D. Mannetje, A. Banpurkar, H. Koppelman, M. H. Duits, D. Van-den-ende et al., Electrically Tunable Wetting Defects Characterized by a Simple Capillary Force Sensor, Langmuir, vol.29, issue.31, pp.9944-9949, 2013.
DOI : 10.1021/la4015724

D. 't-mannetje, S. Ghosh, R. Lagraauw, S. Otten, A. Pit et al., Trapping of drops by wetting defects, Nature Communications, vol.9, issue.1, p.3559, 2014.
DOI : 10.1063/1.2945803

D. J. Mannetje, C. U. Murade, D. Van-den-ende, and F. Mugele, , p.14102, 2011.

S. Afkhami, Y. Renardy, M. Renardy, J. S. Riffle, and T. St-pierre, Field-induced motion of ferrofluid droplets through immiscible viscous media, Journal of Fluid Mechanics, vol.76, p.363, 2008.
DOI : 10.1146/annurev.fluid.31.1.567

A. Afzal and K. Kim, Flow and mixing analysis of non-Newtonian fluids in straight and serpentine microchannels, Chemical Engineering Science, vol.116, pp.263-274, 2014.
DOI : 10.1016/j.ces.2014.05.021

A. Albadawi, D. B. Donoghue, A. J. Robinson, D. B. Murray, and Y. M. Delauré, Influence of surface tension implementation in Volume of Fluid and coupled Volume of Fluid with Level Set methods for bubble growth and detachment, International Journal of Multiphase Flow, vol.53, pp.11-28, 2013.
DOI : 10.1016/j.ijmultiphaseflow.2013.01.005

R. F. Allen and P. R. Benson, Rolling drops on an inclined plane, Journal of Colloid and Interface Science, vol.50, issue.2, pp.250-253, 1975.
DOI : 10.1016/0021-9797(75)90227-1

S. Amirnia, J. R. De-bruyn, M. A. Bergougnou, and A. Margaritis, Continuous rise velocity of air bubbles in non-Newtonian biopolymer solutions, Chemical Engineering Science, vol.94, pp.60-68, 2013.
DOI : 10.1016/j.ces.2013.02.032

T. Arbatan, L. Li, J. Tian, and W. Shen, Liquid Marbles as Micro-bioreactors for Rapid Blood Typing, Advanced Healthcare Materials, vol.166, issue.1, pp.80-83, 2012.
DOI : 10.1016/j.cej.2010.11.015

J. Aubin, L. Prat, C. Xuereb, and C. Gourdon, Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient, Chemical Engineering and Processing: Process Intensification, vol.48, issue.1, pp.554-559, 2009.
DOI : 10.1016/j.cep.2008.08.004

P. Aussillous and D. Quéré, Liquid marbles, Nature, vol.286, issue.6840, pp.924-927, 2001.
DOI : 10.1098/rspa.1965.0127

P. Aussillous and D. Quéré, Properties of liquid marbles, Proc. R. Soc. A 462, pp.973-999, 2006.
DOI : 10.1098/rspa.2005.1581

W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, vol.202, issue.1, pp.1-8, 1997.
DOI : 10.1007/s004250050096

O. A. Basaran, Small-scale free surface flows with breakup: Drop formation and emerging applications, AIChE Journal, vol.212, issue.9, 2002.
DOI : 10.1006/jcis.1998.6047

S. Bashir, M. Bashir, J. M. Rees, and W. B. Zimmerman, Dynamic wetting in microfluidic droplet formation, BioChip Journal, vol.27, issue.2, pp.122-128, 2014.
DOI : 10.1016/j.biomaterials.2006.05.015

S. E. Bechtel, J. Z. Cao, and M. G. Forest, Practical application of a higher order perturbation theory for slender viscoelastic jets and fibers, Journal of Non-Newtonian Fluid Mechanics, vol.41, issue.3, pp.201-273, 1992.
DOI : 10.1016/0377-0257(92)87001-R

E. S. Benilov and J. Billingham, Drops climbing uphill on an oscillating substrate, Journal of Fluid Mechanics, vol.674, pp.93-119, 2011.
DOI : 10.1017/S0022112010006452

V. Bergeron, D. Bonn, J. Y. Martin, and L. Vovelle, Controlling droplet deposition with polymer additives, Nature, vol.11, issue.6788, pp.772-775, 2000.
DOI : 10.1021/la00007a074

R. Bergmann, D. Van-der-meer, M. Stijnman, M. Sandtke, A. Prosperetti et al., Giant Bubble Pinch-Off, Physical Review Letters, vol.257, issue.15, 2006.
DOI : 10.1017/CBO9781107050242

S. Berthier, Iridescences: the physical colors of insects, 2007.

V. Bertola, Dynamic wetting of dilute polymer solutions: The case of impacting droplets, Advances in Colloid and Interface, pp.1-11, 2013.
DOI : 10.1016/j.cis.2013.03.001

A. L. Biance, C. Clanet, and D. Quere, First steps in the spreading of a liquid droplet, Physical Review E, vol.206, issue.1, 2004.
DOI : 10.1016/S0927-7757(02)00064-X

A. L. Biance, C. Clanet, and D. Uéré, Leidenfrost drops, Physics of Fluids, vol.21, issue.6, p.1632, 2003.
DOI : 10.1016/0009-2509(66)85100-X

URL : https://hal.archives-ouvertes.fr/hal-00014747

J. C. Bird, R. Dhiman, H. M. Kwon, and K. K. Varanasi, Reducing the contact time of a bouncing drop, Nature, vol.100, issue.7476, pp.385-388, 2013.
DOI : 10.1063/1.4705296

J. C. Bird, S. Mandre, and H. A. Stone, Short-Time Dynamics of Partial Wetting, Physical Review Letters, vol.533, issue.23, 2008.
DOI : 10.1093/imamat/hxm043

E. Bormashenko, Liquid marbles: Properties and applications, Current Opinion in Colloid & Interface Science, vol.16, issue.4, pp.266-271, 2011.
DOI : 10.1016/j.cocis.2010.12.002

E. Bormashenko, R. Balter, and D. Aurbach, Micropump based on liquid marbles, Applied Physics Letters, vol.97, issue.9, 2010.
DOI : 10.1039/c001317j

E. Bormashenko, R. Balter, and D. Aurbach, Formation of liquid marbles and wetting transitions, Journal of Colloid and Interface Science, vol.384, issue.1, pp.157-161, 2012.
DOI : 10.1016/j.jcis.2012.06.023

E. Bormashenko and Y. Bormashenko, Non-Stick Droplet Surgery with a Superhydrophobic Scalpel, Langmuir, vol.27, issue.7, pp.3266-3270, 2011.
DOI : 10.1021/la200258u

E. Bormashenko, Y. Bormashenko, R. Grynyov, H. Aharoni, G. Whyman et al., Self-Propulsion of Liquid Marbles: Leidenfrost-like Levitation Driven by Marangoni Flow, The Journal of Physical Chemistry C, vol.119, issue.18, pp.9910-9915, 2015.
DOI : 10.1021/acs.jpcc.5b01307

URL : http://arxiv.org/pdf/1502.04292

R. Butt, H. J. Gao, N. Papadopoulos, P. Steffen, W. Kappl et al., Energy Dissipation of Moving Drops on Superhydrophobic and Superoleophobic Surfaces, Langmuir, vol.33, issue.1, pp.107-116, 2017.
DOI : 10.1021/acs.langmuir.6b03792

O. Carrier, D. Funfschilling, and H. Z. Li, Effect of the fluid injection configuration on droplet size in a microfluidic T junction, Physical Review E, vol.89, issue.1, p.13003, 2014.
DOI : 10.1039/c002625e

URL : https://hal.archives-ouvertes.fr/hal-01276051

A. B. Cassie and S. Baxter, Wettability of porous surfaces, Transactions of the Faraday Society, vol.40, pp.546-551, 1944.
DOI : 10.1039/tf9444000546

J. R. Castrejon-pita, A. A. Castrejon-pita, S. S. Thete, K. Sambath, I. M. Hutchings et al., Plethora of transitions during breakup of liquid filaments, Proceedings of the National Academy of Sciences, pp.4582-4587, 2015.
DOI : 10.1016/0021-9991(92)90273-2

A. M. Cazabat and M. A. Stuart, Dynamics of wetting: effects of surface roughness, The Journal of Physical Chemistry, vol.90, issue.22, pp.5845-5849, 1986.
DOI : 10.1021/j100280a075

M. K. Chaudhury and G. M. Whitesides, How to Make Water Run Uphill, Science, vol.256, issue.5063, pp.1539-1541, 1992.
DOI : 10.1126/science.256.5063.1539

A. U. Chen, P. K. Notz, and O. A. Basaran, Computational and Experimental Analysis of Pinch-Off and Scaling, Physical Review Letters, vol.13, issue.17, 2002.
DOI : 10.1063/1.1409369

C. Y. Chen, C. H. Chen, and W. F. Lee, Experiments on breakups of a magnetic fluid drop through a micro-orifice, Journal of Magnetism and Magnetic Materials, vol.321, issue.20, pp.3520-3525, 2009.
DOI : 10.1016/j.jmmm.2009.06.066

L. Chen, G. K. Auernhammer, and E. Bonaccurso, Short time wetting dynamics on soft surfaces, Soft Matter, vol.119, issue.19, p.9084, 2011.
DOI : 10.1063/1.1607918

L. Chen, E. Bonaccurso, and M. E. Shanahan, Inertial to Viscoelastic Transition in Early Drop Spreading on Soft Surfaces, Langmuir, vol.29, issue.6, pp.1893-1898, 2013.
DOI : 10.1021/la3046862

Y. J. Chen and P. H. Steen, Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge, Journal of Fluid Mechanics, vol.341, pp.245-267, 1997.
DOI : 10.1017/S002211209700548X

Z. Chen, S. Ata, and G. J. Jameson, Breakup and re-formation of bubble clusters in a flotation cell, Minerals Engineering, vol.71, pp.16-20, 2015.
DOI : 10.1016/j.mineng.2014.11.002

Y. N. Cheung and H. Qiu, Droplet pinch-off in acoustically actuated flow-focusing devices, Journal of Micromechanics and Microengineering, vol.22, issue.12, 2012.
DOI : 10.1088/0960-1317/22/12/125003

G. F. Christopher and S. L. Anna, Microfluidic methods for generating continuous droplet streams, Journal of Physics D: Applied Physics, vol.40, issue.19, pp.319-336, 2007.
DOI : 10.1088/0022-3727/40/19/R01

D. C. Chung, M. Katariya, S. H. Huynh, B. H. Cheong, O. W. Liew et al., Uphill airflow transport of drops on superhydrophobic inclines, Colloids and Interface Science Communications, vol.6, pp.1-4, 2015.
DOI : 10.1016/j.colcom.2015.06.001

I. Cohen, M. P. Brenner, J. Eggers, and S. R. Nagel, Two Fluid Drop Snap-Off Problem: Experiments and Theory, Physical Review Letters, vol.349, issue.6, pp.1147-1150, 1999.
DOI : 10.1038/349630a0

URL : http://arxiv.org/pdf/physics/9902071

J. J. Cooper-white, J. E. Fagan, V. Tirtaatmadja, D. R. Lester, and D. V. Boger, Drop formation dynamics of constant low-viscosity, elastic fluids, Journal of Non-Newtonian Fluid Mechanics, vol.106, issue.1, pp.29-59, 2002.
DOI : 10.1016/S0377-0257(02)00084-8

G. Corkidi, A. Rojas, A. Pimentel, and E. Galindo, Visualization of compound drops formation in multiphase processes for the identification of factors influencing bubble and water droplet inclusions in oil drops, Chemical Engineering Research and Design, vol.90, issue.11, pp.1727-1738, 2012.
DOI : 10.1016/j.cherd.2012.03.021

C. Cottin-bizonne, J. Barrat, L. Bocquet, and E. Charlaix, Low-friction flows of liquid at nanopatterned interfaces, Nature Materials, vol.76, issue.4, pp.237-240, 2003.
DOI : 10.1017/S0022112076000906

URL : http://www.nature.com/nmat/journal/v2/n4/pdf/nmat857.pdf

T. Cubaud and T. G. Mason, Capillary threads and viscous droplets in square microchannels, Physics of Fluids, vol.20, issue.5, p.53302, 2008.
DOI : 10.1016/j.fluiddyn.2005.12.004

T. Darmanin and F. Guittard, Superhydrophobic and superoleophobic properties in nature, Materials Today, vol.18, issue.5, pp.273-285, 2015.
DOI : 10.1016/j.mattod.2015.01.001

URL : https://hal.archives-ouvertes.fr/hal-01082197

J. F. Davidson and B. O. Schuler, Bubble formation at an orifice in a viscous liquid, Chemical Engineering Research and Design, vol.75, pp.105-115, 1960.
DOI : 10.1016/S0263-8762(97)80008-1

R. F. Day, E. J. Hinch, and J. R. Lister, Self-Similar Capillary Pinchoff of an Inviscid Fluid, Physical Review Letters, vol.350, issue.4, pp.704-707, 1998.
DOI : 10.1017/CBO9780511624124

P. G. De-gennes, Wetting: statics and dynamics, Reviews of Modern Physics, vol.42, issue.3, pp.827-863, 1985.
DOI : 10.1016/0022-3697(81)90015-9

N. Dietrich, N. Mayoufi, S. Poncin, and H. Z. Li, Abstract, Chemical Papers, vol.3, issue.3, pp.313-325, 2013.
DOI : 10.1016/j.cnsns.2011.08.023.http://dx.doi.org/10.1016/j.cnsns.2011.08.023

N. Dietrich, N. Mayoufi, S. Poncin, N. Midoux, and H. Z. Li, Bubble formation at an orifice: A multiscale investigation, Chemical Engineering Science, vol.92, pp.118-125, 2013.
DOI : 10.1016/j.ces.2012.12.033

URL : https://hal.archives-ouvertes.fr/hal-01282428

N. Dietrich, S. Poncin, N. Midoux, and H. Z. Li, Bubble Formation Dynamics in Various Flow-Focusing Microdevices, Langmuir, vol.24, issue.24, pp.13904-13911, 2008.
DOI : 10.1021/la802008k

URL : https://hal.archives-ouvertes.fr/hal-00379309

B. Dollet, W. Van-hoeve, J. P. Raven, P. Marmottant, and M. Versluis, Role of the Channel Geometry on the Bubble Pinch-Off in Flow-Focusing Devices, Physical Review Letters, vol.100, issue.3, p.34504, 2008.
DOI : 10.1039/b701481n

URL : https://hal.archives-ouvertes.fr/hal-00674374

L. Dong, A. Chaudhury, and M. K. Chaudhury, Lateral vibration of a water drop and its motion on a vibrating surface, The European Physical Journal E, vol.5, issue.3, pp.231-242, 2006.
DOI : 10.1021/la00086a025

, References

X. Frank, P. Perre, and H. Z. Li, Lattice Boltzmann investigation of droplet inertial spreading on various porous surfaces, Physical Review E, vol.91, issue.5, p.52405, 2015.
DOI : 10.1039/c3sm52464g

URL : https://hal.archives-ouvertes.fr/hal-01186414

T. Fu, D. Funfschilling, Y. Ma, and H. Z. Li, Scaling the formation of slug bubbles in microfluidic flow-focusing devices, Microfluidics and Nanofluidics, vol.128, issue.4, pp.467-475, 2010.
DOI : 10.1021/ac002800y

URL : https://hal.archives-ouvertes.fr/hal-00799622

T. Fu, Y. Ma, D. Funfschilling, and H. Z. Li, Bubble formation in non-Newtonian fluids in a microfluidic T-junction, Chemical Engineering and Processing: Process Intensification, vol.50, issue.4, pp.438-442, 2011.
DOI : 10.1016/j.cep.2011.03.002

URL : https://hal.archives-ouvertes.fr/hal-00606316

T. Fu, Y. Ma, D. Funfschilling, C. Zhu, and H. Z. Li, Breakup dynamics of slender bubbles in non-newtonian fluids in microfluidic flow-focusing devices, AIChE Journal, vol.166, issue.11, pp.3560-3567, 2012.
DOI : 10.1016/j.jnnfm.2011.06.004

URL : https://hal.archives-ouvertes.fr/hal-00778191

T. T. Fu, Y. N. Wu, Y. G. Ma, and H. Z. Li, Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting, Chemical Engineering Science, vol.84, pp.207-217, 2012.
DOI : 10.1016/j.ces.2012.08.039

URL : https://hal.archives-ouvertes.fr/hal-00778189

S. Fujii, S. Kameyama, S. P. Armes, D. Dupin, M. Suzaki et al., pH-responsive liquid marbles stabilized with poly(2-vinylpyridine) particles, pHresponsive liquid marbles stabilized with poly, pp.635-640, 2010.
DOI : 10.1021/la053258h

T. Fujii, PDMS-based microfluidic devices for biomedical applications, Microelectronic Engineering, vol.61, issue.62, pp.907-914, 2002.
DOI : 10.1016/S0167-9317(02)00494-X

D. Funfschilling, H. Debas, H. Z. Li, and T. G. Mason, Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics, Physical Review E, vol.10, issue.1, 2009.
DOI : 10.1098/rspa.1935.0104

URL : https://hal.archives-ouvertes.fr/hal-00508366

D. Funfschilling and H. Z. Li, Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualisation, Chemical Engineering Science, vol.56, issue.3, pp.1137-1141, 2001.
DOI : 10.1016/S0009-2509(00)00332-8

L. Gao and T. J. Mccarthy, Contact Angle Hysteresis Explained, Langmuir, vol.22, issue.14, pp.6234-6237, 2006.
DOI : 10.1021/la060254j

L. Gao and T. J. Mccarthy, Ionic Liquid Marbles, Langmuir, vol.23, issue.21, pp.10445-10447, 2007.
DOI : 10.1021/la701901b

L. Gao and T. J. Mccarthy, Langmuir, vol.25, issue.24, pp.14105-14115, 2009.
DOI : 10.1021/la902206c

P. Garstecki, H. A. Stone, and G. M. Whitesides, Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions, Physical Review Letters, vol.137, issue.16, 2005.
DOI : 10.1021/ma0343986

P. Garstecki, H. A. Stone, and G. M. Whitesides, Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions, Physical Review Letters, vol.137, issue.16, 2005.
DOI : 10.1021/ma0343986

A. Gauthier, S. Symon, C. Clanet, and D. Quéré, Water impacting on superhydrophobic macrotextures, Nature Communications, vol.108, issue.1, 2015.
DOI : 10.1103/PhysRevLett.108.036101

URL : https://hal.archives-ouvertes.fr/hal-01214327

A. Ghaini, M. N. Kashid, and D. W. Agar, Effective interfacial area for mass transfer in the liquid???liquid slug flow capillary microreactors, Chemical Engineering and Processing: Process Intensification, vol.49, issue.4, pp.358-366, 2010.
DOI : 10.1016/j.cep.2010.03.009

J. M. Gordillo, A. Sevilla, J. Rodríguez-rodríguez, and C. Martínez-bazán, Axisymmetric Bubble Pinch-Off at High Reynolds Numbers, Physical Review Letters, vol.230, issue.19, 2005.
DOI : 10.1017/S002211200500354X

C. Guo, L. He, and Y. Xin, Deformation and breakup of aqueous drops in viscous oil under a uniform AC electric field, Journal of Electrostatics, vol.77, pp.27-34, 2015.
DOI : 10.1016/j.elstat.2015.07.003

Z. G. Guo, F. Zhou, J. C. Hao, Y. M. Liang, W. M. Liu et al., ???Stick and slide??? ferrofluidic droplets on superhydrophobic surfaces, Applied Physics Letters, vol.64, issue.8, p.81911, 2006.
DOI : 10.1038/nmat924

M. Habera, M. Fabian, M. ?viková, and M. Timko, The influence of magnetic field on free surface ferrofluid flow, Magnetohydrodynamic, vol.49, pp.402-406, 2013.

A. Hashmi, A. Strauss, and J. Xu, Freezing of a Liquid Marble, Langmuir, vol.28, issue.28, pp.10324-10328, 2012.
DOI : 10.1021/la301854f

A. Hemmati, M. Torab-mostaedi, M. Shirvani, and A. Ghaemi, A study of drop size distribution and mean drop size in a perforated rotating disc contactor (PRDC), Chemical Engineering Research and Design, vol.96, 2015.
DOI : 10.1016/j.cherd.2015.02.005

, Chemical Engineering Research and Design, vol.96, pp.54-62

D. M. Henderson, W. G. Pritchard, and L. B. Smolka, On the pinch-off of a pendant drop of viscous fluid, Physics of Fluids, vol.10, issue.11, pp.3188-3200, 1997.
DOI : 10.1137/0143018

D. C. Herbst, Pinch-off of underwater air bubbles with up--down asymmetry. arXiv preprint arXiv 1210, p.7826, 2012.

D. C. Herbst and W. W. Zhang, Underwater bubble pinch-off: Transient stretching flow, Physical Review E, vol.84, issue.2, 2011.
DOI : 10.1017/S0022112009006983

C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, Journal of Colloid and Interface Science, vol.35, issue.1, pp.85-101, 1971.
DOI : 10.1016/0021-9797(71)90188-3

H. E. Huppert, The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, Journal of Fluid Mechanics, vol.34, issue.-1, pp.43-58, 1982.
DOI : 10.1017/S0022112078000075

D. Jarecka, A. Jaruga, and P. K. Smolarkiewicz, A spreading drop of shallow water, Journal of Computational Physics, vol.289, pp.53-61, 2015.
DOI : 10.1016/j.jcp.2015.02.003

, References

W. Lan, S. Li, Y. Wang, and G. Luo, CFD Simulation of Droplet Formation in Microchannels by a Modified Level Set Method, Industrial & Engineering Chemistry Research, vol.53, issue.12, pp.4913-4921, 2014.
DOI : 10.1021/ie403060w

B. Lavi and A. Marmur, The exponential power law: partial wetting kinetics and dynamic contact angles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.250, issue.1-3, pp.409-414, 2004.
DOI : 10.1016/j.colsurfa.2004.04.079

S. Leclear, J. Leclear, . Abhijeet, K. C. Park, and W. Choi, Drop impact on inclined superhydrophobic surfaces, Journal of Colloid and Interface Science, vol.461, pp.114-121, 2016.
DOI : 10.1016/j.jcis.2015.09.026

B. S. Lee, H. J. Cho, J. G. Lee, N. Huh, J. W. Choi et al., Drop formation via breakup of a liquid bridge in an AC electric field, Journal of Colloid and Interface Science, vol.302, issue.1, pp.294-307, 2006.
DOI : 10.1016/j.jcis.2006.05.060

W. Lei, Z. H. Jia, J. C. He, and T. M. Cai, Dynamic properties of vibrated drops on a superhydrophobic patterned surface, Applied Thermal Engineering, vol.62, issue.2, pp.507-512, 2014.
DOI : 10.1016/j.applthermaleng.2013.10.019

F. J. Lesage and F. Marios, Experimental and numerical analysis of quasi-static bubble size and shape characteristics at detachment, International Journal of Heat and Mass Transfer, vol.64, pp.53-69, 2013.
DOI : 10.1016/j.ijheatmasstransfer.2013.04.019

A. M. Leshansky and L. M. Pismen, Breakup of drops in a microfluidic T junction, Physics of Fluids, vol.21, issue.2, p.23303, 2009.
DOI : 10.1017/S0022112061000160

D. Li, Y. Xue, P. Lv, S. Huang, H. Lin et al., Receding dynamics of contact lines and size-dependent adhesion on microstructured hydrophobic surfaces, Soft Matter, vol.17, issue.18, pp.4257-4265, 2016.
DOI : 10.1063/1.1747247

H. Z. Li, Bubbles in non-Newtonian fluids: Formation, interactions and coalescence, Chemical Engineering Science, vol.54, issue.13-14, pp.2247-2254, 1999.
DOI : 10.1016/S0009-2509(98)00294-2

H. Z. Li, Y. Mouline, and N. Midoux, Modelling the bubble formation dynamics in non-Newtonian fluids, Chemical Engineering Science, vol.57, issue.3, pp.339-346, 2002.
DOI : 10.1016/S0009-2509(01)00394-3

Y. Li and J. E. Sprittles, Capillary breakup of a liquid bridge: identifying regimes and transitions, Journal of Fluid Mechanics, vol.46, pp.29-59, 2016.
DOI : 10.1017/jfm.2014.362

URL : https://www.cambridge.org/core/services/aop-cambridge-core/content/view/AADE9BD7A1933847C83409DCECDC5A87/S0022112016002767a.pdf/div-class-title-capillary-breakup-of-a-liquid-bridge-identifying-regimes-and-transitions-div.pdf

. Li, Z. Huai, Y. Mouline, and N. Midoux, Modelling the bubble formation dynamics in non-Newtonian fluids, Chemical Engineering Science, vol.57, issue.3, pp.339-346, 2002.
DOI : 10.1016/S0009-2509(01)00394-3

Z. P. Liang, X. D. Wang, D. J. Lee, X. F. Peng, and A. Su, Spreading dynamics of power-law fluid droplets, Journal of Physics: Condensed Matter, vol.21, issue.46, p.464117, 2009.
DOI : 10.1088/0953-8984/21/46/464117

Y. C. Liao, H. J. Subramani, E. I. Franses, and O. A. Basaran, Effects of Soluble Surfactants on the Deformation and Breakup of Stretching Liquid Bridges, Langmuir, vol.20, issue.23, pp.9926-9930, 2004.
DOI : 10.1021/la0487949

S. J. Lind and T. N. Phillips, The effect of viscoelasticity on a rising gas bubble, Journal of Non-Newtonian Fluid Mechanics, vol.165, issue.15-16, pp.852-865, 2010.
DOI : 10.1016/j.jnnfm.2010.04.002

R. Lindken, J. Westerweel, and B. Wieneke, Stereoscopic micro particle image velocimetry, Experiments in Fluids, vol.39, issue.2, pp.161-171, 2006.
DOI : 10.1007/s00348-004-0790-6

H. Linke, B. J. Aleman, L. D. Melling, M. J. Taormina, M. J. Francis et al., Self-Propelled Leidenfrost Droplets, Physical Review Letters, vol.116, issue.15, p.154502, 2006.
DOI : 10.1007/s003390201401

R. Liontas, K. Ma, G. J. Hirasaki, and S. L. Biswal, Neighbor-induced bubble pinch-off: novel mechanisms of in situ foam generation in microfluidic channels, Soft Matter, vol.92, issue.46, 2013.
DOI : 10.1103/PhysRevLett.92.054503

J. R. Lister and H. A. Stone, Capillary breakup of a viscous thread surrounded by another viscous fluid, Physics of Fluids, vol.42, issue.11, pp.2758-2764, 1998.
DOI : 10.1017/S0022112096000754

J. R. Lister and H. A. Stone, Capillary breakup of a viscous thread surrounded by another viscous fluid, Physics of Fluids, vol.42, issue.11, pp.2758-2764, 1998.
DOI : 10.1017/S0022112096000754

E. K. Longmire, T. L. Norman, and D. L. Gefroh, Dynamics of pinch-off in liquid/liquid jets with surface tension, International Journal of Multiphase Flow, vol.27, issue.10, pp.1735-1752, 2001.
DOI : 10.1016/S0301-9322(01)00030-1

M. S. Longuet-higgins, B. R. Kerman, and K. Lunde, The release of air bubbles from an underwater nozzle, Journal of Fluid Mechanics, vol.94, issue.-1, pp.365-390, 1991.
DOI : 10.1146/annurev.fl.09.010177.001045

J. Lopez, C. A. Miller, and E. Ruckenstein, Spreading kinetics of liquid drops on solids, Journal of Colloid and Interface Science, vol.56, issue.3, pp.460-468, 1976.
DOI : 10.1016/0021-9797(76)90111-9

K. Loubière and G. Hébrard, Influence of liquid surface tension (surfactants) on bubble formation at rigid and flexible orifices, Chemical Engineering and Processing: Process Intensification, vol.43, issue.11, pp.1361-1369, 2004.
DOI : 10.1016/j.cep.2004.03.009

N. Louvet, D. Bonn, and H. Kellay, Nonuniversality in the Pinch-Off of Yield Stress Fluids: Role of Nonlocal Rheology, Physical Review Letters, vol.6, issue.21, p.218302, 2014.
DOI : 10.1017/S0022112009007198

URL : https://hal.archives-ouvertes.fr/hal-01085326

Y. Lu, T. Fu, C. Zhu, Y. Ma, and H. Z. Li, Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device, Microfluidics and Nanofluidics, vol.53, issue.6, pp.1047-1055, 2013.
DOI : 10.1002/aic.11333

URL : https://hal.archives-ouvertes.fr/hal-01275410

Y. Lu, T. Fu, C. Zhu, Y. Ma, and H. Z. Li, Scaling of the bubble formation in a flow-focusing device: Role of the liquid viscosity, Chemical Engineering Science, vol.105, pp.213-219, 2014.
DOI : 10.1016/j.ces.2013.11.017

URL : https://hal.archives-ouvertes.fr/hal-01276061

C. Lv, P. Hao, X. Zhang, and F. He, Drop impact upon superhydrophobic surfaces with regular and hierarchical roughness, Applied Physics Letters, vol.108, issue.14, p.141602, 2016.
DOI : 10.1103/RevModPhys.69.865

A. Maali and B. Bhushan, Nanorheology and boundary slip in confined liquids using atomic force microscopy, Journal of Physics: Condensed Matter, vol.20, issue.31, p.315201, 2008.
DOI : 10.1088/0953-8984/20/31/315201

URL : https://hal.archives-ouvertes.fr/hal-00762271

L. Mahadevan and Y. Pomeau, Rolling droplets, Physics of Fluids, vol.11, issue.9, pp.2449-2453, 1999.
DOI : 10.1016/0020-7225(95)00141-7

A. Marmur and M. D. Lelah, The dependence of drop spreading on the size of the solid surface, Journal of Colloid and Interface Science, vol.78, issue.1, pp.262-265, 1980.
DOI : 10.1016/0021-9797(80)90521-4

G. E. Mccreery and C. M. Stoots, Drop formation mechanisms and size distributions for spray plate nozzles, International Journal of Multiphase Flow, vol.22, issue.3, pp.431-452, 1996.
DOI : 10.1016/0301-9322(95)00086-0

P. Mceleney, G. M. Walker, I. A. Larmour, and S. E. Bell, Liquid marble formation using hydrophobic powders, Chemical Engineering Journal, vol.147, issue.2-3, pp.373-382, 2009.
DOI : 10.1016/j.cej.2008.11.026

G. Mchale and M. I. Newton, Liquid marbles: principles and applications, Soft Matter, vol.25, issue.6, pp.5473-5481, 2011.
DOI : 10.1021/la803537v

G. H. Mckinley, Dimensionless groups for understanding free surface flows of complex fluids, Soc. Rheol. Bull, vol.74, pp.6-14, 2005.

I. N. Milosevic and E. K. Longmire, Pinch-off modes and satellite formation in liquid/liquid jet systems, International Journal of Multiphase Flow, vol.28, issue.11, pp.1853-1869, 2002.
DOI : 10.1016/S0301-9322(02)00046-0

M. Z. Miskin and H. M. Jaeger, Droplet formation and scaling in dense suspensions, Proceedings of the National Academy of Sciences, vol.323, issue.5921, pp.4389-4394, 2012.
DOI : 10.1126/science.1168375

URL : http://www.pnas.org/content/109/12/4389.full.pdf

S. Mitra and S. K. Mitra, Understanding the Early Regime of Drop Spreading, Langmuir, vol.32, issue.35, pp.8843-8848, 2016.
DOI : 10.1021/acs.langmuir.6b02189

D. Moon, D. J. Im, S. Lee, and I. S. Kang, A novel approach for drop-on-demand and particle encapsulation based on liquid bridge breakup, Experimental Thermal and Fluid Science, vol.53, pp.251-258, 2014.
DOI : 10.1016/j.expthermflusci.2013.12.016

M. Morita, T. Koga, H. Otsuka, and A. Takahara, Macroscopic-Wetting Anisotropy on the Line-Patterned Surface of Fluoroalkylsilane Monolayers, Langmuir, vol.21, issue.3, pp.911-918, 2005.
DOI : 10.1021/la0485172

A. Mounir, P. Jose, N. Shahidzadeh-bonn, S. Moulinet, C. Wagner et al., Drop formation in non-newtonian fluids, Physical Review Letters, vol.110

M. I. Newton, D. L. Herbertson, S. J. Elliott, N. J. Shirtcliffe, and G. Mchale, Electrowetting of liquid marbles, Journal of Physics D: Applied Physics, vol.40, issue.1, pp.20-24, 2007.
DOI : 10.1088/0022-3727/40/1/S04

URL : http://irep.ntu.ac.uk/id/eprint/5964/1/183897_Postprint%2520McHale%2520J%2520Phys%2520D%2520vol%252040%2520p2%25202007.pdf

N. T. Nguyen, G. P. Zhu, Y. C. Chua, V. N. Phan, and S. H. Tan, Magnetowetting and Sliding Motion of a Sessile Ferrofluid Droplet in the Presence of a Permanent Magnet, Langmuir, vol.26, issue.15, pp.12553-12559, 2010.
DOI : 10.1021/la101474e

T. H. Nguyen, K. Hapgood, and W. Shen, Observation of the liquid marble morphology using confocal microscopy, Chemical Engineering Journal, vol.162, issue.1, pp.396-405, 2010.
DOI : 10.1016/j.cej.2010.05.038

X. Noblin, R. Kofman, and F. Celestini, Ratchetlike Motion of a Shaken Drop, Physical Review Letters, vol.1, issue.19, 2009.
DOI : 10.1140/epje/i2006-10063-7

URL : https://hal.archives-ouvertes.fr/hal-00455096

M. Nooranidoost, D. Izbassarov, and M. Muradoglu, Droplet formation in a flow focusing configuration: Effects of viscoelasticity, Physics of Fluids, vol.28, issue.12, p.123102, 2016.
DOI : 10.4236/ns.2010.21001

P. K. Notz, A. U. Chen, and O. A. Basaran, Satellite drops: Unexpected dynamics and change of scaling during pinch-off, Physics of Fluids, vol.40, issue.3, pp.549-552, 2001.
DOI : 10.1115/1.3171710

H. N. Oguz and A. Prosperettia, Dynamics of bubble growth and detachment from a needle, Journal of Fluid Mechanics, vol.222, issue.-1, pp.111-145, 1993.
DOI : 10.1016/0009-2509(81)85021-X

P. Olin, S. B. Lindstrom, T. Pettersson, and L. Wagberg, Water Drop Friction on Superhydrophobic Surfaces, Langmuir, vol.29, issue.29, pp.9079-9089, 2013.
DOI : 10.1021/la401152b

P. Olin, S. B. Lindstrom, and L. Wagberg, Trapping of Water Drops by Line-Shaped Defects on Superhydrophobic Surfaces, Langmuir, vol.31, issue.23, pp.6367-6374, 2015.
DOI : 10.1021/acs.langmuir.5b01174

C. H. Ooi and N. T. Nguyen, Manipulation of liquid marbles, Microfluidics and Nanofluidics, vol.13, issue.4, pp.483-495, 2015.
DOI : 10.1007/s10404-012-0976-9

C. H. Ooi, R. K. Vadivelu, J. St-john, D. V. Dao, and N. T. Nguyen, Deformation of a floating liquid marble, Soft Matter, vol.68, issue.23, pp.4576-4583, 2015.
DOI : 10.1209/epl/i2004-10202-x

A. Otten, S. Koster, B. Struth, A. Snigirev, and T. Pfohl, Microfluidics of soft matter investigated by small-angle X-ray scattering, Journal of Synchrotron Radiation, vol.12, issue.6, pp.745-750, 2005.
DOI : 10.1107/S0909049505013580

O. Ozen, N. Aubry, D. T. Papageorgiou, and P. G. Petropoulos, Monodisperse Drop Formation in Square Microchannels, Physical Review Letters, vol.11, issue.14, 2006.
DOI : 10.1103/PhysRevLett.86.4163

N. Pamme, Magnetism and microfluidics, Lab Chip, vol.20, issue.8, pp.24-38, 2006.
DOI : 10.1021/la040084f

URL : http://pages.csam.montclair.edu/~yecko/ferro/papers/BioMedPharmaMEMS_apps/Pamme_MagnetismMicrofluidics.pdf

D. T. Papageorgiou, On the breakup of viscous liquid threads, Physics of Fluids, vol.7, issue.7, pp.1529-1544, 1995.
DOI : 10.1098/rspa.1988.0094

URL : http://www.cs.odu.edu/~mln/ltrs-pdfs/icase-1995-1.pdf

M. Paven, H. Mayama, T. Sekido, H. J. Butt, Y. Nakamura et al., Light-Driven Delivery and Release of Materials Using Liquid Marbles, Advanced Functional Materials, vol.5, issue.19, pp.3199-3206, 2016.
DOI : 10.1021/ar980112j

D. H. Peregrine, G. Shoker, and A. Symon, The bifurcation of liquid bridges, Journal of Fluid Mechanics, vol.77, issue.-1, p.25, 2006.
DOI : 10.1017/S002211208500115X

S. U. Pickering, CXCVI.???Emulsions, J. Chem. Soc., Trans., vol.91, issue.0, pp.2001-2021, 1907.
DOI : 10.1039/CT9079102001

C. Planchette, A. L. Biance, and E. Lorenceau, Transition of liquid marble impacts onto solid surfaces, EPL (Europhysics Letters), vol.97, issue.1, 2012.
DOI : 10.1209/0295-5075/97/14003

URL : https://hal.archives-ouvertes.fr/hal-00693182

S. T. Plummer, Q. Wang, and P. W. Bohn, Electrochemically Derived Gradients of the Extracellular Matrix Protein Fibronectin on Gold, Langmuir, vol.19, issue.18, pp.7528-7536, 2003.
DOI : 10.1021/la030075r

D. Quéré, Leidenfrost Dynamics, Annual Review of Fluid Mechanics, vol.45, issue.1, pp.197-215, 2013.
DOI : 10.1146/annurev-fluid-011212-140709

S. M. Ramos, J. F. Dias, and B. Canut, Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics, Journal of Colloid and Interface Science, vol.440, pp.133-139, 2015.
DOI : 10.1016/j.jcis.2014.10.064

URL : https://hal.archives-ouvertes.fr/hal-01489377

W. Ramsden, Separation of solids in the surface-layers of solutions and 'suspensions, Proc. R. Soc. London, pp.156-164, 1903.

V. Ravi, M. A. Jog, and R. M. Manglik, EFFECTS OF PSEUDOPLASTICITY ON SPREAD AND RECOIL DYNAMICS OF AQUEOUS POLYMERIC SOLUTION DROPLETS ON SOLID SURFACES, Interfacial Phenomena and Heat Transfer, vol.1, issue.3, pp.273-287, 2013.
DOI : 10.1615/InterfacPhenomHeatTransfer.2013010246

B. Ray, G. Biswas, and A. Sharma, Bubble pinch-off and scaling during liquid drop impact on liquid pool, Physics of Fluids, vol.24, issue.8, 2012.
DOI : 10.1103/PhysRevLett.88.174501

L. Rayleigh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.34, issue.207, pp.145-154, 1892.
DOI : 10.1080/14786449208620301

D. Richard and D. Quéré, Viscous drops rolling on a tilted non-wettable solid, Europhysics Letters (EPL), vol.48, issue.3, pp.286-291, 1999.
DOI : 10.1209/epl/i1999-00479-1

M. Roché, M. Aytouna, D. Bonn, and H. Kellay, Effect of Surface Tension Variations on the Pinch-Off Behavior of Small Fluid Drops in the Presence of Surfactants, Physical Review Letters, vol.103, issue.26, 2009.
DOI : 10.1103/PhysRevLett.87.084501

W. Rohlfs, C. Ehrenpreis, H. Haustein, and R. Kneer, Influence of viscous flow relaxation time on self-similarity in free-surface jet impingement, International Journal of Heat and Mass Transfer, vol.78, pp.435-446, 2014.
DOI : 10.1016/j.ijheatmasstransfer.2014.06.086

R. E. Rosensweig, Ferrohydrodynamics, 1985.

A. Rothert and R. Richter, Experiments on the breakup of a liquid bridge of magnetic fluid, Journal of Magnetism and Magnetic Materials, vol.201, issue.1-3, pp.324-327, 1999.
DOI : 10.1016/S0304-8853(99)00082-7

A. Rothert, R. Richter, and I. Rehberg, Transition from Symmetric to Asymmetric Scaling Function before Drop Pinch-Off, Physical Review Letters, vol.10, issue.8, p.84501, 2001.
DOI : 10.1063/1.869799

A. Rothert, R. Richter, and I. Rehberg, Formation of a drop: viscosity dependence of three flow regimes, New Journal of Physics, vol.5, issue.59, pp.51-59, 2003.
DOI : 10.1088/1367-2630/5/1/359

D. C. Roux and J. J. Cooper-white, Dynamics of water spreading on a glass surface, Journal of Colloid and Interface Science, vol.277, issue.2, pp.424-436, 2004.
DOI : 10.1016/j.jcis.2004.05.007

P. E. Rueger and R. V. Calabrese, Dispersion of water into oil in a rotor???stator mixer. Part 1: Drop breakup in dilute systems, Chemical Engineering Research and Design, vol.91, issue.11, pp.2122-2133, 2013.
DOI : 10.1016/j.cherd.2013.05.018

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, The present and future role of microfluidics in biomedical research, Nature, vol.9, issue.7491, pp.181-189, 2014.
DOI : 10.1021/ac301512f

S. Saritha, X. Zhang, and P. Neogi, Wetting kinetics of films containing nonadsorbing polymers, The Journal of Chemical Physics, vol.298, issue.24, p.244711, 2005.
DOI : 10.1063/1.1388048

J. R. Savage, M. Caggioni, P. T. Spicer, and I. Cohen, Partial universality: pinch-off dynamics in fluids with smectic liquid crystalline order, Soft Matter, vol.46, issue.5, 2010.
DOI : 10.1039/b923069f

M. Sbragaglia, L. Biferale, G. Amati, S. Varagnolo, D. Ferraro et al., Sliding drops across alternating hydrophobic and hydrophilic stripes, Physical Review E, vol.2, issue.1, p.12406, 2014.
DOI : 10.1039/c3sm51556g

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Droplet based microfluidics, Reports on Progress in Physics, vol.75, issue.1, 2012.
DOI : 10.1088/0034-4885/75/1/016601

C. Semprebon and M. Brinkmann, On the onset of motion of sliding drops, Soft Matter, vol.111, issue.18, pp.3325-3334, 2014.
DOI : 10.1103/PhysRevLett.111.066101

O. E. Séro-guillaume, D. Zouaoui, D. Bernardin, and J. P. Brancher, The shape of a magnetic liquid drop, Journal of Fluid Mechanics, vol.10, issue.-1, pp.215-232, 1992.
DOI : 10.1017/S0022112087002131

X. Sheng and J. Zhang, Directional motion of water drop on ratchet-like superhydrophobic surfaces, Applied Surface Science, vol.257, issue.15, pp.6811-6816, 2011.
DOI : 10.1016/j.apsusc.2011.03.002

X. D. Shi, M. P. Brenner, and S. R. Nagel, A Cascade of Structure in a Drop Falling from a Faucet, Science, vol.265, issue.5169, pp.219-222, 1994.
DOI : 10.1126/science.265.5169.219

J. A. Simmons, J. E. Sprittles, and Y. D. Shikhmurzaev, The formation of a bubble from a submerged orifice, European Journal of Mechanics - B/Fluids, vol.53, pp.24-36, 2015.
DOI : 10.1016/j.euromechflu.2015.01.003

V. Sivan, S. Tang, A. P. O-'mullane, P. Petersen, N. Eshtiaghi et al., Liquid Metal Marbles, Advanced Functional Materials, vol.11, issue.2, pp.144-152, 2013.
DOI : 10.1039/c0lc00501k

J. T. Smith, J. K. Tomfohr, M. C. Wells, P. Thomas, J. Beebe et al., Measurement of Cell Migration on Surface-Bound Fibronectin Gradients, Langmuir, vol.20, issue.19, pp.8279-8286, 2004.
DOI : 10.1021/la0489763

L. B. Smolka and A. Belmonte, Drop pinch-off and filament dynamics of wormlike micellar fluids, Journal of Non-Newtonian Fluid Mechanics, vol.115, issue.1, pp.1-25, 2003.
DOI : 10.1016/S0377-0257(03)00116-2

T. M. Squires and S. R. Quake, Microfluidics: Fluid physics at the nanoliter scale, Reviews of Modern Physics, vol.291, issue.2, 2005.
DOI : 10.1126/science.1057175

H. A. Stone, J. R. Lister, and M. P. Brenner, Drops with conical ends in electric and magnetic fields, Proc. R. Soc. Lond. A. 455, pp.329-347, 1999.
DOI : 10.1098/rspa.1999.0316

R. Sun, H. Bai, J. Ju, and L. Jiang, Droplet emission induced by ultrafast spreading on a superhydrophilic surface, Soft Matter, vol.625, issue.39, p.9285, 2013.
DOI : 10.1017/S0022112008005442

A. S. Utada, A. Fernandez-nieves, H. A. Stone, and D. A. Weitz, Dripping to Jetting Transitions in Coflowing Liquid Streams, Physical Review Letters, vol.23, issue.9, p.94502, 2007.
DOI : 10.1098/rspa.1935.0104

A. S. Utada, E. L. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone et al., Monodisperse Double Emulsions Generated from a Microcapillary Device, Science, vol.308, issue.5721, pp.537-541, 2005.
DOI : 10.1126/science.1109164

D. B. Van-dam, L. Clerc, and C. , Experimental study of the impact of an ink-jet printed droplet on a solid substrate, Physics of Fluids, vol.16, issue.9, pp.3403-3414, 2004.
DOI : 10.1063/1.870259

W. Van-hoeve, B. Dollet, M. Versluis, and D. Lohse, Microbubble formation and pinch-off scaling exponent in flow-focusing devices, Physics of Fluids, vol.23, issue.9, 2011.
DOI : 10.1063/1.1796526

URL : https://hal.archives-ouvertes.fr/hal-00714102

V. Van-steijn, C. R. Kleijn, and M. T. Kreutzer, Flows around Confined Bubbles and Their Importance in Triggering Pinch-Off, Physical Review Letters, vol.34, issue.21, 2009.
DOI : 10.1103/PhysRevE.74.035303

V. Van-steijn, M. T. Kreutzer, and C. R. Kleijn, -PIV study of the formation of segmented flow in microfluidic T-junctions, Chemical Engineering Science, vol.62, issue.24, pp.7505-7514, 2007.
DOI : 10.1016/j.ces.2007.08.068

B. Vance, B. Daniel, M. J. Yves, and V. Louis, Controlling droplet deposition with polymer additives, Nature, vol.405, pp.772-775, 2000.

S. Varagnolo, N. Basu, D. Ferraro, T. Tóth, M. Pierno et al., Effect of hair morphology and elastic stiffness on the wetting properties of hairy surfaces, Microelectronic Engineering, vol.161, pp.74-81, 2016.
DOI : 10.1016/j.mee.2016.04.001

R. P. Visconti, V. Kasyanov, C. Gentile, J. Zhang, R. R. Markwald et al., Towards organ printing: engineering an intra-organ branched vascular tree, Expert Opinion on Biological Therapy, vol.1, issue.2, pp.409-420, 2010.
DOI : 10.1088/1758-5082/1/2/022001

URL : http://europepmc.org/articles/pmc4580374?pdf=render

T. Vuong, B. H. Cheong, S. H. Huynh, M. Muradoglu, O. W. Liew et al., Drop transfer between superhydrophobic wells using air logic control, Lab on a Chip, vol.3, issue.4, pp.991-995, 2015.
DOI : 10.1063/1.858199

S. Waelchli and P. Rudolf-von-rohr, Two-phase flow characteristics in gas???liquid microreactors, International Journal of Multiphase Flow, vol.32, issue.7, pp.791-806, 2006.
DOI : 10.1016/j.ijmultiphaseflow.2006.02.014

N. Wang, D. Xiong, M. Li, Y. Deng, Y. Shi et al., Superhydrophobic surface on steel substrate and its anti-icing property in condensing conditions, Applied Surface Science, vol.355, pp.226-232, 2015.
DOI : 10.1016/j.apsusc.2015.06.203

X. Wang, L. Chen, and E. Bonaccurso, Comparison of spontaneous wetting and drop impact dynamics of aqueous surfactant solutions on hydrophobic polypropylene surfaces: scaling of the contact radius, Colloid and Polymer Science, vol.405, issue.1, pp.257-265, 2014.
DOI : 10.1038/35015525

Y. Wang, B. Bhushan, and A. Maali, Atomic force microscopy measurement of boundary slip on hydrophilic, hydrophobic, and superhydrophobic surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.27, issue.4, pp.754-760, 2009.
DOI : 10.1116/1.3086637

URL : https://hal.archives-ouvertes.fr/hal-00670586

J. D. Wehking, M. Gabany, L. Chew, and R. Kumar, Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction, Microfluidics and Nanofluidics, vol.35, issue.18, 2013.
DOI : 10.1016/j.expthermflusci.2010.10.009

, Microfluidics and Nanofluidics, vol.16, pp.441-453

S. J. Weinstein and K. J. Ruschak, COATING FLOWS, Annual Review of Fluid Mechanics, vol.36, issue.1, pp.29-53, 2004.
DOI : 10.1146/annurev.fluid.36.050802.122049

R. N. Wenzel, RESISTANCE OF SOLID SURFACES TO WETTING BY WATER, Industrial & Engineering Chemistry, vol.28, issue.8, pp.988-994, 1936.
DOI : 10.1021/ie50320a024

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.309, issue.7101, pp.368-373, 2006.
DOI : 10.1126/science.1109173

R. S. Whitney, Nonlinear thermoelectricity in point contacts at pinch off: A catastrophe aids cooling, Physical Review B, vol.77, issue.6, p.64302, 2013.
DOI : 10.1103/PhysRevB.87.075312

URL : https://hal.archives-ouvertes.fr/hal-01059969

K. G. Winkels, J. H. Weijs, A. Eddi, and J. H. Snoeijer, Initial spreading of low-viscosity drops on partially wetting surfaces, Physical Review E, vol.85, issue.5, p.55301, 2012.
DOI : 10.1021/la102330e

K. M. Wisdom, J. A. Watson, X. Qu, F. Liu, G. S. Watson et al., Selfcleaning of superhydrophobic surfaces by self-propelled jumping condensate, Proceedings of the National Academy of Sciences, pp.7992-7997, 2013.
DOI : 10.1073/pnas.1210770110

URL : http://www.pnas.org/content/110/20/7992.full.pdf

Y. N. Wu, T. T. Fu, Y. G. Ma, and H. Z. Li, Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device, Soft Matter, vol.20, issue.41, pp.9792-9798, 2013.
DOI : 10.1063/1.2911716

URL : https://hal.archives-ouvertes.fr/hal-01292164

Y. N. Wu, T. T. Fu, Y. G. Ma, and H. Z. Li, Active control of ferrofluid droplet breakup dynamics in a microfluidic T-junction, Microfluidics and Nanofluidics, vol.16, issue.182, pp.19-27, 2015.
DOI : 10.1007/s10404-013-1211-z

URL : https://hal.archives-ouvertes.fr/hal-02049919

R. Xiong, M. Bai, and J. N. Chung, Formation of bubbles in a simple co-flowing micro-channel, Journal of Micromechanics and Microengineering, vol.17, issue.5, pp.1002-1011, 2007.
DOI : 10.1088/0960-1317/17/5/021

C. Xu, Y. Huang, J. Fu, and R. R. Markwald, Electric field-assisted droplet formation using piezoactuation-based drop-on-demand inkjet printing, Journal of Micromechanics and Microengineering, vol.24, issue.11, 2014.
DOI : 10.1088/0960-1317/24/11/115011

C. Xu, M. Zhang, Y. Huang, A. Ogale, J. Fu et al., Study of Droplet Formation Process during Drop-on-Demand Inkjetting of Living Cell-Laden Bioink, Langmuir, vol.30, issue.30, pp.9130-9138, 2014.
DOI : 10.1021/la501430x

Y. Xue, H. Wang, Y. Zhao, L. Dai, L. Feng et al., Magnetic Liquid Marbles: A ???Precise??? Miniature Reactor, Advanced Materials, vol.18, issue.43, pp.4814-4818, 2010.
DOI : 10.1039/B711226B

G. Q. Yang, B. Du, and L. S. Fan, Bubble formation and dynamics in gas???liquid???solid fluidization???A review, Chemical Engineering Science, vol.62, issue.1-2, pp.2-27, 2007.
DOI : 10.1016/j.ces.2006.08.021

A. L. Yarin, DROP IMPACT DYNAMICS: Splashing, Spreading, Receding, Bouncing???, Annual Review of Fluid Mechanics, vol.38, issue.1, pp.159-192, 2006.
DOI : 10.1146/annurev.fluid.38.050304.092144

Y. H. Yeong, J. Burton, E. Loth, and I. S. Bayer, Drop Impact and Rebound Dynamics on an Inclined Superhydrophobic Surface, Langmuir, vol.30, issue.40, pp.12027-12038, 2014.
DOI : 10.1021/la502500z

Ö. E. Y?ld?r?m and O. A. Basaran, Dynamics of formation and dripping of drops of deformation-rate-thinning and -thickening liquids from capillary tubes, Journal of Non-Newtonian Fluid Mechanics, vol.136, issue.1, pp.17-37, 2006.
DOI : 10.1016/j.jnnfm.2006.02.009

H. Yoo and C. Kim, Experimental studies on formation, spreading and drying of inkjet drop of colloidal suspensions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.468, pp.234-245, 2015.
DOI : 10.1016/j.colsurfa.2014.12.032

J. Yuan, Y. Li, and Y. Zhou, Effect of contact angle on bubble formation at submerged orifices, Journal of Materials Science, vol.43, issue.8, pp.8084-8094, 2014.
DOI : 10.1007/s10853-008-2513-5

D. Zang, J. Li, Z. Chen, Z. Zhai, X. Geng et al., Switchable Opening and Closing of a Liquid Marble via Ultrasonic Levitation, Langmuir, vol.31, issue.42, pp.11502-11507, 2015.
DOI : 10.1021/acs.langmuir.5b02917

D. Zhang, L. Men, and Q. Chen, Microfabrication and Applications of Opto-Microfluidic Sensors, Sensors, vol.86, issue.5, pp.5360-5382, 2011.
DOI : 10.1016/j.mee.2008.12.002

URL : https://www.mdpi.com/1424-8220/11/5/5360/pdf

D. F. Zhang and H. A. Stone, Drop formation in viscous flows at a vertical capillary tube, Physics of Fluids, vol.8, issue.8, pp.2234-2242, 1997.
DOI : 10.1016/0021-9797(82)90373-3

L. Zhang, L. He, M. Ghadiri, and A. Hassanpour, Effect of surfactants on the deformation and break-up of an aqueous drop in oils under high electric field strengths, Journal of Petroleum Science and Engineering, vol.125, pp.38-47, 2015.
DOI : 10.1016/j.petrol.2014.11.014

W. W. Zhang and J. R. Lister, Similarity Solutions for Capillary Pinch-Off in Fluids of Differing Viscosity, Physical Review Letters, vol.7, issue.6, pp.1151-1154, 1999.
DOI : 10.1063/1.868540

W. W. Zhang and J. R. Lister, Similarity Solutions for Capillary Pinch-Off in Fluids of Differing Viscosity, Physical Review Letters, vol.7, issue.6, 1151.
DOI : 10.1063/1.868540

L. Zhao, K. C. Yan, R. Yao, F. Lin, and W. Sun, Modeling on Microdroplet Formation for Cell Printing Based on Alternating Viscous-Inertial Force Jetting, Journal of Manufacturing Science and Engineering, vol.139, issue.1, p.11005, 2016.
DOI : 10.1115/1.4032768

Y. Zhao, J. Fang, H. Wang, X. Wang, and T. Lin, Nanoparticles, Advanced Materials, vol.3, issue.6, pp.707-710, 2010.
DOI : 10.1002/adma.200902512

URL : https://hal.archives-ouvertes.fr/hal-01718888

Y. Zhao, Z. Xu, M. Parhizkar, J. Fang, X. Wang et al., Magnetic liquid marbles, their manipulation and application in optical probing, Microfluidics and Nanofluidics, vol.22, issue.4, pp.555-564, 2012.
DOI : 10.1002/adma.200902512

URL : https://link.springer.com/content/pdf/10.1007%2Fs10404-012-0976-9.pdf

G. P. Zhu, N. T. Nguyen, R. V. Ramanujan, and X. Y. Huang, Nonlinear Deformation of a Ferrofluid Droplet in a Uniform Magnetic Field, Langmuir, vol.27, issue.24, pp.14834-14841, 2011.
DOI : 10.1021/la203931q

P. Zhu, T. Kong, L. Lei, X. Tian, Z. Kang et al., Droplet Breakup in Expansion-contraction Microchannels, Scientific Reports, vol.150, issue.1, 2016.
DOI : 10.1098/rspa.1935.0104

X. F. Jiang and H. Z. Li, Self-similar pinch-off mechanism and scaling of ferrofluid drops, Physical Review E, vol.610, issue.6, pp.92-061003, 2015.
DOI : 10.1103/PhysRevLett.83.1151

URL : https://hal.archives-ouvertes.fr/hal-01273382

X. F. Jiang, Y. N. Wu, Y. Ma, and H. Z. Li, Formation and breakup dynamics of ferrofluid drops, Chemical Engineering Research and Design, vol.115, pp.262-269, 2016.
DOI : 10.1016/j.cherd.2016.08.022

URL : https://hal.archives-ouvertes.fr/hal-02025541

X. F. Jiang, C. Y. Zhu, and H. Z. Li, Bubble pinch-off in Newtonian and non-Newtonian fluids, Chemical Engineering Science, vol.170, pp.98-104, 2017.
DOI : 10.1016/j.ces.2016.12.057

URL : https://hal.archives-ouvertes.fr/hal-02024003

X. F. Jiang, C. Y. Zhu, Y. Ma, and H. Z. Li, Undressing a Water Marble on Oil Film, Advanced Materials Interfaces, vol.162, issue.13, p.1700193
DOI : 10.1016/j.cej.2010.05.038

URL : https://hal.archives-ouvertes.fr/hal-02023981

X. F. Jiang and H. Z. Li, Liquid drops hurdling over barriers of various geometries
DOI : 10.1002/admi.201700516

, Adv. Mater. Interfaces, 2017.

X. F. Jiang and H. Z. Li, Universality and non-universality of drop pinch-off in a surround fluid

X. F. Jiang and H. Z. Li, Initial contact and spreading of drop dripping-on-substrate (DoS)

X. F. Jiang and H. Z. Li, Filament thinning of non-Newtonian drop dripping-onsubstrate (DoS) through optical and electric methods