M. Kathryn, J. H. Mayer, and . Hafner, Localized surface plasmon resonance sensors, Chemical Reviews, vol.111, issue.6, pp.3828-3857, 2011.

Y. Wang and E. C. Alocilja, Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens, Journal of Biological Engineering, vol.13, issue.7
DOI : 10.1007/s11051-010-0172-3

A. Longfei-ye, T. Mohtasebzadeh, and . Crawford, Magnetic nanoparticle arrays self-assembled on perpendicular magnetic recording media, International Journal of Molecular Sciences, vol.16, issue.8, pp.19769-19779, 2015.

M. Kataja, Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays, Nature Communications, vol.64, issue.1, p.7072, 2015.
DOI : 10.1016/j.jcp.2006.09.013

E. Vallés, J. Garcia-torres, and E. Gómez, Synthesis and characterization of co@ag core?shell nanoparticles, Journal of Nanoparticle Research, vol.12, issue.6, pp.2189-2199, 2009.

A. Mayoral, A novel Co@Au structure formed in bimetallic core@shell nanoparticles, Chemical Communications, vol.21, issue.40, pp.8442-8445, 2015.
DOI : 10.1039/C0JM02624G

M. P. Singh, Electron microscopy of Ag-(Ni-O) core-shell nanowires, Journal of Microscopy, vol.4, issue.1, pp.174-179, 2014.
DOI : 10.1039/c2nr00009a

A. Elsukova, Structure, morphology, and aging of Ag-Fe dumbbell nanoparticles, physica status solidi (a), vol.232, issue.1, pp.2437-2442, 2011.
DOI : 10.1016/S0304-8853(01)00245-1

L. Wang, Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe???Ag nanoparticles, Journal of Applied Physics, vol.107, issue.9, 2010.
DOI : 10.1364/AO.38.000177

L. Wang, Plasmonics and Enhanced Magneto-Optics in Core???Shell Co???Ag Nanoparticles, Nano Letters, vol.11, issue.3, pp.1237-1240, 2011.
DOI : 10.1021/nl1042243

B. Juan and . González-díaz, Small, vol.4, issue.2, pp.202-205, 2008.

M. Kataja, Effects of a non-absorbing substrate on the magneto-optical kerr response of plasmonic ferromagnetic nanodisks, physica status solidi, vol.211, issue.5, pp.1067-1075, 2014.

M. Nicoì, Polarizability and magnetoplasmonic properties of magnetic general nanoellipsoids, Optics Express, vol.21, issue.8, p.9875, 2013.

G. Armelles, Active magneto-plasmonics in hybrid metal?ferromagnet structures, Nature Photonics, vol.4, issue.2, pp.107-111, 2010.

R. Ferrando, Searching for the optimum structures of alloy nanoclusters, Phys. Chem. Chem. Phys., vol.26, issue.5, pp.640-649, 2008.
DOI : 10.1002/jcc.20247

B. Auguié and W. L. Barnes, Collective Resonances in Gold Nanoparticle Arrays, Physical Review Letters, vol.3, issue.14, 2008.
DOI : 10.1086/150207

C. Xirouchaki and R. E. Palmer, Deposition of size-selected metal clusters generated by magnetron sputtering and gas condensation: a progress review, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.362, issue.1814, pp.117-124, 1814.
DOI : 10.1098/rsta.2003.1306

A. James and . Greer, History and current status of commercial pulsed laser deposition equipment, Journal of Physics D : Applied Physics, vol.47, issue.3, p.34005, 2014.

T. G. Dietz, Laser production of supersonic metal cluster beams, The Journal of Chemical Physics, vol.74, issue.11, pp.6511-6512, 1981.
DOI : 10.1016/0301-0104(79)85224-6

I. Karakaya and W. T. Thompson, The ag-co (silver-cobalt) system. Bulletin of Alloy Phase Diagrams, pp.259-263, 1986.
DOI : 10.1007/bf02869002

H. , The au-co (gold-cobalt) system. Bulletin of Alloy Phase Diagrams, pp.449-454, 1985.

R. Ferrando, Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles, Journal of Physics: Condensed Matter, vol.27, issue.1, p.13003, 2015.
DOI : 10.1088/0953-8984/27/1/013003

Z. Kataya, Effets de température sur les nanoparticules de CoAg : structure et effets de ségrégation, 2013.

R. Alayan, Morphology and growth of metal clusters in the gas phase: A transition from spherical to ramified structures, Physical Review B, vol.92, issue.12, 2006.
DOI : 10.1007/s100530050435

URL : https://hal.archives-ouvertes.fr/hal-00141266

J. L. Vialle, A cylindrical reflectron time-of-flight mass spectrometer, Review of Scientific Instruments, vol.37, issue.6, pp.2312-2318, 1997.
DOI : 10.1063/1.1144314

R. Alayan, Application of a static quadrupole deviator to the deposition of size-selected cluster ions from a laser vaporization source, Review of Scientific Instruments, vol.65, issue.7, pp.2461-2470, 2004.
DOI : 10.1103/PhysRevLett.86.4676

URL : https://hal.archives-ouvertes.fr/hal-00142043

B. David, C. Williams, and . Carter, Transmission Electron Microscopy, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00908814

F. Laloë, C. Cohen-tannoudji, and B. Diu, Mécanique quantique -Tome II, 2000.

L. Reimer, Scanning Electron Microscopy, 1998.
URL : https://hal.archives-ouvertes.fr/jpa-00223979

R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2011.

S. Croft, Kaye and Laby ??? Tables of Physical and Chemical Constants (15th edn), Physics Bulletin, vol.38, issue.4, pp.149-149, 1987.
DOI : 10.1088/0031-9112/38/4/037

M. Díaz, L. Martínez, M. M. Ruano, D. Llamosa, P. et al., Morphological, structural, and magnetic properties of Co nanoparticles in a silicon oxide matrix, Journal of Nanoparticle Research, vol.61, issue.10, pp.5321-5333, 2011.
DOI : 10.1063/1.338891

W. B. Pearson and G. H. Vineyard, Physics Today, vol.11, issue.9, pp.36-36, 1958.
DOI : 10.1063/1.3062734

A. Hillion, Etude des propriétés magnétiques d'assemblées de nanoparticules de Co, FeRh et FeAu, 2012.

T. Van-hoof, E. E. Zhurkin, and M. Hou, Nanoscale alloys and core-shell materials : Model predictions of the nanostructure and mechanical properties, Physical Review B, issue.22, p.75, 2007.

F. Dorfbauer, Nanostructure calculation of CoAg core-shell clusters, Journal of Applied Physics, vol.99, issue.8, pp.8-706, 2006.
DOI : 10.1021/jp994391j

T. Van-hoof and M. Hou, Structural and thermodynamic properties ofAgconanoclusters, Physical Review B, vol.72, issue.11, 2005.

A. Abdiravuf, M. Dzhurakhalov, and . Hou, Equilibrium properties of binary and ternary metallic immiscible nanoclusters, Physical Review B, vol.76, issue.4, 2007.

Y. Xu and J. Wang, Magnetic Properties of Heterostructured Co???Au Nanoparticles Direct-Synthesized From Gas Phase, IEEE Transactions on Magnetics, vol.43, issue.6, pp.3109-3111, 2007.
DOI : 10.1109/TMAG.2007.894006

H. Calderon, Y. Bao, and K. M. Krishnan, Synthesis and characterization of magnetic-optical co-au core-shell nanoparticles, The Journal of Physical Chemistry C, vol.111, issue.5, pp.1941-1944, 2007.

Y. Xu and J. Wang, Direct Gas-Phase Synthesis of Heterostructured Nanoparticles through Phase Separation and Surface Segregation, Advanced Materials, vol.91, issue.5, pp.994-999, 2008.
DOI : 10.1103/PhysRevB.72.115434

P. M. Paulus, Magnetic properties of nanosized transition metal colloids: the influence of noble metal coating, The European Physical Journal D, vol.9, issue.1, pp.501-504, 1999.
DOI : 10.1007/s100530050487

E. Vallés, J. Garcia-torres, and E. Gómez, Synthesis and characterization of co@ag core?shell nanoparticles, Journal of Nanoparticle Research, vol.12, issue.6, pp.2189-2199, 2009.

M. A. Lopez-quintela, J. Rivas, A. J. Garcia-bastida, and C. Ramos, Magnetic properties of co/ag core/shell nanoparticles prepared by successive reactions in microemulsions, Journal of Magnetism and Magnetic Materials, vol.300, issue.1, pp.185-191, 2006.

S. S. Kamal, core???shell nanocrystallites, Journal of Experimental Nanoscience, vol.57, issue.18, pp.1426-1443, 2016.
DOI : 10.2320/matertrans.46.1865

, BIBLIOGRAPHIE

D. Kovar, M. A. Asoro, and P. J. Ferreira, In situ transmission electron microscopy observations of sublimation in silver nanoparticles, ACS Nano, vol.7, issue.9, pp.7844-7852, 2013.

B. Palpant, Effets de taille dans la réponse optique d'agrégats de métaux nobles en matrice : ´ etude expérimentale et interprétation théorique, 1998.

J. Tuaillon-combes, Monitoring the core shell structure in bimetallic clusters: The case of CoAg, Chemical Physics Letters, vol.564, pp.65-68, 2013.
DOI : 10.1016/j.cplett.2013.02.024

M. Jamet, Caractérisations structurale et magnétique d'agrégats de cobalt, fer et mixtes cobalt-argent noyés en matrice de niobium : ´ etude des propriétés magnétiques d'un agrégat unique par magnétométriè a micro-SQUID, 2001.

, EELS Atlas : A Reference Collection of Electron Energy Loss Spectra Covering All Stable Elements, Gatan, 1983.

D. Matthew, G. Arnold-martin, M. J. Blaber, and . Ford, Search for the ideal plasmonic nanoshell : The effects of surface scattering and alternatives to gold and silver, The Journal of Physical Chemistry C, vol.113, issue.8, pp.3041-3045, 2009.

D. Dilip and . Paul, Optical metamaterials : Fundamentals and applications, Physics Today, vol.63, 2010.

M. Vollmer and U. Kreibig, Optical properties of metal clusters, 1995.

J. Lermé, Size Dependence of the Surface Plasmon Resonance Damping in Metal Nanospheres, The Journal of Physical Chemistry Letters, vol.1, issue.19, pp.2922-2928, 2010.
DOI : 10.1021/jz1009136

J. Lermé, Size Evolution of the Surface Plasmon Resonance Damping in Silver Nanoparticles: Confinement and Dielectric Effects, The Journal of Physical Chemistry C, vol.115, issue.29, pp.14098-14110, 2011.
DOI : 10.1021/jp203481m

P. B. Johnson and R. W. Christy, Optical Constants of the Noble Metals, Physical Review B, vol.1, issue.12, pp.4370-4379, 1972.
DOI : 10.1103/PhysRevB.1.498

P. B. Johnson and R. W. Christy, Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd, Physical Review B, vol.39, issue.12, pp.5056-5070, 1974.
DOI : 10.1119/1.1986130

N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1976.

J. D. and J. , Classical electrodynamics, 1999.

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 1998.
DOI : 10.1002/9783527618156

Z. Mei and O. Korotkova, Random light scattering by collections of ellipsoids, Optics Express, vol.20, issue.28, p.29296, 2012.
DOI : 10.1364/OE.20.029296

T. Bruce, P. J. Draine, and . Flatau, Discrete-dipole approximation for scattering calculations, Journal of the Optical Society of America A, vol.11, issue.4, p.1491, 1994.

M. Guy-salt-carsten-rockstuhl and H. P. Herzig, Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles, Journal of the Optical Society of America A, vol.20, issue.10, p.1969, 2003.
DOI : 10.1364/JOSAA.20.001969

P. C. Waterman, Matrix formulation of electromagnetic scattering, Proceedings of the IEEE, pp.805-812, 1965.
DOI : 10.1109/PROC.1965.4058

M. I. Mishchenko, T-matrix theory of electromagnetic scattering by partciles and its applications : a comprehensive reference database, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.88, issue.1-3, pp.357-406, 2004.

, The Mie Theory, 2012.

M. Gaudry, Propriétés optiques d'agrégats mixtes de métaux de transition en matrice d'alumine : effets de taille et de composition, 2002.

M. Gaudry, Size and composition dependence in the optical properties of mixed (transition metal/noble metal) embedded clusters, Physical Review B, vol.104, issue.354, 2003.
DOI : 10.1021/jp994391j

URL : https://hal.archives-ouvertes.fr/hal-00142059

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2008.
DOI : 10.1002/9780470386323

P. Allia, Magnetic hysteresis based on dipolar interactions in granular magnetic systems, Physical Review B, vol.147, issue.158, pp.12207-12218, 1999.
DOI : 10.1016/0304-8853(95)00068-2

J. L. Garca-palacios, On the Statics and Dynamics of Magnetoanisotropic Nanoparticles, Advances in Chemical Physics, pp.1-210, 2000.
DOI : 10.1007/BF01008729

A. Tamion, Accurate determination of the magnetic anisotropy in cluster-assembled nanostructures, Applied Physics Letters, vol.95, issue.6, p.62503, 2009.
DOI : 10.1103/PhysRevB.65.094409

F. Tournus and E. Bonet, Magnetic susceptibility curves of a nanoparticle assembly, I: Theoretical model and analytical expressions for a single magnetic anisotropy energy, Journal of Magnetism and Magnetic Materials, vol.323, issue.9, pp.1109-1117, 2011.
DOI : 10.1016/j.jmmm.2010.11.056

M. Newville, LMFIT : Non-Linear Least-Square Minimization and Curve- Fitting for Python ¶, 2014.

K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quarterly of Applied Mathematics, vol.2, issue.2, pp.164-168, 1944.
DOI : 10.1090/qam/10666

E. Wolf, , 2016.

J. Clarke and A. I. Braginski, The SQUID Handbook, 2004.

V. Dupuis, Magnetic assembled nanostructures from pure and mixed Co-based clusters, Journal of Physics: Condensed Matter, vol.16, issue.22, pp.2231-2240, 2004.
DOI : 10.1088/0953-8984/16/22/024

URL : https://hal.archives-ouvertes.fr/hal-01811432

, BIBLIOGRAPHIE

A. Tomou, Weak ferromagnetism and exchange biasing in cobalt oxide nanoparticle systems, Journal of Applied Physics, vol.99, issue.12, p.123915, 2006.
DOI : 10.1080/01411590412331316672

R. Sachan, Ferroplasmons: Intense Localized Surface Plasmons in Metal-Ferromagnetic Nanoparticles, ACS Nano, vol.8, issue.10, pp.9790-9798, 2014.
DOI : 10.1021/nn5031719

J. Nelayah, Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging, Optics Letters, vol.34, issue.7, p.1003, 2009.
DOI : 10.1364/OL.34.001003

J. Steven and . Barrow, Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy, Nano Letters, vol.14, issue.7, pp.3799-3808, 2014.

O. Nicoletti, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles, Nature, vol.27, issue.7469, pp.80-84, 2013.
DOI : 10.1093/bioinformatics/btq692

O. Nicoletti, Surface plasmon modes of a single silver nanorod: an electron energy loss study, Optics Express, vol.19, issue.16, p.15371, 2011.
DOI : 10.1364/OE.19.015371

N. Moussa and . Gom, Single particle plasmon spectroscopy of silver nanowires and gold nanorods, Nano Letters, vol.8, issue.10, pp.3200-3204, 2008.

S. Raza, Multipole plasmons and their disappearance in few-nanometre silver nanoparticles, Nature Communications, vol.6, issue.1, p.8788, 2015.
DOI : 10.1103/PhysRevB.6.4370

J. A. Scholl, Quantum plasmon resonances of individual metallic nanoparticles, Nature, vol.10, issue.7390, pp.421-427, 2012.
DOI : 10.1038/nmat3004

T. L. Ferrell, Analytical calculation of stopping power for isolated small spheres, Physical Review B, vol.52, issue.14, pp.7365-7371, 1987.
DOI : 10.1080/13642818508243156

R. H. Ritchie, Plasma Losses by Fast Electrons in Thin Films, Physical Review, vol.114, issue.5, pp.874-881, 1957.
DOI : 10.1007/BF01329519

J. W. Gadzuk and E. W. Plummer, Field emission energy distribution (FEED) Reviews of Modern Physics, pp.487-548, 1973.

S. J. Pennycook, B. Rafferty, and L. M. Brown, Zero loss peak deconvolution for bandgap EEL spectra, Journal of Electron Microscopy, vol.49, issue.4, pp.517-524, 2000.

R. H. Fowler and L. Nordheim, Electron Emission in Intense Electric Fields, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.119, issue.781, pp.173-181, 1928.
DOI : 10.1098/rspa.1928.0091

F. Peña,

S. Raza, Multipole plasmons and their disappearance in few-nanometre silver nanoparticles, Nature Communications, vol.6, issue.1, p.8788, 2015.
DOI : 10.1103/PhysRevB.6.4370

S. Raza, Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS, Nanophotonics, vol.2, issue.2, 2013.
DOI : 10.1515/nanoph-2012-0032

N. Troc, Etude des propriétés optiques de nanoparticules d'argent sondées par spectroscopies optique etélectroniqueetélectronique, 2016.

S. Kadkhodazadeh, Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps, Applied Physics Letters, vol.103, issue.8, pp.83103-167, 2013.
DOI : 10.1021/nn101589n

, BIBLIOGRAPHIE

H. Kneipp, K. Kneipp, and J. Kneipp, Probing plasmonic nanostructures by photons and electrons, Chemical Science, vol.12, issue.5, pp.2721-2726, 2015.
DOI : 10.1021/nl301643k

M. Inagaki and F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne, J. Mater. Chem. A, vol.1, issue.33, pp.13193-13206, 2014.
DOI : 10.1039/b915190g

A. Peter, W. Van-aken-carlos-diaz-egea, . Sigle, I. Sergio, and . Molina, High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands, Nanoscale Research Letters, vol.8, issue.1, p.337, 2013.

R. , Growth and properties of cobalt clusters made by sputtering gasaggregation . The European Physical Journal D -Atomic, Molecular and Optical Physics, pp.287-290, 2003.

M. , Superparamagnetism and other magnetic features in granular materials : A review on ideal and real systems, Journal of Nanoscience and Nanotechnology, vol.8, issue.6, pp.2836-2857, 2008.

E. P. Wohlfarth, Relations between Different Modes of Acquisition of the Remanent Magnetization of Ferromagnetic Particles, Journal of Applied Physics, vol.8, issue.3, pp.595-596, 1958.
DOI : 10.1088/0370-1301/67/12/303

K. Mok, Magneto-optical coupling in ferromagnetic thin films investigated by vector-magneto-optical generalized ellipsometry, Physical Review B, vol.84, issue.9, p.2011
DOI : 10.1103/PhysRevLett.76.4250

A. Y. , V. Antonov, and B. Harmon, Electronic Structure and Magneto-Optical Properties of Solids, 2004.

F. Pineider, Magneto-optical probe for investigation of multiphase fe oxide nanosystems, Chemistry of Materials, vol.27, issue.167, pp.466-473, 2015.