M. Asadollahi-baboli, Exploring QSTR analysis of the toxicity of phenols and thiophenols using machine learning methods, Environmental Toxicology and Pharmacology, vol.34, issue.3, pp.826-831, 2012.
DOI : 10.1016/j.etap.2012.09.003

A. P. Bearden and T. W. Schultz, STRUCTURE???ACTIVITY RELATIONSHIPS FOR PIMEPHALES AND TETRAHYMENA: A MECHANISM OF ACTION APPROACH, Environmental Toxicology and Chemistry, vol.16, issue.6, pp.1311-1317, 1997.
DOI : 10.1897/1551-5028(1997)016<1311:SARFPA>2.3.CO;2

B. M. Bode and M. S. Gordon, Macmolplt: a graphical user interface for GAMESS, Journal of Molecular Graphics and Modelling, vol.16, issue.3, pp.133-138, 1998.
DOI : 10.1016/S1093-3263(99)00002-9

B. M. Bode and M. S. Gordon,

. Chemaxon, MarvinSketch. ChemAxon, 2016.

G. M. Cohen and M. Doherty, Free radical mediated cell toxicity by redox cycling chemicals, Br. J. Cancer, vol.8, pp.46-52, 1987.

S. J. Enoch, M. Hewitt, M. T. Cronin, S. Azam, and J. C. Madden, Classification of chemicals according to mechanism of aquatic toxicity: An evaluation of the implementation of the Verhaar scheme in Toxtree, Chemosphere, vol.73, issue.3, pp.243-248, 2008.
DOI : 10.1016/j.chemosphere.2008.06.052

C. European and . Agency, Registered substances [WWW Document]. ECHA. URL https://echa.europa.eu/information-on-chemicals/registered-substances, 2017.

A. A. Granovsky, , 2014.

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek et al., , 2013.

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek et al., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics, vol.4, issue.1, pp.10-1186, 2012.
DOI : 10.1016/j.cpc.2010.07.048

S. Karabunarliev, O. G. Mekenyan, W. Karcher, C. L. Russom, and S. P. Bradbury, ), Quantitative Structure-Activity Relationships, vol.18, issue.110, pp.311-320, 1996.
DOI : 10.1021/ci00020a039

J. Kazius, R. Mcguire, R. R. Bursi, and T. Gavin, Derivation and Validation of Toxicophores for Mutagenicity Prediction Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective, J. Med. Chem. Chem. Res. Toxicol, vol.48, issue.27, pp.312-320, 2005.

T. M. Martin, C. M. Grulke, D. M. Young, C. L. Russom, N. Y. Wang et al., Prediction of Aquatic Toxicity Mode of Action Using Linear Discriminant and Random Forest Models, Benzoic Acid, and Sodium Benzoate, pp.2229-2239, 2001.
DOI : 10.1021/ci400267h

. Nc3rs, The 3Rs [WWW Document]. URL https

T. I. Netzeva, M. Pavan, and A. P. Worth, Review of (Quantitative) Structure???Activity Relationships for Acute Aquatic Toxicity, QSAR & Combinatorial Science, vol.11, issue.1, pp.77-90, 2008.
DOI : 10.1007/978-1-4020-6102-8_10

, Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method, OECD, 2015.

, Report Sponsored Jointly by FAO and WHO Evaluation: Toxicology, Pesticide Residues in Food, 1985.

R. Rezg, S. El-fazaa, N. Gharbi, and B. Mornagui, Bisphenol A and human chronic diseases: Current evidences, possible mechanisms, and future perspectives, Environment International, vol.64, 2014.
DOI : 10.1016/j.envint.2013.12.007

C. L. Russom, S. P. Bradbury, S. J. Broderius, D. E. Hammermeister, and R. A. Drummond, ), Environmental Toxicology and Chemistry, vol.14, issue.110, pp.948-967, 1997.
DOI : 10.1021/ci00062a008

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon et al., General atomic and molecular electronic structure system, Journal of Computational Chemistry, vol.115, issue.11, pp.1347-1363, 1993.
DOI : 10.1007/978-94-009-4584-5_13

W. H. Vaes, E. U. Ramos, H. J. Verhaar, and J. L. Hermens, Acute toxicity of nonpolar versus polar narcosis: Is there a difference?, Environmental Toxicology and Chemistry, vol.185, issue.7, pp.1380-1384, 1998.
DOI : 10.2331/suisan.45.173

H. J. Verhaar, C. J. Van-leeuwen, and J. L. Hermens, Classifying environmental pollutants, Chemosphere, vol.25, issue.4, pp.471-491, 1992.
DOI : 10.1016/0045-6535(92)90280-5

T. Elersek and M. Filipic, Organophosphorus Pesticides -Mechanisms of Their Toxicity Pesticides -The Impacts of Pesticides Exposure, 2011.

C. M. Ellison, J. C. Madden, M. T. Cronin, and S. J. Enoch, Investigation of the Verhaar scheme for predicting acute aquatic toxicity: Improving predictions obtained from Toxtree ver. 2.6, Chemosphere, vol.139, pp.146-154, 2015.
DOI : 10.1016/j.chemosphere.2015.06.009

S. Endo, T. N. Brown, K. Goss, S. J. Enoch, M. Hewitt et al., General Model for Estimating Partition Coefficients to Organisms and Their Tissues Using the Biological Compositions and Polyparameter Linear Free Energy Relationships, Environmental Science & Technology, vol.47, issue.12, pp.6630-6639, 2008.
DOI : 10.1021/es401772m

B. I. Escher and J. L. Hermens, Modes of Action in Ecotoxicology:?? Their Role in Body Burdens, Species Sensitivity, QSARs, and Mixture Effects, Environmental Science & Technology, vol.36, issue.20, pp.4201-4217, 2002.
DOI : 10.1021/es015848h

B. I. Escher, R. Hunziker, R. P. Schwarzenbach, and J. C. Westall, Kinetic Model To Describe the Intrinsic Uncoupling Activity of Substituted Phenols in Energy Transducing Membranes, doi:10.1021/es980545h European Commission -DG Joint Reseach Centre, U.S. Environmental Protection Agency, n.d. AOPs [WWW Document]. AOPWiki. URL https://aopwiki.org/aops, pp.560-570, 1999.
DOI : 10.1021/es980545h

H. Fang, W. Tong, W. S. Branham, C. L. Moland, S. L. Dial et al., Study of 202 Natural, Synthetic, and Environmental Chemicals for Binding to the Androgen Receptor, Structure?Activity Relationships for a Large Diverse Set of Natural, Synthetic, and Environmental Estrogens, pp.1338-1358, 1021.
DOI : 10.1021/tx030011g

J. Ferguson, The Use of Chemical Potentials as Indices of Toxicity, Proceedings of the Royal Society B: Biological Sciences, vol.127, issue.848, pp.387-404, 1939.
DOI : 10.1098/rspb.1939.0030

T. C. Fernandes, M. A. Pizano, and M. A. Marin-morales, Characterization, Modes of Action and Effects of Trifluralin: A Review Thermal Treatment, Herbicides -Current Research and Case Studies in Use. InTech. Food and Drug Administration Docket No. 2004N-0205 Furan in Food, 2004.

N. P. Franks and W. R. Lieb, Molecular mechanisms of general anaesthesia Understanding the Mode of Action of the Chloroacetamide and Thiocarbamate Herbicides, Nature E.P. Weed Technol, vol.300, issue.1, pp.487-493, 1982.

T. R. Fukuto, Mechanism of action of organophosphorus and carbamate insecticides, Environmental Health Perspectives, vol.87, pp.245-254, 1990.
DOI : 10.1289/ehp.9087245

F. A. Gobas, D. Mackay, W. Y. Shiu, J. M. Lahittete, and G. Garofalo, A Novel Method for Measuring Membrane-Water Partition Coefficients of Hydrophobic Organic Chemicals: Comparison with 1-Octanol???Water Partitioning, Journal of Pharmaceutical Sciences, vol.77, issue.3, pp.265-272, 1988.
DOI : 10.1002/jps.2600770317

X. Q. Gong, Y. A. Nedialkov, and Z. F. Burton, ??-Amanitin Blocks Translocation by Human RNA Polymerase II, Journal of Biological Chemistry, vol.353, issue.26, pp.27422-27427, 2004.
DOI : 10.1093/emboj/cdg610

J. Grogan, S. C. Devito, R. S. Pearlman, and K. R. Korzekwa, Modeling cyanide release from nitriles: prediction of cytochrome P 450-mediated acute nitrile toxicity, Chemical Research in Toxicology, vol.5, issue.4, pp.548-55210, 1021.
DOI : 10.1021/tx00028a014

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek et al., , 2013.

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek et al., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics, vol.4, issue.1, pp.10-1186, 2012.
DOI : 10.1016/j.cpc.2010.07.048

K. Hara and R. A. Harris, The Anesthetic Mechanism of Urethane: The Effects on Neurotransmitter- Gated Ion Channels, Anesth. Analg, vol.94, pp.313-318, 2002.

, How does caffeine affect plant growth? [WWW Document]. Reference.com. URL https://www.reference.com/science/caffeine-affect-plant-growth-7e511b9d85fbdfdb

, General Discussion of common mechanisms for aromatic amines, IARC IARC Monogr. Eval. Carcinog. Risks Hum, vol.99, pp.41-54, 2010.

C. Ioannides, The CYP2E Subfamily -Evolution, in: Cytochromes P450: Metabolic and Toxicological Aspects, p.213, 1996.

, IPCS Inchem, 2015.

, Monograph on Atropine -Antidotes for poisoning by organophosphorus pesticides, IPCS Inchem, 2002.

, Diphenylamine (addendum), in: JMPR Evaluations. Presented at the Toxicological and environmental evaluations, IPCS Inchem, 1998.

, Ethyl lactate, in: WHO Food Additives Series 15, IPCS Inchem, 1980.

A. Jacobs, Hard and soft nucleophiles, in: Understanding Organic Reaction Mechanisms, pp.45-46, 1997.

J. S. Jaworska, R. S. Hunter, and T. W. Schultz, Quantitative structure-toxicity relationships and volume fraction analyses for selected esters, Archives of Environmental Contamination and Toxicology, vol.9, issue.1, pp.86-93, 1995.
DOI : 10.1007/BF00213091

G. Jervais, B. Luukinen, K. Buhl, and D. Stone, , 2008.

K. Ji, X. Liu, S. Lee, S. Kang, Y. Kho et al., Effects of non-steroidal antiinflammatory drugs on hormones and genes of the hypothalamic-pituitary-gonad axis, and reproduction of zebrafish, J. Hazard. Mater, vol.254, pp.242-251, 2013.

S. Karabunarliev, O. G. Mekenyan, W. Karcher, C. L. Russom, and S. P. Bradbury, ), Quantitative Structure-Activity Relationships, vol.18, issue.110, pp.311-320, 1996.
DOI : 10.1021/ci00020a039

J. Kazius, R. Mcguire, R. Bursi, A. Kienzler, M. G. Barron et al., Derivation and Validation of Toxicophores for Mutagenicity Prediction Mode of Action (MOA) Assignment Classifications for Ecotoxicology: An Evaluation of Approaches, King, M.W., 2015a. Ethanol (Alcohol) Metabolism: Acute and Chronic Toxicities, pp.312-320, 2005.

. Med, . Biochem, and . Page,

M. W. King, Biochemistry of Neurotransmitters and Nerve Transmission, 2015.

Y. Koleva and I. Barzilov, Comparative study of mechanism of action of allyl alcohols for different endpoints 49, pp.55-59, 2010.

Y. K. Koleva, M. T. Cronin, J. C. Madden, and J. A. Schwöbel, Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect, Toxicology in Vitro, vol.25, issue.7, pp.1281-1293, 2011.
DOI : 10.1016/j.tiv.2011.04.015

. Kreatis, Downloads and useful links

A. Kulma and J. Szopa, Catecholamines are active compounds in plants, Plant Science, vol.172, issue.3, pp.433-440, 2007.
DOI : 10.1016/j.plantsci.2006.10.013

X. Li, Glutathione and Glutathione-S-Transferase in Detoxification Mechanisms, 2009.
DOI : 10.1016/B0-44-451924-6/00074-0

J. Liesivuori and A. H. Savolainen, Methanol and Formic Acid Toxicity: Biochemical Mechanisms The detoxification enzyme systems, Pharmacol. Toxicol. Altern. Med. Rev. J. Clin. Ther, vol.69, issue.3, pp.157-163, 1991.

R. M. Lopachin and T. Gavin, Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective, Chemical Research in Toxicology, vol.27, issue.7, pp.1081-1091, 2014.
DOI : 10.1021/tx5001046

A. K. Lugli, C. S. Yost, and C. H. Kindler, Anaesthetic mechanisms: update on the challenge of unravelling the mystery of anaesthesia, European Journal of Anaesthesiology, vol.26, issue.10, pp.807-820, 2009.
DOI : 10.1097/EJA.0b013e32832d6b0f

R. Mache, , 2015.

D. Mackay, J. A. Arnot, E. P. Petkova, K. B. Wallace, D. J. Call et al., The physicochemical basis of QSARs for baseline toxicity, SAR and QSAR in Environmental Research, vol.41, issue.3-4, pp.393-41410, 1080.
DOI : 10.1002/etc.5620040308

J. C. Madden, Chapter 2:Introduction to QSAR and Other In Silico Methods to Predict Toxicity, in: In Silico Toxicology, pp.11-30, 2010.

I. Makarovsky, G. Markel, A. Hoffman, O. Schein, T. Brosh-nissimov et al., Strychnine -A Killer from the Past, IMAJ Isr. Med. Assoc. J, vol.10, pp.142-145, 2008.

T. M. Martin, C. M. Grulke, D. M. Young, C. L. Russom, N. Y. Wang et al., Prediction of Aquatic Toxicity Mode of Action Using Linear Discriminant and Random Forest Models, Journal of Chemical Information and Modeling, vol.53, issue.9, pp.2229-223910, 1021.
DOI : 10.1021/ci400267h

T. J. Matji and B. P. Lopez, Micronized composition of 2, pp.6-2174654, 2012.

C. M. Mchale, L. Zhang, M. T. Smith, P. K. Mensah, C. G. Palmer et al., Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment, Toxicity and Hazard of Agrochemicals, pp.240-252, 2012.
DOI : 10.1126/science.312.5776.998a

M. Y. Moridani, S. S. Cheon, S. Khan, and P. J. O-'brien, Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes, Chemico-Biological Interactions, vol.142, issue.3, pp.317-333, 2003.
DOI : 10.1016/S0009-2797(02)00125-4

M. Morotomi, K. Sakai, K. Yazawa, N. Suegara, Y. Kawai et al., Effect and fate of orally administered lactic acid in rats., Journal of Nutritional Science and Vitaminology, vol.27, issue.2, pp.117-128, 1981.
DOI : 10.3177/jnsv.27.117

R. Munday, Toxicity of thiols and disulphides: Involvement of free-radical species. Free Radic, Biol. Med, vol.789, pp.659-67310, 1989.

B. Nair, Final report on the safety assessment of Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate, Int. J. Toxicol, vol.20, pp.23-50, 2001.

, CONIINE | C8H17N [WWW Document], 2017.

P. Compd and . Database, URL https

. Nc3rs, The 3Rs [WWW Document]. URL https

A. Nehlig, J. Daval, G. B. Debry, and J. L. O-'donoghue, Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects, Brain Research Reviews, vol.17, issue.2, pp.139-170, 1992.
DOI : 10.1016/0165-0173(92)90012-B

, Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method, OECD, 2015.

O. and E. , , 2017.

R. W. Olsen and T. M. Delorey, GABA Receptor Physiology and Pharmacology, 1999.

. Openstax, Carbohydrate Metabolism, 2014.

, Règlement (CE) N° 1907, 2006.

G. Patlewicz, N. Jeliazkova, R. Safford, A. Worth, and B. Aleksiev, , 2014.

G. Patlewicz, N. Jeliazkova, R. J. Safford, A. P. Worth, and B. Aleksiev, An evaluation of the implementation of the Cramer classification scheme in the Toxtree software, SAR and QSAR in Environmental Research, vol.25, issue.5-6, pp.495-52410, 1080.
DOI : 10.1254/fpj.96.4_185

R. W. Peoples and F. F. Weight, Trichloroethanol potentiation of ??-aminobutyric acid-activated chloride current in mouse hippocampal neurones, British Journal of Pharmacology, vol.451, issue.2, pp.555-563, 1994.
DOI : 10.1016/0006-8993(88)90788-3

D. H. Petering and B. A. Fowler, Roles of metallothionein and related proteins in metal metabolism and toxicity: problems and perspectives., Environmental Health Perspectives, vol.65, pp.217-224, 1986.
DOI : 10.1289/ehp.8665217

P. I. Pinto, M. D. Estêvão, and D. M. Power, Effects of Estrogens and Estrogenic Disrupting Compounds on Fish Mineralized Tissues, Marine Drugs, vol.181, issue.182, pp.4474-4494, 2014.
DOI : 10.1016/S0300-483X(02)00471-7

P. S. Portoghese, G. S. Kedziora, D. L. Larson, B. K. Bernard, and R. L. Hall, Reactivity of glutathione with ??,??-unsaturated ketone flavouring substances, Food and Chemical Toxicology, vol.27, issue.12, pp.773-776, 1989.
DOI : 10.1016/0278-6915(89)90106-3

F. Rafii and C. E. Cerniglia, Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract, Environmental Health Perspectives, vol.103, issue.Suppl 5, pp.17-19, 1995.
DOI : 10.1289/ehp.95103s417

R. O. Recknagel, G. Jr, E. A. Dolak, J. A. Waller, and R. L. , Mechanisms of carbon tetrachloride toxicity, Pharmacology & Therapeutics, vol.43, issue.1, pp.139-154, 1989.
DOI : 10.1016/0163-7258(89)90050-8

S. Ren, Phenol mechanism of toxic action classification and prediction: a decision tree approach, Toxicology Letters, vol.144, issue.3, pp.313-32310, 2003.
DOI : 10.1016/S0378-4274(03)00236-4

L. Rivard, Environmental fate of metolachlor, Chemistry, vol.51218, pp.45-47, 2003.

D. W. Roberts, J. F. Roberts, G. Hodges, S. Gutsell, R. S. Ward et al., SAR and QSAR in Environmental Research, vol.28, issue.5, pp.417-42710, 1080.
DOI : 10.1007/978-94-009-5883-8

C. L. Russom, S. P. Bradbury, S. J. Broderius, D. E. Hammermeister, and R. A. Drummond, ), Environmental Toxicology and Chemistry, vol.14, issue.110, pp.948-967, 1997.
DOI : 10.1021/ci00062a008

T. W. Schultz, The use of the ionization constant (pKa) in selecting models of toxicity in phenols, Ecotoxicology and Environmental Safety, vol.14, issue.2, pp.178-183, 1987.
DOI : 10.1016/0147-6513(87)90060-1

J. A. Schwöbel, J. C. Madden, and M. T. Cronin, Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis, Chemosphere, vol.85, issue.6, 2011.
DOI : 10.1016/j.chemosphere.2011.07.037

W. Shaw, &. Autism, and . Pdd, Chapter 3 Organic Acid Testing, Byproducts of Yeast and their Relationship to Autism, in: Biological Treatments for Autism and PDD. Causes and Biomedical Therapies for, 2002.

T. B. Sherer, J. R. Richardson, C. M. Testa, B. B. Seo, A. V. Panov et al., Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease, Journal of Neurochemistry, vol.23, issue.0, pp.1469-1479, 2007.
DOI : 10.1016/j.molbrainres.2004.11.007

L. Shi, W. Tong, H. Fang, Q. Xie, H. Hong et al., An integrated "4-phase" approach for setting endocrine disruption screening priorities--phase I and II predictions of estrogen receptor binding affinity, SAR and QSAR in Environmental Research, vol.2, issue.1, pp.69-8810, 1080.
DOI : 10.1210/en.138.9.4022

M. Shima and A. Kotera, Copolymerization characteristics of methyl acrylate and methyl methacrylate. I. Study of copolymerization kinetics by a deuterium tracer method, Journal of Polymer Science Part A: General Papers, vol.1, issue.4, 1963.
DOI : 10.1002/pol.1963.100010404

. A. Sci, , pp.1115-1121

J. Sikkema, J. A. De-bont, and B. Poolman, Mechanisms of membrane toxicity of hydrocarbons, Microbiol. Rev, vol.59, pp.201-222, 1995.

G. F. Smith, Designing Drugs to Avoid Toxicity, Progress in Medicinal Chemistry, pp.1-47, 2011.
DOI : 10.1016/B978-0-12-381290-2.00001-X

Y. Song, Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide, Journal of Integrative Plant Biology, vol.60, issue.2, pp.106-113, 2014.
DOI : 10.1111/j.1365-313X.2009.03988.x

O. Sorg, AhR signalling and dioxin toxicity, Toxicology Letters, vol.230, issue.2, pp.225-233, 2014.
DOI : 10.1016/j.toxlet.2013.10.039

D. W. Sparling, G. Linder, C. A. Bishop, and S. Krest, Ecotoxicology of Amphibians and Reptiles, pp.303-308, 2010.

S. Spycher, T. I. Netzeva, A. P. Worth, and B. I. Escher, Mode of action-based classification and prediction of activity of uncouplers for the screening of chemical inventories, SAR and QSAR in Environmental Research, vol.8, issue.5-6, pp.433-46310, 1080.
DOI : 10.2533/chimia.2006.683

P. Thomas, J. Dawick, M. Lampi, P. Lemaire, S. Presow et al., Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals, Environmental Science & Technology, vol.49, issue.20, pp.12289-12296, 2015.
DOI : 10.1021/acs.est.5b02873

T. Tomson, G. Tybring, and L. Bertilsson, Single-dose kinetics and metabolism of carbamazepine-10,11-epoxide, Clinical Pharmacology and Therapeutics, vol.33, issue.1, pp.58-65, 1983.
DOI : 10.1038/clpt.1983.8

N. Trushin, S. Alam, K. El-bayoumy, J. Krzeminski, S. G. Amin et al., Comparative metabolism of benzo[a]pyrene by human keratinocytes infected with highrisk human papillomavirus types 16 and 18 as episomal or integrated genomes, J. Carcinog, 2012.

L. S. Tsuruda, M. W. Lamé, A. D. Jones, E. U. Ramos, H. J. Verhaar et al., Formation of epoxide and quinone protein adducts in B6C3F1 mice treated with naphthalene, sulfate conjugate of 1,4-dihydroxynaphthalene and 1,4-naphthoquinone Acute toxicity of nonpolar versus polar narcosis: Is there a difference?, Arch. Toxicol. Environ. Toxicol. Chem, vol.69, issue.17, pp.362-367, 1995.

V. Minikel and E. , A mechanism of action hypothesis [WWW Document]. CureFFI.org. URL http://www.cureffi.org, 2016.

J. J. Van-rensen, Molecular mechanisms of herbicide action near photosystem II, Physiologia Plantarum, vol.636, issue.13, pp.515-521, 1982.
DOI : 10.1016/0006-3002(56)90481-4

A. R. Van-scoy and R. S. Tjeerdema, Environmental Fate and Toxicology of Clomazone, Rev. Environ. Contam. Toxicol, vol.229, pp.35-49, 2014.
DOI : 10.1007/978-3-319-03777-6_3

J. R. Vane and R. M. Botting, Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs, The American Journal of Medicine, vol.104, issue.3, pp.2-8, 1998.
DOI : 10.1016/S0002-9343(97)00203-9

G. D. Veith, S. J. Broderius, J. Solbé, J. Speksnijder, C. J. Van-leeuwen et al., Structure-Toxicity Relationships for Industrial Chemicals Causing Type (II) Narcosis Syndrome QSAR in Environmental Toxicology -II Classifying environmental pollutants: Part 3. External validation of the classification system, Chemosphere, vol.40, issue.99, pp.385-391, 1987.

H. J. Verhaar, C. J. Van-leeuwen, and J. L. Hermens, Classifying environmental pollutants, Chemosphere, vol.25, issue.4, pp.471-491, 1992.
DOI : 10.1016/0045-6535(92)90280-5

R. D. Verschoyle, A. W. Brown, and C. A. Thompson, The toxicity and neuropathology of 2,4,5-tribromoimidazole and its derivatives in rats, Archives of Toxicology, vol.8, issue.2, pp.109-112, 1984.
DOI : 10.1007/BF00349081

J. Vetter, Poison hemlock (Conium maculatum L.), Food and Chemical Toxicology, vol.42, issue.9, pp.1373-1382, 2004.
DOI : 10.1016/j.fct.2004.04.009

J. L. Way, P. Leung, E. Cannon, R. Morgan, C. Tamulinas et al., The Mechanism of Cyanide Intoxication and its Antagonism -Ciba Foundation Symposium 140 -Cyanide Compounds in Biology -Way -Wiley Online Library, Presented at the Ciba Foudation Symposium 140 -Cyanide Compounds in Biology, D. Evered and S. Hamett, pp.232-248, 2007.

W. Verlag, Organic peroxides [MAK Value Documentation, 1992], in: The MAK- Collection for Occupational Health and Safety, pp.10-1002, 2002.

W. Verlag, Benzaldehyde [MAK Value Documentation The MAK-Collection for Occupational Health and Safety, pp.13-36, 2002.

W. Verlag, Triethylene glycol [MAK Value Documentation The MAK- Collection for Occupational Health and Safety, 2002.

A. V. Rayer, K. Z. Sumon, L. Jaffari, and A. Henni, ) of Tertiary and Cyclic Amines: Structural and Temperature Dependences, Journal of Chemical & Engineering Data, vol.59, issue.11, pp.59-3805
DOI : 10.1021/je500680q

D. H. Ripin, D. A. Evans, and . Pka-table, , 2005.

W. M. Haynes, Dissociation Constants of Organic Acids and Bases. In CRC Handbook of Chemistry and Physics, 2010.

C. Macbean, , 1912.

M. M. Peixoto, G. F. Bauerfeldt, M. H. Herbst, M. S. Pereira, and C. Da-silva, Study of the Stepwise Deprotonation Reactions of Glyphosate and the Corresponding pKa Values in Aqueous Solution. J

. Phys and . Chem, , pp.5241-5249, 2015.

J. Sangster and . Databank, Sangster Res. Lab, 1994.

B. Myers and . Pka-table, , 2017.

J. S. Moore, Specific pKas Table, 2011.

P. Baran and . Richter, Essentials of Heterocyclic Chemistry -I, 2009.

A. R. Katritzky, C. A. Ramsden, and J. Joule, A.; Zhdankin, V. V. 3.3 Reactivity of Five-Membered Rings with One Heteroatom, Handbook of Heterocyclic Chemistry, 2010.

S. Zhang, A Reliable and Efficient First Principles-Based Method for Predicting pKa Values. 4. Organic Bases, J. Comput. Chem, vol.2012, issue.3331, pp.2469-2482

R. Williams and . Pka-data-compilation, Jencks and added to by F.H. Westheimer), 2017.

A. Atsdr, Toxicological Profile: Hydrazines http://www.atsdr.cdc.gov/ToxProfiles/tp, 2015.

, 140 Benzaldehyde 3.1 & m4

, F: reactive (gill irritation reported by Russom et al, as it happened with the reference electrophile: acrolein) (M: Schiff base formation

C. L. Russom, S. P. Bradbury, S. J. Broderius, D. E. Hammermeister, and R. A. Drummond, Predicting Modes of Toxic Action from Chemical Structure: Acute Toxicity in the Fathead Minnow (Pimephales Promelas), Environ. Toxicol

. Chem, DOI: 10.1002/etc.5620160514. / Benzaldehyde [MAK Value Documentation In The MAK-Collection for Occupational Health and Safety, pp.948-967, 1997.

, 141 vanillin 3.1 & m4

, M: rapidly and quasi totally metabolised into vanillic acid, rapidly eliminated. F: reactive. Pz

A. Inchem, Vanillin SIDS http, 2015.

, 3.1 & m4

, 1 & m4.1 Schiff-base formation Benzaldehyde [MAK Value Documentation In The MAK-Collection for Occupational Health and Safety, IPCS Inchem. Vanillin SIDS, vol.142, issue.17, pp.13-36, 2002.

, F3.1/3

, 1 Schiff-base formation F: reactive A / Benzaldehyde [MAK Value Documentation In The MAK-Collection for Occupational Health and Safety, 143 salicylaldehyde 3.1 & m4, pp.13-36, 2002.

, 3.1 & m4

, Table S1: training set Part 2. (continued) 144 o-vanillin 3.1 & m4.1 Schiff-base formation F: reactive Pz

A. Benzaldehyde, In The MAK-Collection for Occupational Health and Safety, IPCS Inchem. Vanillin SIDS, vol.17, pp.13-36, 2002.

, 3.1 & m4

M. Schwöbel, J. A. Madden, J. C. Cronin, and M. T. , Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis, 145 acrylic acid 3.2 M, pp.1066-1074
DOI : 10.1016/j.chemosphere.2011.07.037

M. Schwöbel, J. A. Madden, J. C. Cronin, and M. T. , Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis, 146 methyl acrylate 3.2 M, pp.1066-1074
DOI : 10.1016/j.chemosphere.2011.07.037

M. Schwöbel, J. A. Madden, J. C. Cronin, and M. T. , Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis, 147 nonenal 3.2 M, pp.1066-1074
DOI : 10.1016/j.chemosphere.2011.07.037

, 148 2-hydroxypropyl acrylate 3

M. Michael, J. A. Schwöbel, J. C. Madden, and M. T. Cronin, Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis, Chemosphere, vol.2011, issue.856, pp.1066-1074

, 149 acrolein 3

M. Michael, J. A. Schwöbel, J. C. Madden, and M. T. Cronin, Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis, Chemosphere, vol.2011, issue.856, pp.1066-1074

, 150 methyl methacrylate 3.2 & 4

D. Jargot, S. Miraval, F. Pillière, S. Robert, O. Schneider et al., Méthacrylate de méthyle -Fiche toxicologique n°62. INRS 2013 Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis, Chemosphere, vol.85, issue.6, pp.1066-1074, 2011.

, 151 1,4-benzoquinone 3.2 & 4

J. L. Bolton, M. A. Trush, T. M. Penning, G. Dryhurst, and T. J. Monks, Chemical Research in Toxicology, vol.13, issue.3, pp.135-160, 2000.
DOI : 10.1021/tx9902082

/. Morgott, D. Lewis, C. Bootman, J. Banton, and M. , Disulfide Oil Hazard Assessment Using Categorical Analysis and a Mode of Action Determination, International Journal of Toxicology, vol.157, issue.3
DOI : 10.1016/j.cbi.2008.01.011

J. Kazius, R. Mcguire, and R. Bursi, Derivation and Validation of Toxicophores for Mutagenicity Prediction, Journal of Medicinal Chemistry, vol.48, issue.1, pp.181-198, 2005.
DOI : 10.1021/jm040835a

, 153 diisopropyl disulfide 3

M. Morgott, D. Lewis, C. Bootman, J. Banton, and M. , Disulfide Oil Hazard Assessment Using Categorical Analysis and a Mode of Action Determination, International Journal of Toxicology, vol.157, issue.3
DOI : 10.1016/j.cbi.2008.01.011

J. Kazius, R. Mcguire, and R. Bursi, Derivation and Validation of Toxicophores for Mutagenicity Prediction, Journal of Medicinal Chemistry, vol.48, issue.1, pp.181-198, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. Bursi, Derivation and Validation of Toxicophores for Mutagenicity Prediction, Journal of Medicinal Chemistry, vol.48, issue.1, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. Bursi, Derivation and Validation of Toxicophores for Mutagenicity Prediction, Journal of Medicinal Chemistry, vol.48, issue.1, pp.312-320, 2005.
DOI : 10.1021/jm040835a

, M: highly metabollised, high elimination and high incorporation into proteins with high amounts

M. Morotomi, K. Sakai, K. Yazawa, and N. Suegara,

M. Mutai, Effect and Fate of Orally Administered Lactic Acid in Rats, J. Nutr. Sci. Vitaminol, vol.27, issue.2, pp.117-128, 1981.

, 157 furan 4

, but-2-en-1,4-dial => proteins and DNA adducts after glutathione is totally consumed => caricnogenic and mutagen. F: reactive A / Food and Drug Administration, pp.2004-0205

F. Furan-in, Thermal Treatment; Request for Data and Information, 2004.

, 158 allyl alcohol, vol.4, issue.3

, M: ox to acrolein => adducts. F: reactive A / Koleva, Y.; Barzilov, I. Comparative Study of Mechanism of Action of Allyl Alcohols for Different Endpoints, pp.55-59, 2010.

M. M. Airaksinen, P. H. Rosenberg, and T. Tammisto, A Possible Mechanism of Toxicity of Trifluoroethanol and Other Halothane Metabolites, Acta Pharmacologica et Toxicologica, vol.26, issue.4
DOI : 10.3181/00379727-57-14776

, 160 but-2-yne-1,4-diol 4.3 metabolism into (Z)-but-2-en-1,4-dial? F: reactive A / Koleva, Y.; Barzilov, I. Comparative Study of Mechanism of Action of Allyl Alcohols for Different Endpoints, pp.55-59, 2010.

A. -elec, N. Bonnard, F. Pillière, J. Protois, O. G. Schneider et al., Oxidation by tyrosinase / cytP450 to quinone => protein and DNA adducts Pz: pro Fiche toxicologique de l'hydroquinone. INRS, J. Role of Quinones in Toxicology. Chem. Res. Toxicol, vol.13, issue.12, pp.135-160, 1021.

. Ox-to-o-quinone, J. L. Bolton, M. A. Trush, T. M. Penning, G. Dryhurst et al., Role of Quinones in Toxicology, Chem. Res. Toxicol, vol.13, issue.3, pp.135-160, 2000.

G. M. Cohen and M. Doherty, Free Radical Mediated Cell Toxicity by Redox Cycling Chemicals, Br. J. Cancer, vol.8, pp.46-52, 1987.

, 164 ethanethiol 4

, in their anionic form, are oxidized into thiyl radical and then enter a redox cycle between the thiyl radical and the disulfides Aq: more toxic than baseline Munday, R. Toxicity of Thiols and Disulphides: Involvement of Free-Radical Species. Free Radic, M: 1° & 2° thiols, pp.659-673, 1989.

, 165 pentachlorophenol 5.1 F,Pz: OPU(H+)

A. Schultz and T. W. , The use of the ionization constant (pKa) in selecting models of toxicity in phenols, Ecotoxicology and Environmental Safety, vol.14, issue.2, pp.178-183, 1987.
DOI : 10.1016/0147-6513(87)90060-1

, Table S1: training set. Part 2. (continued), pp.32534-81

, Brc1cc(c(cc1Oc2c(cc(cc2)Br)Br)Br)

, 324 1,2-epoxybutane (butylene oxide)

, 325 2-propyloxirane (pentylene oxide)

, 3-epoxypropan-1-ol 000556-52

, 3-epoxypropyl phenyl ether 000122-60-1 O(C1COc(cccc2)c2)

, 3-epoxypropyl o-tolyl ether 002210-79-9 O(C1COc(c(ccc2)C)

, 3-epoxy)propyl ether 003101-60-8 O(C1COc(ccc(c2)C(C)(C)C)c2)

, 3-epoxy-3-phenylbutyrate 000077-83-8 O=C(OCC)C(O1)C1(c(cccc2)c2)

, OCC(O1)C1)C(CC)(C)CC(C), pp.5-026761

, COC(=O)c2ccc(C(=O)OCC3O C3)cc2), pp.335-337

, O1)C1)c(ccc(c2C(=O)OC C(O3)C3)C(=O)OCC(O4)C4), pp.336-338

, 337 2,3-epoxypropyl methacrylate 000106-91-2 O=C(OCC(O1)C1)C(=C)

, 339 1,4-butanediol, reaction product with 1- chloro-2,3-epoxypropane

, 340 reaction products of hexane-1,6-diol with 2-(chloromethyl)oxirane (1:2) -1,6- bis(2,3-epoxypropoxy)hexane -UVCB

, 341 3-(oxiran-2-ylmethoxy)-N,N-bis(oxiran- 2-ylmethyl)aniline, pp.71604-74

, O2)C2)cc3)c3) CC(O4)C4

, 342 4-(oxiran-2-ylmethoxy)-N,N-bis(oxiran- 2-ylmethyl)aniline, pp.5026-74

, O2)C2)c3)c3) CC(O4)C4

, consumes water to make hydronium ion) = corrosion? ; acetic acid may enhance lipid solubility into water, disrupting the membrane integrity Barker, R. M. The Bactericidal Action of Low Molecular Weight Compounds on Mycobacterium tuberculosis, N° MechoA detail Reference 1 H+ dessicates cellsdbs+hsdb:@term+@DOCNO+40 2 transport of protons into the cytosol, acidifying the cell, pp.213-220, 1964.

R. M. Barker, Journal of Applied Bacteriology, vol.91, issue.2, pp.213-220, 1964.
DOI : 10.1084/jem.91.5.449

&. Jacobsen and . Martin, And formate ion inhibit mitochondrial cytochrome oxidase. (The metabolism and toxicity of methanol differs markedly between species In primates and human beings, methanol causes metabolic acidosis and ocular damage. In non-primate laboratory animals, however, it acts as a CNS-depressant, 1982.

M. Bozza-marrubini, A. Brucato, C. Locatelli, M. L. Ruggeroni, and . Methanol, , 2002.

. Available, , p.9, 2016.

J. Liesivuori and A. H. Savolainen, Methanol and Formic Acid Toxicity: Biochemical Mechanisms, Pharmacology & Toxicology, vol.29, issue.3, pp.157-163, 1991.
DOI : 10.1016/0010-406X(60)90026-8

, 14 KREATiS internal experimental database and QSARs. 15 KREATiS internal experimental database and QSARs. 16 KREATiS internal experimental database and QSARs. 17 KREATiS internal experimental database and QSARs. 18 KREATiS internal experimental database and QSARs. 19 KREATiS internal experimental database and QSARs, 13 KREATiS internal experimental database and QSARs KREATiS internal experimental database and QSARs. 21 KREATiS internal experimental database and QSARs. 22 KREATiS internal experimental database and QSARs

, 24 KREATiS internal experimental database and QSARs. 25 KREATiS internal experimental database and QSARs. 26 KREATiS internal experimental database and QSARs. 27 KREATiS internal experimental database and QSARs. 28 KREATiS internal experimental database and QSARs. 29 oxidation into aldehyde and adducts Belsito, D. et al. A safety assessment of non-cyclic alcohols with unsaturated branched chain when used as fragrance ingredients: The RIFM expert panel, 23 KREATiS internal experimental database and QSARs, pp.1-42, 2010.

D. Belsito, A safety assessment of non-cyclic alcohols with unsaturated branched chain when used as fragrance ingredients, Food and Chemical Toxicology, vol.48, pp.1-42, 2010.
DOI : 10.1016/j.fct.2009.11.007

, 32 KREATiS internal experimental database and QSARs. 33 oxidation into aldehyde and adducts Belsito, D. et al. A safety assessment of non-cyclic alcohols with unsaturated branched chain when used as fragrance ingredients: The RIFM expert panel, KREATiS internal experimental database and QSARs, pp.1-42, 2010.

, 34 KREATiS internal experimental database and QSARs

, 35 KREATiS internal experimental database and QSARs. 36 KREATiS internal experimental database and QSARs

, 37 KREATiS internal experimental database and QSARs

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 38 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

G. Bagchi and D. J. Waxman, Toxicity of ethylene glycol monomethyl ether: impact on testicular gene expression, International Journal of Andrology, vol.21, issue.2, pp.269-274, 2008.
DOI : 10.1016/S0303-7207(00)00257-4

S. H. Tableau, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Set de validation Partie 2. 39 oxidation into correponding acid, generating acidosis Pohl Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, Regul. Toxicol. Pharmacol, vol.64, pp.134-142, 2012.

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 40 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 41 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

, 42 KREATiS internal experimental database and QSARs

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 43 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 44 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 45 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 46 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 47 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 48 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 49 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 50 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 51 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 52 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 53 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 54 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

H. R. Ruiz, P. Scinicariello, F. Mumtaz, and M. M. , 55 ecotox apparent MoA1 KREATiS internal experimental database and QSARs. 56 oxidation into correponding acid, generating acidosis Pohl Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, Regul. Toxicol. Pharmacol, vol.64, pp.134-142, 2012.

, 57 KREATiS internal experimental database and QSARs

H. R. Pohl, P. Ruiz, F. Scinicariello, and M. M. Mumtaz, Joint toxicity of alkoxyethanol mixtures: Contribution of in silico applications, 58 oxidation into correponding acid, pp.134-142, 2012.
DOI : 10.1016/j.yrtph.2012.06.008

, 59 metabolised into glycoaldehyde, glycolate, glyoxylate and oxalateTheses metabolites are OPU, inhibit glucose and serotonin metabolism, protein synthesis, DNA replication, ribosomal RNA formation These effecs may all be due to acidosis generated, and oxalate crystallising with calcium, leading to deposits blocking circulation etc. and eventually hypocalcemia

A. Toxicity, What Are the Stages of Ethylene Glycol Intoxication? | ATSDR -Environmental Medicine & Environmental Health Education -CSEM Available at, p.60, 2007.

, KREATiS internal experimental database and QSARs. 61 KREATiS internal experimental database and QSARs

, 62 KREATiS internal experimental database and QSARs

, KREATiS internal experimental database and QSARs. 64 KREATiS internal experimental database and QSARs. 65 KREATiS internal experimental database and QSARs. 66 KREATiS internal experimental database and QSARs. 67 KREATiS internal experimental database and QSARs

, 68 metabolised into more toxic compound such as oxalic acid, ethylene dioxyacetic acid, and possibly ethylene glycol (leading to glycoaldehyde, glycolate, glyoxylate and oxalateTheses metabolites are OPU, inhibit glucose and serotonin metabolism, protein synthesis, DNA replication, ribosomal RNA formation These effecs may all be due to acidosis generated, and oxalate crystallising with calcium, leading to deposits blocking circulation etc. and eventually hypocalcemia))

A. Toxicity, What Are the Stages of Ethylene Glycol Intoxication? | ATSDR -Environmental Medicine & Environmental Health Education -CSEM Available at, p.15, 2007.

, KREATiS internal experimental database and QSARs. 70 KREATiS internal experimental database and QSARs

, 71 metabolised into more toxic compound such as oxalic acid, ethylene dioxyacetic acid, and possibly ethylene glycol (leading to glycoaldehyde, glycolate, glyoxylate and oxalateTheses metabolites are OPU, inhibit glucose and serotonin metabolism, protein synthesis, DNA replication, ribosomal RNA formation These effecs may all be due to acidosis generated, and oxalate crystallising with calcium, leading to deposits blocking circulation etc. and eventually hypocalcemia))

A. Toxicity, What Are the Stages of Ethylene Glycol Intoxication? | ATSDR -Environmental Medicine & Environmental Health Education -CSEM Available at, p.72, 2007.

, KREATiS internal experimental database and QSARs. 73 KREATiS internal experimental database and QSARs. 74 KREATiS internal experimental database and QSARs. 75 KREATiS internal experimental database and QSARs

, 76 KREATiS internal experimental database and QSARs. 77 KREATiS internal experimental database and QSARs. 78 KREATiS internal experimental database and QSARs. 79 KREATiS internal experimental database and QSARs. 80 not toxic at all for all aquatic species KREATiS internal experimental database and QSARs

, KREATiS internal experimental database and QSARs

, 82 KREATiS internal experimental database and QSARs

, KREATiS internal experimental database and QSARs

, 84 KREATiS internal experimental database and QSARs. 85 KREATiS internal experimental database and QSARs

, 86 KREATiS internal experimental database and QSARs

, 87 KREATiS internal experimental database and QSARs

, 88 KREATiS internal experimental database and QSARs. 89 KREATiS internal experimental database and QSARs. 90 KREATiS internal experimental database and QSARs. 91 KREATiS internal experimental database and QSARs. 92 KREATiS internal experimental database and QSARs

, 93 KREATiS internal experimental database and QSARs

, 94 KREATiS internal experimental database and QSARs

, KREATiS internal experimental database and QSARs. 96 KREATiS internal experimental database and QSARs. 97 KREATiS internal experimental database and QSARs. 98 KREATiS internal experimental database and QSARs

, 99 KREATiS internal experimental database and QSARs

, KREATiS internal experimental database and QSARs. 101 KREATiS internal experimental database and QSARs

, 102 KREATiS internal experimental database and QSARs. 103 ecotox apparent MoA1 KREATiS internal experimental database and QSARs. 104 ecotox apparent MoA1 KREATiS internal experimental database and QSARs. 105 KREATiS internal experimental database and QSARs

, 106 KREATiS internal experimental database and QSARs. 107 KREATiS internal experimental database and QSARs

, 108 KREATiS internal experimental database and QSARs. 109 KREATiS internal experimental database and QSARs

A. O. Aptula, D. W. Roberts, D. W. Aptula, . O. Roberts, D. W. Aptula et al., KREATiS internal experimental database and QSARs. 115 AMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity KREATiS internal experimental database and QSARsMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity' KREATiS internal experimental database and QSARs. 117 AMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity KREATiS internal experimental database and QSARs. 118 AMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity KREATiS internal experimental database and QSARsMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicityMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity KREATiS internal experimental database and QSARsMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicityMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicityMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicityMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity, 110 KREATiS internal experimental database and QSARs. 111 KREATiS internal experimental database and QSARs. 112 KREATiS internal experimental database and QSARs. 113 KREATiS internal experimental database and QSARs. 114 KREATiS internal experimental database and QSARs. 122 A.O. Aptula, D.W. Roberts KREATiS internal experimental database and QSARs. 123 A.O. Aptula, D.W. Roberts KREATiS internal experimental database and QSARs, pp.1097-1105, 2006.

J. A. Schwöbel, J. C. Madden, and M. T. Cronin, Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis, KREATiS internal experimental database and QSARs, 2011.
DOI : 10.1016/j.chemosphere.2011.07.037

J. A. Schwöbel, J. C. Madden, and M. T. Cronin, Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis, KREATiS internal experimental database and QSARs, 2011.
DOI : 10.1016/j.chemosphere.2011.07.037

J. A. Schwöbel, J. C. Madden, M. T. Cronin, J. A. Schwöbel, J. C. Madden et al., Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis KREATiS internal experimental database and QSARs. 128 ecotox apparent MoA1 Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena PyriformisMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicityMechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity, KREATiS internal experimental database and QSARs. 130 A.O. Aptula, D.W. Roberts KREATiS internal experimental database and QSARs, pp.1066-1074, 2006.

A. O. Aptula and D. W. Roberts, Mechanistic Applicability Domains for Nonanimal-Based Prediction of Toxicological End Points:?? General Principles and Application to Reactive Toxicity, 131 ecotox less toxic than MoA1, has the same toxicity as KREATiS internal experimental database and QSARs. 132 KREATiS internal experimental database and QSARs. 133 KREATiS internal experimental database and QSARs, pp.1097-1105, 2006.
DOI : 10.1021/tx0601004

, 134 KREATiS internal experimental database and QSARs

, 137 KREATiS internal experimental database and QSARs. 138 KREATiS internal experimental database and QSARs. 139 KREATiS internal experimental database and QSARs. 140 KREATiS internal experimental database and QSARs. 141 KREATiS internal experimental database and QSARs. 142 KREATiS internal experimental database and QSARs. 143 KREATiS internal experimental database and QSARs, 135 KREATiS internal experimental database and QSARs. 136 KREATiS internal experimental database and QSARs 144 KREATiS internal experimental database and QSARs. 145 KREATiS internal experimental database and QSARs. 146 KREATiS internal experimental database and QSARs. 147 KREATiS internal experimental database and QSARs. 148 KREATiS internal experimental database and QSARs. 149 KREATiS internal experimental database and QSARs. 150 KREATiS internal experimental database and QSARs. 151 KREATiS internal experimental database and QSARs. 152 KREATiS internal experimental database and QSARs

, 154 KREATiS internal experimental database and QSARs. 155 KREATiS internal experimental database and QSARs. 156 KREATiS internal experimental database and QSARs. 157 KREATiS internal experimental database and QSARs. 158 KREATiS internal experimental database and QSARs. 159 KREATiS internal experimental database and QSARs, 153 KREATiS internal experimental database and QSARs 160 KREATiS internal experimental database and QSARs. 161 KREATiS internal experimental database and QSARs. 162 KREATiS internal experimental database and QSARs. 163 KREATiS internal experimental database and QSARs. 164 KREATiS internal experimental database and QSARs. 165 KREATiS internal experimental database and QSARs

S. Tableau,

, Adduct formation with SH groups of proteins Rand, G. M. in Fundamentals Of Aquatic Toxicology: Effects, Environmental Fate And Risk Assessment 637, 1995.

, 169 KREATiS internal experimental database and QSARs. 170 KREATiS internal experimental database and QSARs. 171 KREATiS internal experimental database and QSARs. 172 KREATiS internal experimental database and QSARs. 173 KREATiS internal experimental database and QSARs. 174 KREATiS internal experimental database and QSARs. 175 KREATiS internal experimental database and QSARs. 176 KREATiS internal experimental database and QSARs. 177 KREATiS internal experimental database and QSARs. 178 KREATiS internal experimental database and QSARs. 179 KREATiS internal experimental database and QSARs. 180 KREATiS internal experimental database and QSARs. 181 KREATiS internal experimental database and QSARs. 182 KREATiS internal experimental database and QSARs. 183 KREATiS internal experimental database and QSARs, 167 KREATiS internal experimental database and QSARs. 168 KREATiS internal experimental database and QSARs 184 KREATiS internal experimental database and QSARs. 185 KREATiS internal experimental database and QSARs. 186 KREATiS internal experimental database and QSARs. 187 KREATiS internal experimental database and QSARs. 188 KREATiS internal experimental database and QSARs. 189 KREATiS internal experimental database and QSARs. 190 KREATiS internal experimental database and QSARs. 191 KREATiS internal experimental database and QSARs

L. S. Tsuruda, M. W. Lamé, and A. Jones, Formation of epoxide and quinone protein adducts in B6C3F1 mice treated with naphthalene, sulfate conjugate of 1,4-dihydroxynaphthalene and 1,4-naphthoquinone, Archives of Toxicology, vol.97, issue.6, pp.362-367, 1995.
DOI : 10.1021/ja00844a044

A. Buckpitt, NAPHTHALENE-INDUCED RESPIRATORY TRACT TOXICITY: METABOLIC MECHANISMS OF TOXICITY, Drug Metabolism Reviews, vol.18, issue.2, pp.791-820, 2002.
DOI : 10.1016/0300-483X(86)90186-1

, KREATiS internal experimental database and QSARs

L. S. Tsuruda, M. W. Lamé, and A. Jones, Formation of epoxide and quinone protein adducts in B6C3F1 mice treated with naphthalene, sulfate conjugate of 1,4-dihydroxynaphthalene and 1,4-naphthoquinone, Archives of Toxicology, vol.97, issue.6, pp.362-367, 1995.
DOI : 10.1021/ja00844a044

A. Buckpitt, NAPHTHALENE-INDUCED RESPIRATORY TRACT TOXICITY: METABOLIC MECHANISMS OF TOXICITY, Drug Metabolism Reviews, vol.18, issue.2, pp.791-820, 2002.
DOI : 10.1016/0300-483X(86)90186-1

, KREATiS internal experimental database and QSARs

L. S. Tsuruda, M. W. Lamé, and A. Jones, Formation of epoxide and quinone protein adducts in B6C3F1 mice treated with naphthalene, sulfate conjugate of 1,4-dihydroxynaphthalene and 1,4-naphthoquinone, Archives of Toxicology, vol.97, issue.6, pp.362-367, 1995.
DOI : 10.1021/ja00844a044

A. Buckpitt, NAPHTHALENE-INDUCED RESPIRATORY TRACT TOXICITY: METABOLIC MECHANISMS OF TOXICITY, Drug Metabolism Reviews, vol.18, issue.2, pp.791-820, 2002.
DOI : 10.1016/0300-483X(86)90186-1

, KREATiS internal experimental database and QSARs

L. S. Tsuruda, M. W. Lamé, and A. Jones, Formation of epoxide and quinone protein adducts in B6C3F1 mice treated with naphthalene, sulfate conjugate of 1,4-dihydroxynaphthalene and 1,4-naphthoquinone, Archives of Toxicology, vol.97, issue.6, pp.362-367, 1995.
DOI : 10.1021/ja00844a044

A. Buckpitt, NAPHTHALENE-INDUCED RESPIRATORY TRACT TOXICITY: METABOLIC MECHANISMS OF TOXICITY, Drug Metabolism Reviews, vol.18, issue.2, pp.791-820, 2002.
DOI : 10.1016/0300-483X(86)90186-1

, KREATiS internal experimental database and QSARs

L. S. Tsuruda, M. W. Lamé, and A. Jones, Formation of epoxide and quinone protein adducts in B6C3F1 mice treated with naphthalene, sulfate conjugate of 1,4-dihydroxynaphthalene and 1,4-naphthoquinone, Archives of Toxicology, vol.97, issue.6, pp.362-367, 1995.
DOI : 10.1021/ja00844a044

A. Buckpitt, NAPHTHALENE-INDUCED RESPIRATORY TRACT TOXICITY: METABOLIC MECHANISMS OF TOXICITY, Drug Metabolism Reviews, vol.18, issue.2, pp.791-820, 2002.
DOI : 10.1016/0300-483X(86)90186-1

L. S. Lamé, M. W. Jones, and A. D. , Formation of epoxide and quinone protein adducts in B6C3F1 mice treated with naphthalene, sulfate conjugate of 1,4-dihydroxynaphthalene and 1,4- naphthoquinone, KREATiS internal experimental database and QSARs. 197 ecotox apparent MoA1 Tsuruda, pp.362-367, 1995.

A. Buckpitt, NAPHTHALENE-INDUCED RESPIRATORY TRACT TOXICITY: METABOLIC MECHANISMS OF TOXICITY, Drug Metabolism Reviews, vol.18, issue.2, pp.791-820, 2002.
DOI : 10.1016/0300-483X(86)90186-1

, KREATiS internal experimental database and QSARs

, 198 KREATiS internal experimental database and QSARs. 199 KREATiS internal experimental database and QSARs, KREATiS internal experimental database and QSARs. 201 KREATiS internal experimental database and QSARs

, 202 KREATiS internal experimental database and QSARs. 203 KREATiS internal experimental database and QSARs. 204 KREATiS internal experimental database and QSARs. 205 KREATiS internal experimental database and QSARs. 206 KREATiS internal experimental database and QSARs. 207 KREATiS internal experimental database and QSARs. 208 KREATiS internal experimental database and QSARs. 209 KREATiS internal experimental database and QSARs. 210 KREATiS internal experimental database and QSARs. 211 KREATiS internal experimental database and QSARs. 212 KREATiS internal experimental database and QSARs

S. Tableau, Set de validation. Partie 2. (suite), p.213

, KREATiS internal experimental database and QSARs. 214 KREATiS internal experimental database and QSARs. 215 KREATiS internal experimental database and QSARs. 216 KREATiS internal experimental database and QSARs. 217 KREATiS internal experimental database and QSARs. 218 KREATiS internal experimental database and QSARs. 219 KREATiS internal experimental database and QSARs. 220 KREATiS internal experimental database and QSARs. 221 KREATiS internal experimental database and QSARs

, 222 KREATiS internal experimental database and QSARs. 223 KREATiS internal experimental database and QSARs. 224 KREATiS internal experimental database and QSARs. 225 KREATiS internal experimental database and QSARs. 226 KREATiS internal experimental database and QSARs

, 227 KREATiS internal experimental database and QSARs. 228 KREATiS internal experimental database and QSARs

, 229 KREATiS internal experimental database and QSARs. 230 KREATiS internal experimental database and QSARs

J. A. Madden, J. C. Cronin, M. T. Madden, J. C. Cronin, and M. T. , KREATiS internal experimental database and QSARs. 234 methacrylates ecotox apparent MoA1 Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis KREATiS internal experimental database and QSARs. 235 methacrylates ecotox apparent MoA1 Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis KREATiS internal experimental database and QSARs. 237 methacrylates ecotox apparent MoA1 Schwöbel Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis KREATiS internal experimental database and QSARs. 239 methacrylates ecotox apparent MoA1 Schwöbel Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis, 232 KREATiS internal experimental database and QSARs. 233 methacrylates ecotox apparent MoA1 Schwöbel Application of a Computational Model for Michael Addition Reactivity in the Prediction of Toxicity to Tetrahymena Pyriformis DOI: 10.1016/j.chemosphere.2011.07.037. KREATiS internal experimental database and QSARs. 236 methacrylates ecotox apparent MoA1 Schwöbel, KREATiS internal experimental database and QSARs. 238 methacrylates ecotox apparent MoA1 Schwöbel KREATiS internal experimental database and QSARs. 240 methacrylates ecotox apparent MoA1 Schwöbel KREATiS internal experimental database and QSARs. 241 methacrylates ecotox apparent MoA1 Schwöbel KREATiS internal experimental database and QSARs. 242 vinyl esters are much more toxic than normal esters in ecotox (is it by oxidation of vinyl to epoxide, or by ester hydrolysis, generating by tautomerisation an aldehyde?) KREATiS internal experimental database and QSARs, pp.1066-1074, 2011.

J. S. Jaworska, R. S. Hunter, T. W. Schultz, and R. Funcasta-calderón, Quantitative structure-toxicity relationships and volume fraction analyses for selected esters, Archives of Environmental Contamination and Toxicology, vol.9, issue.1, pp.86-93, 1980.
DOI : 10.1007/BF00213091

J. Rodríguez-seijas and R. Funcasta-calderón, Comprehensive Review on Lactate Metabolism in Human Health KREATiS internal experimental database and QSARs. 245 + fast metabolism into Krebs cycle IPCS Inchem. Ethyl Lactate. WHO Food Additives Series, pp.76-100, 1980.

J. Rodríguez-seijas, Comprehensive Review on Lactate Metabolism in Human Health, KREATiS internal experimental database and QSARs, pp.76-100, 2014.

S. Tableau, Set de validation. Partie 2. (suite), p.246

+. Fast, I. Into-krebs-cycle, . Inchem, R. Ethyl-lactate-funcasta-calderón, and E. Ameneiros-rodríguez, WHO Food Additives Series, 1980.

J. Rodríguez-seijas and R. Funcasta-calderón, Comprehensive Review on Lactate Metabolism in Human Health KREATiS internal experimental database and QSARs. 247 + fast metabolism into Krebs cycle IPCS Inchem. Ethyl Lactate. WHO Food Additives Series, pp.76-100, 1980.

J. Rodríguez-seijas and R. Funcasta-calderón, Comprehensive Review on Lactate Metabolism in Human Health KREATiS internal experimental database and QSARs. 248 + fast metabolism into Krebs cycle IPCS Inchem. Ethyl Lactate. WHO Food Additives Series, pp.76-100, 1980.

J. Rodríguez-seijas, Comprehensive Review on Lactate Metabolism in Human Health, KREATiS internal experimental database and QSARs, pp.76-100, 2014.

, 249 hydrolysed abiotically, generating acetoacetic acid, a compound normally appearing in mammals during fatty acids metabolism. However, it competes with lactic acid in the monocarboxylate transporters, which can pose a problem in high acute doses

R. Gómez-bombarelli, M. González-pérez, M. T. Pérez-prior, J. A. Manso, E. Calle et al., Kinetic study of the neutral and base hydrolysis of diketene, DOI: 10.1002/poc.1483. National Center for Biotechnology Information, pp.438-442, 2009.
DOI : DOI 10.1002/poc.1456

, 250 KREATiS internal experimental database and QSARs

, 251 KREATiS internal experimental database and QSARs. 252 KREATiS internal experimental database and QSARs. 253 KREATiS internal experimental database and QSARs. 254 F: normal ester toxicity KREATiS internal experimental database and QSARs

, 255 hydrolysis gives an hemiacetal, in equilibirum with aldehyde in water. ecotox apparent MoA ester KREATiS internal experimental database and QSARs

, 256 KREATiS internal experimental database and QSARs. 257 10 times more toxic to fish and daphnia than ester toxicity, 2 times for algae KREATiS internal experimental database and QSARs

, Ecotox: all not toxic above solubility limit KREATiS internal experimental database and QSARs

, 259 10 times more toxic to fish and daphnia than ester toxicity, 2 times for algae KREATiS internal experimental database and QSARs

, 260 Ecotox: normal ester toxicity KREATiS internal experimental database and QSARs

, Acute: 2 times more toxic to fish, 4 times to daphnia, 10 times to algae Probably only because of experimental issues? M: hallucinatory, causes forced sleep. It is a mineralocorticoid receptor antagonist (VS aldosterone = normal substrate) and glucocorticoid recpetor antagonist, and it also inhibit the biosynthesis of aldosterone. KREATiS internal experimental database and QSARs. 262 10 times more toxic to fish

, 263 KREATiS internal experimental database and QSARs

, 264 ecotox: normal ester toxicity KREATiS internal experimental database and QSARs. 265 KREATiS internal experimental database and QSARs

, 267 ecotox: normal ester toxicity KREATiS internal experimental database and QSARs

, 268 KREATiS internal experimental database and QSARs. 269 ecotox: normal ester toxicity KREATiS internal experimental database and QSARs. 270 Fish: normal ester toxicity KREATiS internal experimental database and QSARs

, 271 ecotox: normal ester toxicity KREATiS internal experimental database and QSARs

, 272 2 times more toxic to fish and daphnia than normal ester, not toxic at EC50(pred)*2 for algae KREATiS internal experimental database and QSARs

, 274 ecotox: normal ester toxicity KREATiS internal experimental database and QSARs

, 275 diesters are more toxic than esters, probably because 2 esters are hydrolysed, generating twice as much acidity as for monoesters KREATiS internal experimental database and QSARs

, 276 diesters are more toxic than esters, probably because 2 esters are hydrolysed, generating twice as much acidity as for monoesters KREATiS internal experimental database and QSARs. 277 fish: less toxic than ester narcosis? KREATiS internal experimental database and QSARs, ecotox: less toxic than ester narcosis? KREATiS internal experimental database and QSARs

, 299 KREATiS internal experimental database and QSARs

, 300 ecotox: normal diester toxicity KREATiS internal experimental database and QSARs. 301 M: digestive hydolysis of one ester =>chronic=> induction of PPARalpha (peroxisome proliferator-activated receptor, precursor of liver cancer development) and endocrine disruption (if R>C4, can undergo further oxidative metabolism

W. J. Adams, R. Gregory, K. A. Biddinger, J. W. Robillard, and . Gorsuch, A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms, Environmental Toxicology and Chemistry, vol.25, issue.9, pp.1569-74, 1995.
DOI : 10.1002/etc.5620140916

W. J. Adams, R. Gregory, K. A. Biddinger, J. W. Robillard, and . Gorsuch, A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms, Environmental Toxicology and Chemistry, vol.25, issue.9, pp.1569-74, 1995.
DOI : 10.1002/etc.5620140916

, 303 ecotox: EC50 > solubility limit KREATiS internal experimental database and QSARs. 304 M: digestive hydolysis of one ester =>chronic=> induction of PPARalpha (peroxisome proliferator-activated receptor, precursor of liver cancer development) and endocrine disruption (if R>C4, can undergo further oxidative metabolism

W. J. Adams, R. Gregory, K. A. Biddinger, J. W. Robillard, and . Gorsuch, A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms, Environmental Toxicology and Chemistry, vol.25, issue.9, pp.1569-74, 1995.
DOI : 10.1002/etc.5620140916

W. J. Adams, R. Gregory, K. A. Biddinger, J. W. Robillard, and . Gorsuch, A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms, Environmental Toxicology and Chemistry, vol.25, issue.9, pp.1569-74, 1995.
DOI : 10.1002/etc.5620140916

W. J. Adams, R. Gregory, K. A. Biddinger, J. W. Robillard, and . Gorsuch, A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms, Environmental Toxicology and Chemistry, vol.25, issue.9, pp.1569-74, 1995.
DOI : 10.1002/etc.5620140916

, 307 ecotox: EC50 > solubility limit KREATiS internal experimental database and QSARs. 308 M: digestive hydolysis of one ester =>chronic=> induction of PPARalpha (peroxisome proliferator-activated receptor, precursor of liver cancer development) and endocrine disruption (if R>C4, can undergo further oxidative metabolism

W. J. Adams, R. Gregory, K. A. Biddinger, J. W. Robillard, and . Gorsuch, A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms, Environmental Toxicology and Chemistry, vol.25, issue.9, pp.1569-74, 1995.
DOI : 10.1002/etc.5620140916

, Fish: 1,5 to 4 times more toxic than normal diester toxicity KREATiS internal experimental database and QSARs

, 310 KREATiS internal experimental database and QSARs. 311 KREATiS internal experimental database and QSARs. 312 KREATiS internal experimental database and QSARs. 313 KREATiS internal experimental database and QSARs

, 314 KREATiS internal experimental database and QSARs

, 315 Fish: baseline toxicity KREATiS internal experimental database and QSARs. 316 KREATiS internal experimental database and QSARs. 317 KREATiS internal experimental database and QSARs. 318 KREATiS internal experimental database and QSARs. 319 KREATiS internal experimental database and QSARs. 320 ecotox: baseline toxicity KREATiS internal experimental database and QSARs. 321 ecotox: baseline toxicity KREATiS internal experimental database and QSARs. 322 similar to thyroid hormones, it disturbs their balance in the organism (thyroid hormones influences a lot of processes), binds to AhR, mimics ER, binding to its receptors with strong affinity, it is carcinogen also? Siddiqi, Tableau S2 : Set de validation. Partie 2. (suite)PBDEs): New Pollutants- Old Diseases, pp.281-290, 2003.

, 323 ecotox: reactive

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs. 328 ecotox: reactive, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs. 329 ecotox: reactive, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs. 333 reactive toxicity for fish, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs. 334 ecotox: between reactive and ester toxicity for all species, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs. 337 ecotox: very toxic, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, Journal of Medicinal Chemistry, vol.48, issue.1, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. A. Schwöbel, J. C. Madden, and M. T. Cronin, Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis, KREATiS internal experimental database and QSARs. 338 slow chemical hydrolysis in water, faster with acids. Attacks almost everything! Alkylating, 2011.
DOI : 10.1016/j.chemosphere.2011.07.037

, 1-Chloro-2,3-époxypropane -Fiche toxicologique n° 187, KREATiS internal experimental database and QSARs. 339 ecotox: reactive, 2016.

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

J. Kazius, R. Mcguire, and R. B. , Derivation and Validation of Toxicophores for Mutagenicity Prediction, 346 ecotox: baseline toxicity KREATiS internal experimental database and QSARs. 347 ecotox: baseline toxicity KREATiS internal experimental database and QSARs. 348 KREATiS internal experimental database and QSARs, pp.312-320, 2005.
DOI : 10.1021/jm040835a

, 350 ecotox: baseline toxicity KREATiS internal experimental database and QSARs. 351 ecotox: baseline toxicity KREATiS internal experimental database and QSARs. 352 M: conjugation with GSH, then further reduction (thus oxidative stress) to generate methanethiol, which produces CNS injury. Fish: baseline toxicity ATSDR. Toxicological Profile: Chloromethane https KREATiS internal experimental database and QSARs. 353 KREATiS internal experimental database and QSARs. 354 KREATiS internal experimental database and QSARs. 355 KREATiS internal experimental database and QSARs. 356 KREATiS internal experimental database and QSARs. 357 M: Alkylation through SN2 with thiol and amino residues. Protection with free cysteine and GSH. The conjugation with GSH and further metabolism may be the main cause for chronic toxicity as for methyl chloride, 349 ecotox: baseline toxicity KREATiS internal experimental database and QSARs Ecotox: 100x more toxic than baseline, 2016.

R. S. Yang, K. L. Witt, C. J. Alden, L. G. Cockerham, and G. W. Ware, KREATiS internal experimental database and QSARs. 358 KREATiS internal experimental database and QSARs. 359 KREATiS internal experimental database and QSARs. 360 ecotox: baseline toxicity KREATiS internal experimental database and QSARs. 361 Algae: baseline toxicity KREATiS internal experimental database and QSARs. 362 KREATiS internal experimental database and QSARs. 363 KREATiS internal experimental database and QSARs, pp.65-85, 1995.

, highly reative (generates HCl in the medium and binds to proteins to make adducts) Ecotox: baseline toxicity ATSDR Toxicological Profile: Chloroform https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=53&tid=16 KREATiS internal experimental database and QSARs. 365 KREATiS internal experimental database and QSARs. 366 KREATiS internal experimental database and QSARs. 367 KREATiS internal experimental database and QSARs, CYP450 into phosgene 368 Fish: baseline toxicity KREATiS internal experimental database and QSARs. 369 ecotox: baseline toxicity KREATiS internal experimental database and QSARs. 370 KREATiS internal experimental database and QSARs. 371 Fish: 20x more toxic than baseline KREATiS internal experimental database and QSARs, 2016.

, Ecotox: between 1,5 and 2 times more toxic than baseline. M: metabolised into trichloroethanol, trichloroethylene, no surprising or high toxic effects

. Pubchem, E. Bingham, B. Cohrssen, and C. H. Powell, Patty's Toxicology Volumes 1-9

J. Wiley and &. Sons, KREATiS internal experimental database and QSARs. 373 KREATiS internal experimental database and QSARs. 374 KREATiS internal experimental database and QSARs. 375 KREATiS internal experimental database and QSARs. 376 KREATiS internal experimental database and QSARs. 377 KREATiS internal experimental database and QSARs, 378 ecotox: baseline toxicity KREATiS internal experimental database and QSARs. 379 KREATiS internal experimental database and QSARs. 380 KREATiS internal experimental database and QSARs. 381 KREATiS internal experimental database and QSARs, p.144, 2001.

, 382 M: activates and desensitizes TRP channels, thus having an analgesic effect

H. Xu, N. T. Blair, and D. E. Clapham, Camphor Activates and Strongly Desensitizes the Transient Receptor Potential Vanilloid Subtype 1 Channel in a Vanilloid-Independent Mechanism, Journal of Neuroscience, vol.25, issue.39
DOI : 10.1523/JNEUROSCI.2574-05.2005

. Neurosci, . J. Off, . Soc, and . Neurosci, DOI: 10.1523/JNEUROSCI.2574- 05.2005. KREATiS internal experimental database and QSARs. 383 KREATiS internal experimental database and QSARs. 384 ecotox: baseline toxicity KREATiS internal experimental database and QSARs, pp.8924-8937, 2005.

, Ecotox: 7x more toxic to fish, baseline for daphnia, 2x more toxic for algae. M: calcium channel blocker in intestine (inhibits contraction)

F. V. Souza, M. B. Da-rocha, D. P. De-souza, and R. M. Marçal, (???)-Carvone: Antispasmodic effect and mode of action, KREATiS internal experimental database and QSARs, pp.20-24
DOI : 10.1016/j.fitote.2012.10.012

X. Liu, Y. Jia, J. Chen, G. Liang, H. Guo et al., Inhibition effects of benzylideneacetone, benzylacetone, and 4-phenyl-2-butanol on the activity of mushroom tyrosinase, Fish: 8x more toxic than baseline, pp.275-279
DOI : 10.1016/j.jbiosc.2014.08.014

, Ecotox: between aldehyde and baseline toxicity KREATiS internal experimental database and QSARs. 388 ecotox: baseline toxicity KREATiS internal experimental database and QSARs. 389 ecotox: baseline toxicity KREATiS internal experimental database and QSARs, 387 endogenous compound involved in different endogenous pathways

, 391 Fish and Daphnid: baseline. Algae: 9x more toxic. KREATiS internal experimental database and QSARs

, 392 KREATiS internal experimental database and QSARs

, 393 Ecotox: polar narcosis toxicity KREATiS internal experimental database and QSARs

. Reprotoxic, Ecotox: less toxic than baseline? KREATiS internal experimental database and QSARs

, 395 spontaneously decomposes giving CN-and acetaldehyde. Very high toxicity to aquatic life and mammals

J. Grogan, S. C. Devito, R. S. Pearlman, and K. R. Korzekwa, Modeling cyanide release from nitriles: prediction of cytochrome P 450-mediated acute nitrile toxicity, Chemical Research in Toxicology, vol.5, issue.4, pp.548-552, 1992.
DOI : 10.1021/tx00028a014

, 396 Specific study on this compound showed metabolism by CYP2E1 generating CN-, correlated with toxicity. In addition, epoxide is formed by CYP2A5. Fish: ca

P. Boadas-vaello, E. Jover, S. Saldaña-ruíz, and . Soler-martín, C.; Chabbert, C.; Bayona, J. M

J. Llorens, Allylnitrile Metabolism by CYP2E1 and Other CYPs Leads to Distinct Lethal and Vestibulotoxic Effects in the Mouse DOI: 10.1093/toxsci/kfn233. KREATiS internal experimental database and QSARs. 397 no H/M data. Ecotox seems much less toxic than baseline, KREATiS internal experimental database and QSARs, pp.461-472, 2009.

, 398 ecotox: baseline toxicity. M: probably genotoxic. Reduction into nitroso cause DNA and protein damage. Induces oxidative stress, generating methemoglobinemia

, General Discussion of Common Mechanisms for Aromatic Amines, KREATiS internal experimental database and QSARs, pp.41-54, 2010.

, 399 ecotox: baseline toxicity. M: probably genotoxic. Reduction into nitroso cause DNA and protein damage. Induces oxidative stress, generating methemoglobinemia

, General Discussion of Common Mechanisms for Aromatic Amines, KREATiS internal experimental database and QSARs. 400 Ecotox: polar narcosis toxicity KREATiS internal experimental database and QSARs, pp.41-54, 2010.

, 401 Ecotox: polar narcosis toxicity KREATiS internal experimental database and QSARs. 402 KREATiS internal experimental database and QSARs. 403 KREATiS internal experimental database and QSARs. 404 KREATiS internal experimental database and QSARs. 405 KREATiS internal experimental database and QSARs. 406 KREATiS internal experimental database and QSARs

/. Ecotox,

J. V. Ferreira, T. M. Capello, L. J. Siqueira, J. H. Lago, and L. Caseli, Mechanism of Action of Thymol on Cell Membranes Investigated through Lipid Langmuir Monolayers at the Air???Water Interface and Molecular Simulation, DOI: 10.1021/acs.langmuir.6b00600. KREATiS internal experimental database and QSARs. 408 polar narcosis KREATiS internal experimental database and QSARs. 409 KREATiS internal experimental database and QSARs. 410 KREATiS internal experimental database and QSARs. 411 KREATiS internal experimental database and QSARs. 412 KREATiS internal experimental database and QSARs. 413 KREATiS internal experimental database and QSARs, pp.3234-3241
DOI : 10.1021/acs.langmuir.6b00600

, 414 KREATiS internal experimental database and QSARs. 415 KREATiS internal experimental database and QSARs. 416 antioxidant (radical trapping)

A. D. Rahimtula, B. Jernström, and L. Dock, Moldeus, P. Effects of Dietary and in Vitro, vol.2

. Hydroxy-anisole, KREATiS internal experimental database and QSARs. 417 it is an estrogenic compound (3 to 6 orders of magnitude less potent than estradiol), but the corresponding effects can only be seen at high doses, Br. J. Cancer, vol.45, issue.6, pp.935-944, 1982.

O. , Toxicological Profile for Nonylphenol, KREATiS internal experimental database and QSARs, 2009.

, 418 antioxidant (radical trapping) Creates adducts after metabolisation into a quinone methide in the lung

C. T. Shearn, K. S. Fritz, B. W. Meier, O. V. Kirichenko, and J. A. Thompson, KREATiS internal experimental database and QSARs, pp.1631-1641, 2008.
DOI : 10.1021/tx800162p

C. T. Shearn, K. S. Fritz, B. W. Meier, O. V. Kirichenko, and J. A. Thompson, KREATiS internal experimental database and QSARs. 420 Ecotox: polar narcosis toxicity KREATiS internal experimental database and QSARs. 421 M: minor pathway is oxidation into phenylhydroquinone, and then redox cycle between phenylhydroquinone and phenylbenzoquinone, 2008.
DOI : 10.1021/tx800162p

, Monograph of Ortho-Pehylphenol and Its Sodium Salt KREATiS internal experimental database and QSARs. 422 M: minor pathway is oxidation into phenylcatechol, and then redox cycle between phenylcatechol and phenylbenzoquinone, IARC, vol.73, p.451, 1999.

, Monograph of Ortho-Pehylphenol and Its Sodium Salt, IARC, vol.73, 1999.

, 423 Binds to Estrogen-Related Receptor (ERR) Gamma (like Bisphenol A which has a hydroxy group in addition

A. Matsushima, T. Teramoto, H. Okada, X. Liu, T. Tokunaga et al., ERR?? tethers strongly bisphenol A and 4-??-cumylphenol in an induced-fit manner, KREATiS internal experimental database and QSARs. 424 all esters of salicylic acid present the same effects than salicylic acid. Inhibition of COX-2 and -1. Ecotox: salicylates stand between esters and phenols, pp.408-413, 2008.
DOI : 10.1016/j.bbrc.2008.06.050

J. R. Vane and R. M. Botting, Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs, KREATiS internal experimental database and QSARs, pp.2-8, 1998.
DOI : 10.1016/S0002-9343(97)00203-9

, 425 all esters of salicylic acid present the same effects than salicylic acid. Inhibition of COX-2 and -1. Ecotox: salicylates stand between esters and phenols (most are bad data

J. R. Vane and R. M. Botting, Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs, KREATiS internal experimental database and QSARs, pp.2-8, 1998.
DOI : 10.1016/S0002-9343(97)00203-9

, 426 all esters of salicylic acid present the same effects than salicylic acid. Inhibition of COX-2 and -1. Ecotox: salicylates stand between esters and phenols (most are bad data

J. R. Vane and R. M. Botting, Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs, KREATiS internal experimental database and QSARs, pp.2-8, 1998.
DOI : 10.1016/S0002-9343(97)00203-9

, 427 all esters of salicylic acid present the same effects than salicylic acid. Inhibition of COX-2 and -1. Ecotox: salicylates stand between esters and phenols (most are bad data

J. R. Vane and R. M. Botting, Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs, KREATiS internal experimental database and QSARs, pp.2-8, 1998.
DOI : 10.1016/S0002-9343(97)00203-9

, 428 all esters of salicylic acid present the same effects than salicylic acid. Inhibition of COX-2 and -1. Ecotox: salicylates stand between esters and phenols (most are bad data

J. R. Vane and R. M. Botting, Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs, KREATiS internal experimental database and QSARs, pp.2-8, 1998.
DOI : 10.1016/S0002-9343(97)00203-9

, 429 all esters of salicylic acid present the same effects than salicylic acid. Inhibition of COX-2 and -1. Ecotox: salicylates stand between esters and phenols (most are bad data

J. R. Vane and R. M. Botting, Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs, KREATiS internal experimental database and QSARs, pp.2-8, 1998.
DOI : 10.1016/S0002-9343(97)00203-9

, 430 all esters of salicylic acid present the same effects than salicylic acid. Inhibition of COX-2 and -1. Ecotox: salicylates stand between esters and phenols (most are bad data

J. R. Vane and R. M. Botting, Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs, KREATiS internal experimental database and QSARs, pp.2-8, 1998.
DOI : 10.1016/S0002-9343(97)00203-9

, 431 all esters of salicylic acid present the same effects than salicylic acid. Inhibition of COX-2 and -1. Ecotox: salicylates stand between esters and phenols (most are bad data

J. R. Vane and R. M. Botting, Mechanism of Action of Nonsteroidal Anti- Inflammatory Drugs'. The American, 2S ? 8S. doi:10.1016/S0002-9343(97)00203-9. KREATiS internal experimental database and QSARs. 432 Ecotox: polar narcosis toxicity KREATiS internal experimental database and QSARs, 1998.
DOI : 10.1016/s0002-9343(97)00203-9

, 433 Visible effects in vivo seem not much different than another phenol Ecotox: polar narcosis toxicity Riley, P. A. Mechanism of Pigment-Cell Toxicity Produced by Hydroxyanisole DOI: 10.1002/path.1711010211. KREATiS internal experimental database and QSARs. 434 M: Dealkoxylation, then RedOx cycle between reduced and oxidized quinone. Ecotox: approx. 3x more toxic than polar narcosis, J. Pathol, vol.101, issue.2, pp.163-169, 1970.

P. A. Riley, Mechanism of pigment-cell toxicity produced by hydroxyanisole, The Journal of Pathology, vol.209, issue.2, pp.163-169, 1970.
DOI : 10.1177/10.3.269

, 435 M: Dealkoxylation, then RedOx cycle between reduced and oxidized quinone. Ecotox: approx. 3x more toxic than polar narcosis

P. A. Riley, Mechanism of pigment-cell toxicity produced by hydroxyanisole, DOI: 10.1002/path.1711010211. KREATiS internal experimental database and QSARs. 436 OPU (H+ transport), seen in ecotox KTS KREATiS internal experimental database and QSARs, pp.163-169, 1970.
DOI : 10.1177/10.3.269

, Ecotox: 5x more toxic to fish, 70x more toxic for daphnia, 10x more toxic to algae than polar narcosis. M: in high doses, it inhibits thyroid peroxidases thus disrupting the depending hormone system

F. Welsch, Routes and Modes of Administration of Resorcinol and Their Relationship to Potential Manifestations of Thyroid Gland Toxicity in Animals and Man, KREATiS internal experimental database and QSARs, pp.59-63, 2008.
DOI : 10.1111/j.1365-4362.1983.tb02149.x

, Ecotox: 100x more toxic to fish, 20x to daphnia, 3x to algae than polar narcosis

P. A. Riley, Mechanism of pigment-cell toxicity produced by hydroxyanisole, The Journal of Pathology, vol.209, issue.2, pp.163-169, 1970.
DOI : 10.1177/10.3.269

, Ecotox: not more toxic to fish, 5x to daphnia and algae than polar narcosis. M: agonist of Estrogen Receptor

F. Paris, P. Balaguer, B. Térouanne, N. Servant, C. Lacoste et al., Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit ?? and ?? estrogen activities and antiandrogen activity in reporter cell lines, KREATiS internal experimental database and QSARs, pp.43-49, 2002.
DOI : 10.1016/S0303-7207(02)00094-1

, Ecotox: not more toxic to fish, 7x to daphnia and 10x to algae than polar narcosis

, Fish: polar narcosis toxicity Estrogen Receptor agonist, induce oxidative stress (metabolism to catechol moieties?) (and adducts to proteins). A lot of other effects

R. Rezg, S. El-fazaa, N. Gharbi, and B. Mornagui, Bisphenol A and human chronic diseases: Current evidences, possible mechanisms, and future perspectives, KREATiS internal experimental database and QSARs. 442 certainly good antioxidant properties. KREATiS internal experimental database and QSARs, pp.83-90, 2014.
DOI : 10.1016/j.envint.2013.12.007

, Algae: 2,4x more toxic than polar narcosis KREATiS internal experimental database and QSARs. 444 so hydrophobic that it is not bioavailable, not toxic at solubility limit in aquatic toxicity, not especially toxic in plants and soil organisms, KREATiS internal experimental database and QSARs

B. and M. , Inihibits electron transport (lactate dehydrogenase / succinate dehydrogenase in complex II) in the membranes

V. Lokanatha, P. Sailaja, and W. Rajendra, In vitro kinetics of the rat brain succinate dehydrogenase inhibition by hexachlorophene, 6<303::AID-JBT3>3.0.CO, pp.303-306, 1999.
DOI : 10.1016/0005-2744(71)90083-0

1. , in their anionic form, are oxidized into thiyl radical and then enter a redox cycle between the thiyl radical and the disulfides. 3° are not reactive enough due to steric hindrance Aromatics are more reactive (conjugation stabilization, EWG are stabilizing the anion, therefore decreasing the reactivity, while EDG will stabilize the thiyl radical and favor the oxidation

R. Munday, Toxicity of Thiols and Disulphides: Involvement of Free-Radical Species. Free Radic

, Biol. Med, vol.7, issue.6, pp.659-673, 1989.

. Baseline-toxicity-for and . Fish, 5x more toxic for daphnia KREATiS internal experimental database and QSARs. (H+ transport), seen in ecotox KTS KREATiS internal experimental database and QSARs. (H+ transport), seen in ecotox KTS KREATiS internal experimental database and QSARs. (H+ transport), seen in ecotox KTS KREATiS internal experimental database and QSARs. (H+ transport), seen in ecotox KTS KREATiS internal experimental database and QSARs

R. W. Olsen and T. M. Delorey, GABA Receptor Physiology and Pharmacology. 1999. 458 muscarinic antagonist King, M. W. Biochemistry of Neurotransmitters and Nerve Transmission http, 2015.

L. Strong-agonist-of-estrogen-receptor-shi, W. Tong, H. Fang, Q. Xie, H. Hong et al., An Integrated " 4-Phase Approach for Setting Endocrine Disruption Screening Priorities?phase I and II Predictions of Estrogen Receptor Binding Affinity 460 strong agonist of estrogen receptor An Integrated " 4-Phase " Approach for Setting Endocrine Disruption Screening Priorities?phase I and II Predictions of Estrogen Receptor Binding Affinity, SAR QSAR Environ. Res. SAR QSAR Environ. Res, vol.13, issue.131, pp.69-88, 1080.

S. Tableau, Set de validation. Partie 2. (suite), p.461

M. W. King, Biochemistry of Neurotransmitters and Nerve Transmission http, 2015.

, 462 agonist of morphine at µ-opioid receptor

H. Pathan and J. Williams, Basic opioid pharmacology: an update, British Journal of Pain, vol.4, issue.1, pp.11-16, 2012.
DOI : 10.1038/sj.npp.1300463

URL : http://europepmc.org/articles/pmc4590096?pdf=render

L. A. Chahl, Experimental and Clinical Pharmacology: Opioids - mechanisms of action, Australian Prescriber, vol.19, issue.3
DOI : 10.18773/austprescr.1996.063

. Prescr, , pp.63-65, 1996.

H. Pathan and J. Williams, Basic opioid pharmacology: an update, British Journal of Pain, vol.4, issue.1, pp.11-16, 2012.
DOI : 10.1038/sj.npp.1300463

URL : http://europepmc.org/articles/pmc4590096?pdf=render

L. A. Chahl, Experimental and Clinical Pharmacology: Opioids - mechanisms of action, Australian Prescriber, vol.19, issue.3
DOI : 10.18773/austprescr.1996.063

. Prescr, seen in ecotox KTS KREATiS internal experimental database and QSARs, pp.63-65, 1996.

T. Ache-inhibitor-elersek and M. Filipic, Organophosphorus Pesticides -Mechanisms of Their Toxicity. In Pesticides - The Impacts of Pesticides Exposure, 2011.

, Plants: inhibits Protein D-1 at photosystem II => blocks production of O2 + ROS generated. Other: carcinogenic, reproductive and developmental toxicity

C. B. Breckenridge, C. Werner, J. T. Stevens, and D. D. Sumner, Chapter 25 -Hazard Assessment for Selected Symmetrical and Asymmetrical Triazine Herbicides, The Triazine Herbicides, pp.387-398, 2008.

A. and A. Toxicity, Analysis of Potential Modes of Action ; APVMA, 2010; p 49. 467 AChE inhibitor Fukuto, T. R. Mechanism of Action of Organophosphorus and Carbamate Insecticides, Environ. Health Perspect, vol.87, pp.245-254, 1990.

T. Ache-inhibitor-fukuto, Mechanism of action of organophosphorus and carbamate insecticides, Environmental Health Perspectives, vol.87, pp.245-254, 1990.
DOI : 10.1289/ehp.9087245

, 469 binds to benzodiazepine site of GABAa receptors, increasing the activity of GABA

R. W. Olsen and T. M. Delorey, GABA Receptor Physiology and Pharmacology 470 nicotinic agonist Tzankova, V.; Danchev, N. Cytisine?from Ethomedical Use to the Development as a Natural Alternative for Smoking Cessation, seen in ecotox KTS KREATiS internal experimental database and QSARs. 472 binds to progesterone and estrogen receptors, pp.151-160, 1999.

C. Kahlenborn, R. Peck, and W. B. Severs, Mechanism of Action of Levonorgestrel Emergency Contraception, The Linacre Quarterly, vol.333, issue.249, pp.18-33
DOI : 10.1056/NEJM199512073332301

, Plants: hydrolysed. Then the acid is an antagonist of phytohormone auxin, overstimulating plant growth, more than it can afford (because too slowly metabolised then) M: after hydrolysis

Y. Song, Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide, Journal of Integrative Plant Biology, vol.60, issue.2, pp.106-113
DOI : 10.1111/j.1365-313X.2009.03988.x

G. Jervais, B. Luukinen, K. Buhl, and D. Stone, , p.4, 2016.

T. Ache-inhibitor-fukuto, Mechanism of action of organophosphorus and carbamate insecticides, Environmental Health Perspectives, vol.87, pp.245-254, 1990.
DOI : 10.1289/ehp.9087245

T. Ache-inhibitor-fukuto, Mechanism of action of organophosphorus and carbamate insecticides, Environmental Health Perspectives, vol.87, pp.245-254, 1990.
DOI : 10.1289/ehp.9087245

, 476 binds to picrotoxin site of GABAa receptors, blocking the channel. Very toxic for mammals and fish

R. W. Olsen and T. M. Delorey, GABA Receptor Physiology and Pharmacology. 1999. 477 oxidized by metabolism to generate MPP+, RedOx cycler. It is inducing Parkinson decease, because MPP+ is generated in astrocytes in the brain, and then actively transported to dopaminergic neurons by dopamine transporters

J. W. Langston, M. The, . J. Story, and . Park, Dis, vol.7, pp.11-22

J. D. Adams, M. L. Chang, and L. Klaidman, Parkinsons Disease - Redox Mechanisms, Current Medicinal Chemistry, vol.8, issue.7, pp.809-814, 2001.
DOI : 10.2174/0929867013372995

, 478 Conjugation with thiol groups (including CoA, inhibiting all the processes using it), not precisely known? Plants: makes it a good herbicide

E. Fuerst, Understanding the Mode of Action of the Chloroacetamide and Thiocarbamate Herbicides, Weed Technology, vol.16, issue.04, pp.270-277
DOI : 10.1126/science.1145201

, 479 Plants: inhibits Protein D-1 at photosystem II => blocks production of O2 + ROS generated. Other: slightly to not toxic

C. B. Breckenridge, C. Werner, J. T. Stevens, and D. D. Sumner, Chapter 25 -Hazard Assessment for Selected Symmetrical and Asymmetrical Triazine Herbicides, The Triazine Herbicides, pp.387-398, 2008.

A. and A. Toxicity, Analysis of Potential Modes of Action ; APVMA, 2010; p 49. 480 prevents the closure of Na+ channel from the nerve, maintaining the signal / inhibits GABAergic Cl-channel into the nerve / inhibits Ca-ATPase or Ca-Mg-ATPase, disturbing Ca2+ regulation Coats, J R. 1990. 'Mechanisms of Toxic Action and Structure-Activity Relationships for Organochlorine and Synthetic Pyrethroid Insecticides, Environmental Health Perspectives, vol.87, pp.255-62

T. Ache-inhibitor-fukuto, Mechanism of action of organophosphorus and carbamate insecticides, Environmental Health Perspectives, vol.87, pp.245-254, 1990.
DOI : 10.1289/ehp.9087245

, Plants: hydrolysed. Then, beta-oxidation to obtain the phenoxyacetic acid which is an antagonist of phytohormone auxin, overstimulating plant growth, more than it can afford (because too slowly metabolised then) M: after hydrolysis

R. N. Arteca, Chapter 13 Weed Control In Plant Growth Substances: Principles and Applications 483 prevents the closure of Na+ channel from the nerve, maintaining the signal / inhibits GABAergic Cl-channel into the nerve / inhibits Ca-ATPase or Ca-Mg-ATPase, disturbing Ca2+ regulation Coats, J R. 1990. 'Mechanisms of Toxic Action and Structure-Activity Relationships for Organochlorine and Synthetic Pyrethroid Insecticides, Science & Business Media Environmental Health Perspectives, vol.282, issue.87, pp.255-62, 1996.

, 484 inhibit acetolactate synthase, an enzyme involved in the biosynthesis of valine, leucine and isoleucine in plants

M. Tu, C. Hurd, J. M. Randall, and . Imazapyr, In Weed Control Methods Handbook: tools & techniques for use in natural areas ; The Nature Conservancy, 2001. 485 selective estrogen receptor modulator, Agonist in bone and in lipi metabolism, antagonist in uterine endometrium and breast

L. Shi, W. Tong, H. Fang, Q. Xie, H. Hong et al., An integrated "4-phase" approach for setting endocrine disruption screening priorities--phase I and II predictions of estrogen receptor binding affinity, SAR and QSAR in Environmental Research, vol.2, issue.1, pp.69-88, 1016.
DOI : 10.1210/en.138.9.4022

T. R. Ache-inhibitor-fukuto, Mechanism of action of organophosphorus and carbamate insecticides, 492 fish: polar narcosis toxicity (KREATiS) KREATiS internal experimental database and QSARs. 493 fish: polar narcosis toxicity (KREATiS) KREATiS internal experimental database and QSARs, pp.245-254, 1990.
DOI : 10.1289/ehp.9087245