Skip to Main content Skip to Navigation

Regulation of lozenge transcription factor activity and blood cell development by MLF and its partner DnaJ-1

Abstract : Hematopoiesis is the process of formation of fully differentiated blood cells from hematopoietic stem cells (HSCs). This process is tightly controlled by the integration of developmental and homeostatic signals to ensure the generation of an appropriate number of each blood cell type. At the molecular level, the regulation of this developmental process is mediated by a number of transcription factors, especially by members of the RUNX family, and mutations affecting these factors are at the origin of numerous hemopathies, including leukemia. Intriguingly, many transcriptional regulators and signaling pathways controlling blood cell development are evolutionarily conserved from humans to Drosophila melanogaster. Hence, the fruit fly has become a potent and simplified model to study the mechanisms underlying the specification of blood cell lineages and the regulation of blood cell homeostasis. Members of the Myeloid Leukemia Factor (MLF) family have been implicated in hematopoiesis and in oncogenic blood cell transformation, but their function and molecular mechanism of action remain elusive. Previous work in Drosophila showed that MLF stabilizes the RUNX transcription factor Lozenge (LZ) and controls the number of LZ+ blood cells. During my PhD, I sought to further decipher the molecular mechanism of action of MLF on Lozenge during blood cell development. Using a proteomic approach in Drosophila Kc167 cells, we identified the Hsp40 co-chaperone family member DnaJ-1 and its chaperone partner Hsc70-4 as two partners of MLF. These interactions were confirmed by co-immunoprecipitations and in vitro pull-down assays. Importantly, we found that knocking down DnaJ-1 or Hsc70-4 expression in Kc167 cells caused a reduction in the level of Lozenge protein and a concomitant decrease in Lozenge transactivation activity, which were very similar to those caused by MLF knock-down. Similarly, over-expression of two DnaJ-1 mutants that are unable to stimulate the chaperone activity of Hsc70-4 also decreased Lozenge level and impaired its capacity to activate transcription. These results suggest that MLF could act within a chaperone complex composed of DnaJ-1 and Hsc70-4 to control Lozenge stability and activity. Along that line, we showed by co-immunoprecipitation that Lozenge interacts with MLF, DnaJ-1 and Hsc70-4, respectively. Using various truncated mutants of MLF or DnaJ-1, we showed that MLF and DnaJ-1 interact and together with Lozenge through their conserved MLF homology domain (MHD) and C-terminal region, respectively. Furthermore, in vitro GST pull-down assays suggested that the interactions between MLF, DnaJ-1 and Lozenge are direct. Thus, we propose that MLF and DnaJ-1 control Lozenge protein level by interacting with it and by promoting its folding and/or solubility via the Hsc70 chaperone machinery. In parallel, we assessed DnaJ-1 function in Drosophila blood cells in vivo using a null allele of dnaj-1 generated by CRISPR/Cas9 technique. We found that, like mlf, dnaj-1 mutation leads to an increase in the number and size of LZ+ blood cells, as well as to an over-activation of the Notch signaling pathway in these cells. Moreover, our data suggested that high levels of active Lozenge are required to control the number and size of LZ+ blood cells, and to down-regulate Notch expression. We propose that the MLF/DnaJ-1 complex controls LZ+ blood cell development in vivo by regulating Lozenge protein level/activity and thereby Notch pathway activation. In sum, our results establish a functional link between MLF, the Hsp40 co-chaperone DnaJ-1 and the RUNX transcription factor Lozenge, which could be conserved in other species.
Document type :
Complete list of metadatas

Cited literature [305 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Friday, June 15, 2018 - 9:45:19 PM
Last modification on : Wednesday, October 14, 2020 - 4:05:18 AM
Long-term archiving on: : Monday, September 17, 2018 - 10:46:23 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01816933, version 1



Aichun Chen. Regulation of lozenge transcription factor activity and blood cell development by MLF and its partner DnaJ-1. Development Biology. Université Paul Sabatier - Toulouse III, 2017. English. ⟨NNT : 2017TOU30064⟩. ⟨tel-01816933⟩



Record views


Files downloads