, Three articles of the study of Fe(II) complexes in solution are published

, The effect of the carboxyl group ( §V.2.1.1, pp.1-2

T. Duchanois, T. Etienne, C. Cebrián, L. Liu, A. Monari et al., An Iron-Based Photosensitizer with Extended Excited-State Lifetime: Photophysical and Photovoltaic Properties, European Journal of Inorganic Chemistry, vol.12, issue.14, p.2469, 2015.
DOI : 10.1039/b918603d

URL : https://hal.archives-ouvertes.fr/hal-01495210

, The effect of ligand ( §V.2.1.2, C1 ~ C4)

L. Liu, T. Duchanois, T. Etienne, A. Monari, M. Beley et al., ) complexes, Physical Chemistry Chemical Physics, vol.12, issue.5, p.12550, 2016.
DOI : 10.1039/b918603d

, The effect of N-substitution ( §V.2.1.3, C2, pp.4-5

M. Pastore, T. Duchanois, L. Liu, A. Monari, X. Assfeld et al., )???carbene sensitized solar cells, Physical Chemistry Chemical Physics, vol.4, issue.40, p.28069, 2016.
DOI : 10.1039/C6TC00554C

D. Whang, L. Liu, S. M. Vazquez, A. Ruff, S. Ludwigs et al., Highly efficient visible light-driven hydrogen production from water with an Ir(III)-Pt(II) supramolecular device: Beyond molecules

P. Lin, T. Wu, M. Ahmadi, L. Liu, S. Haacke et al., Hu Simultaneously Enhancing Dissociation and Suppressing Recombination in Perovskite Solar Cells by Using NiOx Transport Interlayer Nano energy 2017, p.95

Q. Liu, Y. Hsiao, M. Ahmadi, T. Wu, L. Liu et al., N and p-type properties in organo-metal halide perovskites studied by Seebeck effects, Organic Electronics, vol.35, p.216, 2016.
DOI : 10.1016/j.orgel.2016.05.025

T. Roland, E. Heyer, L. Liu, A. Ruff, S. Ludwigs et al., A Detailed Analysis of Multiple Photoreactions in a Light-Harvesting Molecular Triad with Overlapping Spectra by Utrafast Spectroscopy, The Journal of Physical Chemistry C, vol.118, issue.42, p.24290, 2014.
DOI : 10.1021/jp507474r

, Solar spectrum2) Spano, F. C. The Spectral Signatures of Frenkel Polarons in H-and J-Aggregates, Reference, issue.1

G. Lanzani, D. Oelkrag, H. J. Egelhaaf, J. Gierschner, and A. Tompert, The Photophysics behind Photovoltaics and Photonics Electronic deactivation in single chains, nano-aggregates and ultrathin films of conjugated oligomers) Spano, F. C. Excitons in conjugated oligomer aggregates, films, and crystals. Annual review of physical chemistry, Synthetic Metals, vol.43, issue.576, pp.429-439, 1996.

J. Clark, C. Silva, R. H. Friend, F. C. Spano, F. C. Spano et al., Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene Physical review letters Determining exciton coherence from the photoluminescence spectral line shape in poly(3-hexylthiophene) thin films (9) Wurthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures Interference between Coulombic and CT-mediated couplings in molecular aggregates: H-to J-aggregate transformation in perylene-based pistacks A. The Triplet State and Molecular Electronic Processes in Organic Molecules Triplet state. Its radiative and nonradiative properties, Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chemical reviews 201613) Kasha, M. Characterization of electronic transitions in complex molecules. Discussions of the Faraday Society14) Vavilov, S. Die Fluoreszenzausbeute von Farbstof losungen als Funktion der, pp.962-1052, 1564.

J. R. Wellenlange-des-anregenden-lichtes-lakowicz, G. Bastard, J. A. Brum, and R. Ferreira, Principles of Fluorescence Spectroscopy Electronic States in Semiconductor Heterostructures. Solid State Physics Photochemistry of organic compounds from concepts to practice, pp.9-15, 1927.

. Wiley-blackwell, Electronic processes in organic crystals and polymers, 2009.

D. Rehm and A. Weller, Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer, 20) Marcus, R. A.; Sutin, N. Electron transfers in chemistry and biology, p.259, 1970.
DOI : 10.1039/df9653900183

T. M. Biophysica-acta-clarke, J. R. Durrant, J. Ulstrup, J. Jortner, J. R. Miller et al., Charge Photogeneration in Organic Solar Cells Chemical reviews The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates Intramolecular Long-Distance Electron Transfer in Organic Molecules The bell-shaped energy gap dependence of the charge recombination reaction of geminate radical ion pairs produced by fluorescence quenching reaction in acetonitrile solution (26) NREL-Power conversion efficiency. www.nrel.gov/ncpv. (27) Kippelen, B. Evaluating the power conversion values of organic solar cells. 2009. (28) Luque, A.; Hegedus, S.: Handbook of Photovoltaic Science and Engineering Coulomb barrier for charge separation at an organic semiconductor interface Physical review letters, Progress in Photovoltaics: Research and Applications 2015, pp.265-322, 1975.

, (32) Onsager, L. Initial Recombination of Ions, Physical Review, vol.24, issue.54, pp.966-978, 1938.

C. L. Braun, Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. The Journal of chemical physics, pp.4157-4161, 1984.

I. Mcculloch, J. Nelson, D. D. Bradley, and . Durrant, J. R. Charge Carrier Formation

. Polythiophene, Journal of the American Chemical Society, vol.130, pp.3030-3042, 2008.

F. Laquai, Ultrafast Exciton Dissociation Followed by Nongeminate Charge Recombination in PCDTBT:PCBM Photovoltaic Blends, Journal of the American Chemical Society, vol.133, issue.36, pp.9469-9479, 2011.

S. Niedzialek, D. Cornil, J. Beljonne, D. Friend, and R. H. , The role of driving energy and delocalized States for charge separation in organic semiconductors, Science, vol.2012, issue.335, pp.1340-1344

G. Lanzani, G. Gearba, and R. , Hot exciton dissociation in polymer solar cells, Nature Materials, vol.12, issue.38, pp.29-33, 2013.

L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Zhu, Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics

S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin et al., Nature Materials, vol.12, issue.39, pp.66-73, 2013.

S. Bazan, G. C. Friend, R. H. Dimitrov, S. D. Durrant, J. De et al., Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes Materials Design Considerations for Charge Generation in Organic Solar Cells, Science Chemistry of Materials, vol.343, issue.2641, pp.512-552, 2014.

A. Yartsev and V. Sundström, Geminate Charge Recombination in Alternating Polyfluorene

/. Copolymer, V. Gulbinas, and I. Mineviciute, (42) Tang, C. W. Twolayer organic photovoltaic cell, Journal of the American Chemical Society Applied Physics Letters Hertel, D, vol.129, issue.4843, pp.8466-8472, 1986.

J. J. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend et al., Efficient photodiodes from interpenetrating polymer networks, Nature, vol.376, issue.6540, pp.144907-144951, 1995.
DOI : 10.1038/376498a0

G. Yu, A. J. Heeger, M. T. Dang, L. Hirsch, and G. Wantz, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions P3HT:PCBM, Best Seller in Polymer Photovoltaic Research, Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions48) Dou, L.; You, pp.1789-1835, 1995.

L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao et al., Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chemical reviews, Article: A Decade of Organic/Polymeric Photovoltaic Research, pp.6642-6671, 2013.

N. S. Güldal, H. Chen, S. Chen, S. Langner, and M. Berlinghof,

Z. Chen, P. Cai, J. Chen, X. Liu, L. Zhang et al., Low Band-Gap Conjugated Polymers with Strong Interchain Aggregation and Very High Hole Mobility Towards Highly Efficient Thick-Film Polymer Solar Cells Efficient organic solar cells processed from hydrocarbon solvents Non-fullerene electron acceptors for use in organic solar cells, Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nature communications 2017, pp.14541-51, 2014.

, Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: A comparative review, J Am Chem Soc, vol.138, issue.55, pp.4657-4664, 2016.

P. O. Schwartz, L. Biniek, E. Zaborova, B. Heinrich, and N. Leclerc, , pp.1226-1237, 2011.

S. Mery, Perylenediimide-based donor-acceptor dyads and triads: impact of molecular architecture on self-assembling properties, Journal of the American Chemical Society, vol.136, pp.5981-5992, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02023560

M. Brinkmann, S. Toffanin, M. Muccini, M. Forster, U. Scherf et al., Charge Transfer Excitons in Bulk Heterojunctions of a Polyfluorene Copolymer and a Fullerene Derivative Advanced Functional Materials Dye-Sensitized Solar Cells. Chemical reviews Dye-sensitized solar cells: A brief overview. Solar Energy high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, 59) DSSCs. (60)62) Gerischer, pp.3342-3349, 1968.

N. Vlachopoulos, M. Grätzel, S. Mathew, A. Yella, and P. Gao, J. Am. Chem. Soc, vol.115, pp.6382-66, 1993.

N. Astani, I. Tavernelli, U. Rothlisberger, K. Nazeeruddinmd, M. Grätzel et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, 68) Robertson, N. Optimizing Dyes for Dye-Sensitized Solar Cells. Angew. Chem., Int, pp.242-247, 2007.

E. Ito, S. Miura, H. Uchida, S. Takata, M. Sumioka et al., High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye, Chem. Commun. Zietz, B, vol.45, pp.2338-5194, 2006.

A. Hagfeldt, G. Boschloo, M. Sandroni, L. Favereau, A. Planchat et al., Heteroleptic copper(i)-polypyridine complexes as efficient sensitizers for dye sensitized solar cells Molecular engineering of zinc phthalocyanine sensitizers for efficient dye-sensitized solar cells Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules, Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells Thavasi, V.; Ramakrishna, S. Metal Oxides for Dye-Sensitive Solar Cells. J, pp.9595-9603, 1941.

. C. Am, B. Wenger, M. Grätzel, and J. Moser, Rationale for Kinetic Heterogeneity of Ultrafast Light-Induced Electron Transfer from Ru(II) Complex Sensitizers to Nanocrystalline TiO2, 2009.

S. Ardo and G. J. Meyer, Photodriven heterogeneous charge transfer with transitionmetal compounds anchored to TiO2 semiconductor surfaces. Chemical Society reviews, pp.12150-12151, 2005.

S. E. Koops, B. C. O-'regan, P. R. Barnes, and J. Durrant, Butylpyridine Addition toRedox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells, J. Phys. Chem. B J. Am. Chem. Soc, vol.110, issue.13179, pp.13144-78, 2006.

T. Hannappel, B. Burfeindt, W. Storck, F. Willig, S. A. Haque et al., Photoinduced Ultrafast Dye-to-Semiconductor Electron Injection from Nonthermalized and Thermalized Donor States Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ru-Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2 Film, J. Am. Chem. Soc. J. Phys. Chem. B, vol.124, issue.101 679981, p.489, 1997.

J. R. Durrant, R. J. Ellingson, J. B. Asbury, S. Ferrere, and H. N. Ghosh, Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minization of Kinetic Redundancy, J. Am. Chem. Soc. J. R, vol.127, issue.82, p.3456, 2005.

A. J. Nozik, Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with [Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2] by Infrared Transient Absorption, The Journal of Physical Chemistry B, vol.102, pp.6455-6458, 1998.

, Coumarin-Strapped Calix[4]pyrrole: A Fluorogenic Anion Receptor Modulated by Cation and

A. Binding-asbury, J. B. Anderson, N. A. Hao, E. C. Ai, X. Lian et al., Parameters Affecting Electron Injection Dynamics from Ruthenium Dyes to Titanium Dioxide Nanocrystalline Thin Film ? (85) Nillon Haacke, S. Two MHz tunable non collinear optical parametric amplifiers with pulse durations down to 6 fs) Streak camera. https://www.hofstragroup.com/product/hamamatsu-c4334-02s- streak-camera-system-for-time-resolved-spectroscopy Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics, J. Phys. Chem. B J.; Crégut, O.; Bressler, C. Optics, vol.12787, issue.2286, pp.12510-12512, 2003.

M. Lorenc, M. Ziolek, R. Naskrecki, J. Karolczak, and J. Kubicki, Advanced Materials, vol.23, pp.5468-5485, 2011.

S. Günes, H. Neugebauer, and N. S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells, Artifacts in femtosecond transient absorption spectroscopy, pp.19-27, 2002.
DOI : 10.1021/cr050149z

Q. Xu, Donor?spacer?acceptor monodisperse conjugated co-oligomers for efficient single-molecule photovoltaic cells based on non-fullerene acceptors, Journal of Materials Chemistry, vol.2014, issue.2, p.3632

C. Nam, M. Y. Sfeir, C. Black, M. L. Steigerwald, Y. Loo et al.,

Y. Nuckolls and C. , Efficient Organic Solar Cells with Helical Perylene Diimide Electron

. Acceptors, Journal of the American Chemical Society, vol.136, issue.92, pp.15215-15221, 2014.

T. Kim, J. Y. Kim, Y. Sun, Z. Wang, A. J. Heeger et al., High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor, J Am Chem Soc, vol.138, issue.93, pp.375-380, 2016.

S. Haacke, T. Sub-roland, D. D. Bradley, and . Organic, Physical chemistry chemical physics : PCCP 2012 Ultrafast Spectroscopy Of New Organic Molecules For Photovoltaic Applications (95) Wenzel, J.; Dreuw, A.; Burghardt, I. Charge and energy transfer in a bithiophene perylenediimide based donor?acceptor?donor system for use in organic photovoltaics. Physical chemistry chemical physics : PCCP 2013, 15, 11704. (96) Stutzmann, N.; Friend, R. H.; Sirringhaus, H. Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors, Science J. C, vol.14, issue.299, pp.273-279, 2003.

, 9-dioctylfluorene-co-bithiophene) (F8T2) Advanced Functional Materials, Emitting Diodes Based on Poly, pp.950-957, 2009.

R. H. Friend, General observation of n-type field-effect behaviour in organic semiconductors, Nature, vol.434, pp.194-199, 2005.

, 6]-phenyl C61 butyric acid methyl ester for use in efficient photovoltaic devices Applied Physics Letters Willy Herbst; Hunger, K.: Industrial Organic Pigments: Production, Properties, Applications, bithiophene) blended with, p.23302, 2006.

F. Nanoemitters, P. Research, A. Wurthner, F. Stolte, M. Yan et al., Naphthalene and perylene diimides for organic transistors Chemical communications (103) Castellano, F. N. Transition metal complexes meet the rylenes (104) Görl, D.; Zhang, X.; Würthner, F. Molecular Assemblies of Perylene Bisimide Dyes in Water, Dalton transactions Angewandte Chemie International Edition Z, vol.49, issue.51105, pp.9068-9093, 2010.

H. Langhals, W. E. Ford, P. Kamat, L. Liu, P. O. Schwartz et al., Cyclic Carboxylic Imide Structures as Structure Elements of High Stability. Novel Developments in Perylene Dye Chemistry Photochemistry of 310-perylenetetracarboxylic dianhydride dyes. 3. Singlet and triplet excited-state properties of the bis(2,5-di-tert- butylphenyl)imide derivative, Monodisperse co-oligomer approach toward nanostructured films with alternating donoracceptor lamellae, pp.13242-13243, 1987.

B. Omiecienski, S. Ludwigs, N. Leclerc, E. Zaborova, J. Leonard et al.,

S. Haacke, K. G. Jespersen, and W. Beenken, Controlling charge separation and recombination by chemical design in donoracceptor dyads, Phys Chem Chem Phys J.; Zaushitsyn, Y, vol.18, issue.109, pp.18536-18548, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01459076

T. Pullerits, V. Sundstrom, U. Salzner, and M. E. Köse, The electronic states of polyfluorene copolymers with alternating donor-acceptor units Does the Donor?Acceptor Concept Work for Designing Synthetic Metals? 2. Theoretical Investigation of Copolymers of 4-(Dicyanomethylene)-4H- cyclopenta[2,1-b:3,4-b']dithiophene and 3,4-(Ethylenedioxy)thiophene, J Chem Phys The Journal of Physical Chemistry B J, vol.121, issue.106111, pp.12613-12617, 2002.

R. M. Janssen and R. A. , Triplet Formation Involving a Polar Transition State in a Well-Defined Intramolecular Perylenediimide Dimeric Aggregate. The journal of physical chemistry, pp.5846-5857, 2008.

V. Gulbinas, Y. Zaushitsyn, H. Bässler, A. Yartsev, V. Sundström et al., Dynamics of charge pair generation in ladder-type poly(para-phenylene) at different excitation photon energies, Physical Review B, vol.47, issue.3, p.35215, 2004.
DOI : 10.1038/31901

G. Tittor, J. Haacke, S. Chergui, and M. , Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues, Proceedings of the National Academy of Sciences of the United States of America, vol.106, issue.115, pp.7718-7723, 2009.

S. Beaupre, T. Mccarthy-ward, M. Heeney, J. E. Moser, and M. Leclerc, Frechet, J. M. J

N. Stingelin and N. Banerji, The influence of microstructure on charge separation dynamics in organic bulk heterojunction materials for solar cell applications, Journal of Materials Chemistry A 2014, vol.2, issue.116, pp.6218-6230

D. Grozema and F. C. , Different mechanisms for hole and electron transfer along identical molecular bridges: the importance of the initial state delocalization, 117) Lide, D. R.: CRC Handbook of Chemistry and Physics, pp.3891-3898, 1997.

B. P. Karsten, R. K. Bouwer, J. C. Hummelen, and R. M. Williams,

A. J. , Charge Separation and Recombination in Small Band Gap Oligomer?Fullerene Triads

, The Journal of Physical Chemistry B N. R.; Jortner, J. Excess Electrons in Polar Solvents, vol.114, issue.119, pp.14149-14156, 2010.

N. R. Kestner, J. Logan, J. Jortner, C. C. Moser, J. M. Keske et al., Thermal electron transfer reactions in polar solvents Nature of biological electron transfer (122) Ando, K. Solvation dynamics and electronic structure development of coumarin 120 in methanol: A theoretical modeling study. The Journal of chemical physics Equilibrium and nonequilibrium solvation and solute electronic structure, J. Phys. Chem. Nature III. Quantum theory. The Journal of chemical physics, vol.53, issue.96124, pp.1189-1216, 1970.

H. Wang, E. R. Mcnellis, S. Kinge, M. Bonn, and E. Cánovas, Tuning Electron Transfer Rates through Molecular Bridges in Quantum Dot Sensitized Oxides, 126) Leng, W.; Würthner, F.; Kelley, A. M. Resonance Raman Intensity Analysis, pp.14509-14520, 2003.
DOI : 10.1021/nl402820v

B. Gao, J. Qu, and Y. Wang, Merocyanine Dimers in Solution, pp.10284-10294, 2004.

Y. Geng, H. Wang, and . Xie, Femtosecond Spectroscopic Study of Photoinduced Charge Separation and Recombination in the Donor?Acceptor Co-Oligomers for Solar Cells

J. M. Lim, P. Kim, M. Yoon, and J. Sung, Z, vol.117, issue.128, pp.4836-4843, 2013.

D. Kim and D. Kim, Exciton delocalization and dynamics in helical ?-stacks of self-assembled perylene bisimides, Chem. Sci, vol.2013, issue.4, pp.388-397

F. Würthner, Direct Observation of Excimer-Mediated Intramolecular Electron Transfer in a

. Cofacially-stacked-perylene-bisimide and . Pair, Journal of the American Chemical Society, vol.138, pp.9029-9032, 2016.

, Molecular Packing Determines Charge Separation in a Liquid Crystalline Bisthiophene?

?. Perylene-diimide-donor, The journal of physical chemistry letters 2016, pp.1327-1334

D. M. Schultz and T. P. Yoon, Solar Synthesis: Prospects in Visible Light Photocatalysis, Luminescent Neutral Platinum Complexes Bearing an, p.1239176, 2014.
DOI : 10.1016/0038-092X(76)90058-X

N. Asymmetric, . Ligand, and . High-performance, Solution-Processed OLEDs, Advanced Materials Willkomm, J.; Orchard, K. L.; Reynal, A.; Pastor, E.; Durrant, J. R, vol.25, issue.134, pp.437-442, 2013.

D. R. Whang, K. Sakai, and S. Y. Park, Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production Chemical Society reviews 2016, Highly Efficient Photocatalytic Water Reduction with Robust Iridium(III) Photosensitizers Containing Arylsilyl Substituents, pp.9-23

N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, and . Shank, Angewandte Chemie International Edition, vol.52, issue.136, pp.11612-11615, 2013.

J. K. Juris, A. Balzani, V. Barigelletti, and F. , Femtosecond Dynamics of Excited-State Evolution in [Ru(bpy)3]2+, pp.54-137, 1997.

, Ru(II) polypyridine complexes; Grätzel, M. Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells, pp.85-277, 1988.

, ACS Nano, vol.3, issue.139, pp.3103-3109, 2009.

E. A. Juban, A. L. Smeigh, J. E. Monat, J. K. Mccusker, A. Cannizzo et al., Ultrafast dynamics of ligand-field excited states, Coordination Chemistry Reviews, vol.250, issue.13-14, pp.1783-1791, 2006.
DOI : 10.1016/j.ccr.2006.02.010

W. Gawelda, R. G. Hadt, R. W. Hartsock, T. Kroll, K. S. Kjaer et al.,

H. W. Liang, D. A. Meyer, M. M. Nielsen, C. Purser, J. S. Robinson et al., Tracking excited-state charge and spin dynamics in iron coordination complexes Sub-50-fs photoinduced spin crossover in [Fe(bpy Spin-state relaxation dynamics in iron(II) complexes: solvent on the activation and reaction and volumes for the 1A [right left harpoons]5T interconversion Spin-state relaxation dynamics in iron(III) complexes: photochemical perturbation of the 2T .dblharw. 6A spin equilibrium by pulsed-laser irradiation in the ligand-to-metal charge-transfer absorption band, ElNahhas, A.; van der Veen, R. M.; Gawelda, pp.345-348, 1984.

W. Johnson, S. Beaud, P. Grolimund, D. Kaiser, M. Borca et al.,

M. Chergui and V. Pham, Femtosecond XANES Study of the Light-Induced Spin Crossover Dynamics in an Iron(II) Complex, 147) Gawelda, p.489, 2009.

M. Ultrafast, Nonadiabatic Dynamics of [FeII(bpy)3]2+ in Solution, 148) Hauser, A. Intersystem crossing dynamics in Fe(II) coordination compounds. J, pp.8199-8206, 2007.

. Chem, C. Phys-de-graaf, C. Sousa, C. D. Graaf, and C. Sousa, Study of the light-induced spin crossover process of the [Fe(II)(bpy)3]2+ complex On the role of the metal-to-ligand charge transfer states in the light-induced spin crossover in FeII (bpy)3, Chemistry International Journal of Quantum Chemistry J, vol.94, issue.111151, pp.2741-4550, 1991.

C. M. Marian, W. Zhang, and K. J. Gaffney, Ultrafast Deactivation Mechanism of the Excited Singlet in the Light-Induced Spin Crossover of2?-bipyridine)3]2+ Mechanistic Studies of Photoinduced Spin Crossover and Electron Transfer in Inorganic Complexes. Accounts of chemical research, 153) Monat, J. E.; McCusker, J. K. Femtosecond Excited-State Dynamics of an Iron(II), pp.17541-17551, 2015.

T. Duchanois, T. Etienne, C. Cebrián, L. Liu, A. Monari et al., An Iron-Based Photosensitizer with Extended Excited-State Lifetime: Photophysical and Photovoltaic Properties, Polypyridyl Solar Cell Sensitizer Model155) Ferrere, S.; Gregg, B. A. Photosensitization of TiO2 by [FeII, pp.4092-4097, 2000.
DOI : 10.1039/b918603d

URL : https://hal.archives-ouvertes.fr/hal-01495210

S. Huang and G. J. Meyer, Band Selective Electron Injection from Ultra-Short-Lived Excited States (156) Ferrere, S. New Photosensitizers Based upon [Fe(L)2(CN)2] and [Fe(L)3] (L = Substituted 2,2'-Bipyridine): Yields for the Photosensitization of TiO2 and Effects on the Band Selectivity, 157) Ferrere, S. New photosensitizers based upon [FeII(L)2(CN)2] and [FeIIL3], where L is substituted 2158) Xia, H.-L.; Ardo, S.; Narducci Sarjeant, pp.843-1083, 1998.

R. Visbal, M. C. Gimeno, and D. Fazzi, N-heterocyclic carbene metal complexes: photoluminescence and applications. Chemical Society reviews 2014: Design of cyclometalated iridium(III) polypyridine complexes as luminescent biological labels and probes, Photodriven Spin Change of Fe(II) Benzimidazole Compounds Anchored to Nanocrystalline TiO2 Thin Films, pp.13641-13652, 2009.

S. Lanzani and G. , Ultrafast energy transfer in ultrathin organic donor/acceptor blend. Sci Rep, II) Complex Capable of Intercalation and Hydrogen-Bonding Interactions with DNA: Binding Studies and Cytotoxicity, 2013.

?. Chemistry, S. Y. Park, G. Frenking, W. Koch, J. Gauss et al., A Phosphorescent Ir(III) Complex for Selective Fluoride Ion Sensing with a High Signal-to-Noise Ratio Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogs NGLiF, NGBN, and NGLiH (NG = He, Ar). A theoretical investigation, Advanced Materials Journal of the American Chemical Society, vol.9, issue.110, pp.6133-6144, 1988.

G. G. Bernhard and S. , Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex, Chemistry of Materials, vol.17, issue.166, pp.5712-5719, 2005.

C. Su, C. Li, W. R. Liu, Y. Harlang, T. Canton et al., Highly efficient N-heterocyclic carbene/pyridine-based ruthenium sensitizers: complexes for dye-sensitized solar cells, Angewandte Chemie, vol.49, issue.167, pp.8161-8164, 2010.

G. J. Barbante, Towards longer-lived metal-to-ligand charge transfer states of iron(II) complexes: an Nheterocyclic carbene approach Chemical communications 2013, pp.6412-6414

P. J. Barnard, L. A. Fredin, M. Papai, E. Rozsalyi, and V. Sundstrom, Electrochemiluminescent Ruthenium(II) N-Heterocyclic Carbene Complexes: a Combined Experimental and Theoretical Study Inorganic chemistry 2013, pp.7448-7459

P. Persson, K. E. Lee, M. A. Gomez, S. Eloutik, G. P. Demopoulos et al., Heterocyclic Carbene Complex Explained. The journal of physical chemistry letters 2014 Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase TiO2 Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman ImagingMM study on the spinach plastocyanin: Redox properties and absorption spectra. Computational and Theoretical Chemistry 2012, A new record excited state (3)MLCT lifetime for metalorganic iron(ii) complexes, pp.2066-2071, 2010.

Z. S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi et al., Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification, Chemistry of Materials, vol.20, issue.12, pp.12550-12556, 2016.
DOI : 10.1021/cm8003276

M. Bräm, O. Messina, and F. , , pp.3993-174, 2008.

, Polychromatic femtosecond fluorescence studies of metal?polypyridine complexes in solution, Chemical Physics, vol.393, pp.51-57, 2012.

T. C. Harlang, Y. Liu, O. Gordivska, L. A. Fredin, C. S. Ponseca et al., (ii)-carbene sensitized solar cells, Phys Chem Chem Phys, vol.18, issue.176, pp.28069-28081, 2016.

P. Persson, V. Sundstrom, K. Warnmark, and Q. Gu, Iron sensitizer converts light to electrons with 92% yield, Nature, vol.2015, issue.7177, pp.883-889

A. Sadhanala, A. Rao, and P. Kukura, Sub-10 fs Time-Resolved Vibronic Optical Microscopy. The journal of physical chemistry letters, pp.4854-4859, 2016.

, List of Figures

I. Solar and S. ,

J. and .. ,

.. Jablonski-diagram-of-excited-molecules,

.. Different-types-of-the-exciton,

R. , Three Marcus region and their electron transfer, p.12

.. , II.1 Record power conversion efficiency of different solar cells, p.16

C. , II.2 Current-voltage, p.17

O. ,

, II.4 Energy level diagram showing charge generation and recombination at D/A interface, p.20

O. , , p.22

.. Working-principle-of-dsscs, , p.24

D. Timescale-of, , p.31

.. Working-principle-of-streak-camera, , p.33

.. , Experimental setup of transient absorption spectroscopy, p.34

S. , , p.36

.. , III.5 Chirp correction, p.38

.. , III.6 Global analysis, p.40

.. , IV.1 Chemical structure of Donor-Acceptor dyads investigated, p.43

.. Fluorescence-measurements, IV.2 Steady-state absorption and, p.47

.. , 3 Diagram energy levels and absorption spectra of charged species, IV, p.48

.. , 2D plot of a transient absorption data set of D 1 ?A in chloroform, p.49

.. , Selection of differential absorption spectra of D 1 ?A in chloroform, p.50

.. , IV.6 Identification of photo-induced states/species, p.52

C. , IV.7 Decay, p.53

M. , , p.54

L. , IV.9 Effect of donor, p.55

.. , IV.10 Effect of solvent, p.56

I. , 11 Jablonski diagram of charge separation and charge recombination processes, p.59

2. , IV.12 Influence of, p.60

D. Dyads-in-film and .. , IV.13 Steady-state absorption spectra of four, p.62

.. , 14 Differential absorption spectra of charged species of four D-A dyads in film, p.63

D. , IV.15 Morphology of, p.64

+. , , p.66

F. , IV.17 Effect of donor in, p.67

F. , IV.18 Identification of long-lived species in, p.68

.. , Molecular energy diagram of Ru(II)L 6 complex, p.90

D. , , p.91

.. , Abundance of chemical elements in the Earth's upper continental crust, p.92

.. , Electronic diagrams of Ru(II)L 6 and Fe(II)L 6 complexes, p.93

2. , Energy diagram of [Fe(bpy) 3 ], p.94

2. , Transient absorption data of Fe(tpyCOOH), p.94

.. , Steady-state absorption spectrum of C1 and its chemical structure, p.96

M. Transient-absorption, , p.98

, Schematic excitation and deactivation pathway of C1 based on calculated PECs and

P. , , p.99

3. and L. , 10 Possible strategies for extending, p.100

V. Effect-of-carboxylic-group and .. , , p.101

C. , 12 Quantum calculated NTOs of

.. , 13 Steady-state absorption spectra to illustrate effect of carboxylic group, p.104

.. , 14 Kinetic traces to illustrate effect of carboxylic group, p.105

C. , 15 Quantum calculated NTOs of, p.105

V. Effect and N. , , p.106

.. , Steady-state absorption spectra to illustrate effect of rigidity

R. , 18 Kinetic traces to illustrate effect of

V. Effect-of-ph and .. , , p.109

.. , Steady-state absorption spectra to illustrate effect of solvent, p.110

.. , 21 Kinetic traces to illustrate effect of solvent, p.111

.. , 22 Schematic sketch of the dipole moments depending on the pH and the solvent, p.111

C. and M. , , p.112

V. , Identification of PL spectrum and kinetic traces, p.113

.. , Steady-state absorption spectrum of C5 grafted onto TiO2 and sample structure, p.117

.. , 26 Selection of transient absorption spectra of C5-TiO 2, p.118

.. , , p.119

N. , , p.120

C. , 29 TR fluorescence kinetic traces of C4-Al 2 O 3 and, p.121

A. and .. , List of Tables IV.1 Studied molecules of Donor, p.45

D. , IV.2 Oxidation and reduction energy, p.48

.. , Characteristic wavelengths of the species involved in the photo-induced processes, p.48

L. , IV.4 Charge transfer state formation and recombination lifetimes with different donor, p.56

.. , IV.5 Effect of solvent, p.57

M. , IV.6 Molecular parameters, p.59

E. Gibbs-free, IV.7 Estimated reorganization energies, p.60

.. , Electronic couplings for charge formation and charge recombination, p.61

.. , IV.9 Lifetimes of four dyads in films, p.69

M. , Excited state lifetimes of all Fe(II) complexes investigated in, p.114

.. , Photovoltaics performances of DSSCs based on Fe(II) complexes, p.114

F. Lifetime, , p.122