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Chapter 1
Résumé en francais

L’étude de la commande des systémes de lois de conservation couplés par une interface
mobile reste trés peu développée dans la littérature. Ces problémes d’interface apparaissent
dans la modélisation d’un grand nombre de systémes physiques donnant lieu & des phénoménes
de changement de phases, de croissance de cristaux, d’évolution biologique (modéle d’évolution
de tumeur) etc. Dans cette thése, nous nous intéressons aux systémes hyperboliques couplés
a travers une interface mobile. Cette étude est développée autour d’un modéle bi-zone d’un
procédé d’extrusion. D’autre part nous proposons une analyse des structures d’interface en
utilisant le formalisme Hamiltonien & port. Les contributions de cette thése sont évoquées ci

dessous :

e le Chapitre 3 est dédié a la modélisation des procédés d’extrusion. Le modeéle est
basée sur la description des phénomeénes de transport de masse et de chaleur dans
une extrudeuse. Nous obtenons par les bilans de matiére et d’énergie des équations
de transport couplées a travers une interface mobile. Deux relations de couplage a
Iinterface sont étudiées : 'une repose sur ’hypothése de continuité de pression et 'autre
sur la continuité du flux de quantité de mouvement. Des simulations numériques sont

proposées pour illustrer la cohérence du modéle.

e le Chapitre j traite de ’analyse mathématique des équations de transport définies
sur des domaines temps-variants complémentaires. Nous utilisons le théoréme du point
fixe de Banach pour prouver 'existence et 1'unicité de la solution pour le modéle de
I’extrudeuse. La méthode de résolution repose sur un changement de coordonnées qui
permet de définir le systéme sur un domaine fixe. Cette normalisation fait apparaitre
des termes de convection fictifs dans les coefficients multiplicatifs de 'opérateur différen-
tiel de transport. Nous obtenons finalement 1'existence, ['unicité et la régularité de la

solution faible du problem de Cauchy.

e le Chapitre 5 concerne I’étude d’un systéme hyperbolique couplé & une interface mobile.

Il s’agit des équations issues du bilan de masse dans une extrudeuse sous certaines
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hypothéses simplificatrices. Nous représentons les equations aux dérivées partielles et
ordinaires couplées par un systéme a retards particulier : le retard est sur 'entrée et
dépend de I'état. Cette représentation est obtenue en résolvant I’équation de transport
de masse par la méthode des caractéristiques. La stabilisation de l'interface autour

d’une position d’équilibre s’effectue au moyen dun prédicteur.

e le Chapitre 6 est une extension de ’analyse des problémes d’interface & une classe
particuliere de systémes. Nous considérons deux systémes de deux lois de conservation
décrites sous le formalisme Hamiltonien & port et définis sur des domaines complémen-
taires variant dans le temps. Nous proposons une formulation basée sur I'utilisation de
la fonction couleur ou fonction caractéristique du domaine pour étendre les variables sur
I’ensemble du domaine et définissons un systéme Hamiltonien augmenté des fonctions
couleur. Dans un deuxiéme temps nous considérons un systéme a interface mobile et
nous montrons que le systéme augmenté d’une entrée définie comme étant la vitesse de

I'interface avec une sortie conjuguée reste un systéme Hamiltonien a port.

1.1 Modélisation d’un procédé d’extrusion pour la commande

Les procédés d’extrusion sont destinés & la fabrication de produits finis ou semi-finis par
utilisation de vis sans fin en rotation dans un fourreau cylindrique disposant d’un systéme de
chauffage comme le montre le schéma de la figure 4.4.1.

La matiére tout au long de son parcours subit certaines transformations (réaction chimique,
cuisson, homogénéisation...). Elle est ainsi transportée vers le dispositif de mise en forme, la
filiere, par lequel la matiére est expulsée par des petits orifices sous I’action de fortes pressions.

D’un point de vue industriel, on cherche & obtenir & la sortie de la machine un débit
régulier, avec un matériau homogéne ayant les propriétés d’usage désirées, a température
contrdlée, et des conditions de production satisfaisantes (débit maximal, consommation én-
ergétique limitée). Dans ce chapitre nous élaborons un modéle dynamique qui pourra étre
utilisé pour la commande.

Ces procédés sont complexes et composés de phénoménes hydrodynamiques, thermiques
et physico-chimiques fortement couplés. Une littérature importante existe sur la modélisation
en régime stationnaire des écoulements de la matiére dans une extrudeuse [140, 57, 91]. Des
modéles dynamiques ont aussi été développés. On trouve des modéles issus de I'identification
paramétrique |85, 68, 145, 144| développés pour la commande PID ou prédictive.

Des modéles dynamiques en dimension finie [37] et infinie [86, 80, 81, 75, 76| ont été
développés. Citons le modele de dimension finie d’extrusion réactive proposé par [37] prédis-
ant le régime dynamique sous différentes conditions opératoires (débit d’alimentation, con-
centration a l'entrée des différentes espéces, puissance de chauffe des fourreaux) et basé sur

une représentation par une cascade de RCPA (réacteurs continus parfaitement agités) avec



1.1. MODELISATION D’UN PROCEDE D’EXTRUSION POUR LA COMMANDE 3

Alimentation Vis Filiere

Figure 1.1.1: Description schématique d’une extrudeuse

reflux. En dimension infinie, les modéles 1D proposés dans [86] et [89] mettent en évidence
les couplages des phénoménes de transport de la matiére et d’échange de chaleur.

Ces modéles de connaissance, en dimension infinie, restent toujours inexploités pour des
objectifs de commande. La difficulté pour la commande de ces procédés a partir de ces modéles
résulte de l’existence d’une interface mobile entre deux zones aux propriétés d’écoulement
différentes.

11 existe une littérature trés fournie concernant la modélisation et la simulation de systémes
avec interface mobile. Un probléme trés souvent traité et référencé, comme le probléme de
Stefan, étudie le déplacement de l'interface entre deux zones spatiales ayant des dynamiques
différentes sous linfluence de phénomeénes diffusifs et/ou convectifs. Il concerne un vaste
champ d’applications [66] comme par exemple, le gonflement de nanocapsules [26], 1a lyophili-
sation [138], la cuisson [119].

La commande de systémes a frontiére mobile a aussi été étudiée dans [14] pour un modele
parabolique semi-linéaire et dans [47] pour un modeéle parabolique non linéaire. Dans cette
seconde publication, le probléme de commande est étudié & partir d’'un modéle linéarisé de
dimension finie. Une discussion concernant les problémes de commande d’écoulements réactifs

a frontiere mobile est aussi proposée dans [116].

Dans ce chapitre nous proposons un modéle bi-zone d’extrudeuse composé de deux sys-
témes d’équations d’évolution de type hyperbolique couplés par une interface mobile dont 1a
dynamique est donnée par une EDO. Le modeéle 1D bi-zone est déduit des bilans de matiére
et d’énergie exprimées en termes de taux de remplissage et d'un taux d’humidité ainsi que de
la température, les variables de commande étant la vitesse de rotation des vis, la température
du fourreau et le débit d’alimentation. Les relations d’interface sont déduites des hypothéses
de continuité de flux de quantité de mouvement ou de pression l'interface et permettent de

calculer la pression en amont de la filiére.
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1.1.1 Modéle bi-zone d’une extrudeuse

Nous présentons ici un modéle idéalisé des phénoménes de transfert de matiére et de
chaleur dans une extrudeuse corotative bi-vis dont le profil de vis est supposé uniforme. De
plus nous supposons 'existence de deux zones (représentées sur la figure 4.4.5), une zone de
convoyage et une zone de pompage suivant que la matiére remplisse complétement ou non le

volume efficace de I'extrudeuse [86] ; [89].

Alimentation
Frontiére mohile

N ' o Filiere

FEZA FFE M
| — —

(x=0 |x =1 [x=1

Figure 1.1.2: Schéma des deux zones de convoyage et pompage

La zone partiellement remplie, notée PFZ, est une zone de transport avec une grande
surface libre permettant I'introduction aisée de réactifs : la matiére est chauffée et transportée
vers la zone de fusion. Cette région est caractérisée par des débits de reflux nuls (la matiére
est transportée en aval sous leffet de la rotation de la vis), une pression constante égale a la
pression atmosphérique et de faibles échanges thermiques entre la matiére et le fourreau.

Dans la zone entiérement remplie, notée FFZ, la matiére est chauffée, mélangée, mise
sous pression et convectée vers la filiére avec des échanges thermiques importants entre le
fourreau et la matiére. Un gradient de pression se crée a partir de la filiére provoquant la
circulation d’un débit de reflux. De forts auto-échauffements par dissipation visqueuse sont
aussi présents.

Ces deux zones sont couplées a travers une interface mobile notée [(t) qui sépare la zone
ou lextrudeuse est complétement remplie (taux de remplissage égal a 1) de celle o elle est
partiellement remplie (taux de remplissage < 1). Cet interface caractérise donc la discontinuité
du taux de remplissage.

Nous considérons que l'extrudat est un mélange contenant de ’eau, ce qui est le cas
par exemple de I'extrusion alimentaire qui donne lieu & 1’élaboration de produits complexes
associant céréales et matiéres grasses et pour laquelle la teneur en eau est un facteur important.

De plus nous faisons les hypothéses suivantes :

e ’écoulement est uni-dimensionnel ; c’est I’écoulement longitudinal qui détermine le débit

de I'extrudeuse,

e la capacité calorifique C, la viscosité n et la masse volumique py sont supposées con-

stantes et les pertes de chaleur sont négligeables sur ’axe des vis.
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1.1.1.1 Bilans de matiére et d’énergie dans les deux zones

Le modeéle repose sur I'écriture des bilans de masse totale, de I'eau et du bilan d’énergie
pour chaque zone. Le bilan de quantité de mouvement est écrit et réduit a un modéle uni-
dimensionnel stationnaire [25]. Les phénomeénes de transfert de chaleur et de matiére sont

décrits selon les zones (PFZ ou FFZ) par les variables suivantes :

e le taux de remplissage f(x,t) : il est défini comme le rapport entre la densité linéique
de volume occupé par la matiére et la densité linéique de volume disponible ou efficace

(dans la direction de l’écoulement de coordonnée x) ;

e le taux d’humidité M (x,t) : c’est le rapport de densité linéique de volume d’eau présente

dans la matiére sur la densité de volume disponible ;
e la température 1T'(x,t) ;
e la pression P(z,t).

x € [0, L] est la variable spatiale et ¢ € Ry la variable temporelle.

1.1.1.2 Modéle de la zone partiellement remplie ou PFZ

Dans cette zone le taux de remplissage f,(x,t) varie dans I'intervalle [0, 1[. L’expression
des bilans de matiére et d’énergie aboutit aux équations d’évolution suivantes sur le taux de

remplissage f,(z,t), le taux d’humidité M)y (z,t) et la température Tp,(z,t) :

fp(x7t) a fp(wﬂf) 0
ot Mp(x,t) = —fN(t)I:g% Mp(x,t) + 0 (1.1.1)
Tp(x,t) Tp(x,t) QP(fP7N7 TvaFp)

I3 est la matrice identité de dimension 3. Le premier terme de ces équations d’évolution
consiste simplement en trois équations de transport a la vitesse v (t) = £N(¢) uniforme et
proportionnelle & la vitesse de rotation des vis N(t) et au pas de vis £. Le terme source €2
intervient dans le bilan d’énergie uniquement et est défini par la fonction:

pN*(8) L Senr
fo(x,)poVersC  poVersC

Son premier terme correspond a la dissipation visqueuse due a la rotation et est proportionnelle

Qp(faN7T>TF)

(Tp —T,) (1.1.2)

au carré de la vitesse de rotation des vis N(t) et le second terme représente les échanges de
chaleur entre le fourreau et la matiére et est proportionnel a la différence de température
(T'r, — Tp) entre le fourreau et la matiére dans I'extrudeuse. Les parameétres sont la capacité
calorifique C [J kg™t K’l], la masse volumique pg [k:g m’3], n [Pa 5’1] le coefficient de
viscositeé, u [J kg~! K‘l] le facteur de dissipation visqueuse de la matiere, V.rr = Serré

est le volume efficace de I'extrudeuse (ot Scsy est la section efficace de I'extrudeuse et & son
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pas de vis) et Secn [m2] est la surface d’échange, « [Jm’Qs’lK’l] le coefficient d’échange
thermique entre la matiére et fourreau. Rappelons finalement que I'on suppose ’équilibre de

pression avec la pression atmosphérique: P(z,t) = Py.

1.1.1.3 Modéle de la zone entiérement remplie ou FFZ

Par définition de la zone entiérement remplie, le taux de remplissage atteint sa borne
supérieure et vérifie: fy(x,t) = 1. C’est donc la variable conjuguée, la pression qui varie
dans cette zone. De I'hypotheése de la stationnarité de I’écoulement, on déduit 'expression du

gradient de pression :

P VerrN(t)po — F,
OPwt) _  Vers (t)po — Fu (1.13)
or Bp()

qui est proportionnel a la différence entre la capacité maximale de pompage (Ve N(t)po) et

le débit net en sortie de filiere F :
Ky

F; = —AP avec AP = (P(L,t) — Py) (1.1.4)
Ui

ou K4 caractérise la géométrie de la filiére et dépendant aussi des caractéristiques géométriques
de la vis B.
Les bilans de matiére et d’énergie impliquent les équations d’évolution suivantes sur le

taux d’humidité My(x,t) et la température Ty(x,t) dans la zone entiérement remplie :

My(x,t F, Myg(x,t 0
O (My(z,t)\  _ Fag LY @) (11.5)
ot Tf(x,t) P()V;iff oz Tf(;L‘,t) Qf(N, Tf,TFf)
De nouveau le premier terme de ces équations d’évolution consiste simplement en deux équa-

Fy€
poVerys

thermique due & dissipation visqueuse et aux échanges de chaleur entre le fourreau et la

tions de transport a la vitesse v (t) =

et le second 29 représente la source d’énergie

matiére.

MUNQ(t) Secha
poVersC  poVersC

Q4 (N, T, Tr) (Tp — T) (1.1.6)

1.1.2 Dynamique de l’interface mobile 1(t) et relations d’interface
1.1.2.1 Relations d’interface

Nous faisons dans la suite 'hypothése que la température et le taux d’humidité sont

continus a l'interface :
T,(I7,t) = T¢I, 1)
My(I=,t) = M(I",t)

ou I£(t) = liH(l)l(t) te
e—
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La troisiéme relation d’interface est basée sur deux hypothéses qui permettent de résoudre
I’équation 1.1.3 et de calculer la pression dans la zone entiérement remplie.

Cas 1 : la continuité du flux de quantité de mouvement

F(I, 0)o(1=,t) + PU ) £, (7 8)Sep = (T, O)0(I*, t) + P(I*, )5S,y (1.1.7)
® F(l_7t) = pON(t)‘/efffp(l_at)
o F(IT,t) = Fy(t)

o v(I",1) = EN(1)

o v(it,t) = ¥10)

poVess
e P(I",t)=PFy
L’ intégration de I’équation 1.1.3 donne :
PU*8) = P(L )+ nrettNP0 = Fa g (1.1.8)

Bpo

Des équations 1.1.4, 1.1.7 et 1.1.8 nous déduisons la pression & l'interface :

[+ FL(L -]+ VA

P(L,t) = Py+ o (1.1.9)
7729053”
avec
Kd 4472 _ +
A = [1+§(L—l )"+ Q(fp(17,1),N(t),1) (1.1.10)
0
et
2
N
Q_(QKd) (77Veff ®
"Ser s Bpo (1.1.11)

FEN2() £, (17, 8) — (1 — fp(l’t))i()))

Le modéle suppose l'existence de deux zones PFZ et FFZ, ce qui n’est vrai que si
AP = P(L,t) — Py est positif. De ce fait Q doit étre strictement positif. Cette contrainte
sur la fonction Q (f,(I7,¢), N(t),!T) permet de déduire pour une vitesse de rotation donnée,
la valeur minimum du taux de remplissage & la frontiére pour que I’hypothése sur l'existence
des zones PFZ et FFZ soit satisfaite.

Cas 2 : la continuité de pression

o n‘/:gffN(t)pO(Lfl(t))
P(L;t) = Po+ 5k t-10) (1.1.12)
_ KaVessN(t)po(L—I(1))
Fa(t) = =5 ra =i

Dans ce cas de figure le débit en sortie de filiére est positif si (L — I(t)) > 0 ce qui
est nécessairement vrai. Cette relation d’interface n’exige aucune contrainte sur le taux de

remplissage a la frontiére.
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1.1.2.2 Bilan de masse et dynamique de l’interface

La PFZ et la FFZ sont séparées par une interface mobile [(t). L’équation de la frontiére
s’obtient par un bilan de matiére totale sur la zone entiérement remplie :
di(t) _ Fa—F((t))
dt B pOSeff(1 - fp(l_vt))

F(l(t)) représente le débit entrant dans la zone entiérement remplie et Fj est le débit en

(1.1.13)

sortie de filiere. Le terme poSerr(1 — fp(I7,t)) montre que I'évolution de la frontiére dépend
du remplissage du volume non occupé par la matiére ou volume disponible. Nous rappelons
que ce modele n’est valable que pour f,(I7) < 1.
1.1.3 Conditions frontiéres et conditions initiales

Les conditions limites en x = 0 et en © = L sont établies sous 'hypothése de la continuité
du débit de matiére, de la température et du flux de quantité de mouvement.
1.1.3.1 Frontiére en x =0

Le débit, la température et le taux d’humidité sont supposés continus :

e le débit est égal au débit d’alimentation en matiére Fj, (),

e la température 7,(0,t) et le taux d’humidité M,(0,¢) sont égaux a ceux de la matiére

mise dans le circuit d’alimentation soit T, (t) et M;,(t) :

Fin(t)

fp(0,1) = AT (1.1.14)
T,(0,1) = Tin(t) (1.1.15)
M,(0,t) = M, (t) (1.1.16)

1.1.3.2 Conditions initiales
A t = 0 nous supposons l'existence des deux zones d’ou les conditions initiales suivantes :

e pour la PFZ :

fo(@,0) = fpo (1.1.17)

My(2,0) = My (1.1.18)

Tp(z,0) = Ty (1.1.19)
e pourla FFZ :

My(z,0) = My (1.1.20)

Ti(xz,0) = Ty (1.1.21)
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1.2 Etude du probléme de Cauchy associé au modéle de I’extrudeuse

Le probleme d’existence de solution pour les modéles de systéme & frontiéres mobiles est
largement étudié dans le cas de modeéles paraboliques [106] et des modéles hyperboliques
[120] ; [43] ou des EDPs sont définies sur la premiére zone spatiale, une EDO sur l'interface
se distingue par le fait qu’il est composé de deux systémes d’équations d’évolution de type
hyperbolique couplés par une interface mobile. Nous proposons d’étudier le modéle associé
au procédé d’extrusion par le théoréme du point fize de Banach. Dans un premier temps nous
représentons le systéme dans le domaine (0, 1) en utilisant les changements de coordonnées
appropriés pour chaque zone. L’argument du point fixe permet ensuite de définir les conditions

d’existence de solution pour ce probléme.

1.2.1 Modéle adimensionnel & domaine fixe (0,1)

Dans cette section nous présentons deux changement de variables qui permettent d’écrire
les équations d’évolution sur le domaine fixe (0, 1). Le domaine total (0, L) est transformé en
I'intervalle (0,1) et la position de I'interface mobile est ramenée a la valeur fixe 1. Un terme
de convection fictive fonction de [(t) apparait alors dans les équations d’évolution.

Le modele normalisé est constitué:

e d’une équation aux dérivées ordinaires décrivant la dynamique dde 'interface

l(t) = F @), N(@®), f,(t,1)), te(0,T)
1(0) =1°,

(1.2.1)

e d’une équation de transport de masse:

atfp(tvx) + ap(t7$)azfp(tvx) = 07 (t,$) € (OaT) X (07 1)
fp(0,2) = f(z), 2€(0,1) (1.2.2)
Ein(t)

fp(t,0) = W, te(0,7)

e de deux equations de transport du taux d’humidité:

O My (t, ) + ap(t, )0, My (t, ) =0, (t,z) € (0,T) x (0,1)
OeMy(t,x) + ap(t,x)0.Mp(t,z) =0, (t,x) € (0,T) x (0,1) (1.23)
My(0,2) = MJ(z), My (0,2) = M}(z), =< (0,1)

Mp(t,0) = My (), Ms(t,0) = My(t,1), te(0,7T)
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e et de deux équations de transport de la température

0Tyt x) + ap(t, )0 T, (t, ) = Qp,  (t,x) € (0,T) x (0,1)
O Ty(t,x) + ayp(t,x)0,Ty(t,x) = Qp, (t,z) € (0,T) x (0,1)
T,(0,2) = T)(z), Ty(0,2) =T}(z), =€ (0,1)
Tp(t,0) = Tin(t), Ty(t,0) =Tp(t,1), te(0,T)

(1.2.4)

1.2.2 Principaux résultats

Nous rappelons [40, Section 2.1], la définition de la solution faible du probléme de Cauchy:
(77)-(1.2.4).

Définition 1. . Soit T' > 0, une solution faible du probléme de Cauchy (1.2.1)-(1.2.4) est un
vecteur (1, fp, My, My, T,, Ty) € WH2(0,T) x Wh(Q) x (C°([0,T]; L*(0,1)))?, tel que pour
tout T € [0,T], toute fonction test o1, @2 = (p21,¥22), P3 = (P31, 32) € CH([0,T] x [0,1])

tel que
pi(t,x) =0, VYxel0,1], i=1,2,3, (1.2.5)
wit,1) =0, Vtel0,T], i=1,2,3, (1.2.6)
nous avons .
1(t) =1+ / F(I(s),N(s), fp(s,1))ds, te(0,7), (1.2.7)
Jo

T 1 1
| [ soner + dutaner) dede+ [ £2()er(0.0)ds
0 0 0

T Fin(t) B
+/(; Q(N(t))ap(t70)¢1(t70) dt =0, (1.2.8)

T 1 T 1
/ / My, (Oppa1 + Oz (ppo1)) da dt + / / M (0pp22 + O (appa2)) da dt
o Jo o Jo
—|—/ ap(t,0)M;, (t)p21(t,0) dt —|—/ ap(t,0)My(t,1)pea(t,0)dt
0 0

1 1
+/0 M;,)(m)gozl(o,x) da:—i—/o M})(x)wgg(o,x) dx =0, (1.2.9)

T rl T rl
/ / Tp(Orp31 + O (apipst)) da dt + / / Tr(Opp32 + Oz (appan)) da dt
0o Jo o Jo

T rl T rl

+/ / Qpp31 de dt—i—/ / Qppzo drdt
0 JO 0 JO
T

+ /0 ap(t, 0) T ()31 (¢, 0) dt + /0 Taf(t,O)Tp(t,l)gOg,g(t, 0) dt

1 1
+/O T]g(x)gpgl(o,m) da:—i—/o T})(x)cpgg((),a:) dx = 0. (1.2.10)
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Nous proposons ces deux théorémes:
Theoréme 2. Soient T > 0 et (le, Ne, fpe) un équilibre constant,
F(le, Ne, fpe) =0 (1.2.11)

avec 0 < fpe <1, 0 <l. < L. Sous U’hypothése de compatibilité en (0,0)

Fin(0)
0(N(0))

= £J(0). (1.2.12)

il existe eg (dépendant de T') tel que pour tout & € (0,0, si

Fm()
O(N(-))
le probleme de Cauchy (1.2.1)-(1.2.4) admet une solution unique (I, fp, My, My, T,, Tf) €
Whee(0,T) x Whe(Q) x (C°([0,T]; L*(0,1)))*, avec:

175 C) = fpellwoe + ~ fpellwioo N () = Nellwoo +1° L] <e. (1.2.13)

1fp = frellwroo + [T = lellwre < Cg - €, ( )
Ml coqo.r1:12(0.1)) < Ceo = (1Ml 2 + | Min | 12), ( )
ITpllcoqorz201)) < Ceo - (1T N2z + 1 Tinll 12) (1.2.16)
Ml cooryiz201)) < Ceo + (1Ml + 1 Minll 2 + M7l 2), ( )
IT¢llcooryz20,1)) < Ceo - (ITpllr2 + 1 Tinllz2 + [1TF 1 22), ( )

ot Cg, est une constante dépendant de €9 mais indépendant de e.

En :
Theoréme 3. Sous les hypothéses du Théoréme 2, supposons que fg() € H?(0,1), Q(NE ;) €
H?(0,T), et la condition de compatibilité suivante en (0,0) vérifiée:
30+ O FLOPOO)_ FuOOOND) g (15
w ¢N(0 N(0
alors il existe ey (dépendant de T') tel que pour tout € € (0,eq], si
0()— () N(-)—N, 1°—1|< 1.2.20
1/ () fPEHH?(O,l)"‘HH(N(')) Soellmr20.1) +IIN () = Nellwroo +[I7—le| <&, (1.2.20)

le probléme de Cauchy (1.2.1)-(1.2.4) admet une solution unique (I, fp, My, M¢,T,,T¢) €
Whee(0,T) x CO([0, T]; H?(0,1)) x(C°([0,T]; L?(0,1)))* avec :

1fp = fpe||00([o,T];H2(o,1)) <Cg -6 (1.2.21)

ot Cy, est une constante dépendant de €9 mais indépendant de €.
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1.3 Stabilisation de l’'interface par une approche de commande
prédictive

Cette partie traite de la stabilisation de la position de l'interface par une régulation du
débit d’alimentation en matiére dans une extrudeuse. Ce débit entrant agit sur ’équation de
transport du taux de remplissage dans la zone partiellement remplie définie sur un domaine
variable dans le temps. Il apparait dans ce contexte un retard du au temps de propagation de
I'entrée et ce retard est fonction du taux de remplissage a U'interface f,(I(¢),t). Le probléeme
de commande est représenté par la stabilisation un systéme a retard sur I'entrée. Les systémes
a retard sur 'entrée ne sont pas fréquemment utilisés pour les problémes de controle en génie
des procédés méme si les modéles dynamiques de différents procédés laissent apparaitre des
délais de propagation significatifs [39, 12, 151, 152, 31|. Généralement, les problémes de
régulation des systémes d’équation de transport se raménent & des problémes de stabilisation
de systémes a retards. En effet, une résolution de des equations aux dérivées partielles par
la méthode des caractéristiques permet de transformer les EDPs en des systémes d’équations
aux dérivées ordinaires comportant un retard [65, 125, 4, 3|. Dans cette section nous utilisons
cette méthode des caractéristiques pour transformer le systéme original en un systéme a retard

sur l'entrée équivalent.

1.3.1 Les équations de conservation de masse dans une extrudeuse

La modélisation de 'extrudeuse fait apparaitre deux zones géométriques dans lesquelles la
matiére est transportée a des vitesse différentes. Ces deux zones sont séparées par une interface
mobile dont la dynamique est dictée par une équation aux dérivées ordinaires obtenue par un
bilan de masse dans la zone entiérement remplie. Ici, nous rappelons les équations issues du
bilan de masse dans les zones partiellement et entiérement remplies. La zone partiellement
remplie est définie dans le domaine spatial [0, (¢)[ et la zone entiérement remplie dans ]i(t), L]

(L représente la longueur de l'extrudeuse et [(t) la position de l'interface).

e En représentant la variation de la masse dans la zone partiellement remplie par le taux
de remplissage fp(z,t), le bilan de masse est représenté par une équation de transport
dont la vélocité est déterminée par la vitesse de rotation N(t) et le pas £ de la vis. Sous
I’hypothése d'une continuité de débit a 'entrée {x = 0}, la condition frontiére associée
au taux de remplissage se déduit de la vitesse de convection, du volume disponible V¢,

de la masse volumique pg, et du débit d’alimentation Fj,(t) :

Yo (w,t) = —EN() L2 (2,t) 2 €[0,1(t)]

— in — Fln(t)
I(0,8) = £"() = vt

e Dans la zone entiérement remplie la vitesse de convection est proportionnelle au débit

(1.3.1)

de sortie de filiere Fy(t). Le bilan de masse dans cette zone permet d’obtenir '’équation
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d’évolution de la position de I interface [(¢) :

dit) _ Fa®)=poN(®)Vessfp(l(t),t))

dt pOSeff(l_fP(l(t)vt)) (132)
1(0)=10" 0<I°<L,

Le débit Fy(t) est une fonction des caractéristiques géomeétriques de la filiere Ky, de la
viscosité n et de la pression en L, P(L,t).
Falt) = Kaap(t)
AP(t) = (P(L,t) — Py),

(1.3.3)

Py est la pression atmosphérique.

Dans cette partie nous considérons que la relation de couplage est définie par une continuité
de la pression a l'interface. Alors:

~ VersN(#)po(L — (1))
APW) = B T KaL = 10))

(1.3.4)

1.3.2 Reésolution de I’équation de transport

Considérons I'équation de transport (1.3.1) avec la condition frontiére associée f,(0,%). La

dérivée totale de la variable f, s’écrit:

dfp(x(r),t) _ dt 9fp(x(7),1) N dz (1) 0fp(2(7),1)
dr dr ot dr ox

Les solutions de I'équation (1.3.1), le long des caractéristiques sont données par:

dt __
at —q

dgfiigj—) = ¢N(t) (1.3.5)

dfp(z(7),t)
a0 _

Comme N (t) est une fonction de t, le systéme (1.3.5) ne peut étre résolu explicitement.

En intégrant les equations caractéristiques:

<:(:1 To acg):(t T fp) eR?

nous obtenons:

x1(1,8) =T+ s
wo(r,s) =€ [T N(r)dr' (1.3.6)
x3(s) = fp(s)
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s étant la constante d’intégration. Soit N(t) la fonction primitive de N(¢), nous en dé-

duisons :
N(s)=N(r+s)— % (1.3.7)

Finalement:
s=N"Y(N(t) - %) (1.3.8)

Toute fonction constante le long des caractéristiques s’exprime de la maniére suivante:

) = f, (N*(N(t) - z)) (1.3.9)

La solution satisfaisant la condition frontiére associée a l’équation de transport (1.3.1) est

donnée par:

fola,t) = £ (N‘l(N(t) - §)> (1.3.10)

Cette solution peut étre exprimée en fonction du débit d’alimentation en matiére:

(1.3.11)

) - B (N0 -9)

f;” (Nl(N(t) 3 poN (t)Veyy

1.3.3 Systéme a retard sur ’entrée dépendant de 1’état

Dans la suite nous considérons que la vitesse de rotation de la vis est constante N(t) =
Ny. Le probleme de commande consiste a stabiliser l'interface en agissant sur le débit
d’alimentation en matiére(1.3.11). Dans ce cas de figure, la solution de I’équation de transport
s’écrit :

folz 1) = " (t — 55g)

, 10 (1.3.12)
fp(l(t)7t> = f;)n<t - N_o§>’
et ’équation de la dynamique d’interface devient :
aw _ Fy(t)—poNoVeyss fi" <t—ll\,(fé)§>
. —
poSeff |:1—fzi7”< _Jl\f(iél):| (1313)

Fy(t) = T4AP(t)
L’équation (1.3.13) définit un systéme a retard sur 'entrée dépendant de 'état et peut

s’écrire sous la forme abstraite:
4D — 1), Ut — D((t)))
U(t) = f"(t)

—Jp

(1.3.14)

ou f est une fonction non-linéaire et D(I(t)) la fonction retard dépendant de 1’état et
agissant sur l'entrée U(t). Le probléme de stabilisation est résolu en utilisant le controleur

prédictif proposé par [19, 20].
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1.4 Systémes Hamiltoniens a ports couplés par une interface

mobile

De nombreux systéemes physiques décrits par des équations aux dérivées partielles admet-
tent une formulation Hamiltonienne & ports est sont appelés systémes Hamiltoniens a ports
frontiére [136, 98, 92]. Ces systémes ont été étudiés sous différents aspects incluant I'existence
de solution et la commande dans le cas linéaire [93, 87, 141, 155, 142, 73, 113, 94].

Ici nous explorons le couplage de deux systémes Hamiltoniens & ports & travers une in-
terface mobile. Cette classe de systémes apparait dans différent contexte liée aux procédés
impliquant des changements de phase, des phénoméne d’évaporation etc. Dans cette étude
nous considérons l'exemple de deux gaz séparés par un piston de masse nulle. L’approche
proposée est basée sur les travaux de [61, 60, 10, 28] concernant les systémes hyperboliques
couplés par une interface fixe. Les auteurs proposent d’augmenter le systéme par une fonction

couleur qui est définie comme étant la fonction caractéristique du domaine.

1.4.1 Definition d’un systéme Hamiltonien & ports pour deux lois de con-

servation

Dans un premier temps nous rappelons la définition d’un systéme Hamiltonien & ports

frontiére en considérant un systéme de deux lois de conservation défini par :
Ox + 0N (z) = 0 (1.4.1)

Nous rappelons que le systéme de deux lois de conservation (1.4.1) peut étre exprimé sous
la forme:

Owx(z,t) = T . H (1.4.2)

Ou §,H est la dérivée variationnelle d’une fonction Hamiltonienne correspondant a 1’énergie

totale du systéme. En effet le flux NV () est donné par la relation suivante :

0 -1\ [6.,H
o (% ) () i

et I'opérateur canonique Hamiltonien par I’égalité ci-dessous :

0 -0,
7 (a; . ) (1.4.4)

L’équation (1.4.1) augmentée des variables de ports

fa o 5z2H N 0 1 (5171%
eo)  \omH)lav  \1 0) \6u,H

Définit un systéme Hamiltonien & ports frontiére.

(1.4.5)

a,b
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1.4.2 Interconnexion de deux systémes Hamiltoniens & ports a travers une

interface fixe

Nous considérons des systémes Hamiltoniens a ports de deux lois de conservations définis

sur les domaines spatiaux [a , O] et |0 , b] dénotés par les symboles {— ; +} :
d.a" + 0.N" (") (1.4.6)
Nous définissons les fonctions couleurs qui sont des fonctions caractéristiques du domaine
par:
1 € la,0 1 €10,b
co(z, 1) = 2€le0l 4 aet) = 2 €100 (1.4.7)
0 z€][0,0b] 0 z¢€la,0]

L’augmentation du systéme Hamiltonien par des variables couleurs satisfaisant les lois de

conservation

Bhe = dye =0 (1.4.8)

avec les conditions initiales cg and ¢y et des conditions aux bords compatibles permet de
définir un systéme Hamiltonien sur le domaine total [a , b]. Nous définissons le vecteur d’état

étendu :
z= (J}T, ¢, E)T (1.4.9)

et la fonction Hamiltonienne H (z, ¢, ¢) = fabH (x, ¢, €) dz avec une densité d’énergie
H(z,c,¢)=cH (x)+cH" (). (1.4.10)

La dérivée variationnelle s’écrit :

M (x, ¢, €) cOH™ (z) +coHT ()
GH(Z) =] SH(z,c,0) | = H(x) (1.4.11)
d:H (z, ¢, ©) H ()

Considérons le systéme (1.4.12) :
ot = Ju0: H (53) + Ier (1.4.12)

avec une application d’entrée définie par:

17 = ( 0 -1 0 0 ) (1.4.13)
et opérateur augmenté:
0 d
02
Jo = —d* 0 (1.4.14)
02 02

L’opérateur d est un opérateur différentiel non-linéaire , modulé par ¢(z,t) and &(z,t) et défini
par:

d=—[d.c.+ dz] (1.4.15)
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Son dual formel est:

d* = —d +[(0.¢) — (9.2 (1.4.16)

Proposition 1. L’ensemble des relations Dy associées au systéme de deuz lois de conservation

o . T
définis par les variables <
T2

z = 0 qui garantit la continuité de la variable d’effort ey et la discontinuité de la variable

d’effort e est défini par

) sur le domaine spatial [a, b] D z avec une interface au point

f é
Dr = fr || er €EFxE/
fo €y

FN [ T I é (1.4.17)
)\ =1" o er

=(2) () ()]
€y (c+¢) 0 €

avec les variables de fluz f = (f1, f25 fes fg)T et les variables d’effort

e = (e, e, e, ea)T associées au vecteur d’état étendu (1.4.9), et a lopérateur différen-
tiel augmenté J, défini par (1.4.14), les opérateurs d, resp. d* définis par (1.4.15), resp.
(1.4.16), le vecteur colonne I défini par (1.4.13), et l'espace produit B = F x £ avec F =
L2 ((a, b) ,R)° x R? et & = domd* x domd x L2 ((a, b) ,R)® x R2 muni du produit bi-linéaire

f é
< fr |- | e >— JPET fdz+ebsfo+ [LeT frdz (1.4.18)

fo €y
avec e} S fg = ep(a) fa(a) — ea(b) fo(b), définit une structure de Dirac.
1.4.3 Interconnexion de deux systémes Hamiltoniens & ports a travers une
interface mobile

Pour une interface dont la position varie en fonction du temps nous définissons les fonctions

couleur suivantes:

1 zefa, 1]
aw (2, t) = { 0 el (1.4.19)
et
B 1oz €l (t), b
cl(t)(z, t) = { 0 sc [a, l(t)} (1.4.20)
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Ces fonctions couleurs obéissent a des equations de transport dont la vélocité est donnée

par la vitesse de l'interface [ (t) :

dyc(z,t) = =1 (t) Dzc(z,t) and 9yé(z,t) = —I (t) B.c(z,t) (1.4.21)
avec les conditions initiales:

c(z, 0) = ¢(o)(2, t) and &(z, 0) = o) (2, t) (1.4.22)

Le systéme Hamiltonien associé aux deux systémes de lois de conservation couplés par une

interface mobile peut se définir en considérant un systéme étendu et augmenté des fonctions

couleurs.
x d:H (z, ¢, ) cx Cx
. c
Ol ¢ | =Ta| 6H(x,c,6) | +Ier+1(t)| -1 0 0, ( B ) (1.4.23)
c dH (z, ¢, €) 0 -1 ¢

l'application d’entrée & 'interface I est définie par (1.4.13).

L’application d’entrée associé a la dynamique de l'interface est définie par (1.4.24)
cr c¢x
c
G(x,c,e)=| -1 0 |0 ( ) (1.4.24)

et sa sortie conjuguée e; est définie par la relation:

b
e = / 5:1 (2)" G (x, ¢, ©) dz

ou:

b
e =(G Tz, c, 0], :H (;i)):/ 6xH (2)T Gz, ¢, E) dz (1.4.25)

Proposition 2. L’ensemble des relations Dy; associées au systeme de deuz lois de conser-

x
vation définis par les variables ( ! ) sur le domaine spatial [a, b] S z avec une interface

€2
mobile de vitesse [ qui garantit la continuité de la variable d’effort es et la discontinuité de la

variable d’effort es est défini par:
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f é
e
Dy = fI s .I e F x 5/
el l
fo €o
f Ja I G(x,c, ¢ é
. ( ) (1.4.26)
fr = -1 0 0 er
—e — <GT (z, c, E)| 0 0 I
0 1 e
€y (c+¢) 0 2/,
avec les variables de fluz f = (f1, fo, fes f@)T et les variables d’effort
e = (e, e, e, eE)T associées au vecteur d’état étendu (1.4.9), Dopérateur différentiel J,

défini par (1.4.14), des opérateurs d , resp. d* définis par (1.4.15), resp. (1.4.16), le vecteur
colonne I défini par (6.2.32), Uapplication en entrée G définie par (6.5.10) et son adjoint
(GT| par (6.3.11) et Uespace produit B = F x & avec F = L*((a, b),R)° x R x RY et

& = domd* x domd x L? ((a, b),R)® x R x R? muni du produit bi-linéaire

f é
e ~ .
< I : ; > = [P fdz+ [PeiT frdz+e5Sfy — el
€]
fo )

avec e} S fg = ep(a) fa(a) — ea(b) fa(b), définit une structure de Dirac.

(1.4.27)
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Chapter 2

Introduction

2.1 DMotivation and previous work

Balance equations provide the foundation for much of the physical-based modelling in
fluid dynamics. They are also the starting point for developing qualitative understanding of
phenomenological observations in fluid mechanics, heat transfer, mass transfer, and reaction
engineering. Describing physical phenomena using variables that influence these behavior is
the main issue of modelling and a large class of physical systems are characterized by a spatio-
temporal dynamics. Physical systems obey to physical laws expressing conservation of certain
quantities (mass, momentum, energy) and can be represented by partial differential equations.
These infinite dimensional systems which are generally deduced from the conservation laws
appear in modelling of transport and diffusion phenomena. In this context, the analysis
of coupled PDEs through an interface is not current in the literature which concern to the
study of these infinite dimensional systems. The lack of physical model which express clearly
the interface structure and the coupling conditions can be considered as the real challenge
in modelling point of view. It is clear that, in addition to the definition of each model of
conservation laws, an interfacial model must be constructed in order to precise the nature of
the informations that are exchanged at the coupling region. This interfacial model may be
formulated for instance, when imposing the continuity of a given set of variables or a given
linear or nonlinear function of variables while preserving physically a coherent description
of processes. In this aspect, lot of studies which are related to coupled hyperbolic systems
of conservation laws through an fixed interface exist in the literature. In [27], the coupling
problem is considered in the space domain R which is separated by a thin interface Z located
at {0}. The system is described on each side of the interface by 1D hyperbolic systems of
conservation law with different equations of state.

One may consider two cases of coupling formulation:

e The first one which is conservative, is called a fluz coupling methods in the sense

that the solution performs continuous flow at the interface. This approach is considered
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when the conservation laws are described by discontinuous coefficients in the domains
R™* and R™* |78, 71, 62, 32, 16].

e The second approach is related to state coupling methods which consist to impose the
continuity of the state variables at the interface. Then, the relation between the traces
of the solution on both sides of the interface can be interpreted in terms of two sets of
boundary conditions. The left trace of the first conservation laws which are defined in
R™* serves as boundary condition for the second one. Also, right trace of the second
conservation laws which are defined in R** stand as a boundary condition for the first

one [8, 9, 11, 61, 60].

For physical problems the requirement of continuity of all the unknowns variables of the system
is quite impossible. For example, considering a flow in tubes of different sections, a pressure
drop is observed at the discontinuities of the medium [7]. An alternative model suggested by
this observation is the state coupling methods: the interface requires continuity of a set of
variables which are nonlinear transformation of the state variables, selected according to the
physical constraints.

The mathematical and numerical studies of this class of systems calls for interesting ques-
tions in the last decades. Such fixed interface problems typically appear in nuclear reactor
and steam generators at the phase change. They also concern the fluid dynamic modelling in
porous and non-porous media, and are very frequent in networks traffic flow modelling (supply
chains connecting several suppliers, a vertical manhole with two horizontal tubes) [120].

However, control techniques which are dedicated to coupled infinite dimensional systems
by a fixed interface is very difficult to implement. Networks of flow transportation is the major
example which is explored in control theory concerning these systems. For an irrigation canal
which is connected to secondary canals and reservoirs, the control is located at the interfaces
which interconnect different sub-systems. The objectives of such control strategies is usually
the regulation of water levels close to a given reference set-point [17, 5, 123, 95|, with input
values being minimized, or changes in inputs being minimized [17, 143|. The inputs are here
acting at the interface which is a gate modelling the pressure discontinuity in different region
of the network. So the regulation is performed by opening gates at these points using model
predictive controllers, feedback or feedforward controllers. Usually, due to the complexity
and size of water networks, control of such systems is not performed in a centralized way.
Distributed control composed by local controllers which are designed in such way that they
take into account the effects of local actions on the overall system performance are developed.
Then, control strategy is based on a potential cooperation, negotiation and communication
between many controllers as in all transportation networks systems [107].

This thesis is devoted to the analysis of PDEs which are coupled through a moving inter-
face by extrusion process modelling. The interface dynamic is given by an ordinary differential

equation and the PDEs are defined in two complementary time-varying domains. Such sys-
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tems arises in many applications like multi-phase flow, crystal growth, freeze drying process
modelling [50, 51, 66, 119, 138, 26, 47|, mixing systems (model of torus reactor including a
well-mixed zone and a transport zone), Diesel Oxidation Catalyst [116]. For moving interface
problems, one should also define the transmission conditions at the interface: the coupling
aspect is formulated using a continuity argument as it will be shown in Chapter 6. As for
fixed interface, there exists infinite manner for modelling the interconnection between the two
sub-systems of conservation laws based on conservation of a physical quantity. The main
difference between fixed and moving interface problem appears in the analysis of interfacial
topological changes which are introduced by the interface motion. In the case of extrusion
processes, the system should take into account thermal and friction effect as well as other
factors which derive from modelling aspect. The coupled system may be also exposed to
oscillations at the moving junction which can generate numerical instability in computations.
Over the last two decades, there has been an ongoing quest for new computational methods to
solve multi-phase flows and applications include the study of condensation and several phase
change processes. This thrust has been motivated in part by the energy industry because
those processes allow fluids to store and release large amounts of heat energy. The main
challenges for a direct numerical simulation come from the fact that the interface location
must be calculated as part of the process solution and discontinuities in materials properties
across the interface must be preserved. The first attempt at advanced numerical simulations
deals with the simulation of a two dimensional thin film boiling using moving triangular grids
[147|. The others approaches as front tracking [46, 133] allow to track explicitly the inter-
face by a moving front on a fixed mesh. Also, simulations are carried out using a level set
approach [114] as well as volume of fluid approach [70],[45]. These numerical methods will
be discussed succinctly in Chapter 3 which is dedicated to the modelling and the numerical
computation of the extrusion process model. Note that the advantage of the level set method
is that topological changes are handled naturally without special treatments.

Mathematical analysis of such systems is generally performed using coordinates change
which allows to treat the problem in a fixed domain. In Chapter 4 we propose such kind of
transformations in order to deal with the cauchy problem of the extruder process model.

Over the last few years, the problem of controlling coupled PDEs with time-varying do-
mains has become subject to very great interest. In [116] a boundary control problem is
formulated for the outlet temperature control in Diesel Oxidation Catalyst process. As it is
described in [116] the distributed reactive gaseous system takes into account a moving interface
model which separates the upstream reactive zone from the downstream transport zone. The
author of [116] points out that the mobile interface dynamic in this process stand as a function
of measured disturbances and the control variable. Also, the control problem is tackled using
Laplace transformation to build a transfer function as a modified Bessel function which can
be translated in the time domain. Then, the input/output relation obeys a straightforward

open-loop control law: given histories for the output temperature, one can simply determine



24 2. INTRODUCTION

the corresponding inlet temperature histories. For nonlinear Stefan problem control strategy
based on the resolution of the inverse problem is proposed in [116]. In many cases concerning
control of quasi-linear parabolic PDEs with moving interface, standard Galerkin’s method is
used to derive an approximate finite dimensional one, for applying classical control strategy
as feedback [52, 13, 14]. In Chapter 5 we suggest to treat moving interface problem using

delay system framework.

2.2 Organization and contribution of the thesis
The thesis is divided into four chapters:

e Chapter 3 is devoted to the modelling of an extrusion process as coupled transport
equations trough moving interface. The model derives from mass and energy balance
in an extrusion process and is formulated as two non-autonomous systems of transport
equations coupled by a moving interface which is described by an ordinary differential
equation. Two coupling relations are proposed for mass balance equation. The first one
states the continuity of pressure and the second one is based on momentum flux conti-
nuity at the mobile interface. The analysis of these two coupling relations is performed

in Chapter 5

e Chapter j is dedicated to a mathematical analysis of transport equations which are
defined in complementary time-varying domains. We illustrate how fixed point argument
and contraction mapping principle can be used in order to state the well-posedness
of such coupled hyperbolic Cauchy problem using the extrusion process model. Our
strategy is based on a change of coordinates which allows to express the system on a
fixed domain. This normalization generates fictives convection terms depending on the
interface dynamic in the transport equations. We obtain the existence, uniqueness and

regularity of the weak solution for Cauchy problem.

e In Chapter 5, an analysis of 1D hyperbolic partial differential equation with moving
interface as a delay system is proposed. The model derives from the mass balance of
an extrusion process that describes the mass transport by hyperbolic partial differen-
tial equation coupled with an ordinary differential equation. The ordinary differential
equation represents the interface motion. Solving the transport equation by the method
of characteristics, we obtain a state-dependent-input-delay control problem. The stabi-

lization of the system around an equilibrium is obtained using a state predictor.

e Chapter 6 is an extension of our analysis on moving interface problem to a particular
class of conservations laws. We consider the port-Hamiltonian formulation of systems
of two conservation laws defined on two complementary intervals of some interval of the

real line and coupled by a moving interface. We recall first how two port Hamiltonian
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systems coupled by an interface may be expressed as a port Hamiltonian systems aug-
mented with two variables being the characteristic functions of the two spatial domains.
Then, we consider the case of a moving interface and show that it may be expressed as
the previous port Hamiltonian system augmented with an input, being the velocity of
the interface and define a conjugated output variable. We give some structure to the
interface relations defining the dynamics of the displacement of the interface and with

the simple example of two gases coupled by a moving piston we discuss the passivity

property.

The thesis concludes with some final remarks and perspectives on future work in Chapter 7.
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DIAGNE M., DOS SANTOS MARTINS V., COUENNE F., MASCHKE B., JALLUT
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Chapter 3

Extrusion processes modelling for

control

3.1 Introduction

Extruders are designed to process highly viscous materials. They are mainly used in the
chemical industries for polymer processing as well as in the food industries. An extruder is
made of a barrel, the temperature of which is regulated. One or two Archimedean screws
are rotating inside the barrel. The extruder is equipped with a die where the material comes
out of the process (Fig. 3.1.1). The extruder is of particular interest due to its modular
geometry allowing the control of capacities of mixing along the machine. Another interesting
property of the extruder is that the fill ratio along the axial direction of the screws can be less
than one in some part of the system according to the screw configuration and the operating
conditions. For modelling purposes, the main phenomenon is obviously the fluid flow which
may be considered as highly viscous Newtonian or non-Newtonian fluid flows interacting with
heat transfer and possibly chemical reactions. These processes occur within a complex non-
stationary volume delimited by the barrel and the rotating screw. Another point is that the
fluid viscosity may significantly change due to composition and temperature changes.

The most important part of the extruder is the screw configuration which modulates
extensively the mechanical energy. Direct pitch screws promote the transport by having
conveying effect and reverse pitch screws which restrict the convection phenomena are useful

for melting effect.

e Single-screw extruders are limited in their ability to transport high viscous material and
have poor mixing capability. To improve the mixing effect distributive mixing elements
called mixers blocks are often incorporated in the screw design. Generally the mixing
section is a restrictive region where the material is subjected to high stresses that for a
short time. A typical single-screw extruder consists of three zones: feeding zone which

is essentially a transport zone, mixing zone and finishing zone (cooking zone for food
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processing).

e Twin-screw extruders provide a high degree of heat transfer (Fig. 3.1.2). This type of
extruders can be classified on the basis of direction of screw rotation in counter-rotating
and co-rotating twin-screw extruders. Counter-rotating screws move in opposing di-
rections and co-rotating screws move in the same direction. Counter-rotating screws
are not widely used in food industry although they are excellent conveyors. They are
good in processing relatively non viscous materials requiring low speed and long resident
time. The main advantages of a co-rotating configuration which are commonly used in
the snack food industry are the self-cleanning capacity, the excellent mixing quality and

the very high degassing rate.

Both counter- and co-rotating screws can be either intermeshing or non-intermeshing. In
an intermeshing configuration one screw penetrates the channel of the second screw, produc-
ing a positive pumping action, efficient mixing and self-cleaning capacity. Non-intermeshing
screws do not engage or interfere with each other and depend on friction as single-screw ex-
truders. They are not designed for mixing and are similar to single-screw extruders, even if
they have higher capacities.

In the literature there exists no result about the control of an infinite dimensional model
of an extruder. In this chapter, the proposed model offers the perspective to develop control
methods for these processes using dynamic physical models.

The studies performed on the automated control of extruders are based on experimental
data from pilot-scale units to develop transfer functions for controller design. The ultimate
control systems involved manipulation of screw speed, feed rate, inlet solvent fraction, and
barrel temperature. The models were developed to control motor torque, solvent content,
product temperature, specific mechanical energy, viscosity, residence time and die flow, etc.
As an example, the screw speed and temperature of the mixing zone determine the amount
of cooking, moisture, extent of mixing, and exiting temperature of the final product. The
transport phenomena occurring in the extruder lead to different models taking into account
the delay corresponding to the time each particle spends in the barrel section (residence time).
This suggests that the transport phenomena occurring in the extruder can be included in a
specific delay system framework which offers many control strategies in order to obtain desired
properties of extruded material. A number of control methodologies have been proposed to
regulate the product quality for those processes. A simple methodology can be a single-input
single-output (SISO) feedback control linking the output at the die to the input parameter
such as the screw speed. In [85, 69, 85, 99, 54, 105, 127, 132] proportional integral derivative
PID feedback controllers are performed through different models which are deduced from
experimental data under specific operating conditions for food and polymer extrusion. In
context of food extrusion a multi-variables predictive control which allows to track both

input and output for a given set point is proposed by [145] as a Dual Target Predictive
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Controller (DT PC'). The predictive capabilities of (DT PC') are provided by an on-line system
identification. Predictive controllers are also implemented for many applications as in [108,
130, 68, 67].

As far as modelling issues are concerned, one can find many papers devoted to steady-state
modelling for design purpose, [139], but works devoted to dynamic modelling of extruders are
less common, [80, 81, 75, 76, 37]. For control purposes, one can mainly cites the following

works:

e [37] proposes a finite dimensional model based on a flow representation made of a series
of Continuous Stirred Tank Reactors (CSTR) with variable back-flows. This approach
allows simulating the filling process of the machine as well as all the other state-variables.

This model has been validated in the case of the polymerization of e-Caprolactone.

e An infinite dimensional model has been developed in [86, 89, 88] within the context of
food processing. In this case, the Fully and Partially Filled Zones are defined in advance.
These two zones are modelled by transport equations with different velocities. A moving
interface obeying an ordinary differential equation interconnects the two infinite dimen-
sional systems. Those models remained undeveloped for control because the authors do
not explicitly express all constraints, particularly at the interface. The same methods
are used in [117] to describe the extraction of solvent in a vegetable matter. The authors
represent the liquid accumulation in porous matter. They consider otherwise, transport
(Partially Filled) and pressing (Fully Filled) Zones without discussing the interconnec-
tion through the interface which separate the two zones. Transport equations are also

used in [131] for modelling the solid fusion by extrusion under stationary conditions.

In this chapter, a non-linear infinite dimensional 1D model of an extruder is developed. The
model is inspired by [86, 89, 88] and is focused on the analysis of interface relations as trans-
mission conditions. The obtained model is simulated using finite volume method adapted to a
moving interface system by extending the variables with a color function. The color function
is associated to the time varying domains as a characteristic function which also obey to a

transport equation. The velocity of transport is here given by the mobile interface motion.

3.1.1 Organization of the chapter

The organization of this chapter is as follows: first in Section 2.2, we present a geometric
decomposition of the extruder by defining a Partially and a Fully Filled Zone. Then, we
obtain a bi-zone model of the process by defining two zones which are coupled by a moving
interface. In Section 2.3, we propose a model of the Partially Filled Zone by considering
extrusion of homogeneous material and Section 2.4 is dedicated to the modelling of Fully

Filled Zone. In section 2.5 we present the dynamics of the moving interface and two classes
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Figure 3.1.1: Schematic description of an extruder
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Figure 3.1.2: conveying, melting, mixing zones in a twin-screw extruder [2]

of coupling relations. Section 2.6 is devoted to the discussion on numerical computation and

the simulation of the interface dynamics, filling ratio and temperature variables.

3.1.2 Contributions

The main contribution of this chapter is the formulation of a dynamic input/output 1D
model of an extrusion process. The modelling objective is to analyze evolution of temperature,
die pressure and filling ratio under some operating conditions. The model is based on struc-
tural decomposition of the extruder in two zones. These zones which are Partially and Fully
Filled arise from the geometric structure of the machine. Expressing conservation of mass and
energy in these two zones, one obtains a system of two non-autonomous transport equations
which are interconnected by an ordinary differential equation on the moving interface. The
specificity of the interface relations is discussed using continuity of pressure and continuity
of momentum flux. Numerical method which is inspired from the height function method is
performed using color function. The color function which stand as characteristic function of
the complementary time-varying domains allows to extend the definition of variables in the
total domain. Simulations are presented to illustrate the coherence of this physical model

relating heat and mass transport in nonhomogeneous media.
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3.2 Bi-zone model of an extruder

3.2.1 Zones defined by the pressure gradient

The complexity of screw configuration in an extruder makes difficult the design a non-
isothermal flow model [25]. In [24], an analysis of the flow in the channel of co-rotating
twin-screws with the same speed is developed and the authors show how a reasonable flow
analysis can be made by writing a single screw extrusion process as an equivalent model.
In an extruder, the net flow at the die exit is mainly due to the flow of material in the
longitudinal direction if one neglects the clearance between the screw and the barrel and
the vibrations. Therefore, the flow dynamic which is dominated by the convection effect in
the direction of screw axis is sufficient to represent the material flow. This means that the
transverse flow corresponding to a recirculation of the material in the plane perpendicular
to the screw channel is neglected. From a macroscopic point of view, a 1D model describes
clearly the material transport in an extruder. So, the material is driven from the feed to the
die by the pumping effect of the screw rotation. It becomes clear that the geometric structure
of the die influences the material transport along the extruder. Therefore, the material is
accumulated behind the die and fills completely the available volume in this region. This
spatial domain where the extruder is completely filled is called the Fully Filled Zone (FFZ).
The flow in this Fully Filled Zone depends on the pumping capacity of the screw and also
on the pressure flow. The pressure gradient which appears due to the die restriction is given
by Navier-Stokes equation which provides a mathematical model of the fluid motion. The
extruder which is initially empty, may also comprise a spatial domain that is not completely
filled by the material. This region which corresponds to a conveying region is called Partially
Filled Zone (PFZ). In this domain, there is no pressure build-up. This means that the pressure
gradient is zero and the pressure inside the barrel is approximatively equal to the atmospheric
pressure. The transport velocity of the material can be controlled by the screw speed and
the feed rate. In an extrusion process with a complex geometry of the screws, there exist
alternating Partially and Fully Filled Zones. In the remainder of the thesis, we shall assume
that the geometry of the equivalent screw is uniform and that there exist only one Partially
Filled Zone and one Fully Filled Zone. These two zones are coupled by an interface which
characterizes the spatial domains where the pressure gradient is null or not (and accordingly
where the extruder is Partially or Fully Filled). The moving interface is assumed to be thin,
i.e. reduced to a point. In the sequel the spatial domain of the extruder will be taken to be the
real interval [0, L] where L > 0 is the length of the extruder. Denoting by I(t) € [0, L], the
position of the thin interface, the domain of the Partially Filled Zone is [0, I(t)[ and the Fully
Filled Zone is defined in interval ]I(¢), L]. The interface is moving according to the volume
of material which is accumulated in the Fully Filled region. It is clear, that the interface

which separates these two zones is a function of the difference between feed and die rates. In
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conclusion we shall consider three interdependent dynamics which described the evolution of
the material in the Partially and Fully Filled Zones (PFZ and FFZ) and the evolution of the

interface position.

Feed Moving boundary Dic

Y Y/

x=0 | x=1(7) | x=1L

Figure 3.2.1: Bi-zone model of an extruder

3.2.2 Modelling assumptions and definition of the variables
3.2.2.1 Modelling assumptions

We shall assume that the extruded melt is composed of some species blended with water
and that it forms an incompressible homogeneous mixture. For example, in food extrusion
processes the water content is an important factor which characterizes the quality of extruded

material. We also make the following assumptions:

e the twin-screw mechanism is approximated by a single screw and the relative motion of

the screws is not taken into account.
e the flow is one-dimensional and strictly convective in the down barrel direction.
e the heat capacity C}, and the density py are assumed to be constant,
e the screw pitch £ is uniform along the extruder,
e there is no reaction which occurs along the process,

e the extruder is divided in time-varying spatial zones where the material fills completely

or not the effective volume Vs [86, 89].

e there exists an interface [(t) between the Partially Filled Zone and the Fully Filled Zone
corresponding to discontinuity of the filled volume (or filled volume fraction also called

filling ratio);

e the Partially Filled Zone is submitted to atmospheric pressure Fp.
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3.2.2.2 Definition of the variables

let us remind that extrusion processes are used for the production of various products which
may vary in their physical structures, composition and functional properties. Depending
on the desired material and the desired properties of the product, the extrusion process
can combine different functions: transport of material, mixing, compression, shear, chemical
reactions, heating, cooling, cooking, drying and formatting. Each of these functions can be
exploited to various degrees by the appropriate choice of the control parameters and the design
of the machine. For a food extrusion process, the transformation mechanisms that occur lead

to consider the following variables:

1. The filling ratio: This rate is defined as the ratio between the volume occupied by the
material (V,) and the free volume or effective volume between the barrel and the screw.

Effective volume (V.s¢) is the total volume that can be occupied by material.

(3.2.1)

_ Yo(@,?) (z,t) € (RT x RY)
Very

f(2,t)

Remark 1. In the Partially Filled Zone, the partial filling characteristic implies that

the volume occupied by material is less than the total available volume:
0< fplz,t) < 1.
The FFZ has an occupied volume equal to the free volume and ff(x,t) =1 .

2. The moisture content is the fraction of water stored in the material which is conveyed.

This rate is defined as the ratio between the volume of water V, and the effective volume

Very:

(3.2.2)
Ve(,1)

M(z,t) = Virs

Y(z,t) € (RT x RY)

Remark 2. The moisture content is always less than 1 for both two zones and its
evolution affects the viscosity n(z, t) along the extruder. This rate determines the quality
of the product see e.g [68], where the author considers the moisture content to evaluate

volume expansion during cooking popcorn process.

3. The temperature: T(z,t) depends on exchanges of heat between the barrel and the
extruded material and also on the viscous dissipation phenomena due to the transfor-

mation of mechanical energy into heat.
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4. The Pressure: in the Partially Filled Zone the pressure is supposed to be equal to
air pressure Py whereas in the completely filled zone, P(x,t) depends on the reflux flow

due to geometric characteristics of the die.

5. The viscosity n(x,t) stands as a function of temperature and moisture depending on

the considered zone.

For the coupled system the filling ratio f,, the temperature (7, and T), the moisture (M,
and Mjy), viscosity (1, and 7y), and pressure P are the variables. The screw speed N(t),

barrel temperature Tj, and feed rate Fj,(t) are the input variables.

3.3 Model of the Partially Filled Zone

3.3.1 Mass balance in the Partially Filled Zone

The mass balance equations in the PFZ, is written on the spatial domain [0, [(¢)], in terms
of the filling ratio fy(z,t) (the filled volume fraction which may be related to the total mass
density) [86] where [(¢) is the position of the thin interface which separates the PFZ and FFZ
zones. A local analysis of the flow in one component of the screw is performed to obtain the
flow dynamics in the Partially Filled Zone.

We have assumed that the extruded material is composed by a homogeneous mixture
and no chemical transformation is operating in the process. So, no species are produced or
destroyed and the variation of the amount of material in time is derived as the change of
inflow and outflow through the cross section Scy; defining an elementary volume in this area.
This cross section is the effective section between the screw and the barrel. The variation in

the elementary volume between x5 and x; with (0 < z1 < 22 < [(t)) in cartesian coordinates
(x, v, Z) (Fig. 3.3.1).

ZI"HX --------

Zmax f(x,t)

Ymax

flx,t) <1 flx,t) =1

Figure 3.3.1: Cartesian representation of the effective volume Vs
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d 2 Zmaacfp(xvt)
dt/ / P0Ymazdzdr = F(x1,t) — F(x2,t) (3.3.1)
T 0

F(x1) and F(x2) are the inflow and outflow at x; and x5 respectively. The right term of
equation (3.3.1) can be written in an integral form using the divergence operator (in the 1D

case it reduces to the differential operator 0;):

Flan,t) — F(wa,t) — / 0, F (1) (3.3.2)

Developing equation (3.3.1) and using Leibniz formula we obtain the following equality:

x2 Zmazf(z:t) x2
/ poymaxzmamatfp(xa t) + / %(poymaxzmax)dz dr = — / axF(xa t)dll’
1 0 x1

P05 Ymaz, and Zmqe are constant and the product ¥maz2maz corresponds to the effective section
Serf (Fig. 3.3.1). Thus, equation (3.3.1) implies that:
poSeffOifp(,t) = =0, F(x,t) (3.3.3)

Now extending the local formulation of the mass balance to a global one in the Partially Filled
Zone we consider the transport phenomena for one screw element of pitch £. In this case, the
inflow is due to the convection of the extruded material from the upstream channel to the
current channel and the outflow is determined by the transport from the current channel to

the downstream channel (Fig. 3.3.2):

Upstream channel Downstream channel

Inflow

Flow in the channel

Figure 3.3.2: Description of the flow in a twin-screw extruder [35]

e The effective volume for a screw element is given by the following relation:

Vers = &Sers (3.3.4)
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e [(z,t) is the material flow at the spatial coordinates = for a given time ¢. It could be

expressed as a function of the filling ratio f,(x,t) and the screw speed N (¢):
F(x,t) = N(t)poVeyy fp(x,t) (3.3.5)

Using the definition of the effective volume (3.3.4) and the flow of matter (3.3.5) in this
situation, we obtain the following transport equation which described the transport of the
homogeneous material in the down barrel direction. The transport velocity which depends on

the screw pitch £ is the transversal component of the rotational velocity N ().

Oufp(x,t) = —EN )0y fp(m,t)  (t,z) € (RT,[0,1(2)]) (3.3.6)

o fp(x,t) filling ratio in Partially Filled Zone;
e N(t) screw speed ;

e ¢ uniform pitch of the screw.

3.3.2 Moisture balance in the Partially Filled Zone

The moisture content in the Partially Filled Zone My(z,t) is the fraction of water in the
transported homogeneous mixture. It represents the amount of water stored in the processing
material and can be assimilated to the fraction of water in the effective volume. The moisture
content has the same behavior as the homogeneous mixture because the mass density is
supposed to be constant. Therefore, its evolution is also described by a transport equation as

previously (3.3.9):

O Mp(x,t) = —EN(8)0p My(x, ) (t,2) € (RT,[0,1(2)]) (3.3.8)

3.3.3 Energy balance in the Partially Filled Zone

The energy balance allows to describe the evolution of the temperature along the extruder.

There are two major effects which affect temperature behavior of the melt:

1. The mechanical energy provided by the rotation of the screw, which results in de-
formations of the extruded material. Usually, a drive unit with variable speed causes
rotation of the screw. This mechanical power generates heat under the shearing effect:
it is the power generated by viscous dissipation. We would like to mention that heat
produced by the internal friction of screws affects the viscosity 7n(x,t) and consequently
modifies the behavior of matter. The shearing effect is particularly important in the

channel and in different geometric area of screw circuit. Especially, the area between
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the top of screws thread and the inner surface of the barrel. The thermal power Q). gen-
erated by viscous dissipation per unit occupied volume V,, is a function of the viscosity
n(xz,t), a geometrical constant C' (depending on shear in different areas of screw circuit),
the screw speed N (t) (which is related to mechanical energy) and viscous dissipation
factor . As in [86] the v parameter is approximated by a linear function in the filling

ratio (¢ is a given constant):

Q, = 2eNCIEON W
F@t)Vess (3.3.10)
(@, 1) =0+ (1 =) fy (1)

In the Partially Filled Zone the viscosity n,(x, t) for an unplasticized material is given by
equation (3.3.11) as in [89]. The viscosity decays when the moisture content increases.
Given the initial viscosity 772, the power law is given by the following equation (3, is a

constant depending on rheological properties of the extruded material):

np(z,t) = nge_BPMP(I’t) (3.3.11)

2. The heat flow is supplied by the temperature of the barrel surrounding the screw.
This barrel is equipped with a heating system composed by electric circuits. Also,
the circulation of a thermal fluid (hot water, steam, oil or fluids special) in channels
and a system of cooling by circulation of fluid (air, water or oil) influence the barrel
temperature Ty(x,t). A heat flow ¢, is exchanged between the barrel and the mixture
through a jacket surface S, in accordance with a coefficient depending on the properties
of the extruded material.

aSe(Ty(x,t) — Tp(x,t))

Vers

¢ = (3.3.12)

T} is the barrel temperature;

T, is the temperature in the PFZ;
e « coefficient of exchange;

e S, surface of exchange.

The first laws of thermodynamics law states that the variation of energy per unit of time for
a closed system is equal to the power of the external forces plus the external heat exchanged
between the system and its environment. Defining u(x,t) as the internal energy per unit of

volume and h(z,t) as the enthalpy, we obtain the following relation:
u(z,t) = h(x,t) — P(z,t) (3.3.13)

P(z,t) is the pressure which is supposed to be uniform. The variation of internal energy

u(z,t) per unit of volume depends on the enthalpy inflow and outflow F'(z,t) and sources
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terms such as viscous dissipation Q.(z,t) and convective heat from the barrel to the mass ¢..

Its expression is given by the following relation:

poSeffat (ufp) dr = [Fh]i—i-dx — poSeffP(]aprdx + (QC + qbe)Sefffpda: (3.3.14)

Using (3.3.13) and defining the flux F(z,t) as the enthalpy flux which crosses the section S, ¢
in the Partially Filled Zone with transport velocity EN(t), (3.3.14) is rewritten as:

pﬂat [(h - P)fp] = _p()gN(t)ar (hfp) - Popoatfp + chp + ¢efp (3-3'15)

Since the pressure in the Partially Filled Zone is equivalent to the air pressure Py, (3.3.15)

becomes:

Oih = —EN(£)0,h + e 4 2 (3.3.16)

£0 Po
The relation between the enthalpy and the temperature T}, of the homogeneous mixture with

constant mass density is given by :
oh = C,0T, (3.3.17)

C) is a the specific heat capacity. Combining (3.3.10), (3.3.11), (3.3.12), (3.3.16) and (3.3.17),
one obtains the following nonlinear time varying transport equation with source terms:
by AN2(t
OTy(x,t) = —EN (1) Ty(w, £) + 2 4 8(T, — T, (x, 1))
0 =aS. A=~C ¢ =poCp,Vesy (3.3.18)

Mp(x, 1) = mpe” M0 (¢, 2) € (R, [0,1(2)])

~v and C are supposed to be constant.

3.4 Model of the Fully Filled Zone

3.4.1 The momentum balance of the Fully Filled Zone

In this section, the characteristics of the flow in the Fully Filled Zone are analyzed. The
main aspect is that the speed of transportation is essentially determined by the outlet flow
rate depending on the pressure at the die. In the Fully Filled Zone the pressure is generated
to overcome die section offering flow restriction and the location of the peak pressure coincides
with the beginning of the restriction. The length of the Fully Filled Zone is a function of the

pressure needed for the melt to flow across the die. In this zone the flow has two components:

e the first component is generated by the pumping effect of the screw. In most cases, this

is a forward flow, but it could be a backward flow if a reverse screw element is used.
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e the second component is the pressure flow, which could be a backward flow (called
leakage backflow) if there is a forward pressure build-up, but could also be a forward

flow if there is a forward pressure drop.

The Fully Filled Zone is defined in the spatial domain ]I(t), L], where L is the length of the
extruder. By definition the mass balance states that mass accumulated in the Fully Filled Zone
is the difference between the inflow and the outflow mass as previously. This is a consequence
of constant density, and it means that the net forward mass Fy(t) is constant across this zone.
The available volume is completely filled and the filling ratio have no dynamic: f; = 1.

The momentum balance equation in the Fully Filled Zone is expressed in term of pressure
gradient and yields the following equation for the pressure:

poVersN(t) — Fy(t)
Bpo ’

0o P(x,t) = ny(,1) (t,z) € (R, ]i(t), L] (3.4.1)

B is a coefficient of pressure flow and ng(x,t) is the melt viscosity in the FFZ [89].
n¢(x,t) is a decreasing exponential function depending on the moisture content My (z,t) and
the temperature Ty (x,t). § and 3y are moisture content and temperature constants of viscosity

respectively.
ny(a,t) = nge—ﬁfo(ﬂﬂ,t)e—Wf(m,t) (3.4.2)

Remark 3. The pressure gradient defined by the equation (3.4.1) appears in the Fully Filled
Zone. The discontinuity of the pressure (the Partially Filled Zone is submitted to atmospheric
pressure Py) determines the position of the interface which separates the two zones. Thus, the
interface [(t) arises from a change of causality between the filling ratio and the pressure from
the Partially Filled Zone to the Fully Filled Zone. Recall that the filling ratio is related to the
fraction of volume which is occupied by the extruded material and the pressure corresponds

to its conjugate variable.

Integrating the equation (3.4.1), we can derive the value of the pressure at the die exit
P(L,t).

L p—
PO~ P00 = [ ayta )PVt N O~ Ful)

dz (3.4.3)

Remark 4. It becomes clear that the coupling relations at the interface depend on the possible
solutions of equation (3.4.3). This equation interconnects the two zones and the pressure at
the interface position P(I(t),t) should be expressed by taking into account the influence of
the Partially Filled Zone. This aspect will be analyzed under a simplified assumption in
the section 3.5.2 dedicated to the interface relations. In ours sense, the formulation of an
analytical solution of the integral (3.4.3) with respect to the distributed viscosity ns(z,t) is a
difficult point for the construction of explicit coupling relation by (3.4.3).
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The net forward flow is determined by the die conductance Ky and viscosity 714 by the

following relation

Fy(t) = T4AP(1)
AP(t) = (P(L,t) — Ry) (3.4.4)

Na = 77f<L: t)
nq is equal to n¢(x,t) at the die entry.

Remark 5. For a Newtonian fluid which flows in a tube of length L and radius R (Fig. 3.4.1)

K is given by the following equation:

7w R*

_ T 4,
=g (3.4.5)

RL @ r’
- s
‘\ x

L

Figure 3.4.1: Poiseuille flow in a tube [3§]

3.4.2 Moisture balance in the Fully Filled Zone

The moisture content Mj(x,t) is also defined as the fraction of water in the extruded
material, see the Partially Filled Zone. This variable obeys a similar transport equation
(3.3.9) with a different velocity. The flow in this zone is the net forward flow and for an

uniform screw the velocity v(t) of the convection is proportional to Fy(t):

1 Fy(t) &y

v(t) = = 3.4.6
2 Seff  Po poVers (3.46)
Then the moisture content balance equation stands as:
Fy(t
OeMy(x,t) = ¢ al )&EMf(x,t) (t,z) € (RT,]I(t), L] (3.4.7)

poVers
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3.4.3 Energy balance in the Fully Filled Zone

In this the Fully Filled Zone, the thermal phenomena are identical to those which occur in
the Partially Filled Zone. As for moisture content equation (3.4.7), the heat transport velocity
is given by equation (3.4.6). Viscous dissipation and heat exchange have to be considered
as source terms. The viscous heat generation is much important in this zone due to the
mixing effect. One should point out that the permanent contact between the melt and the
barrel increases the heat exchange with the mixture. Here, the viscosity depends on both
temperature and moisture evolutions as it is shown by equation (3.4.2). Recalling, equation
(3.3.14)(with f, = 1), and the melt viscosity (3.4.2) the following equations are obtained to

describe the temperature evolution T'f(z,t):

T 2
Ty (,t) = — 5809, Ty (1) + 2DV 1 (73— Ty(3,1))

0=aSe A=~C ¢=poCsVeyy (3.4.8)
ng(@,t) = e PMrEDe=oTrwh (1 1) € (RY,]I(t), L))

As for the Partially Filled Zone, the coefficients v and C are supposed to be constant.

3.5 Description of the interface

3.5.1 Dynamics of the moving interface

The interface that separates the Partially Filled Zone to the Fully Filled Zone is located at
the position [ (¢) where the pressure changes from air pressure to greater than air pressure and
the pressure gradient changes from zero to positive value (and the filling ratio changes from
values strictly less than one to one) . The position of the interface will, in general, change
due to the difference between the incoming and outcoming mass flow rates. For a nonuniform
screw profile, interfaces are determined from the screw geometry as the end point of the
restrictive sections [88]. However, the location of the interfaces is in general, unknown and
must be calculated along with the solution of the model equations. In this section we calculate
the equation associated with the interface [(t) for a uniform screw profile. The variation of the
position of the interface is derived from the local mass balance at the interface. We consider
a fixed domain [, "] strictly containing the position of the interface that is [~ < [(t) < It
for some time interval and define all functions f,(x,t) and F (z,t) as left continuous.

Then, the mass balance is written as follows:

d I+ Zmazf(l’vt)
— / POYmazdzdr = F(I7) — F(IT) = AF (3.5.1)
dt /- Jo

Remind that the filling ratio f(x,t) is :

o fp(z,t) in the Partially Filled Zone (x € [I7,1(t)[),
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o f(z,t) =1in Fully Filled Zone (x €]l(t),11]).

Thus equation (3.5.1) is rewritten as:

1+

et . dadz + 2 dud AF
rn max - max = 3.5.2
/0 g /l_ PoYmazdrdz + " POy xdz (3.5.2)

Developing this integral (3.5.2) and using f(I*,t) = ff = 1, we deduce the following relation:

dit) ) e
(pOSeff (fp l t) P0Ymazdzdr = AF (353)
dt - dt 0
*
1+
* = poymamzmawatf(x7 t)dx (354)
-
() t " Off(z,t
* = poymaxzmaxmdaz +/ poymaxzmaxwdx (3.5.5)
- 825 l(t) 8t

let us remind that the filling ratio is defined by fy(z,t) in the PFZ and is equal to 1 in the
FFZ, then (3.5.3) is rewritten as:

di(t () z,t
d()POSeff (fp(l™,t)—1) +/l PoSerf é )d-’E—AF

Using the transport equation of the filling ratio (3.3.7), one obtains equation (3.5.6):

I(t)
dld(t)poseff (fplt)—1)+ gN(t)poSeffwczx = AF (3.5.6)
- X
Which can be rewritten as:
di(t) - -
Wposeff (fp(l )t) - 1) + SN(OPOSeff (fp(l(t)) - fp(l 7t)) = AF (357)

By considering the first order approximation of the filling ratio f,(I7,¢) and the flow rate
F(l~,t) in (3.5.7) we find (3.5.8):

I (n0.)+ a0 - 10) 280 ) s ey (e - ) 22400

_ pos{eﬁ {F(Z(t),t) —(U(t) - 17) % _ F(ztt)] 555)

When [~ — [ (t), the equation (3.5.8) becomes:

di(ty  F(+) = F(U(t),t)

= 3.5.9
dt poseff(l — fp(l(t),t ( )

—|~~—
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In the Fully Filled Zone the net flow rate is uniform and equal to the net flow at the die
F,(t) which is a function of the pressure gradient (3.4.4). The flow rate F'(I(t),t) is defined
by the maximum pumping capacity of the screw which is reduced to the effective fraction of

convected material at the left limit of the interface.

E(l(t),t) = po&N () Vers fp(U(t), 1) (3.5.10)
Finally the ordinary differential equation of the moving interface is:

di(t) _ Falt) = pobN(0)Vers fol1(0), 1)
dt p0Ser (1= Fp(1(0). 1))

Remark 6. The term (1 — f,(l(¢),t)) shows that the extruded material can only fill the

(3.5.11)

fraction of volume which is unoccupied.
Secondly, the condition 0 < f,(I(t),t) < 1 is necessary to have a well-posed differential

equation.

3.5.2 Interface relations

Throughout this chapter we build a simplified model of the extrusion process based on
the conservation of mass, energy and momentum. The model is described by considering two
zones which are linked by a moving interface. It shows that the filling ratio is discontinuous
from the PFZ to the FFZ:

o 0 < fp(x,t) < 1in the Partially Filled Zone (PFZ)
o fy=1in the Partially Filled Zone(FFZ)

It thus becomes necessary to describe the coupling between the two zones by physical coupling
relations ensuring consistency of the model. As stated in the introduction, these relations are
established under some continuity assumptions of state or flux variables or some functions of
state variables. In this section we discuss coupling relations based on the continuity of the
state variables or momentum flux. The interconnection is performed under the assumption of
constant viscosity n along the extruder. This hypothesis allows to solve explicitly the equation
for the pressure gradient which is a function of the distributed viscosity (3.4.1) and (3.4.3)
see Remark 4. Then, the dynamics of temperature and moisture are not influenced the net
flow. The system is now "decoupled" because the interface dynamics (3.5.11) depends on the

filling ratio at the interface f,(l(t),t).

3.5.2.1 Coupling relations for moisture content and temperature evolutions

The temperature and the moisture content are supposed to be continuous at the interface.
This assumption is physically coherent under a constant viscosity. In our perspective, the

strong assumption concerning the viscosity is considered because we focus our analysis on
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the particular structure of the system consisting of transport equations related by a moving

interface.

T, (1) = T; (I 1)
Mp(l_’t) = Mf(l+v t)

(3.5.12)

3.5.2.2 Coupling relations for total mass balance equation

The coupling relation for the homogeneous mixture mass balance are established consid-

ering two alternatives.

3.5.2.2.1 Continuity of pressure at the interface The assumption of the continuity
of pressure at the interface is a state coupling relation. Knowing that the pressure in the
Partially Filled Zone is equal to atmospheric pressure Py we find the equality: P(I1,t) = P.
By integrating the equation of the pressure gradient (3.4.1), we express the die pressure P(L,t)
or the net flow rate Fy(t) as a function which is strictly determined by the screw speed N (t)
and the position of the interface [(t). Recall that the value of the filling ratio determines the
interface position [(t) (3.5.11).

o ﬁ‘/veffN(t)pO(Lfl(t))

P(L,t) = Po + “Foe s Ra(L—10))) (3.5.13)
_ KaVeysN(t)po(L—I(t))

Fy(t) = ?Bp{)f-i-Kd(?—l(t)))

recall B and Ky are some geometric parameters of the screw and the die respectively.

3.5.2.2.2 Continuity of the flux of momentum flux The second assumption is based

on the continuity of momentum flux which is given by the following relation:
F(~,t)o(l7,t) + Pofp(I7,t)Sepr = Fa(t)o(IT,t) + P(I", 1) Se s, (3.5.14)
where

F(l77t) = pON(t)Vvefff(liat)

o(i= 1) = EN(1) (3.5.15)
’U(l+7 t) - Ef‘z(;i .

Deducing P(I",t) from integrating (3.4.1) and computing equation (3.5.14), we find:

AP(L.t) = v —[1+§;)(L—l(t))]+\/A(l(t),N(t),fp(l(t),t)) . (3.5.16)

n300S2
where v = 2t and AP(L,t) = P(L,t) — P,
d

A(l(t)7N(t)7 fp(l(t)at)) = [1 + 7([’ - l(t))]Q + Q (fp(l(t)at)v N(t)a l+) (3517)
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and Q= (250> (’W(L—z(m

N () fp(U(1), 1) — (1 - fp(l(t),t))i()]>

The equation (3.5.16) restricts the solution of the system because it induces a positivity
constraint. Indeed, the die flow rate which depends on the pressure P(L,t) should be positive
and this condition is satisfied if P(L,t) > Py. Then, it becomes necessary to define a critical
value of the filling ratio fp.(l(t),t) as:

Py — et NO (1, p))

Foell:0) = == eanay + By

(3.5.18)

3.6 Control problem associated to the extrusion process model

Here we recall the equations which define the model of both Partially and Fully Filled
Zones in the extruder. An analysis of the global system leads to a control problem for the
design of extruded material. The control variables associated to this extrusion process model
are:

e the boundary conditions at x = 0 for filling ratio, moisture content and temperature
which are defined by:

Fin(t)

[ (1) = fp(0,8) = N OV

My (0,t) = Min(t), Tp(0,t) = Tin(t), (3.6.1)

respectively. Fj,(t) is the feed rate,
e Ty(x,t), the barrel temperature
e and N(t) the screw speed.

Under the assumption of constant viscosity 7, the control objective is to design the temper-
ature T¢(L,t) and the die pressure P(L,t). Under the hypothesis of constant viscosity, the
moisture content dynamics can be neglected in the control point of view because its evolution

influences essentially the viscosity design as it is shown by equations (3.3.11) and (3.4.2).

In the both following equations (3.6.2) and (3.6.4), £, 0, ¢ and \ are parameters depending
on the screw geometry, the barrel characteristics and the material properties (see Section
3.3.3). We mention that at the initial time ¢ = 0, we assume the existence of both Partially
and Fully Filled Zones in the spatial domains [0, ly) and (lo, L] respectively. L is the length of
the extruder, Iy being the initial position of the moving interface. Thus, the system defined

in the coupled domains [0,[(t)) and (I(t), L] is given by the following equations:
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1. For the Partially Filled Zone, filling ratio, moisture content and temperature dynamics

are given by equations (3.3.7), (3.3.9) and (3.3.18) respectively on the spatial domain

[0,1(1)):

o fo 0
ol | @) = —eNwo, | 0, | @)+ 0 (3.6.2)
TP TP Qp(fpaNan?Tb)

where the source term (3.3.18) is given by the equation :

2
Qp(fp, N, 1), Tpy) = m + Z(Tb(x,t) — Tp(m, t)). (3.6.3)

. For the Fully Filled Zone, the moisture content and the temperature are given by equa-

tions (3.4.7) and (3.4.8) respectively, on the spatial domain (I(t), L]:

My R, (M 0
at <Tf> (a:,t) - poVEffax (Tf) ( 7t> + (Qf(N,Tf7Tb)> (3.6.4)

Q¢(N, Ty, Ty) is the source term which is given by the following equality:

AN2(t)
o

Recall that the die net flow Fy(t) is a function of the pressure at the die exit (3.4.4):

Qp(N, Ty, Tp,) = + Z(Tb(:v,t) —Ty(x,1)) (3.6.5)

Fyt) = I;dAP(t) AP(t) = (P(L,t) — P) (3.6.6)

. For interface coupling relations the temperature and the moisture content are supposed

to be continuous at the interface. We consider two coupling conditions concerning the

pressure (or the filling ratio) which is a discontinuous variable:

e the first one derives from the continuity of momentum flux at the interface {(¢) (for

the parameter see equations (3.5.17) and (3.5.18)):

AP(L,t) = v|—[1+ é{pdo(L — (1)) + \/A(l(t),N(t), fp(l(t),t))] (3.6.7)

where A is the difference between the pressure at L and the atmospheric pressure,

L being the extruder length (P(L,t) — Fy). This coupling relation generates a

constraint on the filling ratio (AP(t) should be positive (in some sense the square

roots term on A should be positive). Thus :

Py — MO (L - U(1)
PN 1 By

Where fp.(l(t),t)) represents the minimal value of the filling ratio for a coherent

Spe(l(2), 1)) > (3.6.8)

physical model.
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e the second one is constructed under the hypothesis of the continuity of pressure at

interface {(t). Thus:

o nVeffN(t)PO(L—l(t))
AP(t) = “Fhrma—m) (3.6.9)
F <t) o KdVeffN(t)PO(L_l(t))
d\*) = T (BpotKa(L-1(1)))

4. The dynamics of the moving interface [(¢) is deduced from a local mass balance and it

follows :
di(t) _ Fa(t)=poVers N (1= fp(tL(t)))

dt poSerr(L=Ffp(l(t),t)) (3.6.10)
1(0) = I°

3.7 Open loop simulations of mass and energy balance equa-

tions

3.7.1 Description of the simulated extrusion process model

In this part, we perform simulations for the mass and energy balance of the extrusion
process model. We impose constant screw speed Ny, feed rate Fj,, inlet temperature T}, and
barrel temperature Tp. We point out that Fj, and Tj, are the boundary conditions associated

to the filling ratio and the temperature transport equations.

Screw speed No = 325/60rpm.s~1
Feed rate F;, = 135/3600kg.s~ 1
Filling ratio V= vy = 03148

Barrel temperature | Ty = 330K

Inlet temperature Tin = 293K

Extruder length L=2m

Table 3.1: Input values N, f;”, Tin, Ty

The initial conditions are defined for the filling ratio, the interface position and the tem-

perature along the extruder as fg, 19, ng) and T}) respectively.

Initial filling ratio fy =03

Initial interface position IY=1m

Initial temperature along the extruder | T° = T)) = T} = 293K

Table 3.2: Initial conditions fJ, 1%, T°

Now, considering the initial and boundary data which are defined in (Tab. 3.1) and (Tab.

3.2), we define the following the simulated system composed by:
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1. The filling ratio and the temperature dynamics in the Partially Filled Zone x € [0,1(t)):

I e () 0
0(B)en - v (e, 0, )

where the source term Q,(fp, 1)) is given by the equation:

2 0
Qp(fp Tp) = qﬁ;:(]a\rf?ﬂ + E(Tb — Tp(x,1)). (3.7.2)

2. The temperature dynamics in the Fully Filled Zone x € (I(t), L]:

&Ry

8tTf(x, t) = Vs s afo(SL'7t) + Qf(Tf), (3.7.3)
where
AN 6
(1) = 2200 1 21, - 10,0, (3.7.4)

3. Interface relations which consist of continuity of temperature (T,(17,¢) = T¢(I",t)) and

pressure at the coupling point [(t). As for (3.7.5), we find:

_ Ve Nopo(L—1(1))
P(L;t) = Po+ GGpormat—in) (3.7.5)

 KaVag s Nopo( (1)
Fat) = TomiRati—)

4. The moving interface whose dynamics is given by the following equation:

di(t) _ Fa(t) — po§NoVess fo(l(t), 1)
dt poSerr(1 = fp(l(t), 1))

(3.7.6)

Remark 7. In the case of continuity of momentum flux at the interface, the initial condition

must be chosen with respect to the minimal value of the filling ratio fp. (3.6.8).

3.7.2 Numerical computation by finite volume method

There is a fairly extensive literature on numerical analysis of partial differential equations
with time-varying domains. Most of the numerical works have been focused on multi-phase
flow problems including the inter-phase coupling terms which require specific treatment by
numerical algorithms. A very important feature of multi-phase flow simulations is the interface
between materials and phases, and it is often crucial to track such interfaces at each step of
the computation. There exist two classes of numerical representations which allow to perform

numerical experiments on moving interface problems:

e For Lagrangian representation, the mesh deforms with the material and automatically
maintain interfaces. These representations fail if the mesh is excessively deformed by
topological changes because the mesh reconstitution for each step is strongly based on

the interface form.
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e For Eulerian representation, the material moves through a stationary mesh and requires

special procedures to track precisely the interfaces position in the flow.

In fluid dynamics, however, both Lagrangian and Eulerian coordinates have been used with
considerable success. Because each coordinates representation has advantages and disadvan-
tages, the choice of which representation to use depends on the characteristics of the problem
to be solved. The two representations differ, however, in the manner in which the fluid ele-
ments are moved to their next positions after their new velocities have been computed. In
the Lagrangian case the grid simply moves with the computed element velocities, while in an
Eulerian calculation it is necessary to compute the flow of fluid through the mesh.

By definition the interface is a boundary which separates two different physical regions.
In many cases, the numerical analysis is based on the use of marker-cells, volume of fluids,
height functions or Level Set methods which allow to keeping track of the interface position
[70, 45,46, 133]. Also, there exist many algorithms which are developed to rebuild the interface
along the numerical calculation specially for volume of fluid methods one can mention works
of [111, 115, 124]. Here we present a brief description of the height function method. The
idea behind the height function method is to define the interface distance from a reference
line as a function of position along the reference line. For example, in a rectangular mesh of
cells of width dz and height dy one might define the vertical height (h) of the interface above
the bottom of the mesh in each column of cells. This would approximate a curve h = f(x,t)
by assigning values of h to discrete values of x. This representation is extremely efficient,
requiring only a one-dimensional storage array to record the surface height values. Likewise,
the evolution of the surface only requires the updating of the one-dimensional array. Then,
the time evolution of the height function is governed by a kinematic equation expressing the

fact that the surface must move with the fluid:
Oth + udzh = v (3.7.7)

where (u,v) are the fluid velocity components in the (z,y) coordinates direction.

Numerical analysis of the extruder model which is described by coupled hyperbolic systems
in complementary time-varying domains through an interface is very similar to fluid-structure
coupling problems. Thus the height function methods presented previously may be relevant
in this case. Indeed, we consider a fixed mesh on which a color function whose value are 1 or
0 according to the Partially Filled Zone and the Fully Filled Zone. It is important to note
that the position of the interface can be calculated explicitly by integrating the color function
over the whole domain [0, L] if appropriates initial conditions are chosen. Here we define the

color function as the characteristic function of the domain:

1 zel0,l(t)]
c(z, t) = { 0 well(). ] (3.7.8)
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We mention that the characteristic function (3.7.8) is the solution of the transport equation

whose velocity corresponds to the dynamics of the interface.

o N
5pc@:t) = =1 (t) 5c(x.1) (3.7.9)

with the following initial conditions:

1 z€|0,1
e(z, 0) = 0, &ol (3.7.10)
0 =€ [l(), L]
lop being the position of the interface at time ¢ = 0.
All the states and flux variables which describe the extruder model in PFZ and FFZ are
extended over the whole domain [0, L], using color function (3.7.8) and its complement as

follows:

{N@,1) = cla, N (@,8) + (1 - ela, )N (@) (3.7.11)

The finite volume method which is generally well adapted to the numerical calculation of
the transport equations is used to simulated the system. The numerical scheme is applied on a

fixed mesh considering the extended variables which arise from a linear combination (3.7.11).

3.7.3 Simulations results

e The interface position I(t)
Recall that the extruder length is L = 2m. The figure (Fig. 3.7.1) shows the evolution

Final value 1=1.760 m

moving interface (m)
o o
> ® N
T T
L L

o
iy
T
I

o
[§)
T
1

L L L L L L
100 150 200 250 300 350
time (s)

o

o
o
=)

Figure 3.7.1: Moving interface position I(t)

of the interface I(¢) from the initial position lp = 1m to [(t1) = 1.760m, t; = 350s. The

equilibrium position of the interface [, = 1.826m is given by:



3.7. OPEN LOOP SIMULATIONS OF MASS AND ENERGY BALANCE EQUATIONS 51

Bpofi,

lo=L— P
Ka(1 - f})

(3.7.12)

where f? is the inlet filling ratio deduced from the value of the feed rate Fj, (see Tab.
3.1). We remark that at time ¢t = 350s the interface converges to the equilibrium with

an error equal to 6.6%

e The filling ratio evolution at different spatial coordinates

T

14F ==== Position x,=L/4=0.5m

; Fully Filled Zone (FFZ)

Position x,=L/2=1m

Position x3=3L/4=1 5m

09H P Interface position
0.8
0.7 H

0.6

Filling ratio

Initial cond|tion
f =0.31
0.5

041

03

< Partially Filled Zone (FFZ)
A}
N
02 AN

_______
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Figure 3.7.2: Filling ratio evolution

Figure (Fig. 3.7.2) shows its evolution the evolution of the filling ratio f,(x,t) at different
spatial coordinates: 1 = L/50 = 0.5m, x9 = L/2 = 1m and x3 = 3L/4 = 1.5m.

— First, at time ¢t = 0, fp(¢) has a constant initial value which is f]? = 0.3 (Tab.
3.2). Recall that the extruder length is L = 2m. Consequently, the coordinates
x1, belongs to the Partially Filled Zone and the positions x9 and x3 belong to the
Fully Filled Zone.

— Secondly, the interface moves increasingly starting from the initial value [ = 1m
to its final value [(t1) = 1.760m (t; = 350s) (Fig. 3.7.1). Then, the coordinates x9
and xs which initially belong to Fully Filled Zone passe into the Partially Filled
Zone due to the evolution of the interface position. The discontinuity of the filling
ratio appears clearly in the simulation results (Fig. 3.7.2) and the value of the filling
ratio at position x and z3 at times when occurs the change zone is determined by

the transport in the Partially Filled Zone velocity £ Ng and the inlet filling ratio

P
in”
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— Finally at positions x1 @2 23, the final value of the filling ratio is f, = 0.1749. We
P

observe that delay of propagation of the boundary input f;, also appears in the
simulation (Fig. 3.7.2): the input acts on the initial value after a delay which de-
pends on the speed and the pitch of the screw which are the constant "parameters"

Ny and &, respectively.

e The temperature in Partially and Fully Filled Zones

Recall that the barrel temperature is fixed at 1, = 330K, the initial value of temperature
along the extruder is 79 = 293K and the inlet temperature is T}, = 293K (continuity
of temperature at the entry of the extruder). Using the previous arguments we observe

that at the initial time ¢q:

— the spatial coordinate 1 = L/4 = 0.5m belongs to the Partially Filled Zone,

— and the positions o = 3L/4 = 1.5m and x3 = L = 2m belong to the Fully Filled

Zone
The figure (Fig. 3.7.3) shows that:

— at the spatial coordinate x3 = L = 2m which belongs to the Fully Filled Zone, the
temperature reaches its final value T'(L,t1) = 355K, (t1 = 350s);

— at the spatial coordinate x3 = L = 2m which belongs to the Partially Filled
Zone the temperature increases from the initial value and reaches its final value
T(l’g,tl) = 361K.

— The evolution of the temperature at the spatial coordinate xo = 3L/4 = 1.5m is

particular due to the change of zone.

Remark 8. At time t; = 350s the value of the temperature in the Partially Filled Zone
is superior to its value in the Fully Filled Zone and both temperatures that we observe in
(Fig. 3.7.3) are greater than the barrel temperature. The extruders includes generally
a cooling system which regulate the heat flux between the barrel and the material.
Normally, in a real extruder, the shear is more important in the Fully Filled Zone
and we should observe the opposite phenomenon. The strong assumption of constant

viscosity which mitigates the effect of the power generated by viscous dissipation.

The evolution of temperature profile at different times

The figure (Fig. 3.7.4) is a screenshot of the temperature along the extruder at differ-
ent times ¢, t9, t3 and t4. It allows to observe the evolution of temperature profiles
depending on the interface position. For each captured time, the " dot" shows the po-
sition of the interface. The peak from which the temperature starts to decrease rapidly
corresponds to the position of the interface at the time when the temperature profile is

captured.
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Figure 3.7.3: Temperature evolution

3.8 Conclusion

In this chapter the model of an extrusion process has been presented. The model is derived
from balance laws expressing conservation of mass, moisture content and energy. Firstly, we
describe the flow in a nonhomogeneous medium which corresponds to the geometric structure
of the extruder. We explain how a gradient of pressure is build-up in some Fully Filled Zone
due to the accumulation of material behind the die. Then, by a structural decomposition of the
extruder, we obtain transport equations in Partially and Fully Filled Zone in the time-varying
domains [0,1(¢)[ and ]i(t), L] respectively. The obtained model is composed by nonlinear
hyperbolic systems with source terms and a mobile interface [(¢) stands as an interconnection
component. The main difficulty in such system arises from the definition of the coupling
conditions between the two zones. We propose two coupling relations at the moving interface
by means of state and flux coupling methods. The first transmission condition is based on
a pressure continuity hypothesis and the second one is obtained assuming the continuity of
momentum flux. An analysis of the proposed coupling relations shows how the system is
constrained in the case of the continuity of momentum flux. Another interesting point in this
chapter concerns the brief analysis of numerical methods concerning fluids dynamics. The
color function which is proposed in [27]| permits to extend the definition of variables of each
zone in the whole domain [0, L] and a finite volume method is performed for simulations. The
results illustrate the dynamics of moving interface, filling ratio and temperature along the
process. The position of the moving interface appears clearly in the simulation as a point of
discontinuity. In the next chapter, an mathematical analysis will be performed in order to

prove the well-posedness of the Cauchy problem of the extruder process model.
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Figure 3.7.4: Temperature and interface position



Chapter 4

The Cauchy problem for coupled
hyperbolic systems through a moving

interface

4.1 Introduction

The mathematical analysis of mobile interfaces in the context of moving boundary prob-
lems have been an active subject in the last decades and their mathematical understanding
continues to be an important interdisciplinary tool for the scientific applications. Such class
of partial differential equations arises in many applications devoted to modelling of biological
systems and reaction diffusion processes. In this context, [36] study the global existence of
solutions to a coupled parabolic-hyperbolic system with moving boundary representing cell
mobility. A similar type of nonlinear moving-boundary problem consisting of a hyperbolic
equation and a parabolic equation for modelling blood flow through viscoelastic arteries |33]
and tumor growth [44] is study in terms of well-posedness. General reaction-absorption-
diffusion processes involves also moving boundary as it is stated in [122]. In order to prove
local existence and uniqueness of a solution for such problem, the key of the resolution is
to transform the system with moving boundary into a system defined on a fixed domain.
Then, the results of many studies dedicated to hyperbolic system of conservation laws may
be useful for establishing the existence, uniqueness, regularity and continuous dependence
of solutions. The well-posedness study of hyperbolic systems of conservation laws which are
defined on fixed domains is proposed in [22, 90, 146, 41, 126] (and the references therein) in
the content of weak solutions. In this chapter we apply the method proposed in [126, 41| to
prove the existence and the uniqueness of solutions for the extrusion process model after a
change of coordinates which allows to express the system in a fixed domain (0,1). In [126] a
scalar conservation law that models a highly re-entrant manufacturing system is studying as

a generalization of [41]. The proof of the existence and uniqueness of the weak solution of the

55
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corresponding Cauchy problem with initial and boundary data is given using a fixed point
argument. We mention that first results concerning the well-posedness of extrusion processes
as transport equations coupled via complementary time varying domains is proposed in [49].
In [49] The mathematical analysis is performed for the linearized model of the extruder and
the well-posedness is proved using perturbation theory on the linear operator [79]. Here we
are interested in the nonlinear model of the extruder which is described by conservation laws
of Chapter 3.

We consider the cauchy problem for extruder model composed of two systems of conserva-
tion laws together with an ordinary differential equation. Using Banach fized point theorem,
we prove the well-posedness directly on the nonlinear model. Recall that the model is based
on the decomposition of the extruder in Partially and Fully Filled Zones. Let us recall the
transport equations of mass, moisture content and energy in an extruder. In this chapter

we define ( as the screw pitch and £(¢) as the characteristic curves.

1. For the Partially Filled Zone, we consider the filling ratio f,, the moisture content M,

and the temperature 7}, as the state variables.

e The transport equations which are associated to these variables are defined at
time t € [0, 7], and position z € [0,1(t)) where I(t) represents the moving interface
between the two zones (3.3.7), (3.3.9), (3.3.18). Thefilling ratio f, and the moisture

M, are strictly positive functions which are less than one according to the modelling

assumptions.
o fo 0
O [ My | = —ap(N)Oe | M, | + 0 (4.1.1)
Tp Tp Qp(fpan Tp)Tb)
where
ap(N) =(N. (4.1.2)

The source term (3.3.18) is given by the equation :

Qp(fps N, T, Ty) = C1(Tp — Tp) + 1 (N, f), (4.1.3)
with
Cr:= —Z, (4.1.4)
_ AN3(1)

The definition of the variables above (4.1.3) can be found in section 3.3.3.

2. For the Fully Filled Zone, we consider the moisture My and temperature T as states

variables.
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e The transport equations which are associated to these variables are defined at time
t € [0,7T], and position = € (I(t), L] where L is the length of the extruder (3.4.7),

(3.4.8). The moisture content is the fraction of water which takes values in |0, 1].

My . My 0
at<Tf> _ f<N,z,fp>az<Tf>+(Qf(MTf’Tb)) (116

where ©
Chy(t
ar (N, fp) = 4.1.7
PN Ty = o (417
The source term is given by the equation:
Qf(N, Ty, Ty) = C1(Ty — Tp) + g2(N), (4.1.8)
with
AN (t)
2=
poVerscp

The definition of the variables above (4.1.8) can be found in section 3.3.3. Assuming
the continuity of momentum flux at the interface i(t), the net flow Fy(t) is a function

of I(t), fp(t,1(t)) and N(t) and under hypothesis of constant viscosity 7, we find:

AP(Lt) = v —[1+é(pdo(L—l(t))]+\/A(l(t),N(t),fp(l(t),t)) (4.1.9)

n%poS2
where v = 5 and AP(L,t) = P(L,t) — Py,
d

AQUE), N (), fp(1(1), 1) = [1+ (L = 1) + Q (£F»U1), 1), N(), 17)(4.1.10)

e = (20) (D g )

v Bpo
LN (1) £, (U(t). ) — (1 - fp<Z<t>,t>>P°)
Po
Fy(t) = I;d(P(L,t) - Py), (4.1.11)

3. The moving interface [(t) dynamic is deduced from a total mass balance and is:

I(t) =F (I(t),N(t), fp(t,1(t)), 0<t<T,
1(0) = 1°,

(4.1.12)

where

P (10 N0, Syt 1(0) = O LELTE b)) (11.13)
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Recall that the Partially and Fully Filled Zones exist if the positivity constraint is
satisfied:

1 Py
— foe(t, 1(1)) > N+ B (po — Ko(L — l(t))) (4.1.14)

For the system defined by (4.1.1), (4.1.6) (4.1.9) and (4.1.12) , we define:
e the initial conditions as:
(fp(ovx)7 MP(va)v Tp((),aj‘))T - (f;())('r>7 MS(.I), T;z?(x))Tv 0 g € g le (4115)
(M#(0, ), Tf(O,x))T = (M?(x), T](e)(x))T, << L. (4.1.16)

Here we assume that fg satisfied:

0 < < Iflle <m <1 (4.1.17)
e the boundary conditions as:
Fin(t
(f»(t,0), My(t,0), Tp(t,O))T = (0(;\78), M (t), Tm(t))T, te (0,T), (4.1.18)

where
O(N(t)) = poVersN(1).
Fi,(t) is the feed rate. Fj,(t) and N(t) are known functions of time ¢.

e and the interface coupling relation for temperature and moisture as:
T T

The aim of this part is to analyze the well-posedness of the system which is defined by
equations (4.1.1) (4.1.6) and (4.1.12) with associated initial and boundary data (4.1.15),
(4.1.16) and 4.1.18) respectively. The interface relations are described by (4.1.19) and
the momentum flux continuity equations (4.1.9), (4.1.10) and (4.1.11).

4.1.1 Organization of the chapter

The organization of this chapter is as follows/ First in Section 3.2, using a change of
variables, we transform the time-varying spatial domain problem into a fixed domain problem.
In Section 3.3 we present the main results on the existence and uniqueness of solutions in W1
(Theorem 3) and H? ( Theorem 4) spaces. In Section 3.4 we give the proof of Theorem 3 and

finally in Section 3.5 we give an idea of the proof of Theorem 4.

4.1.2 Contributions

In this chapter, we prove the existence, uniqueness and regularity of the weak solution
to the free boundary Cauchy problem (4.1.1), (4.1.6), (4.1.12), (4.1.15), (4.1.16), (4.1.18),
(4.1.19). To tackle this free boundary problem, we make a change of variables on the spatial
variables and transform the time-varying spatial domain into a fixed domain. Here, we use

Banach fized point theorem to prove the existence of weak solutions in W1* and H?.
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4.2 Model expressed in fixed spatial domain

The main difficulty of the well-posedness study arises from the moving domains [0, /()]
and ]I(t), L], I(t) being the interface dynamics. In order to deal with this system of balance
equations in fixed domains, a classical change of spatial variables is performed for the two
zones leading to two systems of conservation laws with additive fictitious convection terms

in the transport velocities. Now the Partially and Fully Filled Zone equations are defined on
Q:=(0,T) x (0,1).

1. For Partially Filled Zone (PFZ), after the change of variables from (0,[(¢)) to the
interval (0, 1), see [48], via
(t.2) = 17
x) =
y ) l(t)’
we normalize the system (4.1.1) to a new system defined on @ := (0,7") x (0,1). For the

sake of simplicity, we still denote the space variable y as x and unknown the functions

as (fp, Mp,T}), the velocity term as oy, and the source term as ,. We have

fp(t,x) fp(t,m) 0
O | My(t,z) | +ap(t,z)0s | My(t,z) | = 0 (4.2.1)
Ty(t, ) T,(t, ) Qp(fps N, Tp, Th)
with
ap(t.) = 125 (CN() i)
= l(lt)(CN(l(t)) —xF(I(t), N(t), f,(t,1))). (4.2.2)

The source term is given by the same relation (4.1.3):

Qp(fvaanaTb) = Cl(Tp _Tb) +91(N7 fp)7 (423)

2. For the Fully Filled Zone (FFZ), after the change of variables from (I(t), L) onto the

interval (0,1)
- I1(t)
y(t, z) == i)

system (4.1.6) can be normalized to a new system defined on @ := (0,7) x (0,1). For
the sake of simplicity, we still denote the space variable y as x and unknown functions

as (My,Ty), the velocity term as oy and the source term as €.

O (Mf(t’x)> + oy (t, )0, (Mf(t?x)) = ( ! ) ; (4.2.4)
Tf(t, ZE) Tf(ta lL’) Qf(N’ Tf’ Tb)

with
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agp(t,z) = - —1l(t) (252(2 + (x — 1)f(t)),
L (SED o g R, N, £ 1), (425)

T Lt poVers
where
Fy(t) == Fy(U(t), N(t), fp(t, 1))

is defined by (4.1.11). The source term is also given by the same relation (4.1.8).
Qp(N, Ty, Tp) = Co(Ty = Tp) + g2(N), (4.2.6)

From (4.1.18) and (4.1.19), we rewrite the interface relations as the boundary conditions
associated to the coupled equations in fixed domains:
T Fin(t)
t,0), M,(t,0), T,(t,0)) =
(fp( I )7 ;D( ) )7 p( ) )) (G(N(t)),

(M;(t,0), Ty(£,0))" = (My(t,1), T,(t,1))", ¢ (0,T). (4.2.8)

Min(t), Tin(t))", ¢ € (0,T) (4.2.7)

Remark 9. Now, the convection velocities ay(x,t) (for PFZ zone) and ay(x,t) (for (FFZ
zone) depend on the spatial coordinate x and are functions of the interface position and
velocity. Recall that the interface dynamics is a nonlinear function of Fy(t) and f,(I(t),t)
which are the die net flow rate and the filling ratio at the interface, respectively.
Consequently, in both Partially and Fully Filled Zones the net flow rate Fy(t), filling ratio
at the interface f,(I(¢),t) and the screw speed N(t) must be considered in the convection

terms: the interface dynamic is a nonlinear function of these functions.

In summary, we consider a coupled system composed of an Ordirany Differential Equation

(ODE) for moving interface

i(t)=F (U(t), N(t), fo(t, 1)), t€(0,T)

(4.2.9)
1(0) =1,
a transport equation for filling ratio
Orfp(t,x) + ap(t, )0y fp(t,z) =0, (t,x) € (0,T) x (0,1)
fp(0,2) = f(x), =€ (0,1) (4.2.10)
Fin(t)
fr(t,0) = , te(0,T
two transport equations for the moisture contains
O Mp(t, x) + ap(t, x) 0, Mp(t,x) =0, (t,z) € (0,T) x (0,1)
OMy(t,2) + ay(t,2)0:My(t.a) = 0, (L) € (0.T) x (0.1) o

My(0,2) = MJ(x), My (0,2) = M}(x), < (0,1)

My(t,0) = My (), Mg(t,0) = My(t,1), te(0,T)
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and two transport equations for the temperature

NTy(t, ) + ap(t, ©)0:Ty(t, x) = Qp, (t,x) € (0,T) x (0,1)
OT(t,x) + ayp(t,x)0.Ty(t, ) = Qp, (t,x) € (0,T) x (0,1)
Tp(0,2) = T)(z), Ty(0,2) =T{(x), =€ (0,1)
Tp(t,0) = Ty (t), Ty(t,0) =Ty(t,1), te(0,T)

(4.2.12)

In the whole chapter, unless otherwise specified, we always assume that 10 € (0, L), f}g €
W17OO(O7]-): M197T£7M?7T]9 € L2(071)7 MmaTm € LQ(OaT)a anaN S Wl’oo(ovT) and Ty €
L>(Q). For the sake of simplicity, we denote from now on || f||ze (|| fllw1.e<, || f|lL2, resp.) as

the L (W1 L2 resp.) norm of the function f with respect to its unknowns.
1E|[yy1.00 : = Z ess sup |DYF (21, x2,x3)|.
‘a|<1 le—e1<x1<le+te1

Ne—e1<xo<Ne+eq
fpe—e1<x3< fpeter

4.3 Main Results

We recall from [40, Section 2.1], the usual definition of a weak solution to Cauchy problem

(4.2.9)-(4.2.12).

Definition 1. Let 7" > 0 be given. A weak solution of Cauchy problem (4.2.9)-(4.2.12) is
a vector function (I, fp, My, My, T, Tf) € WH(0,T) x Wh=(Q) x (C°([0,T]; L*(0,1)))%,
such that for every 7 € [0,7T], every test function @1, w2 = (p21,922), ©3 = (p31,p32) €
C*([0,T] x [0,1]) such that

pi(r,2) =0, Vxe[0,1], i=12.3, (4.3.1)
ei(t,1) =0, Vtel[0,T], i=1,2,3, (4.3.2)

one has ,
1) =1°+ / F(l(s), N(s), fp(s,1))ds, te(0,7), (4.3.3)

J0

T 1 1
| soner + outanpr) dede+ [ £2()er(0.0)ds
0 0 0

T En(t) B
+/0 Q(N(t))ap(w)wl(t,O) dt =0, (4.3.4)

T 1 T 1
/ / Mp(at§021 + 0z (apg021)) dr dt + / / Mf(8t<,022 + (%(Oéf(pgz)) dz dt
0 0 0 0

+ /OT Oép(t, O)Mm(t)gpgl (t, 0) dt + /0 af(t, O)Mp(t, 1)@22(75, O) dt

1 1
+/0 Mg(:{:)cpgl(O,x) da:—i—/o M})(x)wgz(o,x) dx =0, (4.3.5)
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T 1 T 1
/ / Ty (Orp31 + Ox(apipst)) dx dt + / / T (Oppz2 + 0z (app32)) da dt
o Jo o Jo

T rl T rl
+ / / Q31 d dt + / / Q3o drdt
0 JO 0 JO

+ /O (£, 0) Ton (E)031 (£, 0) it + /0 " s (6, 0) Tyt 1)palt, 0) dit

+ /01 T[?(:U)gpgl(o, x)dr + /01 T?(x)apgg(o, x)dr = 0. (4.3.6)
We have 'the following two theor(;,ms
Theorem 3. Let T > 0. Let (l¢, N, fpe) be a constant equilibrium,
F(le, Ne, fpe) =0 (4.3.7)

with 0 < fpe <1, 0 <l. < L. Assume that the compatibility condition at (0,0) holds

Fm(o) 0
= 0). 4.3.8
St = 1310) (438)
Then, there exists ey (depending on T') such that for any e € (0,e0], if
F. .
120 = Fellwroe ) s IO~ Nelwsoe +10 L[ <e. (439

O(N(-))
Cauchy problem (4.2.9)-(4.2.12) admits a unique solution (1, fp, My, My, T,, T¢) € WH>(0,T) x
whee(Q) x (CO([0,T); L2(0,1)))?*, and the following estimates hold

1fp = Frellwroe + 11 = lellwroe < Cey -, (4.3.10)

| Mpllcoqorm:r20.1)) < Ceo - (1M z2 + | Minllz2), (4.3.11)

1Tyl co 0,73;22(0,1)) < Csq - (HTOHL2 + ||Tz‘n||L2), (4.3.12)
([0,7];L2(0,1)) P

| Mllcogo,m1:22(0,1)) < Cep - (||M,9||L2 + | M| 12 + IIM})HLz), (4.3.13)

IT¢llcooryz20,1)) < Ceo - (ITplr2 + 1 Tinllz2 + TN 22), (4.3.14)

where Cy, is a constant depending on €, but independent of .

Theorem 4. Under the assumptions of Theorem 3, we assume further that fg() € H?(0,1),

€ H*(0,T), and the compatibility condition at (0,0) holds
AN () (0,T) (0,0)
1(0)  F;,(0)0(N(0)) — Fin(0)8"(N(0))N'(0)
() —_c =0. 4.3.15
O e PN (0) 319
Then, there exists ey (depending on T) such that for any e € (0,&9], if
00— Fun() N()—N, 1| < 4.3.1
15 () fpe||H2(0,1)+||0(N(.)) Soellmrz01) +IIN () = Nellwroe +[I7—le| <&, (4.3.16)

Cauchy problem (4.2.9)-(4.2.12) has a unique solution (I, fy, M,, My, T,,Tf) € WH(0,T) x
Co([0,T); H2(0,1)) x(C°([0,T]; L?(0,1)))* with the additional estimate

1fp — fpe||CO([O,T];H2(0,1)) <Cq -6 (4.3.17)

where Cy, is a constant depending on o, but independent of <.
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Remark 10. The solution we obtained in Theorem 3 or in Theorem 4 is called semi-global
solution since it exists on any preassigned time interval [0,77] if (I, f,) has some kind of
smallness (depending on T'), see [90, 146]. On the other hand, we do not require any smallness

on M,, My, T, and Ty since their equations are linear.

Remark 11. We have the hidden regularity that (M, My, T,,Ty) € (C°([0,1]; L*(0,T)))*
both in Theorem 3 and in Theorem 4. Similarly, we also have f, € C°([0,1]; H(0,T)) in
Theorem 4.

For the proof of Remark 11, one can refer to [41, 126].

4.4 Proof of Theorem 1

Sketch of the prove of Theorem 3:

1. In Section 4.4.1 we apply contraction mapping principle to prove the existence and
uniqueness of [(¢) and f,(¢,1) for ¢ small. With the existence of [(t) and f,(¢,1) we
construct the local solution of Cauchy problem (4.2.9)-(4.2.10) using the definition 1
[40, Section 2.1].

2. In section 4.4.2, we extend the local solution of (4.2.9) to the semi-global one.

3. With the existence of I(t) and f,(¢,2), we next solve the moisture equation (4.2.11) in
Section 4.4.3

4. Finally we solve the temperature equation (4.2.12) in Section 4.4.4.

4.4.1 Local solution to Cauchy problem (4.2.9)-(4.2.10)

Lemma 4.4.1. 3 £; > 0 suitably small, 3 6; = d1(c1, [[f) — fpellwroe, [I°— L), Ve € (0,e1],
Vf) € Wh*°(0,1), VFi,, N € Wh(0,T), vi° € (0, L) with
O(N(-))

Cauchy problem (4.2.9)-(4.2.10) admits a unique local solution on [0,d;], which satisfies the

1Fp ()= Foellwr.oo + | ~ fpellwioo + N () = Nellwoe +11°=le| <, (4.4.1)

estimates:

€1

C., e, Vtel0,8] (4.4.2)
C

||fp(t") _fpeHWl,oo < .
<C e, VEED, 0] (4.4.3)

1(t) = le| <
where C¢, is a constant depending on €1, but independent of ¢.

Proof of Lemma 4.4.1: We first apply contraction mapping principle to prove the existence
and uniqueness of [(¢) and f,(¢,1) for ¢ small. With the existence of [(¢) and f,(¢,1), we then
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construct a local solution to Cauchy problem (4.2.9)-(4.2.10). Next, we prove the solution we
constructed is indeed the unique weak solution to Cauchy problem (4.2.9)-(4.2.10). Finally,
we derive the estimates (4.4.2)-(4.4.3) of the local solution.
Step 1. Fixed point argument We choose £; such that

0 < e <min{le, L —I.}. (4.4.4)
We denote
| F|[yr1e0 © = Z ess sup |DYF (21, x2, 23)], (4.4.5)
‘a|<1 le—e1<z1<le+er

Ne—e1<xa<Neter
fpe_al <z3 <fpe+€1

U(t) = (I(t), f,(t, 1)), telo,T).

For any given § > 0 small enough (which will be defined later), let us define a domain

candidate as a closed subset of C°([0,d]) with respect to C° norm.

Q5 = {W € C°0,8)) : [¥]lcogo - = max{lllcogoay, 1> Dllengoay} < L+1}},

(4.4.6)
Let us define a map § := (F1, J2), where § : Q5 — C°([0,4]), U > F(¥) as
t
SO0 =1+ [ F().N ). fyls 1) (14.7)
0
F2(fp)(81) = f(€2(0)), (4.4.8)
where & (see Fig 4.4.1) represents the characteristic curve passing through (¢, 1)
dgs(s)
= <s <
22 = 0y (N(9).2(5),1(5). fy(s,1)). 0<s <t io
&(t) = 1.
From (4.2.2), we solve the linear ODE (4.4.9)
LRI N @) dpe) 5 [ECN s FUSNE) (1)
Ea(s) = e oy 2 do _ / CN(@) - 1s & B e 0<s <t (4.4.10)
Js o)
It is obvious that § maps into ) itself if
0 < & < min{Ty, T}, (4.4.11)
where T} satisfies
£(Ty) = 1. (4.4.12)
Here £ represents the characteristic curve passing through (0,0) (see Fig 4.4.1)
dg
—= =, N(s),&(s),l(s), fr(s, 1)), 0<s<H,
= = ap(N(3),€(5), 1(s). fy(s. 1)) )

£(0) = 0.
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We solve the linear ODE (4.4.13)

0
N s FU().N() fp(s.1)
£(s) = — Cl((()T) e s 0 P 0< s <t (4.4.14)
s g

Now we prove that, if § is small enough, § is a contraction mapping on 25 with respect to
the C% norm. Let ¥ = (I, f,), ¥ = (I, f,) € Qj, for any fixed ¢ € [0, 5], we have

131 (0)( (t)] —‘ / s), fp(s,1))ds — /OtF(l(s),N(s),fp(s, 1))ds‘

SO Fllwres (1= lleoqosy + 1 (1) = fols Dlloqosy)-  (4-4.15)

Define the characteristic curve &

&(s) = e 1) ol Lo o 1(s) do, 0<s<t, (4.4.16)

(o)

ft F(i(0),N(9),fp(c:1)) do B /t CN(U) .y F(I(s),N(s),fp(s,1)) ds
s

then for any ¢ € [0, d]

|32(fp)(t 1) _SQ(fp)(t 1)|

t F(I(0),N(0),fp(o,1)) teN _ (0 FUS)N(), p(s,1)

_‘fo (efo OR— (No) =z o *dg)
o o)

¢ F(I(e),N(o),fp(c.1)) EEN(o) 0 PN (), fp(si1))
O(efo (o) d“/ ¢ ( )’e s (s) ds da)‘

t F(I(0),N(o),fp(a,1)) do t F(l(a) N(2).fp(a:1) 4
<Al { el = T f o |

0 F(I(s),N(s),fp(s,1)) 0 F(I(s),N(s),fp(s,1))
+/ CN(G) .e = ds CN(U) 'e_fa l(—s)pds‘do_}

1(s)

(o) l(o)

8IIF 1,00 (I, N, f)l = F(N,1, fy)l(0)
<Hf,?|!w17w{6 A /‘ T } ‘d

/ X ("; ~ l(”>)e T SR *| do
. Cﬁé))e‘%"‘(/“ F(LN,J%)l;F(N?l,fp)l)dS) o)
0 0

do

Ve /t‘Fapr)( ) ~I(PQ.N.J,) - F(N.L 1)) |
I

<M {7

/‘cmo)()—
lo)i(o)

tCN< ) 5H12|3V511,oo
" 0 Z(U; ‘ (/0

l( )) 0(7 F(I(s), Nl(<s)) Ip(s,1) ds ‘ o

F(I,N, f)(1— I(F(I,N, fp) = F(N,1, fp)
( ) <ll >‘ds)d0}'

(4.4.17)
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Since t € [0,6], I <l — &1, [ <l — 1 and noting (4.4.5), from (4.4.17), we obtain

[82(fp) (8, 1) = S2(fp) (¢, 1)]

6HFH 1,00 F . F e
<8l {5 (T2 thcogoy + 1 = folosgoay) + 22551 Heogoa)
0% N||poo At LS | F
Fop e e (SR Hosqoay + 1y = Slleogoay) + eI Hleoqoan)
5CHN”L°° 5HleW1oo
—_— - — . 441
thepe o I l||00([0,5})} (44.18)

Hence, from (4.4.15) and (4.4.18), we have

1F(T) = F(O)|lcoo,5])
= max {5100) ~ 510 Cleo oy (5207 -1) — Sl Dllooosy )
<6 max{|[|l — Il cogo,a))s 1o — Follcoo.sp }

A F 1,00 Flly1,00 Fly1,00 OC||N || oo
A20F e + 1 llwrce e o '<(2Hz ”_ng +l|l |_W51)2)(1+ zH—Hsl )
IV e
+ (le — 61)2>}
<8Ce, - max { T~ Ucogoays 1o = Folloogoay }- (4.4.19)

We choose &) (depending on ey, || £y, HFHWLOO, IN||ze=) be small enough such that

IF(2) = F(¥)llooo,60)) < ||‘1’ Yl co(po,8))- (4.4.20)

By means of the contraction mapping principle, there exists a unique fixed point ¥ = F(¥)

in Q(gl .

Figure 4.4.1: The characteristics &, &1, & and &3.

Step 2. Construction of a weak solution By fixed point argument, we get the existence
and uniqueness of local solution [(¢) and f,(¢,1). Next, we construct local solution to (4.2.10)

by characteristic method.



4.4. PROOF OF THEOREM 1 67

For any fixed t € [0,41], when 0 < o < &(t), we define the characteristic curve &;(s) as
(see Fig 4.4.1)

t F(l(o),N(0),fp(o,1)) N [ F(l(8> N(s),fp(s.1))
Ei(s) =xels = @ 9 / ¢ ") = Tge. (44.21)
We define £ as (see Fig 4.4.1)
&1(t) = 0. (4.4.22)

For any given [ € Qs a7, when £(t) < & < 1, we define the characteristic curve £3(s) as (see

Fig 4.4.1)

t F(l(o), N((a)) ,fp(o,1)) do Q‘N _ [5 F(l(s),N((s)),fp(s,l)) ds
I(s

e o do. (4.4.23)

&(s) = zels

We define & as (see Fig 4.4.1).

& = &(0). (4.4.24)
We have

P ¢ F(I(0),N (), fp(0,1))
Of _ —ap(t2)l(E) |t ARG 4y (4.4.25)
ot CN(1)

i F(1(0),N(0),fp(0,1))
O _ —Il)  jt PUoizplete g, (4.4.26)
8x CN(t )

t F(U(0),N (). fp(0,1))

% = —ap(t, aj) . efo l(—t'f')pdo-7 (4427)

5 F(U(0),N(0).fp(0,1))
0% _Jy AHem@eled)) 4o (4.4.28)
ox

Now, we construct a solution for the filling ratio f, for PFZ zone as

Ful) .
fn = Loy CSTSED (1.429)

@), &) <<,

where £ and # are define by (4.4.22) and (4.4.24).

Next, we prove the solution defined by (4.4.29) is indeed a weak solution to Cauchy
problem (4.2.10). That is to prove that solutions defined above satisfy (4.3.4).

Let 7 € [0,01] and any o1 € C*([0,7] x [0,1]) with ¢1(7,7) = 0 and ¢1(¢,1) = 0 be given,

we have

T 1
A= /0 /0 Folt, ) (pru(t,2) + (appr (b )),) dar d

[T £(t) Fm(f)
_-/0 /0 av (g Pl o)+ (aper(t o)) de di
Tl
’ /0 /g(t) Iy @) (et 2) + (appr(t,2)e) da dt.



68 4. WELL-POSEDNESS OF THE EXTRUSION PROCESS MODEL

By (4.4.26) and (4.4.28), we obtain

/ / o m’g lf()) —ft z<(ss>) ds(ﬁplt(tagl(t))+(ap(tvfl(t))wl(tafl(t)))x)dfdt
1- fo O‘p(s&(s))ds t F(s
*/ / SO(8) - €0 T % (o, (1, £3(1)) + (p(t, E3(8)) 01 (1, E3(1)) ) it
0 0
B / / Full) (NG -t 5 it 60(0)  F()
0 O(N(t

©1(t, &1(t))) di dt

0] dt 0]
T 1=y ap(séa(s) ds t F(s
.y fota) e i ) T8 o) do
[ e o) et
o Jo 6(N(E) U dt
T 1—f5 op(s,€2(s)) ds 0 - d((Pl(t, £S(t))€_ fot 7((;) dS) A
-l—/ /0 fp(2) - o dz dt

By changing the order of integral, we have

a=[ ) Full) NG dalba@e F8")
i O(N(D)) f) dt

t F(s) ds

o S5,

ft)=1- /0 ap(s, a(s)) ds

where

represents the coordinate that the characteristic curve & intersects with x-axis and f~!(2)
represents the time when the characteristic curve starting from (0, Z) arrives at the boundary
x = 1. Consequently, for any 8 € [f(7), 1], & and &3 are identical to each other since they
pass through the same point (0, 3), so we get

&(f1@) = &(f (@) = 1.

Finally, we get

R 1% )
/ o §> a0y~ [ e 0.5 di - PR CRUET
f 1
0 JGE ;) C5\(fr?())g01(£’()) df‘/o £ (@)@1(0, ) di

This proves that f, given by (4.4.29) satisfies (4.3.4) for every 7 € [0, 01].

Step 3. Uniqueness of solution. Since the fixed point iteration yields the uniqueness of the
fixed point (I(t), fp(t,1)) that determines the characteristic curves & and &3. Then (4.2.10)
becomes a linear forward Cauchy problem, it follows easily the uniqueness of f,(t,x).

Step 4. Priori estimate
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From (4.4.1) and the expression of the solution for the filling ratio (4.4.29), it is easy to
check that, for any t € [0, d1]

1fp(t, ) = fpellLe < e (4.4.30)
From now on, we denote by C;, various constants that may depend on ¢;.
1] = 1i(t) = Lel =[F (1), N(0), fp(t,1)) = F (les Ney fye) |
SIE oo [U) = lel + [[F w0 [N (8) — Nel
F [[Fllwroe [ fo(t, 1) = fpel- (4.4.31)
Combining (4.4.1), (4.4.30) and (4.4.31), we get
()] < O, |I(t) — L] + C-,e. (4.4.32)

By (4.4.1) and using Grownwall’s inequality, we get (4.4.3). Furthermore,

o L@
[paeo), o)) sy |
Nnld o e[ 2]+ 1586 = e N (2439

By (4.4.26), (4.4.28) and noting (4.4.1), we obtain (4.4.2).

t t t
§ b 0
1, [: t
f I h
\
; x=E(s)
2 N
N M
i
0 X o 0 X P 0 4 g PR
Figure 4.4.2: = € [0,£(t1)]. Figure 4.4.3: = € [£(t1),&(t2)]. Figure 4.4.4: = € [£(t2), 1].

4.4.2 Semi-global solution to Cauchy problem (4.2.9)-(4.2.10)

By (4.4.2) and (4.4.3) in Lemma 4.4.1, we take €2 < €1 such that C,, - €3 < €1. Then for
any € € (0,e2] and any initial-boundary data such that (4.4.1) holds, noting (4.4.19), Cauchy
problem (4.2.9)-(4.2.10) admits a solution on [0, d1]. Furthermore,

1 £p(01, ) = fpellwroe(0,1) < Cey - € < €1, (4.4.34)
1(61) — 1] < Cry -6 < 1. (4.4.35)
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Take (1(61), fp(d1,1)) as new initial condition, noting (4.4.34) and (4.4.35), after repeating
the process in the proof of Lemma 4.4.1, we could solve Cauchy problem (4.2.9) to (4.2.10)
on [01,201]. For fixed T' > 0, by at most [g;] + 1 steps, we reduce the value of € to gy and
apply Lemma 4.4.1 successively, then we extend local solution to large time interval, finally

to [0, 7).

4.4.3 Solving the moisture equation (4.2.11) for PFZ zone and FFZ zone
With the existence of the interface [(t) and f,(¢,1), t € [0, 77, using characteristic method,
we construct a solution M, as

0/ 4
M~ [PB@ €O se<l e s

Mzn(f)a else,
with £ and 2 defined by (4.4.22) and (4.4.24).
Next we prove that M, € C°([0,T]; L*(0,1)). For any given 0 < #; < t2 < &, we prove

that
HMp(tQ, JJ) — Mp(tl, $)|‘L2(0,1) — 0, as ’tz — t1| — 0. (4437)

We estimate [if1) | M, (t2, 2)=My(tr, 2)|? da, [§3) | My (2, 2)=My(tr, @) 2 do, [,y [Mp(t2 )~

My(t1,z)|? dx separately. For almost every x € [0,£(¢1)], by (4.4.36), we have (see Fig 4.4.2)

| M (t2, ) — My(t1, )| = [ Min(f2) — Min(i1)], (4.4.38)

where #; and #s are defined by

t1 F(U(0),N(0),fp(o,1)) d t1 N(o _pfy FU(s),N(s),fp(s,1)
0 = zeli He) 7 CNlo) e o 1) “ 4o, (4.4.39)
i Uo)
ty F(U(0),N(0),fp(o,1)) d t2 N(o iy FUs),N(s),fp(s,1))
0 = zei He) 7 - CNlo) e o 1) “ do. (4.4.40)
i o)

For the given M;, € L*(0,T), we let M € C'([0,T]) be such that M — M;, in L*(0,T).
We have that for almost every = € [0, £(¢1)]

| My(tz, @) = My(tr, )| <|Min(f1) — My, (£1)] + [ M, (1) — M, (£2)]
+ |M,(i2) — Min(t2)]- (4.4.41)

>From (4.4.39) and (4.4.40), we get

ty Q'N(U) 'e_fjl W(kdo’
Jiy Uo)

ty _ ptoy F((9),N(0) fp(o,1)) 2 "N(o iy F(1(s),N(s),fp(s,1))
M e de [ ON(0) | g TR gy (4.4.42)
Ji, (o)
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Hence, we have

to N(o t1 F(I(s),N(s),fp(s,1)) ds
|t —11] < D gl(a()) 1) do
o o o t £ s s s
f - ) PN D) gy (N (0) iz FUONGLe) 4 o
Ji, o)
t1 C;\(]((;-) .e_fffl wds do
2 o
iz = i FHAER I g / cg(;) . EaL P
t1 g
(2 - ) PN gy 1N (o) i PN a0 g,
( 'y e ’
2
t £ s),N(s), s, s s s,
[ gy g,
io o
iy tz F(i(o),N(o),fp(o,1)) 2 N t F(I(s),N(s),fp(s,1))
B e / CN(o) | - o St ds (4 g g3)
Jty Z(U)
where
N, —
p .= tWNe=e) (4.4.44)
le +é1
We get
ta — 1] < Olta — t1]. (4.4.45)
Hence, from (4.4.38), (4.4.41) and (4.4.45), we get
&(t1)
/ | My (ta, ) — My(t1,2)|* de < C|| M, = Min||72(0.1) + Caltz — t1]*. (4.4.46)
0

Here and hereafter, we denote by C' different constants which do not depend on x, t1, t2 and
n. We denote by C,, various constants which do not depend on x, ¢; and to, but may depend
on n.

For almost every = € [£(t1),{(t2)], by definition (4.4.36) of M, we have (see Fig 4.4.3)
| M (t2, x) — My(ty,z)| = [Min(f2) — My (1)], (4.4.47)

where 5 is defined by (4.4.40) and & are defined by

R t1 F(l(o),N(0),fp(o,1)) N 0’ 0 F(l(s),N(s),fp(s,1))
x1=xef° (o) do / ¢ ) ‘e i(s) % 1o

(4.4.48)

Noting (4.4.26) and (4.4.28), we have

&(t2) )
/ M (ta, ) — M, (b, 2)|? da
&(t1)

§(t2) £(t2)
< 2/ M (b, 2)[2 da +2/ M (t, 2)[2 da
) é)

() Ut) g FU@NE)pED)
=2 M (t J 1) ? dt

I'1(0) 0 5 ft2 E(U(e),N(o), fp(a.1)) 4
+2 / MO ()2 elo” = gy (4.4.49)
0
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where I'y and I’y are defined by

t1 F(N(0),l(a),fp(o,1)) N s F(N(8),0(5),fp(s,1)
Ti(s) = (ta)el’ @ CN(o) | o= g R ds 4 (4 4 50)
s o)
ty F(N(0),1(0).fp(0,1)) t2 -\ = F(N(s) 1(s), fp(s,1))
Ta(s) = E(tr)els” Y / Vo) o ®de. (4.4.51)
s o)
From (4.4.10) and (4.4.50), we get
ts o ( t_ t2>F(N(S)’l(S)vfp(Sv1))d
|F1(0)| — ’/ C (U) e fO fo 1(s) Sdo_
i gN(a) [ EQUC)e) Tp(e1) g
_ e
o o)
. ta (N(0) ’e(fofl —f?)wds . y F(N(s), zl((?) Sp(s) o o
o o)
t S S S,
ZCN(O') f[?F(N()l(())fp( ) s o
tg t1 to F N
c/ / / / Q(ORIONACE) I
l (s)
< Cltg — tq]. (4.4.52)
From (4.4.51), we get
/t2 F(N(0),l(0), fp(c,1)) o t 1
T, " (0) s),l(s), s,
0=&(ty)e’ T2 l(o) _/2 CN(o)  —fp2 B g
1oy o)
(4.4.53)
Hence,
£(t2)
/( IMy03,2) = Myt1,2) d < Ol — ] (4.4.54)
&t

For almost every = € [£(t2), 1], by definition (4.4.36) of M,, we have (see Fig 4.4.4)
|My(ta, ) — Mp(ty, )| = [MJ(22) — MQ(21)], (4.4.55)

where 1 is defined by (4.4.48) and Z3 is defined by

ty F(N(),l(9),fp(o,1)) t2 F(N(s),l(s),fp(s;1))
By = pelo? TR do / CN(0) | - [ FEg el s (4.4.56)
o o)
It is easy to get
|Zo — 21| < Clta — t1]. (4.4.57)

For the given M) € L?(0,1), we let M9 € C*([0,1]) be such that M9 — M) in L*(0,1).
From (4.4.55), we get

| My(t2, x) — Mp(tr, )| <|My)(22) — My"(&2)| + | M, (E2) — M"(d1)]
+ M (d1) — My (81)]. (4.4.58)
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Noting (4.4.57), we have

1
/sa ) | My (t2, ) = Mp(t1, )| dz < C||M" = M| 7201y + Culta — t1 . (4.4.59)
2

Combining (4.4.46), (4.4.54) and (4.4.59), we get

1
/0 | My (ta, ) — Mp(t1, @) da < C||Mf, = Min|| 720y + ClIM,"™ = MP[1Z2(0.1)
+ Chlta — t1]* + Clta — t1]*. (4.4.60)

Therefore by Lebesque dominated convergence theorem, letting n large enough and then
|ta — t1]| small enough, the right hand side of (4.4.60) can be arbitrarily small. Thus, we get
(4.4.37). This proves that the function M, defined by (4.4.36) belongs to C°([0,T7]; L*(0,1)).

With the existence of the solution My(t,x) for moisture equation for PFZ zone, we use the
interface relation in (4.2.11) to solve the FFZ zone.

For any s € [0,T], we define the characteristic curve £(s) (see Fig 4.4.5)

s E(N(s),1(s). fp(s:1) g

~ 0 o L UVRS),08),TpASs 1))
£(s) = — / - —11 5 (f}f‘d/(f; ~ F(N(0), (o), fy(0, 1)) -l £ do.(4.4.61)

For any fixed (t,z), when 0 < z < £(t) we define the characteristic curve & (s) (see Fig 4.4.5)

- _ t F(N(0),l(9),fp(o,1))
() =ac T 0

t 1 CFd(U) |
- / L—1(o) <p0veff — F(N(0),1(0), fy(o, 1))) e

2 EN@IIp(1) 4o

4 L=I(s) do.

We define ¢ as
&(t) =0. (4.4.62)

When £(¢) < 2 < 1, we define the characteristic curve £3(t) (see Fig 4.4.5)

- _ t F(N(0),l(0),fp(o,1))
Eals) = ac I T T

‘1 (CRulo) [ FO .50 g,
- — F(N l 1 . edo T—1(s) do-.
/3 L—l(a)(poveff (N(o),l(0), fp(o, ))) € o

We define T as

z = &3(0). (4.4.63)
Now, we construct a solution

MY(F), €t)<z<1, te[0,T],

M (t,z) = (4.4.64)

M,y(t,1), else,

where ¢ and & are defined by (4.4.62) and (4.4.63).
By expression (4.4.64) of solution My, it is easy to check that My € C°([0,T]; L*(0,1)).
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From (4.4.36), we get that for any fixed ¢ € [0, T

1 1 1
/0 Mg(t,x)dx </0 (Mz?(a:))de—i—/O (M;, (£))? dz

_/Ol(MZ?(:i:))Zlg; da@+/OT(Mm(£))2‘Z‘;f di. (4.4.65)

By (4.4.26) and (4.4.28), we have
Ox Ox
03 ot
Combining (4.4.65) and (4.4.66), we obtain (4.3.11). Similarly, we can obtain (4.3.13).
By the uniqueness of (I(t), f,(t,1)) which determines the characteristic curves &, &3, &

C(Ne +€O)‘

<1,
) le—é()

(4.4.66)

and &3, we conclude the uniqueness of M, and M.

Figure 4.4.5: The characteristics §~, .’;:1, 52 and 53.

4.4.4 Solving the temperature equation (4.2.12) for PFZ zone and FFZ zone

With the existence of the interface [(¢) and f,(¢,1), ¢t € [0, 6], using characteristic method,
we construct a solution 7, as
@ 1 [ D (N S) ol o) — OV (6)) s, () <2 <1
Tp(t,x) = E 0t o | , o
Tin (D)1t + / eC1lt=9) (91 (N(s), fo(s,€1(5))) — ClTb(x,fl(s))) ds, else,
' (4.4.67)
with £ and Z defined by (4.4.22) and (4.4.24).
With the existence of the solution for temperature equation for PFZ zone, we use the

interface relation in (4.2.12) to solve the FFZ zone. We construct a solution T} as

TH@)EN + [3 e (go(N(s) = CiTy(s. () ) ds, £(t) <z <1,

Ty(t.w) = 7 1)eC1t 4 [t Cr(t—s) - 3
Ty(E, 1)t + [} 1) (go(N(s)) = C1Ty(s,61(5)) ) ds,  else,

(4.4.68)
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where ¢ and # are defined by (4.4.62) and (4.4.63).

Similarly as we did for M), and My, one can easily conclude that (4.4.67) and (4.4.68) give
the unique solution of (4.2.12), together with the estimates (4.3.12) and (4.3.14).

4.5 Proof of Theorem 2

In order to conclude Theorem 4, it is sufficient to prove that f,,, € C°([0,T]; L?(0,1)).

Derive the system of f,  and apply L? well-posedness for linear system.

From (4.2.10) and take derivative with respect to x in (4.2.10), we have

Ot fp. (t, @) + ap(t, )0 fp, (t, ) = —ap, fp,(t, 2), (t,2) € Q

fpm(ovx) = ng(x% U (071) (451)
—l F! (H)0(N — F,, ()0 (N (t))N’
o 00) = A0 FalHNO) = Fu OO, 17

Similarly to the proof of Theorem 3, when ¢ € [0, ], with ¢ defined by (4.4.11), we have

~1(0) | FpBWN() = Fu@f (NEIN'G) | e Eenehsaien g,

Fin(f 1
/. Zin A s) 0< < t’
fou () = { CN(2) 02(N(t)) e
Pzl X ftwd
191 (’1:) - e 0 l(5> (t) S a < 1
(4.5.2)

where ¢ and # are defined by (5.2.14) and (4.4.24).
Since H? can be embedded in W in order to prove Theorem 4, we only have to prove

fpua(t,+) € L?(0,1) for any given ¢ € [0,5]. >From (4.5.2), we have

1
/ s (6, 2) do

F,, + F(U(s),N(s),fp(:1) 5\ OF |2
/ ‘ l<t ] d 21 (f) ) elt i) d )ﬁ’ dx (4.5.3)
di\CN(®) di ‘O(N (D)) Ox
f[f wd 0z |2
+2/ ‘d )&w‘ dz. (4.5.4)

Concerning (4.5.4), by (4.4.28), we have

1 d t F(I(s),N(s),fp(s,1)) o412
~ 2 PP 2 ds T
2 ‘ﬁ 0 (&) - el ) )—’ dzx
/ dz f”( ) ox

4 t F(l(s), N(S) F(l(s),N(s),fp(s,1)) ds ~
f | Pzx {E |2da’:

t F(l(s),N(s),fp(s,1))
93l =i s / |fpm (2)|* di

361 Fll 1,00

2 - | fo, Hng(O’l). (4.5.5)
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Concerning (4.5.3), by (4.4.26), we get

/ ) l(t d( Fm() ;F(zm Nl<(>)fp<s D) 4s ) a{‘zdx
dt \CN t) dt 0( ()) ox
- (F t F(I(s),N(s),fp(s.1)) R
l+5 /‘ . A(Fm(é)).eATd)‘ di
) dt "9(N (1))
- (F t F(1(s),N(s),fp(s,1)) ~
l+€ /‘ l A) i(Fln(ﬁ))eg#ds
N(t)/ dt 0(N(t))
/ ‘ <t> (F ll) ) f S
(t Cdi? O(N(t))
[0 4 Enld)) g recsgeens o FUD.NO: 5iE D)
(t) dt 0(N(t)) l(t)
_6(l+2) {2<||Z||3V1,MN12+<ze+e>2||N||%V1,m) M Finl)
S((Ne—e) (2N} O(N(-)) 201
. (I, +6>2 25HFHW1oo || Fin(+) ||
NG O(N(-)) HHOT)
(I +¢)? _ ||F||%V1,Oo _ % || Fin(+) || }
ONZ (e—e2 ¢ 7 0<N< )) 2T
:6(164—5) .e%' L) F, ” ] HlHWm (le+s)2\|NH§V1,oo)
(3N§’ o H2(0,T) Ng
+ (le +¢)? (1 + HWl > )} (4.5.6)

Combining (4.5.3), (4.5.4), (4.5.5) and (4.5.6), we get fp,.(t,-) € L*(0,1) for any given ¢ €
[0,6]. The proof is complete. O

4.6 Conclusion

In this chapter we perform an mathematical analysis of coupled transport equations which
are defined in complementary time varying domains. The goal of the analysis is to prove the
well-posedness of this class of system. The Partially Filled Zone equations are characterized
by a time-varying velocity which is a function of the screw speed N (t). In the Fully Filled Zone
the convection velocity is strongly related to the interface properties by its dependence on die
net flow rate F,;(t). We approach this problem by performing a change of coordinates which
consists to express the system in a fixed domain (0,1). This transformation generates fictive
convective terms in the transport operator. By contraction mapping principle (Banach fixed
point theorem), we prove the existence and uniqueness of [(¢) and f,(¢; 1) for ¢ small. With
the existence of I(t) and fy(t;1), we then construct a local solution to Cauchy problem. By
an iterative method we extend the results to the existence and the uniqueness of semi-global
solution. The solution we obtained in Theorem 3 and Theorem 4 is called semi-global solution
since it exists on any preassigned time interval [0; 7] if the initial and boundary data has some

kind of smallness (depending on T). We point out that the assumption of constant viscosity
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allows to release the strong coupling relation between the equation of e mass, moisture and
energy balances. The coupled system which is composed by the transport equation of the
filling ratio and the interface motion equation is in a sense a free boundary problem which
can be treated independently. Here the free boundary dynamic is a function of the difference
of pressure AP(t) and it evolves independently from the energy and moisture balances. Ours
future works in the context of well-posedness and moving interface problems will deal with
this extrusion process model with distributed viscosity and pressure continuity relation at the

interface.
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Chapter 5

Mass transport equation with moving
interface and its control as an input

delay system

5.1 Introduction

In this part we address the problem of the stabilization of the position of the moving
interface given by the equation (3.3.7) thanks to the inlet flow rate acting on the boundary
of the transport equation of the Partially Filled Zone (3.5.11). The control input does not
appears directly in (3.3.7) but it appears with a delay depending on the position of the moving
interface through the filling ratio f,(l(¢),t). So we propose to tackle the problem as a time
input delay system control problem.

So far the control oriented models of extruders are issued from some black box linear model
identification around some operating conditions. Following the objectives of the control and
the choice of the manipulated variables these models can be time delay linear MIMO or
SISO models [105, 108, 145, 118, 58]. These time delays are due to time delays associated
with the off line measurements of key product properties, non physical time delays due to
approximation of nonlinear dynamics and in some case due to the transport of the matter in
the extruder [105]. These time delays are always assumed to be constant. In some sense the
basic nature of the extruders: the two-zone model is never exploited. We leave the reader
refer to the introduction of Chapter 3 to have more details about the control strategy used
for these extrusion processes.

Time delay systems are not commonly used in chemical engineering even if the dynamic
models of many chemical engineering processes involve significant time delays due to trans-
portation lag such as the example treated in [39] of two chemical reactors represented as contin-
uous stirred tank reactors with recycle loop. Others examples can be found in [12, 151, 152, 31|.

For spatially distributed parameter systems, some authors treats the regulation problem of

79
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convection governed dynamical processes described by linear first order partial differential
equations by using the method of characteristics(MC) in order to transform the PDEs into a

set of time delayed ordinary differential equations [65, 125, 4, 3].

Research on time delay systems initially focused on open-loop stable linear systems with
a single manipulated input delay which are described by transfer function models, in which
the presence of the time delay prevents the use of large controller gains. To overcome the
destabilizing effect of the high gain, Smith [128] proposed in 1957 a control structure, known as
the Smith predictor that permits to improve the control performance; it completely eliminates
the time delay from the characteristic equation of the closed-loop system, allowing the use of

larger controller gains.

Various controllers have been developed to address time-delay induced performance and
stability issues as described in the survey paper [121]. Delay systems can be controlled in
different manners using methods based on an algebraic Riccati approach (where stability
conditions are expressed by the solvability of a Riccati equation or by the feasibility of a
linear matrix inequality) [97, 153], sliding mode controllers [53, 64, 63, 154, 129, 74, 101] or
variants of the Smith predictor [128, 96, 15, 55, 72, 19|.

For the problem under consideration we will have to deal with the class of the input delay
systems more precisely the class of state dependent input delay systems. The approach chosen
for the synthesis of the control is based on the works proposed in [19, 20] for state dependent

input delay systems using a predictor.

5.1.1 Organization of the chapter

This chapter is organized as follow: in section 5.2 the system formed by the transport PDE
coupled with the ODE of the moving boundary is transformed into a state dependent input
delay system. In section 5.3 we propose a rapid overview of the predictor based controllers
for input delay systems. The design of the controller is described in section 5.4. Simulation

results are proposed in section 5.5. Finally concluding remarks are established in section 5.6.

5.1.2 Contribution

This chapter is dedicated to the control of 1D hyperbolic partial differential equation
with moving interface as a delay system. The model derives from the mass balance of the
extrusion process that describes the strong coupling between the mass transport equation and
an ordinary differential equation which represents the interface motion. Solving the transport
equation of filling ratio by the method of characteristics , we obtain an state-dependent-input-
delay control problem. The stabilization of the system around an equilibrium is done by using

a state predictor.
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5.2 From transport equation to delay system for the extrusion

process

The main idea in this section is to define a delay system from the model given by equations
(3.5.11) and (3.3.7). Our aim is to solve the hyperbolic partial differential equation by the
method of characteristics and to express the solution as a function of the boundary inflow
data. The delay represents the propagation time of the matter from the boundary {z = 0}
to the interface {x = [(¢)} due to the screw speed . The solution is injected in the equation
(5.2.2) in order to obtain a delay system. This computation leads to a nonlinear scalar state

dependent input system depending on the interface position [(t).

5.2.1 Mass conservation equations in an extrusion process

In Chapter 3 we have presented the model of the extrusion process considering an ho-
mogeneous melt which is convected from the feed to the die by screw rotation.

The modelling of the extruder makes appear two geometric zones in which the matter flows
at different velocities. These two zones are separated by an moving interface whose dynamics
is given by an ordinary differential equation expressing the mass balance in the Fully Filled
Zone.

In this section we recall the mass transport model of homogeneous material in the PFZ
given by equation (3.3.7) as well as the total mass balance in the FFZ gives rise to the moving
interface dynamics (3.5.11).

The PFZ is defined in [0,[(¢)[ and the FFZ in |i(¢), L] (where L represents the extruder
length and [(¢) the interface position).

e Considering the filling ratio fy(x,t) as the distributed variable, the PFZ mass balance
leads to a transport equation whose velocity is determined by the screw speed N (t) and
the equivalent pitch £ of the screw. Under the flow continuity assumption at {z = 0},
one can express the boundary filling ratio in terms of the PFZ convective velocity {N(t),
the available volume Vs, the material feed rate Fj,(t) and the mass density po.

Yo (w,t) = —EN(O) L2 (2,t) 2 €[0,1(1)]

N - (5.2.1)
H0:1) = 1,"(t) = Gewtovey,

e In the FFZ, the velocity of the convection is determined by the net flow at the die Fy(t).
The FFZ mass balance is associated to the motion of the moving interface I(t) between

there two zones:

dit) _ Fa(®)=poN@)Vessfp(U(t).1))

dt poSesr(1=Ffp(l(t),1)) (5.2.2)
1(0)=1" 0<I°<L,
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where L is the extruder length. Fy(t), the net flow at the die is a function of the geometric
characteristics of the die K, the constant viscosity 7 and the pressure build-up in this

zone P(z,t).

Fy(t) = S4AP(t)
AP(t) = (P(L,t) — Py),

(5.2.3)

where Py is the air pressure.

5.2.2 Recalling the formulation of coupling relations at [(t)
As it is described in Chapter 3 the coupling relation between the two zones (PFZ —

I(t) — FFZ) can be formulated in two ways:

1. The first one is a flux coupling relation (3.5.14) and derives from the continuity of the

momentum flux and allows to express the die pressure P(L,t) as a function of N(t),
I(t), and f,(I(t),1):
—+ Lo —1))) + VA

AP(t) = b, (5.2.4)
772/105%”
with
A = [1+é{;(L—l(t))]2+93(fp(l(t%t),N(t),l(t))
and
[ 2Ka \* (nVeggN(t)
P, Py
HENA D+ ) 11(0,1) - po)

2. the second one is a state coupling relation and derives from the continuity of the pressure
at the interface [(¢) (P(I,t) = P(I*,t) = Py), then:

_ nVepsN()po(L — 1(t)) (5.2.6)

APW) = o T Ra(L —100))

Recall that the main assumption of this modelling point of view is the existence of two
zones PFZ and FFZ to make appear the interface dynamics. This property is preserved if
and only if AP(¢) is strictly positive. It means that the output flow at the die Fy(t) must be

a positive quantity. This constraint implies by the following inequalities:
e For continuous momentum flux at I(t)

Q3 (fp(U(1), 1), N (1), (1)) > 0 (5.2.7)
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Then a critical value of the filling ratio at the interface coupling is defined as fy,.(I(t),1)).

Its expression is recalled here (3.5.18):

Py — MO (L - 1(1))
ponNz(t) + PO

fpe(l(2),1)) > (5.2.8)

For a given function N(t), one can define the set (f,(I(t),t),l(t)) which satisfies the
constraint (5.2.8).
e For continuous pressure at [(t) there is no constraint because the positivity condition
on AP(L,t) is always satisfied (L > I(t)).
5.2.3 Transport equation solution

Consider the first order linear transport equation (5.2.1) in the two variables ¢ and x with
the boundary condition f,(0,1?).

The total derivative with respect to some variable 7 can be written as:

dfp(x(7),t) _ dt 0 fp(z(7), 1) . dx (1) 0fp(x(7),1t)
dr dr ot dr ox

Defining the solution along the characteristic curves, we have:

dt __
a

d%(:) = EN(2) (5.2.9)

dfp(z(7),t)
a0 _

The last equation is deduced from equation (5.2.1) and fy(z(7),t) is a constant function along
the characteristics.
Since N(t) is an unknown function of ¢, the system (5.2.9) cannot be explicitly solved.

Integrating the characteristics equations

<x1 To x3>=(t T fp) eR?

we obtain:

x1(1,8) =T+ s
o(r,8) =& [T N()dr' (5.2.10)
z3(s) = fp(s)

Where s is the constant of integration. Let us introduce N (t) as the primitive function of

N(t). Tt is obvious that:

N(s)=N(r+s)— == (5.2.11)
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Using equation (5.2.10) the following equality is deduced:
s =N (N(t) - %) (5.2.12)

Any function which is constant along the characteristic curves can be expressed as:

fo(@,t) = fp (N‘l(N(t) - Z)> (5.2.13)

To find the solution that satisfies the prescribed boundary conditions (5.2.1), we substitute

the general solution formula and obtain:
in v —1 (A7 z
et = £ (N0 - ) (5210

Recall that we assume the flow continuity at { = 0}. Thus, the input filling ratio f;” (t)

which is the boundary condition can be deduced from the feed rate Fj,(t), we obtain:

. — — €T FZ N_l N( ) -2
a (N_I(N(t) - €)> N (poNEt)Vfo £)>’ (5:2.15)

Where pg is the mass density and Vs the effective volume.

5.2.4 State dependent input delay system for the extruder model

In the following we assume that the screw speed is constant N(t) = Ny. The control
problem consists to stabilize the interface position by a feedback on the "abstract" input

variable f2" which depends on the feed rate (5.2.15). We find:

Folw,t) = Fint — <)

, 0 (5.2.16)
Fp((®),1) = f;"(t = 55¢)»
and this simplification results to the following system:
aw _ Fy(t)—poNoVesy fim <t—11\;(7i)§>
a poSeff |:1—f;;" (t_ll\l(i(t))ﬁ)} (5217)

Fy(t) = B4AP(t)

Now, it becomes clear that equation (5.2.17) defines a nonlinear state dependent input

delay system which can be written in the abstract form:

A0 — FU(t), Ut - DA(1)))
U(t) = fin(t)

Where f is the nonlinear function and D(I(t)) the delay function depending in the state

(5.2.18)

variable and acting on the input function U(t). As it will be presented in section 5.3.3,
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[19, 20] solve the regional stabilization of this class of problem using a predictor with an
horizon depending on the future value of the state. The stability around the equilibrium is
ensured for small variations of the initial conditions of the state and the input when the delay
is large. The section 5.3 is dedicated to the general review of predictor-based controllers in

the cases of constant input delay, varying input delay and finally state dependent input delay.

5.3 Generality on predictor-based controllers

5.3.1 Predictor-based controllers for constant input delay systems

As already mentioned the predictor-based controllers were first introduced for linear sys-
tem by Smith [128] in the frequency domain and later in the state space representation by
[96, 15]. These latter references use the terms finite spectrum assignment (FSA) and model
reduction respectively to represent the modified Smith predictor. These extensions offer more
possibilities on stability issues since they work for unstable systems contrary to the Smith
predictor.

We present first the philosophy of such modified Smith predictors.

We consider a linear system with constant input time-delay D as (5.3.1):
X(t)=AX(t)+ BU(t-D) X eR" UecR™ (5.3.1)

The important point here is that the knowledge of an initial data as X (¢g) and the future
inputs U is not sufficient to compute the future dynamics of the state X (¢). One should
complete the system by defining the input U(t) over the history window [to— D, tg]. Supposing
that this system (5.3.1) is controllable and introducing K € R™*™ as vector gain which
stabilizes the free-delay system X (t) = AX(t) + BU(t) (by static state feedback), one can
build the predictor which guaranteed the stability of the delayed system. A modification of the
classical Smith predictor scheme allows to compensate the delay D by introducing control law

which makes the system free of delay. This control law is defined by the following equation:

Ut)=KX(t+D) XeR" XeR™ (5.3.2)

This alternative feedback allows to transform the delayed system (5.3.1) to an free-delay

system after a dead-time D as it is represented here:

X(t) = (A+ BK)X(t) (5.3.3)

This equivalence is achieved if one can predict the value of the state at time (¢ + D). This
prediction is obtained by integrating (5.3.1) from an initial condition given by the current

state vector X ():
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t
X(t+ D) —eADX(t)—/ ACTBU(T)dr Vit >t (5.3.4)
t—D

It follows that the corresponding feedback law is given by the relation 5.3.4:

t
Ut) =K [P X (t) — / eA(t_T)BU(T)] dr Yt>tg (5.3.5)
t—D

Knowing the input along the delay interval [t — D;t], it becomes easy to compute the
integral term ftt_D eAt=7) BU ()dr and to design this infinite dimensional feedback law (5.3.5).

The numerical approximation of the integral term should be done carefully to guarantee
the stability when the controller is implemented [103].

So the feedback law (5.3.5) for the system (5.3.1) determines the so called FSA method
since the spectrum of the closed loop system coincides with the spectrum of the matrix
A+ BK.

Considering the predicted state determined by equation (5.3.4):

P(t) = X(t + D) (5.3.6)

One easily deduces the predictor that obeys to an free-delay system with its associated feed-
back as:

P(t) = AP(t) + BU (%)
U(t) = KP(t)

(5.3.7)

This framework corresponds to the reduction model approach.
The predictor (5.3.6) can be extended to nonlinear systems. We present here the result as

proposed in |82, 84|. We consider systems of the form:

X(t) = f(X(t),U(t — D)) (5.3.8)

In [84] the author defined the predictor for nonlinear forward-complete systems, namely,
systems such that have bounded solutions and a suitable continuous gain function for any
bounded input function U ().

The construction of the feedback predictor-based control law for nonlinear system with
constant input delay follows the same method as previously. The controlled free-delay non-
linear system (5.3.9) is supposed to be globally asymptotically stable by a feedback law given
by equation (5.3.10):

X(t) = f(X(1),U(t) (5.3.9)

U(t) = k(X (1)) (5.3.10)
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The delay compensation is then guaranteed by the predictor-based control law:

U(t) = r(P(1))

(5.3.11)
Pty =X+ [L, f(P(1),U(r))dr

This control law is implicit but it is computable.

5.3.2 Predictor design for time-varying delay

The study of time-varying delay system is performed for state dependent delay and few
results are proposed for the input delay cases [30]. [109] proposes a parameter-adaptive
design in very particular cases of scalar system which a known time varying input delay. In
[110], a general result based on an explicit state-feedback control law for linear time-invariant
(LTT) plants with time-varying input delays was presented. But no analysis of stability or
feasibility of controller are performed. In the context of Network Controlled Systems (NCS),
[150, 149, 148] propose the control design of a particular case of linear system with time varying
input delay. The authors consider an internal delay dynamics representing the transmission
channel model and implement a predictor-based controller.

There exist few papers that deal with the compensation of time-varying input delay in
nonlinear systems [77, 83, 59]. In [59], the control design approach is based on state prediction
computation and the overall method is illustrated on an example of water flow control in open-
channel systems.

The key idea in this case is that the state prediction is calculated over a time-varying window
starting with the current state as an initial condition and taking into account the future values
of the delay.

As in [110, 83] we consider the following linear system:
X(t) = AX(t)+ BU(¢(t)) X €R" (5.3.12)

U is the input and ¢(t) a continuous function which contains the delay. The predictor

based controller is build under the following assumptions:
e ¢(t) is a differentiable function that satisfies ¢(t) is strictly upper-bounded.

with these assumptions that guarantee the causality of the system (5.3.12) and the invertibility
of ¢(t), the predictor-based controller is generated by introducing the closed loop system :

X(t) = AX(t) + BU(4(t))
U(p(t)) = KX(t) Vo(t) >0

(5.3.13)

Consequently, the system (5.3.12) is rewritten as:

X(t) = (A+BEK)X(t) Yo(t) >0 (5.3.14)
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where the gain vector K is chosen to ensure the convergence of the closed loop system. The

control law can be written using the inverse of ¢(t) as:
Ut)= KX (¢ '(t)) Vt>0 (5.3.15)

Using integration formula on equation (5.3.12) we obtain for ¢(t) < 6 < ¢:

_ o1 (t) _
X(¢ 1) = AT O x (1) 4 / AT O BU (¢(7))dr (5.3.16)
J
or equivalently by introducing the change of coordinates p = ¢(7):

t
X(¢_1(t)) _ eA(¢*1(t)—t)X(t) + /(z)(t) eA((bl(t)—d)l(#))BMdu (5317)

Replacing (5.3.17) in the control law (5.3.15), it follows that :

t
Ut) = K [eAw—l(t)—t)X(t) n / A 0-s e g TW (5.3.18)
Jo) ¢l ()]
Equation (5.3.18) is the predictor feedback of the time-varying input delay (5.3.12) with the
predicted state given by equation (5.3.17): P(t) = X (¢ 1(t)).

Remark 12. In can be noted that the exponential stability of the feedback system with the
predictor controller proposed in [110] is proven in [83]. The proof lays on the construction of
a Lyapunov functional using a backstepping transformation with time varying kernels, and
transforming the actuator state into a transport partial differential equation with a convection

speed coefficient that varies with both space and time.

Prediction of the state of a time varying delay system is very complicated. It necessi-
tates future values of the delay for the horizon [t,#~!(¢)] that may be not available. Some

methodology to compute this horizon is proposed in [18] when the delay evolution is known.

5.3.3 Predictor design for state-dependent input delay system

The first results on the stabilization of a state-dependent input delay linear and nonlinear
systems are proposed in [19, 20]. These papers are an extension of the works on time varying
delay systems (see section 5.3.2).

The predictor-based compensator is designed for a particular class of nonlinear systems
which are, in the absence of the input delay, either forward complete and globally or locally
stabilizable (by a possible time-varying control law). Again the controller uses predictions
of future values of the state on appropriate prediction horizons that depend on the current
values of the state. Only a regional stability result, is obtained even for the case of forward-
complete systems. Also, an estimate of the region of attraction for a control scheme based on

the construction of a strict, time-varying Lyapunov functional is determined.
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The global result is achieved for forward-complete systems under a restrictive Lyapunov-
like condition, which has to be verified. This feasibility condition F. (5.3.31), is that the delay
rate must be bounded by unity irrespective of the values of the state and input. This condition
corresponds to the upper bounded condition established for time varying input delay system.
In this context, the control signal never reaches the plant if the delay rate is larger than one.

We present the predictor for the state dependent input delay nonlinear system [19, 20].

Consider the system which is governed by the following nonlinear equation:
X(t) = f(X(t),U(t — D(X(t))) with f(0,0) =0 (5.3.19)

where X € R™; U : [tg — D(X(ty)), 00[— R™; t > tg > 0 D € CY(R™;R").
[ (R"RT) — R™ is assumed to be locally Lipschitz and the following holds:

[f(X (1), w)| < ar(|X] + |w]) (5.3.20)

Where o7 is a class Ky function®.

The state predictor is given by:
P(t) = X(t+ D(P(t))) (5.3.21)

Indeed the predictor P(t) is associated to the value of the state at the time when the
applied control reaches the system. This time is itself depending on the state at this time, so
P(t). The existence of this implicit relation makes the problem completely different from the
case of system with independent time varying delay function as it is exposed previously.

The key of the resolution in [19, 20], is based on the transformations of the time variable
t > t+D(P(t)) and t — t—D(X(¢)). The predictor-based controller is given by the following

relation:

Ut) = k(o (t), P(¢)) (5.3.22)

where for all t — D(X(t)) <7 <t and t > to:

- T f(P(r), U(p))
P(r) = X(t) + '/tD(X(t)) 1—VD(P(u)f(P(n),U(n)

)du (5.3.23)

with the prediction time

o(p) = p+ D(P(1)) (5.3.24)

The initial predictor P(7) is given by (5.3.23) for t = ty and 7 € [to — D(X (to));to]-
Analyzing the initial predictor for 7 = tg — D(X(¢g), one deduce that:

P(to — D(X(to)) = X (to) (5.3.25)

*a continuous function a: [0,a) — [0, 00) is said to belong to class Ko if a = 0o and a(r) — co as r — oo
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This condition means that at the initial time the predictor fits perfectly with the initial state
argument.
The fact that P(t) as given in (5.3.23) is the o(t) —t = D(P(t)) time units ahead predictor

of X (t) can be seen performing the following coordinates change:

¢(t) =t — D(X(t))

(5.3.26)
¢~ (r)=o(r) Vre[t—D(X(1)),]
Equation (5.3.25) is rewritten as:
P(é(to)) = X(to) (5.3.27)
Applying ¢! to the equation above one obtains:
P(to) = X(o(to)) (5.3.28)
Then for ¢t > tg, the following equality holds:
P(t) = X(o(t)) (5.3.29)

Considering the change of coordinates (5.3.26), it is obvious that o(t) =t + D(X(o(t))) and

differentiating this equality it follows that:
B 1
1=VD(P(7))f(P(r),U(7))

It is now clear that the gradient-of-delay term in the denominator of (5.3.23) is the result of

(1) Vre [t — D(X (1)), 1] (5.3.30)

a change in the time variable, which allows the predictor to be defined using an integral from
the known delayed time ¢(t) =t — D(X(¢)) until present time , rather than an integral from
the present time until the unknown prediction time o(t) = ¢t + D(P(t)) as it is mentioned
previously.

The denominator of the predictor equation (5.3.23) should be positive and this condition

stands as the feasibility condition:
Fe: VD(P(1)f(P(r),U(7))) <c¢ ce€(0,1] (5.3.31)
Because of this feasibility condition the stabilizing results are not global in general.

e In [19, 20], the local stability of the nonlinear state dependent-input delay system
(5.3.19) is guaranteed under assumptions of global stabilizability and forward complete-

ness of the free-delay system X = f(X,w).

Recall that the forward completeness assumption means that for every initial condition
and every locally bounded input signal, the solution of the system X = f(X,w) is
defined for all t > tg. Mathematically, this means that there exists a smooth positive

define function R(X) and K functions ag,as and ay such that:
az(|X]) < R(X) < as(|X]) (5.3.32)

OR(X)
X

F(X,w) < R(X) + as(jw]) (5.3.33)
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e For nonlinear state dependent-input delay systems (5.3.19) which are more restrictive
in the sense that the free-delay system is only locally stable, the problem is more com-
plicated [19, 20].

The regional stability of the delay system (5.3.19) is achieved if the control reaches the
system while the state is within the region of attraction of the delay-free closed-loop
system and the solution remains at any time within the controller’s feasibility region,
so that the control signal is never retarded to earlier values, and the delay remains
compensated for all subsequent times. This requirement corresponds to set of initial

conditions from which all of the solutions belong to this the region of attraction.
It is important to note that in both cases the feasibility condition (5.3.31) must be checked.

Remark 13. For the linear state dependent input delay system the same analysis can be

performed. Let us consider the plant:

X(t)=AX(t)+BU(t — D(X(t)) X eR" (5.3.34)

As soon as the pair (A, B) is stabilizable the free delay system X (t) = AX (t)+BU(t) satisfies
all the required condition to synthesize the controller for the linear state dependent input delay

system. The controller for the time delay system is given by

Uty = KP(1) (5.3.35)

B T AP(u) + BU (p)
Pln) = X+ ./tm(t» =V D(P(u) (AP () + BU()

forallt — D(X(t)) <71 <t:

The proposed predictor-based controller is perfectly adapted to linear systems, treating
them as a special case of the design for nonlinear systems, for which the exponential stability

is proved.

5.4 Stabilization of the position of the interface

In this section we shall show that a linear feedback stabilizes indeed the dynamics of the
interface position considered as the nonlinear control system (5.2.17) with state-dependent
delay on the input. The main feature of our problem in this context arises from the physical

constraint:
e the input function corresponds to a filling ratio which takes value in [0, 1] ;

e the denominator term of (5.2.17) has an singularity in the term

(2]
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This problem of singularity is not considered in [19, 20]. It is clear that the free-delay
system which is related to equation (5.2.17) is only locally stable. For the stability issue
one should choose carefully the initial condition to guarantee that the delay system stays in
the attraction region when the control reaches the system. This basin of attraction must be
defined precisely for a stabilization problem around an equilibrium. The net flow at the die is
a function of the gradient of pressure AP(L,t) and the interface dynamics depends strongly
on this parameter. Consequently, the interface dynamics varies according to the coupling
relation that is imposed at the interface. Then, the study of the reachable equilibria appears
as an important aspect of the stability analysis.

In order to formulate the control problem, we start by an analysis of the static models as-
sociated to the two interface relations consisting of momentum flux continuity or pressure

continuity.

5.4.1 Static models associated with the interface relations

The static model of the position of the interface strongly depends on the considered inter-

face relations which are presented below.

1. Firstly, assuming the interface relations (5.2.4) stating the continuity of momentum flux

at the interface, the equilibrium (fpe, l¢) is defined by

Fae — pONOV;fffpe =0

. —[ — _BP | Bpo foe _ Bp&Nofpe (5.4.1)
e (nSeyy&Ne) Kg (1—fpe) (nSes1)

In order to satisfy the positivity of the die net flow Fj., at the boundary the critical
value of filling ratio at the equilibrium must satisfy:

1 <Po ~ nVersNe
)

> e —
(€2N2+ ) \po Bpo

Jpee (L— le)> (5.4.2)

The graph of equilibria (fpe,le) is then shown on the figure (Fig. 5.4.1).

With this interface relation the physically reachable interface position lies in the interval

[0, 1.2] meters for a extruder length of L = 2m.

e at [ = Om: this case corresponds to a full of matter extruder. The inlet filling
ration is fpe = 0.68. Above this critical inlet flow rate the extruder has only the
FF7Z zone.

e at [ = 1.2m the inlet flow rate is close to zero.

2. Secondly, assuming the interface relation (5.2.6) stating the continuity of pressure at

the interface, the equilibrium (fpe, lc) is defined by :

Fye — pONOVvefffpe =0

_ o BPOfpe
le=1L Ki(1=fpe)

(5.4.3)
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Figure 5.4.1: Static model with continuity of momentum flux at the interface

And the positivity constraint of the die net flow Fy. implies:
L>1 (5.4.4)

The graph of equilibria (fpe,le) is then shown on the figure 5.4.2.
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Figure 5.4.2: Static model with continuity of pressure at the interface

Comparing the figures (Fig. 5.4.1) and (Fig. 5.4.2), it may be observed that with the assump-
tion of continuity of pressure , the static model covers a larger domain ( fpe, le) € [0,0.78] [0, L]
(the total length of the extruder is 2 meters) than with the assumption of continuity of the
momentum flux. In this second case, the validity of the equilibrium model is restricted to
(fpe,le) €10,0.67] x [0,1.2] . This conclusion was predictable because the constraint related
to the pressure continuity relation states that the interface position is located in the inter-
val |0, L[. This aspect guarantees the existence of Partially and Fully Filled Zones and is

considered as a modelling assumption.
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5.4.2 Feedback stabilization of the position of the interface

Due to the fact that the pressure continuity relation cover a larger domain than momentum
flux coupling condition, we restrict the study to the case with the assumption of continuity
of pressure. Then, in the following stability analysis, the gradient of pressure is given by

equation (5.2.6).

5.4.2.1 Feedback stabilization of the nonlinear without delay

As in |19, 20|, we study the stabilization of the free-delay system of equation (5.2.17)
around the equilibrium. To satisfied the property which consists to define the stabilization

problem at the origin (F(0,0) = 0) we rewrite the system by including the equilibrium point

as follows:
di(t) _ Fu(t) — Fae — poNoVess (fi"(t) = fpe) (5.4.5)
dt poSess (1 — fin(t))
with a linear abstract control on the incremental system : 6f1§” = —Kl.

We mention that the control is implementable if the real input and output variables are
considered . As is stated previously the control is directly deduced from the feed rate Fin(t)
by the linear relation:

: Fin(t)
frt) = ——+—. 5.4.6
Secondly, there is a dependence between §l and §P(L,t) which can be measure by a pressure

jauge. The relation between 6i(t) and dP(L,t) arise from the linearized model of pressure

gradient equation assuming the pressure continuity at the interface:

AP(t) = PL,t) - P,

(5.4.7)
P(L,t) = Py + Tpeltoenlr ()
and:
5P(L,t) = C6l, (5.4.8)

Where C' is an constant depending on physical parameters of the system.
The linearized model of the system (5.4.5) around the equilibrium of the open loop system

without delay (5.4.5) is given by:

d(al) in

with:
(ENoK4Bpo)

ap = — : (5.4.10)
(Bpo + Ka(L = 1e))” (1 = fpe)
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and:

_ &N
e e (5.4.11)

It is clear that the stability of the linearized system is achieved if:

K < Kz
(5.4.12)
K S — K4Bpo
Mar = ap T (Bpo+Ka(L—le))?

By implementing the gain K to the nonlinear system, the equation (5.4.5) becomes:

P = — o, (81(2))

_ Fy(81(t))—Fae+poNoVe s p K6I(t)
—er(0l(t) = = POseff(dl_fpoe"'OI(&{é))

(5.4.13)

The stability depends on the sign of ¢ (dl(t)). The physical properties of the process introduce

a constraint on the denominator of equation (5.4.13):

0< (1= foo+ Kol(t)) <1

(5.4.14)
1ok < ity < e

Due to the positivity of the denominator of equation (5.4.13), the positivity of ¢k (0l(t))
is achieved if Vol(t) # O0:

5l(t) (Fd (6l(t)) — Fye + poNQVEffK&(t)) <0 (5.4.15)

The above expression will vary depending on the selected hypothesis to define the interface

coupling relation. In the case treated in this section, we obtain the following results:

er(6l(t)) >0
KQ
el K (ce - %51@)) C. <0 (5.4.16)

Ce= (Bpo+ Ba(1 1))

Which is equivalent to:

Ky . nCe
KC, Ky

ol(t) > (5.4.17)

Finally combining equations (5.4.14) and (5.4.17), we can determine the basin of attraction

under the assumption of continuous pressure at the interface. The obtained relation proves

that the stability region is modulated by the feedback gain K:

1_fpe’ Kd _7706 fpe
sup{— K KT K, <5l(t)<? (5.4.18)
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5.4.2.2 Control of the system with input delay

Now we recall the delay system which relates the coupling of the PDFE and the boundary

equation.
dit) Fy(t) — Fge — poNoVey s (f;;"( ]l\gt)g) - fpe)
el . (1 s (t - le(é)g)s (5.4.19)

We design a predictor controller which is developed in section 5.3.3 and physical parameters
are chosen to satisfy both assumptions as forward completeness and the delay function D(I(t))
is also C. The feasibility condition JF, which is defined in (5.3.31) is also verified. The control

law is the linear feedback given in the above section by the gain K:

U(t) =6 fp(I(t), 1) = —Kol(t) = —K(P(t) — l.) (5.4.20)
(l(t)) )
Where for all t — D(I(t)) <7 <t
B - F(P(u).U (1)) du
P(r) = 1) + /t_w)) [ VDP)F (P(), U0) (5.421)

The initial predictor P(u) with p € [—=D(lp),0] is given by (5.4.21) at ¢ = 0. Applying this

controller to the system ensures the stabilization of the desired equilibrium position .

5.5 Simulation results

The Numerical implementation of the predictor (5.4.21) is performed by approximating
the distributed delay by a sum of point-wise delays using a numerical quadrature rule. In this

way one ends up with a sequence of control-laws of the form:

B F<PZ 1, Ui 1)
P(t) = +Zh 1 —VD(P;i_)F (Pi_1,Ui_1)

h(t) = D% )) (5.5.1)

For th numerical integration , the values of the right-hand side of (5.5.1) involve earlier
values of P and the values of the input U . As we stated previously, the main difficulty is the
practical implementation of the integral term, which needs to be calculated on-line [104]. An
overview of stability results on the implementation of distributed delay control laws is given in
[100, 102, 56, 134]. [23] mentions that the problems raised by the implementation of a control
law including time varying delay is much more complicated. In this case, the discretization
leads to a discrete controller with variable dimension. The resulting loop system therefore
has a variable number of poles and zeros (for linear system), which makes difficult the study
of the correlation between the numerical instabilities and the sampling period or the method

of discretization.
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We use a semi-discretization scheme based on the finite volume method for the simulation
of the transport equation (5.2.1) with the controller. Time integration is performed with
ODE45 routine of MATLAB. The figure (Fig. 5.5.1) shows the convergence of the moving
interface from an initial position (lyp = 1m) to the equilibrium (I = 1.742m). It remains some
static error that can be corrected by using some integrator (I(t1) = 1.760m, t; = 450s). One

conclude that the system can be stabilized using the state predictor 5.4.21 and the linear gain

Koz = 0.8383.

T
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Figure 5.5.1: Moving interface stability
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Figure 5.5.2: Filling ratio evolution at different times
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Figure 5.5.3: Filling ratio evolution at different positions

Figure (Fig. 5.5.2) represents the filling ratio dynamics which is the input variable at
different times and Figure (Fig. 5.5.3) shows the evolution of the filling ratio at different
spatial coordinates. The position of the interface can be read on this figure since it corresponds

to filling ratio transition to 1.

Remark 14. An interesting future concerning this application is the robustness analysis of
the controller. Recall that the model is based on the strong assumption of constant viscosity
which is very restrictive in industrial context. In some sense a perturbation of the delay term
may be interpreted as a variation of the viscosity or of some others physical variables. This
type of extension will allows to consider more realistic extrusion process with application in

industry. We suggest to follow the recent work of [21] to pursuit this study on robustness.

5.6 Conclusion

The main idea in our approach relies on the development of a bi-zone model separated
by a mobile interface [(¢). The model describes the mass balance in the Partially and Fully
Filled Zones of an extruder as a transport equation coupled with an ordinary differential
equation. For such systems we show that the coupling conditions are very important since
they determine the reachable set of equilibrium. We illustrated this aspect by considering two
coupling relations: The first one is derived from the continuity of pressure and the second one
from the continuity of momentum flux.

The coupled mass transport and interface equations are turned in a state-dependent input
delay system using the explicit solutions which are obtained by the method of characteristic.
Here, the main objective is the stabilization of the moving interface around a given equilibrium.

This control problem is equivalent to the regulation of net flow at the die Fy(t) if the continuity
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of pressure at the interface () is assumed. Using the control proposed in [19, 20| we show
that the desired equilibrium can be reached with reasonable static error.

Ours analysis must be extended for the control of the energy balance equations which de-
scribes heat transport phenomena of the extrusion process as in [48]. The associated transport
equations are described by (5.6.1,5.6.2) and the source term €, ; groups the heat produced
by viscous dissipation that is proportional to N2(¢)) and the heat exchange with the barrel
(proportional to (T — T}, r)). The temperature T,(x,t) describes the temperature profile in
the Partially Filled Zone and Ty(x,t) is related to the Fully Filled Zone. The moving inter-
face stability results in the convergence of the velocity associated to the transport equation
of the Fully Filled Zone which is a function of Fy(t). The influence of the interface stability
on the the temperature behavior is shown in Figure (Fig. 5.6.1) and Figure 5.6.2).

For z € [0;1(t)]
%Tp<xat) = —§N0%Tp(%t) + (T}, Ty)

(5.6.1)
For x €]i(t); L]
Fy(t
| 5Ty (x,1) = =280 2Ty (2,1) + Qp(T5, Th)
NG Sea _
Q= fiEnmae P0VeffC(Tb 1) (5.6.2)

NG S.
et v (Do = 1)

The simulations presented in Figure (Fig. 5.6.1) and (Fig. 5.6.2) are performed assuming the

continuity of temperature at the interface [(¢):

T,0.1) = Ty(*0)
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Chapter 6

Port Hamiltonian formulation of a
system of two conservation laws with

a moving interface

6.1 Introduction

It has been shown that a large class of physical distributed parameter systems with bound-
ary external variables, admit a port Hamiltonian formulation and they are called boundary
port Hamiltonian systems [136, 98, 92]. This structure has led to various methods of analy-
sis concerning the existence of solutions, their well-posedness and control in the linear case
[93, 87, 141, 155, 142, 73, 113, 94].

In this chapter we shall investigate wether the port-Hamiltonian formulation may be ex-
tended to systems of conservation laws coupled by a moving interface. Such systems occur
in various cases when the system is heterogeneous in the considered spatial domain, leading
to several phases. The most simple example (which we shall also consider here) consists in
two fluids which are separated by some moving wall. This wall separates two phases, the two
fluids which might have different properties and induces discontinuities of some variables at
the interface. These discontinuities are part of the model of the interface defined by a set
of interface relations. The wall separating the two fluid may permit, or not, a mass flow or
a pressure discontinuity for instance. The interfaces may also separate bubbles in a fluid in
different chemical processes or define the boundary of polymer nanoparticles in a fluid. This
interface might also separate the phase in evaporation processes. It might also arise from a
constraint on some variables such as volume and lead to a change of causality and order in
the spatial domain as for the extrusion process model.

More precisely we are inspired by a classical approach developed for fixed interfaces,
consisting in augmenting the system of conservation laws of the physical model with color

functions [61, 60, 10, 28|. In first instance we shall show that this system of conservation laws

101
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may be formulated as port-Hamiltonian system with a pair of port variables associated to the
interface. In second instance we shall generalize the previous approach to moving interfaces
and show that it may again be formulated as a port-Hamiltonian system by adding a second
pair of port variables corresponding to the motion of the interface. In this model the velocity
of the interface appears like an input and the interface relations defining the dynamics of the
displacement of the interface are then defined as an external port-based model. In the whole
chapter the spatial domain is an interval of the real line and we shall only consider systems
of two conservation laws.

The sketch of this chapter is the following. In a first part we consider two Hamiltonian
systems consisting of two conservation laws coupled by a fixed interface. We first recall
the definition of Stokes-Dirac structures and the boundary port-Hamiltonian formulation of
a system of two conservation laws with flux variables deriving from a Hamiltonian. Then,
we recall the extended system obtained by introducing color functions, associated with the
characteristic functions of the spatial domains defined by the interface. We then define a
Dirac structure and the port Hamiltonian formulation of the systems of conservation laws
coupled by a fixed interface. In the second part we consider a moving interface and generalize
the formulation of the coupled system of conservation laws before formulating it in the port-
Hamiltonian framework. Finally we introduce the interface relations defining the dynamics
of the interface as a two-port element and illustrate this on the simple example of two gases

coupled by a piston.

6.1.1 Organization of the chapter

This chapter is organized as follows.

In section 5.2.1 we introduce the notion of a p-system in the port-Hamiltonian framework
and present the construction of the associated Dirac structure by adding boundary flow and
effort. In section 5.2.2 we study the interconnection of two p-systems through a fixed inter-
face and also discuss the transmission condition at the interface in order to define a Dirac
structure arising from the composition of the two complementary domains associated to two
p-systems of conservation laws. In section 5.2.3 a new formulation is proposed by augmenting
the system with color functions which correspond to characteristic functions of those comple-
mentary domains. These color functions are useful to extend the definition of the effort and
flow variables in the total domain by introducing a modulated differential operator. The total
Hamiltonian functional is also defined as an extension of the two Hamiltonian functionals by
these color functions. Introducing external interface effort and flow variable the associated
Dirac structure is constructed.

In section 5.3 we discuss the moving interface problem in the extended formulation of coupled
systems using color functions and modulated differential operator. The main idea is to rep-

resent the interface dynamic as an external input variable. We suggest a general structure of
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interface models based on the continuity of one effort variable. Then the coupling conditions
at the moving interface guaranteed the existence of a Dirac structure. Finally we illustrate
this by an example of two isentropic gases (modelled by a systems of two boundary port

Hamiltonian systems) coupled at their interface by a piston in motion.

6.1.2 Contributions

In this chapter we consider the port-Hamiltonian formulation of a system of two con-
servation laws defined on two complementary intervals of some interval of the real line and
coupled by a moving interface. We recall first how two port Hamiltonian systems coupled by
an interface may be expressed as a port Hamiltonian system augmented with two variables
being the characteristic functions of the two spatial domains. Then we consider the case of
a moving interface and show that it may be expressed as the preceding port Hamiltonian
system augmented with an input, being the velocity of the interface and define a conjugated
output variable. We then give some structure to the interface relations defining the dynamics
of the displacement of the interface and end with the simple example of two gases coupled by

a moving piston.

6.2 Two port Hamiltonian systems coupled by an interface

6.2.1 Port Hamiltonian system of two conservation laws

Let us recall briefly the port Hamiltonian formulation of a system of two conservation
laws according to [136, 98, 92] which represents a model of vibrating strings or Lagrangian
gas dynamics (the p-system).

We consider systems of two conservation laws:
hx + 0N () = 0 (6.2.1)

defined on the spatial domain Z = [a, b], with time ¢ € RT and with the 2-dimensional
x1 ('Z’ t)

state vector z (z,t) =
€2 (Z, t)

> . The flux variable is defined by

N(z) = (_01 01> <§$IZ> (6.2.2)

with respect to the Hamiltonian functional #H (z) = f;H(az) dz with Hamiltonian density
function H (x) (where 6,7 denotes the variational derivative of  with respect to « ). Then

the system of conservation laws may be rewritten as the Hamiltonian system
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generated by the Hamiltonian functional H () and defined with respect to the differential

0 -0,
J = (a: . > (6.2.4)

where 0} is the formal adjoint of the operator 0,. Indeed if the flux variables (6.2.2) satisfy
the boundary conditions given by 0., H (a) = 0, H (b) = 6z, H (a) = 6,,H (b) = 0, then
0% = —0, and the equation (6.2.3) is precisely (6.2.1) (6.2.2). Under the same conditions, the

operator

operator J is skew-symmetric. Furthermore as it a matrix differential operator with constant
coefficients, it satisfies the Jacobi identities and is a Hamiltonian operator, defining a Poisson
bracket on the functionals of the state variables [112].

However for control purposes, it should be assumed that this is not satisfied in order to
allow for energy exchange of the system with its environment. Therefore the Hamiltonian

system is augmented with the boundary port variables

fo\  [0xH (0 1)\ [0 H
es)  \owH)lav \1 0) \6,,H

and is thereby extended to a boundary port-Hamiltonian system [136, 98, 92|. This port-

6.2.5
b (6.2.5)

Hamiltonian system is defined with respect to a Dirac structure which extend the Hamiltonian
operator (6.2.4).
Let us recall the definition of a Dirac structure which will be extensively used in this

chapter.

Definition 5. [42] Consider two real vector spaces, F the space of flow variables and £ the

space of effort variables, together with a pairing, that is, a bilinear operation

Fx€&: — R

6.2.6
(fie) = (e f) 020

which induces the symmetric bilinear form <, > on the bond space B = F x & defined as
< (fi,e1), (fa,€2) >=<e1, fo >+ <ea, fi >, (fi,e;) € FXE (6.2.7)

A Dirac structure is a linear subspace D C F x & which is isotropic and co-isotropic that is
satisfies D = D+, with L denoting the orthogonal complement with respect to the bilinear

form <, >.

Particular Dirac structures, called Stokes-Dirac structures, are associated with Hamilto-
nian differential operators [136, 92, 87|; here we recall the particular case of the Stokes-Dirac

structure associated with the Hamiltonian operator J defined in (6.2.4).
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Proposition 6. The linear subspace of the bond space B = F x £ , product space of the space
of flow variables F and effort variables & where F = £ = L? ((a, b) ,]RQ) x R? defined by

f1 el
D= f2 ) €2 E]:><E|
fo e

€1 HY (0. b).R?)?. i > _ < el ) (6.2.8)
<62>6 (e 5), &) <f2 7 2
(2)-(o)()
ey 1 0 es

1s a Dirac structure and is called Stokes-Dirac structure, with respect to the pairing

a,b

1 el b
< fo || e >_/ (fier+ fae2) dz+ €52 fo
fo € ‘
with
Y =diag(—1,1). (6.2.9)

In the same way as Hamiltonian systems are defined with respect to Poisson brackets,
port-Hamiltonian systems are defined with respect to Dirac structures [135, 137]. Again we
refer with [136, 92, 87| for the general definition of boundary port-Hamiltonian defined respect
to a Stokes-Dirac structure and will only recall the definition for the case of a system of two

conservation laws.

Proposition 7. The system consisting of two conservation laws (6.2.3) augmented with the

port variables (6.2.5) is equivalent to

(3,5171 (53517'[
drs |, | oM || €D (6.2.10)
fo o

and defines a boundary port-Hamiltonian system.

As a consequence of the properties of the Stokes-Dirac structure [136], the Hamiltonian

function obeys the following balance equation

d
%H:—gzb

6.2.2 Interconnection of port Hamiltonian systems through an interface

In this section we consider two systems of conservation laws which are defined in the spatial
domains [a, 0] and ]0, b] respectively. We denote their state variables and Hamiltonian with

exponent — and + depending on which half real line they are defined. The two systems
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are coupled through interface relations coupling the boundary values of the two systems at
z = 0, the interface of the two systems. Considering two systems of conservation laws coupled
through an interface the most currently considered interface relations are [61, 28, 10| the
continuity of the flux variable or the continuity of some other functions of the state variables,
called privileged variables |27, p. 5].

For boundary port Hamiltonian systems it is natural to express the interface relations using
the boundary port variables (6.2.5) which are in fact, in the case of the canonical systems
of two conservation laws, actually the flux variables at the boundary. In this case the space
of flow and effort variables are defined as the product space of the flow and effort spaces on
each domain: F = & = L? ((a, 0) ,R?) x R? x L? ((0, b) ,R?) x R? and the Dirac structure is
defined with respect to the product operator of (6.2.4)

J 0g
02 J

Considering for instance the interface relations being the balance equation §_+H™ +
1
(5@,;7{* = 0 and the continuity equation 5x2+7-[+ = 536277{* , and writing them in vector

notation, one obtains the linear relation between the conjugated power variables

5, H 0 1)\ [0,-H
x +\ x —
5 H* )= ( -1 0) 5 M ) (0210
g Lo

they may immediately be interpreted as defining a Dirac structure on the boundary port
variables at the interface. Then, by composition of Dirac structures, the two boundary port
Hamiltonian systems can be composed to a single boundary port Hamiltonian system with
boundary port variables being §,- H~ (a) and 6,+ H* (b), according to (6.2.5) |136].

In the sequel of the paper, we shall consider the following interface relations where the

pair of interface port variables (f7,er) is introduced

Ir
0

O MY =0, -H" (6.2.12)
0 +M +0,-H +er (6.2.13)

The equation (6.2.12) is again a continuity equation and the equation (6.2.13) is a balance
equation with an external term e; . This are commonly considered interface relations [61,
28, 10| consisting of the continuity equation of one of the flux variable (then called privileged
variable) and the introduction of a source term at the interface, in the balance equation of the
other flux variable [27|. Denoting e;” = 5x;r7{+ and e; = 533;7-[’ with i =1, 2, the interface

relations (6.2.12) (6.2.13) define the linear relations between the conjugated power variables

€y 0 1 0 e;
e |10 =| 10 1 ||ea|]0O) (6.2.14)

I1 0 1 0 er
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with respect to a nonlinear matrix and therefore define a Dirac structure.

The interface relations may of course be much more general using nonlinear functions of the
flux variables at the interface, port variables coupled to a dynamical system: if the interface
relations define a Dirac structure coupled to a dissipative port Hamiltonian systems then by
composition of Dirac structures, a dissipative port Hamiltonian system is obtained on the
product space of the state space of the subsystems [34] as for instance in [113, 94].

However in the sequel we shall depart from this procedure of composition of boundary
port Hamiltonian systems. Indeed, as a consequence of considering moving interfaces, time-
varying spatial domains have to be considered. These do not appear explicitly as wvariables
in the definition of boundary port Hamiltonian systems. This is the reason why, in the
remaining of the paper, we shall use additional state variables, the characteristic functions of

the time-varying spatial domains of each subsystem.

6.2.3 Augmenting the port Hamiltonian systems with color functions
6.2.3.1 Prolongation of the variables on the domain |[a, D]

There is an alternative approach [61, 28, 10| where instead of considering the product
spaces of the variables defined in the different spatial domains, the state variables of the
coupled systems are defined on the composed spatial domain, the interval [a, b]. The interface
at z = 0 becomes then an interior point of the spatial domain. However some external variables
may still be associated with the interface. Following [1, 29, 6] we shall introduce additional
state variables called color functions which are actually the characteristic functions of the

domains of the two systems

1 z€a,0] and 2n(sf) = 1 z€]0,b
Co(z,t) = { 0 ze [0’ b] d 0( ,t) { 0 ze [a,o} (6.2.15)

Hence the state variables of the coupled system may be expressed as the sum of prolon-

gations of the variables of each subsystem to the total spatial domain Z = [a, b] by

r(z,t) = a7 (2,t) +at(z,1) (6.2.16)
7 (z,t) = co(z,t)x(z,t)  x7(2,t) = oz, t)x(z,1) (6.2.17)

The flux variable of the two conservation laws, becomes
N(z, co, ¢0) = co N~ (z) + o Nt () (6.2.18)
The global flux can be written as

coN (z, cg, ¢9) = co N~ () (6.2.19)

EoN(x, co, 50) = Cp N+(a:), (6.2.20)
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where it should be noticed that N~ (z) and N'*(z) in (6.2.18), (6.2.19), (6.2.20), are different
flux functions. Now the system is given by the conservation laws defined on the total spatial

domain

6.2.3.2 Conservation laws and interface relations as a single system of balance

equations

We shall now consider the two systems of Hamiltonian conservation laws coupled by the
interface relations defined in (6.2.12) and (6.2.13). As a consequence of these relations, con-
sidering the definition of the flux variables (6.2.2), it appears that the flux variable N satisfies
a continuity equation at the interface whereas the flux variable N5 satisfies a balance equation

at the interface.

In the first instance, let us consider the conservation law of the state variable

x1 which may be written (on the whole domain [a, b])

Q1 = =0, (coNy (z) + o N ()
=0, (co N1(z, co, ¢) + ENi(z, o, ¢)) (6.2.21)
= —[0.co. + 0: 0| Ni(x, co, o)
—————
do
where the operator
do=— [8Z co-+ 0. 50.] (6.2.22)

acts as the differential operator —d, on each sub-domain (according to the system (6.2.3)
(6.2.4)).
Indeed (6.2.21) corresponds to the local formulation of the conservation laws on arbitrary

domain [a/, b'] with either on an interval [a/, '] on the negative real line (a < da' <V <0)

4

il z1(2,t) = =Ny (d',t) + N7 (V1)

or on an interval [a/, b'] on the positive real line (0 <a’ < <b)

d ¥
/ r1(z,t) = =N (d',t) + N7 (V. 1)
dt |

Now let us consider the formulation of the conservation law of 1 on an arbitrary interval
[a’, V'] containing the interface (with @ < o’ < 0 < < b). The assumption the continuity

of the flux variable A7 , implies the following consequence on the conservation law of the
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variable z

%f;,/ r1(z,t)dz = %ff, x1(z,t)dz + %fob/asl(z,t)dz
= f;,/ do Ni(z, co, Co) dz
=[5 =10 co. + 0. 0| Ni (=, co, @) d=
—N7 (' t) + N7 (07, ) = N7 (07, t) + N (V%) (6.2.23)
=Ny (a',t) + NT (V1)
~Ni(d't) + N1 (¥, t)
= —ey(d,t) +ea(V, 1)

In the second instance, let us consider the conservation law of the state variable
2o and remind that , at the interface, the associated flux variable N5 is supposed to satisfy
the balance equation (6.2.13) with the source term e;d (z) (a Dirac distribution), localized
at the interface. But firstly we have to calculate the dual operator, denoted by df, to the
operator dy defined in (6.2.22), in order to be able to express the power pairing. Therefore

consider two effort variables e; and eo and compute

f; er (does) dz = — ff (e1[0sco. + 0;C0.) €2) dz
= - f; (e1[0: (coe2) + 0. (coe2)]) dz
—[(co+ eo)ereall + [ (coea + Goea) (Dze1) dz
= —[(co+c)erea’
+ f: ez [0, co. + 0. ¢p.] e1dz — f: e2[(0: co) + (9. ¢0)] e1dz

Hence the dual operator is defined by

dg = [az co. + az 50'] - [(az CO) + (82 5O)]

(6.2.24)
= —do+[(0;c0) + (9:¢0)]
Using this dual operator the conservation law of the variable x5 becomes
atmg = —dSNQ - 615 (Z) (6225)

where 0 (z) denote the Dirac mass. Indeed, using similar calculation as in the preceding
paragraph, one shows that (6.2.25) corresponds to the local formulation of the conservation
laws on arbitrary interval [a’, b'] on the negative real line (a < a’ < < 0) or on the positive
real line (0 < @’ <V < b ). On these intervals the operator —d{ acts as the differential
operator —07 according to the Hamiltonian system (6.2.3) (6.2.4).

On an arbitrary interval [a/, I'] containing the interface (with a < a’ <0 <V < b), the
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balance equation on the variable zg is

A (Y r(zt) =[5 {—dyNalw, co, Go) —er (1) 5 (2)} dz
= Y {(do — [(9: o) — (9:2)]) Na(x, co, @) — 1 (1) 8 (2)} dz
= ff,/do./\/é(az, co, Co) dz
+ [0 {0 o) — (9:20)]) Nala, co, o) — €1 (£) 6 ()} dz
= Ny (d )+ Ny (07, 1) = N (07, £) + N (1, )
Ny (07, )+ Ny (07, 1) — [ er ()6 (2) dz
= Ny (d,t) + NS t) + e (t)
= —ey(d,t)+e1(V,t) —es(t)

(6.2.26)

On this balance equation, it appears clearly that the flux variables at the interface

N5 (07, t) and Ny (07, t) are eliminated according to the balance equation (6.2.13).

6.2.3.3 Hamiltonian system extended with color functions

In the preceding paragraph we have formulated the dynamical equations of the system
with an interface, as the system of balance equations (6.2.21) and (6.2.25) using the dual
differential operators (6.2.22) and (6.2.24) which depend on the characteristic functions of the
two domains separated by the interface. Following [61][28][10], we shall introduce explicitly
these functions as variables of the system; they are then called color functions and will be
denoted by ¢(z,t) and ¢(z,t). Noticing that the spatial domains separated by the fized inter-
face are constant, hence also their characteristic functions ¢y and ¢y defined in (6.2.15), it is

clear that they satisfy the trivial conservation laws
8tc = até =0 (6227)

with initial conditions being precisely ¢y and ¢y and compatible boundary conditions.

In the sequel we shall define an extended Hamiltonian system composed of the two balance
equations (6.2.21) and (6.2.25) with closure equations (6.2.2) indexed by + and — for each
spatial subdomain and angmented with the trivial conservation laws (6.2.27). Therefore define

the Hamiltonian functional H (x, ¢, ¢) = f;H (x, ¢, €) dz with density
H(z,c,6)=cH (z)+cH(x) (6.2.28)

Denoting the eztended state variable by

T

i= (27, ¢ o) (6.2.29)
one computes the variational derivatives
OH (2, ¢, C) coH™ (z) +co,HT (x)
GH(Z)=| SH(x,c,0) | = H () (6.2.30)

0:H (z, ¢, ¢) HT(x)
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Note that the first row corresponds precisely to the definition of the flux variable (6.2.18) for

the particular solution ¢y and ¢

SoH (2, ¢,8) =c6H™ (x) +E6,HT () =c N~ (z) + eNT(2) = N(z, ¢, ©)

This allows to augment the Hamiltonian system (6.2.3) with the trivial conservation laws

of the color functions (6.2.27) obtaining the Hamiltonian system:

O = Jo0:H (T) + Ier (6.2.31)
"= ( 0 -1 0 0 ) (6.2.32)
with respect to the operator
0 d
02
\70, = —d* 0 (6233)
09 02

where operator d is the nonlinear differential operator, modulated by ¢(z,t) and ¢(z,t) defined
by

d=—-[0.c.+ 0c] (6.2.34)

and its formal dual

d*=—-d+[(0.¢) — (0,0)] (6.2.35)

Furthermore the two operators satisfies, for any two effort variables e; and es which do

not vanish at the boundary
b b
/ e1 (deg) dz = / ea (d*e1) dz — [(c+ ¢)eres]” (6.2.36)
Ja Ja

6.2.3.4 Extension to a Boundary Port Hamiltonian system arising from a skew-

adjoint operator

In order to take account of the energy exchange at the boundary {a, b} and defining a
conjugated flow variable f; to the interface source term e; at the interface, the Hamiltonian
system (6.2.31) will now be extended to a port Hamiltonian systems with boundary and
distributed ports. In the begin, the operator J, defined in (6.2.33) and the input map at the
interface defined by (6.2.32) are extended to a Stokes-Dirac structure using a similar procedure

as in [136].

Proposition 8. The set of relations Dy associated with a system of two conservation laws

x
defined on the variables ( ! ) defined on a spatial domain [a, b] S z with an interface
T2
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at the point z = 0 which imposes the continuity of the effort variable ea and allows for the

discontinuity of the effort variable ey is defined by

f e
Dy = fr || er €eFx¢&/
fo )

FN [ Ja I é (6.2.37)
fi) \=1T o er

() (o ) (2)1)
€o (c+¢) 0 es )"

with the flow variable f = (f1, f2, fe fg)T and the effort variable

e = (e1, e, €, eg)T associated with the extended state (6.2.29), the differential operator J,
defined in (6.2.33), the operators d, resp. d* defined in (6.2.34), resp. (6.2.35), the column
vector T defined in (6.2.32), and bond space B = F x & with F = L?((a, b),R)° x R? and
& = domd* x domd x L2 ((a, b) ,R)* x R? endowed with the pairing

f é
< fr , er > = f; édeZ + egEfa + f; 6]T frdz (6.2.38)

with e} S fg = ea(a) fa(a) — ea(b) fa(b), defines a Dirac structure.

One may notice immediately that the pair of port variables (e, f7) at the interface are
distributed variables. Let us prove that the set (6.3.12) is indeed a Dirac structure. Note that

we shall use the following notation

f é
f=1 1 e=| e (6.2.39)
fo e

Proof. Let us first show the isotropy condition D; C DIL:

((flel), (£2,e2))) =0 Y(flel), (f,€?) C Dy (6.2.40)

with respect to the bilinear product associated with the pairing (6.2.38) and denoted in the
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sequel by P

Po= (((fl.e). (f%e2))
= (fle) +(f2el)
(6.2.41)
- f: éQTfldz+f; élede—Ff;e}Tf?dz—i—f; el fldz

+eSTS G + 3T}
Using the constitutive relations of the set Dy, the power product becomes

P = fb (e%de% + €3 [(—d*) et — e}]) dz

a

+ fb (e%de% + e} [(—d*) e? — eﬂ) dz

a

+ [Pebeddz + [P edebdz + [(c+ @)eled]” + [(c + e)e2el]”

and after noticing that the terms in the interface variables e} and e? cancel, may be reorganized

as follows

P = fb (e3del + € (—d*)e?) dz + [(c+ E)e%e%}z

a
+ [V (3 (—d%) el + elded) dz + [(c + @)eled]”

- fb (e%de% + ed (—d*) e%) dz + f; (e% (—d*) el + e%de%) dz

a

and using the identity (6.2.36), one obtains that P = 0 which proves the isotropy condition.

Let us now prove the co-isotropy condition DIl C Dy. This amounts to prove that
if (f2,e2%) € B satisfies V(f',e') € Dr; (((f*,eY), (f% &%) = 0 then (f?,&2) € D;. Therefore
let us compute the bilinear product (6.2.41), assuming that (f!,&') € D;. One computes

b b b
P = / (é2T(Jaél)+éle2) dz—I—/ e}f?dz+/ ereddz
a a a

+ ((c+e)ey) |a’b TSf5+e3"S (e3) |a7b (6.2.42)

Remind that, from the definition of Dy , the variables é! and e} may be chosen freely.

Firstly, let us choose e% =0, e% =0, e} =0 and el = 0. The the bilinear product reduces
to: P = f: el f2dz and the condition that it vanishes for any el, implies the relation: f2 = 0.
By symmetry one obtains f2 = 0.

Secondly, let us choose e} = 0, e} = 0 and el(a) = e}(b) = 0, then, using the definition of

f2 of the constitutive relations of Dy and (6.2.36) with zero boundary conditions, the bilinear
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product becomes
b
P = / (e% (—d*e%) + e%f%) dz
b
= / e1 (—de3 + f1) dz (6.2.43)

The condition that PP vanishes for any ef hence implies that : f2 = de3 .
Thirdly, let us choose e} =0, e} = 0 and e}(a) = e}(b) = 0, then, using the definition of
f1 of the constitutive relations of Dy and (6.2.36) with zero boundary conditions, the bilinear

product becomes
b
P - / (¢2 (ded) + ebf2 + ebe?) d
a
b
= / ey (d*ef + f5 +€7) dz (6.2.44)
a

The condition that P vanishes for any e} hence implies that : f3 = —d*e? —e? .
Fourthly, let us choose é} = 0, &5 = 0, then, using the definition of f; of the constitutive

relations of Dy , the bilinear product becomes
b
P = / (—e}e% + f?e}) dz
Ja
b
= / ej (—€5 + f7) dz (6.2.45)
Ja

The condition that P vanishes for any e} hence implies that : f? = e3.
Fifth, let us choose e} = 0, then, using the constitutive relations of Dy, the previously

established relations on f7, f3 and f7, the relation (6.2.36), the bilinear product becomes

P = fb (e%de% + €3 (—d*) e%) dz + f; (e%de% + ed (—d*) e%) dz

a

+((e+0)ei)],, 25 + €572 (e3)],,

_ b _ b
= — [(c—f— c)e%eg]a — [(c—l— c)e%eé]a
((C + E) 6%) |a,b Tzfg + e%TE (6%) |a,b
The condition that P vanishes for any el(a) and el(b) hence implies the boundary port

2 0 1 2
variables and fa = ‘1 | b OJ
e} (c+¢) 0 ed |

Comparing the constitutive relations of the Dirac structure Dy defined in (6.3.12) with
the augmented Hamiltonian system (6.2.31), one may easily see that it may be endowed with

a port Hamiltonian structure.
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Corollary 9. The augmented Hamiltonian systems (6.2.31) with the conjugated flow vari-

able fr = eo may be defined as a boundary port-Hamiltonian system with respect to the Dirac

O d:H (%)
structure Dy by : Ir , er €Dy,
fo €y

where the state vector Z, defined in (6.2.29), is the vector of conserved quantities of the con-
servation laws augmented by the color functions of each spatial subdomain, the Hamiltonian
H (Z), defined in (6.2.28), is the sum of the Hamiltonian of each spatial subdomain, the pair of
port variables (fr, er) are associated with the interface and the pair of port variables (fa, €s)

are associated with the boundary of the spatial domain [a, b].

As a consequence of the port-Hamiltonian structure, the augmented Hamiltonian system
(6.2.31) with the conjugated flow variable f; = eg, satisfies the following power balance
equation:

b
LH(z) = elSfa+ [ el frdz (6.2.46)

Furthermore, if the Hamiltonians H* (z) and H™ (z) are bounded from below,the augmented
system has passivity properties. Indeed, although the Hamiltonian of the augmented system
(6.2.31) is linear in the two color functions, they are invariants of the system hence, restricted
to the invariant submanifold of invariance, it is indeed bounded from below.

Observe that, as we consider general color functions which are not Heaviside functions, the
interface is now only defined by the continuity and discontinuity assumption on the two effort
variables. The port variables (fr, er) are distributed variables on the complete domain (a,b)
and hence are not the restriction at the point interface of the effort variables as for instance
in (6.2.11). If the color functions are restricted to Heaviside functions then the power inflow
at the interface appearing in the power balance equation (6.2.46) depends only on the values

of the effort variables at the interface
b
/ €1T frdz = —e; (0_) €2 (0+) + e1 (0_) €2 (0+)
a

involving the same variables as in (6.2.14).

6.3 Port Hamiltonian systems coupled through a moving inter-

face

In this section we shall consider the problem of two systems of two conservation laws which
are coupled through a mowving interface. We shall denote by [ (¢) the time-varying position
of the interface in the interval ]a, b[ and its velocity by [ (t) = %. In first instance we shall
show how the formulation as a port-Hamiltonian systems of corollary 9 may be extended
to a moving interface. To this end we shall consider the velocity I (t) of displacement of

the interface as an input. After formulating the conservation laws in the case of a moving
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interface, we show that they lead to a Port Hamiltonian system obtained by completing the
system of corollary 9 with an input relation and a conjugated port variable to l(t) Secondly,
we shall define a class of models associated with interface relations. We conclude with the

simple example of two gases in interaction through a piston.

6.3.1 Balance equations with moving interface

For a time-varying position [ (¢) of the interface the spatial domains of the two subsystems
are the intervals [a,{(¢)[ and ]i(t),b]. The two color functions, the characteristic functions of

the domains, depend now on the position of the interface :

(2, ) = { L z€la 1] (6.3.1)

0 zell(t),
and
) 1 ozel@), )
Cl(t)(Z, t) = { 0 sc [a’ l(t)} (632)

It may be noted immediately that these color functions, depending on the position of the
interface [ (t), also are the solutions of some conservation laws, namely the transport equations

depending on the velocity i (t) of the interface
dc(z,t) = =1 (t) Dze(z,t) and 9yé(z,t) = —I (t) B,c(z,t) (6.3.3)
with initial conditions
c(z, 0) = (o) (2, t) and ¢(z, 0) = o) (2, t) (6.3.4)

and associated boundary conditions.

The state variables, the flux variables and the energy function may be defined according
to the definitions (6.2.16), (6.2.18) and (6.2.28). Now due to the moving interface, the balance
equations on interval [/, b'] with a < a’ <(t) <V < b containing the interface, will include
an additional term, depending on the velocity [ (¢) of the interface.

Assuming again the continuity of the effort es at the interface at I(t) (or equivalently of

the flux variable A ), the conservation law associated to the variable z; becomes

& fywi(zt)de = (z,t)dz+$f,’z;)m1(z,t)dz
- fl“)a 21(2,1) dz+f,lg;) O (z,1) dz
()[ 1), 1) = 2f (1), 1))
= f do./\/1(x cl,cl)dz—l-l()[

—Ni(a' ) + N (V1) + 1 () [
= —ea(d 1) +ea(V, 1) + 1 (1) [2]

6.3.5
(1)) — 2 (I(t), 2)] (05

y (1(t)
L (), 1) — 2 (U(t), 1)]
( ( )7t) - (l( )7 )]

and its local formulation becomes

Oy xy = do Ni(x, ¢, @) +1(t) [ex10.¢ + E10.7] (6.3.6)
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Allowing again a discontinuity of the effort variable e (or equivalently of the flux variable

N3), the conservation law associated to the variable xo becomes, in a similar way as above

4V ag(zt) =[5 {-dgNa(e, ¢, @) —er} dz+ (1) 25 (1), 1) — 23 (1(1), 1))
— [V {(do = [0 @) — (9-@)]) Na(x, ci, @) — er} dz
1 () [y (1), t) — a3 (1(t), )] (6.3.7)
= =Ny (d )+ N5 (V) +er (1(8) + 1 (2) [w5 (U(t), t) — 23 (I(t), 1)]
= —ega’,t) +ea(V,t) —er (1) + 1 (t) [v5 (U(t),t) — 23 (1(£),1)]

and its local formulation becomes

Oy w9 = —di No(x, 1, @) — eg + 1 (t) [c220,¢ + €190, (6.3.8)

6.3.2 Port Hamiltonian Formulation

The four balance equations (6.3.3), (6.3.6) and (6.3.8) may be recognized as the augmented
Hamiltonian formulation (6.2.31) of the system of two conservation laws with fixed interface
which is completed with an additive term proportional to the velocity. They may be written

in state space form
x O H (:L’, c, 5) cxr CX
|l ¢ | =Ta| 0H(x,c,6) | +1eg +i@)| -1 o |o. ( (_: ) (6.3.9)
c
¢ deH (x, ¢, €) 0 -1

with I defined in (6.2.32).
This defines an input map associated with the input I (¢), velocity of the interface, as

follows
CxT
G(z,c,e)=] -1 0 |0, ( ¢ > (6.3.10)

One may define then the conjugated output e; by
e = /b o:H ()" Gz, ¢, 0) dz
which may also be defined as the paicrbing
e=(G (T:L', ¢, o), 6:H (T)) = /b 6xH (2)T G(x, ¢, ©) dz (6.3.11)
a

This leads to a Dirac structure associated with systems of conservation laws with a moving

interface as follows.

Proposition 10. The set of relations Dys associated with a system of two conservation laws

defined with the variables < .

) on the spatial domain [a, b] > z and an interface mov-
€r2

ing with velocity [ which imposes the continuity of the effort variable ey and allows for the

discontinuity of the effort variable ey is defined by
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f e
Dy = I , ‘1 eFxE/
el l
fo €o
f Ta I G(x,ccC €
d . ( ) (6.3.12)
fr = —I 0 0 er
—ey —(GT(z,¢c,e)| 0 0 I

w2 (o o) ()
€y (c+¢) 0 2 /.,

with the flow variable f = (f1, f2, fes fE)T and the effort variable

¢ = (e1, e, €, ea)T associated with the extended state (6.2.29), the differential operator 7,
defined in (6.2.83), the operators d , resp. d* defined in (6.2.34), resp. (6.2.35), the column
vector I defined in (6.2.32), the input map G defined in (6.3.10) and its adjoint <GT’ in
(6.3.11) and bond space B = F x £ with F = L?((a, b),R)° x R x R? and & = domd* x
domd x L? ((a, b) ,R)* x R x RY endowed with the pairing

f é

< J1 , ezl > = ffédez+f:e[Tf1dz+enga—eli (6.3.13)
e
fo €o

with e} S fg = ep(a) fa(a) — ea(b) fo(b), defines a Dirac structure.

Proof. Let us first show the isotropy condition D, C Dzﬁ-

Denote
f =

and the pairing (6.3.13) by <é, f> Then the isotropy condition is written

GO e (2 e = (&8 2) + (e 1) =0 w(f e, (% é) c D

with respect to the bilinear product associated with the pairing (6.3.13) or in an equivalent

way

<é, f> =0 Y(f, &) eDy
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Let us hence compute the pairing
<é, f> = f;édez+f;eij1dz—|—egEfa — el
= [P (Jue+Ter +Gi)dz+ [PefT (~178) dz + ea"Sfs

- (Ve edz)i
(6.3.14)
= (fermrTedz+ [l e/ (—176) dz) + ([ e Taedz + ea" )

+ e Gldz— ([)e Gaz) i

=0

using the definition of the boundary port-variables fy and ey .

Let us now prove the co-isotropy condition D]J\;[ C Dyys. This amounts to proving
that if (f2, é2) € B satisfies V(f1, é') € Das; ((f, &Y), (f2, €2))) = 0 then (f2, é2) € Dy,.
Therefore let us compute the bilinear product (6.3.14), assuming that (fl, éel) € Dy

b ~
P = /(é2T(jaé1+Ie}+Gzl)+é1Tf2)dz

b b
+ / el f2dz + / 2ebdz (6.3.15)
+ ((c +¢) e%) |a7b Tyf2 43ty (e%) |a’b (6.3.16)
b b
+/ [(0-c) el + (0.0 el] f2 dz+/ e? (—ll) dz (6.3.17)
b
— (/ GT (z, ¢, ¢)é! dz) 2 —elit (6.3.18)

Remind that, from the definition of Dy, , the variables ! , e} and [ may be chosen freely.

In a first instance, choose [ = 0. Then the power product becomes

b ~
P = / (éQT(jaél Y TIeby el f2> dz

a

b b
+/ e}f?dz—i—/ eleldz (6.3.19)
+ ((c—|— c) e%)|a’b Tyf2 4 e3Ts (e§)|a7b (6.3.20)
b
+/ [(0-c)el+ (0-¢)el] f2dz (6.3.21)

- ( / "G (0 e ) dz) P2 (6.3.22)



120 6. PORT HAMILTONIAN FORMULATION-PDES- MOVING INTERFACE
Then, firstly, let us choose e% =0, e% =0, e} =0 and e% = 0. Then, the bilinear product

b b ) b ]
Pe = / elfdz — (/ —d.cel dz) ? = / (ff + l26zc) eldz

and the condition that it vanishes for any e, implies the relation:
f24+1%20.c=0.
By symmetry one obtains f2 + [20.¢ = 0.

reduces to:

Secondly, let us choose e} = 0, e} = 0 and ef(a) = e}(b) = 0, then, using the preceding
equalities, the definition of fo of the constitutive relations of Djy; and (6.2.36) with zero

boundary conditions, the bilinear product becomes

b b '
o= [@ead) rdma- ([ enocramoodas) ¢
b
= / el (—de3 + ff — (cx10.c + €210.¢)) dz (6.3.23)

The condition that Pe vanishes for any e% hence implies that :
f?2 = de3 + (cx10.c + ¢110,0).

Thirdly, let us choose e} = 0, e} = 0 and e}(a) = e}(b) = 0, then, using the preceding
derived equalities and the definition of f; of the constitutive relations of Dy and (6.2.36)

with zero boundary conditions, the bilinear product becomes
b b
P = / (e (de3) + ebfF + eze}) dz — </ (ca90.c + c190.¢C) e} dz) I
b .,
= / es (d*e% + f2 4 €3 — (ca0.c + ¢x20,¢) 12) dz (6.3.24)

The condition that P, vanishes for any e% hence implies that :

f3=—d%e} — e? + (cw20,c + €220,C) 12

Fourthly, let us choose é1 = 0, & = 0, then, using the definition of f; of the constitutive

relations of Dy, the bilinear product becomes

b
Pe = /(—e}e§+f12€})dz
b
/ ef (—e3 + f) dz (6.3.25)

The condition that P, vanishes for any 61 hence implies that: fI = e3.

Fifth, let us choose e} = 0, then, using the constitutive relations of Dy, the previously

established relations on f7, f3 and f7, the relation (6.2.36) , the bilinear product becomes
P = f; (edej + €3 (—d*) e7) dz + f; (elde3 + e} (—d*) e?) dz
+((c+o)er)],, S +e3TS (e3)],,
= —[(c+d)eled]’ — [(c+ )eded]”
((c+oyel),, 205 + €375 (e3)l,,
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The condition that P, vanishes for any ei(a) and e}(b) hence implies

(£)-(%a )(3)
e} (c+¢) 0 3 a7b.

In a second instance, choose e # 0. Then, using the previously derived equalities,

the power product becomes
b . .
P, = / (#TG i) dz+ (—e 1Y)
a b '
= (/ eTadz — e?> it (6.3.26)
a

The condition that P, vanishes for any [! hence implies 612 = f: GT &dz .

O

Note that with the choice of the two additional port variables associated with the color
functions, the power balance on the effort and flow variables associated with the color functions
do not contribute to the total power balance (corresponding, for physical systems, to the
energy balance equation).

The port-Hamiltonian formulation of the system of two conservation laws with a moving

interface with velocity [ may be formulated as a port-Hamiltonian system.

Corollary 11. The augmented Hamiltonian systems (6.3.9) with the conjugated interface flow
variable f; = eo and conjugated variable e; to the interface velocity, defined in (6.3.11), may

be defined as a boundary port-Hamiltonian system with respect to the Dirac structure Dys by

19,5 oz H

A I €D (6.3.27)
el l

fo €

where the state vector T, defined in (6.2.29), is the vector of conserved quantities of the
conservation laws augmented by the color functions of each spatial subdomain, the Hamiltonian
H (%), defined in (6.2.28), is the sum of the Hamiltonian of each spatial subdomain, the pair
of port variables (fr, er) are associated with the flux variables at the interface, the pair of
port variables (1, e;) are associated with the displacement of the interface and the pair of port
variables (fa, eg) are associated with the boundary of the spatial domain [a, b]. The pairs of
port variables (f§, ef) balance the power product associated with the transport equations of the

color functions.

Computing the balance equation for the Hamiltonian we find

LH(x) = eoSfo+ [Lel frdz+ie (6.3.28)
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It may be observed that, when restricting to the particular solution of the color functions
(6.3.2) obtained with initial conditions (6.3.4), one can relate these port variables to interfacial
effort and flux variables in a similar way as for a fixed interface. In this case the balance
equation of the Hamiltonian is given by

d
M = S fy

+e1 (l_) ) (l+) —e1 (l_) €9 (l+) — iel
with output conjugated to the velocity of the interface being the discontinuity of energy density

at the interface

e = (—H_ (l) +HT (l))

6.3.3 Model of the interface’s displacement

In the preceding section we have defined the dynamic model of a system of two conserva-
tion laws coupled by a moving interface with velocity [ considered as an input variable and
the interface relations (6.2.12) and (6.2.13). The port Hamiltonian model with the moving
interface, admit as port variables, the port variables (f7, er) associated with the flux vari-
ables at the interface and the port variables (i, el) associated with the displacement of the
interface. In this section we shall discuss possible closure relations which could be imposed of
these two pairs of port variables at the interface and illustrate it on a very simple example:
two gases with a piston at the interface.

In a first instance one should observe that the dynamics of displacement of the interface is
necessarily finite-dimensional while the port variables (fr, er) are distributed. Coming back
to the motivating example of a thin interface, that is located at some point [ (¢) which was the
departure for the definition of the model in the section 6.3.1, the port variables (f7, er) may

be related to a finite-dimensional pair of variables (¢7, €;) € R? with the following adjoint

b
<¢1>:<fa5(z_l) ffdz) (6.3.29)
er 6[5(2—1)

which preserves the power product : ¢re; = f; er frdz .

relations

It should be noted that one could also define a thick interface by choosing another kernel
than § (z — ), with positive values and finite support.

In a second instance, one has complete the interface relation with the dynamics of the posi-
tion of the interface [ (¢) for instance in terms of a port Hamiltonian system with state variables
including [ (¢) and the port variables (¢r, €r) and <l, el). In this case by interconnection of
port Hamiltonian systems through a Dirac structure one may conclude that the complete
system is again port Hamiltonian and use its properties for the proof of well-posedness and

passivity-based control design.

Example 12. Let us conclude this paragraph with the ezample of two isentropic gases (mod-

elled by a systems of two boundary port Hamiltonian systems [136]) coupled at their interface
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by some piston in motion. The port Hamiltonian model of the gases is given precisely by the
proposition 7 with state variables being the specific volume x; (¢,z) = v (¢, 2) , the velocity
x9 (t,z) = v (t, z) , Hamiltonian is the sum of the internal energy density /(v) and the kinetic

energy density : H(v,v) =U(v) + % The variational derivative of the Hamiltonian is then

()= (0)-()

where p(v) = —6,U (v) is the pressure. The interface relation (6.2.12) corresponds to the
continuity of the effort variable e = v at the interface, which is the usual hypothesis that
there is no cavitation at the piston and that the velocities of the fluids on both sides of the
piston are equal to the velocity of the piston. And the interface relation (6.2.13) corresponds
to the balance of forces exerted on the piston by the pressures e; = —p (b) of the gases from
both gases and the external force fr.

The system of the two gases with a moving interface is then formulated by the corollary 11
with the color functions being the characteristic functions of each subdomain. As the piston is
considered as a thin interface, we use the relation (6.3.29). In order to complete the interface
relations we shall assume that the piston has no mass but is subject to friction with coefficient
v and an linear elastic force with stiffness k. In this case the dynamics of the piston is defined

as a simple integrator
dl
_——= =0
=01

and the conjugated effort variable is the sum of all forces applying on the piston
€ = —kl—v ¢]

It may be interpreted as a finite-dimensional port Hamiltonian system with state variable
[ , structure matrix being zero, Hamiltonian function %le port-variables (¢r, €) and dissi-
pative term. Finally the model has to be coupled with the pair of port variables (l, el>. One
relation is trivial

[ = ¢r =wv

The second one is less trivial and involves the effort variable e; which is, when the color func-
tions are the characteristic functions of both subdomains, the difference of the Hamiltonian
density function at the interface: ¢, = (—H~ (1) +H* (1)) . The most simple way of defining
some relation is impose the continuity of the Hamiltonian density (which plays then the role

of a privileged variable) which indeed complete the boundary conditions at the interface
e = 0

As a consequence using the total energy of the conservation laws and the interface model

Hypt (0, v, 1) = fb (U(U) + %) dz + %k:l2 one obtains the power balance equation

a

dHyo
dt

= —vo? — Uf(a)pf (U) (G) + U+<b)p+ (t’) (b)
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6.4 Conclusion

In this chapter we have suggested port Hamiltonian formulation of a system of two con-
servation laws (on a l-dimensional spatial domain) coupled by a moving interface. We have
firstly augmented the system of conservation laws with two transport equations of the char-
acteristic functions of the subdomains defined by the interface. Then we have derived a the
port Hamiltonian formulation of this augmented system with, in addition to the boundary
port variables at the boundary of the total domain two pairs of port-variables associated with
the interface. The first pair corresponds to a particular choice of interface relation corre-
sponding to a continuity and a balance equation on the flux variables at the interface and the
second pair is defined by the velocity of interface and its conjugated variable. Finally we have
illustrated this model with the example of two gases coupled by a moving piston.

This is the first step towards considering the coupling through an interface of Hamiltonian
systems composed of an arbitrary number of conservation laws. However the most interesting
feature of this formulation is that it makes explicit the pairs of conjugated variables needed
to express the interface relations when derived from a port Hamiltonian formulation. This
might be a powerful insight in the various suggested interface relations in the literature and
towards a passivity-based definition and classification of these interface relations.

Finally this port Hamiltonian formulation might open the way to the analysis of the well-
posedness of these systems (in the continuation of [87, 155]) as well as their passivity-based

control which will be the aim of future work.



Chapter 7

Conclusion

7.1 General conclusion

This thesis is focused on modelling, control, and mathematical analysis of 1D transport
equations coupled on two complementary time-varying domains. Along the manuscript, we
show how a rigorous description of the interface is a major factor for such class of systems. The
lack of physical model to express clearly the interface structure and the coupling conditions
can be considered as the main challenge in modelling point of view. These interfaces which
appear in many problems as the extrusion process and the Stefan problems are sources of real
difficulties due to the discontinuity of the variables and the interface motion in many physical
systems. This discontinuity is expressed in the extrusion modelling by a change of causality
between the filling ratio in the Partially Filled Zone and the gradient of pressure which is
the associated conjugate variable in the Fully Filled Zone. Many studies of mathematical
interest are performed concerning the fixed interface is the context of existence and regularity

of solutions and well-balanced numerical computation as it is discussed along this thesis.

In Chapter 3 the modelling of an extrusion process has been studied. The proposed
model is based on mass and energy balance of an homogeneous material which is heated
and transported along the extruder. The rheological behavior of the transported material
is related essentially to the viscosity which strongly depends on dynamic variables as the
material temperature and moisture content. The distributed viscosity prevents an explicit
formulation of interface relations and represents in that sense a very interesting problem for
control and mathematical analysis.

In our study we consider a simplified model with constant viscosity. Then, the interface
coupling conditions can be explicitly formulated by assuming the continuity of variables as
pressure or momentum flux. By numerical computations based on the finite volume method,
we simulate the evolution of pressure, die net flow, filling ratio and temperature along the
extruder. The tracking of the interface is achieved using an extension of the variables in the

whole coupled complementary time-varying domains by means of color functions as charac-
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teristic functions of the two moving intervals.

In Chapter 4 a mathematical analysis of the extrusion process model has been performed.
It has been shown that the Cauchy problem admits a unique solution if initial and boundary
data are closed to the equilibrium. Our strategy is based on the transformation of moving
domains in fixed one using changes of coordinates. Contraction mapping principle (Banach
fixed point argument) allows to define the conditions such that the uniqueness and existence
of solution are guaranteed. We first prove the existence of solution for small time and extend

ours analysis to semi-global time by iterations.

In Chapter 5, we deal with the control of the extrusion process. We only consider the
homogeneous mass balance equation as an independent system. One should point out that the
system can be decoupled only if the viscosity is constant. Indeed, for the process the dynamics
of moisture content which is continuous at the interface does not affect the design of the desired
properties of the material at the die and the temperature also evolves independently. The
evolution of the moisture is in this case determined by an input value (boundary condition)
which is transported along the extruder with a delay depending on the velocity of the transport
in the partially and Fully Filled Zone. The filling ratio transport equation and the interface
dynamics are combined to obtain a delay system framework by solving the partial differential
equation using the method of characteristics. Assuming that the rotation speed of the screw
is constant and defining the feed rate as an input variable we obtain a state-dependent input
delay system and construct an predictor based controller to stabilize the interface around a
given equilibrium. Consequently, we stabilize the net flow at the die. Comparing the interface
coupling relations, we show that the admissible set of equilibrium for filling ratio and interface
position is more large if we consider continuity of pressure. We conclude that the momentum
flux continuity represents a restrictive coupling relation and we perform the control analysis
by considering pressure continuity at the interface. The stabilization of the interface leads to

the stability of the temperature as it is shown by simulations.

In Chapter 6 we consider coupled port-Hamiltonian systems through a mobile interface.
The motivation of the study in this context is to classify the interface relations for cou-
pled port-Hamiltonian systems in complementary time varying domains. By augmenting the
system with the colors functions, we define a global port-Hamiltonian system on the total do-
main. The transport operator is then given by a differential operator which is modulated by
the distributed color functions. We show that the extended system is also a Dirac structure by
adding two pairs of port-variables which are associated to interface. The first pair corresponds
to the discontinuity assumption on one of the flux variables (the other one being continuous)
and the second pair being the velocity of interface and its conjugated variable. The velocity
of the color functions transport equations corresponds in this case to the interface velocity.
It is important to note that the efforts and flux variables which are associated to the color

functions dynamics do not appear in the power balance equation.
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7.2 Future research

Coupled partial differential equations through mobile interface is an emergent subject in
control theory. In that perspective, this thesis stands as an exploration which suggests many
open problems. In the context of extrusion process modelling, the problem which is related to
distributed viscosity is a major interest for various applications. One should also mention that
a more complex geometry of screw profile may lead to a succession of partially and fully filled
zones which makes arise several mobile interfaces. Another challenge is to deal with reactive
extrusion which consisted to a mixture of different materials which different densities. Well-
posedness issues of such system for distributed viscosity can be explored in future works.
The extension of the predictor based controller by introducing a time-varying screw speed
is a real challenge, for the delay system control. One should mention that the extension of
the controller to the temperature design should be performed to guarantee the stability of
the whole system. By studying moving interface problem in port-Hamiltonian framework, we
make explicit the pairs of conjugated variables needed to express the interface relations. This
might be a powerful insight in the various suggested interface relations in the literature and

towards a passivity-based definition and classification of these interface relations.
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Chapter 8

Nomenclature

B (m%) coefficient of pressure flow
Fy, (kg s71) Mass flow feed rate

Fy (kg s71) Mass flow rate at the die
fp (=) Filling ratio

Kq (m?) Die conductance

I (m) Moving interface

L (m) Length of the screw

N (rd s71) Screw velocity

P (Pa) Pressure

Serp(m?) Available section

Verr =E&Serr(m?)  Available volume

n (Pa s71) Viscosity of the matter
po(kg m=3) Density

& (m) Pitch length

¢ (m) Pitch length

Seen(m?) Exchange area between melt barrel
T, (K) Melt temperature

Ty(K) Barrel temperature

a (Jm~2s71K~1) Heat exchange coefficient

u(J kg™t K1) Viscous heat generation parameter
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