]. M. Derde, V. Lechevalier, C. Guerin?dubiard, M. F. Cochet, S. Jan et al., The microbiology of eggs Egg science and technologyStudies of the antimicrobial activity of ovotransferrinAntibacterial activity of matrix?bound ovotransferrinDamage of the outer membrane of enteric gram? negative bacteria by lactoferrin and transferrinTransferrins selectively cause ion efflux through bacterial and artificial membranesDry?heating of lysozyme increases its activity against Escherichia coli membranesNative lysozyme and dry?heated lysozyme interactions with membrane lipid monolayers: lateral reorganization of LPS monolayer, model of the Escherichia coli outer membrane, 97? 105Native and dry? heated lysozyme interactions with membrane lipid monolayers: Lipid packing modifications of a phospholipid mixture, model of the Escherichia coli cytoplasmic membrane, pp.9922-9931, 1982.

C. Gram, The differential staining of Schizomycetes in tissue sections and in dried preparations, Fortschitte der Medicin, vol.2, pp.185-189

A. C. Smith and M. A. Hussey, Gram stain protocols, American Society for Microbiology?ASM Conference for Undergraduate Educators, 2005.

J. Davies, G. Anderson, T. Beveridge, and H. Clark, Chemical mechanism of the Gram stain and synthesis of a new electron?opaque marker for electron microscopy which replaces the iodine mordant of the stain, Journal of bacteriology, vol.156, pp.837-845, 1983.

T. Beveridge and J. Davies, Cellular responses of Bacillus subtilis and Escherichia coli to the Gram stain, Journal of bacteriology, vol.156, pp.846-858, 1983.

M. Salton, The Relationship Between the Nature of the Cell Wall and the Gram Stain, Journal of General Microbiology, vol.30, issue.2, pp.223-235, 1963.
DOI : 10.1099/00221287-30-2-223

G. Seltmann and O. Holst, The bacterial cell wall, 2013.
DOI : 10.1007/978-3-662-04878-8

T. J. Silhavy, D. Kahne, and S. Walker, The Bacterial Cell Envelope, Cold Spring Harbor Perspectives in Biology, vol.2, issue.5, p.414, 2010.
DOI : 10.1101/cshperspect.a000414

V. Braun, Covalent lipoprotein from the outer membrane of escherichia coli, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.415, issue.3, pp.335-377, 1975.
DOI : 10.1016/0304-4157(75)90013-1

M. Salton, Studies of the bacterial cell wall, Biochimica et Biophysica Acta, vol.10, pp.512-523, 1953.
DOI : 10.1016/0006-3002(53)90296-0

T. J. Beveridge and L. L. Graham, Surface layers of bacteria, Microbiological reviews, pp.684-705, 1991.

F. C. Neuhaus and J. Baddiley, A Continuum of Anionic Charge: Structures and Functions of D-Alanyl-Teichoic Acids in Gram-Positive Bacteria, Microbiology and Molecular Biology Reviews, vol.67, issue.4, pp.686-723, 2003.
DOI : 10.1128/MMBR.67.4.686-723.2003

E. Lugtenberg and R. Peters, Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12, BBA)?Lipids and Lipid Metabolism, pp.38-47, 1976.
DOI : 10.1016/0005-2760(76)90279-4

L. P. Kotra, D. Golemi, N. A. Amro, G. ?. Liu, and S. Mobashery, Journal of the American Chemical Society, vol.121, issue.38, pp.8707-8711, 1999.
DOI : 10.1021/ja991374z

W. Vollmer, D. Blanot, and M. A. De-pedro, Peptidoglycan structure and architecture, FEMS Microbiology Reviews, vol.32, issue.2, pp.149-67, 2008.
DOI : 10.1128/JB.00391-06

URL : https://academic.oup.com/femsre/article-pdf/32/2/149/8431303/32-2-149.pdf

W. Vollmer and U. Bertsche, Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.9, pp.1714-1748, 2008.
DOI : 10.1016/j.bbamem.2007.06.007

D. Mengin?lecreulx and B. Lemaitre, Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system, Journal of Endotoxin Research, vol.2, issue.2, pp.105-116, 2005.
DOI : 10.1038/ni952

K. H. Schleifer and O. Kandler, Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriological reviews, vol.36, p.407, 1972.

W. Vollmer and S. J. Seligman, Architecture of peptidoglycan: more data and more models, Trends in Microbiology, vol.18, issue.2, pp.59-66, 2010.
DOI : 10.1016/j.tim.2009.12.004

P. Demchick and A. L. Koch, The permeability of the wall fabric of Escherichia coli and Bacillus subtilis., Journal of Bacteriology, vol.178, issue.3, pp.768-773, 1996.
DOI : 10.1128/jb.178.3.768-773.1996

A. M. Glauert and M. J. Thornley, The Topography of the Bacterial Cell Wall, Annual Review of Microbiology, vol.23, issue.1, pp.159-198, 1968.
DOI : 10.1146/annurev.mi.23.100169.001111

H. Nikaido, Molecular Basis of Bacterial Outer Membrane Permeability Revisited, Microbiology and Molecular Biology Reviews, vol.67, issue.4, pp.593-656, 2003.
DOI : 10.1128/MMBR.67.4.593-656.2003

URL : http://mmbr.asm.org/content/67/4/593.full.pdf

L. A. Clifton, M. W. Skoda, E. L. Daulton, A. V. Hughes, A. P. Le-brun et al., Asymmetric phospholipid: lipopolysaccharide bilayers; a Gram-negative bacterial outer membrane mimic, Journal of The Royal Society Interface, vol.287, issue.1, p.20130810, 2013.
DOI : 10.1074/jbc.M111.302901

URL : http://rsif.royalsocietypublishing.org/content/royinterface/10/89/20130810.full.pdf

M. Caroff, D. Karibian, J. ?. Cavaillon, and N. Haeffner?cavaillon, Structural and functional analyses of bacterial lipopolysaccharides, Microbes and Infection, vol.4, issue.9, pp.915-926, 2002.
DOI : 10.1016/S1286-4579(02)01612-X

M. Caroff and D. Karibian, Structure of bacterial lipopolysaccharides, Carbohydrate Research, vol.338, issue.23, pp.2431-2447, 2003.
DOI : 10.1016/j.carres.2003.07.010

D. E. Heinrichs, J. A. Yethon, and C. Whitfield, Molecular Microbiology, vol.6, issue.2, pp.221-232, 1998.
DOI : 10.1074/jbc.273.41.26310

C. Erridge, E. Bennett?guerrero, and I. R. Poxton, Structure and function of lipopolysaccharides, Microbes and Infection, vol.4, issue.8, pp.837-851, 2002.
DOI : 10.1016/S1286-4579(02)01604-0

E. T. Rietschel, T. Kirikae, F. U. Schade, A. J. Ulmer, O. Holst et al., The chemical structure of bacterial endotoxin in relation to bioactivity, Immunobiology, vol.187, issue.3-5, pp.169-190, 1993.
DOI : 10.1016/S0171-2985(11)80338-4

P. E. Jansson, B. Lindberg, A. A. Lindberg, and R. Wollin, Structural Studies on the Hexose Region of the Core in Lipopolysaccharides from Enterobacteriaceae, European Journal of Biochemistry, vol.81, issue.3, pp.571-577, 1981.
DOI : 10.1111/j.1432-1033.1981.tb06241.x

A. Kilar, V. Farkas, K. Kovacs, B. Kocsis, and F. Kilar, Novel quantitative electrophoretic analysis of endotoxins on microchips, ELECTROPHORESIS, vol.28, issue.8, pp.1713-1735, 2008.
DOI : 10.1016/0304-4165(72)90340-6

A. Kilar, A. Dornyei, and B. Kocsis, Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques, Mass Spectrometry Reviews, vol.274, issue.250, pp.90-117, 2013.
DOI : 10.1074/jbc.274.26.18503

Y. Ohkouchi, S. Tajima, M. Nomura, and S. Itoh, Inflammatory responses and potencies of various lipopolysaccharides from bacteria and cyanobacteria in aquatic environments and water supply systems, Toxicon, vol.97, pp.23-31, 2015.
DOI : 10.1016/j.toxicon.2015.02.003

A. Aljada, Lipopolysaccharides-Induced Inflammatory Response in White Blood Cells Is Associated with Alterations in Senescence Mediators: Modulation by Metformin, Metabolic Syndrome and Related Disorders, vol.13, issue.6, pp.278-85, 2015.
DOI : 10.1089/met.2014.0168

C. R. Raetz and C. Whitfield, Lipopolysaccharide Endotoxins, Annual Review of Biochemistry, vol.71, issue.1, p.635, 2002.
DOI : 10.1146/annurev.biochem.71.110601.135414

A. P. Le-brun, L. A. Clifton, C. E. Halbert, B. Lin, M. Meron et al., Biomacromolecules, vol.14, issue.6, pp.2014-2022, 2013.
DOI : 10.1021/bm400356m

U. Seydel, H. Labischinski, M. Kastowsky, and K. Brandenburg, Phase behavior, supramolecular structure, and molecular conformation of lipopolysaccharide, Immunobiology, vol.187, issue.3-5, pp.191-211, 1993.
DOI : 10.1016/S0171-2985(11)80339-6

N. Kato, Crystallization and electron microscopy of bacterial lipopolysaccharide (LPS), Micron, vol.24, issue.1, pp.91-114, 1993.
DOI : 10.1016/0968-4328(93)90017-U

H. Labischinski, G. Barnickel, H. Bradaczek, D. Naumann, E. T. Rietschel et al., High state of order of isolated bacterial lipopolysaccharide and its possible contribution to the permeation barrier property of the outer membrane, Journal of bacteriology, vol.162, pp.9-20, 1985.

E. L. Wu, P. J. Fleming, M. S. Yeom, G. Widmalm, J. B. Klauda et al., E.??coli Outer Membrane and Interactions with OmpLA, Biophysical Journal, vol.106, issue.11, pp.2493-502, 2014.
DOI : 10.1016/j.bpj.2014.04.024

URL : https://hal.archives-ouvertes.fr/in2p3-00113789

S. Roes, U. Seydel, and T. Gutsmann, Probing the Properties of Lipopolysaccharide Monolayers and Their Interaction with the Antimicrobial Peptide Polymyxin B by Atomic Force Microscopy, Langmuir, vol.21, issue.15, pp.6970-6978, 2005.
DOI : 10.1021/la048218c

P. G. Adams, L. Lamoureux, K. L. Swingle, H. Mukundan, and G. A. Montano, Lipopolysaccharide-Induced Dynamic Lipid Membrane Reorganization: Tubules, Perforations, and Stacks, Biophysical Journal, vol.106, issue.11, pp.2395-407, 2014.
DOI : 10.1016/j.bpj.2014.04.016

URL : https://doi.org/10.1016/j.bpj.2014.04.016

R. T. Coughlin, S. Tonsager, and E. J. Mcgroarty, Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli, Biochemistry, vol.22, issue.8, 1983.
DOI : 10.1021/bi00277a041

G. Bello, J. Eriksson, A. Terry, K. Edwards, M. J. Lawrence et al., Characterization of the Aggregates Formed by Various Bacterial Lipopolysaccharides in Solution and upon Interaction with Antimicrobial Peptides, Langmuir, vol.31, issue.2, pp.741-51, 2015.
DOI : 10.1021/la503267k

G. Bello, A. Bodin, M. J. Lawrence, D. Barlow, A. J. Mason et al., The influence of rough lipopolysaccharide structure on molecular interactions with mammalian antimicrobial peptides, BBA)?Biomembranes, pp.197-209, 2016.
DOI : 10.1016/j.bbamem.2015.11.007

E. L. Wu, O. Engstrom, S. Jo, D. Stuhlsatz, M. S. Yeom et al., Molecular Dynamics and NMR Spectroscopy Studies of E.??coli Lipopolysaccharide Structure and Dynamics, Biophysical Journal, vol.105, issue.6, pp.1444-55, 2013.
DOI : 10.1016/j.bpj.2013.08.002

R. Maget?dana, The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes, BBA)?Biomembranes, pp.109-140, 1999.
DOI : 10.1016/S0005-2736(99)00203-5

P. L. Yeagle, The membranes of cells, 2016.

M. Eeman and M. Deleu, From biological membranes to biomimetic model membranes, Biotechnologie, Agronomie, Société et Environnement, vol.14, p.719, 2010.

T. Shimanouchi, H. Ishii, N. Yoshimoto, H. Umakoshi, and R. Kuboi, Calcein permeation across phosphatidylcholine bilayer membrane: Effects of membrane fluidity, liposome size, and immobilization, Colloids and Surfaces B: Biointerfaces, vol.73, issue.1, pp.156-60, 2009.
DOI : 10.1016/j.colsurfb.2009.05.014

C. Peetla, A. Stine, and V. Labhasetwar, Biophysical Interactions with Model Lipid Membranes: Applications in Drug Discovery and Drug Delivery, Molecular Pharmaceutics, vol.6, issue.5, pp.1264-1276, 2009.
DOI : 10.1021/mp9000662

URL : http://europepmc.org/articles/pmc2757518?pdf=render

G. M. Maghraby, B. W. Barry, and A. C. Williams, Liposomes and skin: From drug delivery to model membranes, European Journal of Pharmaceutical Sciences, vol.34, issue.4-5, pp.203-225, 2008.
DOI : 10.1016/j.ejps.2008.05.002

F. M. Goni, A. Alonso, L. A. Bagatolli, R. E. Brown, D. Marsh et al., Phase diagrams of lipid mixtures relevant to the study of membrane rafts, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1781, issue.11-12, pp.665-84, 2008.
DOI : 10.1016/j.bbalip.2008.09.002

E. F. Marques, Size and Stability of Catanionic Vesicles:?? Effects of Formation Path, Sonication, and Aging, Langmuir, vol.16, issue.11, pp.4798-4807, 2000.
DOI : 10.1021/la9908135

M. P. Mingeot?leclercq, M. Deleu, R. Brasseur, and Y. F. Dufrene, Atomic force microscopy of supported lipid bilayers, Nature Protocols, vol.3, issue.10, pp.1654-1663, 2008.
DOI : 10.1038/nprot.2008.149

Y. H. Chan and S. G. Boxer, Model membrane systems and their applications, Current Opinion in Chemical Biology, vol.11, issue.6, pp.581-588, 2007.
DOI : 10.1016/j.cbpa.2007.09.020

URL : http://europepmc.org/articles/pmc2196400?pdf=render

J. M. Crane and L. K. Tamm, Fluorescence microscopy to study domains in supported lipid bilayers, Methods in Membrane Lipids, pp.481-488, 2007.
DOI : 10.1385/1-59745-519-9:481

G. Puu and I. Gustafson, Planar lipid bilayers on solid supports from liposomes ??? factors of importance for kinetics and stability, BBA)?Biomembranes, pp.149-161, 1997.
DOI : 10.1016/S0005-2736(97)00052-7

URL : https://doi.org/10.1016/s0005-2736(97)00052-7

C. Keller and B. Kasemo, Surface Specific Kinetics of Lipid Vesicle Adsorption Measured with a Quartz Crystal Microbalance, Biophysical Journal, vol.75, issue.3, pp.1397-1402, 1998.
DOI : 10.1016/S0006-3495(98)74057-3

URL : https://doi.org/10.1016/s0006-3495(98)74057-3

C. Miller, J. Majewski, and T. Kuhl, Characterization of single biological membranes at the solid???liquid interface by X-ray reflectivity, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.284, issue.285, pp.434-439, 2006.
DOI : 10.1016/j.colsurfa.2005.11.059

H. P. Wacklin and R. K. Thomas, Spontaneous Formation of Asymmetric Lipid Bilayers by Adsorption of Vesicles, Langmuir, vol.23, issue.14, pp.7644-7651, 2007.
DOI : 10.1021/la063476q

X. Chen and Z. Chen, SFG studies on interactions between antimicrobial peptides and supported lipid bilayers, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.9, pp.1257-73, 2006.
DOI : 10.1016/j.bbamem.2006.01.017

URL : https://doi.org/10.1016/j.bbamem.2006.01.017

H. Brockman, Lipid monolayers: why use half a membrane to characterize protein-membrane interactions?, Current Opinion in Structural Biology, vol.9, issue.4, pp.438-443, 1999.
DOI : 10.1016/S0959-440X(99)80061-X

J. J. Giner?casares, G. Brezesinski, and H. Möhwald, Langmuir monolayers as unique physical models, Current Opinion in Colloid & Interface Science, vol.19, issue.3, pp.176-182, 2014.
DOI : 10.1016/j.cocis.2013.07.006

R. Verger and F. Pattus, Lipid-protein interactions in monolayers, Chemistry and Physics of Lipids, vol.30, issue.2-3, pp.189-227, 1982.
DOI : 10.1016/0009-3084(82)90052-4

P. Calvez, S. Bussieres, D. Eric, and C. Salesse, Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers, Biochimie, vol.91, issue.6, pp.718-751, 2009.
DOI : 10.1016/j.biochi.2009.03.018

E. Boisselier, P. Calvez, E. R. Demers, L. Cantin, and C. Salesse, Influence of the Physical State of Phospholipid Monolayers on Protein Binding, Langmuir, vol.28, issue.25, pp.9680-9688, 2012.
DOI : 10.1021/la301135z

É. Boisselier, P. Calvez, E. Demers, L. Cantin, and C. Salesse, Effect of oxidation of polyunsaturated phospholipids on the binding of proteins in monolayers, Colloids and Surfaces B: Biointerfaces, vol.109, pp.109-123, 2013.
DOI : 10.1016/j.colsurfb.2013.03.021

P. Calvez, E. Demers, E. Boisselier, and C. Salesse, Langmuir, vol.27, issue.4, pp.1373-1382, 2011.
DOI : 10.1021/la104097n

O. Bouffioux, A. Berquand, M. Eeman, M. Paquot, Y. F. Dufrene et al., Molecular organization of surfactin???phospholipid monolayers: Effect of phospholipid chain length and polar head, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.7, pp.1758-68, 2007.
DOI : 10.1016/j.bbamem.2007.04.015

V. Vié, N. Van-mau, L. Chaloin, E. Lesniewska, C. L. Grimellec et al., Detection of Peptide-Lipid Interactions in Mixed Monolayers, Using Isotherms, Atomic Force Microscopy, and Fourier Transform Infrared Analyses, Biophysical Journal, vol.78, issue.2, pp.846-856, 2000.
DOI : 10.1016/S0006-3495(00)76642-2

C. W. Mcconlogue and T. K. Vanderlick, A Close Look at Domain Formation in DPPC Monolayers, Langmuir, vol.13, issue.26, pp.7158-7164, 1997.
DOI : 10.1021/la970898e

T. Zhang, Studies of DPPA & LPS Monolayers on Aqueous Solutions by Surface Tensiometry and Brewster Angle Microscopy, 2014.

D. Vollhardt, Brewster angle microscopy: A preferential method for mesoscopic characterization of monolayers at the air/water interface, Current Opinion in Colloid & Interface Science, vol.19, issue.3, pp.183-197, 2014.
DOI : 10.1016/j.cocis.2014.02.001

A. Clausell, M. A. Busquets, M. Pujol, A. Alsina, and Y. Cajal, Polymyxin B-lipid interactions in Langmuir-Blodgett monolayers ofEscherichia coli lipids: A thermodynamic and atomic force microscopy study, Biopolymers, vol.42, issue.6, pp.480-90, 2004.
DOI : 10.1007/978-1-4899-2525-1_4

J. Glenska?olender, S. Sek, K. Dworecki, and W. Kaca, A total internal reflection ellipsometry and atomic force microscopy study of interactions between Proteus mirabilis lipopolysaccharides and antibodies, European Biophysics Journal, vol.74, issue.5, pp.301-308, 2015.
DOI : 10.1016/S0079-6107(00)00014-6

T. Furuno, Atomic force microscopy study on the unfolding of globular proteins in the Langmuir films, Thin Solid Films, vol.552, pp.170-179, 2014.
DOI : 10.1016/j.tsf.2013.12.052

L. Silvestro and P. H. Axelsen, Infrared spectroscopy of supported lipid monolayer, bilayer, and multibilayer membranes, Chemistry and Physics of Lipids, vol.96, issue.1-2, pp.69-80, 1998.
DOI : 10.1016/S0009-3084(98)00081-4

C. Stefaniu, G. Brezesinski, and H. Mohwald, Langmuir monolayers as models to study processes at membrane surfaces, Advances in Colloid and Interface Science, vol.208, pp.197-213, 2014.
DOI : 10.1016/j.cis.2014.02.013

K. Lohner, New strategies for novel antibiotics: peptides targeting bacterial cell membranes, General Physiology and Biophysics, vol.28, issue.2, pp.105-116, 2009.
DOI : 10.4149/gpb_2009_02_105

K. V. Reddy, R. D. Yedery, and C. Aranha, Antimicrobial peptides: premises and promises, International Journal of Antimicrobial Agents, vol.24, issue.6, pp.536-583, 2004.
DOI : 10.1016/j.ijantimicag.2004.09.005

Y. Li, Q. Xiang, Q. Zhang, Y. Huang, and Z. Su, Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application, Peptides, vol.37, issue.2, pp.207-222, 2012.
DOI : 10.1016/j.peptides.2012.07.001

J. P. Da-costa, M. Cova, R. Ferreira, and R. Vitorino, Antimicrobial peptides: an alternative for innovative medicines?, Applied Microbiology and Biotechnology, vol.133, issue.8, pp.2023-2063, 2015.
DOI : 10.1021/ja107069f

O. N. Silva, K. C. Mulder, A. E. Barbosa, A. J. Otero?gonzalez, C. Lopez?abarrategui et al., Exploring the pharmacological potential of promiscuous host?defense peptides: from natural screenings to biotechnological applications, Front Microbiol, vol.2, p.232, 2011.

D. Goodwin, P. Simerska, and I. Toth, Peptides As Therapeutics with Enhanced Bioactivity, Current Medicinal Chemistry, vol.19, issue.26, pp.4451-4461, 2012.
DOI : 10.2174/092986712803251548

A. L. Russell, A. M. Kennedy, A. M. Spuches, W. S. Gibson, D. Venugopal et al., Determining the effect of the incorporation of unnatural amino acids into antimicrobial peptides on the interactions with zwitterionic and anionic membrane model systems, Chemistry and Physics of Lipids, vol.164, issue.8, pp.740-58, 2011.
DOI : 10.1016/j.chemphyslip.2011.09.003

J. P. Powers and R. E. Hancock, The relationship between peptide structure and antibacterial activity, Peptides, vol.24, issue.11, pp.1681-91, 2003.
DOI : 10.1016/j.peptides.2003.08.023

L. T. Nguyen, E. F. Haney, and H. J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action, Trends in Biotechnology, vol.29, issue.9, pp.464-72, 2011.
DOI : 10.1016/j.tibtech.2011.05.001

V. Teixeira, M. J. Feio, and M. Bastos, Role of lipids in the interaction of antimicrobial peptides with membranes, Progress in Lipid Research, vol.51, issue.2, pp.149-77, 2012.
DOI : 10.1016/j.plipres.2011.12.005

M. D. Seo, H. S. Won, J. H. Kim, T. Mishig?ochir, and B. J. Lee, Antimicrobial Peptides for Therapeutic Applications: A Review, Molecules, vol.38, issue.10, pp.12276-86, 2012.
DOI : 10.1021/ic902547t

URL : http://www.mdpi.com/1420-3049/17/10/12276/pdf

A. Ahmad, E. Ahmad, G. Rabbani, S. Haque, M. Arshad et al., Identification and Design of Antimicrobial Peptides for Therapeutic Applications, Current Protein & Peptide Science, vol.13, issue.3, pp.211-223, 2012.
DOI : 10.2174/138920312800785076

J. B. Mcphee and R. E. Hancock, Function and therapeutic potential of host defence peptides, Journal of Peptide Science, vol.29, issue.11, pp.677-87, 2005.
DOI : 10.4049/jimmunol.172.6.3758

A. A. Bahar and D. Ren, Antimicrobial Peptides, Pharmaceuticals, vol.6, issue.12, pp.1543-75, 2013.
DOI : 10.1073/pnas.86.13.5054

C. Subbalakshmi, R. Nagaraj, and N. Sitaram, Biological activities of C-terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity, FEBS Letters, vol.37, issue.1, pp.62-66, 1999.
DOI : 10.1002/bip.360370206

M. N. Melo, R. Ferre, and M. A. Castanho, Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations, Nature Reviews Microbiology, vol.269, issue.3, pp.245-250, 2009.
DOI : 10.1128/AAC.39.2.301

M. L. Juba, D. K. Porter, E. H. Williams, C. A. Rodriguez, S. M. Barksdale et al., Helical cationic antimicrobial peptide length and its impact on membrane disruption, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1848, issue.5, pp.1081-91, 2015.
DOI : 10.1016/j.bbamem.2015.01.007

URL : https://doi.org/10.1016/j.bbamem.2015.01.007

Y. Chen, M. T. Guarnieri, A. I. Vasil, M. L. Vasil, C. T. Mant et al., Role of Peptide Hydrophobicity in the Mechanism of Action of ??-Helical Antimicrobial Peptides, Antimicrobial Agents and Chemotherapy, vol.51, issue.4, pp.1398-406, 2007.
DOI : 10.1128/AAC.00925-06

M. Fernandez?vidal, S. Jayasinghe, A. S. Ladokhin, and S. H. White, Folding Amphipathic Helices Into Membranes: Amphiphilicity Trumps Hydrophobicity, Journal of Molecular Biology, vol.370, issue.3, pp.459-70, 2007.
DOI : 10.1016/j.jmb.2007.05.016

G. Drin and B. Antonny, Amphipathic helices and membrane curvature, FEBS Letters, vol.8, issue.9, pp.1840-1847, 2010.
DOI : 10.1023/A:1018698002314

URL : https://hal.archives-ouvertes.fr/hal-00497640

X. Zhu, N. Dong, Z. Wang, Z. Ma, L. Zhang et al., Design of imperfectly amphipathic ??-helical antimicrobial peptides with enhanced cell selectivity, Acta Biomaterialia, vol.10, issue.1, pp.244-57, 2014.
DOI : 10.1016/j.actbio.2013.08.043

X. Zhu, L. Zhang, J. Wang, Z. Ma, W. Xu et al., Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different ??-helical propensity, Acta Biomaterialia, vol.18, pp.155-67, 2015.
DOI : 10.1016/j.actbio.2015.02.023

M. Zaiou, Multifunctional antimicrobial peptides: therapeutic targets in several human diseases, Journal of Molecular Medicine, vol.32, issue.4, pp.317-329, 2007.
DOI : 10.4049/jimmunol.170.11.5583

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, issue.6870, pp.389-395, 2002.
DOI : 10.1038/415389a

T. Ganz, Defensins: antimicrobial peptides of innate immunity, Nature Reviews Immunology, vol.93, issue.9, p.710, 2003.
DOI : 10.1073/pnas.93.10.5156

K. A. Brogden, M. Ackermann, P. B. Mccray, and B. F. Tack, Antimicrobial peptides in animals and their role in host defences, International Journal of Antimicrobial Agents, vol.22, issue.5, pp.465-478, 2003.
DOI : 10.1016/S0924-8579(03)00180-8

URL : http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1036&context=vpath_pubs

L. Otvos, Antibacterial peptides and proteins with multiple cellular targets, Journal of Peptide Science, vol.48, issue.11, pp.697-706, 2005.
DOI : 10.4049/jimmunol.173.4.2652

M. Cudic and L. O. Jr, Intracellular Targets of Antibacterial Peptides, Current Drug Targets, vol.3, issue.2, pp.101-106, 2002.
DOI : 10.2174/1389450024605445

M. A. Kohanski, D. J. Dwyer, and J. J. Collins, How antibiotics kill bacteria: from targets to networks, Nature Reviews Microbiology, vol.106, issue.6, p.423, 2010.
DOI : 10.1038/nrmicro1949

URL : http://europepmc.org/articles/pmc2896384?pdf=render

K. A. Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nature Reviews Microbiology, vol.92, issue.3, pp.238-50, 2005.
DOI : 10.1016/S0076-6879(97)77028-9

W. F. Bennett, C. K. Hong, Y. Wang, and D. P. Tieleman, Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers, Journal of Chemical Theory and Computation, vol.12, issue.9, pp.4524-4557, 2016.
DOI : 10.1021/acs.jctc.6b00265

J. P. Mattila, K. Sabatini, and P. K. Kinnunen, Oxidized phospholipids as potential molecular targets for antimicrobial peptides, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.10, pp.2041-50, 2008.
DOI : 10.1016/j.bbamem.2008.03.020

URL : https://doi.org/10.1016/j.bbamem.2008.03.020

G. G. Perron, M. Zasloff, and G. Bell, Experimental evolution of resistance to an antimicrobial peptide, Proceedings of the Royal Society B: Biological Sciences, vol.415, issue.6870, pp.251-256, 2006.
DOI : 10.1038/415389a

URL : http://europepmc.org/articles/pmc1560030?pdf=render

S. Gruenheid and H. L. Moual, Resistance to antimicrobial peptides in Gram-negative bacteria, FEMS Microbiology Letters, vol.68, issue.2, pp.81-90, 2012.
DOI : 10.1007/s00018-011-0710-x

URL : https://academic.oup.com/femsle/article-pdf/330/2/81/19118517/330-2-81.pdf

S. Stumpe, R. Schmid, D. L. Stephens, G. Georgiou, and E. P. Bakker, Identification of OmpT as the Protease That Hydrolyzes the Antimicrobial Peptide Protamine before It Enters Growing Cells ofEscherichia coli, Journal of bacteriology, vol.180, pp.4002-4006, 1998.

M. Sieprawska?lupa, P. Mydel, K. Krawczyk, K. Wójcik, M. Puklo et al., Degradation of Human Antimicrobial Peptide LL-37 by Staphylococcus aureus-Derived Proteinases, Antimicrobial Agents and Chemotherapy, vol.48, issue.12, pp.4673-4679, 2004.
DOI : 10.1128/AAC.48.12.4673-4679.2004

M. A. Campos, M. A. Vargas, V. Regueiro, C. M. Llompart, S. Albertí et al., Capsule Polysaccharide Mediates Bacterial Resistance to Antimicrobial Peptides, Infection and Immunity, vol.72, issue.12, pp.7107-7114, 2004.
DOI : 10.1128/IAI.72.12.7107-7114.2004

URL : http://iai.asm.org/content/72/12/7107.full.pdf

M. Foschiatti, P. Cescutti, A. Tossi, and R. Rizzo, Inhibition of cathelicidin activity by bacterial exopolysaccharides, Molecular Microbiology, vol.46, issue.5, pp.1137-1146, 2009.
DOI : 10.1016/S0008-6215(96)90170-6

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2009.06707.x/pdf

W. Shafer, X. ?. Qu, A. Waring, and R. Lehrer, Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family, Proceedings of the National Academy of Sciences, vol.69, issue.1, pp.1829-1833, 1998.
DOI : 10.1073/pnas.92.1.195

E. A. Groisman, How bacteria resist killing by host-defense peptides, Trends in Microbiology, vol.2, issue.11, pp.444-449, 1994.
DOI : 10.1016/0966-842X(94)90802-8

L. Guo, K. B. Lim, C. M. Poduje, M. Daniel, J. S. Gunn et al., Lipid A Acylation and Bacterial Resistance against Vertebrate Antimicrobial Peptides, Cell, vol.95, issue.2, pp.189-198, 1998.
DOI : 10.1016/S0092-8674(00)81750-X

URL : https://doi.org/10.1016/s0092-8674(00)81750-x

S. A. Kristian, M. Dürr, J. A. Van-strijp, B. Neumeister, and A. Peschel, MprF-Mediated Lysinylation of Phospholipids in Staphylococcus aureus Leads to Protection against Oxygen-Independent Neutrophil Killing, Infection and Immunity, vol.71, issue.1, pp.546-549, 2003.
DOI : 10.1128/IAI.71.1.546-549.2003

URL : http://iai.asm.org/content/71/1/546.full.pdf

A. Peschel, R. W. Jack, M. Otto, L. V. Collins, P. Staubitz et al., Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine, The Journal of Experimental Medicine, vol.175, issue.9, pp.1067-1076, 2001.
DOI : 10.1128/jb.175.10.3208-3212.1993

A. Peschel, H. ?g, and . Sahl, The co-evolution of host cationic antimicrobial peptides and microbial resistance, Nature Reviews Microbiology, vol.13, issue.7, pp.529-536, 2006.
DOI : 10.1016/j.tim.2004.11.010

J. Kovacs?nolan, M. Phillips, and Y. Mine, Advances in the Value of Eggs and Egg Components for Human Health, Journal of Agricultural and Food Chemistry, vol.53, issue.22, pp.8421-8431, 2005.
DOI : 10.1021/jf050964f

J. Wu and A. Acero?lopez, Ovotransferrin: Structure, bioactivities, and preparation, Food Research International, vol.46, issue.2, pp.480-487, 2012.
DOI : 10.1016/j.foodres.2011.07.012

J. M. Jeltsch and P. Chambon, The Complete Nucleotide Sequence of the Chicken Ovotransferrin mRNA, European Journal of Biochemistry, vol.122, issue.2, pp.291-295, 1982.
DOI : 10.1146/annurev.bi.46.070177.003041

J. Williams, T. C. Elleman, I. B. Kingston, A. G. Wilkins, and K. A. Kuhn, The Primary Structure of Hen Ovotransferrin, European Journal of Biochemistry, vol.496, issue.2, pp.297-303, 1982.
DOI : 10.1016/0304-4165(77)90338-5

F. Bou-abdallah and J. M. Hage-chahine, Transferrins. Hen ovo-transferrin, interaction with bicarbonate and iron uptake, European Journal of Biochemistry, vol.258, issue.3, pp.1022-1031, 1998.
DOI : 10.1046/j.1432-1327.1998.2581022.x

F. B. Abdallah and J. M. Chahine, Transferrins, the mechanism of iron release by ovotransferrin, European Journal of Biochemistry, vol.32, issue.3, pp.912-920, 1999.
DOI : 10.1021/bi00096a004

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1432-1327.1999.00596.x/pdf

L. N. Lin, A. B. Mason, R. C. Woodworth, and J. F. Brandts, Calorimetric studies of the binding of ferric ions to ovotransferrin and interactions between binding sites, Biochemistry, vol.30, issue.50, pp.11660-11669, 1991.
DOI : 10.1021/bi00114a008

L. N. Lin, A. B. Mason, R. C. Woodworth, and J. F. Brandts, Calorimetric Studies of Serum Transferrin and Ovotransferrin. Estimates of Domain Interactions, and Study of the Kinetic Complexities of Ferric Ion Binding, Biochemistry, vol.33, issue.7, pp.1881-1888, 1994.
DOI : 10.1021/bi00173a035

K. Y. Ko, A. F. Mendonca, and D. U. Ahn, Influence of Zinc, Sodium Bicarbonate, and Citric Acid on the Antibacterial Activity of Ovotransferrin Against Escherichia coli O157:H7 and Listeria monocytogenes in Model Systems and Ham, Poultry Science, vol.87, issue.12, pp.2660-70, 2008.
DOI : 10.3382/ps.2007-00503

P. Valenti, P. Visca, G. Antonini, N. Orsi, and E. Antonini, The effect of saturation with Zn 2+ and other metal ions on the antibacterial activity of ovotransferrin, Medical microbiology and immunology, vol.176, pp.123-130, 1987.

K. Y. Ko, A. F. Mendonca, and D. U. Ahn, EDTA and Lysozyme Improves Antimicrobial Activities of Ovotransferrin against Escherichia coli O157: H7, Animal Industry Report, vol.656, p.19, 2010.
DOI : 10.3382/ps.2008-00218

URL : https://academic.oup.com/ps/article-pdf/88/2/406/4453627/poultrysci88-0406.pdf

K. Y. Ko, A. F. Mendonca, and D. U. Ahn, Effect of Ethylenediaminetetraacetate and Lysozyme on the Antimicrobial Activity of Ovotransferrin Against Listeria monocytogenes, Poultry Science, vol.87, issue.8, pp.1649-58, 2008.
DOI : 10.3382/ps.2007-00521

P. Valenti, A. De-stasio, P. Mastromerino, L. Seganti, L. Sinibaldi et al., Influence of bicarbonate and citrate on the bacteriostatic action of ovotransferrin towards staphylococci, FEMS Microbiology Letters, vol.127, issue.1, pp.77-79, 1981.
DOI : 10.1042/bj1470385a

H. R. Ibrahim, E. Iwamori, Y. Sugimoto, and T. Aoki, Identification of a distinct antibacterial domain within the N-lobe of ovotransferrin, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1401, issue.3, pp.289-303, 1998.
DOI : 10.1016/S0167-4889(97)00132-8

H. R. Ibrahim, Y. Sugimoto, and T. Aoki, Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism, BBA)?General Subjects, pp.196-205, 2000.
DOI : 10.1016/S0304-4165(00)00122-7

P. Valenti, P. Visca, G. Antonini, and N. Orsi, Antifungal activity of ovotransferrin towards genus Candida, Mycopathologia, vol.441, issue.3, pp.169-175, 1985.
DOI : 10.1093/infdis/124.4.401

P. Valenti, P. Visca, G. Antonini, and N. Orsi, cells, FEMS Microbiology Letters, vol.28, issue.2-3, pp.271-275, 1986.
DOI : 10.1042/bj0590599

URL : https://hal.archives-ouvertes.fr/hal-01465877

F. Giansanti, P. Rossi, M. T. Massucci, D. Botti, G. Antonini et al., Antiviral activity of ovotransferrin discloses an evolutionary strategy for the defensive activities of lactoferrin, Biochemistry and Cell Biology, vol.69, issue.1, pp.125-130, 2002.
DOI : 10.1006/abbi.1995.1139

F. Giansanti, M. T. Massucci, M. F. Giardi, F. Nozza, E. Pulsinelli et al., Antiviral activity of ovotransferrin derived peptides, Biochemical and Biophysical Research Communications, vol.331, issue.1, pp.69-73, 2005.
DOI : 10.1016/j.bbrc.2005.03.125

F. Giansanti, M. F. Giardi, M. T. Massucci, D. Botti, and G. Antonini, Ovotransferrin expression and release by chicken cell lines infected with Marek???s disease virus, Biochemistry and Cell Biology, vol.5, issue.1, pp.150-155, 2007.
DOI : 10.1111/j.1432-1033.1982.tb05880.x

H. R. Ibrahim and T. Kiyono, Novel Anticancer Activity of the Autocleaved Ovotransferrin against Human Colon and Breast Cancer Cells, Journal of Agricultural and Food Chemistry, vol.57, issue.23, pp.11383-90, 2009.
DOI : 10.1021/jf902638e

H. R. Ibrahim, M. I. Hoq, and T. Aoki, Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding, International Journal of Biological Macromolecules, vol.41, issue.5, pp.631-671, 2007.
DOI : 10.1016/j.ijbiomac.2007.08.005

S. H. Moon, J. H. Lee, D. U. Ahn, and H. D. Paik, antioxidant and mineral-chelating properties of natural and autocleaved ovotransferrin, Journal of the Science of Food and Agriculture, vol.93, issue.10, pp.2065-70, 2015.
DOI : 10.1016/j.foodchem.2004.10.028

W. ?. Huang, K. Majumder, and J. Wu, Oxygen radical absorbance capacity of peptides from egg white protein ovotransferrin and their interaction with phytochemicals, Food Chemistry, vol.123, issue.3, pp.635-641, 2010.
DOI : 10.1016/j.foodchem.2010.04.083

W. Huang, S. Shen, C. Nimalaratne, S. Li, K. Majumder et al., Effects of addition of egg ovotransferrin-derived peptides on the oxygen radical absorbance capacity of different teas, Food Chemistry, vol.135, issue.3, pp.1600-1607, 2012.
DOI : 10.1016/j.foodchem.2012.05.093

H. R. Ibrahim, S. Tatsumoto, H. Ono, F. Van-immerseel, R. Raspoet et al., A novel antibiotic-delivery system by using ovotransferrin as targeting molecule, European Journal of Pharmaceutical Sciences, vol.66, pp.59-69, 2015.
DOI : 10.1016/j.ejps.2014.10.005

A. Acero?lopez, A. Ullah, M. Offengenden, S. Jung, and J. Wu, Effect of high pressure treatment on ovotransferrin, Food Chemistry, vol.135, issue.4, pp.2245-52, 2012.
DOI : 10.1016/j.foodchem.2012.07.071

B. Lei, K. Majumder, S. Shen, and J. Wu, Effect of sonication on thermolysin hydrolysis of ovotransferrin, Food Chemistry, vol.124, issue.3, pp.808-815, 2011.
DOI : 10.1016/j.foodchem.2010.06.100

T. Croguennec, F. Nau, S. Pezennec, M. Piot, and G. Brulé, Two-step chromatographic procedure for the preparation of hen egg white ovotransferrin, European Food Research and Technology, vol.212, issue.3, pp.296-301, 2001.
DOI : 10.1007/s002170000242

H. Fujiwara, Spectroscopic ellipsometry: principles and applications, 2007.
DOI : 10.1002/9780470060193

Y. Desfougères, V. R. Lechevalier, S. P. Pezennec, F. Artzner, and F. Nau, Dry-Heating Makes Hen Egg White Lysozyme an Efficient Foaming Agent and Enables Its Bulk Aggregation, Journal of Agricultural and Food Chemistry, vol.56, issue.13, pp.5120-5128, 2008.
DOI : 10.1021/jf703715j

E. Talansier, C. Loisel, D. Dellavalle, A. Desrumaux, V. Lechevalier et al., Optimization of dry heat treatment of egg white in relation to foam and interfacial properties, LWT - Food Science and Technology, vol.42, issue.2, pp.496-503, 2009.
DOI : 10.1016/j.lwt.2008.09.013

URL : https://hal.archives-ouvertes.fr/hal-00730035

I. S. Kim, Y. W. Choi, Y. Kang, H. M. Sung, and J. S. Shin, Dry?heat treatment process for enhancing viral safety of an antihemophilic factor VIII concentrate prepared from human plasma, J Microbiol Biotechnol, vol.18, pp.997-1003, 2008.

C. Huangfu, X. Zhao, M. Lv, J. Jia, F. Zhu et al., Inactivation of viruses during a new manufacturing process of ??2-macroglobulin from Cohn Fraction IV by dry-heat treatment, Transfusion, vol.18, issue.9, pp.2274-2277, 2016.
DOI : 10.1046/j.1423-0410.1998.7440232.x

A. Kato, H. R. Ibrahim, H. Watanabe, K. Honma, and K. Kobayashi, New approach to improve the gelling and surface functional properties of dried egg white by heating in dry state, Journal of Agricultural and Food Chemistry, vol.37, issue.2, pp.433-437, 1989.
DOI : 10.1021/jf00086a036

A. Kato, H. R. Ibrahim, H. Watanabe, K. Honma, and K. Kobayashi, Structural and gelling properties of dry-heated egg white proteins, Journal of Agricultural and Food Chemistry, vol.38, issue.1, pp.32-37, 1990.
DOI : 10.1021/jf00091a007

H. Kurokawa, J. C. Dewan, B. Mikami, J. C. Sacchettini, and M. Hirose, Crystal Structure of Hen Apo?ovotransferrin BOTH LOBES ADOPT AN OPEN CONFORMATION UPON LOSS OF IRON Journal of Biological Chemistry, vol.274, pp.28445-28452, 1999.

P. Andrews, The gel-filtration behaviour of proteins related to their molecular weights over a wide range, Biochemical Journal, vol.96, issue.3, p.595, 1965.
DOI : 10.1042/bj0960595

J. Porath, Gel filtration of proteins, peptides and amino acids, Biochimica et Biophysica Acta, vol.39, issue.2, pp.193-207, 1960.
DOI : 10.1016/0006-3002(60)90153-0

T. C. Laurent and J. Killander, A theory of gel filtration and its exeperimental verification, Journal of Chromatography A, vol.14, pp.317-330, 1964.
DOI : 10.1016/S0021-9673(00)86637-6

A. Striegel, W. W. Yau, J. J. Kirkland, and D. D. Bly, Modern size?exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography, 2009.
DOI : 10.1002/9780470442876

S. ?. Chang, L. ?. Chen, and W. ?. Chen, The effects of denaturants on protein conformation and behavior at air/solution interface, Colloids and Surfaces B: Biointerfaces, vol.41, issue.1, pp.1-6, 2005.
DOI : 10.1016/j.colsurfb.2004.10.015

I. Van-der-plancken, A. Van-loey, and M. E. Hendrickx, Effect of heat-treatment on the physico-chemical properties of egg white proteins: A kinetic study, Journal of Food Engineering, vol.75, issue.3, pp.316-326, 2006.
DOI : 10.1016/j.jfoodeng.2005.04.019

W. S. Gosal and S. B. Ross?murphy, Globular protein gelation, Current Opinion in Colloid & Interface Science, vol.5, issue.3-4, pp.188-194, 2000.
DOI : 10.1016/S1359-0294(00)00057-1

T. Nicolai and D. Durand, Protein aggregation and gel formation studied with scattering methods and computer simulations, Current Opinion in Colloid & Interface Science, vol.12, issue.1, pp.23-28, 2007.
DOI : 10.1016/j.cocis.2007.03.002

D. Durand, J. C. Gimel, and T. Nicolai, Aggregation, gelation and phase separation of heat denatured globular proteins, Physica A: Statistical Mechanics and its Applications, pp.253-265, 2002.
DOI : 10.1016/S0378-4371(01)00514-3

R. Piazza, Interactions and phase transitions in protein solutions, Current Opinion in Colloid & Interface Science, vol.5, issue.1-2, pp.38-43, 2000.
DOI : 10.1016/S1359-0294(00)00034-0

Y. K. Reshetnyak, Y. Koshevnik, and E. A. Burstein, Decomposition of Protein Tryptophan Fluorescence Spectra into Log-Normal Components. III. Correlation between Fluorescence and Microenvironment Parameters of Individual Tryptophan Residues, Biophysical Journal, vol.81, issue.3, pp.1735-1758, 2001.
DOI : 10.1016/S0006-3495(01)75825-0

E. Burstein, N. Vedenkina, and M. Ivkova, FLUORESCENCE AND THE LOCATION OF TRYPTOPHAN RESIDUES IN PROTEIN MOLECULES, Photochemistry and Photobiology, vol.207, issue.4, pp.263-279, 1973.
DOI : 10.1016/S0005-2795(70)80015-0

Y. Chen and M. D. Barkley, Biochemistry, vol.37, issue.28, pp.9976-9982, 1998.
DOI : 10.1021/bi980274n

J. T. Vivian and P. R. Callis, Mechanisms of Tryptophan Fluorescence Shifts in Proteins, Biophysical Journal, vol.80, issue.5, pp.2093-2109, 2001.
DOI : 10.1016/S0006-3495(01)76183-8

P. R. Callis and B. K. Burgess, Tryptophan Fluorescence Shifts in Proteins from Hybrid Simulations:?? An Electrostatic Approach, The Journal of Physical Chemistry B, vol.101, issue.46, pp.9429-9432, 1997.
DOI : 10.1021/jp972436f

A. Hawe, M. Sutter, and W. Jiskoot, Extrinsic Fluorescent Dyes as Tools for Protein Characterization, Pharmaceutical Research, vol.21, issue.7, pp.1487-1499, 2008.
DOI : 10.1016/S0167-4838(01)00295-3

A. Kato and S. Nakai, Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins, BBA)?Protein structure, pp.13-20, 1980.
DOI : 10.1016/0005-2795(80)90220-2

C. A. Royer, Probing Protein Folding and Conformational Transitions with Fluorescence, Chemical Reviews, vol.106, issue.5, pp.1769-1784, 2006.
DOI : 10.1021/cr0404390

N. Alizadeh?pasdar and E. C. Li?chan, Comparison of Protein Surface Hydrophobicity Measured at Various pH Values Using Three Different Fluorescent Probes, Journal of Agricultural and Food Chemistry, vol.48, issue.2, pp.328-334, 2000.
DOI : 10.1021/jf990393p

M. Cardamone and N. Puri, Spectrofluorimetric assessment of the surface hydrophobicity of proteins, Biochemical Journal, vol.282, issue.2, pp.589-593, 1992.
DOI : 10.1042/bj2820589

T. Tsutsui, E. Li?chan, and S. Nakai, A Simple Fluorometric Method for Fat-Binding Capacity as an Index of Hydrophobicity of Proteins, Journal of Food Science, vol.239, issue.1415, pp.1268-1272, 1986.
DOI : 10.1111/j.1365-2621.1986.tb13102.x

D. Matulis and R. Lovrien, 1-Anilino-8-Naphthalene Sulfonate Anion-Protein Binding Depends Primarily on Ion Pair Formation, Biophysical Journal, vol.74, issue.1, pp.422-429, 1998.
DOI : 10.1016/S0006-3495(98)77799-9

URL : https://doi.org/10.1016/s0006-3495(98)77799-9

H. Lavoie, J. Gallant, M. Grandbois, D. Blaudez, B. Desbat et al., The behavior of membrane proteins in monolayers at the gas???water interface: comparison between photosystem II, rhodopsin and bacteriorhodopsin, Materials Science and Engineering: C, vol.10, issue.1-2, pp.147-154, 1999.
DOI : 10.1016/S0928-4931(99)00124-1

URL : https://hal.archives-ouvertes.fr/hal-01550376

A. H. Martin, M. A. Stuart, M. A. Bos, and T. V. Vliet, Correlation between Mechanical Behavior of Protein Films at the Air/Water Interface and Intrinsic Stability of Protein Molecules, Langmuir, vol.21, issue.9, pp.4083-4089, 2005.
DOI : 10.1021/la047417t

J. , D. Feijter, and J. Benjamins, Adsorption Kinetics of Proteins at the Air/Water interface," Food emulsions and foams, p.72, 1987.

Y. Desfougeres, A. Saint?jalmes, A. Salonen, V. Vie, S. Beaufils et al., Strong Improvement of Interfacial Properties Can Result from Slight Structural Modifications of Proteins: The Case of Native and Dry-Heated Lysozyme, Langmuir, vol.27, issue.24, pp.14947-57, 2011.
DOI : 10.1021/la203485y

URL : https://hal.archives-ouvertes.fr/hal-00685099

A. Ward and L. Tordai, Time???Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time???Effects, The Journal of Chemical Physics, vol.2, issue.7, pp.453-461, 1946.
DOI : 10.1063/1.1749243

J. De-feijter, D. J. Benjamins, and F. Veer, Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface, Biopolymers, vol.72, issue.7, pp.1759-1772, 1978.
DOI : 10.1002/polc.5070340117

S. Xu and S. Damodaran, The role of chemical potential in the adsorption of lysozyme at the air-water interface, Langmuir, vol.8, issue.8, pp.2021-2027, 1992.
DOI : 10.1021/la00044a024

L. Razumovsky and S. Damodaran, Surface Activity???Compressibility Relationship of Proteins at the Air???Water Interface, Langmuir, vol.15, issue.4, pp.1392-1399, 1999.
DOI : 10.1021/la980873v

D. Brune and S. Kim, Predicting protein diffusion coefficients., Proceedings of the National Academy of Sciences, pp.3835-3839, 1993.
DOI : 10.1073/pnas.90.9.3835

URL : http://www.pnas.org/content/90/9/3835.full.pdf

D. Graham and M. Phillips, Proteins at liquid interfaces, Journal of Colloid and Interface Science, vol.70, issue.3, pp.403-414, 1979.
DOI : 10.1016/0021-9797(79)90048-1

F. Macritchie and A. Alexander, Kinetics of adsorption of proteins at interfaces. Part I. The role of bulk diffusion in adsorption, Journal of Colloid Science, vol.18, issue.5, pp.453-457, 1963.
DOI : 10.1016/0095-8522(63)90036-9

C. Le-floch?fouere, S. Pezennec, M. Pasco, G. Paboeuf, A. Renault et al., Moderate conformational impact of citrate on ovotransferrin considerably increases its capacity to self-assemble at the interface, Journal of Colloid and Interface Science, vol.437, pp.219-245, 2015.
DOI : 10.1016/j.jcis.2014.09.035

URL : https://hal.archives-ouvertes.fr/hal-01128555

D. Graham and M. Phillips, Proteins at liquid interfaces, Journal of Colloid and Interface Science, vol.70, issue.3, pp.415-426, 1979.
DOI : 10.1016/0021-9797(79)90049-3

J. Benjamins, J. De-feijter, M. Evans, D. Graham, and M. Phillips, Dynamic and static properties of proteins adsorbed at the air/water interface, Faraday Discussions of the Chemical Society, vol.59, pp.218-229, 1975.
DOI : 10.1039/dc9755900218

P. R. Azari and R. E. Feeney, The resistances of conalbumin and its iron complex to physical and chemical treatments, Archives of Biochemistry and Biophysics, vol.92, issue.1, pp.44-52, 1961.
DOI : 10.1016/0003-9861(61)90216-8

P. R. Azari and R. E. Feeney, Resistance of metal complexes of conalbumin and transferrin to proteolysis and to thermal denaturation, Journal of Biological Chemistry, pp.293-302, 1957.

A. Wishnia and R. C. Warner, Journal of the American Chemical Society, vol.83, issue.9, pp.2065-2071, 1961.
DOI : 10.1021/ja01470a010

S. Castano, B. Desbat, M. Laguerre, and J. Dufourcq, Structure, orientation and affinity for interfaces and lipids of ideally amphipathic lytic LiKj(i=2j) peptides, BBA)?Biomembranes, pp.176-194, 1999.
DOI : 10.1016/S0005-2736(98)00220-X

G. Weidemann and D. Vollhardt, Long range tilt orientational order in phospholipid monolayers: a comparison of the order in the condensed phases of dimyristoylphosphatidylethanolamine and dipalmitoylphosphatidylcholine, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.100, pp.187-202, 1995.
DOI : 10.1016/0927-7757(95)03162-7

G. Weidemann and D. Vollhardt, Long-range tilt orientational order in phospholipid monolayers: a comparative study, Biophysical Journal, vol.70, issue.6, pp.2758-2766, 1996.
DOI : 10.1016/S0006-3495(96)79845-4

URL : https://doi.org/10.1016/s0006-3495(96)79845-4

L. Zhang, M. G. Scott, H. Yan, L. D. Mayer, and R. E. Hancock, Biochemistry, vol.39, issue.47, pp.14504-14514, 2000.
DOI : 10.1021/bi0011173

L. Zhang, P. Dhillon, H. Yan, S. Farmer, and R. E. Hancock, Interactions of Bacterial Cationic Peptide Antibiotics with Outer and Cytoplasmic Membranes of Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.44, issue.12, pp.3317-3321, 2000.
DOI : 10.1128/AAC.44.12.3317-3321.2000

A. Giacometti, O. Cirioni, R. Ghiselli, F. Mocchegiani, F. Orlando et al., Interaction of Antimicrobial Peptide Temporin L with Lipopolysaccharide In Vitro and in Experimental Rat Models of Septic Shock Caused by Gram-Negative Bacteria, Antimicrobial Agents and Chemotherapy, vol.50, issue.7, pp.2478-2486, 2006.
DOI : 10.1128/AAC.01553-05

J. P. Michel, Y. X. Wang, E. De, P. Fontaine, M. Goldmann et al., Charge and aggregation pattern govern the interaction of plasticins with LPS monolayers mimicking the external leaflet of the outer membrane of Gram-negative bacteria, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1848, issue.11, pp.2967-79, 2015.
DOI : 10.1016/j.bbamem.2015.09.005

J. Sarkis, J. ?. Hubert, B. Legrand, E. Robert, A. Chéron et al., Spectrin-like Repeats 11???15 of Human Dystrophin Show Adaptations to a Lipidic Environment, Journal of Biological Chemistry, vol.265, issue.35, pp.30481-30491, 2011.
DOI : 10.1016/j.ymthe.2004.09.013

URL : https://hal.archives-ouvertes.fr/inserm-00712828