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Abstract

The study of consciousness is a fascinating topic of investigation with a wide field of
applications and implications. Consciousness processes can be divided into two orthogonal
though intimately linked components: the conscious state, that is the state of vigilance or
arousal, and the conscious content which refers to the external inputs perceived and manipulated
in a conscious space. Although consciousness represents the most important human dimension
where people’s personal events are continuously experienced and remembered, it is somewhat

surprising that its underlying neural processes still sparks lot of debates.

In the first part of this PhD thesis, I took advantage from a well-known sensorimotor
conflict paradigm, the Nielsen task (?7), to investigate the neural correlates of the emergence
of consciousness. Starting from the principle that much of motor processing occurs outside
of awareness, I adapted the Nielsen paradigm to neurally investigate how the perception of a
motor conflict in healthy subjects smoothly shifted along the unaware /aware state (i.e. point of
subjective equality). Using EEG recordings, I then identify the brain sources which I consider
the neural fingerprint of awareness. I found that the precuneus was critical for bringing the
sensorimotor conflict into awareness. [ also investigated this issue from a developmental per-
spective by examining the performance of healthy children. Although the timing of movement
correction and the quality of movement trajectory in children was similar to adult subjects,
motor awareness was shifted towards higher perception thresholds while parietal cortex activ-
ity was not found. Rather, children’s response to conflict awareness was linked to SMA. After
having addressed the topic of awareness in this first part, I will focus more on the second com-
ponent, wakefulness. Usually these two components evolve together, however there are some
pathological states in which they can be dissociated. It is the case for vegetative state patients

who experience a state of wakefulness without awareness.

In the second part of the thesis, I investigated the challenging hypothesis of a potential
return to a conscious state, in a patient lying in a vegetative state for 15 years, after vagus nerve
stimulation (VNS). We report beneficial effects of VNS including improved behavioural respon-
siveness and reinforced brain connectivity patterns as key signs of increased consciousness. The
results showed an increase of information sharing a measure of functional connectivity partic-
ularly prominent across centro-posterior regions. Converging findings, coming from different

methods, showed that VNS promoted the spread of cortical signals and metabolism which we



found correlated with behavioural improvement as measured with the CRS-R scale. The VNS-
induced changes are promising since they seem to follow an already known connectivity pattern

characterizing state of consciousness improvements.

Taken together, these findings indicate that the parietal lobe constitutes the neural corre-
late of both state and content-specific consciousness and suggest that this region is a "hot zone"
for its emergence. Moreover, our first findings in a vegetative state patient also suggest that
consciousness can be potentially repaired, thus opening the way to a new avenue of research in

a domain where brain plasticity was underestimated.

Key Words: consciousness, motor awareness, disorders of consciousness, vagus nerve

stimulation, parietal cortex, precuneus/posterior cingulate cortex.
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Résumé

L’étude de la conscience est un sujet d’investigation fascinant avec un large champ d’applications

et d’implications. Les processus de la conscience peuvent étre divisés en deux composantes in-
dépendantes quoiqu’intimement liées : 1’état conscient et le contenu conscient. [’état conscient
correspond aux processus de variation de la vigilance, tandis que le contenu conscient fait
référence aux expériences sensorielles percues et manipulées dans un espace conscient. Bien
que la conscience soit un élément essentiel de la cognition humaine, qui conditionne ce que les
gens vivent et peuvent se remémorer, la légitimité et le bien-fondé de 'analyse scientifique et

rigoureuse des corrélats neuronaux de la conscience soulévent encore des débats houleux.

Dans la premiére partie de cette thése, jutilise un célébre paradigme de conflit sensorimo-
teur pour identifier des corrélats neuronaux de ’émergence de la conscience. Les travaux initiés
par Torstein Nielsen (Nielsen 1963) ont démontré que la majorité des traitements sensorimo-
teurs s’effectuent sans nécessiter une analyse consciente. L.’émergence de phénoménes conscients
apparaissant a partir d’un seuil subjectif de conflit sensori-moteur appelé point d’égalité sub-
jective. A partir d’enregistrements électroencéphalographiques, effectués chez une population
de sujets adultes, il est possible d’identifier des sources d’activités corticales indépendantes
des intensités des stimulations sensorielles expérimentées et spécifiques de I'émergence d’'une
sensation percue consciemment. Ainsi, j’ai pu démontrer que le précuneus était une structure
centrale dans les processus qui transforment un conflit sensorimoteur en une expérience con-
sciente. J’ai également étudié ce phénomeéne d’un point de vue développemental en examinant
les performances comportementales et des enregistrements EEG recueillies chez 1'enfant. Bien
que le moment de la correction du mouvement et la qualité du tracé de la trajectoire étaient
similaires aux données mesurées chez les sujets adultes, le seuil de conscience motrice s’est mon-
tré plus élevé et 'activité du cortex pariétal n’a pas été retrouvée. En revanche, 'aire motrice
supplémentaire a été identifiée comme un corrélat important de 1'émergence d’'une sensation

consciente d’'un conflit sensorimoteur chez 'enfant.

Dans une seconde partie, mes travaux ont été consacrés a I’hypothése audacieuse qu'une
stimulation électrique du nerf vague pourrait modifier I’état de conscience d’un patient se trou-
vant dans un état végétatif depuis 15 ans. Nous rapportons les effets bénéfiques observés aprés
cette thérapeutique expérimentale au niveau comportemental, clinique et neurophysiologiques.

Les enregistrements EEG et les méthodes de mesure de connectivité fonctionnelle m’ont permis

il



d’observer chez ce patient une augmentation du partage d’informations corticales particuliére-
ment importante dans les régions pariétales. L’effet de la stimulation a été également confirmé
par d’autres méthodes. L’imagerie métabolique a montré une augmentation généralisée de
lactivité corticale et sous-corticale et les évaluations cliniques par la CRS-R ont montré une
amélioration de 1'état de conscience corrélée aux observations électroencéphalographiques. Ces
changements induits par la stimulation du nerf vague sont prometteurs car les modifications
cérébrales observées sont caractéristiques de I'amélioration des états de conscience chez les

patients gravement cérébrolésés.

L’ensemble de ces résultats suggérent que le lobe pariétal constitue a la fois un corrélat im-
portant de I’état de conscience et du contenu conscient, faisant de cette région une composante
essentielle de ’émergence de la conscience. De plus, nos résultats préliminaires suggérent que
la conscience peut étre, au moins partiellement, restaurée. Cette découverte ouvre de toutes
nouvelles perspectives pour le futur des recherches en neurosciences oti, I’hypothése d’'une mod-

ulation de la plasticité cérébrale avait été oubliée.

Mots clés: conscience, conscience motrice, troubles de la conscience, la stimulation du nerf

vague, cortex pariétal, precuneus / postérieur cortex cingulaire.
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Chapter 1

Introduction

Around the definition and the interpretation of the concept of consciousness there is a long-
lasting multidisciplinary debate involving scientists from different domains such as neuroscience,
psychology, philosophy, brain science, medicine and physic. This topic seems to have fascinated
the human being since the beginning. Seth et al. in their editorial dare to say that "People have
been wondering about consciousness since they have wondered about anything". The ancient
Greeks already wondered about conscious perception, when long time ago Hippocrates identified
the brain as the primary organ of experience (?). Much later, St. Augustine formulated the
notion of two kinds of "presence", a first one referring to something that exists at the term of a
cognitional act and the second one which refers to an experience of self-presence. However, he
did not explicitly speak about consciousness and self-consciousness. In fact, the development
of a proper language able to form a vocabulary of "self" was introduced later, around the
16th century, (?) as stated in the text by Fr. John Eudes Bamburger: "Descartes, in 1664,
made the thinking self the source of knowledge and most philosophers since his time have
assumed the same stance. It was shortly before this date that Locke... adopted the new word
"consciousness" and defined it as "perception of what passes in a man’s own mind". Coleridge
was the first to use the term self-conscious" (Retreat conference given at St. Anselm’s Abbey,

Washington, DC, August 22, 2009, unpublished).

From a scientific point of view, it is interesting to wonder if we can experimentally in-
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vestigate consciousness, and in case of a positive response, to understand which aspect of
consciousness can we actually address and how. Some philosophers used to say that we cannot
investigate consciousness because it is a hard problem, which means that we cannot pinpoint a
specific mechanism for consciousness like in easy problems, where we can identify a specific func-
tion for the discrimination and categorization of stimuli. The term hard problem, introduced
by David Chalmers (7), reflects the investigation of subjective experiences, the phenomenal
consciousness or "qualia". The hard problem try to identify why a physical state is conscious
rather than unconscious. In other words, it represents the problem of explaining why conscious
mental state "light up" and why there is a "something it is like". The term hard contrasts
with what it is called the easy problems, consisting in explaining how brain integrates infor-
mation, categorizes and discriminates environmental stimuli. Such phenomena are considered
functionally definable. For easy problems once explained the relevant mechanisms there is no

explanatory work left to do.

Another American philosopher, J R Searle, tried to give a new definition of consciousness
in a common sense term as follows: "Consciousness consists of inner, qualitative, subjective
states and processes of sentience or awareness. Consciousness, so defined, begins when we wake
in the morning from a dreamless sleep - and continues until we fall asleep again, die, go into a

""" Following this definition, the entire experience of

coma or otherwise become "unconscious
the internal and external world would have been affected, if not caused, by consciousness. It
includes everything from sensory perception, to feeling pain, states of anxiety and depression,

memory, speaking, arguing and wishing. And again, he said "Consciousness is entirely caused

by neurobiological processes and is realized in brain structures" (7).

In neuroscience, the systematic investigation of consciousness is mainly focused in under-
standing its neural correlates, and investigating the neural mechanisms underlying conscious
experiences. At present, consciousness can be studied using different approaches in healthy
subjects and psychiatric and neurological patients. Neuroscience of consciousness had proved
that of all perceived stimuli, going from visual to sound perception, coming to primary sensory
cortices, and of all that is further elaborated in associative areas, only a smaller portion is

available to consciousness. In fact, much of information is compressed before arriving to con-
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sciousness. However, also unconscious information is an important part of experiences because

it can potentially influence our actions and behaviours.

Research on neural correlates of consciousness gained importance when it was recognized
that it was actually affecting real life phenomena such as visual illusion, and a huge variety of
normal and pathological conditions, such as sleep (?), anaesthesia (?), disorders of consciousness
(?) and brain lesions (7). This provided, together with the rise of functional brain imagining,

an experimental condition frame to scientifically investigate consciousness.

To summarize, consciousness is a very variegated topic, widely investigated in different
disciplines and epochs. Here we are interested in understanding its neural architecture, which
gives rise to reportable conscious experiences and shapes our internal and external world per-
ception. Which brain mechanism allows us to become conscious of some piece of information
while preventing other to emerge? How exactly do these mechanisms cause conscious states?
How are these processes realized in brain structures? In the next section I will give some op-
erational definitions of consciousness before proceeding in reviewing general understanding of

brain structures sustaining its emergence.

1.1 Main components of consciousness

Due to the large applicability of the concept of consciousness, it is useful to start with some
definitions. As already said, "consciousness" is an ambiguous word, which can be used either in-
transitively (e.g. "the patient was conscious") or transitively (e.g." the subject was conscious of
the perturbation"). For practical purposes, in neuroscience consciousness is classically thought
as formed by two main components: wakefulness and awareness (Figure 1.1). Wakefulness (or
vigilance) describes the arousal state and the potential to experience awareness and it reflects
the level of consciousness. Clinically, it corresponds with an eye-open condition. Its anatomical
counterparts are structures located in the brainstem and in the ascending reticular activating
systems. Awareness is defined as the potential to experience phenomenal perception of self

and surroundings, shaping subjectively our everyday life experiences. It reflects the content
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of consciousness. Its anatomical counterparts are hypothesized to be based on structures in
the fronto-parietal cortex (7). Usually, this two components are linearly correlated along the
spectrum of consciousness, an increase of wakefulness is accompanied by increased potential to
be aware (e.g. during coma, anaesthesia, deep sleep and vigilance). However, sometimes they
are dissociated, for example during vivid dreams or pathological states in which wakefulness is

spared but awareness is impaired (VS or MCS), and also when somnambulism occurs (7).

3

The respective neural substrates of wakefulness and awareness are called full and content-

specific neural correlates of consciousness (NCC).

Locked-in
syndrome

w
n
()
c
®
o Minimally
3 Conscious
< State
General
anesthesia
Coma

Wakefulness

Figure 1.1: Main components of consciousness. The x-axis represents wakefulness while
the y-axis represents awareness. Some pathological states lie outside the diagonal, such as
the vegetative state, characterized by a state of wakefulness without awareness, and also some
physiological states (albeit rare) like sleep walking. Adapted by Laureys et al. (7).
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1.2 Full and content-specific neural correlates of conscious-

ness

Neural correlates of consciousness (NCC) are defined as the "minimum neuronal mechanism
jointly sufficient for any one specific conscious percept" (7). As the definition of consciousness
relay on two orthogonal axes, wakefulness and awareness, also the respective neural correlates

of consciousness have different substrates.

The neural correlates of wakefulness are refereed as full NCC. The state of consciousness
refers to the brain ability to maintain a continuous stream of conscious content, arising from
a fluctuation of vigilance and wakefulness. This neural substrate has to support conscious ex-
periences in general, irrespective to their specificity. To identify full NCC typical experimental
paradigms consist in contrasting state-base consciousness, for example comparing healthy sub-
jects with subjects in which consciousness is diminished such as during sleep, anaesthesia or
coma. Human neuroimaging studies show that loss of consciousness is frequently accompanied
by a reduction in activity over fronto-parietal cortices, in particular over the posterior medial
cortex (7). However, arousal and attention, which depend on the arousal-promoting neuro-
modulators, can play a confounding role in determining the physiological state of the brain.
To filter these confounding factors, there are experiments aimed at contrasting conscious and
unconscious conditions within the same physiological state. For example, an EEG study inves-
tigated REM and NON-REM sleep activities reported that a common network exists for the

two states in a temporo-parieto-occipital region (7).

The second axis, related to awareness, has neural correlates reflecting a specific content
of information. These content specific neural correlates of consciousness are thought to be
neurons (or population of neurons implicated in a specific function), corresponding to particular
phenomenal distinction (7). Content specific neurons are thought to fire in relation to specific
stimuli, such as auditory or visual incoming information. In turn, if artificially stimulated, this
NCC should trigger the same conscious content and if their activity is disrupted this particular

perception should be impeded. To identify content-specific NCC, experimental conditions in
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which subjective experience changes while stimulation and/or behaviour remain constant are
compared. Visual paradigms following this design are for example binocular rivalry (?), bi-
stable perception (?) and visual masking paradigms (7). Main findings based on these report-
based settings showed the involvement of a fronto-parietal network subserving this function.
However recent opinions (?) based on studies in which participants do not have to explicitly
report consciousness (?7) argue that NCC can be identified in a more restrict zone, involving
posterior cortical areas (7). These paradigms mixed explicit and implicit judgements and tried
to extrapolate physiological marker of consciousness in order to filter the effect of side variables

such as process occurring close in time.

1.2.1 Internal and external awareness

Consciousness refers also to our internal world, we remain conscious when we daydream and
dream during sleep. Consciousness only disappears in dreamless sleep and in some artificial
conditions, such as under anaesthesia, or in some pathological conditions such as disorders
of consciousness. Two main functional networks can be distinguished starting from the large
fronto-parietal network characterizing awareness: the external and internal awareness networks
(7). The external awareness network, or executive control network, is characterized by the
activity of lateral fronto-parietal regions, subserving attentional and cognitive tasks. The in-
ternal awareness network, or default mode network (DMN), is a mesial fronto-parietal network
involved in self-reported process, and internally related cognitive content, such as mind won-
dering and autobiographical memory recall. Self-consciousness in this context can be seen as a
particular instance of conscious access where the object of consciousness is turned toward the

internal state. These two networks are usually anticorrelated during conscious cognition.

It is considering at the same time the neural correlates of full and content-specific con-
sciousness that Koch et al. hypothesized the posterior cortical region as an "hot zone" for

consciousness, being the exact intersection between the two (7).
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1.3 Theoretical models of conscious access

Recently, theoretical models have tried to explain consciousness taking into account neurobi-
ological main findings (7). The theoretical approach starts from phenomenal properties of
experience and try to isolate important characteristics required to a physical substrate to im-
plement them. Research on the past ten years have led to several core concepts theorized to be
necessary for conscious perception (?). T will briefly report only few words for some of them

to summarize the main concepts.

The first concept states that consciousness can be seen as a supervision system. This
"supervisory attentional system" would control the activity of lower-level functions such as sen-
sory, semantic and motor functions, occurring independently from awareness. However, when a
dynamic monitoring and control is needed, conscious perception become necessary. Within this
frame, the supervision system is proposed to anatomically correspond to the prefrontal cortex.
Shallice (??) and Posner (?7) were the firsts to propose this theory of conscious processing,
identifying conscious percepts as the information entering an "executive attention”. This same
concept can be recognized in the words of William James, which described consciousness as

"an organ added for the sake of steering a nervous system grown too complex to regulate itself"

(7).

Second, consciousness as a serial processing system. This concept theorizes that con-
scious processing has limited capacity. Although initial perceptual processing is thought to
be parallel and unconscious, conscious accesses is thought to be serial, and represented as a

bottleneck, which let only conscious information pass through (7).

A third core concept is the dynamic core hypothesis. Consciousness is associated to
a coherent assembly formed by re-entrant or top-down loops. This theory proposes re-entry as
a fundamental property of conscious perception (7). More recently, Tononi and Edelman (?),
hypothesize that information reaches consciousness when it achieves two fundamental proper-
ties: integration (i.e. formation of a coherent and unified representation) and differentiation

(i.e. isolation of a specific content). The dynamic core hypothesis associate the neural mech-
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anism underlying consciousness to the thalamocortical system. While a precise definition of
neural bases of the dynamic core is missing, this theory propose a quantitative index to mea-
sure consciousness: the neural complexity (7). This index captures a fundamental aspect of the
interplay between differentiation of local areas (differing in anatomy and physiology) and in-
tegration during perception. A low index identify either completely independent or dependent

components. By contrast, an high index is found when the two coexist.

The information integration theory. This theory proposed a new measure of the
quantity of consciousness, phi (¢), measuring directed, causal interactions within a system.
This index represents a sufficient condition to potentially experience consciousness (?7) , for a
review (7). The theory provides also some explanation of physical substrate of consciousness.
For example neurons in the posterior cortex, organized following an horizontal connectivity and
a converging-diverging vertical connectivity connecting neurons along sensory hierarchies, are
predicted to yield high neural complexity. By contrary, independent-processing micro-zones in

the cerebellum cannot generate information yielding to low neural complexity (7).

The thalamocortical rhytms. Several other authors proposed the thalamocortical sys-
tem as generating consciousness. Lamme and colleagues suggested that to sustain conscious
visual perception bottom-up processing is not sufficient but requires top-down or feedback sig-
nals forming recurrent loops (7). Llinas et al. also argued that consciousness expresses itself as
a closed loop property of the thalamocortical interconnectivity, which suggested the thalamus

as a hub from which any sites of the cortex can communicate with any other (7).

Finally the Global Workspace Theory. This theory predicts that once information
reaches consciousness, the current conscious content is represented within a global workspace,
able to broadcast the information to other processors. Bernard J. Baars (?) hypothesized that
the neural substrate of this global workspace are localized in the ascending reticular system
and midbrain, in the outer shell of the thalamus and in the set of upward projecting neurons
from the thalamus to the cortex. Theoretically, the GNW model proposed a higher level unified
space, interconnecting perceptual, motor, attention and memory associative areas, where con-

scious information resides and is broadcast back to lower level process. Dehaene et Changeux
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(?) proposed the Global Workspace as a cortical mechanism, implemented by cortical pyrami-
dal cells with long-range excitatory axons, particularly dens in the prefrontal, cingualate and

parietal regions interconnecting specialized automatic and non conscious modules.

1.4 Motivation and objectives

During my PhD work I developed in parallel two projects investigating the emergence of con-
sciousness in the human brain. In the first part of my thesis, I investigated the neural substrate
of emergence of motor awareness during a sensorimotor conflict task, while in the second part
I focused on the emergence of neural signatures of improved consciousness after a neurostimu-

lation intervention in a vegetative state patient.



Part 1

Motor Awareness

10



Chapter 2

Motor Awareness

In the first part of my PhD thesis, I investigated the issue of consciousness particularly focusing
on the aspect of motor awareness emerging during a sensorimotor conflict task. The term
motor awareness refers to an important part of what we call self-consciousness, responsible for
building the feeling of being in control and being the author of one’s movement. It is in fact
the conjunction of different aspects of motor experiences which returns a feeling of control of
what one is doing. This subjective experience of controlling one’s own motor acts is usually
referred in literature as "sense of agency". We can go through the loss of the sense of agency
when normal motor experiences, which are usually fluently controlled, are interrupted by a
mismatch between predicted and actual sensory re-afferent. Usually, subjective experiences
can be classed as "central" and "peripheral", referring respectively to cognitive experience
related to action preparation and perceptual experience of body movements. In some cases
it is possible to dissociate the two, for example when involuntary movements are triggered by
electrical stimulation and produce peripheral subjective experiences without eliciting central

ones. Sense of agency refers to the two together.

11
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2.1 Motor action and motor awareness

The ability to monitor and correct our movements is fundamental for motor adaptation and
it is under the control of an action-monitoring system. However, motor adaptation does not
always need consciousness. In fact, it is widely accepted that most of the functioning of the
motor system can occur without awareness. This discrepancy between the ability to generate
(or adapt) goal-directed actions and the formation of a corresponding conscious experience
raises several interesting questions about the nature of motor awareness. How do we know
we are moving? How do we become aware of our motor actions? In recent years, motor
awareness has become a major subject of investigation for neuroscientists (?7?) using different
approaches. Several behavioural paradigms have been developed, using psychophysics (7?7) and
frequently introducing sensorimotor mismatches. In parallel also several technique have been
developed to addresses the neural bases of motor awareness including advanced neuroimaging
(??), neurostimulation (?) and brain lesion studies (7). All this literature aimed at defining
a common neural substrate for the emergence of content specific consciousness. Here, 1 will

review the literature that I consider of importance for my following studies.

One important observation to understand the dichotomy between motor action and motor
awareness is to realize that at phenomenological level motor compensation can occur outside
awareness (7). In fact, most of the basic functioning of the motor system can unfold without
awareness. A clear example of this was elegantly provided by Goodale et al. (7). They used a
phenomenon called "saccadic suppression", in which a shift of visual target can go unnoticed if
it happens during a saccade. In fact, under this condition subjects did not perceive the change
in target location. Castiello et al. (?7) investigating the timing at which subjects become
aware of an unexpected target displacement, found that subjects motor awareness emerged

after (around 300ms) automatic movement correction.

It is now well established that motor adaptation of on-line movements is constantly mon-
itored by powerful feedback loops (?77). Desmurget et al. used a reaching movement paradigm
without vision of the respective limb to investigate the functional anatomy of these non-visual

feedback loops during large and small motor corrections. Since these loops appear to be "au-
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tomatic", they should operate similarly whether subjects consciously perceive them or not.
PET-scan results showed the involvement in these corrections of a network including the pos-

terior parietal cortex, the right cerebellum and the left primary motor cortex (7).

2.1.1 Sensorimotor conflict paradigms and motor awareness

Using a drawing task Torsten Nielsen (?) designed a paradigm to quantify the limits of motor
awareness. He asked subjects to draw a straight line while they were presented with a visual
feedback, which could be either their hand reflected on a mirror or the experimenter’s hand.
In this way, he showed that subjects presented with stooge coherently moving experienced this
latter as their own hand (perception of a voluntary movement). Further, he demonstrated
that when the stooge hand deviated on the left subjects compensate coherently in the opposite
direction, but involuntary. In this way he concluded that "the visual hand" (the visual feedback)
dominates "the kinesthetical hand" (the proprioceptive feedback), however subjects were able

to involuntary compensate for the proposed deviation.

Wolpert and colleagues reported similar observations during a planar point-to-point task.
In this task, subjects received altered visual feedbacks trough a mirror positioned above the
pointing table. Visual feedback perturbation consisted in increased perceived curvature of the
movement spanning from Ocm at the ends of the movement to a maximum of 4cm in the mid-
point. They showed that subjects were able to progressively restore straight paths in the visual
space by compensating in the opposite direction, however without consciously perceiving the
distortion (?). Surprisingly, not only subjects are not always aware about the content of their
motor actions, but if they are, they can barely recall quantitative features about their move-
ments (e.g. kinematics and joint positions). Using a similar paradigm, Fourneret et Jeannerod
(?) confirmed that motor adaptation, as they said, does not always need consciousness. In
their study they instructed subjects to trace a straight line on a graphic tablet without seeing
their hand. Visual feedbacks were available in a mirror positioned above the graphic tablet.
In some trials, subjects were presented with incongruent (deviated either to the left or to the

right) visual feedbacks. When a discrepancy between the visual feedback and the propriocep-
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tive feedback was experienced, subjects adjusted their movements, deviating from the intended
trajectories. However, once asking subjects to indicate, over a possible degrees of deviations,
their final hand position, they always underestimated their motor compensation, showing a

poor and limited awareness about specific aspects of their intentional motor acts.

To show that subjects started to compensate even before motor awareness Knoblich and
Kricher (?) investigate the emergence of motor awareness in a similar task, requiring to draw
circular lines. The experimenter changed the angular velocity of subjects’ movement, instruct-
ing them to rise their hand once perceived any discrepancy between what they were doing and

seeing. The results clearly showed that subjects raised their hand after motor compensation.

In summary, contrary to common beliefs, these evidences suggest that we are conscious
about our motor actions not because we continuously sense ourselves moving but rather because
we are conscious of our initial motor intentions (7). In fact, as long as the desired goal is
achieved, the system does not take into consideration the movement details. For this reason,
even large discrepancies between intended movement and actual sensory signal do not emerge to
consciousness. Interestingly, adaptation studies comparing progressive and abrupt presentation
of sensory perturbations showed that if a certain level of distortion is introduced progressively,
on-line corrective loops can handle increasing amount of errors and subjects will remain unaware

about the perturbation (7).

2.2 Internal models and motor awareness

Many studies have described models of motor learning and action control, which are of funda-
mental importance to describe action planning, execution and adaptation. Motor control is,
in ultimate analysis, a process transforming sensory inputs into appropriate motor outputs. It
is now widely accepted that in order to optimize these process the central nervous system try
to estimate and predicts features of one’s own body movements and their consequent interac-
tions with the external world using two types of internal models. The first type is called the

"forward model" (working on causal direction) which predicts sensory consequences of motor
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commands by using an "efference copy" (see Figure 2.1), an internal copy of the signal produc-
ing a movement within the motor system. The idea of the "efference copy" was first proposed
by Von Helmholtz, a German physician of the 19th century, which observed that passive eye
movements of the eyeball generated the illusion of visual world "moving". In contrast, with the
same active eye movement the world was perceived as still. The second type of internal model
is known as "inverse model" (see Figure 2.1), which provides the motor commands to achieve
a desired movement (i.e. transforming a desired sensory consequence into motor commands).
Using these two models, the central nervous system should be able, in principle, to simulate
the motor system functioning (?). Movement monitoring starts with the delivery of the motor
command followed by the movement onset and the movement itself and finishes with the end

of the movement.

The execution of complex motor behaviours requires both forward and inverse models.
Forward models are critical in motor control, to solve problems involving sensory predictions,
fast feedback correction and state estimation (7). Predictions of sensory consequences can
be used to anticipate and cancel re-afference, as for eye-movements and to maintain accurate
performance. Discrepancy between predicted and actual feedbacks can be used to update

forward model (see Figure 2.1).

As already mentioned, although it is natural to think that we are aware about our goals
and desired state, we don’t have conscious access to all the details of motor commands and
the relative fine adjustments and features of muscles patterns, since it would be overloading for
the brain to retain all this information. So a spontaneous question arises, which components
of the internal model are available to motor awareness? Blakemore et al. (?) speculated on
this point claiming that two kinds of possible predictions coming from the forward model may
be accessible to consciousness. One which precedes the movement, when the forward model
generates a prediction of motor action (i.e. they predict the behaviour of a body segment in
response to a motor command) and compare it with the desired outcome; and a prediction
which follows the movement, when the forward model predicts the sensory consequences of a

movement and compares it with sensory feedbacks.
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It is hypothesized that signals we are aware of do not emerge from movement itself rather
from predictions. In particular, the predictions which follow the movement can compensate
for the sensory effect of movement, coding self-movement versus outside world changing. In
fact, predictions of sensory consequences of motor actions might be used to label movements
and their sensory consequences as self-generated (?), being important for self-motor awareness.
Within this objective framework, motor awareness seems to reflect the knowledge that we are
moving and that we are doing so as initially planned. During experimental conditions subjects
are usually good at estimating the onset of their movement and poor at perceiving kinematic
details and prone to considered their movements executed as planned (7). This implicates that
the relationship between content of motor actions and motor awareness is not straightforward.
We can therefore reformulate the results by Fourneret and Jeannerod (7), in this way: subjects

were aware of the movement they intended to make rather than those actually unfolding.

State Motor output/Actual
—_—> Motor command sensory feedback
——T1—®| Inverse model »| Motor System
Desired state

Efference copy

error

A A Prediction
|
|
|
|

f

Predicted sensory
feedback

Feedback error

@

Figure 2.1: Internal model schema. A re-adaptation of a schematic functioning of internal
models (?7). The inverse model system make continuously fine adjustments to motor commands
independently from awareness to achieve the desired state. In this case subjects are aware about
predicted sensory feedback. It is only when the comparison between actual and predicted
sensory feedback produce a large prediction error that subjects become aware of the mismatch.
The prediction error and the feedback iteratively update the forward model which update the
inverse model. Gaveau et al. add this new integration features because since the prediction
error has a high detection threshold, it makes the loop unreliable to adaptation of small external
perturbation. So for small or moderate prediction the feedback error allows a disambiguation.
Inspired by Gaveau et al. 2014.

To summarize, the motor system seems to be aware of initial intentions, as long as the goal

is achieved the details of motor execution do not reach consciousness even if important motor
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corrections are applied. So when a big mismatch between intended and actual sensory signals
occurs, internal feedback loops become unable to force congruency and an error is produced,
invalidating initial prediction, probably emerging from the parietal cortex. As a results motor

awareness is unfolding and the subject become aware of the executed response.

2.2.1 Forward model, self-consciousness and pathological conditions

The fact that efferent signals plays a crucial role in the emergence of motor awareness is sup-
ported by three main line of evidence coming from behavioural studies on self-consciousness
and on brain damaged patients. First of all, studies on self-recognition gave an insight to the
relationship between the efferent signal and the capacity to attribute an action to ourselves.
Tsakiris et al. (?) tested subjects within a paradigm in which they had either to perform a
right index movement or their finger was moved passively by the experimenter through a lever.
When the finger was moved passively no efferent signal was launched compared to the active
condition. In the active condition, self-recognition was found to be more accurate, showing the

importance of efferent output in constructing motor awareness and furthermore self-recognition.

Further evidence comes from brain damaged patients, and in particular "deafferented"
patients. These patients are aware of performing a movement, for example about the movement
direction, even though they are blind to any proprioceptive signals. For instance, they are
unable to tell if their hand had been blocked during the movement. This dissociation has
important implications as it suggests that they experience the awareness of movement even in
the absence of perceptual information, therefore relying purely on efferent command. The total
lack of sensory signals is also demonstrated by their lack of normal contralateral movement-
evoked potentials in sensorimotor areas (7). However, in the study by Kristeva et al. the
complete absence of sensory inputs does not prevent the patient to show a residual motor
awareness. Similarly, a systematic mismatch between peripheral inputs but a preserved efferent
command could also be at the origin of phantom limb pain observed in amputee patients. In
this case, providing the patient with a virtual visual afferent signal can actually reduce phantom

limb pain by inducing coherent efferent and afferent signals (7).
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A quite inverse pattern is observed in patients with anosoagnosia for hemiplegia, a distur-
bance of motor awareness in which the patients are unable to move and still claim to do so,
denying their own deficits. These patients are thought to form a normal efference copy but to
fail to accomplish the motor command. These gives a strong line of evidence to the hypothesis
that motor awareness has an endogenous origin. Berti and colleagues (?) tested anosognosic
patients with lesions including the premotor areas 6 and 44, motor area 4 and the somatosen-
sory cortex. They suggested that patients were impaired to realize that they were not moving
due to a dysfunction in the comparator of intended and actual peripheral reafference (which in
this case would be absent). Crucially, such interpretation is supported by the fact that these
patients seem to display abnormal awareness only when required to detect active movements

but not during passive movements.

In another study, Fotopoulou and colleagues proposed the rubber hand illusion paradigm to
hemiplegic patients with or without anosognosia for hemiplegia. Three conditions were tested:
an efferent copy condition, where patients had to raise their own paralyzed hand while seeing the
rubber hand, a non-efferent copy condition, experimenter passively raised their paralysed hand
and a no-movement control condition. In contrast to patients suffering only from hemiplegia,
anosognosic patients with hemiplegia, disregarded visual information relative to the motionless

rubber hand only when they were expected to do the movement compared to when experimenter

had to do so (?).

All these examples on how motor perception and motor awareness can be dissociated in
pathological conditions do not argue that sensory input signals are not taken into account. It
is well known that passive limb displacements are easily detected, as peripheral stimulation
(Carota), however in this case no expected inputs are generated, and therefore when sensory
flow reaches the cortex, an error signal is produced. In fact, it is accepted that only when

prediction becomes highly unreliable sensory afferent signals regain access to consciousness.
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2.3 Neural candidates of motor awareness

Several brain regions have been hypothesized as potentially involved in motor awareness. Con-
sidering the literature about major abnormalities in awareness of action the posterior parietal
cortex and the premotor cortex seem to be the two most probable candidates (see Figure 2.2).
The posterior parietal cortex (PPC) was found to be implicated in both motor conscious inten-
tion (?) and motor awareness (?) and several studies have linked its activity with predictive

computation(forward modelling).

The parietal cortex together with the cerebellum are thought to be involved in sensorimotor
predictions. Following this hypothesis (??77), the cerebellum may be part of a forward model
system by providing rapid prediction of sensory consequences of actions, to be compared with
actual inputs. The comparator module would have its anatomical counterpart in the climbing
fibres of inferior olive, important to evaluate motor performance. These neurons have been
proposed to react to unexpected and unpredictable stimuli (7). On the other hand, the parietal

cortex would be more likely involved in prediction related to plans and goals of a movement.

The parietal lobe seems to be involved in detecting mismatches between desired and actual
movement. A first evidence come from a transcranial stimulation study, delivering a single focal
stimulation over the left intraparietal sulcus, at the onset of a movement correction. Using a
saccadic suppression paradigm, Desmurget et al. (?) showed that successful corrections in
response to a subliminally displaced target are linked to the PPC activity. Pisella et al. arrived
to a similar conclusion testing a patient with bilateral parietal lesions and showing that she failed
to correct her arm trajectory after a jump of the final target durng a saccade (7). They inferred
that on-line control is a specific function of the posterior parietal cortex. The role of parietal
cortex and cerebellum was also emphasized by a study introducing a mismatch between vision
and action in normal subjects using fMRI. In fact, Giraux et al. (2002) suggested that both
intraparietal sulcus and medio-lateral cerebellum were involved in the detection and adaptation

during a visuomotor conflict.

Assal et al. (?7) showed that lesions in the right parietal cortex caused the alien hand



20 Chapter 2. Motor Awareness

syndrome, a neurological disorder of awareness in which movements are performed without
will. Further, parietal lesions were also associated with alteration of awareness of voluntary
actions, and could cause the loss of "wanting to move" feeling in the initiation of a movement.
Sirigu et al. (?), using Libet’s paradigm on parietal patients reported that the classical delay of
206ms before EMG signalling the will to move, was abolished, suggesting that patients could not
access their intentions to move. Motor awareness emerged probably 60-70ms after movement
onset. In fact, in these patients motor awareness is likely to emerge from the processing of
peripheral inputs rather than from (impaired) efferent command. Another study, conducted by
Sirigu et al. (?), investigated impaired motor awareness in apraxic subjects, with a deficit of
voluntary movement, having lesions on the left inferior parietal cortex. Subjects had to execute
finger movements, while the visual feedback, presented by a video monitor, was manipulated
systematically. Apraxic subjects had more difficulty in recognizing their own movements from
congruent experimenter movements, mistaking a stooge hand for their own. This suggested a

failure in evaluating and comparing internal and external feedbacks, highlighting the crucial

role of intentions and forward processing in self-recognition (7).

Other eloquent evidence come from a neural stimulation study performed in our team by
Desmurget et al (7). In this study neural correlates of motor intention and awareness were
investigated by directly stimulating cortical areas likely generating this process. In particular,
they found that stimulation of the right inferior parietal lobule (Brodmann areas 39 and 40)
triggered the intention and desire to move the controlateral limbs, and stimulating the left side
triggered the intention to move the lips or to walk. Often the patients reported "a will to
move the chest" or "a desire to move the hand". Interestingly, their reports highlighted the
voluntary and endogenous origin of these triggered reactions. Experimenter: "Did you move?"
Patient: "No. . . I had a desire to roll my tongue in my mouth.” Experimenter: "To roll
what, your. . .7" Patient: "To roll my tongue in my mouth." Always based on this study,
PPC was hypothesized to store movement representations, since patients well described precise
action as in the previous example. If the intensity of the stimulation was augmented from 5
to 8 mA, the intentionality switched to the certainty from the patient that he actually moved

the respective body part, although no EMG activity was recorded. This implicated that a
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movement pre-stored representation could emerge to awareness without being accompanied by a
real movement. This would account for the hypothesis that forward modelling is implemented in
the posterior parietal cortex. Importantly, this study highlights a double dissociation: premotor
stimulation induced movement without motor awareness while angular gyrus stimulation led

to motor awareness and movement intention without EMG activity.

From previous studies, evidence had emerged that the dorsal stream provides automatic
guidance to our movements to ensure to arrive at the final target as well as to avoid potential
obstacle. This mechanism of automatic avoidance is severely impaired in patients suffering from
optic ataxia, having lesions on the superior parietal and intraparietal sulcus, or more in general
in the dorsal stream. Schindler et al. (?) demonstrated how these patients were not impaired
in simple reaching tasks, but instead in avoiding obstacles and automatically correcting their

movement towards a target.

Studies on action imagination also contribute to bring evidence of the implication of the
parietal cortex in the representation of actions. For instance, using neuroimaging studies Ger-
ardin et al. (?) compared imagined and executed motor actions in normal subjects. Compared
with rest, these two conditions shared overlapping networks, including bilateral premotor and
parietal areas, basal ganglia and cerebellum. Imagined motor actions triggered higher engage-
ment of bilateral premotor, supplementary motor areas and left posterior and inferior parietal
lobes. Conscious representations are known to be challenged once parietal lesions occurs based
on knowledge of patients which are unable to maintain them and instead perceive the feeling
of "losing their right arm". This was the case reported by Wolpert (?) of a patient with a
lesion in the superior parietal lobe, presenting both sensory and motor deficits, unable to main-
tain an internal representation, suggesting the fundamental role of superior parietal cortex in

sensorimotor integration.

Particular focus for motor awareness has been provided also for the promotor cortex, the
supplementary motor area (SMA), the anterior cingulate cortex and the dorsolateral prefrontal
cortex (DLPF). Main evidence supporting the role of the premotor cortex in motor awareness

comes from a study by Berti and colleagues (?) on anosognosic patients. As already mentioned,
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they identified the Brodmann area 6 as frequently causing this deficit (surplus) of awareness.
They hypothesized that this region is responsible for monitoring the actual movement, acting

as a comparator of actual and expected sensory inputs.

(59) (64)

(38)

(60)

(56;57;58)

Figure 2.2: Summary of cited literature referring to neural candidates of motor
intention and awareness. The figure shows the areas cited in the selected literature, with
the respective references. Panel A refers to parietal candidates and panel B to frontal candidates
of motor awareness.

The supplementary motor area and medial motor regions are also thought to play an
important role in the emergence of conscious intention. Evidence of SMA implication comes
from several studies (see Figure 2.2B). Stimulation studies conducted by Fried et al. (?) over
the SMA region with subdural electrodes in epileptic patients triggered a compulsive desire to
act, described as a need or a urge to move. However, subjects did not feel as they were at
the origin of this urgency, instead they reported that a movement "was about to occur" and
that their arm "was going to move". In this case, increasing the intensity of the stimulation
triggered the actual movement. It is interesting to notice how the stimulation of the SMA
evoked precise movement intentions, probably by suppressing the inhibitory signals exerted by

the SMA over the primary motor cortex (7).

The prefrontal cortex seems to be more involved in conscious monitoring than in sensorimo-
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tor integration. In fact, it is not involved in selection of spatial target or series of action to join
target. Using a similar experimental paradigm to the one already described in Fourneret and
Jeannerod (?) task, Slachevsky et al. (?7) showed that patients with prefrontal lesions achieved
awareness of the sensorimotor conflict much later than control subjects. In fact, the amount of
visual deviation had to be augmented over 24° degrees before patients realized the mismatch,
showing a disturbance of conscious monitoring of action. Again Slachevsky et al. (?) using a
similar paradigm, but keeping constant angular deviations at 24° degrees, evaluated whether
past experiences could help behavioural adaptation. They found that patients with frontal
lobe lesions were able to verbally report the correct adaptation strategy later than controls,
and that this delayed awareness correlated with frontal behaviours. Moreover, subjects who
reported their strategy later on time had also worst task performances. In this way, awareness
was linked with the performances, which decreased during unaware trials, before that subjects
were able to verbally report the correct adaptation strategy. However, also patients who never

report the good strategy showed some implicit adaptation.

2.4 Brain mechanisms of conscious access

As mentioned before, several processes unfold in the brain outside awareness. However, evidence
suggests that non-conscious processing can influence the entire chain of specialized areas. These
mechanisms of non-conscious processing are particularly interesting in helping to highlight the
difference between what is and what is not conscious. Convincingly, subliminal priming has
been demonstrated at several level including visual, semantic and of course in the motor domain,
as able to influence motor responses an even inhibitory control (7). However, studying non-
conscious access with subliminal priming brings potential limits, such as that activity decreased

with processing depth, with elapsed time, and failed to trigger lasting and flexible modifications

(7).

fMRI studies on masking paradigms highlight amplification of activity in the visual cortex

mostly in associative areas and the emergence of a correlated network including bilateral parietal
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and frontal cortex. Event-related potentials (ERPs) analysis on attentional blink paradigms

revealed fully preserved visual processing on unseen trials (7).

ERPs studies using masking paradigms showed that early visual processing (200ms follow-
ing stimulus) can be fully preserved in unconscious trials (e.g. trials in which the subjects deny
seeing the stimulus). It is only around 300 to 500ms that neural correlates of visibility appear,
as a distributed activity, called P3 or P3b. This P3b wave has to be distinguished from P3a
wave, recorded also during non-conscious processing and usually attributed to highly focused

continuous visual attention, localized in focal anterior regions (7).

Del Cul et al. investigated the brain activity evoked by masked stimuli using high density
EEG. Using a backward masking task (50ms), they want to characterize which brain areas
and what specific timing was associated to conscious access. They varied by small steps the
target-mask stimulus onset asynchrony (SoA) to find ERP events showing a non-linear depen-
dency with it. They observed that conscious reportability correlated with a late (>270ms)
bilateral fronto-parieto-temporal network activation (?). Instead, in the preceding period (be-
tween 140-270ms) a non-linear activation proportional to SoA was observed in the posterior
occipito-temporal and parietal areas, showing a non-linear amplification with neural correlates

of masking threshold.

Findings from subliminal research turned out to be particularly useful to refuse previ-
ous theory on conscious processing, highlighting how specific neural mechanisms, until that
moment attributed to conscious processing, were still present during unconscious conditions.
For example, the believes that invisible stimuli may be coded in peripheral cortical modules,
but that unconscious response does not recruit fronto-parietal network responsible for global
broadcasting information through the cortex was recently challenged by Cohen et al (7). They
showed how long-range synchrony after post error adaptation occurs even in the absence of
conscious error adaptation. Conscious perception was also associated with the ability to hold
a certain representation in time compared to unconscious stimulus perception. This theory is
called Recurrent Theory and refers to the idea that an invisible stimulus may start feedforward

mechanisms but not recruit recurrent processing. However, King et al. (?) showed recently
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how invisible information can be maintained within higher processing stage neural activity.

Finally, according to recent evidence MEG and EEG data recorded during observation
of threshold-level visual stimuli showed a decrease in variability in seen versus unseen trials
(subjective reports). This results showed that cortical activity for consciously perceived stimuli

is more stable than for unconscious stimuli (7).

2.5 Motor awareness in children

Studying consciousness in children allows to make a link between multi-sensory development
and emerging sense of self. Few studies have investigated until now the role of motor awareness
in the development from childhood to adulthood. Therefore, the emergence of motor awareness
in children has not yet been directly tackled using neuroimaging techniques. However, this
question is of extreme interest since awareness can be crucial for the correct development of
multi-sensory integration and therefore to build a stable body representation and a correspond-

ing sense of self and agency.

It has been argued that awareness of own-body already appears during the first year of
life. Filippetti et al. tested newborns using visuo-tactile synchronous and asynchronous stimuli.
They presented video stimuli containing either mirror-like images of 5-month-old infant face
being stroked with a paintbrush synchronously or not, called body related, and the same image
but upside-down, called non-body-related stimuli. They showed how newborns preferred to
look at the synchronous stimuli, but only when visual cues were body related (7). However,
despite the early detection of self perception capability, it is known that multi-sensory processes
underlying body representation reach maturation during the late childhood. It is in fact around
8 years old that children start to integrate different modalities in order to reduce sensory

uncertainty (7).

Nardini et al., using a task in which subjects had to return an object using either visual
landmarks or self-generated (proprioceptive) cues, found that children before 8 years old did

not reduce their response variance when both cues were available (7). In another study, they
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demonstrated that sensory integration induced uncertainty reduction only after 12 years old,
also if tested within a single modality, like vision. However, since children experience less
sensory integration than adults, they have a more developed capability to exploit individual
sensory modalities information alone, reaching greater performances compared to adults when
discriminating conflicting stimuli (7). It is only during late childhood that children reach an
adult-like balance between sensory cues and are able to build a correct representation of their

own hand in the external space and reach a unified bodily self.

Interestingly, Cowie et al. (?) using the rubber hand illusion paradigm, and in particular
an intermanual pointing task, found that children were as sensitive as adults to visual-tactile
synchrony, suggesting that the visual tactile pathway is already mature at 4 years old. However,
children between 4 and 9 years old were more victims of the rubber hand illusion compared
to adults, perceiving their hand position closer to the rubber hand. This dissociation shows
the existence of two processes with different maturing timing, where the process relying on a
visual-proprioceptive information would mature later. However, the ability to identify their
hand as one’s own (assessed by ownership question and not by perceived hand position) had
no significant development after 4 to 5 years old. In a subsequent study, Cowie et al. (?)
tested the same paradigm in later childhood, considering subjects between 11 to 13 years old,
comparing the new dataset with previous results. They found that perceived hand location,
assessed by eye closed pointing of perceived position, reached adult-like performance around 10

to 11 years old.

A virtual reality study on bodily self-consciousness point out that touch referral was grater
in synchronous compared to asynchronous condition only after 10 years old, and drift in per-
ceived self-location was grater in synchronous compared to asynchronous condition only for
adults (7). This result is of fundamental importance in suggesting that two different per-
ception aspects, the sense of hand ownership and the actual perceived location, may develop

following different timing (7).

Therefore, the bodily self is not a unitary construct developing in a unitary manner, but

consists of several processes that unfold at different rates according to different time line.
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It was suggested that body self-awareness may serve as a developmental bridge between the
kinaesthetically based awareness and discrimination of one’s own body (evident in infancy) and

the more complex psychological self that develops over childhood and adolescence (7).

Body identification or self-awareness seems to mature earlier than the proprioceptivly
based sense of limb location which takes a longer time to reach mature state. A more complex
psychological self develops over childhood and adolescence. Adolescence sees the development
of a much more complex form of self-awareness, in particular the ability to relate the self to
a social environment. Sensory foundation of an adult like use of multi-sensory information
is a key step to develop new conception of the self that emerges during adolescence. During
early adolescence the hand reaches adult size and its perception becomes less plastic and more
mature. It is at this point that children begin to combine and weight multi-sensory processing

optimally (7).

The accuracy of internal hand representation was also investigated by Vidal et al. (2004)
which tested 15 children aged 5 to 10 years old. They showed that both errors in the extent
and direction of movement were significantly largest in younger children, which showed higher
variability in the end-point reaching. They attributed this difference not only to immature
control mechanisms but argued that younger children had only a partial formation of forward
representation for hand localization. Efference copy and proprioceptive signals are essential to
build initial and subsequent hand location, which requires a forward model formation. Internal
models are generally used in two phases, for computing a movement vector linking the hand
and the target, and for solving the inverse kinematic problem, finding right combination of joint
angles to achieve the desired trajectories. In this sense, a noisy proprioceptive calibration or

an inaccurate hand location estimates can result in a compromised planning and execution.

In adults, I discussed how neuroimaging studies had identified the recruitment of a specific
set, of regions in response to body-related multi-sensory integration of body modality attributed
to the self. It is of great importance to test whether these same areas are activated also in the
immature brain. A study by Filippetti (?) showed that cortical activations (assessed with near

infrared spectroscopy) of 5-month-old infants were similar to adults in response to body-related



28 Chapter 2. Motor Awareness

contingencies versus non-contingent stimuli.

However, it is well documented how the human brain goes through dramatic changes of
structural and functional organization during life (?). Although 90% of adult size is reached
by age 6, the brain still matures throughout adolescence and young adulthood. Specifically,
cortical gray matter loss occurs earlier over brain regions embedding primary sensory and motor
process (until 12 months), while associative areas, controlling top-down behaviours mature later
on (7). Temporal and parietal cortices associated with basic language and spatial attention
skills mature next (until 10 years old), followed by prefrontal and lateral temporal cortices,

integrating primary sensorimotor information seems to mature later (until 16 years old).



Chapter 3

Experimental Studies on Motor Awareness

3.1 Aim of the studies

Mismatch paradigms represent a good experimental way to introduce a discrepancy between
intended movement and actual sensory feedbacks, by presenting an mismatch between visual
and propioceptive cues. These paradigms are suitable to investigate how subjects integrate
sensory signals to update their conscious motor perception and highlight that they are unaware
about much of their motor adjustments. An ecologic way to study neural underpinnings of
conscious perception is to keep sensory input constant and to study emergent differences in
brain activity looking for changing contents of consciousness. Therefore, stimulus visibility is
usually manipulated to create conditions differing regarding conscious perception rather than
in respect to objective stimulation parameters per se. However, two experimental conditions
are never strictly identical (?), and slight differences in the ERPs can account for this objective

experimental bias rather than for subjective reports.

First, we focused on the neural correlates of motor awareness in healthy adults and in 7-11
year old children, trying to catch brain activity when the motor conflict becomes overt. We
modified a preexisting paradigm (?), paying attention to present stimuli around each subject’s
perception threshold. We paired this task with high density EEG recordings (128 channels), to

study the neural activity undergoing the sensorimotor conflict with a good temporal resolution.

29
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We used blind source separation (BSS) (?) because it allowed us to reconstruct cortical regions
of activity and their associated neural signal and thus to study the sensorimotor conflict task
in a more precise frame. In this way, we could identify when and where the overt motor conflict

was perceived.

Blind source separation can be used either for artifact rejection and neural activity recon-
struction. In this work, I always used it in series, taking out the noise due to eye-blink and hand
and body movements in a first step, which aimed at rejecting interfering components at a single
subject level, and then I used a group BSS to find common sources to the two experimental
groups (adults and children). In this way, we were allowed to compare neural signals coming
from different populations but having a common cortical sources separation (for more details
see Methods). We further performed analysis of sensorimotor features, as well as assessing if
adults and children had the same velocity and reaction time in detecting and correcting the
onset of the deviation. In this way we wanted to investigate the neural bases of motor awareness
and their evolution in healthy children. To answer these questions is crucial both for adding a
piece on the puzzle of motor awareness in healthy subjects and for the comprehension of normal

consciousness development.

In the second section, I will present a behavioural study within which we investigated
differences in behavioural performances in healthy adults and children while random devia-
tions were proposed. Particular focus on detection theory allowed us to pinpoint fundamental

differences in detection performances between adults and children.

Following, it is reported a draft version of the article which is still in progress.

3.2 Neural correlates of consciousness during a

sensorimotor conflict

Martina Corazzol, Guillaume Lio, Alice Gomez, Angela Sirigu
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Institute of Cognitive Science Marc Jeannerod, UMR 5229, CNRS, Claude Bernard

University Lyon 1, France

3.2.1 Introduction

People strongly believe that they are completely aware about their own actions. This awareness
capacity gives us a clear sense of "self", i.e. a clear sense that we exert a direct control on our
movements and decisions. However, at a phenomenological level, several studies have repeatedly
shown that most of the basic functioning of the motor system can unfold outside awareness
(??7). In fact, ongoing motor responses are constantly monitored by powerful feedback loops (7)
which operate automatically and behave similarly whether or not the subject adapts consciously
to the external environment. It is now widely accepted that motor awareness does not directly
rely on sensory cues about the ongoing movement but rather on initial intentions and therefore
on forward internal models (7). Tt is only when the comparison between predicted and actual
feedbacks does not match the desired state and a certain amount of flexible control is needed

that the error information gains access to consciousness (7).

Using a sensorimotor conflict task, it is possible to experimentally reproduce a mismatch
between visual and self-generated (e.g., vestibular and proprioceptive) cues, which at times
brings the sensorimotor conflict into awareness. Using this setting, in which subjects could not
see their hand while tracing, Fourneret and Jeannerod showed that subjects have limited or no
consciousness at all of their motor performances. In fact, not only they are not aware about the

details of their own movements but they underestimate the amount of their motor corrections
(7).

Studies on motor control and underlying cognitive functions point to the medial frontal

cortex (7), and in particular to the rostral cingulate zone (?), as a "crucial node" to detect

a discrepancy between predicted and actual sensory outcomes is used to adjust the ongoing
movement (?7) and adapt to novel situations. Recent researches suggest that motor adapta-

tion rely largely on parietal regions, mainly on the left hemisphere (7), and cerebellar circuits
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(7). However, the neural substrates responsible for the emergence of motor awareness fol-
lowing sensorimotor conflict remain debated. Since the parietal cortex is also implicated in
motor representations and online action control it is still unclear whether this activity responds

specifically to awareness or encodes also movement correction features.

Nevertheless, if this question remains tricky and still unanswered for the mature brain,
it has not yet been posed for the developing immature brain. The study of motor awareness
development may therefore provide insights about how does motor awareness emerges when

forward models are not stable yet.

Previous studies showed that not only forward model but also multi-sensory processes un-
derlying body representation in children are not fully developed (Contreras-Vidal et al. 2004).
Evidence from the rubber hand-illusion suggests that children rely more on visual than pro-
prioceptive cues to construct the internal hand representation (7). Consequently, since propri-
oceptive signals and efference copy are essential to build forward model it is still unclear how
motor awareness is affected or whether this mechanism can share the same neural bases with
adults. However, since children are better in exploiting sensory information from a single sen-
sory modality (?), a prediction is that ongoing visuomotor features are not optimally integrated
to gain access to consciousness. This prediction, together with the fact that the parietal cortex
development arrives later in the ontogenesis (?), suggests that motor awareness in children may

have a different neural substrate.

The purpose of our study was to investigate the neural substrates of motor awareness
disentangling specific structures or activities sustaining motor awareness from activities involved
in action monitoring and to compare this mechanism in mature and developing individuals.
We decided to tackle this issue by using a simple paradigm: a sensorimotor conflict (Nielsen,
1963) in which subjects were presented with a drawing task (i.e. to trace a straight line). To
provide a stable background to study conscious perception around subjects’ perceptive threshold
we used an adaptive algorithm. In this way, we collected trial-by-trial measures of objective
visuomotor features and subjective motor awareness. The purpose of our study was therefore

to isolate within the functional architecture of sensorimotor conflict the specific structures or
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activities at the origin of the motor awareness. Using EEG recordings, we investigated the
neural mechanisms encoding visuomotor features and tested how these processes varied as a
function of objective motor performance and how cortical neural activity explained subjective

awareness reports.

3.2.2 Methods

Stimuli and Protocol

Twenty young right-handed healthy adults (26 + 4 years old, 11 females and 9 males) and
20 children (9 + 1.5 years old, 14 females and 6 male) participated in this study. Subjects had
normal or corrected-to-normal vision. Each experiment lasted for approximately 1 h 30 min.
Subjects were unaware about the purpose of the experiment. Children were recruited through
local schools and received 30 euros in compensation for their participation. All subjects and
legal tutors (for children) gave written informed consent to participate in the study. The whole

paradigm was approved by the local Ethic Commitee (N ID-RCB 2014-A01894-43).

Subjects sat on a chair facing a three layers table (see Figure 3.1A) composed by a graphic
tablet, a mirror and a computer screen (positioned at 75, 107 and 139¢m from the ground for
adults and 75, 99 and 123cm for children, respectively). They were instructed to draw a straight
line with their right hand on a graphic tablet (Wacom tablet Intuos 3) using an adapted stylus.
To reproduce the friction sensation, a paper board was positioned between the stylus and the
tablet. While subjects were tracing, they could not see their hand since they was hidden by
a first surface mirror (Edmund Optics 254 x 356mm, 4-6 A Mirror) used to reflect the visual
feedback, displayed on the computer screen (HP ZR2240w 21.5-inch LED Backlit IPS Monitor,
RR = 60Hz) positioned above.

We asked participants to draw a straight line from a red spot, positioned in the bottom
part of the screen, to another red spot positioned 11.5 ¢m above on the sagittal axis, while
maintaining a homogeneous velocity. At the beginning of each trail, subjects had to place the

stylus tip at the starting position on the tablet, located in correspondence to the midline of their
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Figure 3.1: Experimental set-up, protocol and movement trajectories. (A) Lateral
view of the experimental set up. The subject’s hand was hidden by a mirror. The hand
movement was recorded by a graphic tablet and reflected in the mirror as a cursor. The
mirror reflected the cursor, the starting point and the target (red dots). (B) Top view of the
experimental set-up. (C) Experimental protocol. Both hand trajectory and visual feedback
are presented (bottom and top respectively). Subjects had to trace a straight line from the
bottom to the top of the graphic tablet (yellow line). At a certain jittered location, an angular
deviation was introduced, and the visual feedback was rotated by a corresponding angle. The
subject started to compensate in the opposite direction to reach the visual target.(D) Example
of movement path for one perturbed trial. Red line: visual feedback. Yellow line: real hand
position. Visuomotor features are schematically represented, including visual error, related
to the apparent direction of the movement ("seen") compared to the expected one (straight
ahead), and proprioceptive error, related to the actual direction of the hand ("done").
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body. Subjects had to reach the final target without directly seeing their hand and to use the
computer-generated visual feedback reflected on the mirror (defined as the "seen trajectory") to
assess their ongoing position. The visual feedback consisted in a dark spot corresponding to the
actual position of the hand. The position of the stylus tip (defined as the "real trajectory") was
presented as a dark spot overlaid on a rainbow background (see Figure 3.1C). Stylus positions

were sampled at 60Hz and displayed on the computer screen.

In 80% of the trials, an angular bias (ranging from 1° to 15° degrees) was introduced
on the visual feedback, either to the right or to the left. In these trials, in order to see a
straight line on the screen and to reach the target as instructed, subjects had to adjust their
actual movement direction. To reduce anticipatory reaction, learning and adjustments from
participants the deviation onset was jittered in a random way within a window of 2 ¢m, going
from 2 cm after the starting point until the center of the path. Trials maximum duration was
set at Hs for adults and 10s for children. Trials ended when subjects reached the target spot.
Subjects were then asked to answer to the following question: "Did you perceive a perturbation

of the trajectory? "and they had to report (adults) or to say (children) "yes" or "no".

Subjects did 10 min of training before doing the EEG to make sure they understood the
instructions and were familiar with the set-up. Adults and children performed a total of 480
trials. Twenty percent of the trials were presented without deviations (and they were called
"neutral"). An additional block, called the source block, of 192 trials (with 32 neutral trails),
was performed by adults after the training and before the experiment. This block was designed
to present big deviations (ranging from —15° to 15°) in order to optimally extract task-related
sources and prevent to base the source separation only on trials with small deviations. Since

children had less resistance to fatigue they did not perform this additional block.

A staircase algorithm was implemented to ensure to present stimuli around each subject’s
detection threshold. This procedure is described by Levitt et al. (?) and consists of adjusting
the deviations in each trial, according to the subject’s previous response. In particular, to
reach 50% level of aware and unaware trials, an up-down adaptive staircase procedure was

applied, where the stimulus level was decreased after a positive response (or increased after a
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negative one). Every subject completed 4 staircases of 100 trials, 2 with left deviations and
2 with right deviations, starting either from 0° or 15° degrees (implemented using the Matlab
toolbox - Arthur Lugtigheid 2009). Different step sizes were used throughout the paradigm.
Staircases steps changed by 2° degrees for the first 5 reversals, by 1° degree for the second 10
and by 0.5° degrees for the remaining ones. The 4 staircases were randomly interleaved. The
online estimation method had the advantage to be robust to perception drift, in fact if a drift

of perception threshold occurs during the task also the stimuli intensity placing will follow this

drift.

Preprocessing

Electroencephalographic (EEG) signals were recorded using the Brain Product™

ac-
tiCHamp system with 128 active electrodes (actiCAP 128Ch Standard-2) mounted in an elas-
tic cap at 10-5 system standard locations (7). All electrodes impedances were kept below 50
kOhms. EEG data were recorded at a sampling rate of 5kHz without an online reference, then
all data post-processing was done offline using the MatlabTM software. Subjects were seated
in a darkened, shielded room. Offline, data were band pass filtered using zero-phase Chebychev
type II filters (Low pass - cutting frequency: 45 Hz, transition band width: 2 Hz, attenuation:
80 dB; | High pass cutting frequency: 0.75 Hz, transition band width: 0.2 Hz, attenuation:
80 dB) and re-referenced to common average. Then, data were epoched from -0.5ms before
to 1.5ms after the stimulus onset. Corrupted epochs were automatically detected and rejected
using EEGLAB (?7) and the FASTER toolbox (7). Finally, for each subject, non-brain artifacts
(eye movements, ballistocardiac noise, sensors movements and other electrical noises) were de-
tected and rejected using independent component analysis (ICA) /blind source separation (BSS)
with UW-SOBI (1001 times delays). The UW-SOBI algorithm (?) is an adaptation of the well-
known SOBI algorithm (??) reformulated as an uniformly-weighted nonlinear least squares

problem to avoid the common "whitening" phase which is known to limit the performance of

BSS/ICA algorithms in noisy conditions (7).
Behavioural Data Analysis

Staircases Thresholds. For every staircase a convergence threshold was computed as the
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mean of deviations of trials where a reversal occurs (where reversal is defined as a trial in which
the subject switches his answer from "yes" to "no" or the contrary). The threshold of conscious

perception was estimated using reversals occurring after the fifth trial.

Trials discarded during the EEG preprocessing were not included in further analysis. Raw
data of x and y coordinates (horizontal and vertical positions) of the dot displacement corre-
sponding either to the real stylus trajectory and seen black dot trajectory were further analysed
using MATLAB (The Mathworks, Natwick, USA). Few pixels before the final target (at 645
pixels from the top of the screen) were not considered systematically in the trajectories analysis,
being possibly contaminated by artefacts due to reduced velocity. All x trajectories (defined
by x positions sampled each 60Hz) were realigned to the onset of deviation (due to the jittered
procedure previously described). A window of 2s, starting 0,5s before and ending 1,5s after the
deviation onset was extracted. Trials shorter than 2 seconds were filled up with empty values.
For every subject, their adaptation threshold was computed using Matlab toolbox - Arthur
Lugtigheid 2009. For every trials, the onset of correction and mean velocity were computed as

follow.

Correction Onset. Y and X coordinates were interpolated to be sampled every 10ms. The
first derivative of the x coordinates (horizontal position) of the hand trajectory was computed.
Since to adapt to stimuli subjects had to drift away from the center of the screen, the correction
onset was defined as the moment at which the first derivative of x started to stray from the
straight direction. To minimize the effect of different deviation intensities and orientations
(left /right) the x coordinates of each trajectory were normalized in respect to their distance
from the ideal line at 700ms. This timing was chosen as a trade-off between finding a timing
in which trajectories were already biased from the stimuli intensities and a timing for which
all trials had valid (and not empty) coordinates. The mean over the baseline was computed
and systematically subtracted from the trajectory. Further, to remove any natural directional
tracing bias, for each subject a median trajectory was computed in the aware and unaware
conditions for left and right deviations. The left median trajectory was then subtracted from

the right median trajectory.
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Cleaning Procedure. 'Trials in which subjects did not perform correctly the task were
discarded. A trial was considered valid when the hand trajectory crossed an imaginary starting
line (settled at 1072 pixels from the top of the screen, 2 pixels after the starting spot) and arrived
first at the deviation onset and second to the final target. Only trials deviated more than 1°
was considered since smaller deviations were unlike to provide a visual feedback appreciably

different from the neutral one.

Velocity of Ezxecution. The velocity was computed as the ratio between the length of the
trajectory traced by the hand and the relative execution time. The data were filtered as follow
for every subject: only trials in the range of 3 standard deviations from the mean value were

considered for further analysis, for all the following features.

Two movement features were selected as reflecting sensorimotor conflict, called visuo-motor

features: the visual error seen until 400ms and the proprioceptive error.

Visual Error at 400ms. For each trial, we quantify how much the visual feedback drifted
from the midline until 400ms. Four hundred milliseconds was chosen considering that the onset
of correction should occur at 350 ms on average. Because we wanted to capture the amount of
visual feedback deviation from the straight planned movement from the onset of deviation until
an effective correction took place, we considered 400ms after deviation onset. The visual error
was computed as the root mean square error between the seen trajectory (x position integrated
over time points) and the ideal central line (relative to the beginning of the movement) taken

as the x position at the onset of the perturbation.

Proprioceptive Error. To quantify the hand correction, for each trial, we computed the
root mean square error between the real trajectory (x position integrated over pixels) and the
ideal central line after the onset of the perturbation, normalized by the same index computed

before the onset.
Statistics

For all following measures, the normality of the distributions (Kolmogorov-Smirnov) was

tested prior to apply the ANOVA, if this condition was not respected, non-parametric tests were
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applied. A mixed ANOVA was performed on perception thresholds with group (adults/children)
as independent variable and laterality (left/right) as dependent variable to test if children have
higher perception threshold than adults. Because no significant difference was noticed between
deviations applied to the left or to the right side (F(1,38) = 3.042, p = 0.089, 12=0.074), further
analysis were run without distinction between left and right trials. To test the onset of correction
and velocity, a mixed ANOVA was performed on correction onsets with group (adults/children)
as independent variable and awareness (aware/unaware) as dependent variables. For visual and
proprioceptive errors, an ANCOVA was performed with group (adults/children) as indepen-
dent variable and awareness (aware/unaware) as dependent variable and mean deviations and

difference between deviations presented in the aware trials and unaware trials as co-variable.
Sources

Group blind source separation (gBSS) offers a straightforward and computationally tractable
solution to the problem of multi-subjects analysis by creating aggregate data containing ob-
servations from all subjects. By providing a single estimation of the mixing and the demixing
matrices for the whole group, this strategy allows direct estimation of the components that
are consistently expressed in the population. We employed UW-SOBI, a Second Order Statics
(SOS) based BSS algorithm based on the approximate joint diagonalization of lagged-covariance
matrices. This method is robust with respect to anatomo-functional inter-subjects variability
and can separate group specific sources with non-proportional power-spectra without deleteri-
ous prior dimension reduction. The other potential benefits of SOBI methods are first, their
ability to separate correlated sources (?7?) and second, a better sensitivity for the detection of
critical sources that are often occulted by the most energetic phenomena (?). One thousand
one lagged-covariance matrices with time delays from 0/1000s to 200/1000s were calculated on
each epoch. Then, lagged-covariance matrices were averaged across the dataset epochs first
and then across subjects, resulting in 1001 averaged lagged covariance matrices. Finally, adults
and children lagged covariance’s matrices were averaged and approximately joint-diagonalized
with the UWEDGE algorithm (?) leading to the identification of 128 independent components
(ICs). Adults and children were considered together in the group analysis, in this way signals

coming from the same cortical sources became comparable.
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1Cs Localization

The sLORETA software (?) was used to estimate the intracerebral electrical sources
separated by the BSS algorithm. The sLoreta solution of the inverse problem was computed
using an amount of Tikhonov regularization optimized for an estimated Signal/Noise Ratio of

100.
Sources Selection

Among the first 20 independent components (ICs) obtained from the gBSS, only ICs
showing an evoked activity time locked with the onset of the deviation were further considered

(one-sample Student t-test, Bonferroni corrected for the number of time points).
Encoding and Decoding Models

Cortical sources showing significant evoked activity during the sensorimotor conflict task
were selected for further analysis. Two linear regression models were used, one to test the
encoding of visuomotor features in the cortical sources, and the other one to decode subjective
awareness reports from neural signals. Our goal was to assess weather cortical sources activity
was modulated by visuomotor features and then to isolate cortical activity related specifically
to subjective awareness. In the encoding model, the sources activity was modelled using the

proprioceptive and visual errors as explanatory variables.

EvokedActivity = 1 PE + ,VE (3.1)

Where the Fvoked Activity is the activity reconstructed for every task-reactive source, [
and [y are the regression coefficients and PE and VE the proprioceptive and visual errors,
respectively. In this case, the encoding model worked in a causal direction for VE (encoding in
a stimulus-based setting), and in an anti-causal direction for PE (encoding in a response-based
setting) (7). Since PE was computed at the end of the trial it can be considered as reflecting
the motor correction. In this way, only results coming from the causal encoding support causal

interpretation. In the decoding model, the subjective awareness was modelled using cortical
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sources activities as explanatory variables. The decoding model worked in a causal direction;
it models the effect (subjective awareness) of a cause (brain activity) (?). The decoding model
allowed us to test whether task-related sources activities potentially caused (among other missed
causes) the observed response. Only cortical sources previously selected (see Sources Selection)
were tested in the decoding model. Task-related cortical sources were different for adults and
children. Moreover, the decoding model gave us the opportunity to characterize precisely on

time when the different sources contributed to the emergence of consciousness.

Motor Awareness = 3151 + (3255 + 53553...08 SN (3.2)

Where Motor Awareness refers to the subjective responses, 3 are the regression coefficients

and S1,52,53,...,SN the sources activity.
SAM Filter

gBSS generate spatial filters optimized for group level analysis. Mainly for representational
purpose, we adapted the gBSS spatial filters to be optimal for single subject. To switch from
one to the other it is sufficient to consider the same location found with gBSS while filtering not
for the group interfering source but for the interfering sources estimated at the trial level. To
estimate the interfering sources at the trial level, spatial information are used in combination
with beamformers techniques, such as Linearly Constrained Minimum Variance (LCMV) (?)
and Synthetic Aperture Magnetometry (SAM) (7). The spatial filter used for individual analysis

at each trial j:

Wi(j) = Crj tAi[Ai"Crj—t Ai] (3.3)

Where Crj is the regularized data covariance matrix, computed for the trial j:

Crj =Cj+ p.diag(Cy) (3.4)
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Where (j is the data covariance matrix computed for the trial j, p the Backus-Gilbert
regularization parameter (=10) and diag(Cj) the matrix of the diagonal elements of Cj (the

diagonal matrix of sensor noise).

3.2.3 Results

Behavioural

Subjective Awareness. The forced-choice adaptive staircase algorithm, which provided for
every subject stimuli distributed around its perception threshold, converged to a stable asymp-
tote after about 10 trials in adults and 15 trials in children (see Figure3.2A). As expected, an
analysis of variance (ANOVA) on detection thresholds, with factor of group (adults and chil-
dren), revealed a significant difference between children and adults (F(1,38) = 7.043, p=0.011
or p<0.05, 77]%: 0.156), showing that children had higher detection thresholds (10.04 4+ 5.79
degrees) compared to adults (6.05 + 3.34 degrees) (see Figure 3.2A). No significant difference
was noticed between deviations applied to the left or to the right in any group (F (1,38) =
3.042, p — 0.089, nf, —0.074). For this reason, further analysis were run without distinction
between left and right side. This effect was replicated intra-group: younger children had higher
detection thresholds (correlation for age bin 7 8 9 10-11 years old were grouped: r=-0.892,
p—0.042). Stimuli distribution around adaptive thresholds had higher standard deviation in
children compared to adults, indicating wider range of stimuli presentation (F(1,19) = 6.962,

p — 0.016, n7—0.2681).

Amount of deviations over different conditions. To verify that staircases presented similar
stimuli in the aware and unaware conditions, a mixed ANOVA was run over the deviations
presented with factors of group (two levels, adults and children) and conscious perception (two
levels, aware and unaware). Apart from an evident group effect (F(1,38)=6.000, p<0.019,
77]2,:0,136), explained by the difference in detection thresholds between adults and children, an
effect of awareness was also found. Deviations presented in the aware condition were signif-

icantly higher (8.9° 4+ 0.7° degrees for aware and 8.0° + 0.7° for unaware) (F(1,38)=55.515,
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p<0.0001*, 72-0,593). Considering that stimuli came from a staircase procedure this differ-

Nevertheless, it can influence further ANOVA analysis and results in motor awareness effect.
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Figure 3.3: Onset of correction. The onset of correction (computed over the first derivative
over time) are presented in adults (left) and children (right) for unaware (blue) and aware (red)
conditions.

Onset of correction. Adults and children started to correct their trajectories initiating at
the same time, regardless of the specific condition and group (around 341 + 48 ms) (see Figure

3.3). In fact, a mixed ANOVA on onsets of correction showed no significant effect of group or

consciousness (group: F<1, consciousness: F(1,38)=1.327, p=0.256, 772:0,033).

Velocity. A mixed ANOVA demonstrated that adults and children had the same velocity of
execution (F<1), however a small (but significant) effect was noticed for awareness (F(1,38)—=
5.095, p=0.029 7712):0,118). Subjects performed movements faster in the unaware trials (217
pixels/s) compared to aware ones (213 pixels/s). Once controlled for deviation differences
between aware and unaware conditions, the ANCOVA demonstrated no effect of group and

awareness (F<1).

Visual errors. As expected, visual errors increased as a function of the amount of deviation
presented. Thus, subjects with higher perception threshold were presented with higher devia-

tions and showed also higher visual errors. An ANCOVA revealed an effect of mean amount of
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deviations presented on the visual error at 400ms (F(1,36) — 96.852, p<0.001, 72— 0.729) and
an effect of difference between deviations presented for aware and unaware trials on the visual
error at 400ms (F(1,36) = 15.558, p<0.001, 2= 0.301). Once corrected for the amount of
deviation and for the difference of amount of deviation in the two conditions (aware/unaware)
awareness and group has no effect on visual error (awareness: F <1, group: F(1,36)=2.588, p =
0.11). An interaction effect was found between awareness and intensity of deviation (F(1,36)
= 8.511, p=0.006, 773: 0.191) and difference of amount of perturbation (F(1,36) = 35.675,

p<0.001%, 7= 0.498).

A Unaware Aware
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Figure 3.4: Examples of hand trajectories. Hand trajectories are shown for adults (top)
and children (bottom) for unaware (blue) and aware (red) conditions.

Proprioceptive error. An ANCOVA revealed that the amount of deviation had an effect
on the proprioceptive errors (F(1,36) — 760.745, p<0.001*, 775:0.955). No significant group
(adults/children) or awareness effect was observed (F <1). Once corrected for the amount of de-
viation and for the difference of amount of perturbation in the two conditions (aware/unaware)
the awareness and group had no effect on proprioceptive error (F <1, F(1,36)=2.108, p = 0.155).
An interaction effect was found between awareness and difference of amount of perturbation

group: F(1,36) — 14.246, p<0.001*, %= 0.284).
p

Partial correlation results. Before using visual (VE) and proprioceptive (PE) errors to

explain EEG activity, we test whether these two variables were independent. At first sight,
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they were correlated, but both of them increased with higher stimuli. Once corrected for this
effect, PE and VE resulted to be still dependent but anti-correlated (adults: partial correlation,

r = -0.3275, p < 1073% children: partial correlation, r = -0.3275, p < 1073%);

EEG results

Adults Children

Figure 3.5: Task-related sources in adults and children. sLORETA reconstruction of
task-related sources eliciting an evoked potential time locked with the onset of the deviation.
In adults the sources network included medial fronto-parietal regions, sensorimotor cortex and
associative visual cortex. "Task-related sources network" in adults were localized, in order of
explained variance, as following: in the supplementary motor area (SMA, BA 6, Medial Frontal
Gyrus, MNI coords X— 0, Y— -10 , Z— 55), in the paracentral lobule (BA 4 MNI coords X—
0, Y=-40 , Z= 65), one over the precuneus (BA 7, MNI coords X= 5, Y= -70 , Z= 50), in
the right pre-central gyrus (BA 6, MNI coords X= 35, Y= -15 , Z= 65) and over the cuneus
(BA 19, MNI coords X= 5, Y= -85, Z= 35). In children, two sources were in common with
adults’ network: the supplementary motor area (SMA) and the paracentral lobule. The other
two sources were a frontal source (BA 6, MNI cords X=-20 , Y= 0, Z= 60) and a source in
the left inferior parietal lobule (BA 40, MNI cords X— -35 , Y— -50 , Z= 40).

We first identified at the cortical level all neural sources reacting to the task and we tried
to identify, among them, the neural components specifically related to consciousness. In adults,
we found cortical activations over five main regions, including medial fronto-parietal regions,

sensorimotor cortex and associative visual cortex (see Figure 3.5A).

We next sought to define the neural mechanisms underlying the behavioural dissociation
between conscious and unconscious motor actions. Therefore, task-reactive sources activities
were used in a decoding model to explain the subjective awareness in adults. All task-related
sources were found to partially explain the motor awareness (multiple linear regression, Bon-

ferroni corrected) however with different timing. In particular, between 300ms and 400ms, the
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precuneus was the first source to significantly explain motor awareness in adults, simultaneously
with another source, localized in the visual cortex (V3A), which showed a smaller window of
significance (multiple linear regression, Bonferroni corrected). Then, between 400ms and 500ms
after deviation onset, the supplementary motor area (SMA) participated in the decoding of mo-
tor awareness, followed by the paracentral lobule and in the sensorimotor cortex, which was

active around 500ms.

A Encoding of Proprioceptive Error B Encoding of Visual Error

Proprioceptive Error
°
Visual Error
&

Onset of correction

0.2 0.1
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C Decoding Motor Awareness:
Precuneus
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A
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Figure 3.6: Neural correlates of motor awareness and visuomotor variables in adults.
(A) Topography and evoked cortical activity of supplementary motor area (SMA) source. Dif-
ferent ERP amplitudes, peaking at 450ms, correspond to different amount of proprioceptive
errors (PE) across trials. PEs were sorted in increasing order and grouped into 10 classes
considering 10 homogeneous subdivisions of the PEs spectrum of values, obtaining 10 sources
ERPs, from violet (small PE) to red (big PE). High PEs values (either due to big deviations or
bad adaptation) corresponded to high ERPs amplitude. (C) Topography and evoked cortical
activity of area V3a during the sensorimotor conflict. This area maximal activity was reached
at 400ms. The peak intensity was modulated by the intensity of visual error.(B) Topography
and evoked cortical activity of the medial parietal source (precuneus), decoding motor aware-
ness. Evoked activity (extracted by SAM filter) was reconstructed, for illustrative purpose, as
a mean across single subject activities at the precuneus level using a SAM filter (see Materials
and Method). An evoked activity around 350-400ms was observed only when subjects were
aware of the conflict.

We next asked whether this emerging neural activity was specifically related to motor
awareness rather than to visuomotor features, linked to the sensorimotor conflict. Thus we

wanted to determine neural sources specifically related to consciousness, without considering
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potential confounding factors. Therefore, the encoding of visuomotor variables was tested for
each task-related source. Within this network of cortical activity sustaining consciousness, two
sources were found to react to visual or proprioceptive errors, related to external visuomotor
features. In particular, the SMA activity increased coherently as the proprioceptive error
increased (see Figure 3.6A). Since the proprioceptive error was estimated at the end of each
trial, the supplementary motor area (SMA) contribution was potentially linked (in an anti-
causal direction, see Methods) to the subsequent motor adaptation, that the subject had to
execute in order to reach the final target. The encoding of PE in the SMA was significant from
400 to 500ms (multiple linear regression, Bonferroni corrected) after stimulus onset. Further,
the associative visual areas (area V3A) in the occipital cortex encoded the visual error from 300
to 450ms (see Figure 3.6B). All the sources located in the parietal cortex, or in its proximity,
such as the paracentral lobule, did not show any encoding of visuomotor features, remaining

specific in their role of decoding motor awareness (see Figure 3.6C).

Since subjects were presented with stimuli around their personal subjective threshold,
they worked constantly in a "transition phase" characterizing the shift between unconscious
to conscious perception, which was reached independently from stimuli intensity. Single sub-
ject activity over the precuneus is shown in Figure 3.7 for three different subjects experiencing
respectively big, average and small deviations (4°, 6° and 8° degrees), according to their own
perception threshold. Activity in the precuneus clearly distinguished between aware and un-

aware conditions also at the single subject level (Student t-test, p cluser).

Comparing the network of task-related sources in adults and children, we found that in
children the sources implicated in the sensorimotor conflict resolution were different (see Figure
3.5B). In fact, adults and children had only two common sources, notably the SMA and the
paracentral lobule sources. Moreover, children showed an additional activation of the inferior
parietal regions, contralateral to the hand movement (on the left hemisphere) and a frontal

source.

In children, subjective awareness was related only to a single source, localized in the

supplementary motor area (SMA) (multiple linear regression, Bonferroni corrected over time
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Figure 3.7: Examples of precuneus activity in aware vs unaware conditions, in three
sample subjects with low, medium and high perception thresholds. (A) Histograms
of angular deviations for three subjects, having respectively low, median and high detection
thresholds. (B) Topography and sLoreta localization of the medial parietal source. (c) A
contrast between the aware and unaware conditions is provided for the three subjects with
different line styles.
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Figure 3.8: Decoding motor awareness in children. The figure represents the topography,
the SLORETA localization of supplementary motor area sources and encoding of visual error
in the SMA activity at 350ms.
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points and sources tested), which was found to decode the subjective awareness at 350ms, earlier
compared to adults. As previously observed, also in children the SMA activity significantly
encoded a sensorimotor variable at 350ms. However, the SMA activation was no longer related
to proprioceptive information but rather with the visual error. Importantly, the proprioceptive
error have never been found to be encoded in the children pre-selected sources involved in the
sensorimotor conflict (see Figure 3.8). In fact, the inferior parietal lobule, the frontal cortex
and the paracentral gyrus, all showed causal encoding of visual error around 350ms, 400ms and

1s, respectively.

3.2.4 Discussion

To solve a sensorimotor conflict task requires the recruitment of several cognitive and action
monitoring processes to integrate cues coming from different modalities (vision and proprio-
ception) in order to produce an appropriate motor response. The task correct execution is a
puzzle of good estimations of sensory mismatches and re-adaptation to them. Here, we wanted
to investigate the neural correlates of emergence of motor awareness once controlled for neural

activities related with objective visuomotor features.

First, we identify the spatial localization and the temporal occurrence of cortical neural
activity recruited to overcome the mismatch. A widespread and different networks emerges for
adults and children. Our results show that the parietal cortex sources were critical for bringing
the sensorimotor task into awareness, and highlight in particular the role of the precuneus. In
fact, the precuneus activity around 350ms was specifically related to motor awareness reports.
In fact, this region did not encode objective visuomotor features, coming from individual modal-
ities, but was specifically activated by subjective responses and therefore it can be considered a
marker of motor awareness. This activity is likely to signal the discrepancy between intentional
and actual feedback, eliciting the emergence of a mismatch at a conscious level. However, since
subjects were working around their perception thresholds the awareness of the conflict did not
influence their effective motor performances. However, one could expects that in everyday life

situations the raise of awareness to the sensory-motor conflict allows to access different levels
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of motor control.

The fact that the parietal cortex and the precuneus sources reacted mainly to subjective
awareness was not surprising since this region is an associative cortex, highly interconnected
with structures mostly elaborating integrated information at both cortical and subcortical level
(7). Noticeably, the precuneus is well known to be involved in execution of spatially guided
behaviours (?) and in the elaboration and the storage of information about targets and body
schema (?). The precuneus was also implicated in studies investigating the re-configuration of
stimulus-response mapping, however likely reflecting visual attention to increased task demands
(7). Arrighi et al. showed that theta oscillations over the precuneus in high-error level condition
during prism adaptation compared to low-error condition significantly increased (7). Finally,
the precuneus activation was found in specialized neural network of error-processing, notably
the error positivity a neural signal specifically associated with error that were consciously

perceived (?77).

The other cortical sources participating in the decoding of motor awareness encoded visuo-
motor features as well, suggesting to reflect neural mechanisms underlying action monitoring
and motor adaptation. The associative visual cortex (V3A) activity reacted to the amount of
visual error, at the same time as the precuneus activity. Our findings are in line with previous
studies showing that tracking error were efficiently classified using visual cortex as a region of
interest (7). On the other hand, the supplementary motor area (SMA) reacted around 450ms
encoding the proprioceptive error and therefore the amount of motor correction. The SMA is
well known to be involved in action selection, performance monitoring (?) and in the emergence
of motor intention (7). In this task, the SMA activity seemed to play a predictive role, since
its activity temporally preceded the end of the movement. (However, at the timing in which
SMA activity appeared 450ms, subjects probably already started their automatic correction).
Therefore, this area seems to code the change of the motor plan, encoding the amount of motor
correction needed to achieve the target. Activity in this area was already related to switching

of intended reaching path in monkeys (7).

Further, we tested the same protocol in children, hypothesising that in absence of a reliable
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forward model sensory inputs would play a predominant role in the access to consciousness. We
found that thresholds of motor awareness were shifted in children of about 4° degrees of devi-
ation. Thus, children needed much more sensory cues to become aware about the visuomotor
mismatch. However, once controlled for the different intensity of the stimuli proposed in chil-
dren and adults, children were as fast as adults to trace lines and they started to automatically

compensate at the same timing.

In parallel with increased thresholds of motor awareness compared to adults, children
showed a different network of cortical activations. In fact, the emergence of motor awareness
does not elicit any activity in the precuneus, but it was instead decoded by the supplementary
motor area. However, the activity of the SMA was not specific for motor awareness since it
was shown to encode the visual error. This result confirmed that children do not use the same
cortical regions, probably involved with forward model computation, to solve the sensorimotor
mismatch. Thus to build their motor awareness they may rely more on sensory signals, and in

particular to vision encoded in the SMA.

The timing of SMA decoding in children preceded the adult of about 100ms, suggesting that
the SMA activity was elicited in advance, maybe lacking the integration of proprioceptive signals
observed in the adults. Further, we found that children cortical activity related to the task
recruited different cortical sources, including the paracentral lobule, the inferior parietal regions,
contralateral to the hand movement (on the left hemisphere) and a frontal source. However,
this different activation network was mainly driven by visual stimuli input, being therefore
unspecific to motor awareness. This confirm previous study of sensorimotor integration in
children, claiming that balance between vision and proprioception is unstable at this age and

highly influenced by vision (7).
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3.3 Behavioural study on motor awareness

3.3.1 Introduction

We wanted to test adults and children using the same set of stimuli for both groups, in order

to asses their detection performances using a classification function.

3.3.2 Methods

Subjects

Twenty young right-handed healthy adults ( 27.45 + 5.62, 10 females and 10 males) and
21 children ( 8.52 + 1.12 years old, 14 females and 7 male) participated in the study. Subjects
had normal or corrected-to-normal vision. Each experiment lasted for approximately 1 hour.
Subjects were unaware about the purpose of the experiment. All subjects gave written informed
consent to participate in the study, and the whole paradigm was approved by the local Ethic

Committee.
Paradigm

Subjects were presented with the Nielsen task, using the same apparatus described in the
method. However, stimuli were the same for all subjects, and angular bias were presented
randomly. Subjects had to perform a total 220 trials: 180 were deviated trails, ranging from
—20° to 20° degrees, 40 were neutral trial (with 0° degrees of deviation). In deviated trials
angular bias were presented as follow: between 1° to 5° and 15° to 20° with a gap of 1°,
between 5° and 15° with a gap of 0.5°, in this way each deviation was presented three times.
Half trials were deviated to the right and half trials were deviated to left and they were mixed

randomly with neutral trials. Six sessions were performed, with alternated period of pause.
ROC Analysis

The Receiver operator characteristic was used to represents the performances of a binary

classifier (the subject’s capability to distinguish different type of trials) when its discrimination
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threshold is varied. Sensitivity (true positive/positive responses) and 1-Specificity (1- (true
negative /negative responses) considered, representing the relationship between true positive (a
deviated trail detected by the participant) and false alarm (a neutral trail detected as deviated).
In the end, it represents the detection as a function of fall-out. The probability distribution was
fitted for the two groups starting from the area under the curve (AUC). The AUC was used to
perform a comparison across groups using a parametric Student test (t-test), after normality

check.

3.3.3 Preliminary results

Adults and children differed in their detection performances. In fact, adults could better dis-
criminate deviated trials than children, keeping their false alarm rate low (Student T-test, p
= 0.0038). The subjective threshold to perceive a deviation was higher in children compare
to adults using the same stimulation in both groups. In other words, adults had a subjec-
tive awareness shifted toward lower deviations, allowing them to consciously perceive smaller

deviations than children.



3.3. Behavioural study on motor awareness 25

ROC

-

14+

e AdUlts
s Chiildrens

o
©

12+

o
©

10+

e
~

Sensitivity
o o
n o

o
~

o
W

o
N

e
-

®  Adults
® Childrens

. . . . ) . \ \
0 0.2 0.4 0.6 0.8 1 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1-Specificity AUC

o

Figure 3.9: Receiver operator analysis and probability distribution over adults and
children. (A) Receiver operator analysis (ROC) curves fitted over two groups: adults (green)
and children (blue). The two axis represent the sensitivity and 1-specificity. The area under
the curve (AUC) represents the probability to discriminate between deviated and non-deviated
trials. Probability distribution for adults (green) and children (blue).
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Chapter 4

Disorders of consciousness and vagus

nerve stimulation

A fascinating way to study the neural substrate of consciousness is to consider lesional cases
in which lost or reduced consciousness is a prominent clinical sign (?). The vegetative state, a
condition in which arousal appears without awareness, gives us an insight on disrupted mecha-
nisms causing disorder of consciousness (DOC) and sustaining awareness. Further, focusing on
clinical research allows us to try to find new methods and solutions to modulate, and possibly
restore, conscious state. In this background part, T will recall some basic definitions about
disorders of consciousness, briefly describing existing theories and methods to study and treat

this pathological condition.

4.1 An overview on disorders of consciousness and trau-

matic brain injuries

Patients who survive brain damages and awake from coma but remain without behavioural sign
of awareness are left with a chronic disturbance of consciousness. Disorders of consciousness

can arise after both focal or global brain injuries. They can result from direct perturbation of

57
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specific neural system regulating arousal or awareness, but also indirectly if the lesion causes
a disruption of the connections between these systems (7). Vegetative state can both arise
gradually, as a consequence of neurodegenerative disorder, or suddenly when it is due to non-
traumatic (e.g. hypoxia or anoxia, infection or haemorrhage) or traumatic brain injury. Here,

I will focus on literature regarding disorders of consciousness related to traumatic brain injury.

Traumatic brain injury (TBI) is a major public health and socioeconomic problem through-
out the world, not only causing severe disability but also leading to high cost for the public
health system (7). In the United States (US), the Centers for Disease Control and Preventions
estimated that 1.7 million people sustain a TBI, of them 1.365 million are treated in emergency
departments, 282 000 are hospitalized and 52 000 die (?). In Europe (population 508.5 million)
TBI related deaths in the year 2012 were estimated at 56 946 and hospital discharges at 1 445
526 (?). Every year in France, there are about 155 000 hospitalizations for TBI. As a results
of these injuries, 8 500 people experience the onset of long-term disability (7). Road accidents
are the leading cause of head traumas (60% of TBI hospitalizations, 70% cause of TBI deaths)
with a major prevalence between 15 and 30 years old. TBI causes the 30% and 37% of all
injuries related deaths in US and Europe, respectively (7). Older adolescent, older adults, and

male across all groups reflect the main victims.

The incidence of TBI in the US has risen from 2001 to 2010, arriving in 2010 at 824 per
100 000 (Centers for Disease Control and Prevention [CDC], Congress on Traumatic Brain
Injury Epidemiology and Rehabilitation, 2014) (7). While emergency department visits rose
of about 70%, the hospitalization only increased of about 11%, and deaths decreased of 7%
(7). These results have been achieved by increased automobile safety, the use of seat belt,
and improvements in treatment of severe TBI, all this contribute to a reduction of mortality.
None-the-less, according to the World Health Organization, TBI will surpass many diseases as

a major cause of death and disability by the year 2020 (?).

TBI consequences happen at two different temporal stages: a first stage involving the
cellular destruction due to the initial trauma (usually a bump, blow or jolt) producing an

unavoidable damage. A second stage corresponds to the post-trauma and involves cellular
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excitotoxicity, inflammation, release of oxygen free radicals and brain oedema, leading to an
increase of intracranial pressure (?). While some patients recover quickly, going through dif-
ferent altered states of consciousness, others take longer or never recover. In the US alone,
between 3.2 and 5.3 million persons (1.1% and 1.7% of the population) live with long term
disability resulting from a TBI (?). To understand the mechanisms and pathophysiology that
underlie alterations of consciousness is therefore a major issue in current clinical research and

it is fundamental to develop appropriate diagnosis and treatments.

Different behavioural features and clinical symptoms are used to classify patients into
corresponding states of consciousness, and thus formulate a diagnosis and prognosis. However,
since behavioural features are often fluctuating across diagnostic boarders, behavioural signs
are not always sufficient to evaluate conscious state and consequently the classification of this
patients is not always precise. In the next section, I propose some basic definitions of DOC,

briefly describing the main traits for each category.

4.1.1 Definitions

Coma

Coma, from Greek "deep sleep or trance” is a state of unresponsiveness, clinically character-
ized by a complete loss of spontaneous or stimulus-induced arousal. Patients in coma have
completely lost their sleep-wake cycle, their eyes remain continuously closed and they show no
evidence of motor activity or speech. Although, patients may respond to painful stimuli with
a grimace or stereotyped withdrawal reflex. Coma itself is considered as an acute altered state
of consciousness and typically does not last for more than 2 weeks usually evolving into either

vegetative state (VS) or minimally conscious state (MCS) (?).
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Vegetative state/unresponsive wakefulness syndrome

The vegetative state (VS) or unresponsive wakefulness syndrome (UWS) as proposed recently
by Laureys et al. (?7), is a subacute altered state in which arousal is preserved but there is no
evidence of purposeful behavioral response to stimuli. It is a peculiar disorder in which patients
seems to be awake but unaware about their surroundings. A spontaneous eye-opening re-
emerged, signalling the recovery of the reticular activation system and determining a condition
of wakeful unconsciousness. However, the presence of alternating cycles of eyes-open/eyes-
closed periods do not imply the preservation of a physiological sleep architecture (?) . Other
specific classifications are added following the temporal outcome. If the patient stays in this
condition for at least 1 month, the vegetative state is referred as persistent (PVS). Further,
PVS is defined as permanent 3 months following non-traumatic brain injury and 12 months

following traumatic brain injury (?).

Despite the heterogeneity of lesions causing disorders of consciousness (DOC), the neu-
ropathology of the vegetative state (VS) due to traumatic brain injury has some classical
common features. In fact, it is characterized by diffuse cortical or axonal injury, implying a
deep damage to the subcortical white matter coupled with damage to the major nuclei of the
thalamus, rather than brain stem lesions (7). On the other hand, VS caused by non-traumatic
lesions is associated with extended necrosis in the cerebral cortex, always accompanied by tha-
lamic damage (7). These lesions are likely to cause a disconnection between cortical areas
and thalamic nuclei, which can clearly influence the functioning of the remained intact cor-
tex (7). For this reason, VS/UWS is also referred as a "disconnection syndrome", modifying
the architecture of brain connectivity over long-range cortico-cortical (between latero-frontal
and middle-posterior regions) and cortico-thalamo-cortical connections (between non-specific

thalamic nuclei and lateral and medial frontal cortices) (7).
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Minimally conscious state

The minimally conscious state (MCS) condition is characterized by inconsistent (fluctuating)
but discernible behavioural evidence of awareness, signalling the presence of self and environ-
mental awareness (7). These evidences must be reproducible, and should include one or more

of the following behaviours:

Following simple commands

Gestural or verbal yes/no responses

Intelligible verbalization

Purposeful behaviour

— appropriate smiling or cry

— appropriate vocalization

reaching for objects
— appropriate objects manipulation

— pursuit eye movement or sustained fixation

(?)

All these signs are usually inconsistent, making necessary multiple examination to fully
capture behaviours that might occur infrequently and might be ambiguous or masked. MCS
patients pathophysiology consists with grade 2 and 3 diffuse axonal injury (DAI), sometimes

coupled with thalamic involvement, which are less prevalent than in VS (7).

A further categorization exists inside this class, MCS- (i.e. patients showing reactions
to contingent stimulus, such as visual pursuit and localization of noxious stimulations) and
MCS+ (i.e. patients showing command following). This distinction is based on presence or

absence of language comprehension. Using glucose metabolism, Bruno et al. try to define the
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neuroanatomy underlying these two different behaviours. MCS- patients presented more discon-
nections between Broca’s region and the language network, mesiofrontal and cerebellar areas.
On the other hand, MCS+ patients showed higher metabolism in left-side areas, comprising
higher activations over language network, sensory cortices and premotor and supplementary

motor areas (7).

Akinetic mutism

Akinetic mutism manifests as state of avolition involving a lack of the desire to think, to speak
or to move. This syndrome is characterized by a reduction of all motor gestures including
facial expressions and verbal flow. These patients presents a severely reduced drive rather than
arousal, being explicitly observable in the failure to follow commands or engage in goal directed
behaviours. Like in MCS patients, these behaviours can still be triggered by intense sensory or
personally salient stimuli (7). This phenomenon is known as the “telephone effect”, implying
that such patients, in principle mute or unresponsive, are able to initiate a likely “normal”
conversation when presented with a phone (7). Akinetic mutism can follow stroke involving
critical areas such as the frontal (cingulate gyrus, supplementary motor area and dorso-lateral

border zone), basal ganglia (caudate, putmen), the mesencephalon and thalamus.

4.1.2 Pathophysiological mechanisms of DOC

As already mentioned, disorders of consciousness are a neurological model to study impaired
consciousness and its underlying mechanisms over at cortical and subcortical level. After a
traumatic brain injury (TBI), a common pathophysiological consequence is a widespread "deaf-
ferentation" of cortical areas involved in the lesion, and therefore a reduction of inputs to neu-
rons across the corticothalamic system (7). In the most severe cases, if all inputs to the cerebral
cortex are removed, the "deafferentation” provokes the establishment of a diffuse low-frequency

electrical activity. Most of the time lesions provoke only partial disconnection of the cortico-
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thalamic system, however this background alteration can have important consequences in the

global firing pattern and excitability of the cortex.

Conscious awareness seems to require a sufficient number of connected neurons, necessary
for local processing and synchronization between distant regions. In this frame, to explain the
continuum of the DOC spectrum, a common mechanism of down-regulation has been proposed

called the meso-circuit hypothesis

Several studies on coma patients allowed us to identify different structure which can par-
ticipate to the maintenance of a conscious state. The etherogenity of lesions at the base of
DOC, suggest that no specific regions are unequivocally related to consciousness. Observation
done during epileptic seizure show how transient unconscious state is linked with brain function
rataher that macroscpoic structures (7). Recent studies have shown how a common character-
istic of loss of consciousness is a multifaceted dysfunctional connectivity pattern which seems

to be reduced in a widespread frontoparietal network and thalamic connectivity 7.

Usually, fronto-parietal midline structures (or default mode network (DMN)) are more of-
ten associated with internal, stimulus independent, "self” consciousness, whereas lateral fronto-
parietal cortices are associated with external or sensory awareness (7). Both these networks can
be impaired in disorders of consciousness. In particular, changes in the effective connectivity
have been described in the midline part (including anterior cingulate/mesiofrontal and poste-
rior cingulate /precuneus) and lateral structures (prefrontal and posterior parietal regions)(?7?).
Because the midline part is associated with internally oriented cognitive content, the DMN
has been investigated during DOC, showing reduced connectivity mostly over the precuneus,
a critical hub with high interconnectivity (?). Further, disconnection between primary sensory
areas and higher-order associative cortices in VS/UWS can also be considered as traits in con-
nectivity patterns in VS/UWS patients, which cannot perceive, or are impaired in perceiving,

auditory or noxious stimulation (?7?).
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Evidences from recovery of consciousness

To support the importance of the frontoparietal network and long-range connectivity in sus-
taining consciousness a study by Laureys et al, of a spontaneous recovery from in a patient
after carbon monoxide poisoning showed the restoration of frontoparietal network, (7). Another
study on a vegetative state patient recovering from VS, showed augmented functional connec-
tivity between intralaminar thalamic regions and right prefrontal cortex (7). This observation
reinforced the idea that thalamic projections are of fundamental importance in supporting
cortico-cortical connections (7). Further, this result highlights a second fundamental structure,

candidate for sustaining consciousness: the central thalamus.

Another remarkable result was reported by Schiff et al., who attempted (and succeeded)
to restore lost connectivity in a MCS patient, acting on preserved large-scale cerebral networks
which were silent but still functioning. Following the hypothesis that residual spared functions
can be reactivated using therapeutic intervention, they electrically stimulated the central thala-
mus using bilateral deep brain stimulation (DBS) following a 6-month double blind alternating
crossover paradigm. After being in MCS for 6 years, the patient improved in eye-opening and
command following functions, significantly increasing his CRS-R scores in arousal, oral feeding
and limb control over the ON compared to OFF stimulation periods. Importantly, supplemen-
tal results shows that deep brain stimulation (DBS) activated the midline posterior central
cortical regions, consistent with the anatomy of the projection from thalamus to medial pari-
etal cortical regions (7). The mesocircuit model fits with this last observation, predicting that

thalamic stimulation would bypass the thalamic inhibition operated by the globus pallidus (7).

4.1.3 Detection of awareness in DOC

Functional neuroimaging techniques represent an important mean to investigate the neural cor-
relates of consciousness by giving the possibility to to observe directly impaired brain structures
and mechanisms. They represent an objective method to quantify residual cognition in the hu-

man brain and therefore an important tool for helping correct diagnosis. In fact, in severely



4.1. An overview on disorders of consciousness and traumatic brain injuries 65

brain damaged patients, the bedside examination of consciousness is frequently challenged by
the delicate state in which these kind of patients lie. Small movements, inconsistent and rapidly
exhausted behaviours and responses, maybe due to concomitant deficits both in the verbal and
non-verbal communication, potentially lead to misdiagnosis. In VS/UWS the rate of misdiag-
nosis is around 40% by using clinical consensus methods and this is due to insufficient sensitive

standardized scale for behavioural assessment (7).

Detection of residual consciousness using fMRI: mental imagery

Neuroimaging techniques are particularly useful not only to confirm behavioural examinations
but also to improve detection of residual awareness in patients that cannot communicate. An
important advance is the development of paradigms investigating volition and awareness with-
out ambiguity. Notably, Owen et al. first assessed residual brain functions in a vegetative state
patient with peripheral motor system impairment using fMRI. They demonstrated that their
patients could follow some mental imagery commands, as healthy subject can do. For exam-
ple, when asked to "imagine playing tennis", a correspondent activation of the supplementary
motor area was observed, and when asked to "imagine moving around her house", there were

a correspondent parahippocampal activation (?).

Following this example, the mental imagery paradigm was extended to other techniques,
such as EEG event related potentials and electromyography (EMG), and it was also re-adapted,
by Monti and colleagues (?) to use different mental images as basic communication language.
Unfortunately, mental imagery-based communication paradigms were proved not to always
be reliable and consistent (7). The paradigm was nonetheless extended to activate different
cortical networks, for example asking participants to name an object presented on the screen,

and triggering a correspondent activation of the language network (7).
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Detection of residual consciousness using fMRI: resting state

Although establishing communication with non communicative patients is an interesting topic
with wide clinical application, doing so using fMRI is considered too expensive and not efficient.
The potential of this technique in producing an objective diagnosis on disorders of consciousness
was also evaluated by studies on spontaneous brain activity fluctuations, using BOLD signals
(fMRI) during "resting state” protocols. They end up with the identification of multiple func-
tional networks. Among them the default mode network (DMN) has been the most investigated
in consciousness literature, and it has been proposed as the locus of conscious awareness (7).
This network is often associated to internal awareness, self-consciousness, mind-wondering and
general task-independent thoughts. The default mode network anatomy includes the posterior
cingulate cortex/precuneus, which is an highly interconnected area considered a critical hub
for his massive degree of connectivity, the anterior cingulate cortex/mesiofrontal cortex and
the temporo parietal junction. Several studies demonstrated that DMN disappeared in brain
death and decreases in VS (??7) . Vanhaudenhuyse et al. observed that unresponsive patients
showed a decreased pattern of functional connectivity in the posterior cingulate /precuneus area
compared to MCS patients. Therefore, they proposed that that "default mode" connectivity

seems to reflect the level of consciousness in non-comunicative patient with DOC (7).

Detecting consciousness using PET: resting state

Neural activity of brain regions involved in consciousness can also be investigated using
18F-fluorodeoxyglucose PET. 18FDG-PET is a neuroimaging technique which allow to study
glucose metabolism and to estimate the rate of cerebral energy turnover. In clinical neuroimag-
ing, PET-scan is an established tool to investigate disorders of consciousness (7?). It was first
using this technique during resting state conditions that a massive decrease in brain metabolism
was observed in DOC. In particular, disorders of consciousness causes specific metabolic de-
creases in the frontoparietal associative areas. Patients in MCS maintain partial metabolism,

although severely reduced compared to normal subject while VS/UWS patients show severe
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bilateral frontoparietal dysfunction (7). Experiments on FDG-PET reported that cerebral
metabolic rate fall to 50% of normal or less during loss of consciousness, being 40-50% in the
acute phase and 30-40% during subacute or chronic phase. It remains unclear if this reduc-
tion directly correlates with the level of consciousness or with lesions extension. Shulman et
al., based also on previous evidence, argue that metabolic phase transitions are linked with
transition between level of consciousness, proposing high level of brain energy as a necessary

property to sustain consciousness (7).

A recent study by Stender et al. (?) aimed at quantifying the metabolic differences between
patients in UWS/VS and MCS patients, showed that global cortical cerebral metabolic rate of
glucose (CMRglc) averaged 42% of normal in VS/UWS and 55% in MCS compared to healthy
subjects, making possible to reliably distinguish between the two groups. In fact, metabolism
was lower in patients than in controls but sufficiently higher in MCS patients to distinguish
them from VS patients, corroborating the idea that metabolism is a determinant of conscious
state. Subsequent regional variations were also reported, supporting theory claiming from spe-
cific anatomy of DOC. The first remarkable finding being a 60-70% reduction of metabolism
over the the brainstem, which can explain impaired and fluctuating level of arousal. Differ-
ences between patients were found in a region including front-, temporo- and occipito-parietal
junction, encompassing primary sensorymotor areas, frontoparieetal regions and precuneus. In-
stead, no significant differences were reported for the thalamus and brainstem. This further
supports the role of frontoparietal network in supporting consciousness, where the precuneus
and the cingulate cortex may play a key role in promoting frontoparietal awareness network.
However, preserved metabolic rate in these regions cannot be regarded as a discriminant feature
for awareness since several patient in MCS has low value of metabolism in this area (7). These
studies had a key role in establishing brain regions strongly related to consciousness including

lateral and medial frontoparietal network.

In a more recent article, Stender et al., after having measured the "resting state" brain
glucose metabolism in 131 DOC patients, found that the minimal energetic requirement to

sustain conscious awareness is 42% of normal cortical activity (7).
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Other PET studies, using a different radioligand, H2150-PET further suggest that UWS /VS
is a global disconnection syndrome, in which a possibly preserved awareness network remains

functionally disconnected from primary cortical areas (7).

Detecting consciousness using resting state EEG

Although fMRI and PET have been shown to better classify different states of consciousness
in respect to EEG, they have complex and difficult access. Therefore a quite extended EEG
literature have been developed in the last 5 years, focused on investigating the potential of
EEG-based techniques in the evaluation of cognitive function (diagnosis), detection of residual
consciousness and prediction of possible outcome (prognosis). This gave rise to a flourish
production, including studies validating their methods over a large cohort of patients, and
aimed at reviewing current markers of consciousness to establish which of them can better

discriminate among different states of consciousness.

Several types of analysis have been used, spanning from time and frequency domain clas-
sical indexes, such as relative and absolute power spectrum, to connectivity and graph theory
metrics, entropy and bispectral index, which in some cases offers single-patient level solutions.
[ will briefly review the most recent advances (and in my opinion relevant studies in this field)

since I believe that this background constitutes a strong basis for investigating DOC.

Of remark in EEG literature, the work done by King and colleagues (?) introduced a
functional connectivity measure called weighted symbolic mutual information (wSMI), pro-
viding a sensible index of the state of consciousness. This measure estimates the amount of
information sharing across EEG electrodes pairs capturing medium and long-distance connec-
tivity over the scalp. They found that wSMI values increase as a function of consciousness
and are able to separates VS/UWS patients from MCS and control patients, where the best
classification results were obtained considering the activity in the theta band. Moreover, max-
imum increase of wSMI was observed over centroposterior regions mostly for medium to long
connectivity patterns. This result was consistent with the theoretical notion that loss of con-

sciousness is accompanied by a corresponding reduction cortico-cortical connectivity, and states
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how brain-scale information sharing provides a robust signature of conscious processing. Im-
portantly, although it can appear in contradiction with theory claiming the fundamental role of

frontoparietal network compared to a centroposterior regions, frontal areas were less impaired.

Sitt et al. compared the efficiency of different electroencephalography markers of conscious
state on a dataset of 113 high-density EEG recordings acquired during a 30 minutes protocol.
Main findings included that power spectrum measures are good markers of consciousness, in
particular normalized delta (1-4Hz) decreased and normalized theta (4-8 Hz) and alpha (8-
13Hz) band power increased from VS to controls. Importantly theta and alpha band power
increased over parietal regions. Moreover, using a multivariate classification, they claim that
using the entire set of measures, the area under the curve (AUC) was significantly higher then

when use the best (single) measure, going from AUC = 71% =+ 4 to 75% + 4 (?).

At the same time, Chennu et al. (?) investigated spectral signature of reorganized brain
networks in a cohort of 32 patients suffering from chronic disorders of consciousness. In par-
ticular, they focused on graph-theory based measures over different frequency bands. Graph
theoretical quantification showed that a typical configuration of alpha network in a healthy
brain is a combination of strong long interactions and robust inter connectivity features. The
presence of prominent modules of long-range synchrony, linking occipito-parietal and frontal
electrodes, seemed to be absent in patients. They described main pathological patterns as
reduced local and global efficiency and fewer hubs in the alpha band. Moreover, alpha network
efficiency correlates with the degree of awareness, although in this first study they could not

observe a significant distinction between VS and MCS patients.

Another interesting finding came from the analysis of modular span, a measure of modu-
larity normalized by topographic information. As expected, in patients alpha network modules
lacked long distance interaction structure. In the theta band, they reported an inverse patter,
saying that connectivity was higher in patients compared to controls. This effect is probably
due to pyramidal neurons in layer V of partially deafferented cortex, which tends to synchronize

on these rhythms, however, modular span remains rather low.

In a consequent paper, Chennu et al. (?) used recent technologies for elaborating diagnosis
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and prognosis of unresponsive wakeful syndrome. They analysed data from 104 patients, using
classical and connectivity metrics to classify patients into different categories including: UWS,
MCS- and MCS+, emergent from MCS, locked-in syndrome and controls. From a diagnos-
tic point of view, connectivity measures outperform alpha power in discriminating awareness.
Their results show progressive increase in strength of EEG connectivity on alpha band, com-
puted as debiased weighted Phase Locking Value (dwPLI) during resting state, corresponding
to increased level of consciousness. Alpha band connectivity measured with participation coef-
ficient topographies, shows a re-emergence of brain connectivity hubs corresponding to frontal
and parietal areas. In particular, alpha participation coefficient discriminates between UWS
and MCS- with an accuracy of 79%. MCS+ shows a more prominent frontoparietal network
activation, which further increases in patients with higher level of consciousness. These two
results together show that main divergences among brain activities belonging to different states
of consciousness is the level of connectivity between different hubs, which became stronger with
the emergence of consciousness. The delta band power better distinguishes between MCS-
and MSC+. Another central issue was to determine whether two intrinsically different neu-
roimaging techniques, such as EEG and PET could predict each other. They demonstrated
that positive metabolism (spared but still pathologically reduced bilateral metabolism in frontal
and parietal cortices) correlated with EEG connectivity over frontal, parietal and central hubs.
This highly interconnected network requires higher energetic demands. Further, they wanted
to assessing the prognostic value of EEG, comparing brain signals of patients with positive
and negative outcome prediction. Delta band connectivity was diminished for positive outcome
prediction, showing once again as delta reflects a pathological rhythm. Further, patients with
positive outcome after traumatic brain injury have higher clustering coefficients in delta net-
works, suggesting local topological connectivity. Graph theory metrics such as local modularity
and clustering coefficients on delta band predicts future outcome. The classification method
developed within this article, taking into consideration both connectivity in hub nodes in alpha
network and delta band power, was shown to correctly classify patients in MCS-+ status, which

were previously misdiagnosed.

This confirm EEG is a reliable tool for detecting consciousness at the bedside. Other
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studies on detection of awareness include evoke potential protocol and the use of TMS to assess
how signal spared into the brain. Although this topic is very interesting and also introduced

important advances, I would not discuss it further here.

4.1.4 Neuromodulation of the conscious state in DOC

Clinical management has usually two main objectives: to prevent secondary medical compli-
cation and to restore cognitive-behavioural functions. Despite the fact that a wide spectrum
of treatments are available ranging from behavioural to pharmacological and rehabilitation-
oriented interventions, only a few have been demonstrated to effectively enhance functional

recovery.

Pharmacological interventions

Randomized clinical trials have proved the effectiveness of two medications in the modulation
of key neurotransmitters systems mediating arousal, attention and drive functions: amantadine

and zolpidem.

e Amantadine: is a drug approved both as antiviral and as antiparkinsonian. It is one of
the most commonly prescribed medication in patients with TBI. In a cohort of 184 pa-
tients, either in VS or MCS, Giacino and colleagues administrated amantadine or placebo
for 4 weeks in patients enrolled early or late post-injury (28-70 days or 71-112 days).
They reported that patients treated with amantadine recover significantly faster the abil-
ity of following commands consistently, answering to yes-or-no questions accurately, using
objects and speaking intelligibly. Although the gain was usually well maintained after
the washout period, the rate of recovery was attenuated and at 6 weeks follow-up the

Disability Rating Scale (DRS) scores were not different for the amantadine and placebo

groups (7).

e Zolpidem: is an omega-1 specific indirect GABA agonist, used for insomnia, and para-

doxically employed for the treatment of TBI. It was previously reported to produce consis-
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tent improvements in augmenting the complexity of behavioral responses in some patients
suffering from DOC. In a placebo-controlled, double-blind, crossover trials in 15 patients,
in VS or MCS for at least 1 month was effective in just one. The patient regained visual

pursuit, command -following ability and automatic social gestures (7).

Neurostimulation

Neuromodulation is a therapeutic technique, consisting in carrying energy into the nervous
system in order to achieve excitation, inhibition, or otherwise modifying neural activity. Neu-
rostimulation methods have recently been applied in the treatment of functional and motor

deficit in TBI animal models, stroke and few TBI patients (7).

tDCS

Short duration transcranial direct current stimulation (tDCS) applied for 20 minutes on dor-
solateral prefrontal cortex in DOC patients has been demonstrated to improve CRS-R scores,
mainly in MCS patients (7). Following a double-blind-controlled crossover design, 13 MCS and

2 VS patients showed behavioural signs of consciousness after tDCS.

Deep Brain stimulation

Deep brain stimulation is an invasive technique used as a gold standard to treat motor symptoms
in Parkinson disease (PD) patients for whom medications effects begin to fade. Currently
DBS has been approved by Food and Drug Administration (FDA) to treat essential tremor,
dystonia and obsessive compulsive disorders (7). Its mechanism of action is thought to be
the disruption of abnormal neural synchrony between affected brain regions. DBS seems to
alter the activity patterns and moderate abnormal function related to symptoms. Despite the
numerous application of DBS in neurological diseases there are only a few studies reporting the
use of DBS in human TBI patients. These studies aim at restoring consciousness by changing

the arousal state.
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Tsubokawa et al. first reported an increase in arousal after using DBS in TBI patients.
They started a clinical trial involving either 8 cases of persistent vegetative state, stimulating
the mesencephalic reticular formation or non-specific thalamic nucleus. Patients have been
chronically stimulated for 6 months. Four patients recovered verbal communication, a modified
spectrogram showing desynchronization of EEG, increased cerebral blood flow in the whole
brain tissue and after 3-6 months transmitter substances and their metabolite increased in the

cerebrospinal fluid (7).

As mentioned in the previous paragraph, in a a more recent study, Schiff et al. (?) uses
bilateral CT-DBS over central thalamus. The location of the stimulation targeted the ante-
rior intralaminar thalamic nuclei and adjacent paralaminar regions of median dorsalis and the
posterior-medial aspect of the centromedian /parafascicularis nucleus complex. This placement
maximizes the coverage over regions projecting to the supragranular cortcial regions, since they
are thought to have a parallel role in cerebral activation as projections form the brainstem
arousal system. After a titration phase in which intensity frequency, cycles duration and other
parameters were set, a six-month double blinded alternating on /off crossover phase began using
optimal selected parameter. With this study they demonstrated that chronic thalamic central

electrical stimulation may promote recovery also after many years.

4.1.5 Neuromodulation using VNS

Here we want to propose another method for the treatment of TBI: the vagus nerve stimulation.
Vagus nerve stimulation (VNS) is a neuromodulatory technique extensively used as a therapy in
patients presenting pharmaco-resistent epilepsy who are suitable candidate for resective brain
surgery or for whom surgery has failed (?). More recently, there has been an increasing interest
in using VNS to treat depression following report that epileptic patients, suffering also from

depression, improved their quality of life regardless of seizure outcome (7).

Recently, it was hypothesized that VNS could be efficient in treating TBI. Shi et al. (?)
after evidences of positive results on TBI rat model, obtained the approval for a pilot study on

TBI patients. They hypothesized that post VNS, patients should show increased metabolism
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in the forebrain, thalamus and reticular formation, which should help the restoration of arousal

and consciousness. However, until now, they didn’t report their results yet.

A a single case study by Yu et al. (?) investigated transcutaneous VNS in a patient suffer-
ing from cardiac and respiratory arrest, in VS since 7 weeks. They demonstrated, using fMRI
data, that VNS can in principle augment the activity over the DMN, increasing connectivity
between the precuneus and hypothalamus, thalamus, ventral medial prefrontal cortex and su-
perior temporal gyrus. These neuroimaging results were coupled with positive clinical outcome

including CRS-R score increasing from 6 to 13.

Before entering in the details of my second study, I will present here some literature on
vagus nerve stimulation which I consider interesting and useful to further understand the second

part.

4.2 An overview on vagus nerve stimulation (VNS)

In this section I will describe the vagus nerve anatomy supporting the different effects of vagus

nerve stimulation, both in animal models and for different clinical and therapeutic applications.

The vagus nerve is a major component of the autonomic nervous system (ANS), which
through its sympathetic and parasympathetic parts, regulates the functions of different organs,
glands and involuntary muscles (e.g. including heart rate, respiration, swallowing, vocalization,
gastric secretion and intestinal motility). The vagus nerve plays an important role in metabolic
homeostasis regulation and also a key role in the neuroendocrine-immune axis (7). The term
Vagus Nerve Stimulation (VNS) refers to different techniques aimed at stimulating, either
electrically or manually, the vagus nerve. The most used device consists in a programmable
pulse generator implanted in the chest, delivering chronic intermittent electrical stimuli. The
use of VNS is widely approved for the treatment of refractory epilepsy and depression and
recently it is under investigation for several other neurological disorders, including Alzheimer’s

disease, migraine, multiple sclerosis and either eating disorder (?77).
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I6)

4.2.1 Vagus nerve anatomy

The vagus nerve, from latin vagus "wandering, straying", is the tenth cranial nerve, so called
due to its widespread function and complex anatomical distribution. In fact, it has the most
extensive distribution among all the cranial nerves. The vagus is a mixed nerve carrying both

general and special, visceral and somatic efferent and afferent fibers (?)
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widespread innervation,

It is mainly composed (80%) by "afferent" (sensory) fibres (carrying information from the
body to the brain), mostly of visceral type, originating from receptors in the lungs, aorta,
heart, oesophagus, gastrointestinal tract and aortic chemoreceptors (see Figure 4.1). Small
myelinated sensory afferent fibres carry information from the concha of the ear 7. This afferent
inputs play an important role in the regulation of reflexes such as the respiratory, digestive and
cardiovascular ones 7. In fact, an important function of the vagus nerve is transmitting sensory

information coming throughout the body to the brain. The remaining 20% are "efferent" fibres
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(sending signals from the brain to the body) (see Figure 4.1). The efferent fibres provide

parasympathetic innervation to heart, lungs, gastrointestinal tract and other visceral organ of

the abdomen and innervate the voluntary striate muscles of the larynx and pharynx.
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Figure 4.2: Origins of the vagus nerve. Schematic representation of the dorsal nucleus, the
nucleus ambiguus, the nucleus tractus solitarius and the spinal nucleus of trigeminal nerve.

The vagus nerve originates from four nuclei in the medulla oblungata (see Figure 4.2):

the dorsal nucleus, the nucleus ambiguus, the nucleus tractus solitarius and the nucleus of

trigeminal nerve (7).

e The dorsal nucleus: from here originate the pre-ganglionic parasympathetic visceromotor

fibres.

e The nucleus ambiguus: cells containing motor neurons, send parasympathetic output to

the heart.

e Nucleus tractus solitarius: receives viscerosensory information from gastrointestinal tract,
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respiratory system and taste information. Via the N'TS the vagus extends mainly to the

locus coeruleus and the dorsal raphe nuclei.

e Spinal nucleus of trigeminal nerve: receives somatic sensory afferent.

The right and left vagus nerves continue to spread, as already mentioned, through the neck
to the upper and lower chest and diaphragm to arrive into the abdominal cavity. The activation
of this efferents causes various visceral consequences such as the slowing of the heart rate (7).
In the brainstem, sensory "afferents" fibers terminates in the nucleus tractus solitarius (NTS),
to continue directly or indirectly to different brain regions (see Figure 4.3). From the NTS
widespread projections travel throughout the central nervous system (CNS). Vagal projections
arrive in the dorsal rephe nuclei and locus coeruleus, the first one being the major source of
serotonergic neurons, and the second one containing noradrenergic neurons. Further projections
reach the hypothalamus, amygdala nucleus, the nucleus ambiguous, the dorsal motor nucleus,

the parabrachial nucleus, the thalamus which projects to the insular cortex (7).

Different fibers types (A, B and C fibers) are classified in accordance to their conduction
velocities which, in myelinated fibres, are proportional to their size. Different fibres play dif-
ferent physiological roles: "A-fibres" are large and myelinated and carry visceral information
and motor input, "B-fibers" are small and myelinated fibres carrying parasympathetic input,
"C-fibers" are small and unmyelinated and carry afferent visceral information. 90% of the
"afferents" and 70% of efferents are unmyelinated C-fibres (7). Most of the afferent fibres me-
diating reflexes are myelinated and their conduction velocity is grater than 15 m/s. The cell
body of primary sensory neurons are located in the nodose ganglion and transmit mostly to the
caudal part of nucleus tractus solitarius (NTS), but others connections can be observed with
the medial reticular formation, the dorsal motor nucleus, area postrema and nucleus cunnea-
tus. N'TS can modulate blood pressure, swallowing and hart rate. In particular, there are short
pathways connecting the NTS with cardiomotor neurons in the dorsal motor nucleus able to

slow down the heart rate (7).
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Figure 4.3: Vagal Projection throughout the brain. The image represents the principal
vagal pathway activated by the stimulation. Vagal inputs arrive to locus coeruleus(LC) via
the nucleus paragigantocellularis (PGi) and the nucleus prepositus hypoglossi (Prep). From
LC, Noprepinephrine (NE) neurons projects to the thalamus, cortex and dorsal raphe nucleus
(DRN). From the DRN glutamatergic and serotonergic fibers projectes to the cerebral cortex
(7). Figure inspired by Fornai et al. (?)
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4.2.2 History of the VNS

In 1938, Bailey and Bremer (7) discovered that the effect of VNS in the cat cerebral cortex
caused electroencephalogram changes. In 1951, (?) showed evoked responses in the ventroposte-
rior complex of the intralaminar regions of the thalamus after cervical vagus nerve stimulation.
In 1985, Zabara (?7) reported inhibition of the neural process inducing an alteration of the
brain activity and a reduction of seizures in dogs. His work was duplicated in monkeys and
rats. After that, human pilot studies for patients benefits in various clinical conditions began
(7). In 1997 the Food and Drug Administration (FDA) approved the surgical implantation of a
vagus nerve stimulator for the treatment of seizures in drug-refractory epilepsy. Clinical trials
were performed either as randomized trials with different intensity or cross-over trials with the
stimulator on and off (?). Then it was approved for treatment-resistant depression and weight
loss in 2015. In Europe, two tVNS devices have been approved for use in epilepsy in 2010 and
pain in 2012 and another (?) for headache. In the US, it has not been specifically approved
but it is legal and its effects are investigated for many conditions such as: Atrial fibrillation,

depression, dementia, diabetes, memory, headache, pain tinnitus, Schizophrenia and stroke.

4.2.3 VNS implant device

The implant device is composed by a pulse generator programmable by telemetry connected
with a bipolar flexible wire. The most common model is the commercially available Cyberonics
pulse generator (7). The pulse generator is placed by the neurosurgeon, during general anaes-
thesia, under the skin, in a subcutaneous pocket, in the upper left side of the chest, centred
at mid-neck level and on the anterior border of the sternocleidomastoid muscle. The lead ter-
minates in a double coil electrode which is positioned on the cervical portion of the left vagus
nerve (?77). Programmable parameters consist in: current charge (corresponding to the inten-
sity (mA) of the electrical stimulus), the pulse width (duration in microseconds of the electrical
pulse), the pulse frequency (Hz), and the on/off duty cycle (on and off time window length).
Initial settings need to be settled taking into account not only efficacy (optimal regulation for

controlling seizure) but also tolerably, which improves over time.
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Adverse consequences are related to the stimulation of body parts innervated by the vagus
nerve, but since 80% of fibres are "afferent", the pulses are propagated from the electrodes
attached on the nerve toward the brain. The implantation on the left side is more reliable to
prevent/minimize cardiac complications, notably the cardiac dysrhythmia such as bradycardia
or asystole. In fact, the right vagus nerve supplies the sinoatrial node, while the left one
innervates the atrioventricular node and has proportionally less number of cardiac efferent
fibers (7). Right VNS stimulation is under investigation as a treatment for heart failure (?). In
parallel with surgically implanted VNS other non-invasive vagus nerve stimulation techniques
were developed to provide possible alternatives able to produce similar effects without the
surgical potential risks and high financial costs. Notably, the transcutaneus VNS (t-VNS)
targets cymba conchae, a depression of the external ear, in a brunch of afferent projections.
Several studies investigated neural activations during tVNS in healthy subjects population using
fMRI. Main findings reported similar activation patterns as patterns found following surgical

implant (77).

4.2.4 Neurochemical consequences of VNS

LOCUS
COERULEUS

HIPPOCAMPUS

DORSAL
RAPHE

NUCLEUS VAGUS NERVE

Figure 4.4: Pathways of Activation of the Locus Cperuleus This figure shows in detail
the pathways involving the nucleus paragigantocellularis (PGi) and the nucleus prepositus
hypoglossi (Prep). Credits: http://brainstimulationclinic.squarespace.com /vagus.
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When the vagus is peripherally stimulated, the nucleus of the solitary N'TS plays the major
role. Vagal inputs are relayed from the nucleus tractus solitarius to the locus coeruleus via a
disynaptic pathway 4.4, a paragigantocellularus (PGi) and the nucleus prepositus hypoglossi
(Prep). The stimulation tends to facilitate the excitatory (PGi) pathways rather than the
inhibitory one (Prep) on neurons in the LC. LC in turn projects with norepineprine (NE)
neurons to the dorsal raphe nucleus (DRN), thalamus and the cerebral cortex. The thalamus
projects by glutamatergic fibers to the cerebral cortex and the dorso raphe nucleus (DRN)
projects also to the cerebral cortex by serotonergic (5-HT) fibers. There is evidence that the
locus coeruleus (LC) is a major area of downstream of NT'S since suppression of epileptic seizure
induced by VNS is lost in part when this area is inactive (?). Therefore the principal pathway
through which the vagus nerve stimulation may influence the cerebral cortex is thought to be

across the locus coeruleus (LC).

4.2.5 VNS in epilepsy

The most recognized and reviewed application of the vagus nerve stimulation is at present
the treatment of refractory epilepsy. Since the effect of vagus nerve stimulation in humans is
mainly reported in this literature, here I will review the most interesting findings elucidating

its mechanisms of action and cerebral activations.

Nearly one third of epileptic patients are refractory to anti-epileptic agents (7). Among
them, some have focally resectable lesions and others don’t. In this latter case, they are
considered suitable for VNS implantation. The first human implant of a vagus nerve stimulator
device was reported in literature by Penry et al. in 1988. He conducted a study over 4 patients,
resulting in a complete seizure control in two of them, in a reduction of 40% of seizure frequency
in one and no change in the last one, with 6 to 10 months follow up (?). Two prospective pilot
studies on 14 patients with a follow up of 14 and 35 months, reported a reduction in seizure
frequency of about 47%. In a larger study, 198 patients were treated with high or low intensity
VNS, showing that patient receiving high stimulation had an average reduction of 28% in total

seizure frequency compared to 15% in low stimulation group (7). Long-term outcome was
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documented over a cohort of 28 patients implanted for 5 years. At 12 months seizure frequency
decreased from baseline by 28% and arrived at 72% at follow up, which ranged from 5 to 7
years (7). Englot et al. (?) performed the first meta-analysis analysing data from 3321 patients
coming from 74 different studies. Seizure frequency was reduced by 50% after more than 1 year

of therapy. At the follow-up 50% reduction was reported in approximately 50% of the patients.

Possible mechanisms of action

Although vagus nerve stimulation represents a valid option for the treatment of medically re-
fractory epilepsy in adults and children, the underlying mechanism of action remains elusive.
The establishment of the exact mechanism for VNS efficacy in patients with intractable epilepsy
is of fundamental importance, since it would allow not only further developments of this tech-
nique, but also the identification of newer fields of applications. Main hypothesis underlying

its mechanism of action includes:

e Norepinephrine mediated mechanism: Previous studies have shown that VNS may
upregulate endogenus noradrenergic activity, increasing brain concentration of norephinephrine
by activating the locus coeruleus (LC). Indeed it is already known from animal studies
that increasing brain noradrenaline levels following traumatic brain injury (TBI) can
promote functional recovery. Amphetamine and norepinephrine re-uptake inhibitors have
been demonstrated to improve functions in humans after stroke, depth perception after
visual cortex ablation, tactile placing after motor cortex injury. Moreover, intravenous
noradrenaline infusion facilitate motor recovery following sensory-motor cortex injury.( ?).
By contrary lesion to the LC diminished the rate and extent of functional recovery rate
following ablation (7). Several different mechanisms can account for this effect, among
them: the reduction of ischemic injury, induction of long-trem potetntiation (LTP) at-

tenuation of inflammation, and reduction in seizure activity.

e Modulation of depolarization activity: in the acute post-injury period further struc-
tural damages (secondary damags) can be triggered by non-convulsive seizure. Two fur-

ther depolarization phenomena induced secondary injuries, the peri-infarct depolarization
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and the glial calcium wave. Peri-infarct depolarization is a pathological seizure activity,
happening at the interface of the lesion. This activity can contributes to the so called
cortical spreading depression, which is a global depolarization spreading across the cortex,
and causing a supplemental damage. Glial calcium wave reduction is also considered to

be the substrate of neuroprotective effect of anti-epileptic drugs.

Decreasing glutamate-mediated exocitotoxicity: VNS seems to exert a neuropro-
tective effect reducing the post-traumatic hyper-excitability, which is a major cause of sec-
ondary neuronal injuries. The loss of cortical neurons, the modification in their circuitry
and the loss of inhibitory gamma aminobutyric acid (GABA), leading to hyper-excitability
of pyramidal cells, together induce in the weeks following TBI predisposition to seizures
and exacerbation of injury. When neurons are damaged extracellular glutamate increases,
and binding with NMDA receptors increases calcium influx. The intracellular calcium can
initiate apoptosis cascades in the neurons. VNS can lower extracellular glutamate level.
Thus VNS appears to protect GABAergic neurons from destruction and it reduces the

incidence of seizure activity.

Synaptic plasticity and recruitment of endogenous Neural Stem Cells Some
evidences show as in addition to the other neuroprotective effects, VNS may potentiate
synaptic plasticity and recruit neural stem cells. In fact, rat studies showed that the
facilitation of long term potentiation LTP induced by VNS in the hippocampus and

cortex in rats, was likely mediated by norephineprine (7).

VNS attenuates cortical edema and blood brain barrier breakdown

Ghrelin-Mediated actions of VNS

Ghrelin-Mediated actions of VNS

Synaptic plasticity and recruitment of endogenous Neural Stal Cells

Decreasing intracranial pressure
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4.2.6 VNS-induced cerebral activations

As already mentioned, vagal afferents traverse the solitary tract and form synapses mainly in
the nuclei of the dorsal medullary complex. Among these nuclei, the nucleus of solitary tract
(NTS) receives the greatest number of vagal afferent synapses. Through the parabrachial nu-
cleus, its projections involve several structures such as the hypothalamus, the thalamus, the
amygdala, the anterior insula, the infralimbic cortex, the lateral prefrontal cortex and other
cortical regions. Through the amygdala, the NTS gains access to the limbic system (amygdala-
hippocampus-entorhinal cortex). In addition, the NTS projects to the LC, providing widespread
noradrenergic innervation to the entier cortex and to the raphe nuclei providing serotonergic
innervation of the brain ?. Neuroimaging studies of VNS have been conducted in both patients
and healthy humans, using either implanted or transcutaneus stimulations. Many groups have
used different imaging techniques to better understand the pathways activated by the stim-
ulation and to describe VNS effects on the brain. Since these investigations were conducted
using different methodologies (PET, SPECT, fMRI) and different protocols (changing stimu-
lation parameters, including acute and chronic effects) the literature appears inconsistent and

sometimes in contradiction.

The most robust findings seem to be the involvement of the thalamus, which plays a key
role in processing somatic sensations and regulating cortical activity. A well documented ef-
fect of VNS is the increase of induced cerebral blood flow (metabolic rate) in bilateral thalami
during both immediate effect and prolonged studies. Prolonged effects of VNS administration
may affect thalamo-cortical regulation of brain circuitry and indirectly the modulation of EEG
oscillatory brain activity. It was also observed that the left VNS implant cause an additional
metabolic increase in the right inferior postcentral gyrus 7. The thalamus is formed by numer-
ous thalamic nuclei containing the talamocortical relay neurons, which in principle drive the
entire cortex and all subcortical structures. Among the multiple hypothesis about the VNS
mechanisms underlying improvement in seizure suppression is that thalami are regions generat-
ing active prevention of seizure onset. All studies using PET and SPECT reported changes in

the thalamic activity after VNS in epilepsy. By contrast, studies investigating VNS activation
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using fMRI reported weak thalamic involvement. This inconsistency could be due to different
time resolutions, and limits relative to fMRI to assess subcortical structures. Cerebellar activa-
tion are consistent with vagus nerve projection anatomy. fMRI studies found changes mainly

in the orbitofrontal cortex, anterior temporalpoles, insula, and the hypothalamus (7).

A single case study, by Fan et al., involving a 4-year-old patient suffering from a myoclonic
astatic epilepsy (MAE) revealed significant changes in the EEG patterns after 6 months of stim-
ulation, resulting in increased beta-gamma spectrum rhythm. Brain diffusion-tensor imaging
at 10 months showed increased functional anisotropy (generated by axons limitating molecular
motion to preferential directions) in the right fimbiae fornix at the level of cerebral peduncle
(?). Fractional anisotropy measures the microstructural organization and direcionality, it is
thus a direct indicator of myelination and axonal diameter. In general, fractional anisotropy

increases with ageing and myelination in the cortex, while diffusivity decreases (7).

In a study designed to evaluate cortical activations during VNS, Narayanan and colleagues
(?) tested 5 epileptic patients using fMRI. Parameters were settled at 30Hz of frequency,
0.5-2mA of intensity and a cycle of 30s ON followed by 30s OFF. They detected activation
bilaterally on the thalamus (predominantly left), insular cortices bilaterally, ipsilateral basal
ganglia and postcentral gyri, right superior temporal gyrus, and inferomedial occipital gyri (on
left more than on right). The most robust result was the activation of the thalami and insular

cortices.

Recently, it has been assessed that tVNS could trigger the activation of classical pathways
of central vagal projections as well. In particular, a fMRI study done in 12 healthy adults
undergoing 7 min of mild auricular tVNS could significantly affect the central projections of
vagus nerve. In this study, the regions activated by tVNS were: the nucleus of solitary tract
(NTS) projecting to the spinal trigeminal nucleus, parabrachial area, locus coeruleus, dorsal
raphe nucleus, periaqueductal gray, thalamus, amygdala, insula, nucleus acumbens, bed nucleus
of the stria terminalis, and hypothalamus. On the contrary a deactivation was found in the
hypothalamus and hippocampus ?. Anterior thalamic activation is consistent with fMRI and

PET studies performed in patients having a chronic VNS implant. The anterior thalamic
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activation was mainly observed in patients who responded to the VNS (7).

Kraus et al. (?) conducted a fMRI study over an healthy population using tVNS. They
found an affect in the BOLD signal, which decreased in limbic brain areas, including the
amygdala, hippocampus, parahippocampal gyrus, and middle and superior temporal gyrus and
increased in the insula, precentral gyrus, and thalamus. These results were paired with psycho-
metric data, which revealed an improvement in well-being after tVNS. The sham stimulation
did not show similar fMRI or psychometirc effects. In a follow-up study anterior and posterior
wall tVNS effects were investigated separately, drawing the conclusion that the anterior wall
evoked the deactivation of limbic brain areas at the parahippocampal gyrus and the posterior
cingulate cortex, as well as other regions such as the thalamus, locus coeruleus and solitary

tract (7).

Fang et al. (?7) studies patients suffering from depression and after 1-month of VNS
stimulation they found that tVNS can significantly modulate the default mode network in
patients suffering from mild or major depressive disorder. In particular, they found decreased
functional connectivity between DMN and anterior insula and parahippocampus and increased
connectivity between the DMN and precuneus and orbital prefrontal cortex. The increases of

connectivity was associated with depression scale reduction.

Another important VNS-induced effect is to trigger neural plasticity. Different studies
(see section VNS and rehabilitative therapies) used this hypothesis to test VNS efficacy for
a wide types of applications. The rationale for these studies come from the evidence that
chronic VNS induces long-lasting increases of brain derived neurotrophic factor (BDNF) in
the hippocampus. This BDNF expression increase may serve to promote and maintain new
neuronal connections and therefore is a substrate of neuronal plasticity. This effect was also
observed in the cerebral cortex of rats ?. In particular, the chronic VNS promotes acute effect
maintenance, such as trophism and new cell proliferation rather than increases cell proliferation
indefinitely 7. Therefore, VNS can affect neuronal plasticity by altering the synaptic activity.
In fact, it is likely to cause increased transsynaptic neurotransmission in the nucleus of the

tractus solitarius (7) and to produce changes in receptor density in sites receiving projections
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from the latter (7).

4.2.7 VNS and EEG

VNS and EEG in early animal model

In animal models, the effect of vagus nerve stimulation in the background EEG activity is
highly dependent on the different stimulation parameters. In fact, both synchronization and
desynchronization were previously observed (7). Since seizures are characterized by highly syn-
chronized EEG activity, synchronization and desynchronization are associated with increased

resistance and susceptibility to seizures, respectively (7).

Bailey and Bremmer (1938) first discovered that electrical stimulation of the vagus nerve
in cats caused desynchronization (?). Krhal et al. had demonstrated that lesions in the LC
suppressed the VNS anti-epileptic effect, proving its importance, and the desynchronization
and the arousal-promoting affect as well (7). Magnes et al. directly stimulating the nerve
in "encephale isole" cats observed that low frequency electrical stimulation (1-16 Hz) in the
region of the nucleus of solitary tract, resulted in widespread EEG synchronization. By con-
trary, vagus nerve stimulation at higher frequency (>30Hz) produced EEG-desynchronization
(7). Thompson et al., demonstrated respectively EEG gamma-spectrum (>40 Hz) in direct
cortical and thalamic recordings during high frequency VNS at 1.5mA 7. All these results
can be synthesized by observing that desynchronization seems to result from high-frequency
stimulation of fibres with a low level of myelination, instead synchronization is more associated

to low-frequency stimulation of highly myelinated fibres (7).

VNS and EEG in epileptic patients

Also for epileptic patients it was hypothesized that the widespread cortical desynchronization
caused by VNS could be a major mechanism of action causing the anti-epileptic effect. In

fact, hypersynchrony is a well known pathological pattern in epileptic patients (?7). Several
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studies reported VNS-induced increase of thalamic activity, which is interestingly related to the
reticular activating system, and cortical desynchronization suggesting a possible involvement

of the thalamus in anti-epileptic effect ?.

Marrosu et al. investigated EEG power spectrum changes in 11 epileptic patients 1 month
and 1 year after VNS implantation. They found a decreased synchronization of theta fre-
quency and an increase in gamma power spectrum (20-50Hz) and synchronization. However,
this gamma modulation can be seizure-independent and related to improved attentional perfor-
mances (7). Another study on Lennox-Gastaut syndrome (LGS) patients, treated with VNS,
reported improved alertness in 76.7% of patients. Improved alertness seemed to be consistent
with another behavioural study in 10 epileptic patients conducted by Rizzo et al. (?) who
reported major effects of vagus nerve stimulation on daytime alertness and a reduction of noc-
turnal rapid eye movements sleep. This can be interpreted as a possible effect of the VNS on
structures involved in sleep-wake cycles. A recent study to evaluate quality of life (QOL) after
VNS was conducted on the VNS Therapy Patient Outcome Registry, containing data from
5000 patients (including 3000 with > 12 months follow-up). Behavioural improvements were
reported also in alertness (48-50% of patients), post-ictal state, cluster seizure, mood change,

verbal communication, school/professional achievements and memory.

In order to evaluate the effect of the VNS on the EEG signals, functional connectivity
indexes were frequently used as an investigation tool. Fraschini et al., showed that the mean
phase locking values (PLI) (a measure of synchrony between signals) computed 5 years after
VNS surgery on responsive epileptic patients, were significantly lower only over the gamma
(30-48 Hz) frequency band (?), indicating a global signal desynchronization. Fraschini et al.
further investigated the architecture of functional brain networks in VNS-responding patients.
Following the hypothesis that VNS would change the network topology in responders, they used
minimum spanning tree metrics to try to demonstrate that in responders significant alterations
occur in the inter-ictal configurations, which tended to go back to more efficient and integrated
patterns. They found a re-organization of theta networks in responders patients, which showed
an increased diameter and eccentricity. Loss of integration in theta band was already described

in patients prone to occurrence in seizures 7.
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Bartolomei et al., evaluated 5 patients suffering from drug resistant epilepsy. Activity
during the VNS ON and VNS OFF periods was considered. The main findings showed that
in comparison to OFF periods, the ON periods had higher values of functional connectivity
in 4 out of 5 patients. Interestingly, the patient showing decreased connections was the only
responder, suggesting a possible mechanism related to the therapy success (7). De Vos et
al. used a measure of symmetry among omologus channels (pdBSI, paired Brain Simmetry
Index) to find predictive interictal EEG features for seizure reduction. This study showed
that non-responders had higher pdBSI in theta and alpha band, once again suggesting that

seizure-reduction is associated to increase asymmetry in signal coupling (?7) .

4.2.8 VNS and rehabilitation therapies

Recently,it has been proposed that coupling the vagus nerve stimulation (VNS) with rehabilita-
tive techniques could promote adaptive circuit changes in the brain, incrementing the training-
dependent plasticity and enhancing recovery. The major goals of rehabilitative techniques are
to treat pathological neural activity and restore lost functions. Traditional rehabilitation often

does not provide significant improvements, leaving the patient in a chronic disability.

Animal models of chronic tinnitus, ischemic stroke, intracerebral hemorrhage and trau-
matic brain injury benefit from being specifically paired with VNS burst. As already high-
lighted, the electrical stimulation of the vagus nerve drives the activity in the noradrenergic
locus coeruleus and cholinergic basal forebrain and the subsequent release of neuromodulator
throughout the cortex. If this effect is reduced, the VNS effects is also blocked. As already
mentioned, these neuromodulators systems play an important role in the expression of cortical

plasticity (7).

Experiments in rats take advantage from these considerations and showed how pairing left
cervical VNS with tones can actually induce a reorganization of the tonotopic map, increasing
the proportion of neurons responding to a particular frequency in the primary auditory cortex
(7). To study plasticity within the motor cortex, Porter et al. paired left cervical VNS with

successful trials in a lever press task. They found an increase of the area corresponding to
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the body part (upper-limb or paw) used in the task and no change for the other (control)

representations (7).

VNS was tested with success in patients with severe chronic tinnitus. They received left
cervical VNS paired this time with a range of tones, excluding the tinnitus frequency. The
therapy lasted for 2.5h per 20 days. Four patients out of 10 demonstrated a clinical significant
improvement, and the benefit persisted for 2 months. This treatment is potentially applicable
in various cases of maladaptive plasticity triggering sensory disorders, for example the phantom
limb pain and chronic pain. In fact, it is known that the pain intensity correlates with the level

of over-representation.

Preclinical studies done by Pruitt et al. extended previous animal studies demonstrating
that VNS can improve the recovery of motor function, if coupled with successful trials (VNS
occurred within 45ms). Since VNS did not reduce the size of the lesion, it was hypothesized

that motor recovery wasn not due to a neuroprotective mechanism (7).



Chapter 5

Restoring consciousness with vagus nerve

stimulation

5.1 Introduction

Understanding the mechanisms of action and pathophysiology underlying alterations of the
conscious state following severe head traumas is a major issue in current clinical research.
Although our knowledge on disorders of consciousness has progressed (see Chapter 4), at present
a few studies aim at developing techniques to accelerate recovery and optimize the chances of
healing for patients with unfavourable prognosis. Some attempts have already been done, as
already discussed, for example physical therapy techniques, including passive range of motion
therapies (7), pharmacological interventions (7) and electrical stimulation (7). Unfortunately,

only a few interventions show to be reproducible and effective.

Notably, Schiff et al. demonstrated a significant late function recovery after DBS on
MCS patients targeting the anterior intralaminar thalamic nuclei (7). While there have been
some encouraging results, evidences are insufficient and other studies of validation are required.
Other techniques were recently tested as potential treatments for consciousness disorders. For
instance, short duration transcranial direct current stimulation (tDCS) applied for 20 minutes

on dorsolateral prefrontal cortex on coma patients have been demonstrated to improve CRS-R
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scores, mainly in MCS patients (7). Pharmacological interventions have also been tested as
treatment aiming at modulating key neurotransmitter systems mediating arousal and atten-
tion. The GABA agonist Zolpidem was shown to trigger an immediate, though temporary,
transition from VS to MCS, inducing a re-emergence of command following, visual pursuit and
gesture, albeit in some few responsive patients. VS and MCS patients, treated for 4 weeks with
amantadine, which acts on monoamines such as noradrenaline and serotonin, showed a faster

rate of behavioural improvement (7).

Recent results show that direct stimulation of the vagus nerve (VNS) activates thalamo-
cortical neural pathways important in promoting arousal and conscious state. The modulation
of vagal activity also appears to affect the cognitive and attentional systems (?) and enhance
mood and cognition (7). Further, the stimulation of the vagus nerve at the neck level is known
to activate numerous brain regions, among them the locus coeruleus, regulating arousal and

known to promote and increase the release of norepinephrine (7).

It has been demonstrated that vagus nerve stimulation could enhance neural plasticity
responsible for supporting the recovery of functions after brain damages. Different preclinical
models of traumatic brain injuries (TBI) exist to study vagus nerve stimulation effect in rats.
Using a fluid percussion model of TBI, Smith et al. (?) demonstrated that the VNS stimulation
initiated 2h post injury enhanced the cognitive and motor recovery rate. In particular, rats
treated with VNS (?7) showed both an accelerated and a more complete recovery compared
to lesioned untreated rats. The surviving rate also increased. Stimulation parameters were
settled as follows: 30s of pulses duration, 0.5mA of current intensity, at 20Hz biphasic pulses.
Behavioral tests inlcuded beam walk, skilled forelimb reaching, and Morris water maze test.
The same results were achieved one year later, initiating the VNS 24h later the induction of
a fluid percussion lesion. According to Smith et al. these results may be mediated by VNS

activation of the locus coeruleus (LC), leading to the release of norepinephrine in the nueraxis

?.

Moreover, animal models have shown that VNS may play a neuroprotective role promot-

ing neurogenesis in the hippocampus (7), promoting the generation of neurotrophic factors
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(brain-derived neurotrophic factor, BDNF) (?) and it also appears to have a positive effect on
systemic inflammation responsible for heart failure and brain death. Various studies tried to
investigate the molecular mechanisms underlying the therapeutic action of the VNS in both
treatment-resistant epilepsy and depression. Follesa et al. tested in the rat brain whether VNS
increases the expression of brain-derived neurotrophic factor (BDNF), fibroblast growth factor,
nerve growth factor and norepinephrine concentration. They found that acute nerve stimu-
lation (3h treatment, 2 days after surgery) increased the expression of BDNF and fibroblast
growth factor, in the hippocampus and cerebral cortex and increased the concentration of nore-
pinephrine in prefrontal cortex. These results shows how VNS can trigger molecular changes
in the rat brain involving neurotransmitter and growth factors regulation, but only chronic
stimulation modulates the firing rates of monoaminergic neurons. (7). Other animals studies
have found that VNS modulates noradrenergic neurotransmission (?) which is important for

arousal regulation and wakefulness (7) by activating the locus coeruleus.

We hypothesize that through its action on the thalamo-cortical system, the VNS could
increase the probability of awakening in patients with an unfavourable prognosis and accelerate

this same awakening in those who have received a more favourable prognosis.

5.2 Abstract

In the following study we investigated the mechanisms responsible for the return of conscious-
ness induced by vagus nerve stimulation (VNS). We reported a single case study of a patient
who’s been living in a vegetative state for 15 years who benefited from the implantation of a
vagal nerve stimulator. The patient was followed for 9 months (including pre and post-VNS
periods), during this period we could observed the transition from vegetative to minimally con-
scious state, as assessed by CRS-R clinical score, mainly signalling that the patient improved his
ability to follow external stimulations. These results were supported by several neuroimaging
evidence such as measure of cortical and sub-cortical activity and the evaluation of functional

connectivity, which enabled us to record increased communication between brain regions previ-
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ously identified as a "hot zone" for consciousness. We believe that these novel findings may have
far-reaching implications not only for the clinical care of patients with disorders of conscious-
ness but also for current theories of consciousness. Our article was submitted and accepted by

Current Biology in August 2017. The following section contains the full submitted material.

5.3 Publication



challenge to our understanding of this
process. Development of a robust

in vitro spermatogenesis system for
mammals would provide useful insights.
So far, numerous approaches using the
entire tissue or separated single cells
from the testis in 2D or 3D cell culture
systems have been explored, which is
encouraging. Additionally, a robust in
vitro spermatogenesis system might help
define the causes of infertility in humans.
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Patients lying in a vegetative state
present severe impairments of
consciousness [1] caused by lesions in
the cortex, the brainstem, the thalamus
and the white matter [2]. There is
agreement that this condition may
involve disconnections in long-range
cortico—cortical and thalamo-cortical
pathways [3]. Hence, in the vegetative
state cortical activity is ‘deafferented’
from subcortical modulation and/or
principally disrupted between fronto-
parietal regions. Some patients in a
vegetative state recover while others
persistently remain in such a state.
The neural signature of spontaneous
recovery is linked to increased
thalamo-cortical activity and improved
fronto-parietal functional connectivity
[3]. The likelihood of consciousness
recovery depends on the extent of brain
damage and patients’ etiology, but after
one year of unresponsive behavior,
chances become low [1]. There is
thus a need to explore novel ways of
repairing lost consciousness. Here

we report beneficial effects of vagus
nerve stimulation on consciousness
level of a single patient in a vegetative
state, including improved behavioral
responsiveness and enhanced brain
connectivity patterns.

Consistent with an important role of
the thalamic-cortical axis for awareness,
one study has demonstrated an
increased behavioral responsiveness
after deep thalamic stimulation limited
to the stimulation period [4]. Here
we propose to activate the thalamo-
cortical network based on vagus
nerve stimulation. The vagus nerve
carries somatic and visceral efferents
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and afferents distributed throughout
the central nervous system, either
monosynaptically or via the nucleus

of the solitary tract (NTS) [5]. The
vagus directly modulates activity in the
brainstem and via the NTS it reaches
the dorsal raphe nuclei, the thalamus,
the amygdala, and the hippocampus
[5]. In humans, vagus nerve stimulation
increases metabolism in the forebrain,
thalamus and reticular formation

[6]. It also enhances neuronal firing

in the locus coeruleus which leads

to massive release of norepinephrine
in the thalamus and hippocampus, a
noradrenergic pathway important for
arousal, alertness and the fight-or-flight
response [7].

Following the hypothesis that vagus
nerve stimulation functionally reorganizes
the thalamo-cortical network, we tested
its effects on the cortical activity of a
patient lying in a vegetative state for 15
years following traumatic brain injury.
Behavioral, electroencephalographic
(EEG) and 18F-FDG PET recordings
were performed before and after surgical
implantation of a vagus nerve stimulator.
Stimulation was gradually increased to
a maximum intensity of 1.5 mA, and
its effects were monitored over six
months post-implantation. After one
month of stimulation, when intensity
reached 1 mA, clinical examination
revealed reproducible and consistent
improvements in general arousal,
sustained attention, body motility and
visual pursuit. Scores on the Coma
Recovery Scale-Revised (CRS-R) test
improved, mostly in the visual domain,
as stimulation increased, from a score of
5 at baseline (last exam) to 10 at highest
intensities (1.00-1.25 mA), indicating a
transition from a vegetative to minimally
conscious state.

Scalp EEG data comparing the
patient’s resting state pre- and post-
stimulation revealed a significant
increase in theta band (4-7 Hz) power
(one-sample t-test, p < 0.0001 false
discovery rate corrected, Figure S1A,B
in Supplemental Information, published
with this article online), a brain signal
found to reliably distinguish minimally
conscious patients from vegetative ones
[8]. Data driven blind source separation
analysis identified eight sources
responsible for the stimulation-induced
power increase, distributed over the
occipito-parietal, inferior temporal and
fronto-central regions in addition to a
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Figure 1. Information sharing increases after vagus nerve stimulation over centroposterior
regions.

(A) Sagittal (left) and coronal (right) views of weighted symbolic mutual information (wSMI) shared
by all channels pre- and post-vagus nerve stimulation (VNS) (top and bottom, respectively). For
visual clarity, only links with wSMI higher than 0.025 are shown. (B) Topographies of the median
wSMI that each EEG channel shares with all the other channels pre- and post-VNS (top and
bottom, respectively). The bar graph represents the median wSMI over right centroposterior elec-
trodes (darker dots) which significantly increases post-VNS (permutation test over sessions: Wil-
coxon test, p = 0.0266). (C) Localization of the most VNS-reactive theta source showing significant
increase of information sharing post-VNS. Sources’ localization is presented over the patient’s
cortical surface (probability map, sLoreta current source density: light blue scale) combined with
his FDG-PET metabolism (gray scale) as measured three months post-VNS. The source was local-
ized in the inferior parietal lobule. The bar graph represents the mean wSMI shared with all other
selected sources pre- and post-VNS (dark gray and light gray, respectively) (permutation test over
sessions: Wilcoxon test, p < 0.01 Bonferroni corrected). CRS-R clinical score increased as a func-
tion of information sharing over a cortical posterior theta network (Robust regression, p = 0.0015).

deeper source most likely localized in the
insula (Figure S1C). These areas belong
to the default mode network whose
activity appears to reflect the degree of
consciousness in non-communicative
brain-damaged patients [1]. The highest
stimulation intensity induced an increase
in theta power over the right inferior
parietal and parieto-temporal-occipital
border (Figure S1C), a region labelled

as a hot-zone for conscious awareness
[9]. We calculated weighted symbolic
mutual information (WSMI), a measure
of cortical connectivity and information
sharing known as a sensitive index of
consciousness. This measure captures
activity in different frequency bands and
robustly discriminates the vegetative
from minimally conscious state within
theta frequency signals (4-10 Hz) [10].

By using a parameter of t = 32 ms we
found that the median wSMI across
channel pairs was significantly higher
after vagus nerve stimulation over a
parietal region within a cluster including
the right centro-temporo-occipital
electrodes (Figure 1A,B).

The wSMI procedure was also
applied on sources previously identified
by blind source separation as reactive
to vagus nerve stimulation. The
purpose here was to isolate regions
that most contributed to information
sharing, thus suppressing sources
with interfering noise activity. Cortical
areas showing significant increase in
mutual information after stimulation
included the inferior parietal,
precuneus, posterior cingulate and
pre-motor/motor regions (Figure 1C
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and Figure S1E). The highest mean
wSMI value was found in the inferior
parietal cortex/intraparietal sulcus
(Figure 1C). This global increase

in mean wSMI over theta sources
was significantly correlated to the
CRS-R scores of clinical improvement
(Robust regression, t (-0.0128;3.9436),
dfe = 14, p = 0.0015, Figure 1C). These
results demonstrate that vagus nerve
stimulation enhances information
sharing within a centro-posterior
network. This is consistent with

the observation reported on a large
population of brain injured patients
showing that activity within centro-
parietal regions constitute the marker
of a conscious state [10]. Importantly,
they demonstrate the critical role of
the parietal cortex as a central hub for
broadcasting neural signals among
posterior and central sites in order to
strengthen consciousness.

Finally, 18F-FDG PET results
corroborated EEG findings by showing
extensive increases of activity in
occipito-parieto-frontal and basal
ganglia regions as early as three
months after implantation of the
stimulator. Vagus nerve stimulation
enhanced the metabolic signal in the
thalamus, a target of the vagus nerve
(Figure S1D).

These findings show that stimulation
of the vagus nerve promoted the
spread of cortical signals and caused
an increase of metabolic activity
leading to behavioral improvement
as measured with the CRS-R scale
and as reported by clinicians and
family members. Thus, potentiating
vagus nerve inputs to the brain helps
to restore consciousness even after
many years of being in a vegetative
state, thus challenging the belief that
disorders of consciousness persisting
after 12 months are irreversible [1].
The direct connection between the
NTS where the vagus nerve originates
and the thalamus may be at the origin
of the significant increase in theta
signal recorded at the cortical level. In
particular, the parietal cortex appears
to be a major player in guiding the
expansion of neural activity across
brain areas. The enhanced neural
activity might also be mediated by
neurotransmission changes given that
vagus nerve projections target key
regions important for the liberation
of norepinephrine and serotonin [7].
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Figure S1. EEG signals and Pet-scan metabolic activity after VNS.

(A) Theta power increases after VNS over centroposterior regions. EEG power spectra at the scalp level pre-
VNS (blue) and post-VNS (red). A significant absolute power increase was found in the theta (4-7Hz) frequency
band. High beta (20-31Hz) and gamma (>32Hz) power increase was also observed, although their scalp
distribution suggests the influence of muscle artifacts, reflecting the patient improved spontaneous facial motility
post-VNS. (B) Percent of signal change in the EEG power spectrum. Signals post-VNS show a significant
increase in theta band power (4—7Hz) (one-sample Student t-test, p<0.0001 corrected by false discovery rate).
(C) Selection of four independent components (ICs) ranked by percent of signal change over theta peak (5.5Hz)
as revealed by blind source separation analysis (one-sample Student t-test corrected by false discovery rate).
From top to bottom: inferior parietal lobule, precuneus/posterior cingulate cortex, occipital cortex and pre-
motor/motor area. (D) Fluorodeoxyglucose FDG-PET acquired during baseline (pre-VNS) and 3 months post-
VNS. Metabolism increased in the right parieto-occipito-temporal cortex, frontal regions, thalamus and
striatum. (E) Localization of VNS-reactive theta sources showing significant increase of information sharing



post-VNS. Sources’ localization is presented over the patient’s cortical surface (probability map, sLoreta current
source density: light blue scale) combined with his FDG-PET metabolism (gray scale) as measured three months
post-VNS. VNS-reactive sources were localized in the inferior parietal lobule, in the precuneus/the posterior
cingulate cortex and in the premotor/motor area (from left to right, respectively). Bar graph represent the mean
wSMI shared with all other selected sources pre- (dark gray) and post- (light gray) VNS (permutation test over
sessions: Wilcoxon test, p<0.01 Bonferroni corrected).

Table S1. CRS-R and wSMI scores as a function of time and VNS intensity. Summary of CRS-R clinical
scores and the wSMI indexes computed over electrodes and VNS-reactive independent components, presented in
temporal order. The dataset consists of three baselines recorded on the pre-VNS period (baseline 1, 2 and 3, light
gray) and 13 sessions recorded on the post-VNS period. B=baseline, S=stimulation, wSMI=weighted symbolic
mutual information, IC=independent components, red line=groups test/re-test sessions, d=day, w=week,
m=month, - indicates missing CRS-R data because of clinician unavailability.

Timing Recording | VNS Intensity (mA) | CRS-R score wSMI wSMI - IC
-2m B1 Off 6 0.0296 0.0362
-1m B2 Off 4 0.0299 0.0279

Time 0 B3 Off 5 0.0330 0.0299

1d S1 0.25 7 0.0401 0.0437
1w S2 0.25 4 0.0367 0.0510

1w +1d S3 0.5 6 0.0312 0.0408
2w S4 0.5 6 0.0367 0.0521

2w + 1d S5 0.75 5 0.0287 0.0345
3w S6 0.75 7 0.0321 0.0408

3w+ 1d S7 1 7 0.0475 0.0502
aw S8 1 10 0.0320 0.0464

aw + 1d S9 1.25 10 0.0253 0.0301
5w S10 1.25 9 0.0466 0.0563

5w+ 1d S11 1.5 8 0.0502 0.0468

im + 1w S12 1.5 - 0.0365 0.0461
im + 2w S13 1.5 - 0.0383 0.0271
3m S14 1.5 6 0.0370 0.0399
3m + 2w S15 1.5 - 0.0396 0.0516
4m S16 1.5 - 0.0478 0.0462
6m S17 1.5 8 0.0479 0.0437

Supplemental Experimental Procedures

Participant and Protocol
Participant clinical history

A 35 years old male single patient lying in a vegetative state (VS) since 15 years was included in this study. The
patient suffered from severe traumatic brain injury (TBI) following a road traffic accident. On admission to the
hospital he presented diffuse brain swelling, subarachnoid and ventricular hemorrhage, bi-frontal and left
temporal lobe contusions, basal skull fracture involving the right and left temporal bones and the left orbit. The
initial intra-cranial pressure was elevated (40 mmHg). No signs of anoxia were reported. Four weeks’ post-



injury, the patient was diagnosed as in vegetative state (VS) by a multidisciplinary team since he fulfilled all the
criteria according to international guidelines [S1].

A cerebral MRI (turbo spin echo T2-weighted images [TSE-T2], gradient echo T2 [T2*] images, fluid-
attenuated inversion recovery T2 images [FLAIR] and 3D T1) performed in September 2015 showed traumatic
lesions in fronto-basal and temporo-basal regions associated to an enlargement of the ventricular system
predominantly on the left side and with brain-stem atrophy in the mesencephalon. The coma recovery scale
revised (CRS-R) [S2] performed repeatedly during the months preceding inclusion was stable with a score
ranging between 4 and 6 (07/09/2015: 6/23 [0-1-2-1-0-2]; 06/01/2016: 6/23 [0-1-2-1-0-2]; 27/02/2016: 4/23 [0-
0-1-1-0-2]. Standard neurophysiological assessments including somesthetic, auditory and visual evoked
potentials, mismatch negativity (MMN) and response to own name were tested regularly during the 15 years of
vegetative state. Brainstem auditory responses were preserved on short auditory evoked potentials.
Somatosensory evoked responses to median nerve stimulation (SEP) and middle latency auditory evoked
responses (ML-AEP) showed a bilateral abolition of somatosensory and auditory cortical responses. Event-
related potentials to auditory stimuli were also abolished: no N100-P200 complex, no mismatch negativity and
no P300 response to own name were observed.

Experimental design

Following the clinical screening, the patient was formally included in the study to receive the Vagus Nerve
Stimulation (VNS) treatment. Prior the experimental test, informed consent was obtained from the patient’s legal
representative (parents) and the whole protocol and procedure was approved by the Ethical Committee CPP Sud-
Est IV and promoted by the Hospices Civils de Lyon. The study protocol was registered in Clinical Trials
(ClinicalTrials.gov identifier: NCT02591069).

Prior the beginning of the study, physical and rehabilitation clinicians (JL and LT) evaluated whether the
patient’s clinical state met the inclusion and exclusion criteria. Inclusion criteria were: 1. age between 18 and 60
years-old; 2. vegetative or minimally conscious state following anoxia, traumatic or vascular brain injury
confirmed by brain imagery and lasting for more than 6 months after the insult; 3. respiratory autonomy; medical
stability. Exclusion criteria were: intubation state; tracheotomy, pregnancy; vagotomy; previous history of
conscious disorder; contra-indications for VNS such as severe sleep apnea, psychosis, arrthythmia, a unique
vagus nerve.

The neurosurgeons (MG, PB) implanted the vagus nerve stimulator device (VNS, Cyberonics, Houston, TX),
coupled with a pulse generator programmable by telemetry, in the upper left side of the patient’s chest. A
double-coil electrode was wrapped around the vagus nerve at the neck level. The device was switched on one
month after implantation at an initial current of 0,25mA with a pulse frequency of 30Hz and a pulse duration of
500ms. The protocol followed the standard stimulation cycles, used for epilepsy treatment, consisting in 30
seconds of stimulation interleaved by 5 minute of rest. During the first month and a half, the current amplitude
was increased of 0,25mA every week until the maximal current of 1,5mA was reached. The stimulation
parameters were kept unvaried throughout the following months.

Data acquisition

Behavioral assessment

The Coma Recovery Scale-Revised CRS-R [S2], was used to assess the clinical state of the patient along the
whole protocol. During baseline and VNS sessions CRS-R evaluation was performed by two expert clinicians
(JL, LT).

PET data acquisition

All PET data were acquired with Siemens Biograph mCT-64 PET/CT tomograph at CERMEP Neuroimagery
Center (Centre d’étude et de recherche multimodale et pluridisciplinaire d’imagerie du vivant, Groupement
Hospitalier Est, Lyon, FRANCE). The radioligand used was the ["*F]-Fluorodeoxyglucose (FDG). A bolus of



['®F]-FDG was injected through an intravenous catheter 40 min before acquisition (injected dose, scan 1: 154
MBgq; scan 2: 146 MBq). Measures for tissues and head support attenuation were performed with a 1 min low
dose CT scan (<0.3 mSV) acquired before emission data acquisition. PET data were acquired in List-Mode
during 20 min and attenuation corrected image was reconstructed using OSEM-3D iterative method (12
iterations, 21 subsets, 4mm Gaussian filter) incorporating PSF and time of flight [200 x 200 voxels in plane and
109 slices (2.03 x 2.03 x 2.03 mm)]. A first PET scan was performed during the first month post-implantation
while the stimulator was off and a second at the end of 3 post-VNS. Each exam was monitored the clinician (JL)
and by the clinical and pharmacological staff of the Cermep Neuroimaging center.

EEG data

EEG recordings were collected during 20 experimental sessions. Recordings consist of 1h of resting state
acquisitions obtained while the patient was comfortably installed on his bed, with the head slightly raised ans
resting on the pillow. EEG signals were recorded simultaneously with VNS and ECG signals. VNS signal was
recorded at the neck in proximity of the vagus nerve stimulator. Three baseline sessions were recorded before the
beginning of the VNS stimulation, one before and two after the surgery. Further, we recorded EEG data 1 day
and 6 days after each current intensity augmentation, thus obtaining 12 sessions during 1 month. The other
sessions were recorded at 2, 3, 4, 5 and 6 months after the beginning of the stimulation.

EEG preprocessing

Electroencephalographic (EEG) signals were recorded using the Brain Product™ actiCHamp system with 128
active electrodes (actiCAP 128Ch Standard-2) mounted in an elastic cap at 10-5 system standard locations [S3].
All electrodes impedances were kept below 50 kOhms. EEG data were recorded at a sampling rate of SkHz with
an online reference at the Fz electrode, then all data post-processing was done offline using the Matlab™
software. First, the EEG signal was band pass filtered using a zero-phase Chebyshev type II filters (Low pass —
cutting frequency: 46Hz, transition band width: 2 Hz, attenuation: 80 dB; order: 36, sections: 18 [High pass —
cutting frequency: 0.5Hz, transition band width: 0.5 Hz, attenuation: 80 dB; order: 7, sections: 4) and re-
referenced to common average. For every session, the first and last 20s of data were discarded in order to avoid
any edge effect. Data recorded during the 30s of VNS actual stimulation were identified using the VNS signal
recorded with a bipolar electrode place on the neck and the discarded. Data were divided in epochs of 2s, with
50% of overlap. Brain artifacts (eye blinks and movement, ballistocardiac noise, muscular artifact, etc.) were
detected and rejected using an automated recursive procedure of epoch rejection: a covariance matrix was
calculated for each epoch. Then, for each epoch, the Frobenius norm of the difference between the epoch
covariance and the mean-covariance was calculated. Any epoch with a Frobenius norm superior to the mean
norm + 3.5 times the norm standard deviation was discarded. Then, for each session, an independent component
analysis (ICA)/blind source separation (BSS) algorithm was used to isolate and remove remaining interferential
non-brain sources [S4].

Data driven sources estimation

We applied group independent component analysis (gICA) to obtain a direct estimation of the neural sources
reproducible across all recording sessions. A procedure using the Second Order Blind Identification [S5]
algorithm was privileged among other methods due to its robustness with respect to inter-session variability and
its ability to separate sources with non-proportional power-spectra without deleterious prior dimension reduction
[S6]. To this aim, 1001 lagged-covariance matrices with time delays from 0 to 1/5s were computed on each
epoch to be then averaged across epochs and across sessions. The resulting diagonalization set was then joint-
diagonalized using the UWEDGE algorithm [S7] leading to the identification of 128 independent components
(ICs). Finally, the ICs were ordered by decreasing order of explained-variance and only the first 20 sources were
evaluated as being reliable neural sources with a stable dipolar topography (a stable dipolar topography being
mandatory for accurate source localization). The other ICs were discarded.

Model driven sources localization

A forward lead field model was generated using the symmetric boundary element method (symmetric
BEM) with the OpenMEEG Software [S8] and the Brainstorm platform [S9]. The patient’s anatomy, segmented
from T1-weighted magnetic resonance images was considered. Then, only preserved cortical regions, identified
from the measured ['*F]-FDG metabolism, were retained. Finally, for each source identified after Blind Source



Separation (BSS), the columns of the estimated mixing matrix were used as the inputs of the inverse problem
solved by the Standardized Low Resolution Electromagnetic Tomography (sSLORETA) method [S10].

Frequency Analysis

Scalp analysis

Absolute power spectra density (PSD) were computed using the Welch method (2s Hamming window, 50%
overlap, FFT length 2'* samples). For each VNS ON session, the percent of absolute PSD change at each sensor
were computed with respect to the mean PSD computed in the three baselines. Then the median percent of signal
change was calculated across all electrodes. One-sample Student #-fest corrected by false discovery rate [S11]
was employed to identify frequencies showing significant changes during VNS.

Sources analysis

Absolute power spectra density (PSD) were computed at the source level using the Welch method (2s Hamming
window, 50% overlap, FFT length 2'* samples). For each VNS ON session, the percent of absolute PSD change
at each IC were computed with respect to the mean PSD computed in the three baselines. One-sample Student ¢-
test corrected by false discovery rate over all 128 ICs was used to assess which sources showed a significant
difference in absolute PSD compared to baseline in theta band. Among the twenty most reliable and reproducible
preselected neural sources, eight have shown a significant power increase in the theta band after VNS. These
eight sources have been then selected for further analyses.

Weighted Symbolic Mutual Information (wSMI)

Scalp data

We computed over preprocessed data a weighted symbolic mutual information index (wSMI), previously
described by King at al. [S12] as a promising measure to discriminate between different states of consciousness.
This index is derived from the permutation entropy analysis and is used to detect non-linear coupling between
pair of electrodes. This method consists in reducing signals to a limited set of discrete symbols, determining the
symbols’ probability density and counting their mutual occurrence over two time-series. Symbols are defined by
considering groups of sub-vectors, including a certain number of points (k = 3) sampled with a particular
temporal interval, which determines the frequency band for which the measure become sensible. Every sub-
vector corresponds to a particular symbol, assigned according to different reciprocal patterns that the three points
can assume. For k = 3, 6 possible patterns exist. The parametrization t = 32ms and k = 3, which lead to wSMI
values particularly sensitive to patterns occurring in the 6 band, was specifically selected following King et al.
study [S12] showing that the combination of these values is the most sensitive to discriminate between different
states of consciousness. To compute the wSMI, the EEG was first filtered with a low-pass Chebyshev type 11
filter with a cutting frequency at 10 Hz to avoid any aliasing during the symbolic transformation. Then, the scalp
signal was spatially filtered using a Laplacian Transform [S13] in order to reduce redundancy in the data, as
recommended in King et al. [S12] protocol. An estimate of the coupling between each pair of electrodes, after
symbolic transformation can be obtained with the following formula:

p(x,y)

wSMI(x,y) = Z ; w(x,y) p(x,y)log, pCOP()

Where x and y are all symbols pairs found simultaneously in signals X and Y respectively; p(x,y) is the joint
probability of symbol co-occurrence of x in X and y in Y; p(x) and p(y) are the marginal probabilities of those



symbol in their time series. In order to avoid trivial conjunction of symbols due to common sources a weight w
was applied. In this way, conjunctions due to volume conduction or polarity change were set to zero. To reduce
the dimensionality and avoid to compare each electrode pair, statistic was performed over a comprehensive
variable: the median wSMI that each EEG channel shares with all other channels. We wanted to test whether the
wSMI pre-VNS was lower compared to the wSMI post-VNS. Since previous literature reported that median
wSMI increases mostly over centroposterior region, we test the average median wSMI over electrodes within
this region of interest. A cluster of electrodes was selected by taking all parietal locations in the patient preserved
right hemisphere, then a non-parametric permutation test (10 000 permutations) was ran to assess the increment
of median wSMI post VNS.

Sources data

wSMI was also computed on the sources space as an index of information sharing between the sources
previously identified as the generators of the VNS induced 6 power increase observed on the scalp. wSMI was
computed between all sources pairs and the magnitude of information sharing for each IC was estimated as the
mean wSMI that the IC shares with all other IC. Sources were tested using non-parametric permutation test
(10 000 permutations) to assess the increase of mean wSMI post-VNS and then corrected by applying a
Bonferroni correction.

Finally, in order to test if wSMI values correlate with the observed patient’s behavioral improvement, a robust
regression (robustfit function Matlab™ software, ‘bisquare’ weighting function) was computed between the
CRS-R scores and the mean wSMI across sources.

Supplemental Results

On the day following the surgery of the vagus nerve stimulator implantation a clear wide opening of the eyes
was observed for several hours. This sudden improvement could be related to an overstimulation of the nerve
during surgery. This behavior was again observed when the stimulator was switched on one month after
implantation. Each time stimulation intensity was increased, recurring episodes of cough were observed together
with facial flushing and wide opening of the eyes. These manifestations lasted a couple of minutes. Globally, the
patient was significantly more alert after the stimulation was turned on. Several behaviors expressing awareness
have been detected by clinicians and family member starting from an intensity of 0.5 mA and which have been
replicated when the intensity reached 1 mA. These included oriented eyes movements (mainly the right eye
because of a ptosis of the left eye) on the speaker’s direction, wide eyes opening when the experimenter
approached the patient’s face, eye movements pursuit following a mirror, spontaneous head movements towards
the speaker while moving around the patient’s bed, slow left-right head movements on verbal command.
Furthermore, meaningful affective behaviors have been also elicited in response to emotional stimuli. For
instance, a smile on the left cheek and tears were observed while listening to his preferred music. During the
VNS period, an episode of bronchial stasis was observed that justified a short stay at the hospital. It should be
noted however that the patient already had regular bronchial stasis before his inclusion in the protocol.

Supplemental Discussion
Experimental procedure: pitfalls and advantages

One of the limit of our experimental design is the lack of a placebo or an off condition. When we started the
protocol we anticipated this difficulty but since this is a study involving one single patient we were forced to also
consider other arguments that were against. First, it is unethical to switch a stimulator in a vegetative state
patient that is getting clinically better. This is hard to accept by family members and even by clinicians. Second,
as shown by our results the beneficial effect of VNS on patient’s brain activity across sessions seems cumulative.
This makes difficult to define a wash out period. To reduce criticisms on the lack of an off condition, during
participants’ selection phase, we deliberately choose to conduct this first experiment in a patient having received
a pessimistic outcome on his chances to recover consciousness. Fifteen years of VS where no response occurred
to any kind of stimulation or no improvements following clinical rehabilitation or pharmacological intervention
we do believe constitute compelling arguments in favor of a causal effect of VNS as this is the only procedure
that improved the patient’s state. One may still argue that surgical intervention per se might have had a beneficial
effect. As reported in the main text and in the methods (see above) there was a delay of one month between the



surgical implantation and the time when the stimulator was switched on. During this off period no significant
changes were observed. Yet, after stimulation, one month was a sufficient delay to induce changes and to
observe patient’s behavior recovering. In the light of these evidence we strongly believe that VNS is at the origin
of patient’s improvements. Following our single case study where we demonstrate the beneficial effects of VNS,
larger populations of VS and MCS can be tested using for instance a multiple baseline across subject design
where the issue of an off stimulation condition can be addressed with patients’ stimulation scheduled at different
time intervals. This type of study takes years to be completed. Therefore, a single case investigation remains an
important step to demonstrate the feasibility and the benefits, along the possible side effects, of VNS.

Technical advantages of blind source separation (BSS)

Previous studies performed in patients with severe to mild disorders of consciousness have examined scalp
activity in neural sources to search for neural markers of conscious states [S14]. Model driven source separation
has been used to dissociate signals from closed locations selected a priori. Model driven source separation
method present for different raisons several shortcomings [S15]. First, modelling damaged brains using a
forward model is challenging and prone to errors. Second, the sensitivity to noise of model driven inverse
solutions are often incompatible with noisy EEG recorded in clinical situations. Third, if some distributed
inverse solution are good at localizing one active source [S10], they can poorly dissociate three simultaneously
active sources [S16-S19].

Because we were conscious of these difficulties, we choose a rather different approach based on blind and data
driven procedure. To dissociate the neural sources mixed in scalp measurements we used blind source separation
(BSS / also known as ICA — independent component analysis). Because of the “blind” nature of the BSS
approach, no knowledge of volume conduction (volume inhomogeneity and anisotropy) or assumptions about
source waveform is needed [S20]. Further, BSS can recover systematically distributed neural sources from
“resting” EEG [S21] and can recover multiple independent components that are spatially closed despite
unavoidable inter-session variabilities [S6,S22]. Therefore, this procedure allows to identify for any type of
patient the most reliable sources components that are contributing to the recorded scalp EEG, regardless of
distortions found in the lesioned brain.

In the wSMI analysis the purpose of BSS procedure was to select the neural components reactive to VNS in
order to reduce spurious connectivity due to interfering sources and obtain a more reliable index of patient’s
consciousness level. The original wSMI analysis of King et al [S12], reproduced in this paper, needed a spatial
transformation (Spatial Derivative of scalp potentials) before the estimation of functional connectivity. The
rationale for the method presented in the second part of the paper is that the use of a spatial transform derived
from the patient’s measurements using BSS will suppress most of the noisy components that can interfere with
the wSMI estimates while preserving potentially critical tangential sources that could be suppressed by the
current source density (CSD) transform [S20]. With the original spatial transform, a correlation between the
measured functional connectivity and the observed variation of the clinical score (Robust regression: t
(1.0716;1.9863), dfe = 14, p=0.0669) was already measured. But as predicted, with the BSS derived spatial
transformation the observed linear relationship between wSMI and the CRS score was far better (Robust
regression: t (-0.0128;3.9436), dfe = 14, p = 0.0015). Second concerning the estimation of the localization of the
identified components, a forward head model was built, considering the patient’s anatomy and metabolism. Then
the localization of the cortical generators of each identified independent components were estimated using
Standardized Low Resolution Electromagnetic Tomography. This strategy was privileged due to its good
performances to localize point-test sources [S10,S22]. However, the accuracy of the localization estimates is
indeed sensitive to errors in the head modeling of the patient despite the good quality of the spatial patterns
estimated via BSS. That’s why the estimated localizations of the components within the right occipito-parietal
lobules are reported using an appropriate precision (most probable lobule/structure). Nevertheless, the results
reported on the extracted signals of the independent component are not concerned by these issues.

Effect of VNS: cumulative against instantaneous?

An interesting issue is the important delay (one month) needed to observe stable improvements following VNS.
Our results show that brain activity and regional connectivity progressively improve as VNS stimulation
increases. This suggests a cumulative and time lag beneficial effect of VNS rather than being an instantaneous
one. Several studies have applied other techniques as potential treatments for consciousness disorders. For
instance, short duration transcranial direct current stimulation (tDCS) applied for 20 minutes on dorsolateral



prefrontal cortex of coma patients has been shown to improve CRS-R scores, mainly in MCS patients [S23]. A
similar observation has been made in a single patient using deep brain stimulation (DBS). It must be noted,
however, that tDCS and DBS are techniques that directly act upon cortical and subcortical activity, respectively.
In contrast, VNS is a peripheral stimulation although the vagus nerve has direct projections to brain stem regions
and via the thalamus to the cortex. Hence, because of such differences, VNS effects might be indirect, therefore
appearing late in time.

Pharmacological interventions have also been tested as treatment aiming at modulating key neurotransmitter
systems mediating arousal and attention. The GABA agonist Zolpidem was shown to trigger an immediate,
though temporary, transition from VS to MCS, inducing a re-emergence of command following, visual pursuit
and gesture, albeit in some few responsive patients [S24]. VS and MCS patients, treated for 4 weeks with
amantadine, which acts on monoamines such as noradrenaline and serotonin, showed a faster rate of behavioral
improvement [S24].

In line with this, it was found that in rat models of coma, both acute and chronic VNS, stimulates the same
neurotransmitters (serotonin and noradrenaline) as well as growth factors in the hippocampus and cerebral
cortex, but only chronic stimulation modulates the firing rates of monoaminergic neurons [S25-S27]. In parallel,
behavioral effects in this animal model were observed after eight days post-injury [S28]. In the present study, we
have shown that VNS beneficial effects appear after one month of stimulation. This suggests that the
improvements we found may be linked to the upregulation of serotonergic and noradrenergic neurons.
Furthermore, this timing is also consistent with the one observed in epileptic patients. Indeed, it has been found
that VNS reduces epileptic seizures after several weeks or months, probably reflecting an increase of cerebral
blood flow (CBF) notably in the parietal cortex and thalamus [S29].
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5.5 Unpublished figures
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Figure 5.1: VNS-recative theta sources. Eight independent components (ICs) ranked by
percent of signal change over theta peak (5.5Hz) as revealed by blind source separation analysis
(one-sample Student t-test corrected by false discovery rate). From top to bottom: inferior
parietal lobule, precuneus/posterior cingulate cortex, occipital cortex and pre-motor/motor
area, extrastriate cortex, Brodmann area 18/19, occipito-parietal sulcus, basal ganglia/left
insula, superior frontal cortex, Brodmann area 6/8.
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Figure 5.2: weigthed Symbolic Mutual Information (wSMI) at the scalp level pre and
post-VNS.(A) Lateral view of the wSMI connections across all electrodes for pre-VNS (OFF)
and post-VNS (ON).(B) Transversal, sagittal and coronal views of wSMI pre-VNS (OFF) and
post-VNS (ON).
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Figure 5.3: weigthed Symbolic Mutual Information (wSMI) at the sources level pre
and post-VNS.
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B Pre-VNS Post-VNS

S1 Occipito-parietal sulcus

S3 Inferior parietal lobule

S5 Brodmann Area 6/8 —

S6 Posterior cingulate cortex
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Figure 5.4: weigthed Symbolic Mutual Information (wSMI) over VINS-reactive theta
sources. Functional connectivity measured as information sharing among previously selected
VNS reactive sources over theta power. Panel (A) shows wSMI connectivity pre-VSN (left)
and post-VNS (right). Panel (B) represents the same pattern, showing traversal, sagittal and
coronal views respectively. Only the 3 sources which changed their mean wSMI across all other
sources are labelled (S3,56,511).



Chapter 6

Discussion

Taken together, the studies presented in my PhD thesis show several important results. First,
we suggested a neural substrate underlying motor awareness, highlighting the specific role of
the parietal cortex, and in particular the precuneus, in bringing the sensorimotor conflict into
awareness. Similar results have been found in previous works conducted on both patients re-
porting specific parietal lesions (?) and patients who were cortically stimulated (7). In our
opinion, the precuneus activity can reflect the process of discrepancy during the comparison
between initial intentions and actual feedbacks. Therefore, we think that this activity is linked
to the process of emergence of a motor awareness following a mismatch detection. The fact
that this activity does not directly encode visuomotor features is in line with the view that it
reflects endogenous elaboration of information and conceptual rather than perceptual functions
(?). The precuneus activation is known to be linked to the elaboration of conscious representa-
tion of information, mental images and spontaneous thoughts for constructing problem solving
strategies and planning (7). In parallel, we found that this mechanism is still quite imma-
ture between 7 and 11 year old children. The shift of task-specific areas into different cortical
regions was accompanied by a shift in the behavioural performances, showing that children
used different strategies in constructing their motor awareness judgements. Here, we propose
here that neuroimaging and behavioural results reflect a different balance in the mechanism of

comparison between expected and actual sensory feedback. In particular, the lack of a stable
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forward model in children would force the balance of these two elements to be in favour of
sensory information, which in turn would bias and guide the construction of motor awareness.
Thus, the comparator process taking into account mainly visual cues, (?7) will not assure opti-
mal performance, in term of executive reproducibility and formation of subjective threshold of

motor awareness.

In the second study, we characterized the connectivity patterns underlying the shift be-
tween the vegetative state and the minimally conscious state, induced by the vagus nerve stim-
ulation (VNS). We found that information sharing, reflecting activity mainly in theta band,
increased over parietal regions, where the precuneus/posterior cingulate cortex were central re-
gions orchestrating the spread of activity over other cortical and subcortical areas. Our findings
are in line with previous EEG studies, showing various information sharing patterns character-
izing different states of consciousness (7). In fact, increased wSMI over centroposterior region
was already described as a sign of augmented consciousness. Further evidence supporting the
role of the precuneus as an active region in conscious processing includes functional imaging
studies showing that the deactivation of this area and the posteromedial cortical area during

slow-wave sleep, REM sleep, hypnotic state

Taken together, these two studies provide preliminary evidence that the highly cortical and
subcortical interconnected area whose the precuneus belong may be a "hot zone" region for
sustaining self-consciousneess and conscious experiences. In fact, it is at the interface between

these two different (albeit intimately dependent) neural correlates of consciousness.

6.1 Limitations

The previous studies have of course some limitations. In my first study, I try to disentangle
the encoding of visuomotor features determining objective performance from subjective motor
awareness. Some criticism may arise, in fact causal decoding models are not always conclusive,
since they identify only some features being only a potential causes of the response (7). Fur-

ther, single subject analysis would have been more suitable in a paradigm including subjective
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perception thresholds. However, the large number of trials required to obtain the statistical
robustness prevented us from proceeding in this way. We then compared adult and children
populations, having a consistently different numbers of trials due to less reproducible behaviour

in children.

Frequency analysis are usually performed in the literature of subjective awareness (7).
Previous findings showed how transient activity is mostly related to objective performance and
subjective awareness is instead characterized by distributed slow cortical potentials. However,

we cannot conclude on this point.

In the second study, we conducted a single case experiment including a patient laying
vegetative state for 15 years. Main concerns can arise by considering that the change could
be triggered by the operation and intensive care. In order to avoid these critics a crossover
paradigm with On and Off alternated and blind period would have been suitable. However, as
already discussed in the supplemental part of the paper, it appears unethical to switch off a
stimulator in a vegetative state patient that is getting clinically better. Following this single
case study, helpful in demonstrating the beneficial effects of VNS, a larger populations of VS
and MCS can be tested using for instance a multiple baseline across subjects’ design. However,
this type of study takes years to be completed. Therefore, a single case investigation is an
important step to demonstrate the feasibility and the benefits along the possible side effects of
VNS.

Further, investigation techniques were also questionable, in the sense that CRS-R scores
are not optimal to classify patients who lie to the limit of categorical classification, such as
MCS+ and MCS-. For this reason, it would have been interesting to include our patients data
(EEG recordings and CRS-R scores) in a larger database to compare his initial metrics with a

larger population (?).

Although alpha rhythm has been described in some studies as a predictive signal of con-
sciousness, it is also true that theta band outperform alpha band when considering wSMI
analysis, as found by King et al. (??7). Another important reason of why we predominantly

found theta has probably a relation with VNS action. The vagus nerve regulates the parasym-
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pathetic system and theta has been reported as a signal linked to the processing of primary
emotional body responses such as fear and fear learning (?), physical pain and pain perception
or even empathy (7). We can then speculate that in our patient VNS has promoted the return
to consciousness primarily via body changes within the autonomic system. Theta signals may
then represent a first step of brain responses meaning attention to the body before gaining full

attention to the external world.

6.2 Conclusion and perspectives

There are two levels of implication reflecting the two main axis developed in this PhD thesis.
From a fundamental point of view, we tried to characterize the shift between two conscious
pathological states, VS to MCS, using recently validated tools in the research domain. For
the first time, we reported the potential of a new neuromodulatory approach in the field of
disorder of consciousness, showing that significant signs of consciousness can be triggered by
the reactivation of the vagal pathway. However, this point must be discussed carefully and
validated over a larger cohort of TBI patients. Although we reported important behavioral
and physiological changes, it is not clear weather all patients can benefit from this treatment
or how they should be selected following clinical criteria and consequently in which extent and

proportion this treatment can improve their conditions.

A second level involves the conscious access to motor awareness. Previous study hypoth-
esized that this function was subserved by a frontoparietal connectivity network, reflecting
respectively the executive and polymodal higher-order perceptual structures (7). However,
our findings clearly point at parietal regions as showing a specific role in bringing the senso-
rimotor conflict into awareness. These findings are important to elucidate brain mechanisms
underlying conscious processing. The way our brain integrates and filters motor relevant in-
formation can tell us how the brain build awareness. Therefore, this simple but powerful task
can help to pinpoint higher-order motor mechanisms, and gives a key of investigation to shed

light on developmental questions and possibly on core difficulties in developmental disorder of
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coordination and other related pathology.
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