, Intel Xeon-Phi Coprocessor

X. Phi and C. , 5 GT/s pour les dernières configurations. L'Intel Xeon Phi Coprocessor peut embarquer son propre système d'exploitation, supporte les protocoles de parallélisation MPI 8 et openMP 9 , accepte l'adressage IP. L'intel Xeon Phi Coprocessor peut proposer des configurations jusqu'à 61 coeurs (unité de calcul vectoriel) basés sur l'architecture de la famille des processeurs Intel Pentium, description dans le manuel d'Intel 10 Les processeurs sont cadencés à 1.238 GHz, ce qui n'est pas excessifs mais la performance est dans le nombre de processeurs engravés sur une même puce Intel utilise une gravure à 14 nm, ce qui permet de produire des puces comportant plus de 50 coeurs Chaque coeur physique permet de récupérer et de décoder 4 fils d'instructions simultanément ce qui, pour la configuration la plus lourde, gère jusqu'à 244 fils d'instructions. L'intel Xeon Phi Coprocessor tourne sur un environnement 64 bit, fournit la compatibilité pour l'architecture x86 et supporte les set instructions IEEE 754 11 pour l'arithmétique en virgule flottante. La carte est munit d'un environnement très flexible pour le développement d'applications. Chaque coeur est connecté à un anneau d'interconnexion à travers le protocole Core Ring Interface 12 (cf. schéma de l'architecture sur la figure 5.2), qui comprend le cache L2 de 512 Kb. Cette interface permet d'exécuter 2 instructions par cycle, sur le U-pipe (détails dans le manuel d'Intel cité pr´éc´édemmentpr´pr´écpr´éc´pr´éc´édemment) et le V-pipe mais certaines ne peuvent pas être exécutées sur cette dernière (comme les instructions vectorielles) Chaque coeur a un support de calcul de haute précision et optimisé pour les fonctions mathématiques i.e. racine carrée, exponentielle, logarithme, puissance, réciproque etc. . . Des fonctions spéciales liées à la gestion de mémoire (scatter, gather et streaming store) sont très efficaces. Les coeurs comprennent les instructions du cache L1 et du data cache (32 Kb pour chacun des caches) Chaque coeur est muni de registres vectoriels de 32 R12 bit. Malheureusement, la carte ne supporte pas les instructions Intel SIMD 13 comme MMX 14, ni les instructions AVX 16 donc la portabilité du code n'est pas direct mais Intel fournit un nouveau set d'instructions vectorielles. Ce set permet d'exécuter des instructions de calcul arithmétique par vecteur de 512 bit, et peut ainsi traiter simultanément 16 flottants en précision simple (SP) ou 8 en double précisions (DP) Chaque opération peut être une combinaison de multiplication et d'addition permettant de traiter 32 SP ou 16 DP par cycle. La plupart des instructions vectorielles a une latence de 4 cycle d'horloge et une cadence d'un cycle. L'architecture Intel Xeon Phi Coprocessor implémente " seulement, La carte n'est pas directement intégrée sur la carte mère, elle est jusqu'à présent seulement disponible à travers un port PCI 6 mais il offre une bande passante très large de 353 Gb/s consommant 300 watt pour 32 Go de capacité de mémoire type GDDR5 7 avec un pic de vitesse àe 5, 2015.

, disponible à l'adresse suivante: https://ftp.utcluj.ro/ pub/docs/publicatii/intel/pentiumII.pdf 11 Norme de représentation pour les nombres à virgule flottante en binaire. 12 Voir les documentations détaillées dans Chrysos [43], Jeffers [102] et Reed [161]. 13 Single instruction multiple data. Voir https://software.intel.com/sites, Pentium II Processor Developer's Manual 14 Multiple Math eXtension, 1997.

, Mise en place de directive pour tenter l'auto vectorisation du code par le compilateur OpenCL

, Ajout de fonction intrinsèques pour une vectorisation effective

, Utilisation de Vtune 40 pour trouver les noeuds critiques de l'application et ajout du parallélisme dynamique des processus logiques

, Réarrangement des données afin de linéariser l'accès en mémoire et quelques optimisations de fonctions mathématiques

, On peut voir que les optimisations sur le code n'ont pas le même impact en fonction de l'architecture

, optimisation 3 a été faite sur un code qui possède déjà l'optimisation 1 et 2. Il faut noter que la nature des compilateurs jouent un rôle important dans les performances de calcul des codes générés. Entre un compilateur Open Source GNU et celui d'Intel, Les optimisations ne sont pas indépendantes des autres

B. Appendix, Semi-Smooth Newton Method Such a property which is satisfied by F (x) = max{0, x} for instance with G(x) = max{0

K. Itô, suggested to apply the idea to (B.2) reformulated as a(u, v) ? (?, v) = (f, v) ?v ? H 1

, The last equality is equivalent to ? ? 0, ? ? ? + c(u ? ?) i.e. u ? ?, ? ? 0, with equality on one of them for each S. This problem is equivalent to (B.2) for a real

, Algorithm Newton's algorithm 9 applied to (B.3) gives

, Algorithm 9 Semi-Smooth Newton algorithm 1: Choose c > 0, u0, ?0, set k = 0. 2: Determine A k, )) < 0} 3: Set u k+1 = arg min u?H 1 (R + ) { 1

L. Abbas-turki and B. Lapeyre, American Options Pricing on Multi-core Graphic Cards, 2009 International Conference on Business Intelligence and Financial Engineering, pp.307-311, 2009.
DOI : 10.1109/BIFE.2009.77

Y. Achdou and O. Pironneau, Computation methods for option pricing, Frontiers in Applied Mathematics. SIAM, Philadelphia, United States of America, 2005.

F. Aitsahlia and P. Carr, American options: A comparison of numerical methods. Numerical Methods in Finance, pp.67-87, 1997.

S. Alanko and M. Avellaneda, Reducing variance in the numerical solution of BDSEs, Comptes Rendus Mathématiques de l'Académie des Sciences, pp.3-4135, 2012.

M. B. Alaya and A. Kebaier, Multilevel Monte Carlo for Asian options and limit theorems, Monte Carlo Methods and Applications, vol.20, issue.3, pp.181-193, 2014.

T. Alm, B. Harrach, T. Harrach, and M. Keller, A Monte Carlo pricing algorithm for autocallables that allows for stable differentiation, The Journal of Computational Finance, vol.17, issue.1, pp.43-70, 2013.
DOI : 10.21314/JCF.2013.265

M. Altmayer and A. Neuenkirch, Multilevel Monte Carlo Quadrature of Discontinuous Payoffs in the Generalized Heston Model Using Malliavin Integration by Parts, SIAM Journal on Financial Mathematics, vol.6, issue.1, pp.22-52, 2015.
DOI : 10.1137/130933629

E. Atanassov, M. Barth, M. Byckling, V. Codreanu, N. Ilieva et al., Best Practive Guide Intel Xeon Phi v2.0. Prace, United States of America, 2017.

M. L. Bachelier, Th??orie de la sp??culation, Annales scientifiques de l'??cole normale sup??rieure, vol.17, 1900.
DOI : 10.24033/asens.476

G. Bal and Y. Maday, A " parareal " time discretization for non-linear PDE's with application to the pricing of an American put. Recent Developments in Domain Decomposition Methods, pp.189-202, 2002.

V. Bally and G. Pagès, A quantization algorithm for solving multidimensional discrete-time optimal stopping problems, Bernoulli, vol.9, issue.6, pp.1003-1049, 2003.
DOI : 10.3150/bj/1072215199

URL : https://hal.archives-ouvertes.fr/hal-00104798

G. Barlas, Multicore and GPU Programming: An Integrated Approach. Design & Architecture, United States of America, pp.97860-124, 2014.

M. S. Basurto and M. Singh, Counterparty risk in the Over-The-Counter derivatives market. FMI, Available at https://www.imf.org/en/Publications Counterparty-Risk-in-the-Over-The-Counter-Derivatives-Market-22447, 14] D. Belomestny, F. Dickmann, and T. Nagapetyan. Multilevel dual approach for pricing American style derivatives. Finance and Stochastics, pp.717-742, 2008.

D. Belomestny, F. Dickmann, and T. Nagapetyan, Pricing Bermudan Options via Multilevel Approximation Methods, SIAM Journal on Financial Mathematics, vol.6, issue.1, pp.448-466, 2015.
DOI : 10.1137/130912426

C. Bender and J. Steiner, Least-Squares Monte Carlo for Backward SDEs, Numerical Methods in Finance, vol.12, pp.257-289, 2010.
DOI : 10.1007/978-3-642-25746-9_8

M. Benguigui, Valorisation d'options Américaines et Value-At-Risk de portefeuille sur cluster de GPUs\CPUs, 2015.

M. Benguigui and F. Baude, Towards parallel and distributed computing on GPU for American basket option pricing, 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings
DOI : 10.1109/CloudCom.2012.6427593

URL : https://hal.archives-ouvertes.fr/hal-00905450

E. Benhamou, Optimal Malliavin Weighting Function for the Computation of the Greeks, Mathematical Finance, vol.5, issue.2, pp.37-53, 2003.
DOI : 10.1007/978-1-4757-2437-0

Y. Z. Bergman, Option Pricing with Differential Interest Rates, Review of Financial Studies, vol.10, issue.2, pp.475-500, 1995.
DOI : 10.1016/0304-405X(82)90010-1

J. M. Bismut, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, vol.44, issue.2, pp.383-404, 1973.
DOI : 10.1016/0022-247X(73)90066-8

URL : https://doi.org/10.1016/0022-247x(73)90066-8

J. M. Bismut, Controle des systemes lineaires quadratiques : Applications de l???integrale stochastique, Lecture Notes in Mathematics, vol.649, 1978.
DOI : 10.1007/BFb0064606

J. M. Bismut, K. D. Elworthy, and X. M. Li, Bismut type formulae for differential forms, pp.87-92, 1998.

F. Black and J. C. Cox, VALUING CORPORATE SECURITIES: SOME EFFECTS OF BOND INDENTURE PROVISIONS, The Journal of Finance, vol.90, issue.1, pp.351-367, 1976.
DOI : 10.1111/j.1540-6261.1976.tb01891.x

B. Bouchard and R. Elie, Discrete-time approximation of decoupled Forward???Backward SDE with jumps, Stochastic Processes and applications, pp.53-75, 2008.
DOI : 10.1016/j.spa.2007.03.010

URL : https://hal.archives-ouvertes.fr/hal-00015486

B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stochastic Processes and their Applications, pp.175-206, 2004.
DOI : 10.1016/j.spa.2004.01.001

URL : https://hal.archives-ouvertes.fr/hal-00103046

A. Brace, D. Gatarek, and M. Musiela, The Market Model of Interest Rate Dynamics, Mathematical Finance, vol.7, issue.2, pp.127-155, 1997.
DOI : 10.1111/1467-9965.00028

URL : http://www.math.ku.dk/~rolf/teaching/PhDcourse/BGMlibor.pdf

P. Briand, B. Delyon, and J. Mèmin, Donsker-type theorem for BSDEs. The Electronic Communications in Probability, pp.1-14, 2001.
DOI : 10.1214/ecp.v6-1030

URL : http://www.maths.univ-rennes1.fr/~pbriand/publis/bdonsk.ps

M. Briane and G. Pagès, Théorie de l'intégration, convolution et transformée de Fourier, Cours et Exercices. Vuibert

D. Brigo and M. Masetti, Risk neutral pricing of counterparty risk, 2005.

D. Brigo and F. Mercurio, Interest Rate Models and Practice. Finance, 2006.

D. Brigo, F. Mercurio, and M. Morini, The LIBOR model dynamics: Approximations, calibration and diagnostics, European Journal of Operational Research, vol.163, issue.1, pp.30-41, 2005.
DOI : 10.1016/j.ejor.2003.12.004

D. Brigo, F. Mercurio, F. Rapisarda, and R. Scotti, Approximated Moment-Matching Dynamics for Basket-Options Simulation, SSRN Electronic Journal, vol.1, pp.1-16, 2003.
DOI : 10.2139/ssrn.268433

D. Brigo, M. Morini, and A. Pallavicini, Counterparty Credit Risk, Collateral and Funding: With Pricing Cases For Asset Classes, Finance. Wiley United States of America, 2013.
DOI : 10.1002/9781118818589

URL : http://doi.org/10.1002/9781118818589

M. Broadie and P. Glasserman, Estimating Security Price Derivatives Using Simulation, Management Science, vol.42, issue.2, pp.269-285, 1996.
DOI : 10.1287/mnsc.42.2.269

URL : http://www.columbia.edu/~mnb2/broadie/Assets/bg-ms-1996.pdf

S. Burgos, The computation of greeks with multilevel Monte Carlo, 2014.

S. Burgos and M. B. Giles, Computing greeks using jmultilevel path simulation, pp.281-296, 2010.
DOI : 10.1007/978-3-642-27440-4_13

URL : http://eprints.maths.ox.ac.uk/1046/1/burgos_giles.pdf

D. R. Butenhof, Programming with POSIX Threads. Professional Computing, Massachusets, United States of America, 1997.

L. Capriotti, Fast Greeks by algorithmic differentiation, The Journal of Computational Finance, vol.14, issue.3, pp.3-35, 2011.
DOI : 10.21314/JCF.2011.234

L. Capriotti, Likelihood Ratio Method and Algorithmic Differentiation: Fast Second Order Greeks, SSRN Electronic Journal, vol.4, issue.12, pp.81-87, 2015.
DOI : 10.2139/ssrn.2508905

A. P. Caverhill and N. Webber, American options: theory and numerical analysis, Options: recent advances in theory and practise, pp.80-94, 1990.

D. Chevance, Numerical methods for backward stochastic differential equations. Numerical methods in finance, pp.232-244, 1997.
DOI : 10.1017/cbo9781139173056.013

G. Chrysos, Intel Xeon Phi Coprocessor Architecture Overview, 2012.

L. Clewlow, J. Llanos, and C. Strickland, Pricing exotic options in a Black Scholes world, pp.94-54, 1994.

J. Cocke and D. S. Slotnick, The use of parallelism in numerical calculations. RC-55, IBM Research Center, Yorktown Heights, 1958.

J. Cox and S. Ross, The valuation of options for alternative stochastic processes, Journal of Financial Economics, vol.3, issue.1-2, pp.145-166, 1976.
DOI : 10.1016/0304-405X(76)90023-4

URL : http://www.javaquant.net/papers/Cox Ross 1976.pdf

S. Crépey, XVA: about CVA, DVA, FVA and other market adjustments. Preprint of Opinion and Debates, 2014.

D. Crisan and K. Manolarakis, Solving Backward Stochastic Differential Equations Using the Cubature Method: Application to Nonlinear Pricing, SIAM Journal on Financial Mathematics, vol.3, issue.1, pp.534-571, 2012.
DOI : 10.1137/090765766

D. M. Dang, C. C. Christara, and K. R. Jackson, An efficient graphics processing unit-based parallel algorithm for pricing multi-asset American options, Concurrency and Computation: Practice and Experience, pp.849-866, 2012.
DOI : 10.1016/0898-1221(88)90150-2

M. Davis, A note on the forward measure, Finance and Stochastics, vol.2, issue.1, pp.19-28, 1998.
DOI : 10.1007/s007800050030

J. Douglas, J. Ma, and P. Protter, Numerical methods for forward-backward stochastic differential equations, The Annals of Applied Probability, vol.6, issue.3, pp.940-968, 1996.
DOI : 10.1214/aoap/1034968235

URL : https://doi.org/10.1214/aoap/1034968235

P. S. Dywer and M. S. Macphail, Symbolic Matrix Derivatives, The Annals of Mathematical Statistics, vol.19, issue.4, pp.517-534, 1948.
DOI : 10.1214/aoms/1177730148

M. Fatica and E. Phillips, Pricing American options with least squares Monte Carlo on GPUs, Proceedings of the 6th Workshop on High Performance Computational Finance, WHPCF '13, 2013.
DOI : 10.1145/2535557.2535564

G. Fourestey, Intel Xeon Phi Programming Models, 2013.

E. Fournié, J. M. Lasry, J. Lebuchoux, and P. L. Lions, Applications of Malliavin calculus to Monte Carlo methods in finance, Finance and Stochastics, vol.3, issue.4, pp.201-236, 2001.
DOI : 10.1007/s007800050068

M. J. Gander and S. Vandewalle, Analysis of the Parareal Time???Parallel Time???Integration Method, SIAM Journal on Scientific Computing, vol.29, issue.2, pp.556-578197, 2007.
DOI : 10.1137/05064607X

URL : http://www.cs.kuleuven.be/publicaties/rapporten/tw/TW443.pdf

M. Giles and P. Glasserman, Smoking adjoints: fast evaluation of greeks in Monte Carlo calculations . NA-05, 2005.

M. B. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme. Monte Carlo and Quasi Monte Carlo Methods, pp.343-358, 2006.
DOI : 10.1007/978-3-540-74496-2_20

M. B. Giles, Vibrato Monte Carlo Sensitivities, pp.369-382, 2008.
DOI : 10.1007/978-3-642-04107-5_23

URL : http://people.maths.ox.ac.uk/~gilesm/files/mcqmc08.pdf

M. B. Giles, Multilevel Monte Carlo methods, Acta Numerica, vol.24, pp.259-328, 2015.
DOI : 10.1017/S096249291500001X

M. B. Giles, Monte Carlo evalutation of sensitivities in computational finance Available at eprints.maths.ox.ac.uk, 1090.

M. B. Giles, D. J. Higham, and X. Mao, Analysing multi-level Monte Carlo for options with??non-globally Lipschitz payoff, Finance and Stochastics, vol.12, issue.3, pp.403-413, 2009.
DOI : 10.1017/CBO9780511800948

URL : http://www.maths.strath.ac.uk/~aas96106/papers/mlmc.pdf

M. B. Giles and L. Szpruch, Multilevel Monte Carlo methods for applications in finance, Recent Developements in Computational Finance, pp.3-47, 2013.
DOI : 10.1142/9789814436434_0001

URL : http://arxiv.org/pdf/1212.1377

M. B. Giles and B. J. Waterhouse, Multilevel quasi Monte Carlo path simulation, Radon Series on Computational and Applied Mathematics, pp.165-181, 2009.

M. G. Giles and L. Szpruch, Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without L??vy area simulation, The Annals of Applied Probability, vol.24, issue.4, pp.1585-1620, 2014.
DOI : 10.1214/13-AAP957

URL : http://arxiv.org/pdf/1202.6283

D. Giorgi, Théorèmes limites pour estimateurs Multilevel avec et sans poids, Comparaisons et Applications, 2017.

D. Giorgi, V. Lemaire, and G. Pagès, Abstract, Monte Carlo Methods and Applications, vol.8, issue.1
DOI : 819904483509

, Monte Carlo Methods and Applications, vol.3, issue.1, pp.43-70, 2017.

J. Girard and I. M. Toke, Monte Carlo valuation of multidimensional American option through grid computing, Lecture Notes in Computer Science, vol.3743, pp.462-469, 2006.

P. Glasserman, Gradient estimation via pertubation analysis Mathematics, 1991.

P. Glasserman, Monte Carlo methods in financial engineering, volume 53 of Application of Mathematics, United States of America, 2003.

P. Glasserman and J. Staum, Conditioning on One-Step Survival for Barrier Option Simulations, Operations Research, vol.49, issue.6, pp.923-937, 2001.
DOI : 10.1287/opre.49.6.923.10018

P. Glasserman and X. Zhao, Fast greeks by simulation in forward LIBOR models, The Journal of Computational Finance, vol.3, issue.1, pp.5-39, 1999.
DOI : 10.21314/JCF.1999.037

P. W. Glynn, Likelihood ratio gradient estimation: an overview, Proceedings of the Winter Simulation Conference, pp.366-374, 1987.
DOI : 10.21236/ADA197085

E. Gobet and J. P. Lemor, Numerical solution of BSDEs using empirical regression methods: theory and practice, Proceedings of the Fifth Colloquium on BSDEs, 2006.

E. Gobet, J. P. Lemor, and X. Warin, A regression-based Monte Carlo method to solve backward stochastic differential equations, The Annals of Applied Probability, vol.15, issue.3, pp.2172-2202, 2005.
DOI : 10.1214/105051605000000412

URL : https://doi.org/10.1214/105051605000000412

E. Gobet and R. Munos, Sensitivity Analysis Using It??--Malliavin Calculus and Martingales, and Application to Stochastic Optimal Control, SIAM Journal on Control and Optimization, vol.43, issue.5, pp.1676-1713, 2005.
DOI : 10.1137/S0363012902419059

A. Green, KVA: Capital valuation adjustment Available at: https://arxiv.org/abs, 1405.
DOI : 10.2139/ssrn.2400324

URL : http://arxiv.org/pdf/1405.0515

J. Gregory, Counterparty credit risk, the new challenge for global financial markets. Applications of Mathematics, 2010.

J. Gregory, The xVA Challenge: counterparty credit risk, funding, collateral and capital. Wiley series in financial engineering, 2015.
DOI : 10.1002/9781119109440

A. Griewank, On automatic differentiation, Mathematical Programming: Recent Developments and Applications, pp.83-108, 1989.

A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algorithmic differentiation, Frontiers in Applied Mathematics. SIAM, 2008.
DOI : 10.1137/1.9780898717761

A. Griewank and A. Walther, ADOL-C: A Package for the Automatic differentiation of algorithm written in C/C++, 2010.

M. Grundmann and M. Masmodi, MIPAD: an AD package, 2000.

A. L. Haji-ali, F. Nobile, and R. Tempon, Multi-index Monte Carlo: when sparsity meets sampling, Numerische Mathematik, vol.125, issue.4, pp.767-806, 2016.
DOI : 10.1007/978-3-642-27440-4_41

URL : http://arxiv.org/pdf/1405.3757.pdf

M. Harris, Optimizing Parallel Reduction in CUDA, 2012.

L. Hascoët and V. Pascual, The Tapenade automatic differentiation tool, ACM Transactions on Mathematical Software, vol.39, issue.3, p.2013
DOI : 10.1145/2450153.2450158

S. Heinrich, Monte Carlo Complexity of Global Solution of Integral Equations, Journal of Complexity, vol.14, issue.2, pp.151-175, 1998.
DOI : 10.1006/jcom.1998.0471

URL : https://doi.org/10.1006/jcom.1998.0471

S. Heinrich, The Multilevel Method of Dependent Tests, Advances in Stochastic Simulation Methods, Statistics for Industry and Technology, pp.47-62, 2000.
DOI : 10.1007/978-1-4612-1318-5_4

URL : http://www.uni-kl.de/AG-Heinrich/papers/mlmdt98.pdf

S. Heinrich, Multilevel Monte Carlo Methods, Lecture Notes in Computer Science, vol.2179, pp.58-67, 2001.
DOI : 10.1007/3-540-45346-6_5

C. Herrera and L. Paulot, Parallel American Monte Carlo, SSRN Electronic Journal, 2014.
DOI : 10.2139/ssrn.2421138

S. L. Heston, A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies, vol.6, issue.2, pp.327-343, 1993.
DOI : 10.1016/0304-405X(87)90009-2

M. Hintermüller, K. Ito, and K. Kunish, The Primal-Dual active set strategy as a Semi-smooth Newton method, SIAM Journal on Control and Optimization, vol.3, issue.13, pp.865-888, 2003.

Y. C. Ho and X. R. Cao, Perturbation analysis and optimization of queueing networks, Journal of Optimization Theory and Applications, vol.40, issue.4, pp.559-582, 1983.
DOI : 10.1007/BF00933971

R. J. Hogan, Fast Reverse-Mode Automatic Differentiation using Expression Templates in C++, ACM Transactions on Mathematical Software, vol.40, issue.4, pp.1-26, 2014.
DOI : 10.1175/1520-0469(1988)045<2123:AMMFAD>2.0.CO;2

C. Homescu, Adjoints and automatic (algorihmtic) differentiation in computational finance, 2011.
DOI : 10.2139/ssrn.1828503

URL : http://arxiv.org/abs/1107.1831

Y. Hu, Q. Lu, Z. Cao, J. J. Wang98-]-p, J. E. Hunt et al., Parallel simuation of high-dimensional American option pricing based on CPU versus MIC Concurrency and Computation: Practice and Experence Financial Derivatives in theory and practice. Wiley series in probability and statistics, pp.1110-1121, 2004.
DOI : 10.1002/cpe.3275

K. Ito and K. Kunisch, Semi???Smooth Newton Methods for Variational Inequalities of the First Kind, ESAIM: Mathematical Modelling and Numerical Analysis, vol.41, issue.1, pp.41-62, 2010.
DOI : 10.1007/978-1-4899-3614-1

URL : http://www.esaim-m2an.org/articles/m2an/pdf/2003/01/m2an0224.pdf

D. James, Intel Xeon Phi MIC Offload Programming Models Available at https, 2013.

R. A. Jarrow and F. Yu, Counterparty Risk and the Pricing of Defaultable Securities, The Journal of Finance, vol.29, issue.5, pp.1765-1799, 2001.
DOI : 10.2139/ssrn.155688

J. Jeffers, Intel Many Integrated Core Architecture: An Overview and Programming Models Available at https, 2012.

J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Performance Programming. Hardware and Architecture, United States of America, 2013.

J. Jeffers and J. Reinders, High Performance Parallelism Pears Volume Two. Hardware and Architecture, United States of America, 2015.

C. Joy, P. P. Boyle, and K. S. Tan, Quasi-Monte Carlo Methods in Numerical Finance, Management Science, vol.42, issue.6, pp.926-938, 1996.
DOI : 10.1287/mnsc.42.6.926

N. Karoui, Couverture des risques dans les marchés financiers Available at: www, 2004.

N. Karoui, C. Kapoudjian, and E. Pardoux, Reflected solutions of backward SDEs and related obstacle problem for PDE's. The Annals of Probability, pp.702-737, 1997.

N. Karoui and L. Mazliak, Backward Stochastic Differential Equations, Mathematics Series, vol.364, 1997.

N. Karoui, E. Pardoux, and M. C. Quenez, Reflected backward SDEs and American options. Numerical Methods in Finance, pp.215-231, 1997.

N. Karoui, S. Peng, and M. C. Quenez, Backward Stochastic Differential Equations in Finance, Mathematical Finance, vol.7, issue.1, pp.1-71, 1997.
DOI : 10.1111/1467-9965.00022

A. G. Kemna and A. C. Vorst, A pricing method for options based on average asset values, Journal of Banking & Finance, vol.14, issue.1, pp.113-129, 1990.
DOI : 10.1016/0378-4266(90)90039-5

L. Khodja, J. Girard, R. Couturier, and P. Spitéri, Parallel solution of American option derivatives on GPU clusters, Computers & Mathematics with Applications, vol.65, issue.11, pp.651830-1848, 2013.
DOI : 10.1016/j.camwa.2013.03.010

URL : https://hal.archives-ouvertes.fr/hal-01304085

D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors, A Hands-on Approach. Parallel Programming, United States of America, 2016.

P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations. Stochastic Modelling and Applied Probability, 1992.

H. Kunita, Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics, 1990.

C. Labart and J. Lelong, A parallel algorithm for solving BSDEs, Monte Carlo Methods and Applications, vol.19, issue.1, pp.11-39
DOI : 10.1515/mcma-2013-0001

URL : https://hal.archives-ouvertes.fr/hal-00680652

S. Larsen, E. Witchel, and S. P. Amarasingha, Increasing and detecting memory address congruence, Proceedings.International Conference on Parallel Architectures and Compilation Techniques, pp.18-29, 2002.
DOI : 10.1109/PACT.2002.1105970

URL : http://www.cag.lcs.mit.edu/commit/papers/02/Congruence-PACT-2002.ps

P. L. Ecuyer, A Unified View of the IPA, SF, and LR Gradient Estimation Techniques, Management Science, vol.36, issue.11, pp.1364-1383, 1990.
DOI : 10.1287/mnsc.36.11.1364

V. Lemaire and G. Pagès, Multilevel Richardson???Romberg extrapolation, Bernoulli, vol.23, issue.4A, pp.2643-2692, 2014.
DOI : 10.3150/16-BEJ822

URL : https://hal.archives-ouvertes.fr/hal-00920660

J. P. Lemor, E. Gobet, and X. Warin, Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations, Bernoulli, vol.12, issue.5, pp.889-916, 2006.
DOI : 10.3150/bj/1161614951

URL : https://hal.archives-ouvertes.fr/hal-00394976

E. Levy, Pricing European average rate currency options, Journal of International Money and Finance, vol.11, issue.5, pp.474-491, 1992.
DOI : 10.1016/0261-5606(92)90013-N

J. Lions, Y. Maday, and G. Turinici, R??solution d'EDP par un sch??ma en temps ??parar??el ??, Comptes Rendus Matématiques de l'Académie des Sciences, pp.661-668, 2000.
DOI : 10.1016/S0764-4442(00)01793-6

J. London, Modeling derivatives in C++ Wiley finance series, United States of America, 2005.

F. A. Longstaff and E. S. Schwartz, Valuing American Options by Simulation: A Simple Least-Squares Approach, Review of Financial Studies, vol.45, issue.1, pp.113-148, 2001.
DOI : 10.1016/0304-405X(77)90016-2

URL : http://www.math.ethz.ch/~hjfurrer/teaching/LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf

D. Lu, The XVA of Financial Derivatives: CVA, DVA and FVA Explained
DOI : 10.1057/9781137435842

J. Ma, P. Protter, J. San-martin, and S. Torres, Numerical method for forward stochastic differential equations, The Annals of Applied Probability, vol.12, pp.302-316, 2002.

J. Ma, J. Shen, and Y. Zhao, On Numerical Approximations of Forward-Backward Stochastic Differential Equations, SIAM Journal on Numerical Analysis, vol.46, issue.5, pp.2636-2661, 2009.
DOI : 10.1137/06067393X

URL : http://www.math.purdue.edu/~shen/pub/SINUM08_SDE.pdf

J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications, Lecture Notes in Mathematics, vol.1702, 1999.
DOI : 10.1007/978-3-540-48831-6

M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simulation, vol.8, issue.1, pp.3-30, 1998.
DOI : 10.1145/272991.272995

URL : http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf

C. Mbaye, G. Pagès, and F. Vrins, An Antithetic Approach of Multilevel Richardson-Romberg Extrapolation Estimator for Multidimensional SDES, NAA 2016, pp.482-491, 2017.
DOI : 10.1287/opre.1070.0496

URL : http://dial.uclouvain.be/downloader/downloader.php?pid=boreal:184499&datastream=PDF_01&disclaimer=29198efc42620b008e44c5a4a1b3923c4f76f03ba65a48dc7ddada81907a71b3

J. D. Mccalpin, Native Computing and Optimization on the Intel Xeon Phi Coprocessor Availabe at https, 2013.

G. N. Milstein and M. V. Tretyakov, Numerical Algorithms for Forward-Backward Stochastic Differential Equations, SIAM Journal on Scientific Computing, vol.28, issue.2, pp.561-582, 2006.
DOI : 10.1137/040614426

K. R. Miltersen, K. Sandmann, and D. Sondermann, Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates, The Journal of Finance, vol.12, issue.1, pp.409-430, 1997.
DOI : 10.1016/0956-5221(93)90004-C

URL : http://www.nhh.no/for/cv/miltersen/Krm95.pdf

R. L. Mishkov, Generalization of the formula of Faa di Bruno for a composite function with a vector argument, International Journal of Mathematics and Mathematical Sciences, vol.24, issue.7, pp.481-491, 2000.
DOI : 10.1155/S0161171200002970

A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg, OpenCL Programming Guide. Parallel Programming, United States of America, 2011.

M. Musiela and M. Ruykowski, Continuous-time term structure models: Forward measure approach [137] U. Naumann. The art of differentiating computer programs: an introduction to algorithmic differentiation . Software, Enivronments and Tools, Finance and Stochastics, vol.4, pp.261-929, 1997.
DOI : 10.1007/s007800050025

URL : https://link.springer.com/content/pdf/10.1007%2Fs007800050025.pdf

D. Nualart, The Malliavin calculus and related topics. Probability and its Applications, 2006.
DOI : 10.1007/978-1-4757-2437-0

G. Pagès, Multistep Richardson-Romberg extrapolation: remarks on variance and complexity

M. C. Applications, , pp.37-70, 2007.

G. Pagès, Introduction to numerical probability for finance, p.354, 2016.

G. Pagès, O. Pironneau, and G. Sall, The parareal algorithm for American options, Comptes Rendus Mathématiques de l'Académie des Sciences, pp.1132-1138, 2016.
DOI : 10.1016/j.crma.2016.09.010

G. Pagès, O. Pironneau, and G. Sall, Second senstivities in quantitative finance, ESAIM, Proceedings and Surveys, pp.1-10, 2017.

G. Pagès, O. Pironneau, and G. Sall, Vibrato and automatic differentiation for high order derivatives and sensitivities of financial options, Risk Journal, The Journal of Computational Finance, 2017.

G. Pagès and J. Printems, Functional quantization for numerics with an application to option pricing, Monte Carlo Methods and Applications, vol.65, issue.4, pp.407-446, 2005.
DOI : 10.1163/156939603322663321

G. Pagès and B. Wilbertz, GPGPUs in computational finance: massive parallel computing for American style options. Concurrency and Computation: Practice and Experience, pp.837-848, 2012.

E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, Lecture Notes in Computation and Information Sciences, vol.76, pp.200-217, 1992.
DOI : 10.1007/BFb0007334

E. Pardoux and A. R??canu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, volume 69 of Stochastic Modelling and Applied Probability, United States of America, 2014.
DOI : 10.1007/978-3-319-05714-9

P. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems & Control Letters, vol.14, issue.1, pp.55-61, 1990.
DOI : 10.1016/0167-6911(90)90082-6

S. Peng, A Generalized dynamic programming principle and hamilton-jacobi-bellman equation, Stochastics and Stochastic Reports, vol.114, issue.4, pp.119-134, 1992.
DOI : 10.1007/BFb0120094

S. Peng, Backward stochastic differential equations and applications to optimal control, Applied Mathematics & Optimization, vol.6, issue.No. 2, pp.125-144, 1993.
DOI : 10.1007/BF01195978

Y. Peng, B. Gong, H. Liu, and B. Dai, Option pircing on the GPU with backward stochastic differential equation, Algorithms and Programming, pp.19-23, 2011.
DOI : 10.1109/paap.2011.12

URL : https://www.researchgate.net/profile/Ying_Peng16/publication/239764031_Option_Pricing_on_the_GPU_with_Backward_Stochastic_Differential_Equation/links/54f7c9110cf28d6dec9f138b.pdf

Y. Peng, H. Liu, S. Yang, and B. Gong, Parallel algorithm for BSDEs based high dimensional american option pricing on the GPU, Journal of Computational Information Systems, vol.10, issue.2, pp.763-771, 2014.

H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications, volume 61 of Stochastid Modelling and Applied Probability, 2009.
DOI : 10.1007/978-3-540-89500-8

URL : https://link.springer.com/content/pdf/bfm%3A978-3-540-89500-8%2F1.pdf

O. Pironneau, Automatic differentiation for financial engineering, 2008.

J. Pitman and M. Yor, A decomposition of Bessel Bridges, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.53, issue.no. 1, pp.425-452, 1982.
DOI : 10.1007/978-3-642-62025-6

M. C. Quenez, Méthodes de contrôle stochastique en Finance, 1993.

R. Rebonato, Interest rate options models: understanding, analysing and using models for exotic interest rate options Wiley series in financial engineering, John Wiley& Sons Ltd, 1998.

R. Rebonato, Modern pricing of interest rate derivatives: the LIBOR market model and beyond
DOI : 10.1515/9781400829323

N. Reed, Square deal, Risk, vol.7, issue.6, 1994.

N. Reed, The power and the glory, Risk, vol.8, issue.8, 1995.

R. Reed, An Introduction to Intel Xeon Phi Coprocessor Available at https://software. intel.com/sites, 2012.

A. Reghai, A. Langnau, and A. Ben-haj-yedder, Decoding the american vanilla prices Available at: https, 2013.
DOI : 10.2139/ssrn.2347910

M. Reiman and A. Weiss, Sensitivity Analysis for Simulations via Likelihood Ratios, Operations Research, vol.37, issue.5, pp.830-844, 1989.
DOI : 10.1287/opre.37.5.830

E. Reiner and M. Rubinstein, Breaking down the barriers, Risk, vol.4, pp.28-35, 1991.

C. H. Rhee and P. W. Glynn, Unbiased Estimation with Square Root Convergence for SDE Models, Operations Research, vol.63, issue.5, pp.1026-1043, 2015.
DOI : 10.1287/opre.2015.1404

M. Rubinstein, Options for the undecided. Risk Magazine, Black Scholes to Black Holes, pp.187-189, 1992.

R. Rubinstein, Sensitivity Analysis and Performance Extrapolation for Computer Simulation Models, Operations Research, vol.37, issue.1, pp.72-81, 1989.
DOI : 10.1287/opre.37.1.72

M. J. Ruijter and C. W. Oosterlee, A Fourier Cosine Method for an Efficient Computation of Solutions to BSDEs, SIAM Journal on Scientific Computing, vol.37, issue.2, pp.859-889, 2015.
DOI : 10.1137/130913183

URL : http://ta.twi.tudelft.nl/mf/users/oosterle/oosterlee/BCOS.pdf

, A Guide to (Auto)-Vectorization with Intel C++ Compilers, 2013. iii+38 pp., Available at https://software.intel.com/sites

J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming . Parallel Programming, United States of America, 2010.

D. Santacreu, Introduction au Calcul parallèle avec la bibliothèque MPI (Message Passing Interface) Available at https, 2008.

M. Scarpino, OpenCL in Action: How to Accelerate Graphics and Computations. Parallel Programming . Manning Publications, Shelter Island, United States of America, 2011.

J. Sidenius, Credit valuation adjustment in derivatives trading, 2013.

A. L. Speight, A multilevel approach to control variates, The Journal of Computational Finance, vol.12, issue.4, pp.3-27, 2009.
DOI : 10.21314/JCF.2009.201

W. Squire and G. Trapp, Using Complex Variables to Estimate Derivatives of Real Functions, SIAM Review, vol.40, issue.1, pp.110-112, 1998.
DOI : 10.1137/S003614459631241X

R. Suri and M. Zazanis, /1 Queue, Management Science, vol.34, issue.1, pp.39-64, 1988.
DOI : 10.1287/mnsc.34.1.39

R. Tay, OpenCL Parallel Programming Development Cookbook. Graphics & Design, 2011.

J. N. Tsitsiklis and B. Van-roy, Regression methods for pricing complex American-style options, Pricing high-dimensional American options on hybrid CPU/FPGA systems. FPGA Based Accelerators for Financial Applications, pp.694-703, 2001.
DOI : 10.1109/72.935083

J. M. Villalobos, Monte Carlo methods for forward backward stochastic differential equations in High dimensions, 2007.

J. Wan, K. Lai, A. Kolkiewicz, and K. Tan, A parallel quasi-Monte Carlo approach to pricing multidimensional American options, International Journal of High Performance Computing and Networking, vol.4, issue.5/6, pp.321-330, 2006.
DOI : 10.1504/IJHPCN.2006.013487

N. Wiener, The Human Use of Human Beings: Cybernetics and Society, 1954.

J. Zhang, Some fine properties of backward stochastic differential equations, 2001.

J. Zhang, A numerical scheme for BSDEs, The Annals of Applied Probability, vol.14, issue.1, pp.459-488, 2004.
DOI : 10.1214/aoap/1075828058

S. H. Zhu and M. Pykhin, A guide to modeling counterparty credit risk, GARP Risk Review, 2007.