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Introduction Générale

Depuis les années 1950, la théorie de la valorisation des actifs financiers a mo-
tivé les fondements théoriques des indices de marché modernes. Apparus a 1'ori-
gine en 1896 avec le Dow Jones Industrial Average (DJIA), les indices de marché
satisfont usuellement plusieurs attributs clés, exigés des investisseurs institution-
nels et particuliers, des régulateurs et des médias. Etant donné qu’ils sont utilisés
pour mesurer et capturer précisément la performance aggrégée d’un vaste segment
particulier d’actifs financiers, ils ont pour nécessité de remplir le critére de repré-
sentativité. Ainsi, les fournisseurs d’indices communiquent généralement en toute
transparence la formule de calcul qui définit le schéma de pondération utilisé pour
aggréger les constituants individuels d’indices. En pratique, 'indépendance entre
les fournisseurs d’indices et les administrateurs d’indices de référence, communé-
ment appelés benchmarks, servent a réduire les conflits d’intéréts entre fournisseurs

et administrateurs d’indices, et a garantir I'intégrité de I'information.

L’ importance des indices de marché et de la gestion passive dans
l’industrie financiére.
Depuis que la mesure de performance a pris une place centrale dans I'industrie
de la gestion d’actifs, décomposer et monitorer les décisions d’allocation a sus-
cité un intérét de recherche majeur, tant pour les investisseurs que pour les cher-
cheurs. Traditionellement, la décomposition s’effectue sous la forme de vastes in-

17



dices de marché spécifiques, de secteurs économiques, de régions géographiques, ou
de stratégies basées sur des régles. Les fonds benchmarkés capturent usuellement
la performance d’un benchmark en minimisant 'écart de suivi (la tracking-error),
c’est-a-dire ’écart de performance a l'indice de référence. Par conséquent, le suivi
d’indices pourrait étre interprété soit comme une contrainte d’investissement, soit
comme un objectif d’investissement. En effet, les stratégies passives visent a répli-
quer fidelement la performance du benchmark, alors que les stratégies actives visent
a surperformer la performance du benchmark tout en respectant les contraintes
définies par le benchmark. Par conséquent, la gestion indicielle a conduit a des
innovations révolutionnaires dans 'industrie de la gestion d’actifs, puisqu’elle offre
des véhicules d’investissement plus accéssibles tant pour les investisseurs institu-
tionnels que particuliers. Les premiers fonds indexés institutionnels et communs
de placement (FCP) furent respectivement développés en 1973 et 1976. Ils furent
suivis en 1993 par les premiers fonds indiciels, puis par les Fxchange- Traded Funds
(ETF), pour capturer la performance de I'indice S&P 500. Les ETF s’avérent en
effet étre des véhicules d’investissement particuliérement pratiques et peu cotiteux
pour atteindre les objectifs d’investissabilité et de transparence. Désormais, la de-
mande pour les FTF émanant tant des investisseurs institutionnels que particuliers
ne s’est jamais démentie au cours de la derniére décennie. Selon Sanford Bernstein,

plus de la moitié des actifs sous gestion aux Etats-Unis devraient étre passivement
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gérés a horizon janvier 2018. Selon un rapport publié récemment par Investment
Company Institute, I'industrie des FTF américains a représenté 1771 fonds et 3,14
trillions de dollars d’actifs sous gestion en septembre 2017, contre 1686 fonds et
2,4 trillions de dollars un an plus tot. De plus, ’émission nette de parts d’ETF
américains a atteint un record de 333 milliards de dollars d’actifs sous gestion en
2017, contre seulement 157 en 2016. Ces véhicules permettent aux investisseurs
d’accéder a un vaste univers de classes d’actifs et de marchés, autrefois unique-
ment accéssibles aux investisseurs institutionnels via les instruments dérivés de gré
a gré, appelés instruments OTC, out-of-the counter. En fournissant une liquidité,
une transparence, une régulation, et un rapport cotit-qualité performant, les ETF
offrent désormais une alternative a la gestion active. Selon ETFGI, 'industrie des
ETF a atteint ainsi en aotit 2017 un record de 4,3 trillions de dollars d’actifs sous
gestion a travers le monde, alimentée par les sortie de capitaux de la gestion active
vers la gestion passive. L’industrie est dominée par BlackRock, Vanguard et State

Street qui représentent 70% des actifs mondiaux.

L’émergence des indices de marché intelligents face aux critiques des
indices de marché traditionnels.
Inspirée de la théorie standard de valorisation des actifs financiers, la gestion indi-
cielle offre une alternative efficace, accéssible et peu coiiteuse aux stratégies actives
d’investissement traditionnelles. Ainsi, les modéles standards d’équilibre tels que le
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Modéle d’Evaluation des Actifs Financiers (MEDAF) introduit par Sharpe (1963)
dans [105], Lintner (1965) dans [78], et Mossin (1966) dans |91], postulent I’exis-
tence d’un unique facteur de risque identifié comme le facteur de marché, et défini
comme le rendement sur la richesse aggrégée de 'investisseur. Plus spécifiquement,
le MEDAF stipule que les actifs financiers comportent usuellement deux principales
sources de risque, systématique ou idiosyncratique. Le risque systématique émane
du facteur de marché définissant la sensitivité de I’actif au marché, communément
appellé le beta de I'actif par rapport a son indice de marché. D’aprés la Théo-
rie Moderne du Portefeuille (TMP) introduite par Markowitz (1952) dans [31], le
risque systématique récompense les investisseurs avec des rendements espérés su-
périeurs, puisqu’il ne peut étre diversifié. Cependant, bien que les indices pondérés
par la capitalisation soient devenus 'approche dominante dans la construction de
portefeuilles, les praticiens et les chercheurs ont émis des critiques contre leur di-
versification sous-optimale. En particulier, Arnott, Hsu, and Moore (2005) dans
[19], et Treynor (2005) dans [109] entre autres, ont montré qu'’ils surpondérent
nécessairement les actifs sur-évalués et sous-pondérent les actifs sous-évalués dans
un portefeuille. En effet, les indices pondérés par la capitalisation allouent les
composantes en se basant sur la capitalisation de marché plutot que sur le critére
rendement-risque. De plus, leur optimalité n’est démontrée que sous I’hypothése du

MEDAF, ou I'unique facteur de risque, le facteur de marchés est supposé unique.
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Ainsi, motivé par la recherche de diversification, le plus grand fonds de pension
du monde, California Public Employees’ Retirement System (CalPERS), a adopté
en 2006 une nouvelle méthodologie d’indexation en suivant de nouveaux indices,
pondérés par les fondamentaux. De maniére similaire, le fonds souverain Korea
Investment Corporation (KIC) construit son allocation d’actifs depuis 2011 selon
trois indices de beta actions alternatifs. Récemment, une vaste littérature met lar-
gement en avant cette nouvelle génération d’indices de marchés pondérés par les
facteurs fondamentaux associés aux entreprises, tels que les ventes, les bénéfices,

les dividendes ou les valeurs comptables.

Alternativement au MEDAF, les modéles d’équilibre modernes tels que le Mo-
déle Intertemporel d’Evaluation des Actifs Financiers, ou MEDAF intertemporel
introduit par Merton (1973) dans [38], et les modéles d’arbitrage tels que le Mo-
déle d’Evaluation par Arbitrage, ou MEA de Ross (1976) dans [100], stipulent
I'existence de multiples sources de risque systématique. Ces nouveaux modéles
d’équilibre sont en totale contradiction avec le MEDAF standard qui repose sur
I’hypothése centrale de 'existence d’un unique facteur. Les modéles multi-factoriels
définissent les facteurs de risque comme des variables expliquant les rendements
des actions et en modélisant le rendement espéré comme une fonction de plusieurs
catégories de facteurs. Les sources de facteurs de risque peuvent étre macroécono-
miques, comme développé par Chen, Ross, Roll (1986) dans [52]; ou statistiques,
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comme identifiés par des techniques statistiques telles que I’Analyse en Compo-
santes Principales ou ACP. En théorie, Cochrane (2005) dans [53] et Ang (2014)
dans [17] postulent que détenir un risque systématique donné récompense 1'in-
vestisseur par une prime de risque positive persistente sur le long-terme. Comme
suit, I'intuition économique sous-tendant 1’existence d’une prime de risque repose
sur le principe que le rendement espéré en excés d’un facteur de risque donné est
négativement corrélé avec la covariance entre le facteur de risque et le facteur d’ac-

tualisation stochastique, communément appelé Stochastic Discount Factor (SDF).

Considérons 1'agent représentatif suivant, modélisé par la fonction d’utilité U (-),

ayant une consommation ¢; et ¢, 1 a la datetet t 41 :

U (¢, 1) = u(G) + BE; [u (Cry1)]

ou [ désigne le facteur d’actualisation subjectif, ou pricing kernel. Intuitivement,
les agents économiques réduisent leur consommation en temps de récession, se
sentant moins riches. Le probléme d’allocation consiste en un arbitrage a la date ¢
sur la période [t,t + 1] entre une consommation et un investissement du montant
¢ du gain du facteur, ou payoff du facteur noté x;1 1 = piy1 + dir1, OU ppyq et
d;yq1 désignent respectivement le prix et le dividende du facteur de risque. Par
conséquent, le probléme de ’agent revient a trouver le montant optimal de richesse
¢ qui maximise son utilité suivante
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maxu (¢;) + BE; [u(G41)]  s.t. (1)
{¢}

G = ¢ —Epy
Ctr1 = Cep1 + Exep

ol ¢ et ¢, 1 désignent respectivement les niveaux de consommation initiale a la
date t et ¢t + 1. La condition de premier ordre, ou F.O.C., pour la consommation
optimale et le choix de portefeuilles donne 1’équation de valorisation suivante a la

date ¢

pe = L [512(6—21)%“] (2)

u'(ct41)

e représente le facteur d’actualisation stochastique, encore appelé

oumy = B
le taux marginal En isolant dans I’équation (1) le terme de covariance entre le taux
de substitution marginal m;,; et le payoff du facteur x,,1, et en injectant le taux

sans risque r{ 41, hous obtenons le prix du facteur a la date ¢, exprimé comme le

flux espéré de liquidités actualisé par le taux sans risque, plus une prime de risque :

Et [CL’t ]
+1
pt=—7F — +cov [Miy1, Tepa] (3)
Tig1
En réarrangeant 1’expression ci-dessous avec R, 1 = ‘rgl étant le rendement
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brut du facteur sur [t,t + 1] et 7,41 = R,11 — 7/, étant le rendement net du taux

sans risque, nous obtenons le rendement en excés espéré du facteur de risque donné

By [rip] — 7"{+1 = —7{+1 © COVy [Myg1, Toya] (4)
_ _Covs [mt+17 7’t+1] (5)
E, [mt—i-l]

[’équation (4) montre que le rendement espéré en excés du facteur de risque
donné co-varie négativement avec le terme de covariance entre le rendement du
facteur r,,1 et le facteur d’actualisation stochastique m,,,. Par la suite, détenir
un payoff incertain non-corrélé avec le pricing kernel ne devrait pas théorique-
ment récompenser la prise du risque additionel associé au facteur. En effet, si
covy [myy1, x41] = 0 dans I’équation (3), alors le prix du facteur a la date t ne de-
vrait étre seulement égal qu’a 'espérance du payoff du facteur pour la date ¢ 4 1,
actualisé par le taux sans risque. En d’autres termes, les risques idiosyncratiques
ne devraient rémunérer que la détention de I'actif sans risque. Usuellement, la plu-
part des facteurs de risque performent mal dans les états défavorables de la nature,
et les rendements et les payoffs associés co-varient négativement avec le facteur
d’actualisation, car les agents économiques se sentent appauvris dans les périodes
adverses, c’est-a-dire quand leur utilité marginale de consommation augmente. Par
conséquent, de tels facteurs de risque générent des rendements en excés positifs
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dans les périodes favorables, payant en moyenne des primes de risque positives
sur le long-terme, a travers tous les possibles états de la nature. Le cas inverse de
I’assurance de portefeuilles concerne tout particuliérement 'objet de nos travaux
de recherche : le payoff du facteur co-varie positivement avec le taux marginal
intertemporel de substitution, fournissant des rendements en excés positifs dans
les mauvaises périodes. Les investisseurs consentent donc & payer une prime de
risque positive sur longue période pour compenser la détention de ce facteur de
risque, puisqu’il offre un revenu dans des périodes économiques adverses, quand

les agents se sentent appauvris.

L’essor des facteurs de risque associé au succés grandissant de l’in-
dustrie de la gestion factorielle.
Traditionellement, les facteurs de risque les plus populaires concernent les facteurs
de risque fondamentaux capturant les caractéristiques des actions, telles que la
valorisation d’entreprise ( Value), la croissance ( Growth), la taille (Size), ou la ten-
dance (Momentum). En particulier, Fama et French (1992, 1993) dans [60] et [61]
ont mis en avant un modéle multi-factoriel expliquant les rendements des marchés
actions américains par le facteur de marché, le facteur taille (grande versus petite
capitalisation), et le facteur valorisation (bas versus haut ratio valeur comptable
sur valeur de marché). Consiérons le modéle Fama-French & trois facteurs suivant
qui décompose a la date ¢ le rendement espéré E; [r;;41] de Pactif i :
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Bilrigal = vl = Bui (Et [ragsa] — Tfﬂ)

+ B2i By [SM Byi1] + B3, By [HM Ly 1]

ol By [rare+1] désigne le rendement espéré du portefeuille de marché, tel que le
terme Ey [razi41] — r{H est associé au rendement espéré du facteur de marché. Le
rendement espéré F; [SM B;,4] du facteur taille mesure la différence de rendements
entre les petites et les grandes capitalisations ; et le rendement espéré E; [HM Ly 4|
du facteur valorisation mesure la différence de rendements entre les grands et les
petits ratios de valeur comptable par valeur de marché. Par la suite, Carhart (1997)
prend en compte le facteur momentum mis en évidence par Jegadeesh et Titman
(1993) dans [72] en étendant dans [10] le modéle Fama-French a trois facteurs

comme décrit par le modéle suivant & quatre facteurs :

Ei[rit41] — Tfﬂ = P (Et [rae1] — 7”{+1)
+ B2,iEy [SM Byi1] + B3 B [HM L] (7)

+ B4,iEt [WMLt+1]

ou le rendement espéré E; [WM L] du facteur momentum mesure sur Pannée
précédente la différence de rendements entre les actions qui surperforment et celles
qui sousperforment. Plus récemment, Fama et French ont mis en évidence le modéle
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multi-factoriel suivant a cinq facteurs

Ei[rit41] — 7{+1 = B <Et ("M t41]) — 7“,{;1)
+ BoiBy [SMBy 1] + BsiEy [HM Ly 1] (8)

+ BaiEy [RMWi 1] + Bs,iEy [CM Ay 4]

ou RMW et CM A désignent respectivement le facteur profitabilité et le facteur
investissement. Le premier facteur mesure la différence de rendements entre les
entreprises ayant la plus forte profitabilité opérationnelle et celles ayant la plus
faible, tandis que le second facteur mesure la différence de rendements entre les
entreprises ayant une politique d’investissement conservative et celles ayant une
politique d’investissement aggressive. Pour illustration, les performances des cing

facteurs sur la période entre 1963 et 2016 sont représentées sur la figure suivante.

Désormais, la littérature empirique a donné naissance a une pléthore de fac-
teurs de risque supposés, mettant en évidence un ’Zoo de Facteurs” ou "Péche a
Facteurs” comme souligné par Cochrane (2005) dans [53]. En effet, de nombreux
facteurs pourraient ne pas étre interprétés d’un point de vue économique comme
une compensation a long-terme pour la détention de risques systématiques ad-
ditionels. Pour illustration, Harvey, Liu and Zhu (2014) documentent dans [69]
Iexistence de 314 supposés facteurs de risque a travers la littérature empirique,
remettant en question leur rationnel économique. Néanmoins, les modéles multi-
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FIGURE 1 — Performances des cinq facteurs Fama-French expliquant les
rendements des actions américaines sur la période entre 1963 et 2016.

facteurs sont devenus des standards en finance, donnant naissance aux indices de
marchés actions alternatifs ou smart, et a 'investissement beta actions alternatif ou
investissement factoriel actions, communément appelé le smart beta. Le Financial
Times Lexicon définit ainsi le smart beta comme des "stratégies d’investissement
basées sur des régles qui n’utilisent pas la convention des poids de la capitalisa-
tion de marché”. Par la suite, Asness, Frazzini et Pedersen (2012) dans [20] ont
récemment étendu le concept de smart beta & d’autres classes d’actifs telles que

les obligations.

A présent, 'investissement factoriel est devenu I'une des innovations les plus
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révolutionnaires de lI'industrie financiére, a la fois pour les gestions passives et
actives, puisqu’il décompose les décisions d’allocation en facteurs de risque sys-
tématiques, plutdot qu’en classes d’actifs standards. Par conséquent, l’allocation
factorielle a donné naissance a un nouveau paradigme d’investissement, car les dé-
cisions d’investissement peuvent étre désormais exprimées en termes d’allocations
de facteurs de risque, par contraste avec les allocations de classes d’actifs. Selon
ETFGI, 'industrie des ETF de betas alternatifs représentait 1279 fonds en 2017,
soit prés de 630 milliards de dollars a travers le monde, augmentant de 18% par
rapport a I’an dernier. A titre de comparaison avec fin 2014, Morningstar Direct et
Bloomberg Intelligence estimaient que I'industrie des betas alternatifs représentait
seulement prés de 700 ETF, soit 529 milliards de dollars a travers le monde. Selon
un sondage publié par FTSE Russell en 2017, 46% des gérants de portefeuilles son-
dés ont une allocation comprenant des betas alternatifs en 2017, contre seulement
26% en 2015. D’ailleurs, 63% des sondés se disent préts a accroitre leurs alloca-
tions factorielles. Cette tendance est particuliérement alimentée par les stratégies
multi-factorielles puisque 64% des gérants sondés combinent des facteurs, contre
seulement 20% en 2015. En outre, 28% des sondés n’emploient actuellement pas
de stratégies factorielles mais se disent préts a en adopter a court ou moyen-terme.
Au final, seulement 26% des gérants sondés en 2017 n’emploient actuellement pas

de stratégies factorielles et n’envisagent pas de le faire, contre 40% en 2014.
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Motivée par la demande croissante pour des benchmarks investissables intelli-
gents, I'industrie de la construction d’indices poursuit son développement intense.
Les indices factoriels répliquant des facteurs de risque ont pour but soit d’amé-
liorer la diversification de portefeuilles relativement aux indices pondérés par la
capitalisation, soit de capturer les primes de risque. Dans ce contexte, I'intuition
sous-jacente de ce nouveau paradigme d’allocation factorielle repose sur une ap-
proche d’allocation du risque innovante, car la construction de portefeuilles repose
sur une budgétisation du risque pour allouer la richesse proportionnellement & des
facteurs de risque systématique. Similairement, Roncalli (2013) dans [99] explore la
budgétisation du risque ol la contribution de chaque constituant du portefeuille au
risque global du portefeuille suit un budget cible de risque. Dans un cas spécial, il
définit le Risk Parity comme une stratégie d’investissement equipondérée pour al-
louer le budget de risque identiquement pour tous les constituants du portefeuille,

de telle sorte qu’ils contribuent de maniére égale au risque global.

Le développement des indices de marché a ausst concerné les indices
de volatilité traditionnels basés sur les options tels que le VIX.
Par analogie, les indices basés sur les options ont fait leur apparition, tels que le
S&P 500 Volatility Index, communément appelé I'indice VIX. Largement interprété
par les praticiens et les chercheurs comme le barométre de la peur des investisseurs,
I'indice VIX mesure 'espérance a maturité 30 jours de la volatilité du marché
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des actions américaines associée a I'indice S&P 500 (SPX). Introduit par Whaley
(1993) dans [113], la version originale du VIX - le VXO, inversait a l'origine la
formule de pricing de Black (1976) dans [31] & partir des prix de marché des
options a la monnaie (ATM ) sur 'indice S&P 100 (OEX). Néanmoins, le Chicago
Board of Options Exchange (CBOE) a révisé en 2003 la méthodologie de calcul de
cet indice basé sur les options dans le but de créer un sous-jacent plus approprié
pour la réplication d’instruments dérivés de volatilité investissables. La nouvelle
approche entiérement sans modéle implémente une moyenne des prix pondérés des
options call et put écrits sur I'indice S&P 500 (SPX) sur un large éventail de prix
d’exercice. Ainsi, le nouveau VIX calculé en temps réel comme décrit dans [19]
représente désormais convenablement le taux du variance swap introduit par Carr
and Wu (2009) dans [18]. En outre, combiner une position statique d’un continuum
d’options de type européen a une position dynamique de contrats futures revient
a répliquer les payoffs de swaps de variance. Plus précisément, comme décrit par
la CBOE (2009) dans [19], la formule du nouveau VIX correspond & la régle de

calcul suivante :

ou F, T and ry désignent respectivement le niveau de l'indice forward associé aux
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contrats futures SPX, le temps d’expiration, et le taux sans-risque ; K, désigne le
premier prix d’exercice en dessous du niveau d’indice forward, et K; est le prix
d’exercice de la i-éme option SPX en dehors de la monnaie (OTM), ¢’est-a-dire
Poption call si K; > K, et 'option put sinon. Ensuite, 'intervalle entre les prix
d’exercice est égal & AK; = % [Kiy1 — Ki_1], et Q (K;) désigne la valeur moyenne

de I'écart bid-ask pour chaque option SPX associée au prix d’exercice K.

Quelques mois aprés le changement méthodologique, la CBOE a introduit res-
pectivement en 2004, 2006, et 2009 les contrats futures de VIX, les options sur
VIX écrites sur les futures de VIX, et les ETP sur VIX. Fournissant I'une des in-
novations les plus importantes de 'industrie financiére, 'indexation au VIX donna
naissance aux options sur VIX devenues désormais le second contrat le plus traité
au monde. En effet, ils rencontrent une considérable demande en couverture éma-
nant d’assureurs de portefeuilles contre de futurs chutes du marché actions. Les
articles séminaux de Whaley (1993, 2009) dans |1 13] et [1 1] vantent ainsi la diver-
sification de portefeuilles et la réduction de risque fournies par les dérivés de VIX,
puisqu’ils capturent la corrélation inverse entre les rendements de I'indice actions
et la volatilité associée. En particulier, Szado (2009) dans [108] met en évidence
I’assurance de portefeuilles fournie par une stratégie passive de détention de fu-
tures de VIX durant la crise des subprimes. Sur la période s’étendant du ler aoft
2008 au 31 décembre 2008, combiner une allocation de 10% en contrats futures de
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VIX & un portefeuille actions-obligations réduit les pertes annualisées de -15.9%
a -0.3%, et réduit la volatilité annualisée de 21.7% a 13.3%. Plus généralement,
Chen, Chung, and Ho (2011) dans [51] appliquent le critére moyenne-variance sur
la période 1996-2008 pour mettre en évidence une amélioration des ratios de Sharpe
in-sample dans le cas d’une diversification de portefeuilles traditionnels avec de la
volatilité implicite actions. Néanmoins, les bénéfices de diversification des dérivés
de VIX sont partiellement incompris par de nombreux investisseurs, puisque la
trés mauvaise performance a refroidi les attentes des investisseurs sur les bénéfices
de I'indexation au VIX. En effet, les ETP VIX les plus traités — le VXX notam-
ment, ont perdu prés de 99.6% de sa valeur sur la période 2009-2014, ruinant les
investisseurs non-sophistiqués. Alors que les investisseurs traditionnels paient des
dividendes ou des coupons, I'exposition au VIX fournit par contraste une prime
d’assurance que l'investisseur consent a payer pour se couvrir contre les risques
extrémes du marché actions. Par conséquent, Whaley (2013) dans [115] suggére
que les ETP VIX forment des stratégies passives d’investissement inappropriées,
puisqu’ils générent des coiits de portage appelés cotits de carry considérables. Sur
la période entre mars 2004 et mars 2012, il identifie une pente moyenne de 2,3%
pour la structure par terme des prix de futures sur VIX pour une maturité de 30

jours, mettant en évidence un contango dans prés de 81% des jours de cotation.

L’essor des indices de volatilité intelligents face auzx critiques de l’in-
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dice de volatilitée VIX.

Par analogie avec les indices pondérés par la capitalisation, les indices tradition-
nels basés sur les options tels que l'indice VIX souffrent des mémes biais rencontrés
par les indices de marchés conventionnels. En effet, Jiang et Tian (2007) dans [71]
mettent en évidence que la formule de calcul du VIX génére des erreurs d’approxi-
mations conséquentes, en estimant la volatilité espérée par la moyenne des prix
des options call et put de 'indice S&P 500 sur un large éventail de prix d’exercice.
Bien qu’en théorie la formule requiert un large continuum de prix d’exercice, 'ap-
proximation du VIX comme fournie par la CBOE ne requiert qu’un petit éventail
de prix d’exercice traités sur le marché. Par conséquent, Jiang and Tian (2007)
mettent en évidence que sous de hauts (inversement bas) niveaux de volatilité, la
procédure de calcul du VIX sous-estime (inversement sur-estime) la vraie volati-
lité implicite de prés de 198 (inversement 79) points de base d’indice. Le point de
base d’indice correspondant & 10 dollars par contrat futures sur VIX, les erreurs
d’approximation se traduisent donc par des erreurs de pricing substantielles allant
de 790 & 1980 dollars par contrat futures. Désormais, I'industrie de la construction
d’indice accorde une attention particuliére a la création d’indices intelligents ba-
sés sur les options, remplissant les critéres de représentativité et d’investissabilité.
Pour illustration, le Chicago Board Options Exchange a introduit I'indice SKEW

en 2011, implicitant le risque extréme de crash a partir des prix d’un portefeuille
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d’options SPX en dehors de la monnaie (OTM ). Comme décrit par le Tableau 1
ci-dessous, la théorie moderne de la valorisation d’actifs batit désormais les fonde-
ments de l'industrie de la construction d’indices intelligents basés sur les options

pour capturer des primes de risque implicites.

MEDAF MEDAF Intertemporel, MEA
P érati 1 italisati Indi Intelli
Indices Traditionnels onderatllon par la capitalisation Illdlces nte llgents
Ex. : Indices S&P 500, Dow Jones | Ex. : Indices Value, Size, Momentum
Indices Basés Options Pondération p.ar les strikes Indices I?telllgents
Ex. : Indice VIX Ez. : Indice SKEW
TABLE 1 — Des indices traditionnels pondérés par la capitalisation bour-

siére aux indices intelligents implicités par les options.

Théoriquement, la prime de risque calculée a partir des prix de marché des
options définit la différence entre les espérances physique et risque-neutre des mo-
ments de rendements d’actifs. Carr et Wu (2009) dans [18], et Bollerslev, Tauchen,
et Zhou (2009) dans [36]| définissent comme suit la prime de risque de variance
V RP, ;1 mesurée a la date ¢ sur la période 7 comme la différence entre la varia-
tion du rendement réalisée ex post sur intervalle de temps [t — 7, t] et Pespérance
risque-neutre ex ante de la variation du rendement d’actif sur I'intervalle de temps

[t,t+ 7] :

VRPyr = E [0},,.] — EP [0}1.,] (10)
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ou EC[] et EF[] désignent Popérateur d’espérance conditionnelle a la date ¢,
respectivement sous la mesure risque-neutre () et la mesure physique P. Par la
suite, B [02,,,] et Ef [02,,,] sont les valeurs espérées conditionnellement a la
date t de la variance réalisée sur la période 7, respectivement sous les mesures
de probabilité physique et risque-neutre. En outre, la prime de risque de variance
VRP, ;. multipliée par un montant notionnel en dollars définit usuellement le
payoff a la maturité ¢t + 7 du rendement d’un swap de variance. Sous la condition
de non-arbitrage, le taux constant du variance swap SW; ;. déterminé a la date
t et payé a la date t + 7 est égal a 'espérance risque-neutre de la variance future

réalisée, qui approxime le VIX.

Puisque la prime de risque de variance est négative de maniére persistente sur
longue période, elle est usuellement considérée comme une assurance de porte-
feuilles couvrant le risque de la réalisation de krachs futurs du marché actions.
En effet, dans I’équation (4), la covariance durablement positive cov; [my1, T441]
montre que le pricing kernel tend a co-varier positivement avec le payoff du fac-
teur associé au swap de variance, fournissant par la suite des rendements en excés
positifs dans les états défavorables de la nature. Par conséquent, les investisseurs
consentent & payer une prime de risque positive sur longue période, offrant un gain
dans les périodes économiques adverses, quand ils se sentent appauvris. Désormais,
I'usage intensif des swaps pour capturer la prime de risque de variance sur longue
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période augure du succés futur de nouveaux contrats de swaps, puisqu’ils offrent

une assurance de portefeuilles contre les états défavorables de la nature.

Dans ce contexte, mes travaux de thése investiguent de nouvelles approches
d’investissement de l'arbitrage de volatilité et visent a repenser la philosophie
de ces stratégies récemment décriées pour leurs trés mauvaises performances. En
effet, les stratégies d’arbitrage de volatilité, autrefois réservées aux investisseurs
sophistiqués tels que les hedge funds et les banques d’investissement, se sont ré-
cemment popularisées auprés des gérants d’actifs traditionnels et des investisseurs
particuliers. L’idée prometteuse d’une stratégie de couverture de portefeuilles était
d’exploiter la relation inverse (implied leverage effect) entre les indices de marché
actions et la volatilité implicite des marchés d’options. Dans le sillage de la créa-
tion des futures et options sur indice VIX, le marché de la réplication passive par
des produits dérivés indexés sur les futures VIX tels que les ETP VIX a connu un
essor considérable. Or, leurs performances décevantes, I’ ETP VXX a perdu prés de
99% de sa valeur entre 2009 et 2014, ont totalement remis en question 'approche

traditionnelle des stratégies de volatilité basées sur la réplication passive.

Présentation des travauxr de recherche structurés en trois chapitres
complémentaires.
Sous la forme d’une introduction empirique & visée descriptive, le chapitre 1 diag-
nostique les stratégies traditionnelles de volatilité basées sur la diversification et
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la couverture de portefeuilles par I'utilisation des ETP VIX. Pour cela, nous exa-
minons 'adéquation de ces instruments dérivés complexes avec le degré d’aversion
au risque des investisseurs. L’étude de 'optimalité du choix de portefeuilles en
environnement incertain est ainsi appliquée sur des allocations overlay d’actions,
d’obligations, et d’ETP indexés sur futures de VIX, dans le cadre de la théorie de
l’utilité espérée, simulant le comportement d’un investisseur rationnel. Plus préci-
sément, notre étude empirique fait appel & deux métriques, la premiére mesurant
la surprise de I'investisseur ; la seconde mesurant la prime de risque que l'investis-
seur consentirait & payer ex-post pour couvrir son portefeuille contre les risques
extrémes. Les résultats empiriques montrent que la couverture de portefeuilles par
des ETP VIX bat significativement la couverture traditionnelle de portefeuilles.
Cependant, ce type de couverture reposant sur 'investissement de long-terme par
des instruments de réplication passive apparait particuliérement inadéquate pour
les investisseurs peu averses au risque, dont les décisions d’investissement s’avérent
aléatoires, de type jeux de hasard. Ce chapitre a donc des implications pratiques
pour l'industrie de la gestion d’actifs puisqu’il recommande un effort pédagogique

soutenu auprés des investisseurs lors de la distribution de telles stratégies.

Faisant suite au diagnostic des stratégies traditionelles de volatilité basées sur la
réplication passive, le chapitre 2 pave la voie a une nouvelle génération de stratégies
de volatilité, cette fois actives, optionelles, et basées sur I'investissement factoriel.
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Inspirée d’une intuition simple, notre étude théorique et empirique part de I'idée
suivante. Les prix de marché d’options, c¢’est-a-dire la volatilité implicite, reflétant
I'incertitude et le risque extréme, nous exploitons 1’écart entre les distributions
de densités de probabilités implicitées des options, et les distributions de densités
constatées sur le sous-jacent. Cet écart de valorisation, matérialisé dans le niveau,
la pente, et la convexité du smile de volatilité implicite, mesure I’écart entre la
distribution de probabilités des rendements du sous-jacent et la distribution log-
normale a la Black-Scholes. Aussi, notre approche d’investissement ’Smart Vega”
décompose le risque contenu dans le smile de volatilité implicite en stratégies
optionelles investissables répliquant les primes de risque de volatilité, skewness, et
kurtosis, sous la forme de swap de divergences. Plus précisément, nous dérivons une
représentation analytique de la fonction de smile de volatilité implicite exprimée
comme une combinaison de primes de risque investissables qui récompensent le
portage de risques d’ordres supérieurs. En outre, notre approche est validée sur
le plan empirique, en particulier pour des distributions de probabilités fortement

asymétriques et leptokurtiques.

Dans cette méme continuité, le chapitre 3 teste notre approche active de I'ar-
bitrage de volatilité en la comparant aux stratégies utilisées par les investisseurs
sophistiqués tels que les hedge funds. Ainsi, nous identifions le risque extréme dans
la performance des hedge funds sous la forme des stratégies d’investissement op-
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tionelles étudiées dans notre approche "Smart Vega”. Nous montrons que les stra-
tégies de primes de risques d’assurance constituent des déterminants importants
dans la performance des hedge funds, tant en analyse temporelle qu’en analyse
cross-sectionnelle. En controlant des facteurs de risque standards a la Fung-Hsieh
communément utilisés dans la littérature, nous mettons en évidence qu’'un choc
positif de la prime de risque de volatilité est associée a une baisse substantielle
de la performance aggrégée des rendements hedge funds. En particulier, nous dé-
montrons que les hedge funds fortement sensibles a la prime de volatilité (kurtosis)
surperforment substantiellement les fonds moins sensibles. Ce résultat suggére dans
quelle mesure 'alpha des hedge funds provient en réalité de la vente de stratégies
d’assurance contre le risque extréme. Ce papier ouvre donc la voie a la réplication
de la performance de hedge funds sophistiqués par la réplication de stratégies de

primes de risque d’assurance.
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Recently, financial innovations have given rise to complex derivatives within the asset manage-
ment industry. Although traditional assets pay dividends or coupons, VIX futures contracts have
been partly misunderstood by unsophisticated investors, as they only provide portfolio insurance
against stock market crashes. Therefore, over the calmer period 2009-2014, the most traded VIX
futures exchange-traded product lost practically all of its value, ruining unexperienced investors.
Hence, this paper investigates appropriateness of these complex derivatives with investor’s risk
aversion. We address portfolio-choice optimality under uncertainty, for overlay allocations com-
posed of equities, bonds, and VIX futures. This paper proposes a non-trivial solution based
on the Expected Utility (EU) theory to simulate investor’s behavior with risk aversion. Fur-
thermore, it derives an investor’s surprise metric defined as a welfare criterion measure, and a
model-implied risk premium defined as the insurance premium investor pays ex post to hedge.
Empirical results show investing in VIX futures significantly beats traditionally diversified port-
folios, but they turn to be particularly inappropriate for risk-loving investors. From the asset
management perspective, this paper has practical implications since it recommends pedagogical

efforts to raise investors’ awareness of overlay strategies.



1.1 Introduction

You don’t gamble to win. You gamble so you can gamble the next day.

Bert Ambrose, English bandleader and violonist

In the recent years, a multitude of financial innovations designed for a wide variety of investors
have flourished within the asset management industry. Learning from the past, risks inherent in
complex new financial products prove to be partly misunderstood, especially by unsophisticated
investors. For example, this had been the case with regard to the monetization risk associated
to capital protection funds, such as constant proportion portfolio insurance (CPPI), especially
when risky assets underperform at launch. Similarly, this paper investigates the inherent risks in
newly launched complex hedging strategies based on volatility derivatives. Specifically, developed
by the Chicago Board Options Exchange (CBOE) in 2004, VIX futures contracts have set an
all-time monthly trading volume record in October 2014, extoling the diversification effects of
implied equity volatility. Following the seminal papers of Whaley (1993, 2009) in [113] and
[114], volatility derivatives are assumed to provide portfolio diversification and risk-reduction,
capturing the leverage effect, i.e. inverse correlation between stock market index and market
volatility. In particular, Szado (2009) in [108] exhibits the portfolio insurance provided by a buy-
and-hold VIX futures exposition during the subprime crisis. From August 2008 to December
2008, adding 10% VIX futures contracts to an equity-bond portfolio improves annualized return
from -15.9% to -0.3%, and mitigates annualized standard deviation from 21.7% to 13.3%. More
generally, Chen, Chung, and Ho (2011) in [51] apply mean-variance spanning tests over the period
1996-2008 to exhibit enhanced in-sample Sharpe ratios when diversifying traditional portfolios
with implied equity volatility.

However, over the period from January 2009 to July 2014, the most traded short-term VIX

!Totaling an average daily trading volume of 323,761 futures contracts. Source: CBOE Fu-
tures Exchange (CFE), as of November 3, 2014.



futures exchange-traded product in the U.S., i.e. the VXX ETP, lost practically all of its value
(-99.6%). This outstandingly disappointing performance brought ruin upon many uninformed
investors?, putting into question the benefits of such innovations within the asset management
industry. In particular, Whaley (2013) in [115] examines ETPs benchmarked to VIX short-term
futures indexes as buy-and-hold investments. From March 2004 to March 2012, he investigates
the slope of VIX futures term structure at 30 day to expiration. As costs of carry prove to
be painful for rollovers, he finds the average slope at 30 days to expiration is 2.3% over the
period 2004-2012, and the prices curve is usually upward-sloping in nearly 81% of trading days.
Consequently, his undermining intuition suggests that futures contracts in VIX Index prove to be
inappropriate buy-and-hold instruments for risk-loving investors, as these instruments lose money
with certainty through time. This arises from the fact that volatility derivatives do not deliver
certain cash flows, forming therefore a proper asset class with specific properties. Although
traditional asset classes, i.e. equities and bonds, pay either certain dividends or coupons, VIX
futures rather consist in an insurance premium that investors consent to pay to hedge their
portfolios against scarce stock market crashes.

In this paper, we evaluate the appropriateness of complex volatility derivatives with investor’s
risk-aversion degree. For this purpose, we examine the optimality of portfolio choice under un-
certainty, for an overlay allocation composed of equities, bonds, and VIX futures contracts, from
December 31, 2004 to July 4, 2014. Therefore, the issue this paper addresses does not prove
to be trivial, as the approaches commonly used within the asset management industry and the
existing literature are inappropriate here. On the one hand, Alexander and Korovilas (2011) in
[12] apply the standard mean-variance criterion to examine the diversification effects provided

by buy-and-hold investments in VIX futures. However, as described by Jondeau and Rockinger

2E.g. following VIX ETNs incidents in 2012, legal investigations were initiated against ETNs
providers, claiming they fail to inform retail investors of inherent risks, whereas the largest
regulator in the U.S. (FINRA) published an alert about VIX trading risks.
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(2006) in [75], this common framework pioneered by Markowitz (1959) in [82] inappropriately
handles complex derivatives, as it proves ineffective under large departure from normality. Fea-
tured by strongly non-normal return distributions, VIX futures contracts require to investigate
portfolio optimality under non-quadratic preferences to take into account higher-order moments.
On the other hand, the practical issue usually met by asset managers when implementing op-
timal portfolio strategies consists in mitigating the frequency of portfolio rebalancing, costly
for investors. However, this information loss proves to be statistically detrimental for portfolio
optimization.

This paper investigates optimality of investment decisions under uncertainty by modeling
investor’s behavior under the normative decision theory®. Inspired by the Expected Utility
(EU) theory a la von Neumann-Morgenstern (1947) in [93] and by seminal papers pioneered by
Samuelson (1969) in [103] and Merton (1969) in [87], we perform direct numerical optimizations
to maximize the EU of investor’s terminal wealth. Direct optimization relies specifically on the
empirical estimation of joint returns distributions, based on a multivariate block bootstrap pro-
cedure described by Kunsch (1989) in [77] to capture the dependence structure of neighbored
data, both over time and cross-sectionally. This approach, ensuring robustness among alter-
native time-settings, consistently addresses the non-quadratic preferences entailed by strongly
non-Gaussian returns on VIX futures. Therefore, we implement an asset-allocation strategy for
a portfolio composed of equities, bonds, and VIX futures. We address investment-decision opti-
mality under three various criterion measures. As a first step, optimal portfolios are examined
under the criterion of risk-adjusted performance measures, especially the Adjusted for Skewness
Sharpe ratio (ASSR) introduced by Koekebakker and Zakamouline (2009) in [116], handling

risk-preferences at the third order. On the one hand, between traditional portfolios, portfolios

3This paper considers the theoretical framework of a purely rational investor, but investment
decision optimality could also be derived under the behavioural Cumulative Prospect Theory
(CPT).



composed of equities and bonds, and alternative portfolios, i.e. portfolios diversified with VIX
futures. On the other hand, between alternative portfolios depending on investor’s risk aver-
sion. As a second step, we evaluate the investor welfare gains provided by VIX futures optimal
positioning, particularly depending on investor’s risk appetite. Inspired by the microeconomics
works pioneered by Akerlof and Dickens (1982) in [9], we derive an investor’s surprise metric,
defined as a welfare criterion measure. More precisely, investors feel satisfaction as the final
outcome they obtain ex post exceeds their rational expectations. Conversely, negative investor’s
surprise corresponds to unfulfilled expectations, generating ex post investor’s pain. As a third
step, this paper addresses optimality of portfolio insurance by extracting the model-implied risk
premium from optimal portfolios. This defines the insurance premium that the rational investor

implicitly consented to pay ex post in order to hedge his portfolio against extreme events.

Empirical results provide the three following evidence that proved to be robust, both in-
sample and when implementing portfolio strategies, and whatever the time settings. First, under
the criteria of risk-adjusted performance measures and investor’s welfare, investing in VIX futures
significantly beats traditionally diversified allocations, across the relative risk-aversion coefficient
~. In-sample ASSR exhibits that portfolios diversified with VIX futures (4.09) significantly
outperforms equity-bond portfolios (1.93), when v = 7 for example. Moreover, implemented
strategies preserve the notable outperformance of alternatively diversified portfolios (0.24) against
traditional portfolios (0.14). Therefore, VIX futures positioning significantly improves the ex post
investor welfare, whatever the risk aversion. For example, when v = 5, ex post positive surprise is
on average 47% higher for portfolios adding VIX futures, suggesting that they significantly exceed
investor rational expectations. Second, empirical results confirm that VIX futures contracts
are particularly inappropriate buy-and-hold instruments for risk-loving investors. Increasing
the relative risk-aversion coefficient from v = 2 to v = 12 efficiently improves in level our

investor welfare metric from 0.17% to 0.51%. This suggests that, when investing in VIX futures,



risk-loving investors tend to feel more ex post pain than risk-averse investors. For example,
when risk aversion is low for v = 2, VIX futures positioning provides notably higher investor
disappointment (-1.35%) than traditional asset classes (-0.75%). Besides, higher risk aversion
drastically mitigates the volatility of investor surprise and of ex post discomfort, respectively by
32% and 45%. This consistently validates that risk-loving investors inappropriately evaluate the
risks inherent in VIX futures contracts. Distorted by gambling attitudes, their decision-process
underestimates the painful costs of carry that are paid to maintain portfolio insurance. Third, the
model-implied insurance premia extracted ex post from optimal portfolios are relevant with the
first empirical findings. The ex post risk premia derived from alternative portfolios, i.e. equity-
bonds portfolios diversified with VIX futures, significantly outdo those derived from traditional
equity-bonds portfolios. This result proves to be consistent whatever the investor’s risk aversion,
under the EU framework. For example, when v = 3, VIX futures optimal positioning provides
far more effective insurance premium (23.13%) than traditional equity-bonds portfolios (8.21%).
This result confirms that VIX futures provides better portfolio insurance against tail risks than

traditional diversification.

This paper extends the existing literature in the four following ways. The technology under-
mining our paper upgrades the previous works of Szado (2009) in [108], Chen, Chung, and Ho
(2011) in [51], and Alexander and Korovilas (2011) in [12]. The commonly used mean-variance cri-
terion they apply proves to be inappropriate to address portfolio choice optimality when handling
derivatives, such as VIX futures contracts. Therefore, we address optimality by performing di-
rect numerical optimizations of agent’s EU. This results in handling appropriately non-quadratic
agent’s preferences, and in mitigating portfolio rebalancing frequency. Therefore, under this the-
oretical framework, we derive the model-implied risk premium from optimal positioning. This
defines the portfolio insurance provided either by traditional asset classes, i.e. equities and bonds,

or by VIX futures positioning. Subsequently, when agents are expected-utility maximizers, this
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paper extends portfolio choice optimality by exploring VIX futures positioning. To the best of
our knowledge, this paper is the first examining optimality under the EU framework, for an
asset allocation composed of equities, bonds, and VIX futures contracts. Sharpe (2007) in [106]
maximizes EU within an asset-allocation composed of equities, bonds, and cash. Similarly, Carr
and Madan (2001) in [417] study optimal positioning of European-style options under the EU the-
ory, within a bond-equity portfolio, but they do not consider volatility derivatives. Besides, this
paper illustrates the microeconomics theory pioneered by Akerlof and Dickens (1982) in [9]. As
decision-makers feel ex post pain if the final outcome does not exceed their rational expectations
about future, we propose an original welfare criterion measure to investigate decision-process
optimality under uncertainty. More precisely, this investor surprise metric evaluates the welfare
gains, i.e. either positive or negative surprise, provided either by traditional asset classes, or by
VIX futures positioning. Furthermore, our most decisive contribution consists in validating the
intuition undermining Whaley (2013) in [115], both by risk-adjusted portfolio performance mea-
sures and by our welfare criterion metric. Empirical results confirm that VIX futures contracts
are particularly inappropriate buy-and-hold investments for risk-loving investors. Distorted by
gambling attitudes, risk-loving investors do not evaluate appropriately the risks inherent in VIX

futures, especially the painful costs of carry.

This paper arises two practical implications, especially within the asset management in-
dustry. First, from the perspective of product management, promoting overlay and hedging
strategies based on volatility derivatives requires to implement intensive pedagogical efforts to
raise investors’ awareness of the risks inherent to such complex derivatives. In effect, our em-
pirical evidence proves that VIX futures contracts are particularly inappropriate buy-and-hold
investments for risk-loving investors. Therefore, pedagogical efforts should bring to investors
the relevant expertise to efficiently benefit from portfolio insurance provided by VIX futures

positioning. Second, from the perspective of quantitative asset managers, this paper proposes



a consistent alternative approach to the commonly used mean-variance criterion. A direct nu-
merical optimization of the expected utility appropriately handles the non-quadratic preferences
related to complex derivative instruments, generalizing the mean-variance framework at higher
order-moments. Furthermore, we propose two relevant metrics to examine portfolio choice opti-
mality and portfolio insurance. The welfare criterion measure evaluates model-risk management,
and the model-implied risk premium gauges portfolio risk-reduction.

The remainder of the paper is organized as follows. In section 1, we explore the dataset
and discuss the statistical properties of asset returns, validating the approach undermining this
paper. In section 2, we describe the standard EU asset-allocation problem and its practical im-
plementation within the asset management industry. This section especially defines two criterion
measures used to investigate portfolio-choice optimality. First, our investor welfare criterion mea-
sure gauges ex post discrepancies between the realized and expected utilities derived from VIX
futures positioning. Second, the model-implied risk premium, extracted from optimal portfolios
under the EU theory, evaluates portfolio insurance provided either by traditional asset classes
or by VIX futures. In section 3, we investigate the empirical patterns related to portfolio-choice
optimality, under the three following performance criteria: risk-adjusted portfolio performance
measures, welfare criterion metric, and model-implied risk premium. Section 4 exposes some

concluding remarks and practical implications within the asset management industry.

1.2 Data

The dataset consists of three time series for equity, bond, and VIX futures indices, composed
of 2,246 historical daily closing prices. Data sample is provided by Bloomberg, over the period
from December 30, 2005 to July 4, 2014. Equity, bonds, and VIX futures indices are respectively

S&P 500 Total Return Index, JPM Global Aggregate Bond Index, and S&P 500 VIX Short-



Term Futures Index. The last index replicates a buy-and-hold strategy that rolls over VIX
futures contracts, on a daily basis, from the nearest month to the next month. This results
in maintaining a constant one-month rolling long position in the first and second month VIX
futures contracts. In the previous literature, the S&P 500 VIX Short-Term Futures Index has
been well documented, especially by Whaley (2013) in [115]. As of March 30, 2012, seven of the
eight largest VIX ETPs traded in the U.S. are benchmarked to the S&P 500 VIX Short-Term
Futures Index, totalling an asset value of nearly $2,985 million.

Figure 1.1 displays the time-varying Pearson correlations of the most traded VIX ETNs
in the U.S. with their benchmark, the S&P 500 VIX Short-Term Futures Index, since their
inception. For multiple equal to 1, the VXX, VIXY, and VIIX ETNs have average strong positive
correlations, respectively equal to 96.3%, 95.8%, and 93.0%. For leveraged ETNs, the TVIX and
UVXY are also strongly positively correlated, respectively at 94.2% and 95.4%. However, much
less traded VIX ETNs, like the XXV, exhibit weaker time-varying correlations. As the main VIX
ETNs tend to be strongly correlated to their associated benchmark, the S&P 500 VIX Short-
Term Futures Index proves to be fairly-typical of the widely traded VIX ETNs. Alternatively,
our empirical study could be declined with mid-term VIX futures, rebalanced daily to maintain
five-month constant maturity. Launched on March 26, 2004 by the CBOE, VIX futures contracts
are preeminently characterized by a usual upward-sloping term structure, generating important
costs of carry for buy-and-hold strategies. More precisely, Whaley (2013) in [115] calculates that
the average slope of VIX futures term structure at 30 day to expiration is 2.3%. In other words,
the 30-day futures price tends to decrease on average by 2.3% per day.

Table 1.1 (Panel A) exhibits the outstandingly disappointing performance of VIX futures
investing. This puts into question the contribution of such alternative asset within the asset
management industry. From 2005 to 2014, a buy-and-hold investment in VIX futures con-

tracts lost practically all of its value (-99.2%), and displayed a considerable annualized volatility
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(61.3%). In contrast, traditional asset classes such as equity or bonds achieved impressive annu-
alized returns (respectively 9.7% and 6.5%), with much lower annualized volatilities (respectively
21.2% and 5.3%). However, breaking down the dataset into sub-periods of stock market crises
(Panel B) and of calm (Panel C) extols the benefits of VIX futures investing for portfolio diver-
sification and risk reduction. Although time slicing proves to be artificial, especially by violating
path-dependency of asset returns, this method exhibits stylized effects characterizing these asset
classes. Triggered by the Lehman Brothers bankruptcy, the subprime crisis ranges from August
29, 2008 to November 20, 2008, as VIX index spiked from 20.7% to 80.9%. Therefore, the Eu-
ropean sovereign debt crisis ranges from July 11, 2011 to October 3, 2011, whilst the gauge fear
index spiked from 18.4% to 45.5%. Over periods of stock market turbulence (Panel B), equi-
ties achieved negative holding period returns (-52.2%), strongly contrasting with VIX futures
(1139.0%). This illustrates clearly the diversification effects exhibited by Szado (2009) in [108]
of a buy-and-hold VIX futures exposition during the recent financial crises, by capturing the
implied leverage effect between a stock index and its implied volatility. Following Table 1.2, the
negative correlation between equities and VIX futures particularly increases during the periods
of financial crises (-83%), whilst bonds offered only limited diversification (-17%). This illus-
trates the previous works of Whaley (1993, 2009) in [113] and in [114] that investing in volatility

derivatives could benefit to long equity investors.

Furthermore, the distinct empirical properties exhibited above raises the following statistical
issue. VIX futures behave very differently from traditional asset classes, e.g. equities and bonds,
as they displayed on average strongly negative returns and high volatility from December 30,
2005 to July 4, 2014. This stems from the fact that VIX futures contracts form distinct securities
that do not generate certain cash flows. Although equities and bonds pay certain dividends and
coupons, respectively, VIX futures contracts provide an insurance premium against stock market

crashes. Consequently, commonly used parametric methods, such as mean-variance frameworks,
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are inappropriate to explore VIX futures positioning within an equity-bond allocation. There-
fore, it is especially true as the Figure 1.2 displays distinct stylized effects characterizing returns
on VIX futures, in terms of higher-order moments. As expected in Table 1.1 and Figure 1.2,
returns distributions of equity, bonds, and VIX futures are significantly non-normal, asymmetric,
peaked and heavy-tailed. However, distinct empirical properties characterize VIX futures returns
in terms of higher order moments. From Table 1.1 (Panel A), returns distribution of VIX futures
is strongly skewed to the right, more rounded, and less heavy-tailed (Sk = 0.9, k = 6.9), in
comparison to equities (Sk = —0.1, k = 13.8), and bonds (Sk = 0.3, k = 8.4). Following Cont
(2001), mean-variance approaches are invalidated when stylized effects cannot be modeled appro-
priately with the first two moments. This is especially the case in this paper, when considering
sophisticated instruments such as volatility derivatives. Therefore, VIX futures investing would
be always penalized by quadratic-preferences agents, whereas these securities offer efficient equity
diversification in times of stock market turmoil. This validates the approach of direct numerical

optimization undermining this paper, as it appropriately handles higher-order moments.

1.3 Empirical Methodology

In this section, we describe the methodology implemented to evaluate empirically the appro-
priateness of VIX futures to investor’s risk-aversion degree. For this purpose, we expose the
asset-allocation problem that consists in maximizing the agent’s expected utility by optimally
allocating wealth between equity, bonds, and VIX futures contracts. Subsequently, this section
defines two relevant criterion measures to investigate portfolio-choice optimality under uncer-
tainty. First, our investor welfare criterion metric measures the ex post discrepancies between
the realized and expected utilities derived from VIX futures positioning. Second, the model-

implied risk premium, extracted from optimal portfolios under the EU theory, evaluates portfolio
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insurance provided either by traditional asset classes or by VIX futures diversification.

1.3.1 Framework

In the literature, the mean-variance framework introduced by Markowitz (1959) in [82] is one
of the most commonly used approaches to examine diversification benefits. More specifically,
Alexander and Korovilas (2011) in [12] use the mean-variance criterion to examine portfolio
diversification with buy-and-hold positions in VIX futures contracts. However, this results in
maximizing the investor’s expected utility at only order two. Therefore, it does not handle higher-
order moments that must be taken in account when investing in alternative assets, characterized
by strong non-normally distributed returns and substantial downside tail risk. Subsequently,
the following framework that we propose proves to handle more appropriately risk preferences,
especially when investing in sophisticated derivatives such as VIX futures contracts.

Pioneered by Samuelson (1969) in [103] and Merton (1969) in [87], the asset-allocation prob-
lem we apply in this paper is one of the classic problems of modern finance. Standard formulation
consists in an investor’s objective to maximize the expected utility E [U (Wr)] of end-of-period
wealth Wy, by allocating wealth Wp_; at time T' — 1 between equities, bonds and VIX fu-
tures over the investment period [T'— 1,T]. We assume that his utility function U (.) exhibits a

constant relative risk aversion, as defined below by the so-called isoelastic utility:

where ~ denotes the coefficient of agent’s relative risk aversion. This results in finding the
optimal investment policy {w;,} for i € {1,3}, i.e. the optimal weights of equities, bonds, and

VIX futures, respectively, maximizing the following expected utility over the investment period
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[T —1,T):

E™P U (W3)] = max BT [U (Wr)] (1.2)

wi,T}

subject to the following constraints

3
Wr =Wy (1 + Zwi,TTi,T> (1.3)

=1

2
Zw@T =1 (1.4)
=1

Wi, T, min < Wi, T < wi,T,maXai = {17 2, 3} (15)

where W7 = Wy (1 + 232 w;Tﬁ,T), defining the end-of-period wealth generated by the optimal
i=1

investment policy {w] p}. For i = {1,2,3}, ;7 designate respectively returns on equities, bonds

and VIX futures contracts over the investment period [T'— 1,T]. EF[] refers to the expecta-

tion operator under the real-world probability measure IP. As specified in (1.5), an optimal

positioning in VIX futures contracts denoted w3, provides diversification for the equity-bond

portfolio defined by (1.4).

As follows, we describe the practical implementation of the asset-allocation problem from
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(1.2) to (1.4). The portfolio strategy we implement addresses practical issues frequently met
within the asset management industry, especially mitigating portfolio rebalancing without in-
formation loss. Therefore, we propose a monthly rebalancing frequency based on intra-monthly
data to perform a direct numerical optimization. The budget constraints defined below allow for

portfolio leverage and short sales on VIX futures contracts:

Wi T min = 20%) Wi T,max = 80%72 < 2>
(1.6)

W3 T,min = _20%7w3,T,max =20%

At the end of period [T' — 1, T, portfolio weights solving (1.2)-(1.6) define the optimal investment
policy {w] 7} used to rebalance portfolio over the period [T, T + 1]. Portfolio strategy at time T
is then implemented as below, giving the following end-of-period portfolio value WT+1 at time

T+1

3

WT—H = WT 1+ Zw:,Tri,T-"-l (17)
i=1

where Wy defines the end-of-period wealth generated by optimal investment policy {w;;}
calculated over [T'— 1,T]. The procedure is repeated at the end of each investment period, at
equally spaced time intervals.

As mentioned earlier, one of the main practical issues undermining the investment policy
specified in (1.7) consists in mitigating the frequency of portfolio rebalancing, as trading could
be costly. However, extending the length T of investment periods is statistically detrimental for
portfolio optimizations. For example, information loss generated by a monthly data frequency

results from insufficient observations, i.e. nearly 40 monthly returns with only one new obser-
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vation at each optimization. Therefore, we address this practical issue by using intra-monthly
data, i.e. 30 daily historical returns, to perform monthly portfolio rebalancing.

Furthermore, the mean-variance criterion introduced by Markowitz in [32] is equivalent to
maximizing the expected utility at order two. This approach inappropriately investigates the
diversification effects provided by sophisticated instruments. Therefore, we extend the previous
works of Alexander and Korovilas (2011) in [12] by using a maximization of the expected utility
at higher order moments to better handle risk preferences. As Equation (1.2) can’t be solved
exactly, Jondeau and Rockinger (2006) in [75] apply a Taylor series expansion for U (Wr) of order
four around Wz = EIF [Wr]. We could use the specification (1.1) of the isoelastic utility function
U (-) to obtain the approximate solution exposed in the Appendix A. However, this paper rather
proposes a direct numerical optimization, where the nonlinear programming problem (1.2)-(1.6)
is solved with an active-set algorithm, up to the precision associated to termination conditions.

More specifically, the numerical optimization is based on the estimation of historical joint
distributions by simulating scenarios of cross-sectional asset returns. To this purpose, we perform
a multivariate block bootstrap procedure to estimate numerous trajectories of terminal wealth
W over each investment horizon T. As described by Kunsch (1989) in [77], the block-bootstrap
procedure preserves the dependence structure of asset returns, both in time and cross-sectionally.
For each subsample of historical data, fixed-length blocks of cross-sectional returns are selected
randomly with replacement, and then put together in a non-overlapping way to simulate a new
subsample. The bootstrap procedure is repeated 10° times, for 30-day* subsamples and 5-day
blocks.

Finally, the benchmark used to investigate rational investment decisions is associated to the

optimal portfolio solving (1.2)-(1.6) and implementation (1.7) with ¢ = {1,2}, i.e. the optimal

4 Alternative settings for investment-time windows and block lengths are available upon re-
quest. Empirical results associated to alternative settings ensure robustness towards the conclu-
sions exposed in this paper.
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equity-bond portfolio excluding VIX futures investing.

1.3.2 Welfare Criterion Measure

Under the standard expected utility theory, decision-makers are assumed to be entirely rational
machine men, devoid of anticipatory feelings, i.e. positive surprise or disappointment, when fac-
ing uncertainty. However, this assumption has been contradicted by behavioral finance theory.
As in Akerlof and Dickens (1982) in [9], rational agents make decisions under risk to maximize
their welfare, by anticipating the future and forming endogenous beliefs based on their prefer-
ences. Furthermore, ex ante welfare provided by anticipatory feelings is gauged by the expected
future utility based on the estimation of risk distribution. Individuals feel therefore pain or
disappointment if the final outcome does not reach their rational expectations about the future.
By analogy, asset managers usually compare ex post the received payoff of the lottery to the
anticipated payoff derived by their forecasting models. This issue is directly related to model
risk management defined by Rebonato (2001) in [98] that consists in controlling discrepancies be-
tween the mark-to-model value of a security, and the market price at which it had been traded.
Therefore, asset managers form ex post either pain or pleasure from the comparison between

their model price and the market price.

In this paper, asset-allocation problem (1.2) consists of an investor’s objective to maximize
expected utility E/¥ [U (Wr)] of his end-of-period wealth Wr. We assume that rational investors
are expected-utility maximizers who compare at end-of-period T the realized utility U (WT) with
the anticipated utility £ {U (WT) |IT_1] derived from implementation (1.7). Therefore, they

form either positive or negative surprise denoted Surpriser as below
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Surpriser = ‘U (WT)’ - ‘EIP [U (WT) |IT,1} ’ (1.8)
—_—

Ex post welfare, Ex ante welfare,
i.e. realized utility i.e. expected utility

i.e. ex post pleasure if Surpriser > 0, and ex post pain otherwise, where implemented portfolio
Wy =Wr_y (1 + f:lw;T_lri’T> as specified by Equation (1.7), and {I (t)},c(o r—1 = {rir-1},
i=
for i € {1,3}. ETF [.|] is the conditional expectation operator under the real probability measure
IP. Wy defines the end-of-period wealth generated by optimal investment policy {w;T_l}, i.e.
portfolio weights solving asset-allocation problem (1.2) over investment horizon [T — 2,7 — 1].
For isoelastic functions specified in (1.1), negative utility requires to compare realized with an-
ticipated utility in absolute terms. Therefore, for positive Surpriser, investors feel satisfaction
as the final outcome they obtained at end-of-period T' exceeds their rational expectations. Con-
versely, negative Surpriser corresponds to unfulfilled expectations, generating investor’s ex post

pain®.

The intuition behind our welfare criterion measure is that, when investing in VIX futures,
risk-loving investors tend to feel more ex post pain than experimented and rational investors.
Distorted by gambling attitudes, the decision process of risk-loving investors anticipates inappro-
priately the risks inherent in complex derivatives. In the literature, recent studies consistent with
Whaley (2013) in [115] document the ex post welfare costs of risk-loving investors. Therefore, the
hypothesis we test stipulates that our utility criterion measure Surprisep significantly improves
when diversifying with VIX futures, and especially when the degree of investor’s risk-aversion -~y

increases.

5This investor welfare measure could be related to some extent to the Regret Decision theory,
since decision-makers usually anticipate pain when facing an investment decision by incorporating
past negative surprises.
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1.3.3 Model-Implied Risk Premium

Although equities and bonds generate cash flows with certainty, i.e. either dividends or coupons,
VIX futures contracts provide portfolio insurance against stock market crashes. Therefore, the
costs of carry consist in financing an insurance premium to hedge portfolios against stock market
downside, as investors consent to pay a risk premium to avoid uncertainty. Subsequently, the
hypothesis undermining this section stipulates that VIX futures contracts provide more efficient

insurance portfolio than traditionally diversified portfolios, i.e. equity-bonds portfolios.

In preference theory, risk-averse decision-makers systematically prefer to exchange a risky
lottery for a certain payment, under uncertainty. Described by Mas-Colell, Whinston, and Green
(1995) in [84], the risk premium defines the maximum amount of money that the risk-averse agent
consents to pay to avoid lotteries riskiness. Therefore, the risk premium Il realized at time T
corresponds to the amount of money between the maximum expected wealth E/F [IW%] and the

certainty equivalent Crp:

Iy = B [Wy] - Cr (1.9)

where W75 =W, (1 + 232 w;,Tri7T>, i.e. wealth generated by optimal investment policy {w:‘T}
i=1

Explicitly, equation (1.9) refers to the additional incentive that risk-averse agents need to

take on the risk of the lottery. As specified by the equation below, the certainty equivalent Cp

associated to the asset-allocation problem (1.2) defines the lowest amount of money received with

certainty at time 7T for which the rational decision-maker remains indifferent to a lottery.

Cr=U"'[E""[UW})] (1.10)
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where U ! [-] denotes the inverse function of the agent’s utility, v denotes the relative risk-aversion

coefficient of the risk-averse agent, and EF [U (W})] = max EIF [U (Wr)], as specified by the

{wi, T}

standard allocation problem (1.2). Therefore, by plugging the Equation (1.1) of the isoelastic
utility function and developing the equation of the certainty equivalent Cr, the risk premium

II+ becomes

v—1
Iy = EP W5 —|(1—7). max EF[U (Wr)] (1.11)

N— )
Expected wealth {w”T}

Certainty equivalent Cr

where ETF [W2] designates the maximum expected value, i.e. the objective maximum value re-
lated to the lottery, and EXF [U (W7)] is the expected utility under the real-probability measure,

i.e. the subjective value related to the lottery.

Specifically, Equation (1.11) corresponds to the observation that risk-averse agents usually
spend money to get rid of a specific risk. Risk-averse agents may like risky lotteries under
uncertainty if the expected payoffs that they yield are worth the riskiness. Similarly, risk-
averse investors may purchase risky assets if their expected returns exceed the risk-free rate.
Theoretically, higher lotteries uncertainty and /or higher agent’s degree of risk-aversion -y increase
the risk premium IIt paid to insure portfolios. Furthermore, another direct consequence is that
II7 proves to be nonnegative, when U (-) is concave, i.e. for risk-averse agents. In accord with
equation (1.11), we evaluate the model-implied insurance portfolio provided either by traditional
asset classes, e.g. equities and bonds, or by VIX futures contracts, when portfolios are optimally
allocated. In our intuition, traditional portfolios provide significantly lower model-implied risk

premia II7 than alternative portfolios, i.e. overlay portfolios including VIX futures. This results
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that VIX futures positioning provides better portfolio insurance and higher incentives to take on

the stock market risks, than traditional asset classes.

1.4 Empirical Results

This section examines the empirical patterns related to portfolio choice optimality, under the
three performance criteria described previously. In particular, this part tests the appropriate-
ness of VIX futures contracts to investor’s risk aversion. For this purpose, optimal portfolios
are investigated, first, under the criterion of risk-adjusted portfolio performance measures, han-
dling appropriately higher-order moments; second, under the criterion of our welfare measure
Surprise; and third, under the criterion of the model-implied risk premium II, gauging the

portfolio insurance offered by optimally diversified portfolios.

1.4.1 Risk-Adjusted Performance Measures

This subsection compares optimal portfolios under the criterion of risk-adjusted portfolio perfor-
mance measures that appropriately take into account the risks inherent to VIX futures contracts.
Therefore, comparisons are twofold: on the one hand, between traditional portfolios and overlay
portfolios diversified with VIX futures, both in-sample portfolios and implemented portfolios; on
the other hand, between portfolios adding VIX futures in function of the degree of risk aversion.

Figure 1.3 exhibits the optimal investment policy {w;T} solving the asset allocation prob-
lem (1.2)-(1.6), for an overlay portfolio composed of equities, bonds, and VIX futures contracts.
Optimal portfolio weights {w;‘)T} clearly exhibit time-dependency and specific cross-asset rela-
tions. Although optimal weights w3 ;- allocated to VIX futures tend to be negative on average

over the entire dataset, they turn notably positive in times of stock market crashes, especially
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during the subprime crisis, i.e. from August 29, 2008 to November 20, 2008, and during the
FEuropean sovereign debt crisis, i.e. from July 11, 2011 to October 3, 2011. Time-dependency of
optimal portfolio weights {w} 7} entails in particular time-variable returns distributions for the
implemented portfolios WT, as illustrated by Figure 1.4 that breaks down returns distributions
into different time-periods, especially the subprime crisis and the European sovereign debt crisis.
Therefore, from Figure 1.3, w3 < 0 generally implies higher w] ;. and vice versa, capturing
the inverse relation between the stock index and its implied volatility, i.e. the implied leverage
effect. Furthermore, optimal portfolio weights {w;‘,T} depend on the coefficient  of relative risk
aversion. Increasing the risk-aversion coefficient from v = 2 to v = 12 mitigates portfolio over-
weighting and underdiversification. This result consistently follows the Modern Portfolio Theory
(MPT) pioneered by Markowitz (1959) in [32], stipulating that portfolio diversification provides
risk reduction. In particular, more risk-averse investors typically spread more nonsystematic risk

across asset classes.

Following the statistical issue raised by the framework, commonly-used portfolio performance
measures, specifically the Sharpe ratio SR, prove to be only valid for quadratic preferences. This
is the case for either quadratic utility functions, and/or normally distributed asset returns, e.g.

when asset returns can be precisely modelled with the first two moments.

SRy = Ry —rpr (1.12)
or

where Ry and 7y 7 respectively refer to logarithmic returns on the portfolio and on the risk-
free asset over the period [T'— 1,T]. or denotes the standard deviation of portfolio logarithmic
returns. Consequently, the Sharpe ratio SR does not handle appropriately the properties inherent

to sophisticated derivatives, e.g. risk preferences for higher-order moments and strongly non-
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Gaussian returns distributions. Therefore, we examine portfolio performances under the Adjusted

for Skewness Sharpe Ratio ASSR, proposed by Koekebakker and Zakamouline (2009) in [116],

1 1 1/2
ASSRr = SRy. [1 + g <1 + ’Y) Sk x SRT] (1.13)

where SRt and Skp refer respectively to the Sharpe ratio and to the skewness of portfolio returns
distribution. As specified by (1.13), the Adjusted for Skewness Sharpe Ratio ASSR handles
investors’ risk preferences at order three, penalizing high third order-moment Skr, especially

when relative risk aversion  increases.

Table 1.3 reports the risk-adjusted performance measures related, on the one hand, to the
optimal portfolios W, (Panel A), and on the other hand, to the implemented portfolios Wr
(Panel B). Empirical results suggest that adding VIX futures to traditional equity-bond alloca-
tions significantly improves the risk-adjusted performance measures, both in-sample (Panel A)
and following the implementation (Panel B). On the one hand, in the case of optimal portfolios
W7 (Panel A), in-sample performances are calculated with the optimal investment policy {w] 1},
solving portfolio problem (1.2)-(1.6) over [T — 1,T]. Compared to traditional portfolios (at the
left), the Adjusted for Skewness Sharpe Ratio ASSR of portfolios diversified with VIX futures
(at the right) significantly outperforms (4.09 versus 1.93 for v = 7). Although annualized volatil-
ity of alternative portfolios (at the right) is higher (16.94% versus 10.10% for v = 5), annualized
return significantly outperforms (45.32% versus 16.49% for v = 5). Besides, adding VIX futures
drastically mitigates maximum drawdown (8.96% versus 13.70% for v = 10), whereas returns
distribution is left-skewed, more rounded, and less heavy-tailed (Sk = —0.22, Sk = 7.68 versus
Sk = 0.26, Sk = 9.10, for v = 7). On the other hand, in the case of implemented portfolios

Wr (Panel B) globally preserves the patterns described above. Performances are calculated
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with optimal weights {w} 1} solving problem (1.2)-(1.6) over [T'— 1,T], and implemented over
[T, T + 1] as specified by (1.7). In comparison to traditional portfolios (at the left), the Adjusted
for Skewness Sharpe Ratio ASSR of portfolios diversified with VIX futures (at the right) keeps
outperforming (0.24 versus 0.14 for v = 7). Although annualized volatility of alternative port-
folios (at the right) remains higher (18.97% versus 11.32% for v = 5), annualized return proves
to significantly outperform (8.95% versus 5.48% for v = 5). These empirical results are relevant
with Moran and Dash (2007) in [90], or Briére, Burgues and Ombretta (2010) in [42]. They
consistently validate the robust portfolio risk-reduction and downside-risk controlling provided

by VIX futures optimal positioning.

Furthermore, Table 1.3 and Figure 1.5 suggest that a higher degree of investor’s risk-aversion
improves notably the risk-adjusted performance measures. In particular, this is especially true for
portfolios diversified with VIX futures contracts, both for portfolios W7 and Wr. As illustrated
by Figure 1.5 and Figure 1.6 for implemented portfolios WT, raising the relative risk aversion ~
particularly mitigates the standard deviation and generates more peaked returns distributions.
More precisely, Table 1.3 exhibits that, when raising the coefficient of relative risk aversion from
v =2 to v = 12, annualized volatility decreases from 19.61% to 17.11%, whereas excess kurtosis
remains high, as x ranges from 10.88 to 12.41. Therefore, this consistently mitigates the max-
imum drawdown from 42.45% to 36.70%. Globally, a higher risk aversion degree significantly
improves the risk-adjusted performance measures of implemented portfolios Wr, as the Adjusted
for Skewness Sharpe ratio ASSRr strongly increases from 0.18 to 0.25. In comparison to tradi-
tional portfolios, the Adjusted for Skewness Sharpe ratio remains stable near 0.15. However, for
less risk-averse investors, adding VIX futures proves to be detrimental in terms of risk-adjusted
performance measures. For v = 2 and v = 3, alternative portfolios (respectively 0.18 and 0.17)

are quite similar to traditional portfolios (both 0.15).

Under risk-adjusted performance measures, empirical results validate the hypotheses un-
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dermining this paper. First, overlay portfolios diversified with VIX futures significantly out-
performs traditionally diversified equity-bond portfolios. Second, they confirm the intuition of
Whaley (2013) in [115] that VIX futures are inappropriate investments for risk-lovers and non-
sophisticated investors. Furthermore, we investigate these intuitions under our welfare criterion

measure Surprise.

1.4.2 Welfare Criterion Measure

This subsection investigates VIX futures optimal positioning under the utility criterion measure
Surprise specified by (1.8). The hypotheses undermining this part are twofold. First, ex post
welfare gains measured by quantity Surprise would be significantly higher when diversifying
a traditional equity-bond portfolio with VIX futures contracts. Second, strongly risk-loving

investors tend to feel more ex post pain than experimented and rational investors.

Over the entire period, Table 1.4 (Panel A) exhibits on average positive investor Surprise
for both traditional portfolios and portfolios adding VIX futures. Furthermore, ex post pleasure
increases with risk aversion, from 0.15% to 0.39% for traditional portfolios, and from 0.17% to
0.51% for portfolios adding VIX futures. Finally, ex post elation is significantly higher when
including VIX futures, whatever the risk-aversion coefficient. For example, when v = 5, ex post
positive surprise is 47% higher for portfolios adding VIX futures. These results suggest that
adding VIX futures to a traditional asset allocation better exceeds rational expectations, par-
ticularly when investors are highly risk-averse, as illustrated by Figure 1.8. From 2005 to 2014,
Table 1.4 breaks down investor’s surprise into periods of satisfaction (Panel B) and periods of
disappointment (Panel C). As defined by Equation (1.8), investor’s satisfaction and disappoint-
ment, correspond respectively to ex post positive and negative Surprise. Although preliminary

comments suggest only minor differences in the number of periods, notable differences in level of
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ex post elation (Panel B) or pain (Panel C) shed light on specific patterns. There are approxi-
mately as many periods of satisfaction or disappointment between the two portfolios, and across
risk-aversion coefficients. For example, ex post discomfort (Panel C) ranges from 34% to 42% of
total periods for traditional portfolios, and from 32% to 46% for portfolios adding VIX futures.
However, satisfaction and disappointment levels are higher for portfolios including VIX futures.
For example, when v = 3, satisfaction and disappointment levels are respectively 76% (Panel B)

and 78% (Panel C) higher for portfolios including VIX futures.

Furthermore, Table 1.4 reports the impact of risk-aversion degree on investor’s surprise when
investing in VIX futures. Globally, increasing risk aversion efficiently mitigates the volatility of
investor surprise and of ex post discomfort. Rising risk aversion from v = 2 to v = 12 reduces
drastically surprise’s volatility and disappointment’s volatility respectively by 84% (Panel A) and
by 55% (Panel C). However, for strongly risk-loving investors, adding VIX futures is detrimental
in terms of welfare criterion measure Surprise. For v = 2, overlay portfolios (0.17%) are nearly
equivalent to traditional portfolios (0.15%), and investor’s disappointment (Panel C) notably
goes beyond on average (-1.35% versus -0.75%). This strong evidence consistently extends the
intuition behind the previous works of Whaley (2013) in [115] and confirms that VIX futures

contracts are inappropriate buy-and-hold instruments for risk-loving investors.

1.4.3 Model-Implied Risk Premium

This subsection examines the level of portfolio insurance provided either by traditional portfolios,
i.e. equity-bonds portfolios, or overlay portfolios, i.e. traditional portfolios diversified with VIX
futures contracts. For this purpose, we estimate the risk premium Il realized at time T, as
specified by equation (1.11). The hypothesis undermining this part stipulates that VIX futures

offer better portfolio insurance and higher incentives to take on the risks of stock market than
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traditional asset classes.

Table 1.5 reports the certainty equivalent Cr (Panel C) and the model-implied risk premium
II1 (Panel D), derived from traditional portfolios (at the left) and overlay portfolios (at the right).
Empirical results exhibit that for a given relative risk-aversion coefficient v, VIX futures provide
significantly higher risk premia IIp than traditional asset classes. Preliminary comments from
Table 1.5, Figure 1.8, and Figure 1.9 are consistent with the theory of decision-making under
uncertainty. First, higher coefficients - of relative risk aversion decreases the certainty equivalent
Cr and increases the risk premium Ilp. For example, with regard to overlay portfolios, from
v = 2 to v = 5, certainty equivalent Cr (Panel C) decreases from 95.01% to 54.18%, whereas
risk premium IIy (Panel D) increases from 10.63% to 51.42%. This observation consistently
illustrates that a more risk-averse decision-maker consents to pay higher amounts of money to
avoid lotteries riskiness. Second, when relative risk-aversion « # 1 and « > 0, empirical results
generally exhibit II; > 0. Nevertheless, Figure 1.8 shows the time-varying risk premia II7 do not
remain nonnegative across time. Theoretically, risk-averse agents, i.e. for concave utility function
U(-), need an additional incentive to take on the risk of the lottery, under uncertainty. This extra
incentive defines the risk premium, i.e. the cost of risk induced by lotteries uncertainty.

Furthermore, according Table 1.5 (Panel D), VIX futures contracts provide on average sig-
nificantly higher risk premia than traditional asset classes. For example, for v = 3, alternative
portfolios offer notably higher incentive (23.13%) than traditional portfolios (8.21%), for each of
the lotteries. This proves particularly true for more risk-averse investors. For v = 5, the cost of
risk associated to lotteries uncertainty becomes respectively 51.42% and 17.57%. For illustration,
Figure 1.9 exhibits the certainty equivalent for different degrees of investor’s risk aversion.

This last empirical result provides twofold major findings. First, VIX futures positioning
provides significantly stronger portfolio insurance than traditionally diversified portfolios, as

they better remunerate the cost of risk for each of the lotteries. Second, when investors are

27



more risk-averse, VIX futures provide better portfolio protection than traditional asset classes,

validating their appropriateness to only strongly risk-averse investors.

1.5 Conclusions

This paper has been motivated by the outstandingly disappointing performance of volatility
derivatives. Learning from the past, dampened investors usually turn away from this original
asset class, as they misunderstood risks associated to these complex instruments. Subsequently,
this paper addresses the appropriateness of VIX futures contracts to investor’s risk-aversion,
examining portfolio-choice optimality under risk.

Empirical results provide three evidence that proved to be robust both in-sample and when
implementing portfolio strategies, whatever the time settings. First, investing in VIX futures
significantly beats traditionally diversified portfolios in terms of Adjusted for Skewness Sharpe
Ratio and of ex post investor welfare. For example, when v = 7, ASSR notably increases both
in-sample (from 1.93 to 4.09), and when implementing portfolio strategies (from 0.14 to 0.24).
Therefore, VIX futures positioning significantly improves the ex post investor welfare. When
v = 7, ex post positive surprise is on average 47% higher for portfolios adding VIX futures,
suggesting that they significantly exceed investor rational expectations. Second, results confirm
that VIX futures contracts are particularly inappropriate buy-and-hold instruments for strongly
risk-loving investors. Increasing the relative risk-aversion from v = 2 to v = 12 efficiently
improves in level our investor welfare metric from 0.17% to 0.51%, and drastically mitigates
the volatility of investor surprise and of ex post discomfort respectively by 84% and 55%. This
suggests that, when diversifying with VIX futures, risk-loving investors tend to feel more ex post
pain than risk-averse investors. Third, the ex post risk premia derived from overlay portfolios,

i.e. equity-bonds portfolios diversified with VIX futures, significantly outdo those derived from
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traditional equity-bonds portfolios. When v = 3, VIX futures optimal positioning provides far
more effective insurance premium (23.13%) than traditional equity-bonds portfolios (8.21%).
This contributes to the existing literature and opens up a range of new perspectives in the
three following ways. First, our decisive contribution validates the hypothesis undermining the
previous work of Whaley (2013) in [115], i.e. VIX futures are only appropriate buy-and-hold
investments for sophisticated and risk-averse investors. Therefore, this raises practical implica-
tions from the perspective of the asset management industry, as it requires intensive pedagogical
efforts to educate investors about the inherent risks. Furthermore, future extensions suggest
declining the exercise with mid-term VIX futures, rebalanced daily to maintain five-month con-
stant maturity. Second, existing literature examined portfolio-choice optimality under the com-
mon mean-variance criterion, e.g. Szado (2009) in [108], Chen, Chung, and Ho (2011) in [51],
Alexander and Korovilas (2011) in [12]. Nevertheless, as stipulated by Jondeau and Rockinger
(2006) in [75], the framework confirms the Markowitz (1959) in [82] approach inappropriately
handles complex derivatives, under large departure from normality. To the best of our knowl-
edge, no previous study investigated this issue under the EU framework pioneered by Samuelson
(1969) and Merton (1969) in [103] and [87], for overlay allocations composed of equities, bonds,
and VIX futures. Therefore, this paper proposes an alternative approach, but deep evaluations
of its practicality are left for future research. Third, this paper illustrates the seminal works
pioneered by Akerlof and Dickens (1982) in [9], as it derives an original welfare criterion measure

to investigate the optimality of portfolio choice.
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1.6 Appendix

1.6.1 Approximate Solution for Expected Utility

In this appendix, we detail the Taylor series expansion of wealth utility U (Wr), as described
by Jondeau and Rockinger (2006) in [75]. Applying an approximation at order 4 around the

expected wealth E/F [Wr], investor’s expected utility can be written as below

BP0 (Wi~ 57 [U (Vi) + B [ S5 (v = )|+ 77 [Z508E) (W
B S v WT)?)} Fatt [BZ(WVTVT) (Wr - WT)4] + B [o Wy — TWy)]

(1.6.1.1)

where W = EIF [Wr], and 7 defines the coefficient of relative risk-aversion. Therefore,

(1.1) for the isoelastic utility function gives the approximate solution.

B [U (W) ~ (W' = B [(Wr = Wr)*| AW

3

B (W = W) 3 (r 4+ DW= BB (W = W2) ' (4 1) (4 2) W
(1.6.1.2)

The 3rd and 4th terms contain risk preferences for the 3rd and 4th order of asset returns co-

moments.
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Table 1.1:

Descriptive Statistics of Asset Returns

Daily Returns

Equity Bonds VIX Futures
Panel A: All observations
Nb of observations 2246 2246 2246
Mean 0,04% 0,02% -0,14%
Median 0,06% 0,00% -0,43%
Standard deviation 1,34% 0,33% 3,86%
Annualized standard deviation 21,19% 5,28% 61,30%
Holding period return 86,32% 57,55% -99,15%
Annualized return 9,68% 6,46% -11,12%
Skewness -0,08 0,29 0,85
Kurtosis 13,78 8,41 6,94
Jarque-Bera statistic 10822,34*** 2757 T8%**  1714,22%**
Panel B: Periods of stock market crises
Nb of observations 121 121 121
Mean -0,55% -0,01% 2,28%
Median -0,41% 0,00% 2,17%
Standard deviation 3,33% 0,38% 6,05%
Annualized standard deviation 52,90% 6,10% 95,98%
Holding period return -52,15% -1,47% 1139,01%
Annualized return -108,62% -3,05% 2372,14%
Skewness 0,39 -0,72 0,40
Kurtosis 4,86 6,20 3,93
Jarque-Bera statistic 18,24%** 56,18%** 6,64**
Panel C: Periods of stock market calm
Nb of observations 2125 2125 2125
Mean 0,07% 0,02% -0,28%
Median 0,07% 0,00% -0,48%
Standard deviation 1,11% 0,33% 3,65%
Annualized standard deviation 17,65% 5,23% 57,99%
Holding period return 289,41% 59,89% -99,93%
Annualized return 34,32% 7,10% -11,85%
Skewness 0,00 0,38 0,75
Kurtosis 9,20 8,58 6,96
Jarque-Bera statistic 3389, 7T1%¥*  2790,4%** 1581,9%**

This table reports the descriptive statistics of historical asset returns, from December 30, 2005 to
July 4, 2014. Calculations above are based on daily simple asset returns. Stock market crises are
identified as periods of stock market turmoil, ranging from August 29, 2008 to November 21, 2008,
i.e. subprime crisis, and from July 11, 2011 to October 5, 2011, i.e. European sovereign debt
crisis. Jarque-Bera statistic tests for the rejection of the null hypothesis, i.e. returns normality.
Stars *, ** and *** denote statistical significance at the 10%, 5% and 1% level of confidence,
respectively.
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Table 1.2: Correlations between Asset Returns

Correlations
Equity Bonds VIX Futures

Panel A: All observations

Equity 1,00 -0,08 -0,76
Bonds 1,00 0,06
VIX Futures 1,00

Panel B: Stock market crises

Equity 1,00 -0,17 -0,83
Bonds 1,00 0,02
VIX Futures 1,00

Panel C: Stock market calm

Equity 1,00 -0,07 -0,77
Bonds 1,00 0,07
VIX Futures 1,00

This table reports the cross-asset correlations between equity, bonds, and VIX futures, from
December 30, 2005 to July 4, 2014. Calculations above are based on daily simple asset returns.
Stock market crises are identified as periods of stock market turmoil, ranging from August 29,
2008 to November 11, 2008, i.e. subprime crisis, and from July 11, 2011 to October 3, 2011, i.e.
European sovereign debt crisis.
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Table 1.3: Summary Statistics of Portfolio Performances

Portfolio Choice without VIX Futures

Portfolio Choice with VIX Futures

y=2 = y=5 =7 ~=10 =12 y=2 =3 ~y= y=7 ~4=10 =12
Panel A: Optimal in-sample portfolios
Annualized return 16,46% 16,49% 16,49% 16,34% 16,20% 16,05% 4549% 4545% 45,32% 45,14%  44,24%  43,52%
Annualized volatility — 10,37% 10,22% 10,10% 9,77%  9,50%  9,31% 17,45% 17,30% 16,94% 16,55% 15,24%  14,48%
Skewness 0,14 0,17 0,20 0,26 0,32 0,31 -0,24 -0,23 -0,23 -0,22 -0,07 -0,01
Kurtosis 8,32 8,53 8,77 9,10 9,61 9,81 7,02 7,14 7,45 7,68 6,63 6,62
Maximum drawdown  13,70% 13,70% 13,70% 13,70% 13,70% 13,70% 10,87% 10,87% 10,87% 10,87%  8,96% 8,12%
Sharpe ratio 1,43 1,45 1,47 1,50 1,53 1,55 2,51 2,53 2,58 2,63 2,79 2,89
Adjusted Sharpe ratio 1,75 1,80 1,85 1,93 2,00 2,03 3,81 3,85 3,96 4,09 4,62 4,90
Panel B: Implemented portfolios
Annualized return 562% 557% 548%  523%  521% 5,27% 9,23% 887% 895% 98% 991%  9,87%
Annualized volatility — 11,50% 11,40% 11,32% 10,96% 10,55%  10,35% 19,61% 19,53% 18,97% 18,37% 17,62% 17,11%
Skewness -1,20 -1,22 -1,24 -1,26 -1,26 -1,28 -1,18 -1,19 -1,08 -1,03 -1,10 -1,17
Kurtosis 15,46 15,93 16,31 16,39 16,86 17,59 12,07 12,22 10,93 10,88 11,68 12,41
Maximum drawdown  34,55% 34,55% 34,55% 34,55% 34,32%  33,38% 42,45% 42,45% 42,15% 39,50% 37,14%  36,70%
Sharpe ratio 0,35 0,34 0,34 0,33 0,34 0,35 0,39 0,37 0,38 0,45 0,47 0,48
Adjusted Sharpe ratio 0,15 0,15 0,15 0,14 0,14 0,15 0,18 0,17 0,19 0,24 0,25 0,25

This table reports the summary statistics of portfolio performances, for different coefficients of
relative risk aversion, from December 30, 2005 to July 4, 2014. Optimal portfolios (Panel A),
denoted W7, are derived from the optimal investment policy {w;‘,T} solving the asset-allocation
problem (1.2)-(1.6). Implemented portfolios (Panel B) Wy, are derived from the allocation prob-
lem (1.2)-(1.6) and from the portfolio implementation specified by equation (1.7). Coeflicients
of relative risk aversion are denoted ~.
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Table 1.4: Investor’s Surprise

Portfolio Choice without VIX Futures

Portfolio Choice with VIX Futures

y=2 =3 =5 =7 ~4v=10 vy =12 y=2 =3 =5 4=7 =10 =12

Panel A: All investment horizons

Nb investment horizons 74 74 74 74 74 74 74 74 74 74 74 74

Average 0,15% 0,19% 0,25% 0,29%  0,35% 0,39% 0,17% 0,25% 0,37% 0,46%  0,50% 0,51%

Std deviation 1,03% 1,001% 0,99% 0,97%  0,99% 1,02% 1,84% 1,74% 1,58% 1,46%  1,32% 1,25%
Panel B: Investor satisfaction

Nb investment horizons 43 44 46 48 48 49 40 42 46 48 49 50

% investment horizons 58% 59% 62% 65% 65% 66% 54% 57% 62% 65% 66% 68%

Average 0,79% 0,80% 0,81% 0,80% 0,83% 0,84% 1,47% 1,41% 1,30% 1,25%  1,15% 1,07%

Std deviation 0,77% 0,76% 0,76% 0,78%  0,85% 0,91% 1,27%  123% 11™% 1,12%  1,09% 1,07%
Panel C: Investor disappointment

Nb investment horizons 31 30 28 26 26 25 34 32 28 26 25 24

% investment horizons 42% 1% 38% 35% 35% 34% 46% 43% 38% 35% 34% 32%

Average -0,75% -0,711% -0,66% -0,63% -0,53% -0,50% -1,35%  -1,27%  -1,15%  -1,00%  -0,77%  -0,6T%

Std deviation 0,57% 0,55% 0,52% 0,49%  0,48% 0,49% 1,08% 0,98% 0,79% 0,68%  0,63% 0,59%

This table reports investor’s surprise formed with traditional equity-bonds portfolios (at the
left), and with overlay portfolios including VIX futures (at the right), for different coeflicients
of relative risk aversion, from February 13, 2006 to July 4, 2014. Investor’s Surpriser at time
T is derived from (1.8). Panel B investigates the periods of investor’s satisfaction, i.e. ex post

positive surprise. Panel C investigates the periods of investor’s disappointment, i.e.

ex post

negative surprise. Coefficients of relative risk aversion are denoted 7.
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Table 1.5: Certainty Equivalent

Portfolio
without VIX Futures
y=2 =3 ~v=25 y=2 ~=3 vy=25

Portfolio with VIX Futures

Panel A: Maximum expected utility

Mean 10,0824 -0,4833 -0,2351  -0,9501 -0,4529  -0,2079
Standard deviation 0,0276  0,0272  0,0266 0,0356  0,0336 0,0304
Median 10,9817 -0,4820 -0,2328  -0,9552 -0,4573  -0,2107

Panel B: Realized utility

Mean 20,9809 -0,4815 -0,2325  -0,0483 -0,4504  -0,2042
Standard deviation 0,0276  0,0271  0,0263  0,0362  0,0343 0,0310
Median 10,9808 -0,4810 -0,2314  -0,9534 04547  -0,2008

Panel C: Certainty equivalent

Mean 98,24% 93,74% 84,37%  95.01% 82,50%  54,18%
Standard deviation 0,0276  0,1060 0,4135  0,0356 0,1225 0,3435
Median 98,17% 92,94% T7517%  95.52% 83,64%  50,41%

Panel D: Implied risk premium

Mean 3,71%  8,21% 17,57%  10,63% 23,13%  51,42%
Standard deviation 0,0563  0,1345  0,4403 0,0761  0,1627 0,3799
Median 3,75% 897% 26,74%  9,50% 21,30%  54,31%

This table reports the suummary statistics of certainty equivalent (Panel C) and model-implied
risk premium (Panel D), for different coefficients of relative risk aversion, from February 13, 2006
to July 4, 2014. Certainty equivalent C'p and model-implied risk premium Il are expressed as
percentage of portfolio values. Coefficients of relative risk aversion are denoted «y. As comparing
utility (Panels A and B) between portfolios adding VIX futures and equity-bond portfolios is ir-
relevant, we rather compare either certainty equivalent (Panel C), or model-implied risk premium
(Panel D).
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Figure 1.1: Correlations Between VIX ETNs with their

Benchmark
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This figure displays the moving average correlations between the most traded VIX ETNs and their
benchmark, the S&P 500 VIX Short-Term Futures Index, since their inception. Computations
are based on the 20-day rolling Pearson correlations. Multiplier is either 1 for the VXX, VIXY,
and VIIX ETNs; or 2 for the TVIX and UVXY ETNs; or -1 for the XIV, SVXY, and XXV
ETNs.
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Figure 1.2: Historical Asset Returns Distributions
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This figure displays the historical returns on equity, bonds, and VIX futures, from December
30, 2005 to July 4, 2014. Calculations above are based on daily simple asset returns. Figures
at the left exhibit time-varying historical returns. Figures at the right exhibit historical returns
distributions compared to their associated normal probability density function.
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Figure 1.3: Optimal Weights
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This figure displays the optimal weights for portfolios composed of equity, bonds, and VIX
futures, at each investment period, for different coefficients v of relative risk aversion, from
December 30, 2005 to July 4, 2014. Optimal weights correspond to the optimal investment

policy {w; 1} solving asset-allocation problem (1.2)-(1.6).
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Figure 1.4: Returns Distributions of Implemented Portfolios
for Different Periods
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This figure displays the returns distributions of implemented portfolios, for an asset-allocation
composed of equity, bonds, and VIX futures, for different periods, and for a constant relative
risk-aversion coefficient. Implemented portfolios denoted Wy are derived from equation (1.7).
The constant coefficient of relative risk aversion corresponds to v = 5. Period 2 and 4 are picked
off stock market crises, respectively from October 3, 2008 to November 14, 2008 during the
subprime crisis, and from August 19, 2011 to September 30, 2011 during the European sovereign
debt crisis. In comparison, the figure also displays standard sub-periods: period 1 (from April
19, 2007 to May 30, 2007), period 3 (from September 4, 2009 to October 16, 2009), period 5
(from May 13, 2013 to June 21, 2013), and period 6 (from February 28, 2014 to April 11, 2014).
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Figure 1.5: Returns Distributions of Implemented Portfolios

for Different Risk Aversion Degrees
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This figure displays the returns distributions of implemented portfolios, composed of equity,
bonds, and VIX futures, for different coefficients v of relative risk aversion, from February 13,
2006 to July 4, 2014. Tmplemented portfolios Wy are derived from equations (1.2)-(1.6) and
implementation (1.7). Coefficients of relative risk aversion are denoted +.
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Figure 1.6: Out-of-Sample Portfolio Performances
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This figure displays the evolution of implemented portfolios values, for different coefficients of
relative risk aversion, from February 13, 2006 to July 4, 2014. Implemented portfolios W are
derived from equation (1.7), allocated between equities, bonds, and VIX futures.
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Figure 1.7: Investor’s Surprise
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This figure displays the investor’s surprise formed with implemented portfolios diversified with
VIX futures, for different coefficients of relative risk aversion, from February 13, 2006 to July 4,
2014. Investor’s Surprise denoted Surpriser at time T is derived from (1.8).
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Figure 1.8: Model-Implied Risk Premium
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This figure displays the model-implied risk premium extracted from implemented portfolios
adding VIX futures, for different coefficients of relative risk aversion, from February 13, 2006
to July 4, 2014. Model-implied risk premium, implemented portfolios values and coefficients of
relative risk-aversion are denoted Iy, Wy, and ~, respectively.
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Figure 1.9: Certainty Equivalent
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This figure displays the certainty equivalent extracted from optimal portfolios adding VIX fu-
tures, for different coefficients of relative risk aversion, from February 13, 2006 to July 4, 2014.
Certainty equivalent, optimal portfolios, and coefficients of relative risk aversion are denoted Cr,
W7, and v, respectively.
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Chapter 2

The Smart Vega Factor-Based
Investing: Disentangling Risk
Premia from Implied Volatility

Smirk
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The Smart Vega = Factor-Based Investing:
Disentangling Risk Premia from Implied Volatility

Smirk !

L This chapter is based on an article that has won the Best Doctoral Paper Award of the Multinational Fi-
nance Society at the XXIV*" Annual Conference (2017). I am grateful to Vikas Agarwal, Yacine Ait-Sahalia,
Marianne Andries, Kevin Aretz, Eser Arisoy, Steven Clark, Serge Darolles, Matthieu Garcin, Christophe Hurlin,
Marcin Kacperczyk, Bryan Kelly, Simone Manganelli, Ilaria Piatti, Todd Prono, Ronnie Sadka, and Fabio Trojani
for insightful discussions, and to the participants of the XXI*2 International Conference on Computational and
Financial Econometrics, the XXIVt? Annual Conference of the Multinational Finance Society, the Xt" SoFiE
Society for Financial Econometrics Conference, the XVt! INFINITI Conference on International Finance, the
Spring 2017 Conference of the Multinational Finance Society, the 25" Symposium of the Society for Nonlinear
Dynamics and EconometricS, the 8" French Econometrics Conference, the 15t Portsmouth-Fordham Conference
on Banking and Finance, the 15* ERFIN Econometric Research in Finance, the VIt FEBS International Confer-
ence of the Financial Engineering and Banking Society, the IVt® PhD Workshop in Economics, and the XIIIt®
Augustin Cournot Doctoral Days.
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This paper paves the way for option-based volatility strategies genuinely built on factor-based
investing. Since market option prices reflect uncertainty, we exploit the discrepancy between the
physical and the risk-neutral distributions, i.e. the fair price of moments. From an economic
perspective, the level, slope, and convexity associated to the implied volatility smirk quantify the
departure of the returns probability distribution from the lognormal distribution. Subsequently,
our so-called ’Smart Vega investing” proposes option-based replication strategies mimicking the
volatility, skewness, and kurtosis risk premia in the form of divergence swap contracts, trade-
able at moderate transaction costs in incomplete option markets. Extending the Zhang-Xiang
(2008) quadratic approximation, we derive an explicit representation of the implied volatility
smirk function, conveniently expressed as a combination of tradeable time-varying risk premia
that reward for bearing higher-order risks. Furthermore, we empirically test these theoretical

underpinnings on the SPX and the VIX options, under strongly skewed leptokurtic distributions.
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2.1 Introduction

Since the S&P 500 index option prices fundamentally incorporate the market’s uncertainty, de-
ciphering the fine dynamics of the implied volatility smirk has been of major interest to both
academics and practitioners. In this way, the Chicago Board Options Exchange (CBOE) re-
cently introduced in 2011 new options-based indices to benchmark the well-known VIX Index
(1993) that approximates the implied volatility associated to SPX options prices. Therefore, the
SKEW Index derives the tail risk from the prices of a replicable portfolio of SPX out-of-the-
money (OTM) options. Similarly, the VXTH Index tracks the performance of a buy-and-hold
SPX portfolio dynamically hedged by VIX call options. Although they propose options-based
hedging strategies for buy-and-hold investors, they don’t allow to take profit from long-short
portfolios replicating option-implied risk premia. Overall, considerable breakthroughs have been
achieved concerning volatility modelling in general, notably underpinned by multi-factor models
in yield curve modeling. Henceforth, the three-dimensional representation allows to decompose
parsimoniously the dynamics of the volatility smirk at any point of time, by accommodating a
combination of salient features interpreted primarily as the level, slope, and curvature factors.
From an economic motivation, their informational content incorporates agents’ risk attitudes
and beliefs about the realization of future risks, since they quantify the departure of the re-
turns probability distribution from the lognormal distribution. Specifically, vanished volatility
smirk’s slope and curvature intuitively reduce the risk-neutral probability distribution to the
Black-Scholes lognormal distribution. Hence, vast recent literature including Zhang and Xiang
(2008) in [117] and Martin (2013) in [83] among others, disentangles analytically the S&P 500

(SPX) option-implied volatility smirk into the risk-neutral higher-order risks.

In this paper, we explicitly pave the way for new option-based volatility strategies, genuinely

built on factor-based investing. By analogy with the ’Smart Beta’ investing, our so-called
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Smart Vega’ investing generalizes option-based replication strategies, mimicking the volatility,
skewness, and kurtosis risk premia contained in swap contracts tradeable at moderate transac-
tion costs in incomplete option markets. Extending the Zhang-Xiang quadratic approximation,
we derive an explicit third-way representation of the implied volatility smirk function, expressed
as a combination of investable time-varying risk premia reflected in the risk-neutral distribu-
tion. Indeed, our analytical decomposition explicitly accommodates the tradeable components
of the market price of uncertainty incorporated in the SPX option market prices, exploiting the
discrepancies between the physical distribution and the option-implied risk-neutral distribution,
i.e. the fair price of moments. From an economic motivation, vanished volatility smirk’s slope
and curvature reduce the risk-neutral probability distribution to the Black-Scholes lognormal
distribution, whereas positive slope and curvature make the risk-neutral density respectively
more right-skewed and leptokurtic, i.e. more peaked and heavy tailed. Furthermore, we test
empirically our extended Zhang-Xiang quadratic approximation on the VIX options to decom-
pose explicitly the implied volatility smirk into a combination of risk premia. As our analytical
approximation particularly accomodates strongly nonlognormal risk-neutral probability distribu-
tions, this paper empirically proposes a test on the VIX right-skewed leptokurtic distributions.
Since these risk factors define tradeable securities, i.e. volatility, skewness and kurtosis swaps,
our decomposition expressly accommodates the components of the market price of the VIX "fear
gauge’’, fully priced by the VIX options. Second, to the best of the author’s knowledge, this
paper is the first to relate analytically the dynamics of the implied volatility smirk of the VIX
options to the implied risk-neutral distribution. Although recent papers including Volkert (2014)
in [111] and Branger, Kraftschik, and Vélkert (2015) in [40] investigate the properties of the risk-
neutral moments implied by the VIX option prices, they don’t test explicitly the Zhang-Xiang
expansion. Overall, this paper covers the two most-actively traded contracts in the U.S. financial

markets.
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Introduced by Nelson and Siegel (1987) in [92], a large literature covering yield curve mod-
elling documents the dynamic three-factor models, including Litterman and Scheinkman (1991)
in [79], Dai and Singleton (2000) in [55], Ang and Piazzesi (2003) in [18], Diebold and Li (2006)
in [56], Diebold et al. (2006) in [57], Bianchi et al. (2009) in [30], Aguiar-Conraria et al. (2012)
in [7], or Afonso and Martins (2012) in [1]. From an economic motivation, the three salient time-
varying risk factors interpreted primarily as the level, slope, and curvature effects, respectively
affect the yield curve at different maturities, at short-term, and at medium-term primarily. Ex-
tending this approach to volatility modelling, recent literature motivates the three-dimensional
representation to capture the dynamics of the implied volatility smirks. From a Karhunen-Loéve
decomposition of daily implied volatility variations, Cont and da Fonseca (2002) in [54] empiri-
cally disaggregate the implied volatility surfaces into a small number of orthogonal factors. Since
the first three eigenmodes interpreted as the level, slope, and convexity effects, explain around
98% of the daily variance, a low-dimensional factor model accurately captures the dynamics of the
implied volatility surface. Under multi-factor diffusive stochastic volatility models, Bergomi and
Guyon (2012) in [29] derive at order two the implied volatility smile in the volatility-of- volatility,
exhibiting a quadratic approximation in log-moneyness. Specifically, the Bergomi-Guyon expan-
sion decomposes analytically the implied volatility smirk into the at-the-money (ATM) implied
volatility, the ATM skew, and the ATM curvature. These three distinct quantities respectively
drive the level, the slope and the convexity effects associated to the implied volatility smile.
From an economic perspective, since the implied volatility smirk contains all the information of
market option prices, it incorporates the likelihood that investors attach to the realization of
future risks. Intuitively, vanished volatility smirk’s slope and curvature reduce the risk-neutral
probability distribution to the classical Black-Scholes lognormal distribution. Therefore, positive
slope and curvature make the risk-neutral density respectively more right-skewed and leptokur-

tic, i.e. more peaked and heavy tailed. Large literature documents this intuition, including Bates
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(2000) in [28], Carr and Wu (2009) in [48], Backus et al. (2011) in [23], Jackwerth and Vilkov
(2013) in [70], and Andersen, Bondarenko, Todorov, and Tauchen (2014) in [16] among others.
They make clear evidence that aggregate S&P 500 option-implied higher moments tend to be
fully priced in the market price of variance risk and in the disaster risk. Subsequently, Zhang
and Xiang (2008) in [117] derive a second-order polynomial function to relate the dynamics of
implied volatility smirks for S&P 500 index options to implied risk-neutral distribution of asset
returns. This nearly model-free analytical decomposition doesn’t require to assume a dynamics
for the implied volatility. They exhibit that the information contained in the risk-neutral vari-
ance, skewness, and kurtosis fully describe the level, slope, and curvature of implied volatility
smirks. Under the assumption of a continuum of S&P 500 options prices, Martin (2013) in [33]
analytically decomposes the VIX squared into the forward-neutral cumulants of the log forward
S&P 500 returns. This cumulant expansion of the VIX squared provides clear evidence that
the implied volatility smile depends on option-implied higher moments. In the same manner, a
very recent literature extends the methodology to VIX options, consisting in European options
written on VIX futures contracts. Since VIX option prices incorporate investors’ fear and market
price of uncertainty, Volkert (2014) in [111] disaggregates the informational content implied in
the risk-neutral distribution. Applying a probit model from 2006 to 2011, he finds clear ev-
idence that the risk-neutral variance and skewness contain predictability for the likelihood of
upward spikes in the VIX. Prior to upward volatility spikes, average values associated to the
risk-neutral variance and skewness lowers respectively from 5.16% to 4.21%, and from 70.71%
to 65.51%. Branger, Kraftschik, and Volkert (2015) in [10] observe notable right skewness and
excess kurtosis associated to the risk-neutral distribution implied by VIX options. Then, they
empirically investigate the time-series properties of the risk-neutral higher moments, and they
shed light particularly on remarkable market agents’ attitudes towards risk following the U.S.

banking crisis in 2008. Persistent upward trends in higher risk-neutral moments indeed suggest
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investors have become more risk-averse, or expect future stock market crashes.

Subsequently, option-based replication strategies allow mimicking the tradeable option-implied
volatility, skewness, and kurtosis risk premia to take bets on the level, slope, and convexity as-
sociated to the volatility smirks. Based on the Martin decomposition, Schneider and Trojani
(2015) in [104] propose swap trading strategies studied by Bondarenko (2014) in [39] to capture
the isolated tradeable compensation for time-varying risks in higher-order moments. Inspired by
a new class of divergence trading strategies in Alireza (2005) in [14], they exploit the inconsis-
tency between the option-implied risk-neutral distribution, i.e. the fair price of moments, and the
physical distribution of the underlying asset. Similarly, Chang, Zhang, and Zhao (2013) in [50]
introduce new derivative contracts, such as skewness and kurtosis swaps, to trade the forward
realized third and fourth cumulants. Using S&P 500 index options from 1996 to 2005, they shed
light on persistent time-varying properties of higher-order risk premia, offering a justification for
such swap strategies. Less recently, Ait-Sahalia, Wang, and Yared (2000) in [8], and Blaskowitz
and Schmidt (2002) in [35] document the profitability of skewness and kurtosis trades, exploiting
the discrepancies between risk-neutral densities implied by DAX option prices and the historical
state-price densities. Similarly, Vazquez (2014) in [110] builds on the Bergomi-Guyon quadratic
approximation for the S&P 500 option prices to parametrize the investors’ tail risk aversion in
terms of the convexity, skew, and kurtosis risk premia. Furthermore, our so-called ’Smart Vega
Investing” addresses naive long or short equity volatility exposures that consist in allocating
volatility derivatives within equity portfolios. For illustration, the most traded VIX exchange-
traded note, i.e. the VXX ETN, lost over 99.6% of its value over the period 2009-2014, bringing
ruin upon non-sophisticated investors. This paper is particularly motivated by the need to fur-
ther investigate isolated higher-order risks fully compensated by return premia. Whaley (2013)
in [115] suggests that VIX ETPs form inappropriate buy-and-hold investments, as they do not

pay certain cash flows, and typically generate positive costs of carry. From March 26, 2004 to
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March 30, 2012, he finds a 2.3% average slope for the VIX futures term structure at 30 day to
expiration, exhibiting an upward-sloping prices curve, i.e. contango, in nearly 81% of trading
days. Under the expected-utility (EU) theory, Alexander and Korovilas (2012) in [13], and Al
Wakil (2014) in [10] investigate the risk-reduction provided by VIX futures. Since VIX-related
assets exhibit lottery-like features, i.e. high volatility and low skewness, they find that investors’
preference for positive skewness, as modelled by risk-aversion, outstandingly affects portfolio di-
versification. Actually, they economically echo the prudence concept of Menezes et al. (1980) in
[86], as characterized in Ebert (2013) in [59] by the aversion to lotteries with negatively-skewed
payoff distribution. Differently, Mateus and Konsilp (2014) in [85] investigate stock returns pre-
dictability of implied volatility, when decomposed into idiosyncratic and systematic risks. From
January 2001 to December 2010, they provide clear evidence of a return premium when carrying
only the idiosyncratic part of the implied volatility. Indeed, a one percent rise in the implied

idiosyncratic volatility statistically increases future stock returns between 3.06% and 4.26%.

We find analytically an explicit representation of the implied volatility smirk function, ex-
pressed as a nonlinear combination of investable time-varying risk premia reflected in the risk-
neutral distribution. Subsequently, we find strong evidence that this analytical decomposition is
empirically validated for the implied volatility smirks associated either to the SPX or the VIX in-
dex options, both accross the strikes and accross the maturities. For illustration, the adjusted R
squares remain persistently high, since they range from 17.9% to 45.0% for the SPX put options,
and from 11.9% to 31.5% for the VIX call options. Furthermore, empirical results show that
the contribution of the higher-order risk premia in the dynamics of the implied volatility smile
is more important for the VIX call options than for the SPX put options. Consistently with the
prior literature, this empirical finding confirms that the higher-order risks implied by the risk-
neutral distribution have considerable informational content in the case of strongly nonlognormal

distributions, since the associated market prices fully incorporate expectations about extreme
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events. Indeed, we find in the case of the VIX options that the kurtosis risk premia incorporate
more information than the volatility risk premia, relatively to the SPX options. Subsequently,
this paper paves the way for new option-based volatility strategies to capture the compensation

for holding the option-implied higher-order risk premia.

This paper extends the prior literature in the three following ways. From the Zhang-Xiang
(2008) quadratic approximation in [117] and the decomposition of Martin (2013) in [83], we
derive analytically an explicit third-way representation of the implied volatility smirk function,
expressed conveniently as a combination of tradeable time-varying risk premia reflected in the
risk-neutral distribution. Therefore, to the best of our knowledge, this paper is the first to
test these theoretical underpinnings to the VIX right-skewed leptokurtic distribution. Hence,
building on Volkert (2014) in [111] and Branger, Kraftschik, and Volkert (2015) in [10], we find
clear evidence that the dynamics of the volatility smirk proves to be particularly driven by the
higher-order risk factors in the case of the VIX options than for the SPX options. Subsequently,
since we propose new option-based replication strategies that allow mimicking the tradeable
option-implied volatility, skewness, and kurtosis risk premia to take bets on the level, slope, and
convexity of the volatility smirks, this paper extends the prior literature including Schneider and
Trojani (2015) in [104], Bondarenko (2014) in [39], Alireza (2005) in [14], Chang, Zhang, and
Zhao (2013) in [50], Ait-Sahalia, Wang, and Yared (2000) in [8], and Blaskowitz and Schmidt
(2002) in [35] among others.

This paper arises practical implications especially within the industries of the smart indices
and the asset management. Since we find clear evidence that our factor-based investing approach
may be particularly tailored for trading the implied volatility smile, this paper formally extends
the Smart Beta investing to the volatility strategies. Furthermore, our so-called ’Smart Vega
Investing” addresses the controversial performance of long or short equity volatility exposures

that consist in allocating naive volatility derivatives within equity portfolios. Besides, we formally
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pave the way for the development of new smart investable volatility indices. For illustration, the
VIX fear gauge’ index gave rise to one of the greatest financial innovations, as the VIX options
have become the second most actively traded contracts at the CBOE.

The remainder of this paper is organized as follows. In section 1, we provide some descriptive
statistics and we describe the methodology applied to clean the options data samples. Further-
more, we discuss some of the well-known empirical properties associated to the SPX and the
VIX options. In section 2, we introduce the empirical strategy, i.e. the model setup, by ana-
lytically deriving from the Zhang-Xiang quadratic approximation an explicit decomposition of
the implied volatility smirk into higher-order risk premia. Therefore, we describe the Bakshi-
Kapadia-Madan approach to measure the risk-neutral moments, we document the bias-corrected
measures of physical moments based on high-frequency estimation, and we define the tradeable
volatility, skewness, and kurtosis risk premia. Hence, we introduce our ’Smart Vega Investing”
framework, that consists in option-based replication strategies mimicking the compensation for
time-varying risk factors in higher-order moments. Section 3 presents the empirical results, the
time-varying properties of the risk factors we disentangle, and the economic consistency of the
replication strategies we propose within our factor-based investing framework. The conclusion
resumes the main results, the contributions to the prior literature, the practical implications,

and the perspectives.

2.2 Data

The data sample primarily consists in four low-frequency datasets over the period from February
24, 2006 to August 29, 2014, and two high-frequency datasets from January 24, 2008 to December
19, 2012. Provided by OptionMetrics, raw datasets for historical SPX options and VIX options

include the closing bid-ask mid prices, expiration dates, strike prices, open interest, and trading
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volume on a daily frequency, for all the listed maturities. It is particularly noticeable that our
empirical study covers the two most-actively traded contracts in the U.S. Therefore, provided
by Datastream, historical SPX and VIX futures settlement prices complete the SPX and VIX
options datasets on a daily frequency to derive the risk-neutral distributions. The risk-free
discount rate provided by Bloomberg on a daily frequency corresponds to the Treasury bill yields
for constant maturities ranging from 1-month to 12-month, using linear interpolation across the
adjacent maturities when required. Finally, the datasets provided by Bloomberg on an intradaily
frequency consist in tick-by-tick historical prices associated to the SPX and the VIX Indexes.
The high-frequency datasets allow to derive the model-free physical distribution to compare it to
the risk-neutral measures. The data section describes in the one hand, the methodology usually
met in the literature that we applied to filter out the market data inconsistencies, and exhibits

in the other hand the descriptive statistics related to empirical properties.

2.2.1 SPX Index and Futures

Introduced in 1957 by Standard and Poor’s, the S&P 500 Index designates a market capitalization-
weighted index, tracking the aggregate and representative performance for the 500 individual
stocks listed on the NYSE or the NASDAQ), and associated to the largest U.S. companies. Con-
trary to strictly rule-based market indices such as the Russell 1000, the S&P 500 companies
forming the SPX Index are usually selected by a committee following specific criteria, e.g. mar-
ket capitalization, liquidity, or public float, to ensure that they appear representative of their

economic sector.

Therefore, intraday high-frequency data associated to the SPX Index covers the period from
January 24, 2008 to December 19, 2012 with 252 trading days. Each trading day consists in

one-minute tick-by-tick prices, such that the trading time spans from 9:30am to 16:00pm.
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Commonly considered as the leading indicator of the large-cap companies within the U.S.
stock market, the S&P 500 Index gave rise to the S&P 500 index futures contracts. Therefore,
in the wake of the successful SPX futures, the Chicago Mercantile Exchange (CME) introduced
in 1997 the E-Mini SPX futures, becoming the most traded equity index futures contract in
the world. From the cost-of-carry relationship between the SPX Index and the SPX futures,
the fair value associated to the futures price corresponds to the discounted index spot. The
SPX futures contracts usually expire at each quarter, generally on the third Friday of March,
June, September and December. We download the SPX futures daily settlement prices from
Datastream, providing quaterly constant maturities for which the future position is continuously

rolled into the next contract, at close on the day prior to expiration.

2.2.2 SPX Options

We restrict our empirical analysis to the traditional European index options written on the S&P
500 Index with a.m.-settlement and quarterly near-term expiration time. Introduced by the
CBOE in April 1987, the standard SPX index options provide a particularly deep liquidity, a
European-style exercise, and a large notional size around $200,000 per contract, with expiration
times up to twelve near-term months. Due to cash-settlement, the underlying asset corresponds
by convention to the forward S&P 500 index, i.e. SPX futures, at the considered expiration
date. Therefore, reverting the Black option pricing formula (1976) in [32], the implied volatilities
derived from SPX option mid prices correspond to the volatility parameter such that, plugged
into the Black option valuation formula, they give the options market prices. For the purpose of
filtering out the pricing anomalies, we apply the standard methodology as described by Neumann
and Skiadopoulos (2013) in [94]. Specifically, we restrict the data sample to SPX option quotes

for a time to maturity between 5 and 270 days to mitigate the lower liquidity effect. Furthermore,
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we filter out the abnormal option quotes for zero bid prices, zero open interest, negative bid-
ask spreads, and more generally, every time implied volatility can’t be computed consistently.
Filtered data sample consists in 1,586,801 option quotes, broken down respectively into 634,206

call options quotes, and 952,595 put options quotes.

Table 2.1 displays the descriptive statistics associated to SPX options, over the period from
February 24, 2006 to August 29, 2014. It displays the number of observations, the average
implied volatilities, open interest, trading volume, and bid-ask spreads, for different log mon-
eyness and maturities buckets. For the purpose of a simple descriptive framework, we define
the log moneyness as the logarithm of the strike price divided by the SPX spot. Nevertheless,
for the pricing purpose, we consider further the SPX futures prices as the underlying asset.
Averaging consists in equally-weighting the call and put options data for each log moneyness-
maturity category. Consistently with Skiadopoulos, Hodges, and Clewlow (1999) in [107], our
preliminary analysis brings out well-known empirical properties, e.g. the downward-sloping SPX
implied volatility smile and the downward-sloping SPX term structure, reflecting that market
agents usually trade SPX options to buy long-term portfolio insurance. First, when aggregating
the average daily trading volume for SPX options, OTM put options tend to be strongly more
actively traded than OTM call options, respectively at 7,503 and 5,558 contracts. In parallel,
ITM call options tend to be less actively traded than ITM put options, respectively at 1,729
and 2,089 contracts. Since OTM put options tend to be nearly three times more heavily traded
than ITM put options, market agents may usually trade OTM and deep OTM SPX put options
to pay insurance portfolio and disaster insurance against stock market crashes. Second, the
implied volatility-moneyness function of SPX options tend to be generally downward-sloping,
confirming the empirical property that market agents usually trade SPX options to buy portfolio
hedges against stock market riskiness. Figure 2.2 displays the average implied volatility smirks

for four distinct maturity buckets, over the period from February 24, 2006 to August 29, 2014.
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This empirical property clearly shed light by shorter-maturity buckets, is commonly called the
volatility skew, characterizing higher implied volatilities for lower strike prices, at a given ex-
piration date. Therefore, the cross-section of implied volatilities as a function of strikes proves
to be more roughly V-shaped for shorter maturities, whereas Figure 2.4 exhibits it softens out
for long-dated expirations, becoming even flatter and lower. This stylized fact illustrates that
OTM put options are relatively even more expensive than ATM and ITM call options when
considering shorter maturities. Third, the term structure of SPX implied volatilities tends to
be downward sloping, as Figure 2.3 displays. This suggests that specific agents, e.g. mutual
funds, may have recourse to longer maturities for OTM SPX put options to buy relatively cheap

long-term portfolio protection.

2.2.3 VIX Index and Futures

Introduced by Whaley (1993) in [113], the VIX Index measures the market’s expectation of 30-
day implied volatility, by initially reverting the Black option pricing formula (1976) in |33] from
S&P 100 (OEX Index) option prices, for near-the-money strike prices. Therefore, the CBOE
revised the calculation methodology in 2003, switching to an entirely model-free approach based
on the S&P 500 (SPX Index), in order to create a suitable underlying for tradable volatility
securities. Nowadays, as described by the CBOE (2009) in [19], the real-time VIX starting in
January 1990 has been derived from mid bid-ask prices for call and put options on the S&P 500,
for the front and the second month expirations, following a model-free approach.

The preliminary analysis puts into evidence some well-known empirical time-series proper-
ties of equity implied volatility, in particular upward jumps, heteroskedasticity, i.e. volatility
clustering, mean-reversion, and non-normality in probability distribution. Table 2.8 displays the

descriptive statistics associated to VIX levels and log returns, over the period from February
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24, 2006 to August 29, 2014. Data sample consists in 2,435 historical daily closing VIX spots
provided by Bloomberg. Over the entire data sample, the average level of the VIX reaches
20.65% (Panel A), spiking to a historical record high of 80.86% on November 20, 2008 (Panel
B). Statistics are then broken down into two distinct subsamples related to stock market stress,
either the subprime crisis period (Panel B) from August 29, 2008 to November 20, 2008, or the
sovereign debt crisis (Panel C) from July 11, 2011 to October 3, 2011. During the subprime
and the sovereign crises, higher volatility in the VIX level (respectively at 18.20% and 8.27%)
was materialized by more frequent and stronger spikes, sheding light on volatility clustering. As
described by Panel A, the heavily right-skewed and leptokurtic unconditional distribution of the
VIX level (respectively 2.24 and 9.50) exhibits that it slowly reverts back to its average level
when stock market recovers. Furthermore, the strongly significant Jarque-Bera test statistic
(1723.05 in Panel A) associated to the VIX log returns over the entire data sample validates sig-
nificant departures from normality, specifically the strongly leptokurtic probability distribution
characterized by fat tails and peakedness.

Therefore, intraday high-frequency data associated to the VIX Index covers the period from
January 24, 2008 to April 26, 2016 with 252 trading days. Each trading day consists in one-
minute tick-by-tick prices, such that the trading time spans from 9:30am to 16:00pm.

Extoling the diversification benefits based on the negative correlation between the SPX Index
and the VIX Index, the CBOE introduced VIX futures contracts in 2004, just a few month after
the revision of the VIX Index calculation methodology. The VIX futures consist in standard
futures contracts on the forward 30-day implied volatilities of the S&P 500 Index. Nevertheless,
contrary to the SPX futures, there is no cost-of-carry relationship between the VIX Index and
the VIX futures. Hence, the fair value associated to VIX futures is derived from the pricing of
the forward variance. We download the VIX futures daily settlement prices from Datastream,

providing 6 monthly constant maturities for which the future position is continuously rolled into
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the next-front month contract, on the day prior to expiration.

2.2.4 VIX Options

Since VIX options consist in European-style options written on VIX futures contracts, the un-
derlying asset is not the VIX spot but the forward VIX at expiration date. Specifically, the
underlying for a futures contract or an option written on the VIX with maturity 7' = ¢t 4+ ¢; con-
sists in the VIX over the period from T to T =t + % . Therefore, VIX derivatives are written
on the VIX for the next 30 days following the expiration date. By convention, settlement price
for the usually six listed maturities is based on expiration date, as defined by the Wednesday
that is thirty days prior to the third Friday of the calendar month immediately following the
expiring month. Reverting the Black option pricing formula (1976) in [33], implied volatilities

are derived from VIX option mid prices, corresponding to the volatility parameter such that,
plugged into the Black option valuation formula, they give options market prices.

Due to market data inconsistencies, we apply the standard methodology as described among
others by Volkert (2014) in [111] and Branger, Kraftschik, and Volkert (2015) in [410]. Hence,
we restrict the data sample to the VIX option quotes for a time to maturity between 7 and 180
days to mitigate pricing anomalies and to take into account the recent contract specifications.
Furthermore, we filter out the abnormal option quotes for zero bid prices, zero open interest,
negative bid-ask spreads, and more generally, every time implied volatility can’t be computed
consistently. Filtered data sample consists in 282,314 option quotes, broken down respectively

into 146,024 call options quotes, and 136,290 put options quotes.

Table 2.9 displays the descriptive statistics associated to VIX options since their launching,
over the period from February 24, 2006 to August 29, 2014. It contains the number of obser-

vations, the average implied volatilities, open interest, trading volume, and bid-ask spreads, for
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different log moneyness and maturities buckets. The preliminary analysis brings out well-known
empirical properties, e.g. the upward-sloping implied volatility smile and the downward-sloping
term structure, reflecting that market agents usually trade VIX options to buy long-term portfo-
lio insurance. First, when aggregating the average daily trading volume for VIX options, OTM
call options tend to be strongly more actively traded than OTM put options, respectively 47,957
and 36,556 contracts. In parallel, ITM call options tend to be nearly twice less actively traded
than ITM put options, respectively 15,346 and 26,417 contracts. Since OTM call options tend
to be nearly three times more heavily traded than I'TM call options, market agents usually trade
OTM and deep OTM call options to pay insurance portfolio and disaster insurance against stock
market crashes. Second, the implied volatility-moneyness function of VIX options tend to be
generally upward-sloping, confirming the empirical property that market agents usually trade
VIX options to buy portfolio hedges against stock market uncertainty. Figure 2.10 displays the
average implied volatility smirks for four distinct maturity buckets, over the period from February
24, 2006 to August 29, 2014. For shorter maturities, the more pronounced U-shaped functions
show that OTM call options are relatively even more expensive than ATM and ITM call options
when considering shorter maturities. As illustrated in Figure 2.12, the implied volatility smile
flattens out and tends to be lower for longer maturities. Third, the term structure of VIX implied
volatilities tends to be strongly downward sloping, as displayed by Figure 2.11. This stylized
fact suggests that specific agents, e.g. mutual funds, would have recourse to longer maturities

for OTM VIX call options to buy relatively cheap long-term portfolio protection.

2.3 Empirical Strategy

In this section, we analytically extend the Zhang-Xiang quadratic approximation developped

in [117] to decompose the implied volatility smirk function into a linear combination of the
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level, slope, and curvature quantities, and therefore into a nonlinear combination of the option-
implied risk-neutral moments. Since options market prices fundamentally incorporate the market
price of uncertainty, our underlying intuition consists in explicitly approximating the implied
volatility smirk for a certain maturity in terms of tradeable risk premia associated to higher-
order risks. The motivation underlying the use of the Zhang-Xiang approximation lies in the
fact that this three-dimensional representation allows to decompose parsimoniously the dynamics
of the volatility smirk at any point of time, by accommodating a combination of salient features
interpreted primarily as the level, slope, and curvature factors. Hence, building on the yield
curve modelling, this parsimonious approach relaxes the assumptions about the dynamics of the

implied volatility smirk.

2.3.1 Risk-Neutral Moments

We investigate the dynamics of the risk-neutral higher moments extracted from the market prices
of options. To this end, we use the model-free approach introduced by Bakshi, Kapadia, and
Madan (2003) in [24] detailed in Appendix A. Let R (¢t,7) = In[S(t+T)] — In[S (¢)] the log
return at time ¢ over the time period T. Let define the risk-neutral mean of returns p(¢,T),
volatility RNV ol(t,T), skewness RN Skew(t,T), and kurtosis RN Kurt(t,T) measured at time

t over the time period T by

w(t,T)=EC[R(t,T)] (2.3.1.1)

N

RNVol (t,T) = [EtQ [R (t,T)z] —M(th)Q} (2.3.1.2)
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From Bakshi and Madan (2000) in [25], any payoff function H [S] can be spanned alge-
braically by a continuum of OTM European call and put options. Therefore, let r the risk-free
rate, C (t,T; K) (P (t,T;K) ) the price of a European call (put) option at time ¢ , with time
to expiration 7', and strike price K . Let the volatility V(¢,7T), the cubic W (¢,T), and the
quartic X (¢,T") contracts associated to the payoff function H [S] . As below, Equations (2.3.1.1),
(2.3.1.2), (2.3.1.3), and (2.3.1.4) can be expressed in terms of the volatility, cubic, and quartic
contracts’ fair values under the risk-neutral expectation operator conditional on information at

time ¢ :

p(t,T) = exp (rT)—l—esz(rT)V ,1)-S2UD y, (t,T)—eXp;;T)X (t,T) (2.3.1.5)
RNVol (t,T) = |V (t,T) exp (+T) — p (t,T)Q]% (2.3.1.6)
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exp (rT)V (£, T) — u(t,T)%|°

(2.3.1.7)

w

exp (rT) X (¢, T) — 4p (¢, T) exp (rT) W (¢, T) + 6 exp (rT) pu (t, T)> V (¢, T) — 3u (¢, T)*

RNKurt (t,T) = 5
[exp () V (7)o (1,T)?
(2.3.1.8)

Furthermore, in Equations (2.3.1.5), (2.3.1.6), (2.3.1.7), and (2.3.1.8), contracts’ fair values
V(T), W(tT), and X (¢,7) can be spanned by a linear combination of OTM European
call and put options, the stock and the risk-free asset, requiring a large continuum of traded
OTM options. However, since we observe in practice only few option market prices for discretely
spaced strike prices, we apply the non-parametric approach of Volkert (2014) in [111] to adress
discreteness by applying a cubic smoothing spline to interpolate implied volatilities amongst
strike prices. Therefore, we approximate numerically the integral functions of volatility, cubic,

and quartic contracts by using trapezoidal approximations.

2.3.2 Realized Moments

The recent literature about high-frequency econometrics, including Bollerslev, Tauchen, and
Zhou (2009) in [36], and Neumann and Skiadopoulos (2013) in [94] among others, usually esti-

mates the daily realized variance under a nonparametric approach by summing frequently sam-
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pled squared returns. Similarly, Amaya, Christoffersen, Jacobs, and Vasquez (2013) in [15] derive
the daily realized skewness and kurtosis from intradaily returns of the S&P 500 Index. Never-
theless, since this standard econometric approach is widely biased by the market microstructure
noise on volatility estimation, a naive practice consists in throwing away a lot of available data
by sampling less frequently the intradaily underlying asset prices. In this way, we use the model-
free approach proposed by Zhang, Mykland, and Ait-Sahalia (2005) in [118] to fully exploit the
tick-by-tick data, to correct for the bias of market microstructure noise; and furthermore, to

estimate similarly the higher-order realized moments.

According Bollerslev, Tauchen, and Zhou (2009) in [36], the daily realized variance is usually
estimated by summing the intradaily returns of the underlying asset. Let R;; the i-intraday log
return calculated on day ¢ and associated to the price index P, ;. Then R;;r = In (Pt%) —
In (Pt7 61 ), where N denotes the total number of observed intraday log returns in the trading

day t. Therefore, the daily realized volatility RDVolga”) is usually estimated by summing naively

all the n squares of intradaily log returns Ry ;:

N 2
RDVoll™) = <Z Rii) (2.3.2.1)
i=1

Similarly, following Amaya, Christoffersen, Jacobs, and Vasquez (2013) in [15], the ex-post
realized daily skewness RDSkew, and kurtosis RDKurt; 7 can be expressed as follows, respec-

tively scaled by NV 3 and N to ensure they correspond to the daily realized measures:
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Nevertheless, Zhang, Mykland, and Ait-Sahalia (2005) in [118] argue that using naively all
the tick-by-tick data makes the market microstructure noise totally swamp the estimated realized
volatility under the nonparametric case. Suppose the log price process X; follows a continuous
semi-martingale. Then, it is modeled by the stochastic differential equation dX; = u; + o:dWy,
where py, o, and W; denote respectively the drift and the volatility of the log return process of
X, at time ¢, and a standard Brownian motion process. Therefore, the object of interest primarily
consists in estimating the integrated variance, i.e. the quadratic variation (X, X)), = fofdt over

0
the time period [0,T]. Indeed, Zhang, Mykland, and Ait-Sahalia (2005) show that RDVolé?”)

in the (2.3.2.1) converges in law to

1
2

T
. 2T
RDVolS™™ % (X, X}, + 20E [2] + |4nE [£4] += / oldt| Zia  (23.2.3)
0

where RDVOZ;I " is even more positively biased by the market microstructure noise 2nE [52]
when the sample size n of observed intradaily prices increases. Consequently, sampling sparsely
either at an arbitrary frequency or even at an optimal frequency by decreasing n are tantamount
to ignoring the microstructure noise and to throwing out a large fraction of the available intradaily

data. In contrast, Zhang, Mykland, and Aft-Sahalia (2005) propose the following Two-Scales
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Realized Volatility estimator RDVol(TTS) that uses all the available tick-by-tick data but that

incorporates subsampling, averaging, and bias correction for the market microstructure noise:

K
1 n a
RDVoly ™ = = 3" RDVoly) — %RDVOZ(T o (2.3.2.4)

k=1

where the original grid G = {t, ..., t,,} of observation times of log prices in a given trading day
is partitioned into K mnon-overlapping and equal subsamples G*) for k = {1,..., K}. The k-th
sub-grid is written as G*) = {tk—1,th—14K s tk—14n,k - Therefore, Zhang, Mykland, and Ait-
Sahalia (2005) average the estimators RDVolgfC ) obtained on each of the K grids of average size

K
n = =B+l giving rise to the estimator RDV ol = =3 RDVol". Then, bias correction
k=1

is determined by K = n3 3
0

——2 T 3
12F [£2] /T" [otdt| . Finally, RDVOZ(TTS) corrects for the bias
2nFE (%] due to the microstructure noise of RDVOZS,? v9) since it now increases with the average

subsamples size 7.

Similarly, we derive to the higher-order moments the Zhang, Mykland, and Ait-Sahalia (2005)

methodology of subsampling, averaging, and bias correction for the market microstructure noise:

K —
n
k=1
1
K

(2.3.2.5)

=

RDKurt{ — %RDKurtgi‘”)

=1

RDK urtngS) =

o

where RDSkew(TTS) and RDK urt(TTS) denote respectively the two-scales realized skewness and

kurtosis.
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2.3.3 Option-Implied Risk Premia

Option-implied risk premia define the difference between the physical and the risk-neutral ex-
pectations of the return moments. We first recall the general definitions of option-implied risk
premia, in particular for higher-order moments, and therefore, we derive them for options at
different maturities.

Carr and Wu (2009) in [48] and Bollerslev, Tauchen, and Zhou (2009) in [36] define the
volatility risk premium as the difference between the realized and the risk-neutral volatilities, i.e.
VRP, 4. computed at time ¢ over the period 7 as the difference between the ex post realized
return volatility over the [t — 7,¢] time interval and the ex ante risk-neutral expectation of the
future return volatility over the [t,t + 7] time interval. Henceforth, since we calculate the premia
for different maturities, we note VRP, 1, v to define the volatility risk premium calculated at
time ¢, over the period 7, as the difference between the realized volatility over [t — 7,¢] and the

risk-neutral volatility over [¢t,¢ + 7], associated to options and futures for the given maturity 7"

VRP v = Ef [014-77) — B [0144-] (2.3.3.1)

where E [] and EF [-] denote the time-¢ conditional expectation operator under respectively the
risk-neutral measure () and the physical measure P. Therefore, E} [04 4, 7], and EtQ [o¢,t47]
are the expected values conditional to time ¢ of the volatility realized over time period 7 under
respectively the physical and the risk-neutral probability measures, associated to options and
futures at the given maturity 7". Furthermore, the volatility risk premium V RP; ;. multiplied
by a notional dollar amount usually defines the payoff at maturity ¢ 4+ 7 of a return volatility
swap. Under the no-arbitrage condition, the constant volatility swap rate SW; 4, determined

at time t and paid at time t + 7 equals the risk-neutral expectation of the future realized volatil-
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ity. Henceforth, we calculate on a daily frequency the option-implied risk premia for different

maturities on a daily frequency, i.e. for 7 =1 day.

In line with Bollerslev, Tauchen, and Zhou (2009) in [36], we estimate Ef [0} ;4 ,] in Equation
(2.3.3.1) by the realized volatility denoted RDVolgTS) over the day ¢. For the sake of simplicity,
we henceforth drop the subscript 7 and we denote VRP; ;7 as the volatility risk premium
computed at time t over the period 7 = 1 day, associated to options and futures for the given

maturity T

VRP,r = RDVol™ — RNVol, 1 (2.3.3.2)

Similarly, the underpinnings of volatility swaps can be theoretically extended to forward
contracts written on the third and fourth moments. Indeed, the extensive use of volatility
swaps within the financial industry henceforth augures well for the success of higher-order swap
contracts. The skewness and the kurtosis swaps have zero net market value at the initiation,
since no arbitrage dictates that the skewness and the kurtosis swap rates respectively equals the
. . (TS) . (TS)
risk-neutral expected value of the realized skewness RDSkew, and kurtosis RDKurt;” /.

Then, we specify as follows the skewness risk premium SRP, 1 associated to the options and the

futures at given maturity 7'

SRP, 7 = RDSkew!"™ — RN Skewy 1 (2.3.3.3)

Subsequently, the kurtosis risk premium K RP; 7 computed at time ¢ over the period 7 =1

day measures the difference between the ex post realized return kurtosis over the [t — 7,¢] time
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interval and the ex ante risk-neutral expectation of the future return kurtosis over the [t,¢ + 7]

time interval, associated to the options and futures for the given maturity 7"

KRP,p = RDKurt"™ — RNKurt, 1 (2.3.3.4)

2.3.4 Quadratic Approximation

From Zhang and Xiang (2008) in [117], the three-dimensional representation of the implied
volatility smirk I'V is assumed to be approximated by a second-order polynomial function in
the log-moneyness . For the sake of clarity, we note the implied volatility smirk function IV} 1

computed at time ¢ for a certain maturity 7" as follows

IVir (&) = vour [+ 147E + 72,7E7] (2.3.4.1)

where the strike K, the forward price Fj, the average volatility ¢ of the underlying asset price,

and the time to maturity 7' characterize the log-moneyness & = % Then, vo.¢,7, 71,675
and s ¢ respectively designates the level, the slope, and the curvature factors associated to the

volatility smirk I'V; 7 at the maturity 7'

From an economic motivation, vanished smirk’s slope v; ¢, and curvature 7, ; v reduce the
implied volatility smile function to the Black-Scholes model, i.e. a flat at-the-money volatility

(ATMV) smile.
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IVir (§) =1,
IWVir (&) =001 1+ 7107E] (2.3.4.2)

IVir (§) = o1 [T+ 71078 + Y2,0,067]

where the second equation above corresponds to the skewed implied volatility, expressed as a
linear function that incorporates the ATMV ~ + 7 and the slope v; ¢ 7. Then, the smirked implied
volatility designates a quadratic function with both the slope and curvature 7,;r. Hence,
the three factors fully quantify the departure of the returns probability distribution from the
lognormal distribution, since 7,7 and 724 7 incorporate the risk-neutral moments associated
to higher-order risks.

Therefore, as briefly detailed in Appendix C, Zhang and Xiang derive from asymptotic
expansions the approximations for the level, slope, and curvature (o .7, V1,17, V2,i,7) associated

to the implied volatility smirk I'V; 1, expressed in terms of the risk-neutral volatility, skewness,

and kurtosis (RNVol, 1, RNSkew,, RN Kurt, )

1
Your ~ o |1-— o (RNKurtyr +3)| RNVol r,
1
Ntr R ERNSkewt,T, (2.3.4.3)
1
T R 5 [RN Kurtyr + 3]

Subsequently, we extend the Zhang-Xiang approximations reported in (2.3.4.3) by exhibiting
the volatility, skewness, and kurtosis risk premia denoted (VRP, 1, SRP, 7, KRP, ). Then, our
following third-way representation of the implied volatility smirk explicitly accommodates the

tradeable components of the market price of uncertainty incorporated in options market prices:
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Your A [1 -5 (RDK it g - KRPtT>] [RDvoz§T5> - VRPt,T} :

1
VT N = [RDSkewt(TS)—SRPt,T},

Your N [RDKm”” +3- KRPt,T}
(2.3.4.4)

where (RDVolﬁTS),RDSkewt(TS),RDK urtETS)) designate respectively the realized volatility,
skewness, and kurtosis associated to the underlying asset prices. Therefore, we analytically
decompose as follows the volatility smirk into a convenient combination of the tradeable option-

implied risk premia (VRP, v, SRP, v, KRP, 1),

Vir (€ [ RDK A KRPt,T)] [RDVolt(TS) - VRPt,T]

1
8 |:1 o (RDKUTtt 74+ 3— KRP, T):| [RDVOZETS) _ VRPt,T}

[RDSkewt(TS) - SRP.zr|¢

11 (TS) (TS)
5 [1 5 (RDKurtt +3- KRPtT>] [RDVolt VRPt,T]

[RDKurt™ + 3~ KRP,z| ¢’
(2.3.4.5)

As suggested by (2.3.4.2), the implied risk premia SRP; v and V RP, r that reward for bear-
ing the higher-order risks fully quantify the departure of the implied volatility smile function IV, r

from the Black-Scholes model. Hence, in the case of strongly non lognormal distributions, SRP;
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and K RP; r should have bigger contributions in the volatility smile approximation (2.3.4.5) when
compared to the volatility risk premium V RP; 7. Furthermore, we propose later an empirical
methodology to test the analytical approximation (2.3.4.5). For this purpose, we perform a
Levenberg-Marquardt algorithm to solve the nonlinear least squares minimization problem, re-
spectively in the case of standard distributions, i.e. SPX options, and strongly right-skewed and

leptokurtic distributions, i.e. VIX options.

2.3.5 Mimicking Factors

Our factor-based volatility investing framework is theoretically underpinned by capturing the
tradeable compensation for time-varying risks in higher-order moments, that we empirically
isolate from options market prices. Schneider and Trojani (2015) in [104] propose variance,
skewness, and kurtosis swap trading strategies investigated by Bondarenko (2014) in [39]. Based
on a new class of divergence trading strategies introduced by Alireza (2005) in [14], these swaps
exploit the discrepancy between the option-implied risk-neutral distribution, i.e. the fair price of
moments, and the real distribution of the underlying asset. Similarly, Chang, Zhang, and Zhao
(2013) in [50] examine the performance of skewness and kurtosis swaps, to trade the forward
realized third and fourth cumulants. Using S&P 500 index options from 1996 to 2005, they
shed light on salient time-varying properties of higher-order risk premia, offering an economic
justification for such swap strategies. Less recently, Ait-Sahalia, Wang, and Yared (2000) in [8],
and Blaskowitz and Schmidt (2002) in [35] document the profitability of skewness and kurtosis
trades, exploiting the discrepancies between risk-neutral densities implied by DAX option prices
and the historical state-price densities.

Specifically, Alireza (2005) in [14] extends divergence trading strategies to arbitrate the

SPX implied volatility smile for higher-order moments. Let the option-implied risk- neutral
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distribution be more skewed to the left than the real distribution of the underlying asset. Then,
OTM put options may be relatively overpriced with respect to the OTM call options, since
the risk-neutral distribution should reflect the fair price of skewness. Subsequently, trading the
skewness consists in selling the OTM SPX put option P (S, K¢) and buying the OTM SPX call
option C (St, K¢), associated to the underlying asset price Sy and the strike price K. Therefore,
the payoff value gy, associated to the corresponding delta-vega-neutral portfolio is expressed

as

Hskew = C (St, Kc) — I;TC)P(StaKC) - [Ao ~ZCAp| 8, (2.3.5.1)

vp

where (A¢, Ap) and (ve,vp) respectively designate the delta and the vega of the call and put
options. Hence, the payoff I1geq, is an increasing function of the underlying asset price .Sy, since
Ap increases more than Ag with S;.

Similarly, let the option-implied risk-neutral distribution has a sharper peak and fatter tails
than the real distribution of the underlying asset. Then, OTM options may be relatively over-
priced with respect to ATM options. Subsequently, trading the kurtosis consists in selling the
OTM call C (S;, K3) and OTM put options P (S, K1), and buying the ATM call C (S, K») and
the ATM put option P (S;, K3) for strike prices K1 > K5 > Kj3. Hence, the payoff value TI .+

associated to the corresponding delta-vega-neutral portfolio is

Ve,

I icurt = C(StaKQ) + vp P(St7K2)
2
— O (51, K3) — "5 P (S, K1) (2.3.5.2)
vp,

Vo, Ve,
- ACg + 7AP1 - AC2 - 7AP2 St
vp, vp,
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Similarly to a butterfly strategy, the payoff Il is a decreasing function of the variations
range of the underlying asset price S;. Hence, the skewness and the kurtosis trades are generally
interpreted as insurance-selling strategies, but mirror trades may be usually considered as buying
insurance. This last approach is particularly motivated by the considerable costs of carry gen-
erated by a long exposure to the entire implied volatility. For illustration, the most traded VIX
exchange-traded note, i.e. the VXX ETN, lost over 99.6% of its value over the period 2009-2014,
bringing ruin upon many non-sophisticated investors. Whaley (2013) in [115] suggests that VIX
ETPs form inappropriate buy-and-hold investments, as they do not pay certain cash flows, and
typically generate positive costs of carry. From March 26, 2004 to March 30, 2012, he finds a 2.3%
average slope for the VIX futures term structure at 30 day to expiration, exhibiting an upward-
sloping prices curve, i.e. contango, in nearly 81% of trading days. Hence, deep investigations of

option-based strategies built on the factor-based investing are left for future research.

2.4 Empirical Results

2.4.1 Risk-Neutral Moments

In this subsection, we investigate the empirical time-series properties of the option-implied risk-
neutral distribution associated to the SPX index options and the VIX options, by extracting
the risk-neutral moments related to different time to maturities from options market prices,
following the Bakshi-Kapadia-Madan methodology. Our empirical results are consistent with
the recent prior literature. In the case of the SPX index options, this includes Panigirtzoglou
and Skiadopoulos (2004) in [95], Lynch and Panigirtzoglou (2008) in [80], and Neumann and

Skiadopoulos (2013) in [94] among others. And in the case of the VIX options, Volkert (2012)
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in [111] and Branger, Kraftschik, and Volkert (2015) in [40] are the closest to our results.

SPX Options

Figure 2.5 exhibits the risk-neutral moments for 60-day time to maturity. By convention, the
underlying asset of SPX options are the SPX futures associated to the considered time to ma-
turity. Hence, the risk-neutral mean of prices in the upper panel closely coincides with the
settlement prices of the SPX futures for 60-day time to maturity. The major jumps in the annu-
alized risk-neutral volatility correspond well to the Lehman Brothers bankruptcy on September
15, 2008 (75.8%), the Flash Crash on May 6, 2010, and the downgrade of the U.S. government
credit rating on August 5, 2011, respectively. Therefore, even if we observe strong instability
in the estimation of the higher-order SPX risk-neutral moments, their global dynamics follow
the prior literature. As described by Neumann and Skiadopoulos (2013) in [94], the risk-neutral
skewness is generally negative over the entire sample period, and for any considered maturity
and we observe temporary excess kurtosis. Table 2.2 displays summary statistics associated to
the risk-neutral moments measured in levels and in first differences. Overall, accross the 60-,
120-, and 180-day time to maturity, the average risk-neutral skewness ranges from -0.065 to
-0.413, and the risk-neutral kurtosis ranges from 2.086 to 2.959 on average. Furthermore, we ob-
serve considerable excess kurtosis, even reaching 5.059 and 11.768 at the 60-day and the 120-day
time to expiration. Hence, quite consistent with the prior literature including Bakshi, Kapadia,
and Madan (2003) in [24], our findings validate that the index risk-neutral probability density
functions are generally negatively skewed and exhibit some excess kurtosis. In particular, Bates
(1991) in [27] and Rubinstein (1994) in [101] observe that equity index probability distributions
become risk-neutrally skewed to the left, even more after the crash of 1987. Nevertheless, the
risk-neutral kurtosis that we estimated proves to be lower than documented, requiring also some

fine-tuning from our methodology.
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Moreover, Table 2.2 evaluates the autocorrelations and the stationarity by using respectively
the Ljung-Box Q test and the Augmented Dickey-Fuller (ADF) unit root test. Serial autocorre-
lations exhibit strong persistency of the four risk-neutral moments, measured either in levels or
in first differences. Specifically, the Ljung-Box Q test associated to the levels significantly rejects
the distribution independency at the 5% level of confidence, as the test statistics ranges from
190.27 to 612.88 for the risk-neutral volatility, for example. Indeed, Neumann and Skiadopoulos
(2013) in [94] investigate the higher-order moments predictability, as suggested by the strong
negative autocorrelations of the first-differenced risk-neutral skewness and kurtosis. Further-
more, the unit root test results reveal that all the risk-neutral moments are generally integrated
of order one, especially when considering the first differences. In particular, Panel B exhibits that
the ADF test statistic generally rejects the non-stationarity at the 1% level of confidence in the
first differences of the four risk-neutral moments. Overall, the persistent serial autocorrelations
and the non-stationarity prove to be consistent with Neumann and Skiadopoulos (2013) in [94].

Subsequently, Table 2.3 displays the Pearson cross-correlations between the option-implied
risk-neutral moments. First, the risk-neutral mean and volatility exhibit significant negative
correlations, ranging from -0.76 to -0.82 with increasing time to maturity. This finding illustrates
the (implied) leverage effect described by Black (1976) in [33], defining the inverse relation
between stock prices and (implied) volatility. Besides, the third and fourth risk-neutral moments
appear to stay highly positively correlated accross the maturities, since cross-correlations range
from 0.54 to 0.95. Third, the negative correlation between the risk-neutral mean and the higher-

order risk-neutral moments becomes positive with increasing time to maturity.

VIX Options

Figure 2.13 exhibits the risk-neutral moments for 30-day time to maturity. Since the underlying

asset of VIX options is not the spot VIX but the VIX futures prices, the risk-neutral mean of
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prices in the upper panel closely coincides with the settlement prices of VIX futures. The major
jumps in the risk-neutral mean of the VIX respectively correspond to the Lehman Brothers
bankruptcy on September 15, 2008, the Flash Crash on May 6, 2010, and the downgrade of the
U.S. government credit rating on August 5, 2011. Similarly to the first risk-neutral moment, the
risk-neutral volatility strongly spiked during the turbulent times of the recent financial crisis,
especially following the Lehman Brothers bankruptcy, the European sovereign debt crisis, and
the U.S. credit downgrade. Table 2.10 displays summary statistics associated to the risk-neutral
moments in levels. Furthermore, the right skewness and the excess kurtosis suggest that market
agents attach a high probability to frequent upward spikes in the VIX. Overall, the risk-neutral
skewness and kurtosis respectively exceed 0.464 and 3.797 accross the maturities, illustrating the
pronounced right-skewed and heavy-tailed risk-neutral probability distribution. The right-skewed
risk-neutral distribution of the VIX consistently validates Bates (1991) in [27] and Rubinstein
(1994) in [101], as they observe that equity index probability distributions have become risk-
neutrally skewed to the left, even more after the crash of 1987.

Subsequently, Table 2.11 displays the Pearson cross-correlations between the option-implied
risk-neutral moments. The first two moments remain positively correlated in levels, ranging from
0.28 to 0.45. Besides, the third and fourth risk-neutral moments appear to stay highly positively
correlated accross maturities, since cross-correlations exceed 0.79. Overall, the cross-correlations
between the other risk-neutral moments are negative and more moderate, especially when time
to expiration decreases. Indeed, the linear association between the risk-neutral volatility and
the higher-order risk-neutral moments respectively ranges from -0.53 to -0.36 for the skewness,
and from -0.54 to -0.30 for the kurtosis. The risk-neutral volatility slightly more correlates to
the higher-order risk-neutral moments, as cross-correlations respectively exceed -0.60 for the

skewness, and -0.56 for the kurtosis.

Besides, Table 2.10 examines autocorrelations and stationarity by employing respectively the
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Ljung-Box Q test and the Augmented Dickey-Fuller (ADF) unit root test. For all the risk-neutral
moments, the ADF test statistic rejects the non-stationarity at the 1% level of confidence in the
first differences displayed by Panel B. As clearly evidenced by Neumann and Skiadopoulos (2013)
in [94], the considerable negative autocorrelations of the first-differenced risk-neutral skewness
and kurtosis suggests higher-order moments predictability. Indeed, the unit root test respectively
ranges from -24.78 to -8.46 and from -24.27 to -5.27 for the risk-neutral skewness and kurtosis.
Moreover, autocorrelations exhibit even stronger persistency of the four risk-neutral moments for
longer time horizons. Specifically, the Ljung-Box Q test rejects the distribution independency at
the 5% level of confidence for the four moments, e.g. ranging respectively from 289.98 to 330.71
for the risk-neutral volatility, and from 337.29 to 369.06 for the risk-neutral kurtosis.
Furthermore, Figure 2.13 exhibits a remarkable upward trend both in the risk-neutral skew-
ness and in the kurtosis since the financial turbulence in the fall of 2008, suggesting a signif-
icant shift in the investors’ risk preferences and beliefs. Henceforth, as described by Branger,
Kraftschik, and Volkert (2015) in [10], investors either expect large and frequent upward move-

ments in the VIX, or they become more risk-averse.

2.4.2 Option-Implied Risk Premia

Since option-implied risk premia define the difference between the physical (realized) and the risk-
neutral moments, we test the statistical significance of negativity for different time to maturities.
Following Chang, Zhang, and Zhao in [50] using the Student test, the t-statistics for the one-
tailed test associated to the null-hypothesis Hy : prp > 0, where urp denotes the average risk

premium, is

t — stats; = 'ui’tl (2.4.2.1)
ORpt N 2
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where urp, orp respectively denotes the average risk premium and its standard deviation, and

n is the number of observations over the sample period.

SPX Options

Figure 2.7 plots the time series of option-implied risk premia respectively associated to the
volatility, the skewness, and the kurtosis, for 60-days time to maturities, from January 24, 2008,
to December 19, 2012. Table 2.6 displays the option-implied risk premia from January 24, 2008,
to December 19, 2012. The average volatility risk premia are clearly all significantly negative at
the 5% and the 1% confidence level for 60-days and 120-days time to maturities, over the entire
sample period. For longer maturities, the volatility risk premia become even more significantly
negative since the Student t-stats range from -23.65 to -16.84. Furthermore, the considerable
jumps in the volatility risk premia are associated to major financial turmoils, respectively the
Lehman Brothers bankruptcy on September 15, 2008 (75.8%), and the downgrade of the U.S.
government credit rating on August 5, 2011. We observe that jumps are usually followed by strong
declines, what may illustrate Bollerslev, Tauchen, and Zhou in [36] who make clear evidence that
high (low) volatility risk premia predict high (low) future returns.

Therefore, from January 24, 2008, to December 19, 2012, Figure 2.7 exhibits on average
positive skewness risk premia. Table 2.6 reports that the Student test clearly rejects the null
hypothesis Hy at least at the 5% confidence level across all the maturities, especially for shorter
maturities. Indeed, the t-statistics respectively equals 4.52 and 2.21 for 60-day and 120-day
maturities. Consistently with the literature, this empirical result confirms that for equity in-
dex options, the risk-neutral skewness proves to be more negative than the physical measure,
generating usually positive skewness risk premia across the time. Furthermore, Brunnermeier

and Parker (2005) in [44], Brunnermeier et al. (2007) in [43], and Barberis and Huang (2008)
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in [26], make clear evidence that investors’ preference for skewness results in overinvesting (un-
derinvesting) in assets with high (low) skewness, leading to lower average returns. In addition,
Conrad, Dittmar, and Ghyssels (2013) in [37] show that high (low) skewness risk premia predict
low (high) future returns. In the case of the kurtosis risk premia over the period from January
24, 2008, to December 19, 2012, they are statistically negative at the 1% confidence level across
all the maturities. Indeed, the Student t-stats respectively equals -6.16 and -6.68 in the case of

the 60 and the 120-days time to maturities.

VIX Options

Figure 2.15 plots the time series of option-implied risk premia respectively associated to the
volatility, the skewness, and the kurtosis, for 30-days time to maturities, from January 24, 2008
to August 29, 2014. Table 2.14 displays the option-implied risk premia over the same time period.
The average risk premia are clearly all significantly negative at the 1% confidence level across
the 30, the 60, and the 120-days time to maturities, over the whole sample period. For longer
maturities, the volatility risk premia become even more significantly negative since the Student t-
stats range from -8.41 to -19.35. As illustrated by Figure 2.15, brief episodes of positive volatility
risk premia consistently correspond to equity market turmoils, respectively related to the Lehman
Brothers bankruptcy, the European sovereign debt crisis, and the U.S. credit downgrade.
Therefore, Figure 2.15 exhibits on average strongly negative skewness risk premia. Indeed,
Figure 2.14 clearly illustrates that physical skewness tends to be strongly more negative than the
risk-neutral measure for VIX options. More precisely, Table 2.10 and Table 2.12 show that the
minimum skewness respectively equals -3.425 for the physical measure, whereas it ranges from
-0.111 to -0.121 for the risk-neutral measure. As reported in Table 2.14, the Student test clearly
rejects the null hypothesis Hy at the 1% confidence level across all the maturities, since the

t-statistics ranges from -8.66 to -6.92. Consistently with the literature, these empirical results

84



confirm that for equity index options, the risk-neutral skewness proves to be more negative than
the physical measure, generating usually positive skewness risk premia in the case of the SPX
options for example. Inversely, skewness risk premia tend to be usually negative in the case of
the VIX options, since the leverage effect states a negative relation between the spot and its
volatility. Finally, the kurtosis risk premia prove to be statistically significantly negative at the
1% confidence level, across all the maturities over the time period from January 24, 2008 to

August 29, 2014, since the Student t-stats ranges from-12.93 to -10.44.

2.4.3 Mimicking Factors

In this subsection, we propose an empirical methodology to test directly the analytical approxi-
mation of the implied volatility smile function, as expressed by the equation (2.3.4.5). For this
purpose, we perform a Levenberg-Marquardt algorithm to solve the nonlinear least squares (NLS)
minimization problem. Subsequently, we test respectively the approximation, first, in the classi-
cal case of standard distributions, i.e. SPX index options, and in the case of right-skewed and
leptokurtic distributions, i.e. VIX options, and for different times to maturity. The underlying
assumption postulates that in the case of strongly non lognormal distributions, higher-order risk
premia SRP; v and K RP; r should have bigger contributions in the volatility smile approxima-

tion when compared to the volatility risk premium VRPFP; 7.

Table 2.7 reports the estimated coefficients, the p-values at the 1% and 5% confidence levels,
and the t-statistics, associated to the nonlinear regressions of the SPX implied volatility smile
function I'V; 7 on the option-implied risk premia (VRP.r, SRP, 7, KRP, 1) for the different
maturities {60, 120} days. For illustration, Figure 2.8 plots the time series of the implied volatil-
ity for 60 days to maturity, respectively derived from the in-the-money, the at-the-money, and

the out-of-the money SPX put options, from February 24, 2006, to August 29, 2014. Overall,
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the estimation results associated to the NLS regressions exhibit significant adjusted R squares,
remaining persistently high both accross the strikes, and accross the maturities. For illustration,
adjusted R squares range from 17.9% to 45.0%, and statistical significance even more increases for
short-term maturities, since they respectively reach 38.8%, 45.0%, and 41.0% for the ATM, the
ITM, and the OTM SPX implied volatilities at the 60 days to maturity. Overall, the most proem-
inent estimated coefficients are associated to the volatility risk premia V RP; 7, since they appear
all strongly positive and statistically significant at the 1% level of confidence. Furthermore, they
contain considerable t-statistics both accross the maturities and the strikes, sheding light partic-
ularly on the even more statistically significant volatility risk premia for the shorter maturities.
Therefore, the estimated coefficients associated to the higher-order risk premia exhibit in gen-
eral less statistical significance than the volatility risk premia. The coefficients associated to the
skewness risk premia SRP; r are all negative and statistically significant at least at the 5% level
of confidence, especially for shorter maturities. Nevertheless, the coefficients associated to the
kurtosis risk premia K RP; v are much less statistically significant than the volatility risk premia,

especially in the cases of the ATM implied volatility and the longer maturities.

Similarly, we test empirically the analytical approximation expressed by (2.3.4.5) for the VIX
implied volatility smile. Table 2.15 reports the estimation results associated to the nonlinear least
squares regressions of the VIX implied volatility function IV; r on the option-implied risk premia
VRP, 7, SRP, 7, KRP; 7 for the {30, 60,90,120} days to maturity. For illustration, Figure 2.16
plots the time series of the implied volatility for 30 days to maturity, respectively associated
to the ITM, ATM, and the OTM call VIX options, from April 13, 2007, to August 29, 2014.
Although statistical significance is quite lower when compared to the SPX smile approximation,
the adjusted R squares remain persistently high both accross the strikes and the maturities.
Indeed, adjusted R squares are particularly strong in the cases of the ATM and OTM volatilities,

and the shorter maturities, since they respectively reach 31.5%, 21.2%, and 24.7% for ATM, ITM,
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and OTM VIX call options at the 30 days to maturity.

Similarly, the most proeminent coefficients are related to the volatility risk premia VRP; 1,
since they appear all strongly positive and statistically significant at the 1% level of confidence.
Nevertheless, the associated t-statistics are much lower when compared to the SPX smile ap-
proximation. Indeed, Student t-stats range from 3.57 to 7.31 for the VIX smile, whereas they
range from 5.22 to 13.7 for the SPX smile. Furthermore, although the skewness risk premia
SRP, r do not exhibit statistical significance, the kurtosis risk premia K RF; 7 contain relatively
much more information when compared to the SPX smile approximation. More precisely, the
coefficients associated to K RP, 1 are generally all negative and significant at least at the 5% level
of confidence in the cases of the ATMV and the OTMV. When they are significant, the t-stats
related to K RP; r range from -2.51 to -4.87, and are of a comparable magnitude with those
related to VRP,r. Consequently, the higher-order risk premia associated to the VIX options

account for stronger effect on the smile than for the SPX options.

Hence, our results empirically confirm the analytical decomposition of the implied volatility
smile function into the option-implied risk premia, since adjusted R squares advocate for a strong
statistical significance. Therefore, we show that the contribution of the higher-order risk premia
in the dynamics of the implied volatility smile is more important for right-skewed leptokurtic
distributions than for standard distributions. Indeed, since VIX options market prices fully
incorporate investors’ fear and risk aversion, the higher-order risks implied by the risk-neutral
distribution have considerable informational content for the market price of uncertainty. Hence,

our factor-based investing approach may be particularly tailored for exotic options.

87



Conclusions

This paper has been motivated by deciphering the fine dynamics of the implied volatility smirk.
Since equity index option prices fundamentally incorporate the equity market’s uncertainty,
this research issue has been of major interest to both academics and practitioners. From the
economic perspective, the three-dimensional representation allows to decompose parsimoniously
the dynamics of the volatility smirk at any point of time, by accommodating a combination of
salient features interpreted primarily as the level, slope, and curvature factors. These factors
incorporate agents’ risk attitudes and beliefs about the realization of future risks, since they
quantify the departure of the returns probability distribution from the lognormal distribution.
Building on the modern asset pricing theory, i.e. the APT, the ICAPM and the Fama-French
multifactor models, this paper is motivated by decomposing the implied volatility smile function
into harvestable persistent option-implied risk premia over long period that theoretically reward
the exposure to the systematic risk factors associated to higher-order moments. To the best of
our knowledge, this paper is the first to propose this analytical decomposition into risk premia,
and to test empirically its validation for standard and non-standard index options. Hence, we
formally pave the way for new option-based volatility strategies, genuinely built on factor-based
investing. Furthermore, our theoretical approach may be particularly suitable for VIX options,

since they fundamentally incorporate the market price of the VIX ’fear gauge” .

This paper provides three results of major interest. First, we derive an explicit analytical
third-dimensional representation of the implied volatility smirk function, conveniently expressed
as a nonlinear combination of tradeable time-varying risk premia that compensate for bearing
the higher-order risks. Furthermore, our analytical decomposition explicitly accommodates the
tradeable components of the market price of uncertainty incorporated in the options market

prices. Second, the results directly obtained from the estimation of nonlinear least squares (NLS)
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regressions (Levenberg-Marquardt) empirically validate our analytical decomposition. We find
that the adjusted R squares remain persistently high, both accross the maturities and accross the
strikes, since they range from 17.9% to 45.0% for the SPX put options, and from 11.9% to 31.5%
for the VIX call options. Third, empirical results show that the contribution of the kurtosis
risk premia in the dynamics of the implied volatility smile is much more relatively important for
right-skewed leptokurtic distributions than for the standard distributions.

This paper contributes to the prior literature in the three following ways. From the Zhang-
Xiang (2008) quadratic approximation in [117] and the decomposition of Martin (2013) in [83], we
derive analytically an explicit representation of the implied volatility smirk function, expressed
conveniently as a combination of tradeable time-varying risk premia reflected in the higher-order
risk-neutral moments. Therefore, to the best of our knowledge, this paper is the first to extend
this theoretical underpinning to the VIX options. Hence, building on Vélkert (2014) in [111] and
Branger, Kraftschik, and Vélkert (2015) in [40], we find clear evidence that the dynamics of the
volatility smirk proves to be particularly driven by the higher-order risk factors in the case of the
VIX options. Subsequently, since we propose novative option-based replication strategies that
allow mimicking the tradeable option-implied volatility, skewness, and kurtosis risk premia to
take bets on the level, slope, and convexity of the volatility smirks, this paper extends the prior
literature including Schneider and Trojani (2015) in [104], Bondarenko (2014) in [39], Alireza
(2005) in [14], Chang, Zhang, and Zhao (2013) in [50], Ait-Sahalia, Wang, and Yared (2000) in
[8], and Blaskowitz and Schmidt (2002) in [35] among others.

Therefore, this paper arises practical implications especially within the industries of the
smart indexes and the asset management. Since we find clear evidence that our factor-based
investing approach may be particularly tailored for trading the implied volatility smile, this
paper formally extends the smart beta investing to the volatility strategies. Furthermore, our

so-called ”Smart Vega Investing” addresses the controversial performance of long or short equity

89



volatility exposures that consist in allocating naive volatility derivatives within equity portfolios.
Indeed, this paper opens up a wide range of new option-based volatility strategies, genuinely
built on factor-based investing. Besides, we formally pave the way for the development of new
smart investable volatility indexes. For illustration, the VIX "fear gauge’ index gave rise to one
of the greatest financial innovations, since the VIX options have become the second most actively
traded contracts at the CBOE.

Nevertheless, this article opens up a wide range of fine-tuning, including the filtering method-
ology of the options data samples, and the high-frequency estimation of the realized moments
that take into account overnight jumps. Second, deep investigations of option-based strategies

built on the factor-based investing are left for future research.
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2.5 Appendix

2.5.1 Bakshi-Kapadia-Madan Risk-Neutral Moments

From Bakshi and Madan (2000) in |25], any payoff function H [S] can be spanned algebraically
by a continuum of OTM European call and put options. Therefore, following Bakshi, Kapadia,
and Madan (2003) in [24], let  the risk-free rate, C'(¢t,T;K) (P (¢,T;K) ) the price of a
European call (put) option at time ¢ , with time to expiration T, and strike price K , and

R(t,T)=Wn[S(t+T)] —In[S(¢t)] the log return at time ¢ over the time period T

Define the volatility, cubic, and quartic contracts associated to the following payoff functions

H[S]

R (t, T)? volatility contract
H[S]={ R (t,T)? cubic contract (2.5.1.1)

R (t,T)* quartic contract

Under the risk-neutral expectation operator conditional on information at time ¢ , the fair values
of the volatility, cubic, and quartic contracts in Equation (2.5.1.1) are respectively V (¢,T) =

EQ [exp(—rT)R(t,T)z], W (t,T) = EQ [exp(—rT)R(t, %, X (t,T) = E? exp(—rT)R(t,T)‘*].

Subsequently, spanning the fair value of the contracts by a linear combination of OTM European
call and put options, as well as the stock and the risk-free asset gives for the volatility contract

V(t,T)
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V(t,T) = 72(1—111 <;{“>)C(t,T,K)dK

K2
Sg()) (2.5.1.2)
t S(t
2 (1 +1In (%))
+/ 72 P(t,T,K)dK
0
Similarly, the price of the cubic contract denoted W (¢,T) is given by
2
00 K K
W (t,T) = 702 C(tT,K)dK
5@ , (2.5.1.3)
"6 (52) +31 (52)
—/ 702 P(t,T,K)dK
0
And the fair value of the quartic contract denoted X (¢,T) is specified by
2 3
00 K K
X (t,T) = 72 C(t,T,K)dK
S , , (2.5.1.4)
P12m (52) 4 am (52)
+/ 702 P(t,T,K)dK
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2.5.2 Zhang-Xiang Quadratic Approximation

Zhang and Xiang (2008) in [117] derive a two-way representation of the implied volatility smirk
function I'V specified by (2.3.4.1). From the Black-Scholes (1973) valuation formula in [34], the

price of a European call option Cy is given by

Co = Fyexp [-rT| N <d* + Ivﬁ) — K exp [=rT] N (d*) (2.5.2.1)

where S and r denote respectively the underlying asset price at maturity 7" and its drift; d* =

In(Fo/K)—+IV3T

Ve ; and N (-) designate the cumulative normal distribution function defined by
T

N = [ 0= e |-57] (25.22)

T) = n(y)dy, n(y exp |—=y
—00

From the Breeden-Litzenberger (1978) formula in [11], we recover the following cumulative

probability density function F' (S,T’; Fp,0) for the ATMV

0Co

F($.TF,0) =1+ e b T 2|

(2.5.2.3)

Subsequently, plugging the European call option price in (2.5.2.1) into the cumulative risk-

neutral probability density function in (2.5.2.3):

1
F(S,T; Fy,0) = N (=d) +n (d) 10 "+ 270 (2.5.2.4)
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where

d=

In(S/Fy) + V2T
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Table 2.3: Cross-correlations of SPX option-implied risk-

neutral moments

RN Mean RN Volatility RN Skewness RN Kurtosis

Panel A: Maturity of 60 Days

RN Mean 1,00 - - -
RN Volatility -0,76 1,00 - -
RN Skewness -0,46 0,55 1,00 -
RN Kurtosis -0,62 0,62 0,79 1,00

Panel B: Maturity of 120 Days

RN Mean 1,00 - - -
RN Volatility -0,79 1,00 - -
RN Skewness -0,09 0,14 1,00 -
RN Kurtosis -0,17 0,20 0,54 1,00

Panel C: Maturity of 180 Days

RN Mean 1,00 - - -
RN Volatility ~ -0,82 1,00 - -
RN Skewness 0,28 -0,39 1,00 -
RN Kurtosis 0,33 0,44 0,95 1,00

Cross-correlations associated to SPX option-implied risk-neutral moments for different matu-
rities, from February 24, 2006 to August 29, 2014. Computations are based on the Pearson
cross-correlations between the risk-neutral expected value of the mean, the volatility, the skew-
ness, and the kurtosis, for 60, 120, and 180 days to expiration.
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Table 2.5: Cross-correlations between physical measures of

moments related to intradaily SPX spots

RD Mean RD Volatility RD Skewness RD Kurtosis

RD Mean 1,00 - - -
RD Volatility 0,52 1,00 - -
RD Skewness -0,06 -0,08 1,00 -
RD Kurtosis -0,08 0,11 0,04 1,00

Cross-correlations associated to the physical measures of moments related to intradaily SPX
spots, from January 24, 2008 to December 19, 2012. Computations are based on the Pearson

cross-correlations between the realized value of the mean, the volatility, the skewness, and the
kurtosis.
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Table 2.8: Descriptive statistics of VIX spots and log returns

CBOE Vix Index
Spots Log returns

Panel A: All observations

Nb. of obs. 2435 2435
Mean 20,65 0,00
Min 9,89 -0,35
Max 80,86 0,50
Std. Dev. 10,02 0,07
Skewness 2,24 0,66
Kurtosis 9,50 6,92
Jarque-Bera 6301,18* 1723,05*
Ljung-Box Q 2349,68* 34,17%
Augmented Dickey-Fuller — -2,03* -55,55%

Panel B: Subprime crisis

Nb. of obs. 60 60

Mean 49,42 0,02
Min 20,65 -0,28
Max 80,86 0,30
Std. Dev. 18,20 0,11
Skewness -0,13 -0,16
Kurtosis 1,71 3,59
Jarque-Bera 4,14 0,58
Ljung-Box Q 48 98* 2,39
Augmented Dickey-Fuller 0,73 -8,76*

Panel C: Sovereign debt crisis

Nb. of obs. 61 61
Mean 32,07 0,02
Min 17,52 -0,31
Max 48,00 0,41
Std. Dev. 8,27 0,11
Skewness -0,32 0,74
Kurtosis 2,04 5,85
Jarque-Bera 3,28 24,05*
Ljung-Box Q 43,66* 5,91%
Augmented Dickey-Fuller 0,33 -10,25*

Descriptive statistics associated to VIX spots and log returns, from February 24, 2006 to August
29, 2014. Statistics are broken down into subsamples related to stock market turmoils. Panel B
corresponds to the subprime crisis period, over the period from August 29, 2008 to November 20,
2008, when VIX Index spiked from 20.65 to 80.86. Panel C corresponds to the European sovereign
debt crisis, over the period from July 11, 2011 to October 3, 2011, when VIX Index spiked from
18.39 to 45.45. The Jarque-Bera statistic tests for the rejection of the null hypothesis associated
to returns normality. Star * denote statistical significance at the 5% level of confidence, when
the test statistic exceeds the critical value.
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Table 2.11: Cross-correlations between VIX option-implied

risk-neutral moments

RN Mean RN Volatility RN Skewness RN Kurtosis

Panel A: Maturity of 30 Days

RN Mean 1,00 - - -
RN Volatility 0,45 1,00 - -
RN Skewness -0,60 -0,53 1,00 -
RN Kurtosis -0,58 -0,54 0,95 1,00

Panel B: Maturity of 60 Days

RN Mean 1,00 - - -
RN Volatility 0,28 1,00 - -
RN Skewness -0,63 -0,44 1,00 -
RN Kurtosis -0,61 -0,42 0,95 1,00

Panel C: Maturity of 90 Days

RN Mean 1,00 - - -
RN Volatility 0,31 1,00 - -
RN Skewness -0,61 -0,36 1,00 -
RN Kurtosis 0,56 0,30 0,88 1,00

Cross-correlations associated to VIX option-implied risk-neutral moments for different maturi-
ties, from April 13, 2007 to August 29, 2014. Computations are based on the Pearson cross-
correlations between the risk-neutral expected value of the mean, the volatility, the skewness,
and the kurtosis, for 30, 60, and 90 days to expiration.
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Table 2.13: Cross-correlations between physical measures of

realized moments for intradaily VIX spots

RD Mean RD Volatility RD Skewness RD Kurtosis

RD Mean 1,00 - - -
RD Volatility 0,24 1,00 - -
RD Skewness 0,00 0,23 1,00 -
RD Kurtosis -0,07 0,20 0,16 1,00

Cross-correlations associated to the physical measures of realized moments related to intradaily
VIX spots, from January 24, 2008 to April 26, 2016. Computations are based on the Pearson
cross-correlations between the realized value of the mean, the volatility, the skewness, and the
kurtosis.
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Figure 2.1: Historical Time-Series of the CBOE Volatility

Index
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Historical time-series of the CBOE Volatility Index and the SPX Index, from February 24, 2006
to August 29, 2014. The upper and lower panel represents respectively the compared evolutions
of the VIX Index and the S&P 500 Price Return Index, and the daily log returns of the VIX
Index across time.
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Figure 2.2: Average Volatility Smile of SPX Options
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Average volatility smile associated to SPX options for four different maturity buckets, from
February 24, 2006 to August 29, 2014. Average implied volatilities are computed in each log
moneyness-maturity category, for four maturity buckets (5—60, 60—120, 120—180, 180—270

days), and six log moneyness buckets ([—0.69;—0.29], [—0.29;—0.11], [—0.11;0.00], [0.00;0.10],
[0.10;0.22], [0.22;0.69)).
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Figure 2.3: Average Term Structure of SPX Options
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Average term structure associated to SPX options for six different log moneyness buckets, from
February 24, 2006 to August 29, 2014. Average implied volatilities are computed in each log
moneyness-maturity category, for four maturity buckets (5—60, 60—120, 120—180, 180—270
days), and six log moneyness buckets ([—0.69;—0.29], [—0.29;—0.11], [—0.11;0.00], [0.00;0.10],
[0.10;0.22], [0.22;0.69]).
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Figure 2.4: Average Volatility Surface of SPX Options
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Average implied volatility surface associated to SPX options for six different log moneyness buck-
ets, from February 24, 2006 to August 29, 2014. Average implied volatilities are computed in each
log moneyness-maturity category, for four maturity buckets (5—60, 60—120, 120—180, 180—270

days), and six log moneyness buckets ([—0.69;—0.29], [—0.29;—0.11], [—0.11;0.00], [0.00;0.10],
[0.10;0.22], [0.22;0.69)).
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Figure 2.5: Option-Implied Risk-Neutral Moments of SPX
Options
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SPX option-implied risk-neutral moments for 60 days time to maturity, from February 24, 2006,
to August 29, 2014. The figures plot respectively on a daily basis the levels of the risk-neutral
expected value of the mean, the volatility, the skewness, and the kurtosis, for 60 days time to
expiration. The blue crosses in the upper figure represent the SPX futures prices for a fixed time

to maturity of 60 days.
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Figure 2.6: Moments Estimated Under Physical and Risk-
Neutral Probability Measures for SPX Options
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Moments estimated under the physical and the risk-neutral probability measures, associated to
the SPX Index from January 24, 2008 to December 19, 2012. Intradaily SPX spots are used
to estimate the physical moments, and daily SPX options and futures are used to estimate the
risk-neutral moments. The figures plot respectively on a daily basis the levels of the physical
and risk-neutral volatility, skewness, and kurtosis, for 60 days time to maturity.
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Figure 2.7: Option-Implied Risk Premia of SPX Options
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SPX option-implied risk premia for 60 days time to maturity, January 24, 2008 to December 19,
2012. The figures plot respectively on a daily basis the levels of the risk-neutral expected value
of the volatility risk premium, skewness risk premium, and kurtosis risk premium, for 60 days
time to expiration.
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Figure 2.8: Implied Volatility of SPX Options
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SPX implied volatility for 60 days time to maturity, from February 24, 2006, to August 29, 2014.
The figures plot respectively on a daily basis the levels of the implied volatility for ITM, ATM,
and OTM SPX options, for 60 days time to expiration.
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Figure 2.9: Average Trading Volume of VIX options
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Average daily trading volume of VIX options, from March 26, 2007 to August 29, 2014. The
lower panel represents the compared average daily trading volume of VIX call and put options.
For clearness, computations are based on the 2-month moving average trading volume.
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Figure 2.10: Average Volatility Smile of VIX options
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Average volatility smile associated to VIX options for four different maturity buckets, from
February 24, 2006 to August 29, 2014. Average implied volatilities are computed in each log
moneyness-maturity category, for four maturity buckets (7—30, 30—60, 60—90, 90—180 days),

and six log moneyness buckets ([—0.69;—0.29], [—0.29;—0.11], [—0.11;0.00], [0.00;0.10], [0.10;0.22],
0.22;0.69]).
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Figure 2.11: Average Term Structure of VIX options
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Average term structure associated to VIX options for six different log moneyness buckets, from
February 24, 2006 to August 29, 2014. Average implied volatilities are computed in each log
moneyness-maturity category, for four maturity buckets (7—30, 30—60, 60—90, 90—180 days),
and six log moneyness buckets ([—0.69;—0.29], [—0.29;—0.11], [-0.11;0.00], [0.00;0.10], [0.10;0.22],
[0.22;0.69]).
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Figure 2.12: Average Implied Volatility Surface of VIX op-
tions
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Average implied volatility surface associated to VIX options for six different log moneyness
buckets, from February 24, 2006 to August 29, 2014. Average implied volatilities are computed in
each log moneyness-maturity category, for four maturity buckets (7—30, 30—60, 60—90, 90—180

days), and six log moneyness buckets ([—0.69;—0.29], [—0.29;—0.11], [—0.11;0.00], [0.00;0.10],
[0.10:0.22], [0.22;0.69]).
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Figure 2.13: VIX Option-Implied Risk-Neutral Moments
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VIX option-implied risk-neutral moments for 30 days time to maturity, from April 13, 2007, to
August 29, 2014. The figures plot respectively on a daily basis the levels of the risk-neutral
expected value of the mean, the volatility, the skewness, and the kurtosis, for 30 days time to
expiration. The blue crosses in the upper figure represent, the VIX futures prices for a fixed time

to maturity of 30 days.
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Figure 2.14: Moments Estimated Under Physical and Risk-
Neutral Probability Measures for the VIX
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Moments estimated under the physical and risk-neutral probability measures associated to the
VIX Index from January 24, 2008 to April 26, 2016. Intradaily VIX spots are used to estimate
the physical moments, and daily VIX options and futures are used to estimate the risk-neutral
moments. The figures plot respectively on a daily basis the levels of the physical and risk-neutral
volatility, skewness, and kurtosis, for 30 days time to expiration.
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Figure 2.15: VIX Option-Implied Risk Premia
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VIX option-implied risk premia for 30 days time to maturity, from January 24, 2008 to August
29, 2014. The figures plot respectively on a daily basis the levels of the risk-neutral expected
value of the second/volatility risk premium, third/skewness risk premium, and fourth/kurtosis

risk premium, for 30 days time to expiration.
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Figure 2.16: VIX Implied Volatility
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VIX implied volatility for 30 days time to maturity, from April 13, 2007, to August 29, 2014.
The figures plot respectively on a daily basis the levels of the implied volatility for ITM, ATM,
and OTM VIX options, for 30 days time to expiration.
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Chapter 3

Do Hedge Funds Hedge? Evidence
from Tail Risk Premia Embedded in

Options
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Do Hedge Funds Hedge? New Evidence from Tail
Risk Premia Embedded in Options '

L This chapter is based on an article jointly written with my PhD supervisor, Pr Serge DAROLLES. The authors
are grateful to Vikas Agarwal, Yacine Ait-Sahalia, Eser Arisoy, Matthieu Garcin, Christophe Hurlin, Marcin
Kacperczyk, Kevin Mullally, Ilaria Piatti, Todd Prono, Ronnie Sadka, and Fabio Trojani for helpful comments
and suggestions. We also appreciate the comments of conference participants at the IXt® French Econometrics
Conference, the XIX* OxMetrics User Conference, and at the [1®d Econometric Research in Finance Conference.
Any errors are our own.
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This paper deciphers tail risk in hedge funds from option-based dynamic trading strategies. It
demonstrates multiple and tradable tail risk premia strategies as measured by pricing discrep-
ancies between real-world and risk-neutral distributions are instrumental determinants in hedge
fund performance, in both time-series and cross-section. After controlling for Fung-Hsieh factors,
a positive one-standard deviation shock to volatility risk premia is associated with a substantial
decline in aggregate hedge fund returns of 25.2% annually. The results particularly evidence
hedge funds that significantly load on volatility (kurtosis) risk premia subsequently outperform
low-beta funds by nearly 11.7% (8.6%) per year. This finding suggests to what extent hedge
fund alpha arises actually from selling crash insurance strategies. Hence, this paper paves the
way for reverse engineering the performance of sophisticated hedge fund by replicating implied

risk premia strategies.
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3.1 Introduction

The recent news? of the closure of Eton Park Capital Management, one of the most emblematic
figure of the hedge fund industry, came as a shock to the financial community. It has brought
the light to the most complicated periods hedge fund industry is experiencing, since liquidations
strongly outpaced launches in 2016 according to Hedge Fund Research. In particular, the un-
expected outcomes of the Brexit referendum and the U.S. elections have drawn doubts on their
ability to manage tail risks. Indeed, hedge funds are often described as “insurance companies
selling earthquake insurance” (Duarte, Longstaff, and Yu, 2007; Stulz, 2007), since they usually
make penny-by-penny gains before incurring substantial losses. Hence, there is scarcely any
doubt that hedge funds are particularly sensitive to market crashes, since they replicate short
positions on equity index put options (Agarwal and Naik, 2004). Nevertheless, there is only
limited literature on sophisticated option-based dynamic trading strategies that secretive hedge
funds usually pursue, and how they explain hedge fund performance, risk, and compensation
scheme. This research topic has become critical to remunerating hedge fund managers’ skills and
to understanding to what extent hedge fund alpha actually arises from beta, and specifically from
alternative beta and alternative risk premia. Indeed, the highly entrepreneurial hedge fund in-
dustry has maintained a strong culture of secret and opaqueness to keep their investment process
from fierce competition. Therefore, although U.S. institutional investment managers must report
their portfolio holdings on Form 13F to the Securities and Exchange Commission (SEC), section
13(f) securities only concern equities and plain vanilla derivatives. In this way, SEC Form 13F
doesn’t reflect the highly exotic, out-of-the counter (OTC), and nonlinear payoffs usually hold by

hedge fund managers.> Hence, we test the following assumptions. First, does crash sensitivity of

2Source: Bloomberg, on March 23, 2017.
30ur study would not have been possible by exploiting the quarterly holdings as reported by
hedge funds to the SEC.
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hedge funds arise from the tail risk premia strategies they usually trade? In particular, does tail
risk premia investing explain the variation in hedge fund performance, in both the time-series
and the cross-section of returns? Second, does crash sensitivity arise from a particular tail risk
premia strategy? Specifically, at the hedge fund investment style level, which hedge funds are
the most exposed to extreme events? Third, contrary to recent common beliefs; to what extent
hedge funds can be simply considered as the last insurers against tail risk? In other words, to

what extent does hedge fund alpha arise from selling crash insurance??

This paper is the first to explain the time-series and cross-sectional variation in hedge fund
performance by tail risk premia. Although existing literature used tail risk measures and simple
tail risk strategies, the specificity of the paper rests on: i/ First, alternative risk premia since
divergent swaps are more widely used by hedge fund managers because they fully reflect market
price of risk; ii/ Second, multiple tail risk premia since we decompose implied volatility smirks
into three distinct tradable implied risk premia that fully reflect the market price of uncertainty
associated to the realization of future extreme events. Tail risk premia usually designate tradable
option-based payoffs pricing the market price of tail risk, as measured by the discrepancy between
real-world and risk-neutral probability distributions. To that purpose, we derive from risk-neutral
distributions and high-frequency data the tradable tail risk premia embedded in VIX options
that are widely used by hedge funds, since they become the second most traded contracts at the
Chicago Board Options Exchange (CBOE). As evidenced by Al Wakil (2016) in [11], tail risk
premia embedded in options incorporate agents’ risk attitudes and expectations about higher-
order risks, and fully determine the market price of risk embedded in implied volatility surfaces.
Therefore, this paper shows tail risk in hedge funds particularly arises from the distinct tradable

volatility V RP, skewness SRP, and kurtosis K RP risk premia strategies that hedge funds usually

4Furthermore, our study raises the question of the hedge fund manager timing skill ability
(alpha) to mitigate tail risk exposure, but this particular issue has been left for future research.
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pursue. Thus, they are instrumental determinants in the variation of hedge fund performance,

both in the time-series and the cross-section.

This paper finds that exposures of hedge funds to tail risk premia are statistically significant
across most investment strategies. Indeed, for the Global Hedge Fund Index, a four-factor model
with our tail risk premia has the same explanatory power than the seven-factor model of Fung
and Hsieh (2004) over the whole period. In particular, when considering tail events, adjusted
R? associated to our augmented Fung-Hsieh model significantly increases across all investment
styles. First, we exhibit to what extent hedge fund alpha actually arises from selling crash-
insurance strategies. After controlling for loadings on Fung-Hsieh seven factors and forming
quantile portfolios of cross-sectional hedge fund index returns sorted on the loadings of each
of the tail risk premia, we evidence hedge funds that significantly load on volatility (kurtosis)
risk premia substantially outperform low-beta funds by nearly 11.7% (8.6%) per year. In other
words, when considering cross-sectional exposure to the volatility VRP (kurtosis K RP) risk
premium, the high-minus-low portfolio realizes on average an annualized excess return of -11.7%
(-8.6%). This finding particularly suggests hedge funds in quantile one are generally selling crash
insurance, realizing on average annualized excess returns that compensate for bearing tail risks.
Second, we evidence crash sensitivity of hedge funds substantially comes from volatility risk
exposure. After controlling for loadings on Fung-Hsieh seven factors, a one-standard deviation
increase in the volatility risk premium V RP is associated with a strong decline in aggregate
hedge fund returns of 0.10% per day, or 25.20% per year over 2008-2013. Besides, over tail
events, a one-standard deviation increase in the volatility risk premium V RP is associated with
a substantial decline in aggregate hedge fund returns of 0.32% per day, or 80.64% per year. In
particular, at hedge fund investment style level, Relative Value and Equity Hedge are the most
negatively exposed strategies to volatility risk, particularly during crises when volatility swap

returns are the most profitable. This finding is consistent with literature, since Relative Value
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hedge funds are usually considered as the last insurer against tail risks, executing risk transfer
from financial institutions, whereas Equity Hedge managers usually overlay hedge their long
positions. Therefore, the associated payoff return profile is equivalent to buying a call option
partially hedged by selling realized volatility. Third, at hedge fund investment style level, we
evidence Relative Value and Directional hedge funds are the most positively exposed strategies
to skewness risk. This result is consistent since they usually profit from underlying’s volatility
of volatility: Relative Value is commonly long gamma as described by Jaeger (2008) in [71], and
trend-followers aim to buying optimally max lookback straddles according to Fung and Hsieh
(2001) in [63]. In addition, we show Relative Value hedge funds are not simple insurance sellers,
since they partially hedge their volatility risk exposure by buying skewness risk, whereas Global
Macro hedge funds are usually negatively exposed to skewness risk. This last result is also
consistent since Global Macro managers usually take contrarian bets on tail risks, i.e. selling
realized skewness during crises, as their convergence trades are based on mid and long-term

macroeconomic trends.

This paper extends the asset pricing literature associated to hedge fund performance for two
reasons. First, it provides a new evidence for tail risk in hedge fund performance, showing it is
an instrumental determinant in both the time-series and the cross-section of hedge fund returns,
and to what extent hedge fund alpha actually arises from selling crash insurance strategies.
Specifically, this paper deciphers hedge fund tail risk from multiple option-based dynamic trading
strategies, defined as tradable tail risk premia, and decomposed into volatility, skewness, and
kurtosis divergent swaps. Hence, we extend among others Asness, Krail, and Liu (2001) in
[21], Geman and Kharoubi (2003) in [67], Agarwal and Naik (2004) in [5], Patton (2009) in [96],
Agarwal, Ruenzi, and Weigert (2015) in [6], Agarwal, Arisoy and Naik (2017) in [2]. Nevertheless,
this vast and recent literature usually deciphers tail risk in hedge funds from nontradable tail risk

measures, or from standard and fragmentary option-based strategies. In particular, Agarwal,
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Green, and Ren (2017) in [41] decompose hedge fund returns into traditional and exotic risk
exposures but their approach is parametric using a model horserace, and doesn’t reflect the
full extent of tail risk premia strategies, since they only consider out-of-the money options and
VIX lookback straddles. Second, this paper contributes to the literature by providing a new
evidence from multiple tail risk premia strategies that are widely traded by hedge funds, since
divergent swap contracts fully incorporate the market price of risk. In particular, we show the
volatility, skewness, and kurtosis risk premia, i.e. pricing discrepancies between risk-neutral and
physical probability distributions, are distinguishable mimicking portfolios for insurance risk
premia, usually harvested by hedge funds. Indeed, this paper evidences most hedge fund styles
sell crash insurance, but tail risk exposures across hedge funds are distinct, since they depend
on the specific trading strategies hedge fund managers use to arbitrate crash risks. In this
sense, we extend the literature among others Ait-Sahalia, Wang, and Yared (2000) in [8], Alireza
(2005) in [14], Chang, Zhang, and Zhao (2013) in [50], Bondarenko (2004) in [38], Schneider and
Trojani (2015) in [104], and Al Wakil (2016) in [11]. Although this recent literature evidences
new profitable divergence trading strategies to monetize compensation for higher-order risks, it
generally doesn’t explore the issue from hedge fund standpoint.

This paper arises practical implications especially within the industries of hedge funds, asset
management, and smart indices. Since we find clear evidence that tradeable tail risk premia
explain the variation in hedge fund returns, both in the time-series and the cross-section, this
paper paves the way for reverse engineering sophisticated hedge funds by replicating the volatility
V RP, skewness SRP, and kurtosis K RP risk premia strategies. Besides, this paper sheds light
on the secretive drivers of hedge fund performance, since it disentangles it into real alpha and
exotic beta like insurance-crash selling strategies.

The remainder of this paper is organized as follows. Section 1 describes the data used for

this study, in particular the data from hedge funds, options, high-frequency trading, and futures.
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I document the methodology used to derive the tail risk premia embedded in options, and the
Fung-Hsieh trend-following factors on a daily frequency. Section 2 investigates the time-varying
exposure of various investment styles to tail risk, while Section 3 extends the analysis to the

cross-section of investment styles. Robustness checks are provided in Section 4.

3.2 Literature

There is a vast literature about the instrumental contribution of tail risk in the pricing of hedge
fund performance. More generally, this research question falls into the literature investigating
the sources of hedge fund performance. In particular, it examines to what extent hedge fund
alpha arises actually from market exposure, i.e. beta, and more recently from exotic beta, i.e.
alternative beta, since hedge fund managers usually have recourse to sophisticated strategies.

Among others, Geman and Kharoubi (2003) in [67] show hedge funds are particularly sen-
sitive to market distress. Jiang and Kelly (2012) in [68] exhibit a persistently exposure to the
left-tail risk, both in the time-series and the cross-section of hedge fund returns. The differential
asset pricing relations between dynamic tail and asset prices have been particularly well docu-
mented by Gabaix (2011) in [66], Wachter (2012) in [112], Drechsler and Yaron (2011) in [58],
and Kelly (2012) in [76], among others. More recently, Agarwal, Ruenzi, and Weigert (2015) in
[6] estimate a new tail risk measure from portfolio holdings to investigate the impact of tail risk
on hedge fund performance. Specifically, they identify the sources of tail risk in the cross-section
of hedge fund returns as tail-sensitive stocks and options.

The underlying assumption postulates hedge funds generally earn extra returns in good
states for selling crash insurance, but suffer substantial losses during tail events episodes. Hence,
a rich literature has suggested hedge funds are not really hedged, but rather exposed to risk

factors, including Asness, Krail, and Liu (2001) in [21], Patton (2009) in [96], and Bali, Brown,
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and Caglayan (2012) in [22]. Indeed, a vast literature disentangles the sources of hedge fund
performance, examining to what extent hedge fund alpha arises from beta. For illustration,
the seminal paper of Jensen (1967) in [73] decomposes the mutual fund performance into the
market risk exposure and the fund managing skills. This research topic has been particularly
determinant since it puts into question the hedge fund compensation scheme, as market exposure

(i.e. beta) is cheaper than active performance (i.e. alpha) and manager skills.

Furthermore, the reference papers of Fung and Hsieh (2001, 2004) in [63] and [64] that
we extend here decomposes hedge fund performance into a seven-factor model that includes
lookback straddles strategies to replicate the dynamics of trend-following hedge funds. Similarly,
Mitchell and Pulvino (2001) in [89], and Fung, Hsieh, Naik, and Ramadorai (2008) in [65]
evidence hedge fund strategies exhibit option-like payoffs, since systematic risk exposures can
be replicated by option-based strategies. Indeed, recent literature examines to what extent
hedge fund performance arises by now from complex and exotic beta, i.e. alternative beta, since
hedge managers frequently have recourse to sophisticated strategies, using out-of-the counter
derivatives and nonlinear payoffs. In particular, Agarwal and Naik (2004) in [5] clearly show
left-tail risk in hedge funds arise from replicating short positions on equity index put options,
especially for equity-oriented hedge fund styles that bear considerable crash risk. More recently,
Agarwal, Arisoy and Naik (2017) in [2] find the uncertainty about equity market volatility is an
instrumental determinant of hedge fund performance, both in the cross-section and over time.
Specifically, they replicate the volatility of aggregate volatility with tradable lookback straddles
on the VIX Index, and evidence a negative risk premium for uncertainty exposure in the cross-

section of hedge fund returns.

Subsequently, this paper particularly falls into the recent literature investigating the alter-
native risk premia strategies usually traded by hedge fund managers to arbitrate the implied

volatility smirks. Bondarenko (2004) in [38] estimates the market price of variance risk and
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clearly evidences that variance swap return is a key determinant in explaining hedge fund per-
formance. Furthermore, he shows hedge fund managers usually sell variance risk, since they are
negatively exposed to the variance swap return. More generally, Schneider and Trojani (2015)
in [104] propose swap trading strategies studied by Bondarenko (2014) in [39] to capture the
isolated tradeable compensation for time-varying risks in higher-order moments. Inspired by a
new class of divergence trading strategies in Alireza (2005) in [14], they exploit the inconsistency
between the option-implied risk-neutral distribution, i.e. the fair price of moments, and the
physical distribution of the underlying asset. Similarly, Chang, Zhang, and Zhao (2013) in [50]
introduce new derivative contracts, such as skewness and kurtosis swaps, to trade the forward
realized third and fourth cumulants. Using S&P 500 index options from 1996 to 2005, they shed
light on persistent time-varying properties of higher-order risk premia, offering a justification for
such swap strategies. Less recently, Ait-Sahalia, Wang, and Yared (2000) in [8], and Blaskowitz
and Schmidt (2002) in [35] document the profitability of skewness and kurtosis trades, exploiting
the discrepancies between risk-neutral densities implied by DAX option prices and the historical
state-price densities. Recently, Al Wakil (2016) in [11] evidence implied volatility smirks can
be analytically and empirically decomposed into a parsimonious combination of alternative risk
premia, mimicking tradable portfolios of option-implied volatility, skewness, and kurtosis risk
premia to take bets on the level, slope, and convexity associated to the volatility smirks. These
three distinct tail risk premia strategies are usually traded by hedge fund managers to monetize

pricing discrepancies reflected in the implied higher-order risks.

Nevertheless, there is limited literature about the detailed tail risk trading strategies usually
executed within each hedge fund investment style. Subsequently, we provide thorough under-
standing from Jaeger (2008) in [71] that sheds light on tail risk strategies implemented by various
hedge fund investment styles. In the following paragraphs, we describe three assumptions about

hedge funds’ exposures that we test in the empirical analysis, in both the time-series and the
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cross-section of hedge fund returns.

Over 2008-2013, major tail events occured including among others the US Subprime crisis
and the Lehman Brothers bankruptcy in 2008, the European sovereign debt crisis in 2010, the
US sovereign debt crisis in 2011, and the Taper Tantrum in 2013. Subsequently, the time
period had been particularly favourable to insurance-selling strategies, just in the aftermath
of tail risk events when central banks envisaged unprecedented bailouts to contain the Global
Financial Crisis. Specifically, many hedge funds sold crash insurance when it was expensive in
the aftermath of extreme events, earning extra returns over 2008-2013, but making themselves
particularly crash sensitive. In particular, Volatility Arbitrage managers increased short positions
on expensive realized volatility and went long on cheaper implied volatility, when volatility swap
returns were the highest. More globally, hedge funds also usually sold the forward realized third
and fourth cumulants, i.e. the skewness and kurtosis via divergent swap contracts. Consequently,
we assume hedge funds that substantially loaded on tail risk premia over 2008-2013 should have
subsequently outperformed low-beta funds, shedding light to what extent hedge fund alpha arises
from selling crash insurance strategies.

At investment style level, although Equity Hedge and in particular Long/Short Equity man-
agers are directional long biased, they partially overlay hedge long positions using short index
futures, long OTM puts, and short covered calls. Subsequently, payoff return profile is equiv-
alent to buying a call option hedged by selling realized volatility via volatility swaps. This is
particularly true when considering: i/ Equity Market Neutral strategies that try to generate
returns uncorrelated to market risk; ii/ Short Selling strategies that partially hedge the short
sale bias with OTM call options for example. Similarly, Relative Value strategies are non-equity-
directional and they are commonly called arbitrage, spread, or alternative risk premia strategies.
In particular, Fixed Income Arbitrage monetizes pricing anomalies associated to global yield

curves but fully neutralizes exposure to systematic risk factors. Nevertheless, they are usually
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considered as the last insurer against market tail risks, as they execute alternative risk transfer
strategies from global financial institutions. Hence, payoff return profile is equivalent to shorting
put options and realized volatility via volatility swaps. Since available risk premia are small,
arbitrageurs have usually recourse to high leverage level, ranging from five to 15 times the asset
base, exposing themselves to tail risks. It was particularly true when LTCM (Long Term Capital
Management) increased leverage to 30:1 to keep returns targets when assets under management
reached USD 4 billion. Consequently, we assume that Relative Value and Equity Hedge strate-
gies are the most negatively exposed hedge fund styles to volatility risk, and we expect this is

particularly true risk during crisis periods, when volatility swap returns are the highest.

Considering Relative Value strategies, Fixed Income managers exploit and monetize higher-
order risks embedded in the curvature of global yield curves, but neutralize net exposure to
yield-curve changes. Spread trades in fixed income usually consist in yield-curve arbitrage, espe-
cially butterflies along the yield curve (e.g. long cheap 3-year and 5-year, short expensive 4-year),
and related to strong institutional demand. Concerning other Relative Value hedge funds, Con-
vertible and Volatility Arbitrage strategies intensively execute gamma trading to exploit positive
convexity of delta hedge ratio function. Specifically, Convertible arbitrageurs are long gamma, i.e.
gamma designates delta variation with underlying, since strategies are especially profitable when
delta strongly changes, whatever the direction of the move. Since relation between derivative
price and underlying price is positively convex, Convertible and Volatility arbitrageurs capture
positive gamma by dynamically hedging their delta. Hence, the payoff return profile is equivalent
to buying realized skewness, commonly interpreted as an insurance-buying strategy. Concerning
Directional strategies, Fung and Hsieh (2001) in [63] show the payoff return profile of Systematic
Managed Futures strategies is equivalent to a long straddle position. Indeed, trend-following
strategies optimally aim to buy low and sell high, corresponding ideally to buying max lookback

straddles. Consequently, Directional strategies have usually recourse to buying realized skewness
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since they generate profit from underlying’s volatility of volatility. Alternatively, Global Macro
hedge funds identify mid and long-term macro-economic trends, and execute convergence trades
to exploit mispricings when market prices substantially deviate from their fair values. Hence,
they usually take contrarian bets, maintaining for example a negative exposure to market risk or
selling crash risk in crisis periods. Consequently, we assume that Relative Value and Directional
strategies are the most positively exposed hedge fund styles to skewness risk, since they are
usually buyers of realized skewness via long straddles or positive gamma. Furthermore, contrary
to common beliefs, our assumption suggests that Relative Value hedge funds are not completely
insurance-sellers strategies, since they partially hedge volatility risk by buying skewness risk. In
addition, we assume Global Macro hedge funds can be negatively exposed to skewness risk, since

they usually take contrarian bets on tail risk realization in crisis periods.

3.3 Data

Data samples primarily consist in daily hedge fund return provided by HFR and classified into
major investment styles; daily VIX options data provided by OptionMetrics, including closing
bid-ask mid prices, expiration dates, strike prices, open interest, and trading volume for all
the listed maturities - data sample has been filtered following the methodology documented by
Al Wakil (2016) in [11]; high-frequency data related to tick-by-tick historical VIX index prices
provided by Bloomberg; and a broad range of futures data associated to 15 markets and provided

by Datastream and Bloomberg.
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3.3.1 Hedge Fund Return Data

Since the time period of our study is restricted by the scarcity of our high-frequency data sample
that we use to estimate accurately the tail risk premia, we have recourse to daily hedge fund
return data obtained from the HFR Database over the period 2008-2013. HFR. indices are
constructed to measure the aggregate performance of a wide range of hedge funds grouped by a
specific strategy criterion. The hedge fund strategy classification aims to capture pure strategies
that reflect the evolution of major trends in the hedge fund industry.

Table 3.1 reports the summary statistics of the hedge fund data sample used for our study.
Overall, the sample includes 1,650 daily hedge fund index returns associated to the 5 investment
styles and the global index over the period 2008-2013. We restrict the hedge fund data sample
to the availability of the tail risk premia that we estimate by using in particular short-length
high-frequency data. The average daily hedge fund return is nearly 1 basis point and the daily
standard deviation is 0.32%. When comparing the daily returns distribution accross the data
sample years over 2008-2013, Panel A exhibits significant disparities between turbulent and calm
years. In particular, the returns distribution in 2008 is the only one that shows a negative
average daily return of -0.12%. In addition, it exhibits the highest returns dispersion over the
time period, including very high and low returns, respectively equal to -2.31% and 2.58%. High
returns dispersion is also reflected in the magnitude of the standard deviations: about 0.76% in
2008, when compared to less than 0.28% during 2009-2013. Interestingly, the data sample covers

both highly turbulent and calm periods.
[Insert Table 3.1 here]

Panel B associated to Table 3.1 disentangles the descriptive statistics by investment style. We
consider the following 5 investment styles: Directional, Equity Hedge, Macro, Merger Arbitrage,

and Relative Value (see the Appendix A for further details). Although academic literature points
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out ambiguity in the hedge fund classification, this strategy classification is currently used by
HFR, and by related research, e.g. Patton and Ramadorai (2013) in [97]. Nevertheless, Panel B
exhibits some significant disparities between investment styles, what allows to testing the impact
of tail risk on hedge fund performance. In particular, Merger Arbitrage and Relative Value
exhibits by far the less volatile investment styles (respectively 0.24% and 0.26%) when compared
to the Equity Hedge and the Directional strategies (respectively 0.42% and 0.41%). Intuitively,
Merger Arbitrage is an event-driven strategy that invests both in long and short positions in the
companies that are involved in mergers and acquisitions. Since risk arbitrageurs take risk on
deals, Merger Arbitrage strategy typically makes profits when equity markets are up. Hence, it
tends to be strongly delta-hedged and lowly volatile. Accordingly, Risk Arbitrage exhibits the
highest minimum daily return (-1.25%) over 2008-2013, by contrast with the Directional style

(-2.31%) that typically uses trend-following strategies.

[Insert Table 3.1 here]

Figure 3.1 plots the hedge fund investment style performance over the sample period. Overall,
they all exhibit negative shocks to highly turbulent and volatile time periods as embodied by the
VIX Index that represents the markets fear gauge. Over 2008-2013, major tail events include the
US Subprime crisis and the Lehman collapse in 2008, the European sovereign debt crisis in 2010,
the US sovereign debt crisis in 2011, and the Taper Tantrum in 2013. Nevertheless, hedge fund
investment styles exhibit very distinct dynamics during extreme events. In particular, Merger
Arbitrage, and Macro strategies show stronger resilience to the Lehman collapse, the European
sovereign debt crisis, and the US sovereign debt crisis, when compared to the Directional and the
Equity Hedge strategies. This suggests structural and time-varying tail risk exposures of hedge

fund styles.

[Insert Figure 3.1 here]
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3.3.2 Fung-Hsieh Factors

In accordance with the hedge fund literature, the paper also includes various factors that ap-
peared to be important in the hedge fund performance, in particular Fung and Hsieh in [62],
[63], and [64]. The seven risk factors considered are: MKT-RF and SMB of Fama and French
in [61], the change in the term spread (the daily change in the 10-year treasury constant matu-
rity yield), the change in the credit spread (the daily change in Moody’s Baa yield less 10-year
treasury constant maturity yield), and the Fung-Hsieh trend-following factors, i.e. PTFSBD
(bonds), PTFSFX (currencies), and PTFSCOM (commodities). We calculate proxies of the
trend-following factors on a daily basis as described by Fung and Hsieh in [64] when modelling
the perfect trend-follower strategy (see the Appendix E for further details). When put together,
the above seven factors are known in the hedge fund literature as the Fung-Hsieh seven-factor

model.

Table 3.3 reports the time-series Pearson pairwise correlations of the Fung-Hsieh seven factors
and the tail risk premia. The volatility risk premium V RP appears to be significantly correlated
to all the other factors, at least at the 5% level of confidence, whereas the skewness risk premium
SRP does not covary significantly with the changes in term spread and credit spread and with
the trend-following factors in bonds and commodities. Interestingly, the factor most negatively
correlated to both the volatility and the skewness risk premia is the market return, respectively
at -0.27% and -0.31%. By construction of the risk premium, this strong negative correlation
is consistent with the fact that the realization of tail risks generate stock market crashes. By
contrast, the kurtosis risk premium K RP only exhibits significant correlations with the risk

premia of volatility V RP and skewness SRP, respectively at 0.19% and 0.21%.

[Insert Table 3.3 here]
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3.3.3 Tail Risk Premia

Tail risk premia usually designate disaster insurance that investors pay to hedge against tail
events. Intuitively, investors have considerably high marginal utility in such bad states, and
they are willing to pay a lot of money to insure extreme event risks. This implies that the
market price of tail risk is negative, and thus, tail risk premia generate negative excess returns
over long period, but they compensate for paying an insurance by generating income in bad
times (see the Appendix D for further details). Since options data reflect agents’ attitudes and
beliefs towards risk, market option prices incorporate the market price of uncertainty about
the realization of future tail risks. Henceforth, tail risks are fully captured by the risk-neutral
probability distribution, as market option prices determine the fair price of moments. From
an economic motivation, vanished volatility smirk’s slope and curvature reduce the risk-neutral
probability distribution to the Black-Scholes lognormal distribution, whereas positive slope and
curvature make the risk-neutral density respectively more right-skewed and leptokurtic, i.e. more
peaked and heavy tailed.

Formally, let IV; 7 the implied volatility smirk computed at time ¢ for maturity 7" associated
to moneyness £. As specified by Zhang and Xiang (2008) in [117], assume the following three-
dimensional representation of the smirk IV approximated by a second-order polynomial function

in the log-moneyness £. Then:

Yo,t,T Black — Scholes : flat smile

Vi (§) = ~Yo.u,1 [1 + 711,078 Skewed IV smile (3.3.3.1)

Yo7 [1 4+ v1,0,1€ + V2,4,0€?]  Smirked IV smile

where tail risks are contained in vo ¢, 7, 1,7, V2,t,r that respectively designate the level, the slope,
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and the curvature effects associated to the shape of the volatility smirk. Subsequently, Zhang
and Xiang (2008) in [117] derive asymptotic approximations to clearly evidence the level, slope,
and curvature are fully determined by the risk-neutral probability distribution, particularly the

risk-neutral volatility RNV ol; -, skewness RN Skew; r, and kurtosis RN Kurt; 7.

Q

1
Y0,¢,T 1-— 21 (RNKurtyr + 3)| RNVol, r,

1
NEr = ERNSkewt’T, (3.3.3.2)

1
Yo, N o [RN Kurt,  + 3]

Furthermore, hedge fund managers typically exploit the discrepancies between risk-neutral
and real-world distributions, i.e. option-implied risk premia. In particular, Carr and Wu (2009)
in [48], and Bollerslev, Tauchen, and Zhou (2009) in [36] define the volatility risk premium as
the difference between the realized and the risk- neutral volatilities, i.e. V RP; ¢4, computed at
time ¢ over period 7 as the difference between the ex post realized return volatility over [t — 7, ]
time interval and the ex ante risk-neutral expectation of the future return volatility over [t,t + 7],

associated to options and futures for the given maturity 7'

VRPt,t+T,T = EtP [O't’th’T] — EtQ [Ut,t+7] (3333)

where E [] and EF [] denote the time-t conditional expectation operator under respectively risk-
neutral () and physical measure P. Therefore, El [0 ¢4, 7], and EtQ [01,1+-] are the expected
values conditional to time ¢ of the volatility realized over time period 7 under respectively physical
and risk-neutral probability measures. Furthermore, the volatility risk premium VRP; ;-1
multiplied by a notional dollar amount usually defines the payoff at maturity ¢ + 7 of a return
volatility swap. Under the no-arbitrage condition, the constant volatility swap rate SW; 4

determined at time t and paid at time ¢t + 7 equals the risk-neutral expectation of the future
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realized volatility.

In line with Bollerslev et al. (2009) in [36], we estimate Ef [0¢.4,] in Equation (3.3.3.3)
by the realized volatility RDVolgTS) over day t. For the sake of simplicity, we henceforth drop
the subscript 7 and we denote VRP; i1 as the volatility risk premium computed at time ¢
over the period 7 = 1 day, associated to options and futures for the given maturity 7". Similarly,
volatility swaps can be theoretically extended to forward contracts written on the third and fourth
moments, i.e. swaps respectively associated to skewness risk premium SRP; r and kurtosis risk

premium KRP; r as follows:

VRP,r = RDVol{"® — RNVol, r Volatility
Tail Risk Premia§ SRP, 1 = RDSkew"™ — RNSkew,r Skewness (3.3.3.4)

KRP,r = RDKurt,ETS) — RNKurtyr Kurtosis

where risk-neutral moments RNVol; v, RN Skew; 1, and RN Kurt; r are extracted from market
option prices by using the model-free approach of Bakshi, Kapadia, and Madan (2003) in [24] (see
the Appendix B for further details). Realized volatility RDVolgTS) designates the Ait-Sahalia,
Mykland and Zhang (2005) Two-Scales Realized Volatility measure introduced in [118] that uses
subsampling, averaging, and bias correction for the market microstructure noise. This bias-

(Ts (TS)

corrected realized measure is then extended to higher moments RDSkew; ) and RDK urt,

(see the Appendix B for further details).

The three tail risk premia VRP, r, SRP; 1, and K RP; v have been broadly documented by
recent literature as mimicking portfolios that harvest the tradeable compensation for time-varying
risks in higher-order moments. By construction, these risk premia are generally negative because

risk-neutral volatility, skewness, and kurtosis are generally higher than the associated realized
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moments, since it contains investor’s expectations for future non-realized tail risks. Hence,
VRP, 1, SRP, 7, and KRP, are similar to insurance-buying strategies that compensate for
bearing tail risks by generating positive payoffs in crisis periods. Ait-Sahalia, Wang and Yared
(2001) in [8], Blaskowitz and Schmidt (2002) in [35], Alireza (2005) in [14], Chang, Zhang and
Zhao (2013) in [50], Bondarenko (2014) in [39], and Schneider and Trojani (2015) in [104] among
others, investigate this new class of divergence trading strategies to exploit the discrepancy

between risk-neutral and real-world distributions of the underlying asset.

Specifically, Blaskowitz and Schmidt (2002) in [35] and Alireza (2005) in [14] arbitrate implied
volatility smile for higher-order moments. Let the option-implied risk-neutral distribution be
more skewed to the left than the real distribution of the underlying asset. Then, OTM put
options may be relatively overpriced with respect to the OTM call options, since the risk-neutral
distribution should reflect the fair price of skewness. Subsequently, trading the skewness consists
in selling the OTM put option P (S, K¢) and buying the OTM call option C (S, K¢ ), associated
to the underlying asset price Sy and the strike price K. The skewness trade then equals to selling
realized skewness. Therefore, the payoff value Ilgy,, associated to the corresponding delta-vega-

neutral portfolio is

Hskew = C (St, Kc) — I;TC)P(StaKC) - [Ao ~ZCAp| S, (3.3.3.5)

vp

where (A¢,Ap) and (ve,vp) respectively designate the delta and vega of call and put options.
Furthermore, skewness trades are commonly interpreted as long risk reversals or long synthetic
stocks. Similarly, let the risk-neutral distribution has a sharper peak and fatter tails than the
real-world distribution of the underlying asset. Then, OTM options may be relatively overpriced

with respect to ATM options. Subsequently, trading the kurtosis consists in selling the OTM
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call C'(S;, K3) and put options P (S, K1), and buying the ATM call C (S;, K3) and put option
P (S;, K) for strike prices K7 > K5 > Kj3. The kurtosis trade then equals to selling realized kur-
tosis. Hence, the payoff value Ik, associated to the corresponding delta-vega-neutral portfolio

can be interpreted as a long modified butterfly

gure = C (S, Ko) + 222 P (S, Ky)
vp,
—C(Si K3) — ZTC:p(st,Kl) (3.3.3.6)
1

Voy Ve,
- ACg + 7AP1 - ACQ - 7AP2 St
vp. 14

1 2

Skewness and kurtosis trades are usually interpreted as insurance-selling strategies, whereas
mirror trades are equivalent to buying respectively realized skewness and kurtosis. Typically,
hedge fund managers widely trade insurance strategies like volatility, skewness, and kurtosis
swaps to arbitrate higher-order risks. To that purpose, VIX options have been widely traded to
trade portfolio insurance, since they are European options written on VIX futures. Figure 3.2
plots the trading volume of VIX options and its decomposition into call and put options. As
observed, they have become strongly popular since the Lehman Brothers crisis, being by now
the second most liquid option contracts listed on CBOE and CFE, as they provide a purer
exposure to tail risks than S&P 500 options. More specifically, VIX call options are strongly
more actively traded than put options since hedge fund managers usually traded OTM and deep
OTM call options to pay tail risk insurance. As documented by Al Wakil (2016) in [11], we derive
the tail risk premia VRP; r, SRP; 1, and KRP, r from VIX options on a daily frequency and
for different maturities over 2008-2013. We use high-frequency data provided by Bloomberg to
estimate the real-world distribution, whereas OptionMetrics provides options data to estimate

the risk-neutral distribution.
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[Insert Figure 3.2 here]

Figure 3.4 plots the time series of VIX tail risk premia respectively associated to volatility,
skewness, and kurtosis, for 30-days time to maturities, over 2008-2013. Overall, the three tail risk
premia are generally negative, since favourable states of nature correspond to extreme events.
In particular, brief episodes of positive volatility risk premia consistently correspond to the US
Subprime crisis and the Lehman collapse in 2008, the European sovereign debt crisis in 2010,

the US sovereign debt crisis in 2011, and the Taper Tantrum in 2013.
[Insert Figure 3.4 here]

As observed in Figure 3.3, turmoil periods are associated to realized volatility peaks. Ta-
ble 3.2 reports summary statistics for tail risk premia. Student t- stats indicate that average risk
premia are clearly all significantly negative at the 1% confidence level across the 30, the 60, and

the 120-days time to maturities.
[Insert Figure 3.3 here]

[Insert Table 3.2 here]

3.4 Hedge Fund Exposure to Tail Risk Across Time

We investigate the contribution of tail risk premia to the performance of hedge fund investment
styles, after controlling for the loadings on the Fung and Hsieh seven factors. Specifically, we
perform time-series Ordinary Least Squares (OLS) regressions over the whole 2008-2013 period
to evaluate crash sensitivity at hedge fund investment style.

For each hedge fund investment style, Table 3.4 summarizes the results of two time-series

OLS regressions: i/ a first regression of style index returns on the market factor M KT — RF' and
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the three tail risk premia VRP, SRP, and KRP; and ii/ a second regression while adding the
Fung-Hsieh seven factors. Overall, ¢t-stats and p-values suggest that Global index is significantly
loaded on two of the three tail risk premia after controlling for the loadings on the Fung-Hsieh
seven factors. Indeed, a one-standard deviation increase in the volatility risk premium V RP
is associated with a strong decline in aggregate hedge fund returns of 0.1% per day, or 25.2%
per year. This effect has a statistical significance at the 1% level of confidence (¢-stat of -3.40).
Comparing regression ¢/ with ii/ shows that the four factor model with tail risk factors has the

same explanatory power than the Fung-Hsieh seven factor model (adjusted R? at 0.41).

[Insert Table 3.4 here]

When analyzing investment styles, we find that the exposure of hedge funds to tail risk
is statistically significant across most investment strategies. More specifically, four of the five
investment styles (Relative Value, Directional, Equity Hedge, Macro) present a significant loading
on at least one of the three tail risk premia, and for at least one of the regression specifications.
Ouly one investment style (Merger Arbitrage) exhibits a statistically insignificant tail risk loading.
Precisely, the four styles exhibit all negative and significant loading on the volatility risk premium
V RP, at least at the 10% level of confidence. In terms of magnitudes, returns associated to hedge
funds that pursue long-short equity strategies, e.g. Equity Hedge (1% level of confidence, t-stat
of -2.63) and Relative Value (5% level of confidence, t-stat of -2.25), are especially sensitive to tail
risk shocks. A one-standard deviation increase in the volatility risk premium V RP is associated
with a drop in returns of respectively 0.13% and 0.10% per day for hedge funds investing in
Equity Hedge and Relative Value. This finding is consistent with literature since Relative Value
hedge funds are usually considered as the last insurer against tail risks, executing risk transfer
from financial institutions, whereas Equity Hedge hedge strategies usually overlay hedge long

positions. Therefore, their payoff return profile is equivalent to buying a call option hedged by
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selling realized volatility.

Therefore, concerning the skewness risk premium SRP, Relative Value (¢-stat of 3.47) and
Directional (¢-stat of 2.68) styles exhibit both the most positive and significant loadings at the 1%
level of confidence, whereas Global Macro (t-stat of -2.5) presents rather a negative and significant
loading. In other words, Relative Value and Directional hedge funds are the most positively
exposed to skewness risk, whereas Global Macro hedge funds are usually negatively exposed
to skewness risk. Furthermore, our results show Relative Value hedge funds are not completely
insurance sellers, since they partially hedge volatility risk exposure by buying skewness risk. From
the economic intuition, these findings generally make sense, since Relative Value and Directional
strategies usually profit from underlying’s volatility of volatility. As described by Jaeger (2008) in
[71], Relative Value style is commonly long gamma, i.e. trading gamma to adjust the delta hedge
ratio, whereas trend-followers aim to optimally buying max lookback straddles as documented
by Fung and Hsieh (2001) in [63]. Therefore, their payoff return profile is equivalent to buying
realized skewness. Alternatively, Global Macro managers usually take contrarian bets, especially
on tail risks by selling realized skewness during crises, since they base their convergence trades
on mid and long-term macro-trends. For illustration, the loading on the market excess returns
MKT — RF associated to Global Macro style is negative (but then nonsignificant in the #i/-
regression), whereas all the other investment strategies exhibit significant and positive loadings
on the market excess returns M KT — RF. Finally, none of the hedge fund styles present a

significant loading on the kurtosis risk premium K RP.

The findings are robust® to the expiration time used to calculate the tail risk premia VRP,
SRP, and KRP. Findings clearly show that tail risk loading varies both across investment styles

and time, and henceforth, tail risk premia are an instrumental pricing factor in the universe of

5 Additional tests have been also performed with tail risk premia estimated for the 60, 90, and
120-days to maturity and can be provided on demand.
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hedge funds. More precisely, our findings clearly evidence that crash sensitivity associated to
hedge funds mainly arises from volatility risk exposure. Indeed, Relative Value and Equity Hedge
are the most negatively exposed strategies to volatility risk, even if Relative Value hedge funds
partially hedge their volatility risk exposure by buying skewness risk. Conversely, Global Macro

managers are the only hedge funds significantly negatively exposed to skewness risk.

3.5 Tail Risk in the Cross-Section of Hedge Funds

In the previous section, we investigate embedded tail risk across time at the hedge fund invest-
ment style level. Consistent with the hedge fund literature, the evidence shows that hedge fund
returns, in particular for equity-oriented investment strategies, are generally sensitive to tail risk
shocks across times, after controlling for commonly used hedge fund risk factors. This finding
suggests tail risk premia are instrumental determinants of hedge fund performance. In what
follows, we provide now cross-sectional evidence that supports this theory.

Each day, three hedge fund portfolios are formed by sorting the five hedge fund investment
styles on their exposures to tail risk. Specifically, at the end of each day, I perform time-series
monthly rolling regressions of excess returns associated to hedge fund investment strategies on
the market return and on respectively each of the three tail risk premia VRP, SRP, and KRP.
In the daily estimation window, the tail risk loading of each investment style is calculated with at
least 18 days of data. Nevertheless, the results are robust to running longer rolling windows,and
to using longer maturities for the tail risk premia. Therefore, the five investment strategies
are sorted into three quantile portfolios based on their tail risk factor loadings. The Fung-Hsieh
alpha then designates the intercept associated to the regression of the daily tail-risk beta portfolio
excess returns on the seven Fung-Hsieh hedge fund factors. This methodology is consistent with

the hedge fund literature about tail risk, including Jiang and Kelly (2012) in [68] among many
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others, but it investigates tail risk in the cross-section of returns of investment styles rather than
of individual hedge funds.

Table 3.5 reports the performance of the three quantile portfolios sorted on hedge fund tail
betas, respectively associated to the three tail risk premia VRP, SRP, and KRP. For each of
the tail risk factors, it summarizes the average daily tail risk betas, the average annualized excess
returns, and the Fung-Hsieh seven factor alpha associated to the three quantile portfolios and
to the high minus low portfolio, defined as the return spread between the high-tail-loading and
the low-tail-loading portfolios of hedge funds. Results show significant returns dispersion in the

investment styles captured by their betas on the tail risk premia.

[Insert Table 3.5 here]

Considering cross-sectional exposure to the volatility (Panel A) risk premia V RP, Table 3.5
shows the low-tail-loading portfolio (average beta of -0.216%) of hedge funds has the highest
average annualized excess return (0.57%). Inversely, the high-tail-loading portfolio (average
beta of 0.091%) of hedge funds has the lowest average daily excess return (-11.13%). Precisely,
hedge funds in quantiles one and two have negative tail risk loadings, respectively of -0.216%
and -0.026%. Intuitively, these hedge funds have on average negative returns when tail risk
is high, and therefore they are particularly sensitive to tail risk shocks. This suggests that
funds in quantiles one and two are generally selling crash insurance, realizing on average higher
annualized excess returns of respectively 0.57% and 0.51% that compensate for bearing volatility
risk. Inversely, hedge funds in the last quantile have high and positive volatility risk loadings,
on average of 0.091%, and are thus generally buyers of crash insurance. Hence, they earn on
average significantly lower excess returns of -11.13%. The high-minus-low portfolio realizes on
average an annualized return spread of -11.7%, that is significant at the 5% level of confidence,

with a t-statistic of -2.38.
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Similarly, considering cross-sectional exposure to the kurtosis (Panel C) risk premia K RP,
Table 3.5 shows that the low-tail-loading portfolio (average beta of -0.003%) of hedge funds has
the highest average annualized excess return (0.28%). Inversely, the high-tail-loading portfolio
(average beta of 0.009%) of hedge funds has the lowest average daily excess return (-8.32%).
Precisely, hedge funds in quantile one has negative tail risk loadings (-0.003%), and they tend
to realize on average negative returns when tail risk is high, and therefore they are particularly
sensitive to tail risk shocks. This suggests that funds in quantile one are generally selling crash
insurance, realizing on average higher annualized excess returns of 0.28% that compensate for
bearing kurtosis risk. Inversely, hedge funds in the second and last quantile have high and positive
volatility risk loadings, on average of respectively 0.005% and 0.009%, and are thus generally
buyers of crash insurance. Hence, they earn on average significantly lower excess returns of
respectively -1.85% and -8.32%. The high-minus-low portfolio realizes on average an annualized

return spread of -8.6%, significant at the 5% level of confidence, with a ¢- statistic of -1.86.

The findings are robust® to the expiration time used to calculate the tail risk premia V RP
and K RP. Nevertheless, when considering cross-sectional exposure to the skewness (Panel B)
risk premia SRP, Table 3.5 shows non-significant extra returns for the high-minus-low portfolio.
The average annualized excess return of 0.8% (with a ¢-statistic of 0.15) suggests the return spread
between insurance hedgers and sellers is negligible over the post-Lehman period 2008-2013, and

when considering the cross-section of hedge funds at the investment styles level.

Finally, we find clear evidence that hedge funds that significantly load on volatility (kurtosis)
risk premia substantially outperform low-beta funds by nearly 11.7% (8.6%) per year. This result
sheds light to what extent hedge fund alpha arises actually from selling crash insurance strategies,

in particular selling realized volatility and kurtosis via divergent swaps.

6 Additional tests have been also performed with tail risk premia estimated for the 60, 90, and
120-days to maturity and can be provided on demand.
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3.6 Robustness Checks

In this section, we perform various robustness checks’ to ensure our results are consistent. Specif-
ically, we investigate the contribution of tail risk premia to the performance of hedge fund in-
vestment styles, after controlling for the loadings on the Fung and Hsieh seven factors, over tail

events to disentangle the time-varying and structural exposures of hedge fund styles.

3.6.1 Tail Risk Periods

Since crises episodes are violent but rare, scarcity implies that above results could be dominated
by long non-crisis periods. Hence, we investigate the time-varying and structural exposure of
hedge funds to tail risks by considering only financial turmoil. Specifically, we use the VIX
fear gauge to time-slice the initial data sample by identifying peaks and bottoms associated to
realized tail risks. Then, time-sliced sample period includes the US Subprime crisis and the
Lehman collapse in 2008, the European sovereign debt crisis in 2010, the US sovereign debt crisis
in 2011, and the Taper Tantrum in 2013, providing 71 observation points for data analysis. As
expected, Table 3.6 exhibits much stronger adjusted R2, suggesting that tail risk premia are
particularly instrumental in pricing time-varying hedge fund performance. Considering the first
regression of style index returns on the market factor M K'T'— RF' and the three tail risk premia
VRP, SRP, and K RP, adjusted R? increases for all the investment styles, especially for Macro
(from 0.03 to 0.19), Relative Value (from 0.10 to 0.18), and Merger Arbitrage (from 0.35 to 0.54);
and to a lesser extent, for Equity Hedge (from 0.53 to 0.60) and Directional (from 0.49 to 0.58).
Since the loadings on intercept and market factor remain generally unchanged from regression

i/ to ii/, adding tail risk factors appears instrumental to pricing the hedge fund performance.

"We are looking for controlling hedge fund risk exposures for other nonlinear risks, e.g. those
related to correlation risk by Buraschi, Kosowski, and Trojani (2014) in [45], tail risk by Agarwal,
Green, and Ren (2017) in [4], liquidity risk by Sadka (2010) in [102].
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[Insert Table 3.6 here]

Overall, t-stats and p-values suggest that Global index is significantly loaded on one tail
risk premia after controlling for the loadings on the Fung-Hsieh seven factors. Indeed, a one-
standard deviation increase in the volatility risk premium V RP is associated with a considerable
drop in aggregate hedge fund returns of 0.32% per day, or 80.64% per year. This effect has a
statistical significance at the 1% level of confidence (t-stat of -3.01). Comparing regression i/
with ¢/, the four factor model with tail risk factors has again the same explanatory power than
the Fung-Hsieh seven factor model (adjusted R? at 0.46). More precisely, t-stats and p-values
indicate that now all of the five style indexes present a significant loading on at least one of
the three tail risk premia, and for at least one of the regression specifications. Precisely, three
investment styles exhibit negative and significant loading on the volatility risk premium V RP,
at least at the 10% level of confidence. In terms of magnitudes, it is especially true for Equity
Hedge (5% level of confidence, t-stat of -2.46) and Relative Value (5% level of confidence, t-stat
of -2.52) that significantly load on tail risk over 2008-2013 period. Precisely, a one-standard
deviation increase in the volatility risk premium V RP is associated with a considerable drop in
returns of respectively 0.39% and 0.42% per day for hedge funds investing in Equity Hedge and
Relative Value. This finding particularly exhibit that Equity Hedge and Relative Value are the
most negatively exposed strategies to volatility risk, especially during crises when volatility swap
returns are the highest. In other words, they are particularly crash sensitive since they profit
from selling realized volatility when it is considered as expensive during crises.

Then, considering the skewness risk premium SRP, Relative Value (¢-stat of 2.02) and
Directional (t-stat of 1.91) styles exhibit again both a positive and significant loading. This
finding exhibits they usually buy realized skewness since they profit from underlying’s volatility

of volatility. Indeed, Relative Value managers are long gamma, and trend-followers aim to
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optimally buying max lookback straddles. Their associated payoff return profile is then equivalent
to buying realized skewness. Global Macro (¢-stat of -1.89) presents again the only negative and
now significant loading on skewness risk. This result particularly validates that Global Macro
hedge funds are usually selling realized skewness during crises since they base their convergence
trades on long-term macro-trends. Interestingly, the Merger Arbitrage investment style presents
by now a positive and significant loading on the kurtosis risk premium K RP (t-stat of 2.28).
Figure 3.5 illustrates the sensitivities of hedge fund investment styles to the Fung and Hsieh seven
factors (without market factor) and the three tail risk premia, where sensitivities are estimated

by absolute values of t-statistics after controlling for the market factor loading.

[Insert Figure 3.5 here]

Intuitively, the tail risk embedded in the five hedge fund investment strategies makes sense
over crisis periods. All the five investment strategies exhibit generally significant negative load-
ings on the volatility risk premium V RP, and significant positive loadings on the market excess
returns M KT — RF.® These findings are consistent with Agarwal and Naik (2004) that evidence
equity-oriented hedge fund styles generally bear considerable left-tail risk, incurring considerable
losses in equity market downward moves. Furthermore, they are also consistent with our previ-
ous results: i/ Relative Value and Equity Hedge are the most negatively exposed strategies to
volatility risk, since they are usually volatility sellers; i/ Relative Value and Directional are the
most positively exposed strategies to skewness risk, and Relative Value managers partially hedge
their volatility risk exposure by buying realized skewness; And 4,/ Global Macro hedge funds

are usually negatively exposed to skewness risk to take contrarian bets.

8Similarly, the loading on the market excess returns M KT — RF associated to Global Macro
style is negative but then nonsignificant in the ii/-regression. In additional tests with tail risk
premia estimated for the 60, 90, and 120-days to maturity, the loading becomes significantly
positive.
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3.7 Conclusion

This paper has been motivated by filling the gap in the hedge funds and the asset pricing
literature. Although there is scarcely any doubt that hedge funds are particularly sensitive
to market crashes, there is limited literature on sophisticated option-based dynamic trading
strategies that hedge funds usually pursue, and how they explain hedge fund performance. In
particular, I address the following assumptions. First, does tail risk in hedge funds come from
their tail risk premia strategies? Second, does tail risk premia investing explain the variation in
hedge fund performance, in both the time-series and the cross-section? Finally, to what extent
does hedge fund alpha arise from managerial skill or from actually selling crash insurance? In
particular, do hedge funds can actively time tail risk before market crashes? To our knowledge,
this paper is the first to explain the time-series and cross-sectional variation in hedge fund
performance by tail risk premia dynamic strategies. Therefore, this paper shows tail risk in
hedge funds particularly arises from the tradeable volatility V RP, skewness SRP, and kurtosis
K RP risk premia strategies that hedge funds pursue. Thus, they are instrumental determinants

in the variation of hedge fund performance, both in the time-series and the cross-section.

This paper finds that exposures of hedge funds to tail risk premia are statistically signifi-
cant across most investment strategies. Indeed, for the Global Hedge Fund Index, a four-factor
model with our tail risk premia has the same explanatory power than the seven-factor model
of Fung and Hsieh (2004) over the whole period. In particular, when considering tail events,
adjusted R? associated to our augmented Fung-Hsieh model significantly increases across all
investment styles. First, we exhibit to what extent hedge fund alpha actually arises from sell-
ing crash-insurance strategies. After controlling for loadings on Fung-Hsieh seven factors and
forming quantile portfolios of cross-sectional hedge fund returns sorted on tail risk loadings, we

evidence hedge funds that significantly load on volatility (kurtosis) risk premia substantially

158



outperform low-beta funds by nearly 11.7% (8.6%) per year. In other words, when considering
cross-sectional exposure to the volatility VRP (kurtosis K RP) risk premium, the high-minus-
low portfolio realizes on average an annualized return spread of -11.7% (-8.6%). This finding
particularly suggests hedge funds in quantile one are generally selling crash insurance, realizing
on average annualized excess returns that compensate for bearing tail risks. Second, we show
crash sensitivity of hedge funds mainly comes from volatility risk exposure. After controlling
for loadings on Fung-Hsieh seven factors, a one-standard deviation increase in the volatility risk
premium V RP is associated with a strong decline in aggregate hedge fund returns of 0.10% per
day, or 25.20% per year over 2008-2013. Over tail events, a one-standard deviation increase
in the volatility risk premium V RP is associated with a substantial decline in aggregate hedge
fund returns of 0.32% per day, or 80.64% per year. In particular, at HF investment style level,
Relative Value and Equity Hedge are the most negatively exposed strategies to volatility risk,
particularly during crises when volatility swap returns are the highest. This finding is consistent
with literature, since Relative Value hedge funds are usually considered as the last insurer against
tail risks, executing risk transfer from financial institutions, whereas Equity Hedge hedge funds
usually overlay hedge long positions. Therefore, payoff return profile is equivalent to buying a
call option partially hedged by selling realized volatility. Third, at hedge fund investment style
level, we evidence Relative Value and Directional hedge funds are the most positively exposed
strategies to skewness risk. This result is consistent since they usually profit from underlying’s
volatility of volatility: Relative Value is commonly long gamma as described by Jaeger (2008)
in [71], and trend-followers aim to buying optimally max lookback straddles according Fung and
Hsieh (2001) in [63]. Therefore, we show Relative Value hedge funds are not completely insurance
sellers, since they partially hedge volatility risk by buying skewness risk, whereas Global Macro
hedge funds are usually negatively exposed to skewness risk. This result is also consistent since

Global Macro managers usually take contrarian bets on tail risks, i.e. selling realized skewness
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during crises, as their convergence trades are based on long-term macroeconomic trends.

This paper extends the asset pricing literature of hedge fund performance for two reasons.
First, it extends Agarwal and Naik (2004) in [5], and Agarwal, Ruenzi, and Weigert (2015) in [6]
that evidence tail risk in hedge funds arise from dynamic strategies replicating short positions in
equity index put options. Second, this paper sheds light on Agarwal, Bakshi, and Huij (2010) in
[3] that evidence hedge funds are particularly sensitive to market crashes through their exposures
to the S&P 500 risk-neutral volatility, skewness, and kurtosis. To that extent, this paper clearly
shows tail risk premia strategies that trade the higher-order risks embedded in options are an
instrumental determinant in the performance of hedge funds.

This paper arises practical implications especially within the industries of hedge funds, asset
management, and smart indices. Since we find clear evidence that tradeable tail risk premia
explain the variation in hedge fund returns, both in the time-series and the cross-section, this
paper paves the way for reverse engineering sophisticated hedge funds by replicating the volatility
V RP, skewness SRP, and kurtosis K RP risk premia strategies. Besides, this paper sheds light
on the secretive drivers of hedge fund performance, since it disentangles it into real alpha and
alternative beta like insurance-crash selling strategies.

Nevertheless, due to the lack of data about hedge funds, we investigated tail risk sensitivity
only at the hedge fund investment style on a daily basis, leaving for future research examination
at the individual hedge fund level. Besides, our further research will focus on estimating a new
statistical measure to evaluate the timing ability and managerial skills of hedge fund managers
to mitigate tail risk exposure. Finally, we have left for future research the question whether tail

risk premia can predict future hedge fund returns.
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3.8 Appendix

3.8.1 Investment Styles

HFR indices are constructed to track the aggregate performance of a wide range of hedge fund
managers grouped by a specific strategy criterion. The hedge fund strategy classification aims to
capture pure strategies that reflect the evolution of major trends in the hedge fund industry. The
5 major investment styles used in HFR are based as follows on the definitions provided below by

HFR.

e Directional:
This investment strategy employs quantitative techniques to forecast future price move-
ments and relations between securities. They include in particular Factor-based and Sta-
tistical Arbitrage/Trading strategies. Factor-based strategies are based on the systematic
analysis of common relationships between securities, while Statistical Arbitrage/Trading
strategies consist in exploiting pricing anomalies inherent in security prices. Directional
strategies typically maintain time-varying levels of long and short equity market exposure

over distinct market cycles.

e Equity Hedge:
This strategy consists in maintaining positions both long and short in equity stocks and
equity derivative instruments. Equity Hedge managers can be either broadly diversified or
narrowly concentrated on specific sectors, and they can adjust their net exposure, leverage,
holding period, and concentrations. They typically maintain at least 50% exposure to

equity, and can be completely invested in, both long and short.

e Macro:

This investment style covers a broad range of strategies in which investment process is
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based on the movements in economic variables and their impact these have on various asset
classes. Managers use various techniques, both systematic and discretionary, both funda-
mental and quantitative, and both bottom-up and top-down approaches. Macro strategies
usually depart from relative value strategies since they are based on the movements in

macroeconomic variables rather than on the discrepancy between securities.

e Merger Arbitrage:
Merger Arbitrageurs focus on companies that are primarily involved in announced corpo-
rate transactions, typically with restricted or no exposure to situations that don’t include
formal announcement. Since investment process consists typically in going long the stock
of the acquired company and going short the stock of the acquirer, deal-failure risk des-
ignates the major risk arbitrage risk. These investment strategies typically maintain at

least 75% exposure to announced transactions over a given market cycle.

e Relative Value:
Relative Value arbitrageurs take profit from the realization of a valluation discrepancy
between various securities. They use both quantitative and fundamental techniques and a
broad range of securities among asset classes to identify attractive risk-adjusted spreads.
This investment style can be also involved in corporate transactions, but they depart from
Merger Arbitrage since they are based on pricing anomalies between securities, rather than

on the outcome of a transaction.

3.8.2 Risk-Neutral Distribution

Following the model-free approach of Bakshi, Kapadia, and Madan (2003) in [24], we extract
risk-neutral moments from the market option prices. Let R(¢,T) =In[S (t+T)] —In[S (t)] the

log return at time ¢ over the time period 7. We define the risk- neutral mean of returns p(¢, T,
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volatility RNV ol(t,T), skewness RN Skew(t,T'), and kurtosis RN Kurt(t,T) measured at time

t over period T by

1(t,T)=EC[R(t,T)] (3.8.2.1)

RNVol (t,T) = [EtQ [R (t,T)z] —u(th)Q}é (3.8.2.2)

£ |(r.1) - B2 [RO.TY)

(82| (R - 2 Ree1)))’))

RN Skew (t,T) = (3.8.2.3)

3
2

52 |(re1) - B[R

RNKurt (t,T) = 2
(52] (R - 2 R 1))

(3.8.2.4)

From Bakshi and Madan (2000) in [25], any payoff function H [S] can be spanned alge-
braically by a continuum of OTM European call and put options. Therefore, let r the risk-free
rate, C (t,T; K) (P (¢,T;K) ) the price of a European call (put) option at time ¢ , with time
to expiration T, and strike price K . Let the volatility V(¢,T), the cubic W (¢,T), and the
quartic X (¢,T) contracts associated to the payoff function H [S] . As below, Equations (3.8.2.1),
(3.8.2.2), (3.8.2.3), and (3.8.2.4) can be expressed in terms of the volatility, cubic, and quartic

contracts’ fair values under the risk-neutral expectation operator conditional on information at
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time ¢ :

exp (r7T) _exp (rT) exp (rT)

w(t,T)=exp (rT)—1— V(t,T) W (t,T)— X (t,T) (3.8.2.5)

1
2

RNVol (t,T) = |V (t,T) exp (rT) — (t,T)2] (3.8.2.6)

RN Skew (,T) exp (rT)W (t,T) — 3u (t,T) exp (rT) V (t, T) +2u(t,T)? (3827)

exp (rT)V (1) — p (¢, Tﬂ

Njw

exp (rT) X (t,T) — 4 (t, T) exp (rT) W (t,T) + 6 exp (rT) pu (£, T)* V (¢, T) — 3 (¢, T)*

RNKurt (t,T) = 3
[exp (rT)V (t,T) — pu(t,T)?

(3.8.2.8)

Furthermore, in Equations (3.8.2.5), (3.8.2.6), (3.8.2.7), and (3.8.2.8), contracts’ fair values
V¢T), W(tT), and X (¢,7) can be spanned by a linear combination of OTM European
call and put options, the stock and the risk-free asset, requiring a large continuum of traded
OTM options. However, since we observe in practice only few option market prices for discretely

spaced strike prices, we apply the non-parametric approach of Volkert (2014) in [111] to adress
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discreteness by applying a cubic smoothing spline to interpolate implied volatilities amongst
strike prices. Therefore, we approximate numerically the integral functions of volatility, cubic,

and quartic contracts by using trapezoidal approximations.

3.8.3 Real-World Distribution

Recent literature about high-frequency econometrics, including Bollerslev, Tauchen, and Zhou
(2009) in [36], and Neumann and Skiadopoulos (2013) in [94] among others, usually estimates the
daily realized variance under a nonparametric approach by summing frequently sampled squared
returns. Similarly, Amaya, Christoffersen, Jacobs, and Vasquez (2013) in [15] derive the daily
realized skewness and kurtosis from intradaily returns. Nevertheless, since this standard econo-
metric approach is widely biased by the market microstructure noise on volatility estimation, a
naive practice consists in throwing away a lot of available data by sampling less frequently the
intradaily underlying asset prices. In this way, we rather use the model-free approach proposed
by Ait-Sahalia, Mykland and Zhang (2005) in [118] to fully exploit the tick-by-tick data, to
correct for the bias of market microstructure noise; and furthermore, to estimate similarly the
higher-order realized moments.

According Bollerslev, Tauchen, and Zhou (2009) in [36], the daily realized variance is usually
estimated by summing the intradaily returns of the underlying asset. Let Ry ; the i-intraday log
return calculated on day ¢ and associated to the price index P ;. Then R;;r = In (Ptv%) —
In (Pt, Gy ), where N denotes the total number of observed intraday log returns in the trading
day t. Therefore, the daily realized volatility RDVol,Ea”) is usually estimated by summing naively

all the n squares of intradaily log returns R, ;:

2

N
RDV ol = (Z REJ.) (3.8.3.1)
=1
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Similarly, following Amaya et al. (2013) in [15], the ex-post realized daily skewness RDSkew,
and kurtosis RDKurt, v can be expressed as follows, respectively scaled by N 3 and N to ensure

they correspond to the daily realized measures:

. N
Nz o R?,i
]

RDSkew! = — =L
¢ RDVol} (383.2)
v 8.3.
ny. thli
(all) =1
DEKurt,™ = =2
RDRurty = o hya

Nevertheless, Ait-Sahalia, Mykland and Zhang (2005) in [118] argue that using naively all
the tick-by-tick data makes the market microstructure noise totally swamp the estimated realized
volatility under the nonparametric case. Suppose the log price process X; follows a continuous
semi-martingale. Then, it is modeled by the stochastic differential equation dX; = u; + o:dWy,
where p¢, o¢, and Wy denote respectively the drift and the volatility of the log return process of X;
at time ¢, and a standard Brownian motion process. Therefore, the object of interest primarily
consists in estimating the integrated variance, i.e. the quadratic variation (X, X), = fafdt

0
over the time period [0,7]. Indeed, Zhang et al. (2005) show that RDVOZ,E?”) in the (3.8.3.1)

converges in law to

NI

T

o 2T

RDVOl™ 2 (X, X) 1 + 2nE [%] + |4nE [¢] +— / oldt| Zipa — (3-8.3.3)
0

where RDVolgil ' is even more positively biased by the market microstructure noise 2nE [€2]
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when the sample size n of observed intradaily prices increases. Consequently, sampling sparsely
either at an arbitrary frequency or even at an optimal frequency by decreasing n are tantamount
to ignoring the microstructure noise and to throwing out a large fraction of the available intradaily
data. In contrast, Ait-Sahalia, Mykland and Zhang (2005) propose the following Two-Scales
Realized Volatility estimator RDVol ) that uses all the available tick- by-tick data but that

incorporates subsampling, averaging, and bias correction for the market microstructure noise:

K
1 “
RDVolT™ = 7 RDVol{ — —RDV et (3.8.3.4)
k=1

where the original grid G = {t,...,t,} of observation times of log prices in a given trading day
is partitioned into K non-overlapping and equal subsamples G*) for k = {1,...,K}. The k-th
sub-grid is written as G = {th—1,tk—14K s tk—14n, Kk |- Therefore, Zhang et al. (2005) average

the estimators RDVolgC ) obtained on each of the K grids of average size m = ”’TK“

, giving

K
rise to the estimator RDVoléfwg) = % > RDVolgf). Then, bias correction is determined by
k=1

K =n3

2 T s
12F [¢?] /TB" fafdt} . Finally, RDVOZ(TTS) corrects for the bias 2nE [e2] due to the

microstructure noise of RDV ol (avg)

, since it now increases with the average subsamples size 7.
Similarly, we derive to the higher-order moments the Ait-Sahalia, Mykland and Zhang (2005)

methodology of subsampling, averaging, and bias correction for the market microstructure noise:

RDSkew{"™ = ZRDSkew(k) RDSk: fah),
(3.8.3.5)
RDKurt{® = ZRDKurt(k) RDK rt{e!
k 1

where RDS’k:ew(TTS) and RDK urt(TTS) denote respectively the two-scales realized skewness and
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kurtosis.

3.8.4 Theory of Tail Risk Premia

From Cochrane (2005) in [53], T demonstrate that the expected excess return over long period
on tail risk premia VRP, SRP, and K RP is negative, since it is negatively correlated with the

negative covariance between factors and stochastic discount factor (SDF).
Let the representative agent modelled by utility function U defined for consumption ¢; and

&t.}rl:

U (Et76t+1) =u (ét) + ﬁEt [’LL (ét+1)]

where 0 denotes the subjective discount factor. The intuition underlying tail risk premia makes
sense since representative agent feels poorer in bad times, decreasing then their consumption.
Hence, he consents to pay a positive risk premium over long period that is compensated by
generating positive excess returns in adverse times. Therefore, allocation problem consists in
a trade-off at time ¢ over [t,t 4 1] between consumption and investment in an amount £ of the
factor payoff 411 = pt4+1 + diy1, where piq and dyy1 are respectively price and dividend of the
risk factor. Henceforth, agent’s problem is to find the optimal amount of wealth £ that maximizes

the utlhty U (ét, ét+1):

Ct = ¢t —Epe
n{lga}x {u(é)+ BE: [u(Ci1)]} st (3.8.4.1)

Ci41 = Ciy1 +ETip1

By Lagrangean technique, the first-order condition (FOC) for an optimal consumption and

portfolio choice gives the pricing equation of the factor at time ¢
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pe = E; {Bu;sc(g)l):cm} (3.8.4.2)

uw (cot1)
u’(ct)

where my41 = is the SDF, i.e. the intertemporal marginal rate of substitution between
consumption and investment, written as a function of marginal utility u’. Assuming risk-free

asset pays with certainty the payoff z;11 = 1, then

1
Et [mt+1] = T
"1

where r{ 41 is the risk-free rate discounting the payoff z;1; to give the risk-free asset price at
t. Exhibiting in (3.8.4.2) the covariance term between SDF m;; and factor payoff x;;, factor
price at t can now be written as the expected cashflow discounted at risk-free rate plus a risk

premium:

E; |z
Pt = M + covy [mt+1,$t+1] (3843)

Tt41

Rearranging the expression below where R = z;% is the gross return of the factor over
t,t+ 1] and r41 1 = Reyq — !, . is the factor return in excess of the risk-free rate, we obtain the
) + + t+1 ’

expected excess return on the tail risk factors, i.e. the tail risk premium:

Et [Tt+1] = *7’{4»1 + COVy [mt_,_l, Tt+1] (3844)

COVy [mt+1a Tt-«-ﬂ
=" ‘7' ' 3.8.4.5
E, [mt+1} ( )

Considering the theoretical underpinnings of a risk premium, Equation (3.8.4.4) provides

very straightforward conclusions:
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o If the factor excess return 441 and the SDF m; are independent, there is no risk pre-

mium for bearing additional risk;

o If the factor excess return 7.1 covaries negatively with the SDF m; 4, the risk premium

compensates the agent for paying a positive risk premium over long period;

o If the factor excess return r.; covaries positively with the SDF m;, the risk premium
generates negative returns over long period, but pays a reward in bad times that compen-
sates the agent for paying an insurance. This is exactly what happens when an investor

pays the tail risk premia VRP, SRP, and KRP.

3.8.5 Trend-Following Factors

Since our study is restricted by the size of our tail risk premia data sample, we calculate proxies
on a daily basis for the trend-following factors of Fung-Hsieh (2001, 2004) in [63] and [64].

For that purpose, we consider their special case of the perfect trend follower who captures
systematically the largest asset price movement over the trading day. Hence, the Primitive
Trend-Following Strategy (PTFS) captures the optimal payout Siax — Smin, Where Spax and
Smin respectively designate the maximum and the minimum price of an asset over a trading
day. This special case assumes the trend follower can perfectly anticipate asset price movements
without incurring trading costs, since he can formally buy breakouts and sell breakdowns.

Therefore, we empirically construct returns of the PTFS for each of the following 15 markets

by using the futures data provided by Datastream and Bloomberg:
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e Bonds: 30-year US bond, 10-year Gilts, 10-year Bund, 10-year French bond, 10-year

Australian bond.

e Currencies: British pound, Deutschemark, Japanese yen, Swiss franc.

e Commodities: Corn, wheat, soybean, crude oil, gold, silver.

Finally, returns of the PTFSBD (bonds), PTFSFX (currencies), and PTFSCOM (commodi-
ties) used in the Fung-Hsieh seven-factor model are then calculated by equally-weighting the

returns of the 15 PTFS associated to each of the 3 asset classes.
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Table 3.1: Summary Statistics of Hedge Fund Investment
Styles

N Min Pctl Pct25 Pcts0 Pct75 Pct99 Max Std
Panel A: All investment styles, per year

2008 20 -0,0231 -0,0229 -0,0042 -0,0012 0,0020 0,0257 0,0258 0,0076
2009 52 -0,0099 -0,0089 -0,0009 0,0004 0,0018 0,0083 0,0118 0,0028
2010 51  -0,0138 -0,0088 -0,0014 0,0000 0,0012 0,0056 0,0105 0,0028
2011 52 -0,0196 -0,0090 -0,0017 0,0000 0,0013 0,0058 0,0072 0,0029
2012 55 -0,0088 -0,0059 -0,0010 0,0001 0,0011 0,0061 0,0071 0,0020
2013 45 -0,0123 -0,0078 -0,0010 0,0000 0,0013 0,0045 0,0068 0,0023

Panel B: Full sample, by investment style

Aggregate 275 -0,0109 -0,0077 -0,0008 0,0001 0,0011 0,0048 0,0149 0,0022
Directional 275 -0,0231 -0,0184 -0,0017 0,0001 0,0017 0,0073 0,0244 0,0041
Equity Hedge 275 -0,0173 -0,0125 -0,0019 0,0000 0,0018 0,0099 0,0256 0,0042
Macro 275 -0,0160 -0,0088 -0,0022 -0,0003 0,0014 0,0081 0,0118 0,0033
Merger Arbitrage 275 -0,0125 -0,0070 -0,0009 -0,0001 0,0012 0,0087 0,0127 0,0024
Relative Value 275 -0,0188 -0,0071 -0,0007 0,0003 0,0012 0,0045 0,0258 0,0026

Panel C: All investment styles, full sample
1650 -0,0231 -0,0097 -0,0013 0,0001 0,0013 0,0077 0,0258 0,0032

This table reports summary statistics for the data of hedge fund investment styles from HFR
Database over the period 2008-2013. The data sample that we constructed is restricted to the
estimation points associated to the tail risk premia. Statistic /N designates either the number of
daily returns associated to all the hedge fund investment styles each year (Panel A), or for each
investment style over the entire sample period (Panel B). Other statistics consist in the minimum,
1, 25, 50, 75, and 99 percentiles, maximum and standard deviation. Panel C summarizes the
total number of daily hedge fund returns in the entire data sample and other statistics.
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Table 3.3: Pairwise Correlations of Fung-Hsieh Factors and
Tail Risk Premia

MKT-RF SMB dTERM dCREDIT PTFSBD PTFSFX PTFSCOM VRP SRP

SMB 0,10
[0,08]
dTERM 0,37 0,04
(0] [0,49]
dCREDIT -0,33 20,05 -0,95
[0] [0,39] [0]
PTFSBD  -0,13 20,06 -0,09 0,11
[0,04] 03] [0.12]  [0.06]
PTFSFX  -0,18 0,08 0,10 -0,07 0,08
[0] [0,21] [0,09] [0,24] [0,16]
PTFSCOM -0,12 0,13 -0,08 0,17 0,31 0,12
[0,05] [0,03] [0,16] [0,01] [0] [0,04]
VRP 0,27 021 -013 0,15 0,18 0,25 0,34
[0] [0] [0,04] [0,01] [0] [0] [0]
SRP 0,31 0,16 0,00 0,02 0,10 0,20 0,04 0,14
[0] [0,01] [0,95] [0,75] [0,1] [0] [0,47] [0,02]
KRP 0,04 0,00 -0,05 0,04 -0,02 0,00 -0,06 019 021
[0,52] [0,95] [0,39] [0,48] [0,72] [0,98] [0,29] [0] [0]

This table summarizes the time-series Pearson pairwise correlations of the Fung-Hsieh (2001)
seven factors and the tail risk premia in Al Wakil (2016). Sample period is August 2008 to
October 2013. The Fung-Hsieh seven factors consist in the market portfolio in excess of the risk-
free rate, and the SMB of Fama and French (1993), the term spread change, the credit spread
change, and the factors associated to the best trend-following strategies, i.e. PTFSBD (bonds),
PTFSFX (currencies), PTFSCOM (commodities). p-values are reported in square brackets.
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Table 3.4: Multivariate Regressions Results of Hedge Fund Styles Returns

on Fung-Hsieh Factors and Tail Risk Premia over 2008-2013

Investment Nb. Obs. Intercept MKT-RF SMB dTERM dCREDIT PTFSBD PTFSFX PTFSCOM VRP SRP KRp LSauare/
Style Adj. R-Square
Global 275 0,0000  0,088%%* 0,0012%%  0,0002%* 0,000 0,41
[-0,19] [11,48] [-4,26] [2.00]  [0.51] 0.41
20,0231 008724  0,0064  -0,0052 0,014 0,0024 43603 -0,0001%*  -0,001%%*  0,0001*  0,0000 0,43
-0,63] [10,45] [0,37] -0,4] -0,63] [1,6] [0,63] 2] [-3.4] (18] [0,36] 0,41
Directionnal 275 0,0003  0,1979%%* -0,0000%  0,0004%%*  0,0000 0,50
[1,22] [15,11] [-1.85] 331 [15] 0,49
20,0407 0,1908%%F  _0,0623%F  -0,0027 -0,0206 0,0027 12206 -0,0002%%  -0,0007  0,0004%% 0,0000 0,52
[-0,66] [13,52] [-2,13] [-0,12] [:0,67] [1,06] [0.1] [-2,24] [-1,36] [2.68]  [1.48] 0,50
Equity Hedge 275 20,0001 0,1973%%* 0,0013%% 0,000 0,0000 0,54
[-0,22] [15,54] [-2,96] [1.06]  [0,49] 53
00006  0,1906*** 00084  0,0153 0,0051 0,0044¥ 164733 -0,0001*  -0,0013%%* 0,001  0,0000 0,55
[0,16] [13,88] [0,20] [0.71] [0.17] [1,79] [1.43] [-1,66] [-2,63] 052  [0.57]
Macro 975 -0,0000%%*%  _0,0321%* 0,0011%%  -0,0004** 0,0000 0,05
[-3.2] [-2.23] [-2,23] 25  ]-0,01] 0.03
20,0991 -0,0059  0,0866*** -0,0691***  -0,0495 00018  -17,9721 ~0,0001 20,0005 -0,0002  0,0000 0,18
[-1,54] [-0,4] [2,83] 1-3] [-1,54] [0,69] -1,46] [-1,27] -0,95] [1.35]  [-0,82] 0,15
Merger Arbitrage 275 0,0002  0,0079%%* 20,0001 00001  0,0000 0,36
[1.21] [11,3] [-0,47] (0,62  [0.88] 0,35
0,1272F%%  0,0001%%  _0,0272  0,0497%%*  0,0633%** 0,001  -8,6250 0,0000 20,0002 00000  0,0000 0,39
[3.12] [9,68] [-1,41] [3.42] [3.11] [:0.06] [1,11] -0,7] [-0,53] [0.5  [0.98] 0,37
Relative Value 275 0,0004%*  0,0424%%* ~0,0000%*  0,0005*** 0,0000 0,12
[2,01] [3.88] [-2,4] [4.14]  [0,06] 0,10
00338  0,0314%** 00229 00267 0,0168 0,0021 2,7385 -0,0001 0,001%%  0,0004%%%  0,0000 0,15
[0,65] [2,65] [-0,93] [1,44] [0,65] 1] [0,28] [-0,96] [-2,25] 347 [0.27] 0,11

This table summarizes the results of time-series OLS regressions of major hedge fund style returns
on the Fung-Hsieh (2001) seven factors and the tail risk premia in Al Wakil (2016). Sample period
is August 2008 to October 2013. The Fung-Hsieh seven factors consist in the market portfolio in
excess of the risk-free rate, and the SMB of Fama and French (1993), the term spread change,
the credit spread change, and the factors associated to the best trend-following strategies, i.e.
PTFSBD (bonds), PTFSFX (currencies), PTFSCOM (commodities). T-statistics are reported
in square brackets and stars *, ** denote statistical significance at respectively 5% and 1% level
of confidence.

175



Table 3.5: Quantile Portfolios Sorted on Hedge Fund Tail
Loadings and Return Spread of the High-Minus-Low Portfo-

lio

Factor Beta Quantiles
1 [Low] 2 3 [High] High - Low

Panel A: Volatility Risk Premia in the Cross-Section

Average Tail Risk Beta -0,216% -0,026%  0,091% 0,307%
[18,35] [-3.37]  [11.47] [28,88)]

Average Excess Return 0,0057  0,0051  -0,1113 -0,117%%*
[0,16] [0,15] [-2,4] [-2.38]

Fung-Hsieh Alpha -11,01%  -3,61%  -1,59% 9,42%
[1,97] 071  [-0,23] [1,18]

Panel B: Skewness Risk Premia in the Cross-Section

Average Tail Risk Beta -0,019%  0,035%  0,059% 0,078%
[-6,49] [14,33] [18,28] [16,7]

Average Excess Return 0,001 -0,024 0,008 0,008
001 06 [0 [0,15]

Fung-Hsieh Alpha -0,87%  -10,24%  -7,56% -6,69%
[0,15]  [-1,74]  [1,12] [-0,84]

Panel C: Kurtosis Risk Premia in the Cross-Section

Average Tail Risk Beta -0,003%  0,005%  0,009% 0,012%
[9.1]  [17.3]  [21.91] [31,74]

Average Excess Return 0,0028  -0,0185  -0,0832 -0,086***
007 052  [-L79] [-1.86]

Fung-Hsieh Alpha -8,91% -2,50% -4,01% 4,90%
[158] 048]  [-0.59] [0,68]

This table reports the average daily tail risk betas, the average annualized excess returns, and the
Fung-Hsieh seven factor alpha for hedge fund portfolios sorted on the basis of their loadings on
the tail risk premia, respectively associated to the volatility V RP, skewness SRP, and kurtosis
KRP. Each day, three quantile portfolios are formed based on the investment styles loadings on
the tail risk premia in a regression of returns on the market excess return and the tail risk factor
in the past 22 days. Newey-West (1987) t-statistics are reported in square brackets and stars
*** denote statistical significance at respectively 5% level of confidence for the average excess
returns, and the Fung-Hsieh seven factor alpha.
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Table 3.6: Multivariate Regressions Results of Hedge Fund Styles Returns

on Fung-Hsieh Factors and Tail Risk Premia over Tail Events

Investment Nb. Obs. Intercept MKT-RF SMB dTERM dCREDIT PTFSBD PTFSFX PTFSCOM  VRP SRP KRP R-Square/
Style Adj. R-Square
Global 71 0,0007  0,0039%** 0,003%% 00004  0,0000 0,49
[1,51] [6.,54] [-3,41] [1,65] [0,59] 0,46
00571 0,1044%** .0,0100  0,0136 0,0288 0,0116*  1,6329 20,0002 -0,0032%%*  0,0004  0,0000 0,53
0,74] [5.3] l-024]  [0,46] [0,75] 1,01] [0,08] -1,58] -3,01 [1,46| [0,47] 0,46
Directionnal 71 0,0012  0,2318*** 20,0020 0,00L1%*  0,0000 0,60
[1,53] [9,49] [-1,33] [2,47] [0,73] 0,58
01378 0207 .0,0845 0,075 0,0684 00146  -32,9534  -0,0004**  -0,0015  0,0009%  0,0000 0,66
[1,08] 635  [-1.24]  [1.49] [1,07] [1,45] -0,97 [-2,23] [-0,84] [1,91] [0,4] 0,60
Equity Hedge 71 00010 0,207+ 0,0034%% 00005 0,000 0,62
[1,4] [9.47] [-2,59] [1,26] [0,68] 0,60
01467 0,2203%%% 10,0033  0,0464 0,0741 0,0182% 54085 20,0002 -0,0039%*  0,0005  0,0000 0,66
[1,26] [7.4] [0,05]  [1.05] [1.27] [1,98] [0.17] [-1,26] [-2.46] [1,08] [0.69] 0,60
Macro 71 20,0005 -0,0637%** -0,0028**  -0,0011%%*  0,0001 0,24
[0,73] [-3,12] [-2,26] [3] [1.1] 0,19
20,0606 -0,0372  -0,0200 -0,0646*  -0,0359 20,0027 -40,9889 20,0002 20,0017 -0,0007*  0,0000 0,41
[:0,69] [145]  [054]  [1,69] [0,72] [-0,34] [-1,53] [-1,45] [1,22] [-1,89] [0.14] 0.32
Merger Arbitrage 71 0,0012%%  0,1244%%* 20,0000 -0,0002  0,0001%* 0,57
[2,64] [8.39] [-0,95] [-0,66] 2,3] 0,54
0,2653%%  0,1130%** _0,0527 0,0078%%*  0,1321%*** 00058  -19,6823 -0,0001 20,0011 -0,0002  0,0001%* 0,67
[3.62] [6.1] [1,35]  [3.52 [3.62] [1,01] [-1,01] [-0,78] [-1,11] [-0,81] [2.28] 0,61
Relative Value 71 0,0012%  0,064%** -0,0033**  0,0011%** 0,000 0,23
[1,68] [2.8] [-2,36] 2,75 [-0,11] 0,18
0,0937  0,0662%* 00199  0,0477 0,0481 0,0101%* 31,5392 20,0001 -0,0042%%  0,0009%*  0,0000 0,32
[0,78] [2,16] 031  [1,04] [0.8] [2,02] [0,98] [-0,82] [-2,52] 2,02] [0,32] 0.21

This table summarizes the results of time-series OLS regressions of major hedge fund style returns
on the Fung-Hsieh (2001) seven factors and the tail risk premia in Al Wakil (2016). Sample period
consists in time-slicing the initial data sample over 2008-2013 to consider major extreme events,
including the US Subprime crisis and the Lehman collapse in 2008, the European sovereign debt
crisis in 2010, the US sovereign debt crisis in 2011, and the Taper Tantrum in 2013. T-statistics
are reported in square brackets and stars *, ** denote statistical significance at respectively 5%
and 1% level of confidence.

177



Figure 3.1: Performances of Hedge Fund Investment Styles
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Panel E: Merger Arbitrage Panel F: Relative Value
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This figure displays the rebased performances of the Aggregate Index, Directional, Equity Hedge,
Macro, Merger Arbitrage, and Relative Value strategies and the VIX over 2008-2013. The data
sample covers some highly turbulent and volatile periods, including the US Subprime crisis and
the Lehman collapse in 2008, the European sovereign debt crisis in 2010, the US sovereign debt
crisis in 2011, and the Taper Tantrum in 2013.
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Figure 3.2: Average Trading Volume of VIX Options
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This figure displays the average daily trading volume of VIX options over 2007-2014. The lower
panel represents the compared average daily trading volume of VIX call and put options. For
clearness, computations are based on the 2-month moving average trading volume.
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Figure 3.3: Higher-Order Moments under Real-World and
Risk-Neutral Probability Measures
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This figure displays the estimates of higher-order moments under real-world and risk-neutral
probability measures associated to VIX markets over 2008-2013. Intradaily VIX spots are used
to estimate physical moments, and daily VIX options and futures are used to estimate risk-
neutral moments. The figures plot respectively on a daily basis the levels of the physical and
risk-neutral volatility, skewness, and kurtosis, for 30 days time to expiration.
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Figure 3.4: Option-Implied Risk Premia associated to VIX
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This figure displays the VIX option-implied risk premia for 30 days time to maturity over 2008-
2013. On a daily basis, the levels of the risk premia are associated to the volatility, the skewness,
and the kurtosis, for 30 days time to expiration.
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Figure 3.5: Sensitivity of Hedge Fund Investment Styles to
Fung-Hsieh Factors and Tail Risk Premia

Panel A: Aporegate Panel B: Directional Panel C: Eguity Hedge
S SME SMB
- DTERM ~ DTERM KRB, — ‘ ~ DTERM
y ——) DCREDAT . ) DCREDIT SRR~/ AN ) DCREDIT
- PTFSBD ~prrseD wvRer< [ pirsen
PTFSCOM" PTFSFX PTFSCOM " PTFSFX PTESCOM PTFSFX
Panel D: Macro Panel A: Relative Value
sme o
KRP,— ~. DTERM KRP.- DTERM
SRE{—_ /" 3 DCREDIT A Ay DCREEMT
vee 7 “presap VRP" j— ersep
PTFSCOM “PTFSFX PTFSCOM PTFSEX

This figure displays the sensitivity of hedge fund investment styles to Fung-Hsieh seven factors
(without market factor) and tail risk premia in crisis periods over 2008-2013. Option-implied risk
premia associated to the volatility, the skewness, and the kurtosis are calculated for VIX options
and 30 days time to maturity. Sensitivities are measured by the absolute values of t-statistics.
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Conclusion Générale

Mes travaux de thése s’intéressent & la modélisation de la surface de volatilité implicite dans le
cadre des stratégies d’arbitrage de volatilité. Ces stratégies de gestion, trés communément uti-
lisées par les investisseurs sophistiqués tels que les hedge funds et les banques d’investissement,
se sont récemment popularisées suite a la grande crise financiére de 2008 auprés des gérants
d’actifs traditionnels et des investisseurs particuliers. En effet, exploiter la relation inverse (im-
plied leverage effect) entre les indices des marchés actions et la volatilité implicitée des marchés
d’options est apparue rapidement comme une idée prometteuse de stratégie de couverture de
portefeuille contre les risques extrémes. Ainsi, dans la continuité de la création des futures et
options sur indice VIX, le marché de la réplication passive par des produits dérivés indexés sur
les futures VIX tels que les ETP (exchange-traded products) VIX a connu un développement
considérable, favorisé par la demande d’investisseurs peu sophistiqués tels que les investisseurs
particuliers et les gérants d’actifs traditionnels. Cependant, les performances décevantes, 'ETP
VXX a perdu prés de 99% de sa valeur entre 2009 et 2014, ont totalement remis en question
I’approche traditionnelle des stratégies de volatilité basées sur la réplication passive. Ainsi, cette
thése est motivée par I’objectif de repenser la philosophie des stratégies d’arbitrage de volatilité,
en s’inspirant notamment de ’approche pratiquée par les investisseurs sophistiqués tels que les

hedge funds.

Au travers d’une étude empirique préliminaire et descriptive, le chapitre 1 dresse le diagnostic
des stratégies traditionnelles de volatilité basées sur la diversification et la couverture de porte-
feuille par I'utilisation des ETP VIX. Pour cela, nous investiguons ’adéquation de ces complexes
instruments dérivés de couverture avec le degré d’aversion au risque des investisseurs. L’investi-

gation de I'optimalité du choix de portefeuille en environnement incertain est ainsi menée pour
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des allocations overlay composées d’actions, d’obligations, et I’ETP indexés sur futures de VIX,
dans le cadre théorique de la théorie de 'utilité espérée, simulant le comportement d’un investis-
seur rationnel doté d’une aversion au risque. Spécifiquement, notre analyse empirique fait appel &
deux métriques, I’'une mesurant la surprise de 'investisseur, et définie comme une mesure du cri-
tére de son bien-étre dérivé de ses décisions d’investissement ; ’autre mesurant la prime de risque
implicitée par notre modéle, et définie comme la prime d’assurance que l’'investisseur consentirait
A payer ex post pour couvrir totalement son portefeuille overlay contre les risques extrémes. Les
résultats empiriques montrent que sous ces deux critéres de mesure, la couverture de portefeuille
par des ETP VIX bat significativement la couverture traditionnelle de portefeuille, & la fois en
in sample et en out-of-sample. Cependant, ce type de couverture reposant sur ’investissement,
de long-terme par des instruments de réplication passive apparait particuliérement inadéquate
pour les investisseurs peu averses au risque. En effet, la compréhension des risques complexes liés
4 ces instruments dérivés est indispensable pour éviter les décisions d’investissement aléatoires
de type jeux de hasard. Du point de vue de I'industrie de la gestion d’actifs, ce chapitre a des
implications pratiques puisqu’il recommande un effort pédagogique soutenu auprés des investis-
seurs lors de la distribution de telles stratégies overlay. C’est en partie pour cette raison que ce
chapitre est en forthcoming dans Journal of Business and Financial Perspectives, une nouvelle

revue académique promue par Thomson Reuters.

Aprés avoir dressé le diagnostic des stratégies traditionelles de volatilité basées sur la répli-
cation passive, le chapitre 2 ouvre la voie & une nouvelle génération de stratégies de volatilité,
car actives, optionelles, et basées sur I'investissement factoriel. En effet, notre étude théorique
et empirique est inspirée d’une intuition simple : puisque les prix de marché d’options et donc
la volatilité implicite reflétent I'incertitude et le risque extréme, nous exploitons ’écart de va-

lorisation entre les distributions de densités de probabilités neutres au risque, implicitées des
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marchés d’options et désignant le juste prix des moments de distributions, et les distributions
de densités de probabilités physiques, constatées sur les marchés du sous-jacent. D’un point de
vue économique, cet écart de valorisation, matérialisé dans le niveau, la pente, et la convexité
du smile de volatilité implicite, quantifie I’écart entre la distribution de probabilités des rende-
ments du sous-jacent et la distribution log-normale & la Black-Scholes. Par conséquent, notre
approche d’investissement “Smart Vega” consiste & décomposer le risque contenu dans le smile
de volatilité implicite en stratégies optionelles investissables répliquant les primes de risque de
volatilité, skewness, et kurtosis, sous la forme de swap de divergences. Plus précisément, nous
étendons I'approximation quadratique a la Zhang-Xiang (2008) pour dériver une représentation
analytique de la fonction de smile de volatilité implicite exprimée comme une combinaison de
primes de risques investissables qui récompensent le portage de risques d’ordres supérieurs. En
outre, comme suggérée par 'intuition, notre approche est validée sur le plan empirique, et d’au-
tant plus sous des distributions de probabilités fortement asymétriques et leptokurtiques. C’est
en partie pour cette raison que ce chapitre a été récompensé par le Prix du Meilleur Papier
Doctoral par la Multinational Finance Society en 2017. De plus, I'approche originale de "Smart

Vega” a fait 'objet d’un dépot de marque et bientot de brevet auprés de 'INPI.

Dans la continuité du précédent chapitre, le chapitre 3 cherche & valider ou infirmer notre
approche active de l'arbitrage de volatilité en la comparant aux stratégies utilisées par les in-
vestisseurs sophistiqués tels que les hedge funds. Plus précisément, nous décomposons le risque
extréme contenu dans la performance des hedge funds sous la forme de stratégies d’investissement
optionelles et dynamiques, comme suggérées par notre approche “Smart Vega”. Ainsi, nous mon-
trons que les stratégies de primes de risques d’assurance, de volatilité, skewness, et kurtosis, sous
la forme de swap de divergences, constituent des déterminants importants dans la performance

des hedge funds, que ce soit en analyse temporelle et en analyse cross-sectionnelle. En controlant
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des facteurs de risques standards & la Fung-Hsieh communément utilisés dans la littérature, nous
mettons en évidence qu’un choc positif d’un écart-type de la prime de risque de volatilité est
associée a une baisse substantielle de 25.2% annuellement de la performance aggrégée des ren-
dements hedge funds. En particulier, notre résultat d’importance démontre que les hedge funds
fortement sensibles & la prime de volatilité (kurtosis) surperforment substantiellement les fonds
moins sensibles de prés de 11.7% (8.6%) par an. Ce résultat suggére dans quelle mesure 1’alpha
des hedge funds provient en réalité de la vente de stratégies d’assurance contre le risque extréme.
Par conséquent, ce papier ouvre la voie & la réplication de la performance de hedge funds sophis-
tiqués par la réplication de stratégies de primes de risques d’assurance. Ce chapitre a été co-écrit

avec mon superviseur de thése, le Professeur Serge DAROLLES.

Pour résumer briévement, mes travaux de thése investiguent de nouvelles approches d’inves-
tissement de ’arbitrage de volatilité et visent & repenser la philosophie d’une stratégie récemment
décriée. L'urgence d’un tel diagnostic et de la recherche de nouveaux paradigmes d’investisement
est d’autant plus grande que l’environnement actuel de taux bas et de suppression de la volatilité
implicite a accéléré le développement de stratégies vendeuses de volatilité mais aussi acheteuses,
dans la perspective d’une nouvelle crise financiére éventuelle. Le débat entre arbitrageurs de
volatilité a pris une telle importance dans l’actualité financiére qu’il nous apparait aujourd’hui
prometteur de poursuivre nos recherches dans cette voie. Ainsi, mes travaux collectifs s’orientent

désormais vers la détection de nouvelles mesures du risque extréme.
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Résumeé

Les stratégies de volatilité ont connu un rapide
essor suite a la crise financiere de 2008. Or, les
récentes performances catastrophiques de ces
instruments indiciels ont remis en question leurs
contributions en couverture de portefeuille.

Mes travaux de thése visent a repenser,
réinventer la philosophie des stratégies de
volatilité.

Au travers d'une analyse empirique préliminaire
reposant sur la théorie de I'utilité espérée, le
chapitre 1 dresse le diagnostic des stratégies
traditionnelles de volatilité basées sur la
couverture de long-terme par la réplication
passive de la volatilité implicite. Il montre que,
bien que ce type de couverture bat la couverture
traditionnelle, elle s'avere inappropriée pour des
investisseurs peu averses au risque.

Le chapitre 2 ouvre la voie a une nouvelle
génération de stratégies de volatilité, actives,
optionnelles et basées sur l'investissement
factoriel. En effet, notre décomposition
analytique et empirique du smile de volatilité
implicite en primes de risque implicites,
distinctes et investissables permet de monétiser
de maniére active le portage de risques d'ordres
supérieurs. Ces primes de risques mesurent
I'écart de valorisation entre les distributions
neutres au risque et les distributions physiques.

Enfin, le chapitre 3 compare notre approche
investissement factoriel avec les stratégies de
volatilité employées par les hedge funds. Notre
essai montre que nos stratégies de primes de
risque d'assurance sont des déterminants
importants dans la performance des hedge
funds, tant en analyse temporelle que
cross-sectionnelle. Ainsi, nous mettons en
évidence dans quelle mesure I'alpha provient en
réalité de la vente de stratégies d'assurance
contre le risque extréme.

Mots Clés

Volatilité implicite, Arbitrage de volatilite,
Estimation neutre au risque, Econométrie
haute-fréquence, Primes de risque d'assurance,
Investissement factoriel, Hedge funds,
Evaluation de performance.

Abstract

Volatility strategies have flourished since the
Great Financial Crisis in 2008. Nevertheless,
the recent catastrophic performance of such
exchange-traded products has put into question
their contributions for portfolio hedging and
diversification.

My thesis work aims to rethink and reinvent the
philosophy of volatility strategies.

From a preliminary empirical study based on the
expected utility theory, Chapter 1 makes a
diagnostic of traditional volatility strategies,
based on buy-and-hold investments and
passive replication of implied volatility. It
exhibits that, although such portfolio hedging
significantly outperforms traditional hedging, it
appears strongly inapropriate for risk-loving
investors.

Chapter 2 paves the way for a new generation
of volatility strategies, active, option-based and
factor-based investing. Indeed, our both
analytical and empirical decomposition of
implied volatility smiles into a combination of
implied risk premia, distinct and tradeable,
enables to harvest actively the compensation
for bearing higher-order risks. These insurance
risk premia measure the pricing discrepancies
between the risk-neutral and the physical
probability distributions.

Finally, Chapter 3 compares our factor-based
investing approach to the strategies usually
employed in the hedge fund universe. Our
essay clearly evidences that our tail risk premia
strategies are incremental determinants in the
hedge fund performance, in both the time-series
and the cross-section of returns. Hence, we
exhibit to what extent hedge fund alpha actually
arises from selling crash insurance strategies
against tail risks.

Keywords

Implied Volatility, Volatility Arbitrage,
Risk-neutral estimation, High-frequency
econometrics, Tail risk premia, Factor-based
investing, Hedge funds, Performance evaluation.



	Remerciements
	Table des matières
	Liste des figures
	Liste des tableaux
	Introduction Générale
	When Gambling is Not Winning: Exploring Optimality of VIX Trading Under the Expected Utility Theory
	Introduction
	Data
	Empirical Methodology
	Framework
	Welfare Criterion Measure
	Model-Implied Risk Premium
	Empirical Results
	Risk-Adjusted Performance Measures
	Welfare Criterion Measure
	Model-Implied Risk Premium
	Conclusions
	Appendix
	Approximate Solution for Expected Utility
	The Smart Vega Factor-Based Investing: Disentangling Risk Premia from Implied Volatility Smirk
	Introduction
	Data
	SPX Index and Futures
	SPX Options
	VIX Index and Futures
	VIX Options

	Empirical Strategy
	Risk-Neutral Moments
	Realized Moments
	Option-Implied Risk Premia
	Quadratic Approximation
	Mimicking Factors
	Empirical Results
	Risk-Neutral Moments
	Option-Implied Risk Premia
	Mimicking Factors
	Appendix
	Bakshi-Kapadia-Madan Risk-Neutral Moments
	Zhang-Xiang Quadratic Approximation

	Do Hedge Funds Hedge? Evidence from Tail Risk Premia Embedded in Options
	Introduction
	Literature
	Data
	Hedge Fund Return Data
	Fung-Hsieh Factors
	Tail Risk Premia
	Hedge Fund Exposure to Tail Risk Across Time
	Tail Risk in the Cross-Section of Hedge Funds
	Robustness Checks
	Tail Risk Periods
	Conclusion

	Appendix
	Investment Styles
	Risk-Neutral Distribution
	Real-World Distribution
	Theory of Tail Risk Premia
	Trend-Following Factors


	Conclusion Générale
	Bibliographie Générale














