M. Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system, ESAIM: Control, Optimisation and Calculus of Variations, vol.299, issue.4, pp.934-968, 2009.
DOI : 10.1016/j.matpur.2007.04.002

URL : https://hal.archives-ouvertes.fr/hal-00865811

M. Badra, Lyapunov Function and Local Feedback Boundary Stabilization of the Navier???Stokes Equations, SIAM Journal on Control and Optimization, vol.48, issue.3, pp.1797-1830, 2009.
DOI : 10.1137/070682630

URL : https://hal.archives-ouvertes.fr/hal-00865812

M. Badra, S. Ervedoza, and S. Guerrero, Local controllability to trajectories for non-homogeneous incompressible Navier???Stokes equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.33, issue.2, pp.529-574, 2016.
DOI : 10.1016/j.anihpc.2014.11.006

URL : https://hal.archives-ouvertes.fr/hal-01581087

H. Bae, Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete Contin, Dyn. Syst, vol.29, issue.3, pp.769-801, 2011.

L. Bañas, M. Klein, and A. Prohl, Control of Interface Evolution in Multiphase Fluid Flows, SIAM Journal on Control and Optimization, vol.52, issue.4, pp.2284-2318, 2014.
DOI : 10.1137/120896530

V. Barbu, I. Lasiecka, and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Memoirs of the American Mathematical Society, vol.181, issue.852, p.128, 2006.
DOI : 10.1090/memo/0852

J. T. Beale, The initial value problem for the navier-stokes equations with a free surface, Communications on Pure and Applied Mathematics, vol.20, issue.3, pp.359-392, 1981.
DOI : 10.1002/cpa.3160340305

J. T. Beale, Large-time regularity of viscous surface waves, Archive for Rational Mechanics and Analysis, vol.38, issue.4, pp.307-35284, 1983.
DOI : 10.1007/BF02761845

A. Bensoussan, G. Da-prato, M. C. Delfour, and S. K. Mitter, Representation and control of infinite dimensional systems. Systems & Control : Foundations & Applications, 2007.
DOI : 10.1007/978-1-4612-2750-2

F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, Applied Mathematical Sciences, vol.183, 2013.
DOI : 10.1007/978-1-4614-5975-0

URL : https://hal.archives-ouvertes.fr/hal-00777731

D. Bresch and B. Desjardins, Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model, Communications in Mathematical Physics, vol.238, issue.1, pp.211-223, 2003.
DOI : 10.1007/s00220-003-0859-8

D. Bresch, B. Desjardins, and C. Lin, On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems, Communications in Partial Differential Equations, vol.30, issue.3-4, pp.3-4843, 2003.
DOI : 10.1007/BF02106835

S. Chowdhury, D. Mitra, M. Ramaswamy, and M. Renardy, Null controllability of the linearized compressible Navier Stokes system in one dimension, Journal of Differential Equations, vol.257, issue.10, pp.3813-3849, 2014.
DOI : 10.1016/j.jde.2014.07.010

J. Coron, On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl, vol.75, issue.92, pp.155-188, 1996.

J. Coron and A. V. Fursikov, Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary, Russian J. Math. Phys, vol.4, issue.4, pp.429-448, 1996.

I. V. Denisova, A priori estimates for the solution of the linear nonstationary problem connected with the motion of a drop in a liquid medium, Proc. Steklov Inst. Math, pp.3-21, 1990.

, Introduction

I. V. Denisova, Problem of the motion of two viscous incompressible fluids separated by a closed free interface, Mathematical problems for Navier-Stokes equations (Centro, pp.31-40, 1993.
DOI : 10.1007/BF00995127

I. V. Denisova, Global solvability of the problem on the motion of two fluids without surface tension, Journal of Mathematical Sciences, vol.51, issue.5, pp.19-39, 2007.
DOI : 10.1007/978-3-540-39189-0_4

I. V. Denisova, Global L2-solvability of a problem governing two-phase fluid motion without surface tension, Portugaliae Mathematica, vol.71, issue.1, pp.1-24, 2014.
DOI : 10.4171/PM/1938

I. V. Denisova and V. A. Solonnikov, Solvability of a linearized problem on the motion of a drop in a fluid flow, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii, vol.171, issue.184, pp.53-65, 1989.

I. V. Denisova and V. A. Solonnikov, Solvability in Hölder spaces of a model initial-boundary value problem generated by a problem on the motion of two fluids

. Leningrad, Otdel. Mat. Inst. Steklov. (LOMI)Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsi? ?, vol.188, issue.186, pp.5-44, 1991.

R. H. Dillon and L. J. Fauci, An Integrative Model of Internal Axoneme Mechanics and External Fluid Dynamics in Ciliary Beating, Journal of Theoretical Biology, vol.207, issue.3, pp.415-430, 2000.
DOI : 10.1006/jtbi.2000.2182

R. H. Dillon, L. J. Fauci, and C. Omoto, Mathematical modeling of axoneme mechanics and fluid dynamics in ciliary and sperm motility, Progress in partial differential equations, pp.745-757, 2002.

S. Ervedoza, O. Glass, and S. Guerrero, Local exact controllability for the two-and threedimensional compressible Navier-Stokes equations, Comm. Partial Differential Equations, issue.11, pp.411660-1691, 2016.

S. Ervedoza, O. Glass, S. Guerrero, and J. Puel, Local Exact Controllability for the One-Dimensional Compressible Navier???Stokes Equation, Archive for Rational Mechanics and Analysis, vol.5, issue.9, pp.189-238, 2012.
DOI : 10.1080/03605302.2011.596605

URL : https://hal.archives-ouvertes.fr/hal-00782475

C. Fabre and G. Lebeau, Prolongement Unique Des Solutions, Communications in Partial Differential Equations, vol.21, issue.3-4, pp.573-596, 1996.
DOI : 10.1512/iumj.1980.29.29031

L. J. Fauci and C. S. Peskin, A computational model of aquatic animal locomotion, Journal of Computational Physics, vol.77, issue.1, pp.85-108, 1988.
DOI : 10.1016/0021-9991(88)90158-1

E. Fernández-cara, S. Guerrero, O. Y. Imanuvilov, and J. Puel, Local exact controllability of the Navier???Stokes system, Journal de Math??matiques Pures et Appliqu??es, vol.83, issue.12, pp.831501-1542, 2004.
DOI : 10.1016/j.matpur.2004.02.010

A. L. Fogelson, A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting, Journal of Computational Physics, vol.56, issue.1, pp.111-134, 1984.
DOI : 10.1016/0021-9991(84)90086-X

A. V. Fursikov, Stabilizability of Two-Dimensional Navier???Stokes Equations with Help of a Boundary Feedback Control, Journal of Mathematical Fluid Mechanics, vol.3, issue.3, pp.259-301, 2001.
DOI : 10.1007/PL00000972

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control, Partial differential equations and applications, pp.289-314, 2004.
DOI : 10.3934/dcds.2004.10.289

O. Glass, Exact boundary controllability of 3-D??Euler??equation, ESAIM: Control, Optimisation and Calculus of Variations, vol.44, pp.1-44, 2000.
DOI : 10.1007/BF01223672

O. Glass, On the controllability of the 1-D isentropic Euler equation, Journal of the European Mathematical Society, vol.9, issue.3, pp.427-486, 2007.
DOI : 10.4171/JEMS/85

URL : https://hal.archives-ouvertes.fr/hal-00813700

O. Glass, On the controllability of the non-isentropic 1-D Euler equation, Journal of Differential Equations, vol.257, issue.3, pp.638-719, 2014.
DOI : 10.1016/j.jde.2014.04.013

URL : https://hal.archives-ouvertes.fr/hal-00813700

Y. Guo and I. Tice, Decay of viscous surface waves without surface tension in horizontally infinite domains, Analysis & PDE, vol.44, issue.6, pp.1429-1533, 2013.
DOI : 10.1007/s00222-010-0288-1

Y. Guo and I. Tice, Local well-posedness of the viscous surface wave problem without surface tension, Analysis & PDE, vol.44, issue.2, pp.287-369, 2013.
DOI : 10.1002/cpa.20226

O. Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM: Control, Optimisation and Calculus of Variations, vol.491, pp.39-72, 2001.
DOI : 10.1007/978-1-4612-0431-2

S. Kesavan and J. Raymond, On a degenerate Riccati equation, Control Cybernet, vol.38, issue.4B, pp.1393-1410, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00628695

M. Köhne, J. Prüss, and M. Wilke, On quasilinear parabolic evolution equations in weighted L p -spaces, Journal of Evolution Equations, vol.5, issue.2, pp.443-463, 2010.
DOI : 10.1007/s00013-004-0585-2

H. Kull, Theory of the Rayleigh-Taylor instability, Physics Reports, vol.206, issue.5, pp.197-325, 1991.
DOI : 10.1016/0370-1573(91)90153-D

J. , L. Rousseau, and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var, vol.18, issue.3, pp.712-747, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00351736

T. Li and B. Rao, Exact Boundary Controllability for Quasi-Linear Hyperbolic Systems, SIAM Journal on Control and Optimization, vol.41, issue.6, pp.1748-1755, 2003.
DOI : 10.1137/S0363012901390099

F. Lin and J. Tong, Solvability of the Stokes Immersed Boundary Problem in Two Dimension. ArXiv e-prints, 2017.

D. Maity, Some controllability results for linearized compressible navier???stokes system, ESAIM: Control, Optimisation and Calculus of Variations, vol.21, issue.4, pp.1002-1028, 2015.
DOI : 10.1051/cocv/2014056

URL : http://arxiv.org/pdf/1410.4351

Y. Mori, A. Rodenberg, and D. Spirn, Well-posedness and global behavior of the Peskin problem of an immersed elastic filament in Stokes flow. ArXiv e-prints, 2017.

T. Nishida, Y. Teramoto, and H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion, Journal of Mathematics of Kyoto University, vol.44, issue.2, pp.271-323, 2004.
DOI : 10.1215/kjm/1250283555

URL : http://doi.org/10.1215/kjm/1250283555

A. Nouri and F. Poupaud, An Existence Theorem for the Multifluid Navier-Stokes Problem, Journal of Differential Equations, vol.122, issue.1, pp.71-88, 1995.
DOI : 10.1006/jdeq.1995.1139

URL : https://doi.org/10.1006/jdeq.1995.1139

C. S. Peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics, vol.10, issue.2, pp.252-271, 1972.
DOI : 10.1016/0021-9991(72)90065-4

C. S. Peskin, The immersed boundary method A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid, Acta Numer. J. Comput. Phys, vol.11, issue.812, pp.479-517372, 1989.

N. Petit, Control problems for one-dimensional fluids and reactive fluids with moving interfaces In Advances in the theory of control, signals and systems with physical modeling, Lect. Notes Control Inf. Sci, vol.407, pp.323-337, 2010.

J. Prüss and G. Simonett, On the Rayleigh-Taylor instability for the two-phase Navier-Stokes equations, Indiana University Mathematics Journal, vol.59, issue.6, pp.1853-1871, 2010.
DOI : 10.1512/iumj.2010.59.4145

J. Prüss and G. Simonett, On the two-phase Navier???Stokes equations with surface tension, Interfaces and Free Boundaries, vol.12, issue.3, pp.311-345, 2010.
DOI : 10.4171/IFB/237

L. Ravanbod, D. Noll, J. Raymond, and J. Buchot, Robustified H2-control of a system with large state dimension, European Journal of Control, vol.31, pp.59-71, 2016.
DOI : 10.1016/j.ejcon.2016.05.001

L. Rayleigh, Analytic solutions of the rayleigh equation for linear density profiles, Proc. London Math. Soc, pp.170-177, 1883.

J. Raymond, Feedback Boundary Stabilization of the Two-Dimensional Navier--Stokes Equations, SIAM Journal on Control and Optimization, vol.45, issue.3, pp.790-828, 2006.
DOI : 10.1137/050628726

URL : https://hal.archives-ouvertes.fr/hal-00629816

J. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier???Stokes equations, Journal de Math??matiques Pures et Appliqu??es, vol.87, issue.6, pp.627-669, 2007.
DOI : 10.1016/j.matpur.2007.04.002

URL : https://hal.archives-ouvertes.fr/hal-00635929

J. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers, Discrete Contin. Dyn. Syst, vol.27, issue.3, pp.1159-1187, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00629816

J. Raymond and M. Vanninathan, A fluid???structure model coupling the Navier???Stokes equations and the Lam?? system, Journal de Math??matiques Pures et Appliqu??es, vol.102, issue.3, pp.546-596, 2014.
DOI : 10.1016/j.matpur.2013.12.004

V. A. Solonnikov, SOLVABILITY OF A PROBLEM ON THE MOTION OF A VISCOUS INCOMPRESSIBLE FLUID BOUNDED BY A FREE SURFACE, Mathematics of the USSR-Izvestiya, vol.11, issue.6, pp.1388-1424, 1977.
DOI : 10.1070/IM1977v011n06ABEH001770

J. Stockie, Immersed boundary method : Recent developments in analysis, algorithms and applications, 2015.

S. Takahashi, On global weak solutions of the nonstationary two-phase Navier-Stokes flow, Adv. Math. Sci. Appl, vol.5, issue.1, pp.321-342, 1995.

N. Tanaka, Global existence of two phase nonhomogeneous viscous incompbessible fluid flow, Communications in Partial Differential Equations, vol.11, issue.1-2, pp.41-81, 1993.
DOI : 10.1002/mma.1670050129

A. Tani and N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension, Archive for Rational Mechanics and Analysis, vol.32, issue.4, pp.303-314, 1995.
DOI : 10.1007/BF00375142

G. Taylor, The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes. I, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.201, issue.1065, pp.192-196, 1950.
DOI : 10.1098/rspa.1950.0052

R. Temam, Navier Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications, 1977.
DOI : 10.1115/1.3424338

M. Badra, S. Ervedoza, and S. Guerrero, Local controllability to trajectories for nonhomogeneous incompressible Navier-Stokes equations. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01581087

D. Bresch and B. Desjardins, Existence of Global Weak Solutions for a 2D Viscous Shallow Water Equations and Convergence to the Quasi-Geostrophic Model, Communications in Mathematical Physics, vol.238, issue.1, pp.211-223, 2003.
DOI : 10.1007/s00220-003-0859-8

D. Bresch, B. Desjardins, and C. Lin, On Some Compressible Fluid Models: Korteweg, Lubrication, and Shallow Water Systems, Communications in Partial Differential Equations, vol.30, issue.3-4, pp.3-4843, 2003.
DOI : 10.1007/BF02106835

F. W. Chaves-silva, L. Rosier, and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control, Journal de Math??matiques Pures et Appliqu??es, vol.101, issue.2, pp.198-222, 2014.
DOI : 10.1016/j.matpur.2013.05.009

S. Chowdhury, M. Debanjana, M. Ramaswamy, and M. Renardy, Null controllability of the linearized compressible Navier Stokes system in one dimension, Journal of Differential Equations, vol.257, issue.10, pp.3813-3849, 2014.
DOI : 10.1016/j.jde.2014.07.010

S. Chowdhury, M. Ramaswamy, and J. Raymond, Controllability and Stabilizability of the Linearized Compressible Navier--Stokes System in One Dimension, SIAM Journal on Control and Optimization, vol.50, issue.5, pp.2959-2987, 2012.
DOI : 10.1137/110846683

URL : https://hal.archives-ouvertes.fr/hal-00876376

J. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM: Control, Optimisation and Calculus of Variations, vol.1, pp.35-7596, 1995.
DOI : 10.1051/cocv:1996102

J. Coron, On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl, vol.75, issue.92, pp.155-188, 1996.

J. Coron, Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs, 2007.

J. Coron and A. V. Fursikov, Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary, Russian J. Math. Phys, vol.4, issue.4, pp.429-448, 1996.

S. Ervedoza, O. Glass, S. Guerrero, and J. Puel, Local Exact Controllability for the One-Dimensional Compressible Navier???Stokes Equation, Archive for Rational Mechanics and Analysis, vol.5, issue.9, pp.189-238, 2012.
DOI : 10.1080/03605302.2011.596605

URL : https://hal.archives-ouvertes.fr/hal-00782475

E. Fernández-cara, S. Guerrero, O. Y. Imanuvilov, and J. Puel, Local exact controllability of the Navier???Stokes system, Journal de Math??matiques Pures et Appliqu??es, vol.83, issue.12, pp.831501-1542, 2004.
DOI : 10.1016/j.matpur.2004.02.010

A. V. Fursikov, O. Yu, and . Èmanuilov, Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk, pp.93-146, 1999.
DOI : 10.1070/RM1999v054n03ABEH000153

A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations, Lecture Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, vol.34, 1996.

O. Glass, Exact boundary controllability of 3-D??Euler??equation, ESAIM: Control, Optimisation and Calculus of Variations, vol.44, pp.1-44, 2000.
DOI : 10.1007/BF01223672

URL : http://www.esaim-cocv.org/articles/cocv/pdf/2000/01/cocvVol5-1.pdf

O. Glass, On the controllability of the 1-D isentropic Euler equation, Journal of the European Mathematical Society, vol.9, issue.3, pp.427-486, 2007.
DOI : 10.4171/JEMS/85

URL : https://hal.archives-ouvertes.fr/hal-00813700

]. O. Glass, On the controllability of the non-isentropic 1-D Euler equation, Journal of Differential Equations, vol.257, issue.3, pp.638-719, 2014.
DOI : 10.1016/j.jde.2014.04.013

URL : https://hal.archives-ouvertes.fr/hal-00813700

O. Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM: Control, Optimisation and Calculus of Variations, vol.491, pp.39-72, 2001.
DOI : 10.1007/978-1-4612-0431-2

T. Li and B. Rao, Exact Boundary Controllability for Quasi-Linear Hyperbolic Systems, SIAM Journal on Control and Optimization, vol.41, issue.6, pp.1748-1755, 2003.
DOI : 10.1137/S0363012901390099

D. Maity, Some controllability results for linearized compressible navier???stokes system, ESAIM: Control, Optimisation and Calculus of Variations, vol.21, issue.4, pp.1002-1028
DOI : 10.1051/cocv/2014056

URL : http://arxiv.org/pdf/1410.4351

P. Martin, L. Rosier, and P. Rouchon, Null Controllability of the Structurally Damped Wave Equation with Moving Control, SIAM Journal on Control and Optimization, vol.51, issue.1, pp.660-684, 2013.
DOI : 10.1137/110856150

URL : https://hal.archives-ouvertes.fr/hal-00829857

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, Journal of Mathematics of Kyoto University, vol.20, issue.1, pp.67-104, 1980.
DOI : 10.1215/kjm/1250522322

L. Rosier and P. Rouchon, On the controllability of a wave equation with structural damping, Int. J. Tomogr. Stat, vol.5, issue.W07, pp.79-84, 2007.

J. Simon, Compact sets in the spaceL p (O,T; B), Annali di Matematica Pura ed Applicata, vol.287, issue.1, pp.65-96, 1987.
DOI : 10.5802/aif.68

H. , Triebel Interpolation theory, function spaces, differential operators, 1978.

R. H. Dillon, L. J. Fauci, and C. Omoto, Mathematical modeling of axoneme mechanics and fluid dynamics in ciliary and sperm motility, Progress in partial differential equations, pp.745-757, 2002.

L. J. Fauci and C. S. Peskin, A computational model of aquatic animal locomotion, Journal of Computational Physics, vol.77, issue.1, pp.85-108, 1988.
DOI : 10.1016/0021-9991(88)90158-1

A. L. Fogelson, A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting, Journal of Computational Physics, vol.56, issue.1, pp.111-134, 1984.
DOI : 10.1016/0021-9991(84)90086-X

G. Grubb and V. A. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods., MATHEMATICA SCANDINAVICA, vol.69, issue.2, pp.217-290, 1991.
DOI : 10.7146/math.scand.a-12380

Y. Hataya, Global solution of two-layer navier-stokes flow. Nonlinear Analysis: Theory, Methods and Applications, pp.5-71409, 2005.

M. Köhne, J. Prüss, and M. Wilke, On quasilinear parabolic evolution equations in weighted L p -spaces, Journal of Evolution Equations, vol.5, issue.2, pp.443-463, 2010.
DOI : 10.1007/s00013-004-0585-2

F. Lin and J. Tong, Solvability of the Stokes Immersed Boundary Problem in Two Dimension. ArXiv e-prints, 2017.

J. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, 1972.

J. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, 1972.
DOI : 10.1007/978-3-642-65393-3

Y. Mori, A. Rodenberg, and D. Spirn, Well-posedness and global behavior of the Peskin problem of an immersed elastic filament in Stokes flow. ArXiv e-prints, 2017.

C. S. Peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics, vol.10, issue.2, pp.252-271, 1972.
DOI : 10.1016/0021-9991(72)90065-4

C. S. Peskin, The immersed boundary method, Acta Numer, vol.11, pp.479-517, 2002.

C. S. Peskin and D. M. Mcqueen, A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid, Journal of Computational Physics, vol.81, issue.2, pp.372-405, 1989.
DOI : 10.1016/0021-9991(89)90213-1

C. S. Peskin and B. F. Printz, Improved Volume Conservation in the Computation of Flows with Immersed Elastic Boundaries, Journal of Computational Physics, vol.105, issue.1, pp.33-46, 1993.
DOI : 10.1006/jcph.1993.1051

J. Prüss and G. Simonett, On the two-phase Navier???Stokes equations with surface tension, Interfaces and Free Boundaries, vol.12, issue.3, pp.311-345, 2010.
DOI : 10.4171/IFB/237

J. Raymond and M. Vanninathan, A fluid???structure model coupling the Navier???Stokes equations and the Lam?? system, Journal de Math??matiques Pures et Appliqu??es, vol.102, issue.3, pp.546-596, 2014.
DOI : 10.1016/j.matpur.2013.12.004

T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, volume 3 of de Gruyter Series in Nonlinear Analysis and Applications, 1996.

, BIBLIOGRAPHY

J. Stockie, Immersed boundary method: Recent developments in analysis, algorithms and applications, 2015.

N. Tanaka, Global existence of two phase nonhomogeneous viscous incompbessible fluid flow, Communications in Partial Differential Equations, vol.11, issue.1-2, pp.41-81, 1993.
DOI : 10.1002/mma.1670050129

N. Tanaka, Two-phase free boundary problem for viscous incompressible thermocapillary convection, Japan. J. Math. (N.S.), vol.21, issue.1, pp.1-42, 1995.

B. A. Ton, Time-dependent Stokes equations with measure data, Abstract and Applied Analysis, vol.2003, issue.17, pp.953-973, 2003.
DOI : 10.1155/S1085337503308012

B. A. Ton, A free boundary problem for the Navier???Stokes equations with measure data, Nonlinear Analysis: Theory, Methods & Applications, vol.64, issue.1, pp.1-21, 2006.
DOI : 10.1016/j.na.2005.05.038

M. Wilke, Rayleigh-Taylor instability for the two-phase Navier-Stokes equations with surface tension in cylindrical domains ArXiv e-prints, 2017.

L. Zhu and C. S. Peskin, Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the Immersed Boundary Method, Journal of Computational Physics, vol.179, issue.2, pp.452-468, 2002.
DOI : 10.1006/jcph.2002.7066

H. Regularity, . For, . Closed, . Extended, and . System,

H. Abels, On generalized solutions of two-phase flows for viscous incompressible fluids, Interfaces and Free Boundaries, vol.9, issue.1, pp.31-65, 2007.
DOI : 10.4171/IFB/155

G. Allain, Small-time existence for the Navier-Stokes equations with a free surface, Applied Mathematics & Optimization, vol.125, issue.1, pp.37-50, 1987.
DOI : 10.1007/BF01442184

M. Badra, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system, ESAIM: Control, Optimisation and Calculus of Variations, vol.299, issue.4, pp.934-968, 2009.
DOI : 10.1016/j.matpur.2007.04.002

URL : https://hal.archives-ouvertes.fr/hal-00865811

M. Badra, Lyapunov Function and Local Feedback Boundary Stabilization of the Navier???Stokes Equations, SIAM Journal on Control and Optimization, vol.48, issue.3, pp.1797-1830, 2009.
DOI : 10.1137/070682630

URL : https://hal.archives-ouvertes.fr/hal-00865812

H. Bae, Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete Contin, Dyn. Syst, vol.29, issue.3, pp.769-801, 2011.

V. Barbu, I. Lasiecka, and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Memoirs of the American Mathematical Society, vol.181, issue.852, p.128, 2006.
DOI : 10.1090/memo/0852

J. T. Beale, The initial value problem for the navier-stokes equations with a free surface, Communications on Pure and Applied Mathematics, vol.20, issue.3, pp.359-392, 1981.
DOI : 10.1002/cpa.3160340305

J. T. Beale, Large-time regularity of viscous surface waves, Archive for Rational Mechanics and Analysis, vol.38, issue.4, pp.307-35284, 1983.
DOI : 10.1007/BF02761845

J. T. Beale and T. Nishida, Large-Time Behavior of Viscous Surface Waves, Recent topics in nonlinear PDE, II (Sendai, pp.1-14, 1984.
DOI : 10.1016/S0304-0208(08)72355-7

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA154805&Location=U2&doc=GetTRDoc.pdf

A. Bensoussan, G. Da-prato, M. C. Delfour, and S. K. Mitter, Representation and control of infinite dimensional systems. Systems & Control: Foundations & Applications, 2007.
DOI : 10.1007/978-1-4612-2750-2

D. Coutand and S. Shkoller, Unique solvability of the free-boundary Navier-Stokes equations with surface tension. ArXiv Mathematics e-prints, 2002.

I. V. Denisova, A priori estimates for the solution of the linear nonstationary problem connected with the motion of a drop in a liquid medium, Proc. Steklov Inst. Math, pp.3-21, 1990.

I. V. Denisova, Solvability in Hölder spaces of a linear problem on the motion of two fluids separated by a closed surface, Algebra i Analiz, vol.5, issue.4, pp.122-148, 1993.

I. V. Denisova, Problem of the motion of two viscous incompressible fluids separated by a closed free interface, Mathematical problems for Navier-Stokes equations (Centro, pp.31-40, 1993.
DOI : 10.1007/BF00995127

I. V. Denisova, Global solvability of the problem on the motion of two fluids without surface tension, Journal of Mathematical Sciences, vol.51, issue.5, pp.19-39, 2007.
DOI : 10.1007/978-3-540-39189-0_4

I. V. Denisova, Global L2-solvability of a problem governing two-phase fluid motion without surface tension, Portugaliae Mathematica, vol.71, issue.1, pp.1-24, 2014.
DOI : 10.4171/PM/1938

I. V. Denisova and V. A. Solonnikov, Solvability of a linearized problem on the motion of a drop in a fluid flow, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii, vol.171, issue.184, pp.53-65, 1989.

I. V. Denisova and V. A. Solonnikov, Solvability in Hölder spaces of a model initial-boundary value problem generated by a problem on the motion of two fluids

. Leningrad, Otdel. Mat. Inst. Steklov. (LOMI)Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsi? ?, vol.188, issue.186, pp.5-44, 1991.

I. V. Denisova and V. A. Solonnikov, Classical solvability of the problem of the motion of two viscous incompressible fluids, Algebra i Analiz, vol.7, issue.5, pp.101-142, 1995.

C. Fabre and G. Lebeau, Prolongement Unique Des Solutions, Communications in Partial Differential Equations, vol.21, issue.3-4, pp.573-596, 1996.
DOI : 10.1512/iumj.1980.29.29031

A. V. Fursikov, Stabilizability of Two-Dimensional Navier???Stokes Equations with Help of a Boundary Feedback Control, Journal of Mathematical Fluid Mechanics, vol.3, issue.3, pp.259-301, 2001.
DOI : 10.1007/PL00000972

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control, Partial differential equations and applications, pp.289-314, 2004.
DOI : 10.3934/dcds.2004.10.289

URL : https://doi.org/10.3934/dcds.2004.10.289

G. Grubb and V. A. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods., MATHEMATICA SCANDINAVICA, vol.69, issue.2, pp.217-290, 1991.
DOI : 10.7146/math.scand.a-12380

URL : http://www.mscand.dk/article/download/12380/10396

Y. Guo and I. Tice, Almost Exponential Decay of Periodic Viscous Surface Waves without Surface Tension, Archive for Rational Mechanics and Analysis, vol.61, issue.7, pp.459-531, 2013.
DOI : 10.1002/cpa.20226

Y. Guo and I. Tice, Decay of viscous surface waves without surface tension in horizontally infinite domains, Analysis & PDE, vol.44, issue.6, pp.1429-1533, 2013.
DOI : 10.1007/s00222-010-0288-1

Y. Guo and I. Tice, Local well-posedness of the viscous surface wave problem without surface tension, Analysis & PDE, vol.44, issue.2, pp.287-369, 2013.
DOI : 10.1002/cpa.20226

Y. Hataya, Global solution of two-layer navier-stokes flow. Nonlinear Analysis: Theory, Methods and Applications, pp.5-71409, 2005.

Y. Hataya, Decaying solution of a Navier-Stokes flow without surface tension, Journal of Mathematics of Kyoto University, vol.49, issue.4, pp.691-717, 2009.
DOI : 10.1215/kjm/1265899478

URL : http://doi.org/10.1215/kjm/1265899478

A. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.24, issue.2, pp.303-319, 1977.

S. Kesavan and J. Raymond, On a degenerate Riccati equation, Control Cybernet, vol.38, issue.4B, pp.1393-1410, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00628695

J. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, 1972.
DOI : 10.1007/978-3-642-65393-3

J. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, 1972.
DOI : 10.1007/978-3-642-65393-3

T. Nishida, Y. Teramoto, and H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion, Journal of Mathematics of Kyoto University, vol.44, issue.2, pp.271-323, 2004.
DOI : 10.1215/kjm/1250283555

URL : http://doi.org/10.1215/kjm/1250283555

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol.44, 1983.
DOI : 10.1007/978-1-4612-5561-1

J. Prüss and G. Simonett, On the Rayleigh-Taylor instability for the two-phase Navier-Stokes equations, Indiana University Mathematics Journal, vol.59, issue.6, pp.1853-1871, 2010.
DOI : 10.1512/iumj.2010.59.4145

J. Prüss and G. Simonett, On the two-phase Navier???Stokes equations with surface tension, Interfaces and Free Boundaries, vol.12, issue.3, pp.311-345, 2010.
DOI : 10.4171/IFB/237

J. Raymond, Feedback Boundary Stabilization of the Two-Dimensional Navier--Stokes Equations, SIAM Journal on Control and Optimization, vol.45, issue.3, pp.790-828, 2006.
DOI : 10.1137/050628726

URL : https://hal.archives-ouvertes.fr/hal-00629816

J. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier???Stokes equations, Journal de Math??matiques Pures et Appliqu??es, vol.87, issue.6, pp.627-669, 2007.
DOI : 10.1016/j.matpur.2007.04.002

URL : https://hal.archives-ouvertes.fr/hal-00635929

J. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers, Discrete Contin. Dyn. Syst, vol.27, issue.3, pp.1159-1187, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00629816

V. A. Solonnikov, SOLVABILITY OF A PROBLEM ON THE MOTION OF A VISCOUS INCOMPRESSIBLE FLUID BOUNDED BY A FREE SURFACE, Mathematics of the USSR-Izvestiya, vol.11, issue.6, pp.1388-1424, 1977.
DOI : 10.1070/IM1977v011n06ABEH001770

V. A. Solonnikov, Solvability of the problem of evolution of an isolated amount of a viscous incompressible capillary fluid Mathematical questions in the theory of wave propagation, 14. [42] V. A. Solonnikov. Unsteady flow of a finite mass of a fluid bounded by a free surface, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol.140, pp.179-186, 1984.

V. A. Solonnikov, Unsteady motion of an isolated volume of a viscous incompressible fluid, Izv. Akad. Nauk SSSR Ser. Mat, vol.51, issue.5, pp.1065-1087, 1118.
DOI : 10.1070/im1988v031n02abeh001081

V. A. Solonnikov, Unsteady motions of a finite isolated mass of a self-gravitating fluid, Algebra i Analiz, vol.1, issue.1, pp.207-249, 1989.

D. L. Sylvester, Large time existence of small viscous surface waves without surface tension, Comm. Partial Differential Equations, vol.15, issue.6, pp.823-903, 1990.

N. Tanaka, Global existence of two phase nonhomogeneous viscous incompbessible fluid flow, Communications in Partial Differential Equations, vol.11, issue.1-2, pp.41-81, 1993.
DOI : 10.1002/mma.1670050129

N. Tanaka, Two-phase free boundary problem for viscous incompressible thermocapillary convection, Japan. J. Math. (N.S.), vol.21, issue.1, pp.1-42, 1995.

A. Tani, Small-time existence for the three-dimensional navier-stokes equations for an incompressible fluid with a free surface, Archive for Rational Mechanics and Analysis, vol.32, issue.4, pp.299-331, 1996.
DOI : 10.1007/BF00375146

A. Tani and N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension, Archive for Rational Mechanics and Analysis, vol.32, issue.4, pp.303-314, 1995.
DOI : 10.1007/BF00375142

Y. Wang and I. Tice, The Viscous Surface-Internal Wave Problem: Nonlinear Rayleigh???Taylor Instability, Communications in Partial Differential Equations, vol.125, issue.11, pp.1967-2028, 2012.
DOI : 10.1007/978-3-642-45944-3_6

URL : http://arxiv.org/pdf/1109.5657

Y. Wang, I. Tice, and C. Kim, The Viscous Surface-Internal Wave Problem: Global Well-Posedness and Decay, Archive for Rational Mechanics and Analysis, vol.248, issue.5, pp.1-92, 2014.
DOI : 10.1016/j.jde.2009.11.001

URL : http://arxiv.org/pdf/1109.1798

M. Wilke, Rayleigh-Taylor instability for the two-phase Navier-Stokes equations with surface tension in cylindrical domains ArXiv e-prints, 2017.

L. Xu and Z. Zhang, On the free boundary problem to the two viscous immiscible fluids, Journal of Differential Equations, vol.248, issue.5, pp.1044-1111, 2010.
DOI : 10.1016/j.jde.2009.11.001

URL : https://doi.org/10.1016/j.jde.2009.11.001