huang, Using Ink-Jet Printing and Coffee Ring Effect to Fabricate Refractive Microlens Arrays, IEEE Photonics Technology Letters, vol.21, issue.10, pp.648-650, 2009.
DOI : 10.1109/LPT.2009.2016114

G. M. Vahid and . Fakhfouri, Drop-On-Demand Inkjet Printing of SU-8 Polymer, Micro Nanosyst, vol.1, issue.1, pp.63-67, 2009.

T. Ansbaek, C. H. Nielsen, N. B. Larsen, S. S. Dohn, A. Boisen et al., Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor, Vertical-Cavity Surface-Emitting Lasers XIV, pp.76150-76150, 2010.
DOI : 10.1117/12.841935

V. Bardinal, T. Camps, B. Reig, P. Debernardi, O. Soppera et al., VCSEL beam control with collective and self-aligned polymer technologies, Vertical-Cavity Surface-Emitting Lasers XVI, pp.82760-82760, 2012.
DOI : 10.1117/12.910719

I. Chartier, J. Sudor, Y. Fouillet, N. Sarrut, C. Bory et al., Fabrication of a hybrid plastic-silicon microfluidic device for high-throughput genotyping, Microfluidics, BioMEMS, and Medical Microsystems, pp.208-219, 2003.
DOI : 10.1117/12.478146

P. Vulto, N. Glade, L. Altomare, J. Bablet, L. Del-tin et al., Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips, Lab on a Chip, vol.38, issue.12, pp.158-62, 2005.
DOI : 10.1117/12.530705

Y. C. Tsai, H. P. Jen, K. W. Lin, and Y. Z. Hsieh, Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis, Journal of Chromatography A, vol.1111, issue.2, pp.267-271, 2006.
DOI : 10.1016/j.chroma.2005.12.003

K. Stephan, P. Pittet, L. Renaud, P. Kleimann, P. Morin et al., Fast prototyping using a dry film photoresist: microfabrication of soft-lithography masters for microfluidic structures, Journal of Micromechanics and Microengineering, vol.17, issue.10, pp.69-74, 2007.
DOI : 10.1088/0960-1317/17/10/N01

J. Perchoux, L. Campagnolo, Y. L. Lim, and A. D. Rakic, Lens-free' self-mixing sensor for velocity and vibrations measurements, 2010 Conference on Optoelectronic and Microelectronic Materials and Devices, pp.43-44, 2010.
DOI : 10.1109/commad.2010.5699770

R. F. Bonner and R. Nossal, Principles of Laser-Doppler Flowmetry, pp.17-45, 1990.
DOI : 10.1007/978-1-4757-2083-9_2

D. Dopheide, V. Strunck, and H. J. Pfeifer, Miniaturized multicomponent laser Doppler anemometers using high-frequency pulsed diode lasers and new electronic signal acquisition systems, Experiments in Fluids, vol.6, issue.6, pp.309-316, 1990.
DOI : 10.1007/BF00538819