, Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes, International Stem Cell Banking Initiative, pp.301-315, 2009.

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.663-76, 2006.
DOI : 10.1016/j.cell.2006.07.024

J. Yu, M. Vodyanik, K. Smuga-otto, J. Antosiewicz-bourget, J. Frane et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, pp.1917-1937, 2007.

N. King and J. Perrin, Ethical issues in stem cell research and therapy, Stem Cell Research & Therapy, vol.5, issue.4, p.85, 2014.
DOI : 10.1038/clpt.2010.309

D. Ilic and C. Ogilvie, Human Embryonic Stem Cells-What Have We Done? What Are We Doing? Where Are We Going? Stem Cells Dayt Ohio, 2016.

C. Jeter, T. Yang, J. Wang, H. Chao, and D. Tang, Concise Review: NANOG in Cancer Stem Cells and Tumor Development: An Update and Outstanding Questions. Stem Cells Dayt Ohio, 2015.

N. Zakaria, T. Possemiers, S. Dhubhghaill, I. Leysen, J. Rozema et al., Results of a phase I/II clinical trial: standardized, non-xenogenic, cultivated limbal stem cell transplantation, Journal of Translational Medicine, vol.12, issue.1, p.58, 2014.
DOI : 10.1167/iovs.04-0096

L. Bargues, M. Prat, T. Leclerc, E. Bey, and J. Lataillade, Pr??sent et futur de la th??rapie cellulaire des br??lures, Pathologie Biologie, vol.59, issue.3, pp.49-56, 2011.
DOI : 10.1016/j.patbio.2009.12.006

M. Rasulov, A. Vasilchenkov, N. Onishchenko, M. Krasheninnikov, V. Kravchenko et al., First experience in the use of bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns, Bulletin of Experimental Biology and Medicine, vol.26, issue.3, pp.141-145, 2005.
DOI : 10.1007/s10517-005-0232-3

M. Dominici, L. Blanc, K. Mueller, I. Slaper-cortenbach, I. Marini et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, vol.8, issue.4, pp.315-322, 2006.
DOI : 10.1080/14653240600855905

J. Galipeau, M. Krampera, J. Barrett, F. Dazzi, R. Deans et al., International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials, Cytotherapy, vol.18, issue.2, pp.151-160, 2016.
DOI : 10.1016/j.jcyt.2015.11.008

M. Krampera, J. Galipeau, Y. Shi, K. Tarte, and L. Sensebe, Immunological characterization of multipotent mesenchymal stromal cells???The International Society for Cellular Therapy (ISCT) working proposal, Cytotherapy, vol.15, issue.9, pp.1054-61, 2013.
DOI : 10.1016/j.jcyt.2013.02.010

URL : https://hal.archives-ouvertes.fr/hal-00866729

A. Collet, D. Biens, and G. , Evolution of mesenchymal cells in fetal rat lung, Anatomy and Embryology, vol.37, issue.3, pp.273-92, 1975.
DOI : 10.1508/cytologia.37.399

R. Sager and P. Kovac, Pre-adipocyte determination either by insulin or by 5-azacytidine., Proceedings of the National Academy of Sciences, vol.79, issue.2, pp.480-484, 1982.
DOI : 10.1073/pnas.79.2.480

A. Caplan, Mesenchymal stem cells, Journal of Orthopaedic Research, vol.86, issue.5, pp.641-50, 1991.
DOI : 10.1007/978-1-4612-4594-0_1

D. Colter, I. Sekiya, and D. Prockop, Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells, Proceedings of the National Academy of Sciences, vol.97, issue.3, pp.7841-7846, 2001.
DOI : 10.1046/j.1365-2141.1997.902904.x

J. Liang, S. Wu, H. Zhao, S. Li, Z. Liu et al., Human umbilical cord mesenchymal stem cells derived from Wharton's jelly differentiate into cholinergic-like neurons in vitro, Neuroscience Letters, vol.532, pp.59-63, 2013.
DOI : 10.1016/j.neulet.2012.11.014

P. Prasajak and W. Leeanansaksiri, Developing a New Two-Step Protocol to Generate Functional Hepatocytes from Wharton???s Jelly-Derived Mesenchymal Stem Cells under Hypoxic Condition, Stem Cells International, vol.19, issue.6, p.762196, 2013.
DOI : 10.1634/stemcells.2005-0521

URL : http://doi.org/10.1155/2013/762196

E. Horwitz, L. Blanc, K. Dominici, M. Mueller, I. Slaper-cortenbach et al., Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement, Cytotherapy, vol.7, issue.5, pp.393-398, 2005.
DOI : 10.1080/14653240500319234

G. Fajardo-orduña, H. Mayani, and J. Montesinos, Hematopoietic Support Capacity of Mesenchymal Stem Cells: Biology and Clinical Potential, Archives of Medical Research, vol.46, issue.8, pp.589-96, 2015.
DOI : 10.1016/j.arcmed.2015.10.001

J. Garcia, K. Wright, S. Roberts, J. Kuiper, C. Mangham et al., Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: The influence of tissue source and inflammatory stimulus, Scientific Reports, vol.4, issue.1, p.24295, 2016.
DOI : 10.1089/ten.1998.4.415

P. Chong, L. Selvaratnam, A. Abbas, and T. Kamarul, Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells, Journal of Orthopaedic Research, vol.18, issue.3, pp.634-676
DOI : 10.1016/j.joca.2009.10.015

D. Trivanovi?, J. Koci?, S. Mojsilovi?, A. Krsti?, V. Ili? et al., Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton's jelly. Srp Arh Celok Lek, pp.3-4178, 2013.

C. Brohem, C. De-carvalho, C. Radoski, F. Santi, M. Baptista et al., Comparison between fibroblasts and mesenchymal stem cells derived from dermal and adipose tissue, International Journal of Cosmetic Science, vol.264, issue.Pt 16, pp.448-57, 2013.
DOI : 10.1016/j.ydbio.2003.08.013

H. Yang, L. Gao, Y. An, C. Hu, J. F. Zhou et al., Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions, Biomaterials, vol.34, issue.29, 2013.
DOI : 10.1016/j.biomaterials.2013.05.025

F. Ferro, R. Spelat, and C. Baheney, Dental Pulp Stem Cell (DPSC) Isolation, Characterization, and Differentiation, Methods Mol Biol Clifton NJ, vol.1210, pp.91-115, 2014.
DOI : 10.1007/978-1-4939-1435-7_8

Y. Lee, J. Lee, H. Park, Y. Lim, J. Lee et al., Isolation of Mesenchymal Stromal Cells (MSCs) from Human Adenoid Tissue, Cellular Physiology and Biochemistry, vol.31, issue.4-5, pp.4-5513, 2013.
DOI : 10.1159/000350072

URL : https://doi.org/10.1159/000350072

F. Rossignoli, A. Caselli, G. Grisendi, S. Piccinno, J. Burns et al., Isolation, Characterization, and Transduction of Endometrial Decidual Tissue Multipotent Mesenchymal Stromal/Stem Cells from Menstrual Blood, BioMed Research International, vol.91, issue.3, p.901821, 2013.
DOI : 10.1038/sj.bmt.1705358

URL : http://doi.org/10.1155/2013/901821

O. Trohatou and M. Roubelakis, Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Past, Present, and Future. Cell Reprogramming, pp.217-241, 2017.
DOI : 10.1089/cell.2016.0062

M. Abumaree, A. Jumah, M. Kalionis, B. Jawdat, D. et al., Phenotypic and Functional Characterization of Mesenchymal Stem Cells from Chorionic Villi of Human Term Placenta, Stem Cell Reviews and Reports, vol.28, issue.1, pp.16-31, 2013.
DOI : 10.1016/j.placenta.2007.07.001

A. Batsali, M. Kastrinaki, H. Papadaki, and C. Pontikoglou, Mesenchymal Stem Cells Derived from Wharton's Jelly of the Umbilical Cord: Biological Properties and Emerging Clinical Applications, Current Stem Cell Research & Therapy, vol.8, issue.2, pp.144-55, 2013.
DOI : 10.2174/1574888X11308020005

L. Wu, Y. Wang, J. Christensen, S. Khalifian, S. Schneeberger et al., Donor age negatively affects the immunoregulatory properties of both adipose and bone marrow derived mesenchymal stem cells, Transplant Immunology, vol.30, issue.4, pp.122-129, 2014.
DOI : 10.1016/j.trim.2014.03.001

G. Siegel, T. Kluba, U. Hermanutz-klein, K. Bieback, H. Northoff et al., Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells, BMC Medicine, vol.29, issue.9 Suppl, p.146, 2013.
DOI : 10.1002/jor.21424

URL : https://bmcmedicine.biomedcentral.com/track/pdf/10.1186/1741-7015-11-146?site=bmcmedicine.biomedcentral.com

M. Choudhery, M. Badowski, A. Muise, J. Pierce, and D. Harris, Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation, Journal of Translational Medicine, vol.12, issue.1, p.8, 2014.
DOI : 10.1002/art.10118

URL : https://translational-medicine.biomedcentral.com/track/pdf/10.1186/1479-5876-12-8?site=translational-medicine.biomedcentral.com

G. Alrefaei, N. Ayuob, S. Ali, and S. Karim, Effects of maternal age on the expression of mesenchymal stem cell markers in the components of human umbilical cord, Folia Histochemica et Cytobiologica, vol.53, issue.3, pp.259-71, 2015.
DOI : 10.5603/FHC.a2015.0022

L. Penolazzi, R. Vecchiatini, S. Bignardi, E. Lambertini, E. Torreggiani et al., Influence of obstetric factors on osteogenic potential of umbilical cord-derived mesenchymal stem cells, Reproductive Biology and Endocrinology, vol.7, issue.1, p.106, 2009.
DOI : 10.1186/1477-7827-7-106

URL : https://rbej.biomedcentral.com/track/pdf/10.1186/1477-7827-7-106?site=rbej.biomedcentral.com

L. Pierdomenico, Diabetes Mellitus During Pregnancy Interferes with the Biological Characteristics of Wharton's, Jelly Mesenchymal Stem Cells. Open Tissue Eng Regen Med J, vol.4, 2011.
DOI : 10.2174/1875043501104010103

URL : http://benthamopen.com/contents/pdf/TOTERMJ/TOTERMJ-4-103.pdf

T. Margossian, L. Reppel, N. Makdissy, J. Stoltz, D. Bensoussan et al., Mesenchymal stem cells derived from Wharton's jelly: comparative phenotype analysis between tissue and in vitro expansion, Biomed Mater Eng, vol.22, issue.4, pp.243-54, 2012.

N. Watson, R. Divers, R. Kedar, A. Mehindru, A. Mehindru et al., Discarded Wharton's Jelly of the Human Umbilical Cord: A Viable Source for Mesenchymal Stem Cells, Cytotherapy, 2015.
DOI : 10.1016/j.jcyt.2014.08.009

URL : http://europepmc.org/articles/pmc4274214?pdf=render

E. Omar, R. Beroud, J. Stoltz, J. Menu, P. Velot et al., Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies?, Tissue Eng Part B Rev, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01777817

D. Troyer and M. Weiss, Concise Review: Wharton's Jelly-Derived Cells Are a Primitive Stromal Cell Population, Stem Cells, vol.42, issue.3, pp.591-600, 2008.
DOI : 10.1634/stemcells.21-1-50

URL : http://onlinelibrary.wiley.com/doi/10.1634/stemcells.2007-0439/pdf

D. Kim, M. Staples, K. Shinozuka, P. Pantcheva, S. Kang et al., Wharton???s Jelly-Derived Mesenchymal Stem Cells: Phenotypic Characterization and Optimizing Their Therapeutic Potential for Clinical Applications, International Journal of Molecular Sciences, vol.4, issue.6, pp.11692-712, 2013.
DOI : 10.2174/1875043501104010120

URL : http://www.mdpi.com/1422-0067/14/6/11692/pdf

C. Barbieri, J. Cecatti, F. Surita, M. Costa, E. Marussi et al., Area of Wharton's jelly as an estimate of the thickness of the umbilical cord and its relationship with estimated fetal weight, Reproductive Health, vol.87, issue.3, p.32, 2011.
DOI : 10.1080/00016340701876106

M. Blanco, H. Vega, R. Giuliano, D. Grana, F. Azzato et al., Histomorphometry of Umbilical Cord Blood Vessels in Preeclampsia, The Journal of Clinical Hypertension, vol.201, issue.1, pp.30-34, 2011.
DOI : 10.1007/s004290050318

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1751-7176.2010.00384.x/pdf

J. Doorn, G. Moll, L. Blanc, K. Van-blitterswijk, C. De-boer et al., Therapeutic Applications of Mesenchymal Stromal Cells: Paracrine Effects and Potential Improvements, Tissue Engineering Part B: Reviews, vol.18, issue.2, pp.101-116
DOI : 10.1089/ten.teb.2011.0488

J. Noll, S. Williams, C. Tong, H. Wang, J. Quach et al., Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells, Haematologica, vol.99, issue.1, pp.163-71, 2014.
DOI : 10.3324/haematol.2013.090977

URL : http://www.haematologica.org/content/haematol/99/1/163.full.pdf

M. Bernardo and W. Fibbe, Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation, Cell Stem Cell, vol.13, issue.4, pp.392-402, 2013.
DOI : 10.1016/j.stem.2013.09.006

URL : https://doi.org/10.1016/j.stem.2013.09.006

S. Ghannam, C. Bouffi, F. Djouad, C. Jorgensen, and D. Noël, Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications, Stem Cell Research & Therapy, vol.1, issue.1, 2010.
DOI : 10.1186/scrt2

URL : https://stemcellres.biomedcentral.com/track/pdf/10.1186/scrt2?site=stemcellres.biomedcentral.com

Z. Nagy, Alloreactivity: An Old Puzzle Revisited, Scandinavian Journal of Immunology, vol.91, issue.5, pp.463-70, 2012.
DOI : 10.1073/pnas.91.24.11487

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3083.2012.02680.x/pdf

J. Lee, J. Jung, H. Lee, S. Jeong, K. Cho et al., Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells, International Immunopharmacology, vol.13, issue.2, pp.219-243
DOI : 10.1016/j.intimp.2012.03.024

E. Ivanova-todorova, M. Mourdjeva, D. Kyurkchiev, I. Bochev, E. Stoyanova et al., ORIGINAL ARTICLE: HLA-G Expression Is Up-Regulated by Progesterone in Mesenchymal Stem Cells, American Journal of Reproductive Immunology, vol.23, issue.1, pp.25-33, 1989.
DOI : 10.4049/jimmunol.168.9.4772

E. Carosella, HLA-G, Bull Acad Natl Med, 2014.
DOI : 10.1016/bs.ai.2015.04.001

URL : https://hal.archives-ouvertes.fr/cea-00268875

E. Carosella, N. Rouas-freiss, P. Paul, and J. Dausset, HLA-G: a tolerance molecule from the major histocompatibility complex, Immunology Today, vol.20, issue.2, pp.60-62, 1999.
DOI : 10.1016/S0167-5699(98)01387-5

I. Zidi, R. Rizzo, A. Bouaziz, A. Laaribi, N. Zidi et al., sHLA-G1 and HLA-G5 levels are decreased in Tunisian women with multiple abortion, Human Immunology, vol.77, issue.4, pp.342-347
DOI : 10.1016/j.humimm.2016.01.019

B. Riteau, N. Rouas-freiss, C. Menier, P. Paul, J. Dausset et al., HLA-G2, -G3, and -G4 Isoforms Expressed as Nonmature Cell Surface Glycoproteins Inhibit NK and Antigen-Specific CTL Cytolysis, The Journal of Immunology, vol.166, issue.8, pp.5018-5044, 1950.
DOI : 10.4049/jimmunol.166.8.5018

URL : http://www.jimmunol.org/content/jimmunol/166/8/5018.full.pdf

J. Lemaoult, I. Krawice-radanne, J. Dausset, and E. Carosella, HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells, Proceedings of the National Academy of Sciences, vol.33, issue.1, pp.7064-7073, 2004.
DOI : 10.1002/immu.200390015

N. Rouas-freiss, R. Marchal, M. Kirszenbaum, J. Dausset, and E. Carosella, The ??1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: Is HLA-G the public ligand for natural killer cell inhibitory receptors?, Proceedings of the National Academy of Sciences, vol.14, issue.3, pp.5249-54, 1997.
DOI : 10.1084/jem.184.3.913

N. Rouas-freiss, R. Gonçalves, C. Menier, J. Dausset, and E. Carosella, Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis, Proceedings of the National Academy of Sciences, vol.157, issue.8, pp.11520-11525, 1997.
DOI : 10.1111/j.1600-0897.1996.tb00185.x

S. Liang, V. Ristich, H. Arase, J. Dausset, E. Carosella et al., Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6--STAT3 signaling pathway, Proceedings of the National Academy of Sciences, vol.93, issue.13, pp.8357-62, 2008.
DOI : 10.1073/pnas.93.13.6221

URL : http://www.pnas.org/content/105/24/8357.full.pdf

E. Carosella, J. Dausset, M. Kirszenbaum, and . Hla-g-revisited, HLA-G revisited, Immunology Today, vol.17, issue.9, pp.407-416, 1996.
DOI : 10.1016/0167-5699(96)30055-8

F. Morandi, R. Rizzo, E. Fainardi, N. Rouas-freiss, and V. Pistoia, Recent Advances in Our Understanding of HLA-G Biology: Lessons from a Wide Spectrum of Human Diseases, Journal of Immunology Research, vol.7, issue.10, p.4326495, 2016.
DOI : 10.1155/2014/297073

F. Gimenes, J. Teixeira, A. De-abreu, R. Souza, M. Pereira et al., Human leukocyte antigen (HLA)-G and cervical cancer immunoediting: A candidate molecule for therapeutic intervention and prognostic biomarker?, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1846, issue.2, pp.576-89, 2014.
DOI : 10.1016/j.bbcan.2014.10.004

D. Kassahn, U. Nachbur, S. Conus, O. Micheau, P. Schneider et al., Distinct requirements for activation-induced cell surface expression of preformed Fas/CD95 ligand and cytolytic granule markers in T cells, Cell Death & Differentiation, vol.156, issue.1, pp.115-139, 2009.
DOI : 10.1172/JCI200316344

URL : http://www.nature.com/cdd/journal/v16/n1/pdf/cdd2008133a.pdf

Y. Xie, H. Zhang, W. Li, Y. Deng, M. Munegowda et al., Dendritic Cells Recruit T Cell Exosomes via Exosomal LFA-1 Leading to Inhibition of CD8+ CTL Responses through Downregulation of Peptide/MHC Class I and Fas Ligand-Mediated Cytotoxicity, The Journal of Immunology, vol.185, issue.9, pp.5268-78, 1950.
DOI : 10.4049/jimmunol.1000386

URL : http://www.jimmunol.org/content/jimmunol/185/9/5268.full.pdf

S. Colin, G. Chinetti-gbaguidi, and B. Staels, Macrophage phenotypes in atherosclerosis, Immunological Reviews, vol.114, issue.1, pp.153-66, 2014.
DOI : 10.1161/CIRCRESAHA.114.302313

M. Surquin, S. Buonocore, L. Moine, A. Flamand, V. Goldman et al., The role of neutrophils during allograft rejection]. Nephrol Ther, pp.161-167, 2005.

S. Bennouna, S. Bliss, T. Curiel, and E. Denkers, Cross-Talk in the Innate Immune System: Neutrophils Instruct Recruitment and Activation of Dendritic Cells during Microbial Infection, The Journal of Immunology, vol.171, issue.11, pp.6052-6060, 1950.
DOI : 10.4049/jimmunol.171.11.6052

D. Yang, Q. Chen, O. Chertov, and J. Oppenheim, Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells, J Leukoc Biol, vol.68, issue.1, pp.9-14, 2000.

M. Najar, G. Raicevic, H. Fayyad-kazan, D. Bron, M. Toungouz et al., Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells, Cytotherapy, vol.18, issue.2, pp.160-71, 2016.
DOI : 10.1016/j.jcyt.2015.10.011

J. Ryan, F. Barry, J. Murphy, and B. Mahon, Mesenchymal stem cells avoid allogeneic rejection, Journal of Inflammation, vol.2, issue.1, p.8, 2005.
DOI : 10.1186/1476-9255-2-8

Y. Romanov, E. Balashova, N. Volgina, N. Kabaeva, T. Dugina et al., Expression of Surface Molecules in Human Mesenchymal Stromal Cells Co-Cultured with Nucleated Umbilical Cord Blood Cells, Bulletin of Experimental Biology and Medicine, vol.272, issue.1, pp.578-82, 2017.
DOI : 10.1016/j.cellimm.2011.09.010

C. Ménard and K. Tarte, Immunosuppression and mesenchymal stem cells: back to the future], Med Sci MS, vol.27, issue.3, pp.269-74, 2011.

J. Larghero, L. Vija, S. Lecourt, L. Michel, F. Verrecchia et al., Cellules souches m??senchymateuses et immunomodulation??: vers de nouvelles strat??gies immunosuppressives pour le traitement des maladies auto-immunes???, La Revue de M??decine Interne, vol.30, issue.3, pp.287-99, 2009.
DOI : 10.1016/j.revmed.2008.08.019

Z. Selmani, A. Naji, E. Gaiffe, L. Obert, P. Tiberghien et al., HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation, pp.62-66, 2009.
DOI : 10.1097/tp.0b013e3181a2a4b3

URL : https://hal.archives-ouvertes.fr/inserm-00484484

G. Spaggiari and L. Moretta, Interactions Between Mesenchymal Stem Cells and Dendritic Cells, Adv Biochem Eng Biotechnol, vol.130, pp.199-208, 2013.
DOI : 10.1007/10_2012_154

S. Beyth, Z. Borovsky, D. Mevorach, M. Liebergall, Z. Gazit et al., Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness, Blood, vol.105, issue.5, pp.2214-2223, 2005.
DOI : 10.1182/blood-2004-07-2921

URL : http://www.bloodjournal.org/content/bloodjournal/105/5/2214.full.pdf

Z. Zhao, W. Xu, L. Sun, Y. You, F. Li et al., Immunomodulatory Function of Regulatory Dendritic Cells Induced by Mesenchymal Stem Cells, Immunological Investigations, vol.18, issue.2, pp.183-98, 2012.
DOI : 10.1016/S1074-7613(03)00113-4

A. Nauta, A. Kruisselbrink, E. Lurvink, R. Willemze, and W. Fibbe, Mesenchymal Stem Cells Inhibit Generation and Function of Both CD34+-Derived and Monocyte-Derived Dendritic Cells, The Journal of Immunology, vol.177, issue.4, pp.2080-2087, 1950.
DOI : 10.4049/jimmunol.177.4.2080

URL : http://www.jimmunol.org/content/jimmunol/177/4/2080.full.pdf

G. Spaggiari, H. Abdelrazik, F. Becchetti, and L. Moretta, MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2, Blood, vol.113, issue.26, pp.6576-83, 2009.
DOI : 10.1182/blood-2009-02-203943

M. Abumaree, A. Jumah, M. Kalionis, B. Jawdat, D. et al., Human Placental Mesenchymal Stem Cells (pMSCs) Play a Role as Immune Suppressive Cells by Shifting Macrophage Differentiation from Inflammatory M1 to Anti-inflammatory M2 Macrophages, Stem Cell Reviews and Reports, vol.461, issue.7, 2013.
DOI : 10.1007/978-0-585-37970-8_7

S. Tipnis, C. Viswanathan, and A. Majumdar, Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO, Immunology and Cell Biology, vol.42, issue.8, pp.795-806, 2010.
DOI : 10.1002/1097-0320(20001015)42:5<277::AID-CYTO4>3.0.CO;2-A

URL : http://www.nature.com/icb/journal/v88/n8/pdf/icb201047a.pdf

T. Kovach, A. Dighe, P. Lobo, and Q. Cui, Interactions between MSCs and Immune Cells: Implications for Bone Healing, Journal of Immunology Research, vol.45, issue.5, p.752510, 2015.
DOI : 10.3390/ph3051668

URL : http://doi.org/10.1155/2015/752510

L. Raffaghello, G. Bianchi, M. Bertolotto, F. Montecucco, A. Busca et al., Human Mesenchymal Stem Cells Inhibit Neutrophil Apoptosis: A Model for Neutrophil Preservation in the Bone Marrow Niche, Stem Cells, vol.38, issue.1, pp.151-62, 2008.
DOI : 10.4049/jimmunol.174.12.8049

URL : http://onlinelibrary.wiley.com/doi/10.1634/stemcells.2007-0416/pdf

M. Maqbool, S. Vidyadaran, E. George, and R. Ramasamy, Human mesenchymal stem cells protect neutrophils from serum-deprived cell death, Cell Biology International, vol.15, issue.12, pp.1247-51, 2011.
DOI : 10.1016/0022-1759(95)00072-I

S. Kariminekoo, A. Movassaghpour, A. Rahimzadeh, M. Talebi, K. Shamsasenjan et al., Implications of mesenchymal stem cells in regenerative medicine, Artificial Cells, Nanomedicine, and Biotechnology, vol.15, issue.3, pp.749-57, 2016.
DOI : 10.1089/154732804323099190

K. Németh, A. Leelahavanichkul, P. Yuen, B. Mayer, A. Parmelee et al., Bone marrow stromal cells attenuate sepsis via prostaglandin E2???dependent reprogramming of host macrophages to increase their interleukin-10 production, Nature Medicine, vol.16, issue.1, pp.42-51, 2009.
DOI : 10.1006/bbrc.1996.1112

C. Consentius, P. Reinke, and H. Volk, ?, Regenerative Medicine, vol.324, issue.5925, pp.305-320, 2015.
DOI : 10.1089/scd.2014.0155

M. Najar, G. Raicevic, H. Fayyad-kazan, H. Kazan, D. Bruyn et al., Immune-Related Antigens, Surface Molecules and Regulatory Factors in Human-Derived Mesenchymal Stromal Cells: The Expression and Impact of Inflammatory Priming, Stem Cell Reviews and Reports, vol.131, issue.4, pp.1188-98, 2012.
DOI : 10.1016/j.mad.2009.11.003

P. Moshtagh, S. Emami, and A. Sharifi, Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study, Journal of Physiology and Biochemistry, vol.292, issue.3, pp.451-459, 2013.
DOI : 10.1002/ar.20892

Y. Li, Y. Sheng, J. Liang, X. Ren, and Y. Cheng, Glial differentiation of human inferior turbinate-derived stem cells, NeuroReport, vol.28, issue.5
DOI : 10.1097/WNR.0000000000000731

H. Tian, S. Bharadwaj, Y. Liu, P. Ma, A. Atala et al., Differentiation of Human Bone Marrow Mesenchymal Stem Cells into Bladder Cells: Potential for Urological Tissue Engineering, Tissue Engineering Part A, vol.16, issue.5, pp.1769-79, 2010.
DOI : 10.1089/ten.tea.2009.0625

URL : http://europepmc.org/articles/pmc2952115?pdf=render

B. Laverdet, L. Micallef, C. Lebreton, J. Mollard, J. Lataillade et al., Use of mesenchymal stem cells for cutaneous repair and skin substitute elaboration, Pathologie Biologie, vol.62, issue.2, pp.108-125
DOI : 10.1016/j.patbio.2014.01.002

L. Ortiz, F. Gambelli, C. Mcbride, D. Gaupp, M. Baddoo et al., Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects, Proceedings of the National Academy of Sciences, vol.246, issue.14
DOI : 10.3109/01902149809099592

URL : http://www.pnas.org/content/100/14/8407.full.pdf

, Proc Natl Acad Sci Jul, vol.8100, issue.14, pp.8407-8418, 2003.

E. Gonzalo-gil, M. Pérez-lorenzo, M. Galindo, R. Díaz-de-la-guardia, B. López-millán et al., Human embryonic stem cell-derived mesenchymal stromal cells ameliorate collagen-induced arthritis by inducing host-derived indoleamine 2,3 dioxygenase, Arthritis Research & Therapy, vol.195, issue.11, p.77, 2016.
DOI : 10.4049/jimmunol.1500332

J. Santos, R. Bárcia, S. Simões, M. Gaspar, S. Calado et al., The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX??) in the treatment of inflammatory arthritis, Journal of Translational Medicine, vol.11, issue.1, p.18, 2013.
DOI : 10.1093/jmcb/mjr039

J. Martins, J. Santos, J. De-almeida, M. Filipe, M. De-almeida et al., Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data, Stem Cell Research & Therapy, vol.5, issue.1, p.9, 2014.
DOI : 10.1089/scd.2012.0594

URL : https://stemcellres.biomedcentral.com/track/pdf/10.1186/scrt398?site=stemcellres.biomedcentral.com

C. Archer, G. Dowthwaite, and P. Francis-west, Development of synovial joints, Birth Defects Research Part C: Embryo Today: Reviews, vol.14, issue.2, pp.144-55, 2003.
DOI : 10.1159/000063124

A. Ray, P. Singh, M. Sohaskey, R. Harland, and A. Bandyopadhyay, Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Dev Camb Engl, pp.1169-79, 2015.
DOI : 10.1242/dev.110940

URL : http://dev.biologists.org/content/develop/142/6/1169.full.pdf

M. Iwamoto, Y. Tamamura, E. Koyama, T. Komori, N. Takeshita et al., Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis, Developmental Biology, vol.305, issue.1, pp.40-51, 2007.
DOI : 10.1016/j.ydbio.2007.01.037

URL : https://doi.org/10.1016/j.ydbio.2007.01.037

E. Koyama, Y. Shibukawa, M. Nagayama, H. Sugito, B. Young et al., A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis, Developmental Biology, vol.316, issue.1, pp.62-73, 2008.
DOI : 10.1016/j.ydbio.2008.01.012

URL : https://doi.org/10.1016/j.ydbio.2008.01.012

M. Pacifici, E. Koyama, Y. Shibukawa, C. Wu, Y. Tamamura et al., Cellular and Molecular Mechanisms of Synovial Joint and Articular Cartilage Formation, Annals of the New York Academy of Sciences, vol.122, issue.1, 2006.
DOI : 10.1016/S0945-053X(05)80011-3

R. Decker, E. Koyama, and M. Pacifici, Articular Cartilage: Structural and Developmental Intricacies and Questions, Current Osteoporosis Reports, vol.395, issue.2, pp.407-421
DOI : 10.1016/j.ydbio.2014.09.011

URL : http://europepmc.org/articles/pmc4624030?pdf=render

C. Archer and P. Francis-west, The chondrocyte, The International Journal of Biochemistry & Cell Biology, vol.35, issue.4, pp.401-405, 2003.
DOI : 10.1016/S1357-2725(02)00301-1

S. Chen, P. Fu, H. Wu, and P. M. , Meniscus, articular cartilage and nucleus pulposus: a comparative review of cartilage-like tissues in anatomy, development and function, Cell and Tissue Research, vol.133, issue.Suppl 1, 2017.
DOI : 10.1159/000146611

J. Rutges, L. Creemers, W. Dhert, S. Milz, D. Sakai et al., Variations in gene and protein expression in human nucleus pulposus in comparison with annulus fibrosus and cartilage cells: potential associations with aging and degeneration, Osteoarthritis and Cartilage, vol.18, issue.3, pp.416-439, 2010.
DOI : 10.1016/j.joca.2009.09.009

URL : https://doi.org/10.1016/j.joca.2009.09.009

A. Poole, T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi et al., Composition and Structure of Articular Cartilage, Clinical Orthopaedics and Related Research, vol.391, pp.26-33, 2001.
DOI : 10.1097/00003086-200110001-00004

J. Martel-pelletier, A. Barr, F. Cicuttini, P. Conaghan, C. Cooper et al., Osteoarthritis, Nature Reviews Disease Primers, vol.1, p.16072, 201613.
DOI : 10.1002/psb.1271

URL : https://hal.archives-ouvertes.fr/hal-01709917

L. Wu, F. Petrigliano, K. Ba, S. Lee, J. Bogdanov et al., Lysophosphatidic acid mediates fibrosis in injured joints by regulating collagen type I biosynthesis. Osteoarthritis Cartilage, 2015.
DOI : 10.1016/j.joca.2014.11.012

URL : https://doi.org/10.1016/j.joca.2014.11.012

, Feb, vol.23, issue.2, pp.308-326

K. Ye, D. Bella, C. Myers, D. Choong, and P. , The osteochondral dilemma: review of current management and future trends, ANZ Journal of Surgery, vol.3, issue.Suppl. 1, pp.211-218
DOI : 10.1177/1938640010388602

B. Johnstone, M. Alini, M. Cucchiarini, G. Dodge, D. Eglin et al., Tissue engineering for articular cartilage repair ??? the state of the art, European Cells and Materials, vol.25, pp.248-67, 2013.
DOI : 10.22203/eCM.v025a18

L. Moreira-teixeira, N. Georgi, J. Leijten, L. Wu, and M. Karperien, Cartilage tissue engineering. Endocr Dev, vol.21, pp.102-117, 2011.

M. Schnabel, S. Marlovits, G. Eckhoff, I. Fichtel, L. Gotzen et al., Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage, pp.62-70, 2002.

R. Chijimatsu, M. Ikeya, Y. Yasui, Y. Ikeda, K. Ebina et al., Characterization of Mesenchymal Stem Cell-Like Cells Derived From Human iPSCs via Neural Crest Development and Their Application for Osteochondral Repair, Stem Cells International, vol.91, issue.8, 2017.
DOI : 10.1016/j.scr.2009.08.002

D. Puppi, F. Chiellini, A. Piras, and E. Chiellini, Polymeric materials for bone and cartilage repair, Progress in Polymer Science, vol.35, issue.4, pp.403-443
DOI : 10.1016/j.progpolymsci.2010.01.006

G. Musumeci, P. Castrogiovanni, R. Leonardi, F. Trovato, M. Szychlinska et al., New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review, World Journal of Orthopedics, vol.5, issue.2, pp.80-88, 2014.
DOI : 10.1016/j.jnutbio.2013.07.007

URL : http://europepmc.org/articles/pmc4017310?pdf=render

T. Gómez-leduc, M. Hervieu, F. Legendre, M. Bouyoucef, N. Gruchy et al., Chondrogenic commitment of human umbilical cord blood-derived mesenchymal stem cells in collagen matrices for cartilage engineering. Sci Rep, p.32786, 2016.

M. Ponticiello, R. Schinagl, S. Kadiyala, and F. Barry, Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy, Journal of Biomedical Materials Research, vol.17, issue.2, 2000.
DOI : 10.1002/jor.1100170214

H. Almeida, R. Eswaramoorthy, G. Cunniffe, C. Buckley, O. Brien et al., Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration, Acta Biomaterialia, vol.36, pp.55-62, 2016.
DOI : 10.1016/j.actbio.2016.03.008

E. Lima, A. Tan, T. Tai, L. Bian, G. Ateshian et al., Physiologic deformational loading does not counteract the catabolic effects of interleukin-1 in long-term culture of chondrocyte-seeded agarose constructs, Journal of Biomechanics, vol.41, issue.15, pp.3253-3262, 2008.
DOI : 10.1016/j.jbiomech.2008.06.015

H. Park, H. Lee, H. An, and K. Lee, Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydr Polym, pp.100-107, 2017.
DOI : 10.1016/j.carbpol.2017.01.045

H. Yu, G. Cauchois, J. Schmitt, N. Louvet, J. Six et al., Is there a cause-and-effect relationship between physicochemical properties and cell behavior of alginate-based hydrogel obtained after sterilization?, Journal of the Mechanical Behavior of Biomedical Materials, vol.68, pp.2017134-2017177
DOI : 10.1016/j.jmbbm.2017.01.038

URL : https://hal.archives-ouvertes.fr/hal-01715258

M. Shamekhi, A. Rabiee, H. Mirzadeh, H. Mahdavi, D. Mohebbi-kalhori et al., Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications, Materials Science and Engineering: C, vol.80, pp.532-574, 2017.
DOI : 10.1016/j.msec.2017.03.194

Q. Feng, S. Lin, K. Zhang, C. Dong, T. Wu et al., Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy, Acta Biomaterialia, vol.53, pp.329-371, 2017.
DOI : 10.1016/j.actbio.2017.02.015

L. Cui, Y. Wu, L. Cen, H. Zhou, S. Yin et al., Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh, Biomaterials, vol.30, issue.14, 2009.
DOI : 10.1016/j.biomaterials.2009.01.045

J. Dounchis, W. Bae, A. Chen, R. Sah, R. Coutts et al., Cartilage Repair With Autogenic Perichondrium Cell and Polylactic Acid Grafts, Clinical Orthopaedics and Related Research, vol.377, issue.377, pp.248-64, 2000.
DOI : 10.1097/00003086-200008000-00033

I. Kim, J. Ko, H. Lee, S. Do, and K. Park, Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering, Biomaterials, vol.85, pp.18-29
DOI : 10.1016/j.biomaterials.2016.01.048

S. Camarero-espinosa, B. Rothen-rutishauser, E. Foster, and C. Weder, Articular cartilage: from formation to tissue engineering. Biomater Sci, pp.734-67, 2016.
DOI : 10.1039/c6bm00068a

M. Bruchet and A. Melman, Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. Carbohydr Polym, pp.57-64, 2015.
DOI : 10.1016/j.carbpol.2015.05.021

URL : https://manuscript.elsevier.com/S0144861715004208/pdf/S0144861715004208.pdf

A. Augst, H. Kong, and D. Mooney, Alginate Hydrogels as Biomaterials, Macromolecular Bioscience, vol.9, issue.8, pp.623-656, 2006.
DOI : 10.1161/01.CIR.100.18.1865

J. Tritz-schiavi, N. Charif, C. Henrionnet, N. De-isla, D. Bensoussan et al., Original approach for cartilage tissue engineering with mesenchymal stem cells, Biomed Mater Eng, vol.20, issue.3, pp.167-74, 2010.

H. Ma, S. Hung, S. Lin, Y. Chen, and W. Lo, Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads, Journal of Biomedical Materials Research, vol.212, issue.2, pp.273-81, 2003.
DOI : 10.1006/excr.1994.1123

L. Reppel, J. Schiavi, N. Charif, L. Leger, H. Yu et al., Chondrogenic induction of mesenchymal stromal/stem cells from Wharton???s jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering, Stem Cell Research & Therapy, vol.6, issue.1, p.260, 2015.
DOI : 10.1186/s13287-015-0075-4

J. Kaupp, J. Weber, and S. Waldman, Mechanical Stimulation of Chondrocyte-agarose Hydrogels, Journal of Visualized Experiments, issue.68, p.4229, 2012.
DOI : 10.3791/4229

URL : http://europepmc.org/articles/pmc3490297?pdf=render

M. Murphy, D. Huey, J. Hu, and K. Athanasiou, TGF-??1, GDF-5, and BMP-2 Stimulation Induces Chondrogenesis in Expanded Human Articular Chondrocytes and Marrow-Derived Stromal Cells, STEM CELLS, vol.33, issue.3, pp.762-73
DOI : 10.1016/j.biomaterials.2012.01.028

URL : http://onlinelibrary.wiley.com/doi/10.1002/stem.1890/pdf

L. Reppel, T. Margossian, L. Yaghi, P. Moreau, N. Mercier et al., Hypoxic Culture Conditions for Mesenchymal Stromal/Stem Cells from Wharton???s Jelly: A Critical Parameter to Consider in a Therapeutic Context, Current Stem Cell Research & Therapy, vol.9, issue.4, pp.306-324, 2014.
DOI : 10.2174/1574888X09666140213204850

M. Delcroix, C. Gomez, P. Marquis, and G. J. Tabac, Datatraitesob05-46113 [Internet], p.59459, 2007.

A. Omori, M. Manabe, K. Kudo, K. Tanaka, K. Takahashi et al., cell count and volume of placental/umbilical cord blood, Journal of Obstetrics and Gynaecology Research, vol.184, issue.1, pp.52-59, 2010.
DOI : 10.3109/00016340009169210

M. Hoenicka, K. Lehle, V. Jacobs, F. Schmid, and D. Birnbaum, Properties of the Human Umbilical Vein as a Living Scaffold for a Tissue-Engineered Vessel Graft, Tissue Engineering, vol.13, issue.1, pp.219-248, 2007.
DOI : 10.1089/ten.2006.0121

A. Omori, M. Hirai, T. Chiba, K. Takahashi, S. Yamaguchi et al., Quality-assessments of characteristics of placental/umbilical cord blood associated with maternal age- and parity-related factor, Transfusion and Apheresis Science, vol.46, issue.1, pp.7-13, 2012.
DOI : 10.1016/j.transci.2011.10.030

M. Javed, L. Mead, D. Prater, W. Bessler, D. Foster et al., Endothelial Colony Forming Cells and Mesenchymal Stem Cells are Enriched at Different Gestational Ages in Human Umbilical Cord Blood, Pediatric Research, vol.109, issue.1
DOI : 10.1161/01.CIR.0000128596.49339.05

URL : http://www.nature.com/pr/journal/v64/n1/pdf/pr2008147a.pdf

, Pediatr Res, vol.64, issue.1, pp.68-73, 2008.

S. Ebina, A. Omori, A. Tarakida, T. Ogasawara, M. Manabe et al., Effect of the umbilical cord blood acid-base status and gas values on the yield of mononuclear cells and CD34+ cells, Journal of Obstetrics and Gynaecology Research, vol.183, issue.7, pp.997-1003
DOI : 10.1067/mob.2000.108848

N. Wajid, R. Naseem, S. Anwar, S. Awan, M. Ali et al., The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells. Cell Tissue Bank, 2015.

J. Kim, Y. Piao, Y. Pak, D. Chung, Y. Han et al., Umbilical Cord Mesenchymal Stromal Cells Affected by Gestational Diabetes Mellitus Display Premature Aging and Mitochondrial Dysfunction, Stem Cells and Development, vol.24, issue.5, pp.575-86, 2015.
DOI : 10.1089/scd.2014.0349

A. Amrithraj, A. Kodali, L. Nguyen, A. Teo, C. Chang et al., Gestational Diabetes Alters Functions in Offspring???s Umbilical Cord Cells With Implications for Cardiovascular Health, Endocrinology, vol.90, issue.3, pp.2102-2114, 2017.
DOI : 10.1016/j.jacc.2007.02.059

K. Boyle, Z. Patinkin, A. Shapiro, P. Baker, D. Dabelea et al., Mesenchymal Stem Cells From Infants Born to Obese Mothers Exhibit Greater Potential for Adipogenesis: The Healthy Start BabyBUMP Project, Diabetes, vol.65, issue.3, 2015.
DOI : 10.2337/db15-0849

M. Joerger-messerli, E. Brühlmann, A. Bessire, A. Wagner, M. Mueller et al., Preeclampsia enhances neuroglial marker expression in umbilical cord Wharton's jelly-derived mesenchymal stem cells, The Journal of Maternal-Fetal & Neonatal Medicine, vol.368, issue.4, pp.464-473, 2015.
DOI : 10.1016/S0140-6736(06)69080-6

R. Sukarieh, R. Joseph, S. Leow, Y. Li, M. Löffler et al., Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells. Hum Reprod, pp.2287-301, 2014.

M. Messerli, A. Wagner, R. Sager, M. Mueller, M. Baumann et al., Stem cells from umbilical cord Wharton's jelly from preterm birth have neuroglial differentiation potential. Reprod Sci Thousand Oaks Calif, pp.1455-64, 2013.

R. Bárcia, J. Santos, M. Teixeira, F. M. Pereira, A. Ministro et al., Umbilical cord tissue???derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing, Cytotherapy, vol.19, issue.3, pp.360-70, 2017.
DOI : 10.1016/j.jcyt.2016.11.008

J. Luetzkendorf, K. Nerger, J. Hering, A. Moegel, K. Hoffmann et al., Cryopreservation does not alter main characteristics of Good Manufacturing Process???grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation, Cytotherapy, vol.17, issue.2, pp.186-98, 2015.
DOI : 10.1016/j.jcyt.2014.10.018

G. Moll, J. Alm, L. Davies, L. Von-bahr, N. Heldring et al., Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells Dayt Ohio, pp.2430-2472, 2014.

K. De-lima-prata, G. De-santis, M. Orellana, P. Palma, M. Brassesco et al., Cryopreservation of umbilical cord mesenchymal cells in xenofree conditions, Cytotherapy, vol.14, issue.6, pp.694-700, 2012.
DOI : 10.3109/14653249.2012.677820

O. Gramlich, A. Burand, A. Brown, R. Deutsch, M. Kuehn et al., Cryopreserved Mesenchymal Stromal Cells Maintain Potency in a Retinal Ischemia/Reperfusion Injury Model: Toward an off-the-shelf Therapy, Scientific Reports, vol.3, issue.1, p.26463, 2016.
DOI : 10.1186/s40478-015-0234-y

URL : http://www.nature.com/articles/srep26463.pdf

M. François, I. Copland, S. Yuan, R. Romieu-mourez, E. Waller et al., Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-?? licensing, Cytotherapy, vol.14, issue.2, pp.147-52, 2012.
DOI : 10.3109/14653249.2011.623691

C. Lechanteur, A. Briquet, O. Giet, O. Delloye, E. Baudoux et al., Clinical-scale expansion of mesenchymal stromal cells: a large banking experience, Journal of Translational Medicine, vol.7, issue.2, p.145, 2016.
DOI : 10.1371/journal.pone.0043255

URL : https://translational-medicine.biomedcentral.com/track/pdf/10.1186/s12967-016-0892-y?site=translational-medicine.biomedcentral.com

C. Capelli, O. Pedrini, R. Valgardsdottir, D. Roit, F. Golay et al., Clinical grade expansion of MSCs, Immunology Letters, vol.168, issue.2, pp.222-229, 2015.
DOI : 10.1016/j.imlet.2015.06.006

J. Gutkowska and M. Jankowski, Oxytocin Revisited: Its Role in Cardiovascular Regulation, Journal of Neuroendocrinology, vol.346, issue.4, pp.599-608
DOI : 10.1056/NEJMoa012081

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2826.2011.02235.x/pdf

Y. Kim, J. Kwon, M. Hong, W. Kang, H. Jeong et al., Restoration of angiogenic capacity of diabetes-insulted mesenchymal stem cells by oxytocin, BMC Cell Biology, vol.14, issue.1, p.38, 2013.
DOI : 10.1186/1471-2121-14-38

URL : https://bmccellbiol.biomedcentral.com/track/pdf/10.1186/1471-2121-14-38?site=bmccellbiol.biomedcentral.com

N. Jafarzadeh, A. Javeri, M. Khaleghi, and M. Taha, Oxytocin improves proliferation and neural differentiation of adipose tissue-derived stem cells, Neuroscience Letters, vol.564, pp.105-115, 2014.
DOI : 10.1016/j.neulet.2014.02.012

N. Noiseux, M. Borie, A. Desnoyers, A. Menaouar, L. Stevens et al., Preconditioning of Stem Cells by Oxytocin to Improve Their Therapeutic Potential, Endocrinology, vol.153, issue.11, pp.5361-72, 2012.
DOI : 10.1210/en.2012-1402

URL : https://academic.oup.com/endo/article-pdf/153/11/5361/10386726/endo5361.pdf

A. Malek, E. Blann, and D. Mattison, Human placental transport of oxytocin, J Matern Fetal Med, 1996.
DOI : 10.3109/14767059609025430

C. Escudero, J. Roberts, L. Myatt, and I. Feoktistov, Impaired adenosine-mediated angiogenesis in preeclampsia: potential implications for fetal programming, Frontiers in Pharmacology, vol.130, issue.e56754., 2014.
DOI : 10.1542/peds.2011-3881

URL : http://journal.frontiersin.org/article/10.3389/fphar.2014.00134/pdf

K. Tie, Y. Tan, Y. Deng, J. Li, Q. Ni et al., Prenatal nicotine exposure induces poor articular cartilage quality in female adult offspring fed a high-fat diet and the intrauterine programming mechanisms, Reproductive Toxicology, vol.60, pp.11-20
DOI : 10.1016/j.reprotox.2015.12.010

URL : https://hal.archives-ouvertes.fr/hal-01452308

X. Ying, W. Zhang, S. Cheng, P. Nie, X. Cheng et al., Nicotine-induced chondrogenic differentiation of human bone marrow stromal cells in vitro, Knee Surgery, Sports Traumatology, Arthroscopy, vol.359, issue.1???2, pp.2329-2365, 2012.
DOI : 10.1007/s11010-011-1020-1

C. Roux, D. Pisani, H. Yahia, M. Djedaini, G. Beranger et al., Chondrogenic potential of stem cells derived from adipose tissue: A powerful pharmacological tool, Biochemical and Biophysical Research Communications, vol.440, issue.4, pp.786-91, 2013.
DOI : 10.1016/j.bbrc.2013.10.012

URL : https://hal.archives-ouvertes.fr/hal-00875579

H. Zeng, Y. Qin, H. Chen, Q. Bu, Y. Li et al., Effects of Nicotine on Proliferation and Survival in Human Umbilical Cord Mesenchymal Stem Cells, Journal of Biochemical and Molecular Toxicology, vol.32, issue.10, pp.181-190
DOI : 10.1042/BJ20081847

X. Yang, Y. Qi, L. Avercenc-leger, J. Vincourt, S. Hupont et al., Effect of nicotine on the proliferation and chondrogenic differentiation of the human Wharton???s jelly mesenchymal stem cells, Bio-Medical Materials and Engineering, vol.4, issue.6, pp.217-245, 2017.
DOI : 10.1038/nrm1155

URL : https://hal.archives-ouvertes.fr/hal-01708965

C. Elabd, A. Basillais, H. Beaupied, V. Breuil, N. Wagner et al., Oxytocin Controls Differentiation of Human Mesenchymal Stem Cells and Reverses Osteoporosis. STEM CELLS, vol.26, issue.9, pp.2399-407, 2008.

B. Leuner, J. Caponiti, and E. Gould, Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids, Hippocampus, vol.7, issue.4, pp.861-869
DOI : 10.1038/nn1327

J. Cuerquis, R. Romieu-mourez, M. François, J. Routy, Y. Young et al., Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-?? and tumor necrosis factor-?? stimulation, Cytotherapy, vol.16, issue.2, 2014.
DOI : 10.1016/j.jcyt.2013.11.008

, Feb, vol.16, issue.2, pp.191-202

S. Prasanna, D. Gopalakrishnan, S. Shankar, and A. Vasandan, Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PloS One, Feb, vol.25, issue.2, p.9016, 2010.

M. François, R. Romieu-mourez, M. Li, and J. Galipeau, Human MSC Suppression Correlates With Cytokine Induction of Indoleamine 2,3-Dioxygenase and Bystander M2 Macrophage Differentiation, Molecular Therapy, vol.20, issue.1, pp.187-95
DOI : 10.1038/mt.2011.189

Y. Liu, L. Wang, T. Kikuiri, K. Akiyama, C. Chen et al., Mesenchymal stem cell???based tissue regeneration is governed by recipient T lymphocytes via IFN-?? and TNF-??, Nature Medicine, vol.27, issue.12, pp.1594-601, 2011.
DOI : 10.1038/nbt0602-587

URL : http://europepmc.org/articles/pmc3233650?pdf=render

X. Li, W. Du, F. Ma, X. Feng, F. Bayard et al., High Concentrations of TNF-?? Induce Cell Death during Interactions between Human Umbilical Cord Mesenchymal Stem Cells and Peripheral Blood Mononuclear Cells, PLOS ONE, vol.3, issue.110, p.128647, 2015.
DOI : 10.1371/journal.pone.0128647.s003

URL : https://doi.org/10.1371/journal.pone.0128647

H. Li, W. Wang, G. Wang, Y. Hou, F. Xu et al., Interferon-?? and tumor necrosis factor-?? promote the ability of human placenta???derived mesenchymal stromal cells to express programmed death ligand-2 and induce the differentiation of CD4+interleukin-10+ and CD8+interleukin-10+Treg subsets, Cytotherapy, vol.17, issue.11, pp.1560-71, 2015.
DOI : 10.1016/j.jcyt.2015.07.018

M. Leijs, E. Villafuertes, J. Haeck, W. Koevoet, B. Fernandez-gutierrez et al., Encapsulation of allogeneic mesenchymal stem cells in alginate extends local presence and therapeutic function, European Cells and Materials, vol.33, pp.43-58, 2017.
DOI : 10.22203/eCM.v033a04

URL : http://doi.org/10.22203/ecm.v033a04

T. Andersen, P. Auk-emblem, and M. Dornish, 3D Cell Culture in Alginate Hydrogels. Microarrays Basel Switz, pp.133-61, 2015.
DOI : 10.3390/microarrays4020133

URL : http://www.mdpi.com/2076-3905/4/2/133/pdf

A. Ode, J. Schoon, A. Kurtz, M. Gaetjen, J. Ode et al., CD73/5???-ecto-nucleotidase acts as a regulatory factor in osteo-/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells, European Cells and Materials, vol.25, pp.37-47, 2013.
DOI : 10.22203/eCM.v025a03

URL : http://doi.org/10.22203/ecm.v025a03

M. Roemeling-van-rhijn, F. Mensah, S. Korevaar, M. Leijs, G. Van-osch et al., Effects of Hypoxia on the Immunomodulatory Properties of Adipose Tissue-Derived Mesenchymal Stem cells, p.203, 2013.

T. Jiang, W. Liu, X. Lv, H. Sun, L. Zhang et al., Potent in vitro chondrogenesis of CD105 enriched human adipose-derived stem cells, Biomaterials, vol.31, issue.13, pp.3564-71, 2010.
DOI : 10.1016/j.biomaterials.2010.01.050

C. Vinatier, D. Mrugala, C. Jorgensen, J. Guicheux, and D. Noël, Cartilage engineering: a crucial combination of cells, biomaterials and biofactors, Trends in Biotechnology, vol.27, issue.5, pp.307-321, 2009.
DOI : 10.1016/j.tibtech.2009.02.005

T. Nagase, T. Muneta, Y. Ju, K. Hara, T. Morito et al., Analysis of the chondrogenic potential of human synovial stem cells according to harvest site and culture parameters in knees with medial compartment osteoarthritis, Arthritis & Rheumatism, vol.99, issue.5, pp.1389-98, 2008.
DOI : 10.4049/jimmunol.173.6.3581

H. Lee, B. Choi, M. B. Park, and S. , Changes in surface markers of human mesenchymal stem cells during the chondrogenic differentiation and dedifferentiation processes in vitro, Arthritis Rheum, 2009.

X. Chen, F. Zhang, X. He, Y. Xu, Z. Yang et al., Chondrogenic differentiation of umbilical cordderived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering, Injury, 2013.

R. Nirmal and P. Nair, Significance of soluble growth factors in the chondrogenic response of human umbilical cord matrix stem cells in a porous three dimensional scaffold, European Cells and Materials, vol.26, pp.234-51, 2013.
DOI : 10.22203/eCM.v026a17

M. Zayed, J. Schumacher, N. Misk, and M. Dhar, Effects of pro-inflammatory cytokines on chondrogenesis of equine mesenchymal stromal cells derived from bone marrow or synovial fluid, The Veterinary Journal, vol.217, pp.26-32, 1997.
DOI : 10.1016/j.tvjl.2016.05.014

R. Vecchiatini, L. Penolazzi, E. Lambertini, M. Angelozzi, C. Morganti et al., Effect of dynamic three-dimensional culture on osteogenic potential of human periodontal ligament-derived mesenchymal stem cells entrapped in alginate microbeads, Journal of Periodontal Research, vol.46, issue.4, pp.544-53, 2015.
DOI : 10.4081/1681

A. Ramesh, M. Kanafi, and R. Bhonde, Modulus-dependent characteristics of Wharton???s jelly mesenchymal stem cells (WJMSC) encapsulated in hydrogel microspheres, Journal of Biomaterials Science, Polymer Edition, vol.226, issue.17, pp.1946-61, 2014.
DOI : 10.1002/jbmr.278

L. Penolazzi, E. Tavanti, R. Vecchiatini, E. Lambertini, F. Vesce et al., Encapsulation of Mesenchymal Stem Cells from Wharton's Jelly in Alginate Microbeads, Tissue Engineering Part C: Methods, vol.16, issue.1, 2010.
DOI : 10.1089/ten.tec.2008.0582

, Feb, vol.16, issue.1, pp.141-55

J. Liu, H. Zhou, M. Weir, H. Xu, Q. Chen et al., Fast-Degradable Microbeads Encapsulating Human Umbilical Cord Stem Cells in Alginate for Muscle Tissue Engineering, Tissue Engineering Part A, vol.18, issue.21-22, 2012.
DOI : 10.1089/ten.tea.2011.0658

J. Zimmermann and T. Mcdevitt, Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion, Cytotherapy, vol.16, issue.3, pp.331-376
DOI : 10.1016/j.jcyt.2013.09.004

F. Djouad, L. Charbonnier, C. Bouffi, P. Louis-plence, C. Bony et al., Mesenchymal Stem Cells Inhibit the Differentiation of Dendritic Cells Through an Interleukin-6-Dependent Mechanism, Stem Cells, vol.10, issue.8, pp.2025-2057, 2007.
DOI : 10.1634/stemcells.2006-0548

URL : http://onlinelibrary.wiley.com/doi/10.1634/stemcells.2006-0548/pdf

L. Solchaga and E. Zale, Prostaglandin E2: a putative potency indicator of the immunosuppressive activity of human mesenchymal stem cells, Am J Stem Cells Jun, vol.301, issue.2, pp.138-183, 2012.

S. Daneshmandi, M. Karimi, and A. Pourfathollah, TGF-?1 Transduced Mesenchymal Stem Cells Have Profound Modulatory Effects on DCs and T Cells, Iran J Immunol IJI, vol.14, issue.1, pp.13-23, 2017.

C. Li, P. Ebert, and Q. Li, ) Locus Methylation and Inducible Regulatory T Cell Differentiation, Journal of Biological Chemistry, vol.29, issue.26, pp.19127-19166, 2013.
DOI : 10.1038/nature02238

K. Summers, O. Donnell, J. Heiser, A. Highton, J. Hart et al., Synovial fluid transforming growth factor ? inhibits dendritic cell-T lymphocyte interactions in patients with chronic arthritis, Arthritis & Rheumatism, vol.177, issue.3, pp.507-525, 1999.
DOI : 10.1084/jem.177.1.225

URL : http://onlinelibrary.wiley.com/doi/10.1002/1529-0131(199904)42:3<507::AID-ANR16>3.0.CO;2-Y/pdf

B. Gunnlaugsdottir, S. Maggadottir, and B. Ludviksson, Anti-CD28-induced co-stimulation and TCR avidity regulates the differential effect of TGF-??1 on CD4+ and CD8+ naive human T-cells, International Immunology, vol.17, issue.1, pp.35-44, 2005.
DOI : 10.1093/intimm/dxh183

URL : https://academic.oup.com/intimm/article-pdf/17/1/35/2140911/dxh183.pdf

J. Kehrl, L. Wakefield, A. Roberts, S. Jakowlew, M. Alvarez-mon et al., Article: production of transforming growth factor ? by human T lymphocytes and its potential role in the regulation of T cell growth, J Exp Med J Immunol Baltim Md, vol.163192, issue.7, pp.1037-10502939, 1950.

J. Zhang, X. Liu, Y. W. Zhang, Y. Shi, C. Ni et al., Effects of human vascular endothelial growth factor on reparative dentin formation, Molecular Medicine Reports, vol.13, issue.1, pp.705-717, 2016.
DOI : 10.3892/mmr.2015.4608

B. Behr, C. Tang, G. Germann, M. Longaker, and N. Quarto, Locally Applied Vascular Endothelial Growth Factor A Increases the Osteogenic Healing Capacity of Human Adipose-Derived Stem Cells by Promoting Osteogenic and Endothelial Differentiation, STEM CELLS, vol.30, issue.suppl 2, pp.286-96, 2011.
DOI : 10.1016/j.biomaterials.2008.09.047

URL : http://onlinelibrary.wiley.com/doi/10.1002/stem.581/pdf

L. Marti, L. Pavon, P. Severino, T. Sibov, D. Guilhen et al., Vascular endothelial growth factor-A enhances indoleamine 2,3-dioxygenase expression by dendritic cells and subsequently impacts lymphocyte proliferation, Mem??rias do Instituto Oswaldo Cruz, vol.348, issue.1, pp.70-79, 2014.
DOI : 10.1056/NEJMoa020177

URL : http://www.scielo.br/pdf/mioc/v109n1/0074-0276-mioc-0074-0276130252.pdf

A. Marsano, M. Da-cunha, C. Ghanaati, S. Gueven, S. Centola et al., Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling, STEM CELLS Translational Medicine, vol.108, issue.151, pp.1730-1738, 2016.
DOI : 10.1016/B978-0-12-391498-9.00005-X

N. Ahmed, R. Dreier, A. Göpferich, J. Grifka, and S. Grässel, Soluble Signalling Factors Derived from Differentiated Cartilage Tissue Affect Chondrogenic Differentiation of Rat Adult Marrow Stromal Cells, Cellular Physiology and Biochemistry, vol.11, issue.3, pp.665-78, 2007.
DOI : 10.1002/path.1527

W. Du, L. Reppel, L. Leger, C. Schenowitz, C. Huselstein et al., Mesenchymal Stem Cells Derived from Human Bone Marrow and Adipose Tissue Maintain Their Immunosuppressive Properties After Chondrogenic Differentiation: Role of HLA-G, Stem Cells and Development, vol.25, issue.19, pp.1454-69, 2016.
DOI : 10.1089/scd.2016.0022

URL : https://hal.archives-ouvertes.fr/hal-01777755

L. Blanc, K. Tammik, C. Rosendahl, K. Zetterberg, E. Ringdén et al., HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells, Exp Hematol, 2003.

E. Neofytou, T. Deuse, R. Beygui, and S. Schrepfer, Mesenchymal Stromal Cell Therapy, Transplantation, vol.99, issue.6, pp.1113-1121, 2015.
DOI : 10.1097/TP.0000000000000734

URL : http://pdfs.journals.lww.com/transplantjournal/2015/06000/Mesenchymal_Stromal_Cell_Therapy___Different.7.pdf?token=method|ExpireAbsolute;source|Journals;ttl|1504616891726;payload|mY8D3u1TCCsNvP5E421JYK6N6XICDamxByyYpaNzk7FKjTaa1Yz22MivkHZqjGP4kdS2v0J76WGAnHACH69s21Csk0OpQi3YbjEMdSoz2UhVybFqQxA7lKwSUlA502zQZr96TQRwhVlocEp/sJ586aVbcBFlltKNKo+tbuMfL73hiPqJliudqs17cHeLcLbV/CqjlP3IO0jGHlHQtJWcICDdAyGJMnpi6RlbEJaRheGeh5z5uvqz3FLHgPKVXJzdGlb2qsojlvlytk14LkMXSEk7KU1YRqvwsLUYQBbjPmBLuUaKObwq5i5/FA6ULmAP;hash|krarERpKf3CnmhjaaoD8nA==

S. Liu, M. Yuan, K. Hou, L. Zhang, X. Zheng et al., Immune characterization of mesenchymal stem cells in human umbilical cord Wharton???s jelly and derived cartilage cells, Cellular Immunology, vol.278, issue.1-2, 2012.
DOI : 10.1016/j.cellimm.2012.06.010

C. Fong, A. Subramanian, A. Biswas, and A. Bongso, Freezing of Fresh Wharton's Jelly From Human Umbilical Cords Yields High Post-Thaw Mesenchymal Stem Cell Numbers for Cell-Based Therapies, Journal of Cellular Biochemistry, vol.30, issue.6, pp.815-842
DOI : 10.1002/cbf.2843

C. Kiernan, M. Hoogduijn, M. Franquesa, E. Wolvius, P. Brama et al., Allogeneic chondrogenically differentiated human mesenchymal stromal cells do not induce immunogenic responses from T lymphocytes in vitro, Cytotherapy, vol.18, issue.8, pp.957-69, 2016.
DOI : 10.1016/j.jcyt.2016.05.002

P. Montanucci, A. Alunno, G. Basta, O. Bistoni, T. Pescara et al., Restoration of t cell substes of patients with type 1 diabetes mellitus by microencapsulated human umbilical cord Wharton jellyderived mesenchymal stem cells: An in vitro study Feb, Clin Immunol Orlando Fla, vol.163, pp.201634-201675

S. Balasubramanian, P. Venugopal, S. Sundarraj, Z. Zakaria, A. Majumdar et al., Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells, Cytotherapy, vol.14, issue.1, pp.26-33, 2012.
DOI : 10.3109/14653249.2011.605119

M. Kondo, K. Yamaoka, K. Sakata, K. Sonomoto, L. Lin et al., Contribution of the Interleukin-6/STAT-3 Signaling Pathway to Chondrogenic Differentiation of Human Mesenchymal Stem Cells, Arthritis & Rheumatology, vol.16, issue.3, pp.1250-60
DOI : 10.3109/s10165-010-0325-3

H. Cai, H. Sun, Y. Wang, and Z. Zhang, Relationships of common polymorphisms in IL-6, IL-1A, and IL-1B genes with susceptibility to osteoarthritis: a meta-analysis, Clinical Rheumatology, vol.43, issue.11, pp.1443-53, 2015.
DOI : 10.1002/1529-0131(200011)43:11<2417::AID-ANR7>3.0.CO;2-R

Y. Yang, S. Gao, F. Zhang, W. Luo, J. Xue et al., Effects of osteopontin on the expression of IL-6 and IL-8 inflammatory factors in human knee osteoarthritis chondrocytes, Eur Rev Med Pharmacol Sci, vol.18, issue.23, pp.3580-3586, 2014.

H. Chen, N. Zhang, T. Li, J. Guo, Z. Wang et al., Human umbilical cord Wharton???s jelly stem cells: Immune property genes assay and effect of transplantation on the immune cells of heart failure patients, Cellular Immunology, vol.276, issue.1-2, pp.83-90
DOI : 10.1016/j.cellimm.2012.03.012

B. Follin, M. Juhl, S. Cohen, A. Pedersen, M. Gad et al., Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel: Phenotypic and immunomodulatory evaluation, Cytotherapy, vol.17, issue.8, pp.1104-1122, 2015.
DOI : 10.1016/j.jcyt.2015.04.008

, Résumé

, Il s'oriente particulièrement sur la composante cellulaire de ces substituts. L'usage de cellules souches mésenchymateuses issues de cordons ombilicaux (CSM-GW) implique de déterminer quels facteurs obstétricaux, liés à l'environnement direct et indirect des CSM-GW, peuvent influencer leur prolifération ainsi que leur différenciation chondrocytaire Dans une première partie de ce travail, trois types de facteurs ont été étudiés : les facteurs liés à l'enfant donneur, au déroulement de l'accouchement et de la délivrance, à la grossesse et à la mère. Nos données montrent que les CSM-GW ont des capacités prolifératives améliorées lorsque l'accouchement s'est déroulé à terme et sans complication, avec utilisation de Syntocinon® pendant le travail. Sur la base de ces résultats, nous avons utilisé les CSM-GW les plus efficaces dans le cadre de l'ingénierie du cartilage. Il a ensuite été essentiel d'élucider le profil d'action des CSM-GW dans un contexte allogénique. Le deuxième temps de ce travail a donc consisté à chercher le profil de stimulation le plus performant, au regard de la viabilité des cellules et de l'évolution de la sécrétion des facteurs solubles responsables des propriétés immunomodulatrices des CSM-GW au cours de la différenciation chondrocytaire. Nous avons alors mimé, Ce travail a pour objet de déterminer les conditions optimales de production de substituts allogéniques capables de combler les lésions cartilagineuses dans le cadre du traitement de l'arthrose vitro et en biomatériaux d'Alginate/Acide hyaluronique (Alg/HA) une telle situation en stimulant les CSM-GW avec différentes doses d'IFN-? et de TNF-?. Selon nos résultats, la stimulation par IFN-? et TNF-? sur les CSM-GW en biomatériaux d'Alg/HA est plus efficace lorsque ces deux cytokines sont utilisées conjointement et n'est pas délétère pour la viabilité cellulaire aux concentrations respectives de 20 et, p.30

/. Ng, ne modifie pas leur sécrétion de TGF-?, et diminue la sécrétion de VEGF. Nous avons confirmé ces données lors d'une mise en situation fonctionnelle : des cocultures avec des cellules mononucléées de sang périphérique (PBMC) de donneurs sains nous ont permis d'évaluer la réponse des CSM-GW lors d'une situation allogénique. Ces mises en situations allogéniques ont été étudiées à différents temps afin d'évaluer les propriétés immunologiques des CSM-GW au cours du temps passé en biomatériaux. Nos résultats montrent que les CSM-GW peuvent exprimer des molécules HLA-G ainsi qu'IDO, mais ces expressions sont limitées en biomatériaux d'Alg//HA. Les CSM-GW en biomatériaux d'Alg/HA en situation allogénique ne sont pas immunogènes, quel que soit le temps de différenciation. En revanche, leurs capacités immunomodulatrices décroissent au cours du temps et sont plus fortes à J0 et J3 de la différenciation chondrocytaire, ce qui oriente vers une utilisation précoce de ces cellules. Les conclusions de ce travail permettent de (i) sélectionner les cordons idoines à l'ingénierie cellulaire et l'ingénierie du cartilage, Cette double stimulation induit une augmentation de la sécrétion d'IL-6 et de PGE-2 par les CSM-GWii) définir les conditions permettant de mimer une situation allogénique in vitro, (iii) connaitre les propriétés immunomodulatrices des CSM-GW au cours de la culture en biomatériaux d'Alg

, Mots clefs : cellules souches mésenchymateuses, propriétés immunomodulatrices, différenciation chondrocytaire, biomatériaux, allogreffe

, The use of mesenchymal stem cells from umbilical cords (WJ-MSC) involves determining which factors, related to direct and indirect environment of the WJ-MSC, can influence their proliferation and chondrogenic differentiation In a first part of our work, three types of factors were studied: related to the donor child, the course of labor and delivery, pregnancy and the mother Our results show that WJ-MSC have enhanced proliferative capacities when coming from full-term birth and without complications, with the use of Syntocinon® during labor. On this basis, we used the most effective WJ-MSC for cartilage engineering. It was then essential to elucidate their action profile in allogeneic context. We stimulated WJ- MSC embedded in Alginate/Hyaluronic Acid (Alg/HA) scaffolds with different concentrations of IFN-? and TNF-? in order to determine the most effective stimulation profile, with regard to viability of the cells and evolution of immunomodulatory soluble factors secretion. According to our results, the stimulation by IFN-? and TNF-? on WJ-MSC in Alg/HA scaffolds is more effective when these two cytokines are used together and is not deleterious for cell viability at the concentrations of 20 and 30 ng/mL, respectively. This double stimulation induces an increase in the secretion of IL-6 and PGE-2 by the WJ-MSC, a decrease in the secretion of VEGF and does not modify the secretion of TGF-?. We confirmed these data during a functional study: cocultures with peripheral blood mononuclear cells (PBMC) from healthy donors allowed us to evaluate the response of WJ-MSC in an allogeneic situation. These allogeneic situations have been studied at different times to evaluate the immunological properties of WJ-MSC during the time of chondrogenic differentiation. Our results show that WJ-MSC can express HLA-G molecules as well as IDO, but these expressions are, Abstract The purpose of this work is to determine the optimal conditions for allogeneic substitutes production, adapted to filling the cartilaginous lesions in osteoarthritis treatment. It focuses on the cellular component of these substitutes Alg/HA biomaterials. Finally, the WJ-MSC in Alg/HA biomaterials in allogeneic conditions are not immunogenic, regardless of the time of differentiation. On the other hand, their immunomodulatory capacities decrease over time and are stronger at day 0 and day 3 of chondrogenic differentiation, which leads to an early use of these cells. Finally, this work allows us to (i) select the umbilical cords suitable for cellular and cartilage engineeringii) define the conditions mimicking in vitro an allogeneic situationiii) elucidate the immunomodulatory properties of WJ-MSC during Alg/HA biomaterials chondrogenic differentiation, including allogeneic situations

, Keywords: mesenchymal stromal cells, immunomodulatory properties, chondrogenic differentiation, biomaterial, allograft, advanced therapy medicinal products