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E! cient Deep Structured Prediction for Dense
Labeling Tasks in Computer Vision

RŽsumŽ

Dans cette th•se, nous proposons une technique de prŽdiction structurŽe qui com-
bine les vertus des champs alŽatoires conditionnels Gaussiens (G-CRF) avec les
rŽseaux de neurones convolutifs (CNN).

LÕidŽe ˆ lÕorigine de cette th•se est lÕobservation que tout en Žtant dÕune forme
limitŽe, les G-CRF nous permettent dÕe! ectuer une infŽrence exacte de Maximum-
A-Posteriori (MAP) de mani•re e " cace. Nous prŽfŽrons lÕexactitude et la simplicitŽ
ˆ la gŽnŽralitŽ et prŽconisons la prŽdiction structurŽe basŽe sur les G-CRFs dans
les cha”nes de traitement dÕapprentissage en profondeur. Nous proposons des mŽth-
odes de prŽdiction structurŽes qui permettent de gŽrer (i) lÕinfŽrence exacte, (ii) les
interactions par paires ˆ court et ˆ long terme, (iii) les expressions CNN riches pour
les termes paires et (iv) lÕentra”nement de bout en bout aux c™tŽs des CNN. No-
tons que lÕinfŽrence exacte dans ce contexte signiÞe simplement que nous sommes
capables dÕe! ectuer une infŽrence MAP pour lÕobjectif G-CRF et nÕimplique pas
que nous rŽsolvons exactement le probl•me CRF dÕŽtiquetage discret original non
relaxŽ. Nous concevons de nouvelles stratŽgies de mise en Ïuvre qui nous perme-
ttent de surmonter les probl•mes de mŽmoire et de calcul lorsque nous traitons
des mod•les graphiques enti•rement connectŽs. Ces mŽthodes sont illustrŽes par
des Žtudes expŽrimentales approfondies qui dŽmontrent leur utilitŽ. En e! et, nos
mŽthodes permettent une amŽlioration des rŽsultats vis-ˆ-vis de lÕetat de lÕart sur
des applications variŽes dans le domaine de la vision par ordinateur.

Dans un premier temps, nous proposons un mod•le de prŽdiction structurŽ pour
capturer les interactions ˆ courte portŽe via un mod•le graphique Žpars au Chap. 2.
nous introduisons pour ce mod•le des architectures multi-rŽsolutions pour coupler
les informations ˆ travers les Žchelles dans un cadre dÕoptimisation commun, ce qui
conduit ˆ des amŽliorations systŽmatiques. Dans un second temp, nous Žtendons
ce mod•le pour capturer des termes par paires de type Potts, rŽduisant la mŽmoire
et la complexitŽ de calcul de notre mŽthode. Nous dŽmontrons lÕutilitŽ de notre
approche sur lÕŽvaluation de segmentation dÕimage VOC PASCAL 2012, montrant
des amŽliorations substantielles par rapport aux ˆ lÕŽtat de lÕart.

Dans le Chapitre 3, nous dotons le mod•le Deep G-CRF dÕune structure de
graphe dense. Pour faire face ˆ la mŽmoire prohibitive et aux exigences de calcul
dÕun mod•le graphique enti•rement connectŽ, nous exprimons les interactions par
paires en tant que produits internes dÕinclusions apprŽhendables de faible dimen-
sion. La matrice du syst•me G-CRF est donc de rang faible, ce qui nous permet de
rŽsoudre tr•s e" cacement le syst•me rŽsultant sur le GPU en utilisant lÕalgorithme
du gradient conjuguŽ. Dans ce contexte, nous adaptons lÕalgorithme du gradient
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conjuguŽ pour accommoder cette structure de bas rang. En vertu de ces modiÞca-
tions, nous dŽmontrons que la complexitŽ liŽe ˆ une structure graphique enti•rement
connectŽe correspond ˆ un cožt de calcul nŽgligeable comparŽ ˆ notre mod•le Žpars
au Chap. 2. Nous dŽveloppons Žgalement des variantes de nos plongements de
type Potts encore plus rapides. Nous montrons que les inclusions apprises cap-
turent les a" nitŽs pixel ˆ pixel dÕune mani•re spŽciÞque ˆ une t‰che, tandis que
notre approche atteint des rŽsultats de pointe sur trois t‰ches di" cile ˆ savoir la
segmentation sŽmantique, la segmentation humaine et lÕestimation de saillance.

EnÞn au Chapitre 4, nous introduisons une mŽthode e" cace en terme de temps
de calcul et de mŽmoire requise pour la prŽdiction structurŽe qui couple les dŽcisions
neuronales ˆ travers les deux espaces. Nous montrons que nous sommes capables
dÕe! ectuer une infŽrence exacte et e" cace sur un graphe spatio-temporel densŽment
connectŽ en adaptant lÕalgorithme de gradient conjuguŽ standard ˆ la structure
spatio-temporelle particuli•re que nous utilisons. Nous expŽrimentons plusieurs
mod•les de connectivitŽ dans le domaine temporel et prŽsentons des amŽliorations
empiriques par rapport ˆ des des mŽthodes de lÕŽtat de lÕart sur les t‰ches de suivi
dÕinstance, de sŽmantique et de segmentation dÕinstance pour les vidŽos.
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E! cient Deep Structured Prediction for Dense
Labeling Tasks in Computer Vision

Abstract

In this thesis we propose a structured prediction technique that combines the virtues
of Gaussian Conditional Random Fields (G-CRFs) with Convolutional Neural Net-
works (CNNs).

The starting point of this thesis is the observation that while being of a limited
form G-CRFs allow us to perform exact Maximum-A-Posteriori (MAP) inference
e" ciently. We prefer exactness and simplicity over generality and advocate G-CRF
based structured prediction in deep learning pipelines. Our proposed structured
prediction methods accomodate (i) exact inference, (ii) both short- and long- term
pairwise interactions, (iii) rich CNN-based expressions for the pairwise terms, and
(iv) end-to-end training alongside CNNs. Please note thatexact inference in this
context simply means that we are able to perform MAP inference for the G-CRF
objective and does not imply that we solve exactly the original unrelaxed discrete
labeling CRF problem. We devise novel implementation strategies which allow us to
overcome memory and computational challenges when dealing with fully-connected
graphical models. We perform extensive experimental studies and demonstrate the
utility of our methods by showing empirical improvements over strong baselines on
a variety of computer vision benchmarks.

We Þrst propose a structured prediction model for capturing short-range in-
teractions via a sparsely-connected graphical model in Chap.2. For this model,
we introduce multi-resolution architectures to couple information across scales in a
joint optimization framework, yielding systematic improvements. We extend this
model to capture Potts-type pairwise terms, reducing the memory and computa-
tional complexity of our method. We demonstrate the utility of our approach on
the challenging VOC PASCAL 2012 image segmentation benchmark, showing sub-
stantial improvements over strong baselines.

In Chap. 3, we endow the Deep G-CRF model with a densely connected graph
structure. To cope with the prohibitive memory and computational demands of a
fully-connected graphical model we express the pairwise interactions as inner prod-
ucts of low-dimensional, learnable embeddings. The G-CRF system matrix is there-
fore low-rank, allowing us to solve the resulting system very e" ciently on the GPU
by using the conjugate gradient algorithm. In this context, we adapt the conjugate
gradient algorithm to accommodate this low-rank structure. By virtue of these
customizations, we demonstrate that the complexity of allowing fully-connected
graphical structure comes at negligible computational overhead compared to our
sparse model in Chap.2. We also develop even faster, Potts-type variants of our
embeddings. We show that the learned embeddings capture pixel to-pixel a" nities
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in a task-speciÞc manner, while our approach achieves state of the art results on
three challenging benchmarks, namely semantic segmentation, human part segmen-
tation, and saliency estimation.

Finally in Chap. 4, we introduce a time- and memory-e" cient method for struc-
tured prediction that couples neuron decisions across both space at time. We show
that we are able to perform exact and e" cient inference on a densely-connected
spatio-temporal graph by customizing the standard conjugate gradient algorithm
to the particular spatio-temporal structure we use. We experiment with multiple
connectivity patterns in the temporal domain, and present empirical improvements
over strong baselines on the tasks of instance tracking, semantic and instance seg-
mentation for videos.
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Chapter 1

Introduction

The goal of this thesis is to develop e" cient and exact strategies for structured
prediction in Convolutional Neural Networks (CNNs) for dense labeling tasks in
computer vision. Our primary contributions in this thesis are the following:

1. A structured prediction approach for CNNs with sparsely connected graphical
models.

2. Extending our approach to fully connected graphical models while keeping
the computational and memory demands controllable.

3. Spatio-temporal structured prediction for video understanding.

Our proposed strategies are e" cient in time and memory, allow exact inference
and are end-to-end trainable via back-propagation. In order to position our con-
tributions with respect to the broader structured prediction context, in Sec. 1.1 we
begin by Þrst deÞning dense labeling tasks in the context of this thesis, followed by
a review of the relevant deep learning literature. We then give a brief overview of
structured prediction in Sec. 1.2, followed by a review of the relevant structured-
prediction literature in the context of deep learning in Sec.1.3. Finally in Sec. 1.4,
we discuss the contributions of this thesis.

1.1 Dense Labeling Tasks

In the context of this thesis, we use the termdense labeling tasksto describe com-
puter vision problems where the objective is to assign one label to each pixel in the
image. Semantic segmentation is one example of a dense labeling problem, where
each pixel is assigned a label which corresponds to the object/background class. Lo-
calization of human parts is another example, where each pixel is assigned a label
corresponding to the body part or background. Saliency estimation is yet another
example, where each pixel is assigned a label indicating whether the pixel is inter-
esting (salient) or not. These problems are shown in Fig.1.1. Furthermore, dense
labeling of pixels in a video with multiple image frames also falls in the category of
dense labeling tasks, for a spatio-temporal input signal.

So far, the labels we have considered are symbolic, and represent concepts (the
class/type of pixel) and not quantities. There are other problems where the labels
represent quantities, such as depth and surface normal. We refer to these problems
as dense regression problems, where the goal is to estimate real values at each pixel.
This is shown in Fig. 1.2. Even though in this thesis we focus on dense labeling
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(a) Input (b) Saliency

(c) Segmentation (d) Part Estimation

Figure 1.1: Examples of Dense Labeling Tasks: Saliency Estimation, Semantic
Segmentation, and Human Part Estimation.

problems all our methods described in Chap.2, 3 and 4 are also applicable to dense
regression problems.

One way to solve dense labeling problems is to use a Ôsliding windowÕ classiÞer,
which consists of the following steps: (i) we choose Þxed sized patches centered at
each pixel in the image, (ii) we extract features for each pixel by computing features
on the corresponding patch, and (iii) we label each pixel by using a model which
classiÞes the features computed at that pixel.

Typically such an image labeling pipeline involves two components: (i) the
feature extractor, which extracts meaningful features from the each patch, and
(ii) the classiÞer which learns to make predictions by using the statistics of the
features. A signiÞcant part of the last three decades of research in computer vi-
sion was dedicated towards designing sophisticated hand-crafted feature extractors
[Lowe 2004, Dalal 2005, Shotton 2009, Perronnin 2010] and classiÞers [Cortes 1995,
Breiman 2001, Jancsary 2012] (detailed comparisons and analysis of hand-crafted
features and models based on them are available in [ChatÞeld 2011]). More recently,
deep learning methods have returned to the fore [Krizhevsky 2012,Simonyan 2015,
He 2016, ChatÞeld 2014] with the advancements in computer hardware and the
availability of very large publicly available datasets [Len 2014,Deng 2009] for vision
tasks. Deep learning methods [Bengio 2013, Schmidhuber 2015] combine (a) rich
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Figure 1.2: Examples of Dense Regression Tasks: Depth and Surface Normal Esti-
mation.

feature extractors consisting of hierarchical networks composed of simple units per-
forming linear and non-linear computations on the data, and (b) relatively simple
decision layers trained with standard l-2 or cross-entropy losses for regression and
classiÞcation respectively. We now discuss some of the relevant deep learning liter-
ature which addresses dense labeling tasks, before turning to structured prediction
and its interplay with deep learning in Sec. 1.2 and 1.3.

1.1.1 Deep Learning for Dense Labeling Tasks

Figure 1.3: Convolutional Neural Network: A schematic representation of the
LeNet-5 CNN from [Lecun 1998], showing the common deep learning modules,
namely convolution and sub-sampling. The convolutional backbone of the network
performs local, patch-based feature extraction. This network also employs fully-
connected layers to obtain a global image-representation from these local features.

Our discussion on deep learning for dense labeling tasks begins with a brief
overview of Convolutional Neural Networks (CNNs) [Lecun 1998] which were de-
signed to recognize visual patterns directly from pixel images with minimal prepro-
cessing. CNNs are layered networks primarily composed of three kinds of operations
(i) local, spatially invariant linear operations (convolutions), (ii) non-linear activa-
tion functions, and (iii) sub-sampling operations. The convolution operator scans
the units from the previous layer in a sliding window fashion and linearly transforms
the inputs onto a feature space dictated by its internal parameters. This is followed
by a non-linear activation function such as sigmoid or ReLU [Hahnloser 2000]. Spa-
tial sub-sampling via averaging, max-pooling or random-sampling is also employed
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at various stages of the network to reduce the sensitivity of the output to small
shifts and variations in the input. CNNs also often employ fully-connected layers
to summarize local features from di! erent image regions into global image-level
representations (Fig. 1.3). Since these modules are fairly common by now, we re-
fer to [Lecun 1998, Hahnloser 2000] for details and focus below on deep learning
literature related to dense labeling tasks.

Initial Attempts. Early methods addressing dense labeling tasks exploited CNNs
as feature extractors and relied on probabilistic graphical model based inference
techniques to obtain pixel-level labels [Farabet 2013, Gupta 2014]. Some of these
approaches trained CNNs with patches of images, and classiÞed each image patch
to get a dense labeling over the image [Ganin 2014, Pinheiro 2014, Girshick 2014].
The authors in [Farabet 2013,Mostajabi 2015] used CNNs to extract deep features
for super-pixels and used these features in combination with traditional scene la-
beling strategies such as non-linear classiÞers or inference on segmentation trees.
While these approaches harnessed the expressive power of deep networks, their per-
formance was dependent on the performance of the super-pixel extraction methods
they employed. Hariharan et al. [Hariharan 2015] combined convolutional features
from di! erent stages of the network via upsampling and element-wise addition and
referred to the resulting feature representation as hypercolumns. They used these
features to train pixel-level classiÞers. The idea of combining convolutional fea-
tures from di! erent stages of the network was also explored previously in [Fara-
bet 2012,Farabet 2013,Sermanet 2013].

Fully Convolutional Networks. While these initial attempts gave promising
results, they su! ered from the limitation that they used features from a network
trained for a di! erent task. Due to this discrepancy, the next natural step was to
train CNNs that produced dense, i.e. one per pixel, predictions. This gave rise
to Òfully-convolutional networksÓ (FCNs) shown in [Long 2015], which were Þrst
introduced in [Lecun 1998] as space displacement networks. As the name suggests,
FCNs are CNNs without fully connected layers, and produce outputs which spa-
tially correspond to patches in the input image. In other terms, if we remove the
fully connected layers from the network from [Lecun 1998] in Fig. 1.3, the resulting
network will be a fully-convolutional network. Long and Shelhamer [Long 2015]
showed that networks pretrained for other vision tasks such as classiÞcation could
be adapted for pixel-wise labeling by replacing the fully connected layers with convo-
lutional layers, and Þnetuning them with pixel-level annotations using the softmax
cross-entropy loss. FCNs were previously also used by [Wolf 1994, Matan 1992]
for other domains. Today FCNs are used ubiquitously for dense labeling tasks as
in [Xie 2015,Liu 2016].

Atrous Convolution and Residual Networks. A major challenge that pre-
sented itself in the use of FCNs for dense labeling tasks was the downsampling fac-
tor, also referred to as the network stride. The output scores predicted by a CNN
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Figure 1.4: Fully Convolutional Networks (FCNs): FCNs were used in [Long 2015]
for semantic segmentation. FCNs are CNNs that do not use any fully connected
layers (in contrast with Fig. 1.3). This allows them to produce outputs that spatially
correspond to patches in the input image.

are smaller in spatial size than the input image due to repeated max-pooling and
convolutional striding operations. Thus, obtaining a labeling that is the same size
as the input image requires upsampling of the output scores via interpolation. This
results in quantization and approximation errors. The downsampling factor of the
FCN component of classiÞcation networks such as [Krizhevsky 2012,Simonyan 2015]
is 32. This means each output unit corresponds to a32 ! 32 patch in the input
image. Long and Shelhamer [Long 2015] proposed the use of a deconvolution Þlter
which is a backwards convolution operation to upsample the output, thereby reduc-
ing the downsampling factor to 16. However this results in an increased number of
parameters and longer training time.

Chen et al. [Chen 2014a] remedied this problem by using theatrous algorithm
to introduce holes in the convolution kernel, thereby reducing the downsampling
factor to 8. This is illustrated in Fig. 1.5: the use of atrous convolutions allows
obtaining outputs at a desired receptive Þeld of view (by controlling the kernel
size) without a loss in spatial resolution or increase in the number of parameters.
Further, the number of convolution parameters does not increase. The authors
in [Yu 2016] employed the same operation to reduce the downsampling factor and
capture contextual information, rebranding it as Ôdilated convolutionsÕ.

More recently deep residual networks [He 2016] were introduced which ease the
training of very deep networks (with 101 or 151 convolutional layers) by adding
ÔresidualÕ connections to the network architecture. The building block of a residual
network, referred to as a residual block is illustrated in Fig.1.6. He et al. [He 2016]
hypothesize that optimizing the residual mapping is easier than optimizing the
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(a) Standard Convolution

(b) Atrous Convolution

Figure 1.5: Comparison of standard convolution with atrous convolution
[Chen 2014a] on a 1" D feature image. (a) shows the standard convolution with a
3! 1 kernel where the input features (yellow triangles) are padded by1 pixel (gray
triangles) on either side to obtain an output feature map (outputs shown as green
squares) of the same size. (b) shows the atrous convolution with a3 ! 1 kernel
with a dilation rate of 2 where the input features are padded by2 pixels on either
side. The rate parameter denotes the stride with which the input features are sam-
pled, and allows ÔholesÕ in the convolution kernel. This allows computing an output
feature map with the same size as the input feature map without increasing the
number of convolution parameters. Further, atrous convolutions can be viewed as
dilated convolutions since holes in the convolution kernel expand the Þeld of view
of the Þlter allowing a larger context to be captured.

original, unreferenced mapping. The success of residual networks on the Imagenet
benchmark [Deng 2009] caused them to be quickly adapted to semantic segmenta-
tion networks by [Chen 2015b,Zhao 2016]. Today residual networks are also being
used for other dense labeling tasks such as edge detection [Yu 2017] and depth es-
timation [ Laina 2016]. The authors in [Zagoruyko 2016] show that a performance
similar to residual networks can be achieved by shallower networks with more pa-
rameters. Inspired by residual networks, authors in [Huang 2017] proposed the
Dense Convolutional Network (DenseNet) which connects each layer to every other
layer in the network. Finally, the authors in [ Fu 2017] use stacks of multiple shallow
deconvolutional networks to capture multi-scale context, and demonstrate state of
the art results on a variety of semantic segmentation benchmarks.

In the next section, we discuss the shortcomings of FCNs and introduce the notion
of structured prediction which attempts to address them.
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Figure 1.6: A residual block: fundamental unit of a residual network [He 2016]. In
parallel to a stack of layers that perform non-linear mapping of the input data, the
residual block contains a shortcut connection of identity mapping without adding
any extra parameter or computational complexity. In simpler terms, a residual
block recasts the original mapping asF (x) + x. It is hypothesized that optimizing
the residual mapping is easier than optimizing the original, unreferenced mapping.

1.2 Structured Prediction

Shortcomings of FCNs. The FCN models have an important limitation: they
do not explicitly capture visual context. The FCN models described so far look at
each image patch in isolation and ignore any interdependencies between the labels
of the patches. Some of these interdependencies are indeed captured by CNNs
through a cascade of convolutions (since the patches corresponding to nearby pixels
overlap, and the weights for the classiÞer and feature extractor are learnt from the
data, taking local context into account). However, these interactions are implicit,
and there is no means of enforcing pairwise constraints, such aslabel similarity
between neighbouring pixels. In dense labeling tasks such as semantic segmentation,
nearby pixels with similar colour intensities are likely to belong to the same class. In
contrast, pixels with di ! erent colour intensities are more likely to belong to di! erent
classes. Contextual constraints like these are not explicitly modeled by CNNs.

We illustrate the importance of context for semantic segmentation and human
part estimation in Fig. 1.7. Exploiting the knowledge that the airplane ßies in the
sky and the ship sails in the sea is crucial to discriminating between patches of the
sky and the sea, because when seen in isolation these patches look similar owing to
their common blue colour and uniform appearance. Similarly, a model estimating
human parts using local appearance alone may confuse between the arms and the
torso because the shirt has a uniform appearance. However, using knowledge of
the geometry of the human body will help resolve such ambiguities. Thus context,
both local and global, is an important cue to accurately classifying an image patch.
We now formally introduce the notion of structured prediction which allows us to
explicitly capture visual context for dense labeling tasks.
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(a) Segmentation (b) Human Parts

Figure 1.7: The role of context in (a) semantic segmentation and (b) human part
estimation. In (a), the goal is to assign a label (airplane, ship, sea, sky) to each
pixel in the image. Structured prediction allows associating the predictions of the
sky and the sea with the predictions of airplane and ship, thereby aiding resolve
ambiguities in the discrimination of sea and sky patches. In (b), the goal is to assign
a label (head, torso, upper arm, lower arm, upper leg, lower leg, or background) to
each pixel in the image. Structured prediction considers interdependencies between
the labels. This allows us to better capture the geometry of the human body, and
learn a set of context-encoding rules based on the image, for example the head
should be adjacent to the torso, and the arms should be on either side of the torso.

I Dataset of Images
I An image from the dataset I # I
i Index for the pixels in an image

P Number of pixels in the image, thusi # { 1, 2, . . . , P}
pi (r, g, b) intensities for pixel i
l i Label corresponding to pixel i
l Vector of labels for all pixels in the image, thusl = { l i $i # I }

L Number of candidate labels
u Index for the labels, thus u # { 1, 2, . . . , L }
L The set of all possible labelings

x i (u) or xu
i Score for assigning pixeli the label u, usually delivered by a model

x i L " dimensional vector of scores corresponding to the pixeli
x Vector of scores for all the pixels in an image,x # RP ! L

Table 1.1: Notation used in this thesis.

Structured prediction [Nowozin 2011,Sutton 2012b] allows us to capture context
by modeling the interdependencies between labels of the di! erent image patches.
Intuitively, structured prediction can be understood as a natural extension of the
decoupled classiÞcation delivered by a sliding window classiÞer.
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Figure 1.8: Naive approach vs Structured Prediction: The input image is shown in
(a). We also show the unary terms for some patches, and pairwise terms computed
for pairs of patches. The unary terms consist of two scores per patch. These two
scores indicate the modelÕs conÞdence in the patch belonging to ÔcatÕ and Ôback-
groundÕ categories when the patch is viewed in isolation. The pairwise terms are
computed by looking at two patches at a time. These consist of four scores, one for
each combination of classes which can be assigned to the two patches. In (b) we
show the output of Deeplab Large-FOV network [Chen 2014a] on the input image,
obtained by using the unary terms alone. We mark the false ÔcatÕ predictions using
red boxes. The image in (c) shows the output of our method which uses structured
prediction and uses both the unary and pairwise terms to make a decision about the
label taken by each patch: the model is able to eliminate isolated patches of false
predictions and better capture object boundaries by capturing interdependencies
between the two labels.

To better understand what this extension is and why it is desirable, we study
the sliding window classiÞer / FCN with an example. Consider the problem of
semantic segmentation in an image with two candidate classes: cat and background
(Fig. 1.8). We use the notation described in Tab.1.1. The input image containing
P pixels is denoted by I , and its pixels are indexed byi, i # { 1, 2, . . . , P} . The
goal is to assign a labell i to each pixel from the set{ cat, bkg} , so we have number
of labels L = 2 . Rather than directly predicting the label l i for each pixel, we
predict two scores per pixel, xi (cat) and xi (bkg). The score xi (u) denotes the
modelÕs conÞdence in the pixeli taking the label u. These scores are referred to as
unary terms (Fig. 1.8 (a) ). If we assume that the labelsl (or scoresx) of all the
pixels are conditionally independent of each other, we can obtain the labell i for
each pixel simply by assigning it the label corresponding to the bigger score. This
sliding window classiÞer can thus be expressed as a linear function of the features
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computed at each pixeli as follows:

xi (u) = ! T
u ! (i )

! "# $
unary

l i = arg max
u

xi (u), u # { cat, bkg} .
(1.1)

where ! (i ) represents features computed on an image patch centered at the pixeli ,
and ! u denotes the model parameters (weights) for classu. The features! (i ) in this
example (Fig. 1.8) come from the penultimate layer of a deep-network [Chen 2014a],
and the model parameters! are the weights learnt by the linear classiÞer in the last
layer of the network. For simplicity we omit the commonly used Softmax operator
from this discussion and introduce it in Sec.1.2.1.1.

This model is simple and e" cient because it allows us to process each pixel
independently. However, as seen in Fig.1.8, by processing the pixels independently
we ignore the context around the pixel which contains useful cues as to which
label the pixel should assume. This results in spatially incoherent labels, seen as
isolated cat patches in Fig.1.8. This problem can be mitigated by using structured
prediction.

In addition to looking at patches in isolation, structured prediction approaches
further look at combinations of patches. In Fig. 1.8 (a) our structured prediction
model looks at pairs of patches and estimates, for each pair, four scores correspond-
ing to the four combinations of the labels the two patches can take. These are
referred to as pairwise terms. These pairwise terms allow us to capture interdepen-
dencies between the labels taken by any pair of patches. These unary and pairwise
terms are then used to jointly deÞne a scoring function which assigns scores to
all possible labelings of the image. This scoring function is often represented as a
Conditional Random Field (CRF).

A CRF (I, l ) is characterized by a Gibbs distribution [La! erty 2001], which in
our example can be expressed as follows

p(l |I ) =
1

ZI
exp(" EI (l ))

EI (l ) =
%

i

" i (l i )

! "# $
unary

+
%

i,j

" i,j (l i , l j )

! "# $
pairwise

; i, j # I. (1.2)

Here p(l |I ) denotes the probability of a particular labeling l given the image I ,
and is deÞned as the negative exponential of the Gibbs energyEI (l ). ZI is the
normalization constant and ensures the probabilities corresponding to all possible
labelings sum to one. " i (l i ) denotes the unary term corresponding to the pixeli
taking the label l i . " i,j (l i , l j ) denotes the pairwise term corresponding to pixelsi, j
taking the labels l i , l j respectively. The subscriptI on EI and ZI in Eq. 1.2 denotes
the dependence of these terms on the input image. We omit the conditioning on
I in the rest of the chapter for notational convenience. As in case of the sliding
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window classiÞer described in Eq.1.1, the unary terms can be expressed as a linear
function of the features computed at pixel i as follows:

" i (u) = " ! T
u ! (i ) u # { cat, bkg} . (1.3)

While the sliding window classiÞer in Eq.1.1uses only the unary terms, the CRF
in Eq. 1.2 uses both unary and pairwise terms. Thus, as stated before, structured
prediction can be understood as a natural extension of the decoupled classiÞcation
delivered by a sliding window classiÞer.

The pairwise terms are typically hand-crafted expressions as in [KrŠhenbŸhl 2011,
Zheng 2015] but they can also be discovered directly from the data via CNNs as
we show in this thesis. The maximum a posteriori (MAP), or the most probable
labeling of the random Þeld is given byl " = arg max l# L p(l |I ), Since the probabil-
ities in Eq. 1.2 are deÞned as the negative exponential ofE (l ), maximization of the
probability involves minimization of the corresponding energy. Therefore,

l " = arg min
l# L

E(l). (1.4)

While the unary terms support the presence or absence of a class based on local
appearance alone, the pairwise terms allow information ßow from other parts of
the image to penalize incompatible combinations of classes. The use of the pairwise
terms allows ÔcouplingÕ of the labelsl i for all pixels. Even though in this example we
model these interdependencies by using pairwise terms only, we can further extend
our scoring function in Eq. 1.2 by capturing Ôhigher-orderÕ terms which depend on
more than two pixels [Koller 2007,Liu 2015b,Arnab 2016].

This coupling of predictions allows us to enforce spatial constraints that ensure
that the predicted labels are spatially coherent and consistent with the geometry
of the scene (as discussed in Fig.1.7). Using both unary and pairwise terms to
determine the labeling results in a more accurate segmentation, as shown in Fig.1.8
(c). In other domains, such as segmentation of human parts (Fig.1.7), these spatial
constraints can be understood as (i) the head sits on top of the torso, (ii) the arms
project out from the torso, and so on. Depending on the di" culty of the problem
we are trying to solve, these constraints can either come from domain knowledge,
or can be directly discovered from the data.

While structured prediction clearly is a richer and more expressive approach,
this richness comes at additional computational cost. The conditional independence
assumption that we make in case of the sliding window model allows making pre-
dictions for each pixel in isolation. Thus the complexity of obtaining the solution is
P ! L (L possible solutions for each of theP pixels). For the structured prediction
model described in Eq.1.2, we make a ÔglobalÕ predictionl " instead, considering how
the ÔlocalÕ predictionsli depend on each other (Eq.1.4). Consequently, the com-
plexity of obtaining the solution for the structured prediction model is L P . The
computational overhead comes from this increase in complexity. Exhaustively com-
paring the energy values of all the possible solutions is computationally prohibitive.
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The problem of Þnding the best solution out of the many possible solutions results
in a combinatorial optimization problem and is referred to as ÔinferenceÕ. In fact
inference is the major bottleneck of structured prediction methods. Inference for
general CRFs is NP-hard if no assumptions are made about the structure of the fac-
tor graph used [Cooper 1990], and even approximations are NP-hard [Roth 1996].
While e" cient linear and polynomial time algorithms do exist for chains or tree
structured graphs [Sutton 2012b], the applications of these speciÞc kinds of graphs
are limited. Consequently, the majority of structured prediction approaches use
approximate inference[Sutton 2012b,KrŠhenbŸhl 2011,Chen 2015a].

The primary contribution of this thesis is therefore to propose strategies for
e" cient inference for structured prediction in the context of deep learning. While
most recent approaches have used models which involve approximate inference,
our methods (i) lend themselves to exact inference, (ii) are faster than competing
approaches, (iii) use rich, CNN based expressions for pairwise terms, unlike common
approaches [KrŠhenbŸhl 2011, Chen 2014a, Chen 2015b, Barron 2016], and (iv) all
model parameters can be learnt directly from the data. To this end, we propose
using a speciÞc class of CRFs, called Gaussian-CRFs (G-CRFs) [Tappen 2007] which
allow exact inference. We introduce G-CRFs in detail in the next section.

1.2.1 Gaussian Conditional Random Fields

We now give an overview of G-CRFs [Tappen 2007]. G-CRFs are CRFs with contin-
uous and Gaussian prediction variables. They are a particularly convenient choice
for a structured prediction method because exact Maximum-A-Posteriori (MAP)
inference in Gaussian models can be performed via the solution of a system of linear
equations.

The simplest description of G-CRFs involves obtaining their mathematical ex-
pressions from the deÞnintion of the multivariate Gaussian probability distribution.

Multivariate Gaussian Distribution. The multivariate Gaussian distribution,
denoted by x % N (µ, " ) is a multivariate probability distribution of the following
form

p(x) =
1

&
(2#)N |" |

exp
'

"
1
2

(x " µ)T " $ 1(x " µ)
(

, (1.5)

where x is a N " dimensional multivariate vector, µ is the N " dimensional mean,
and " is the N ! N covariance matrix. An equivalent form, referred to as the
canonical parameterization of the Gaussian distribution [Rue 2005] is given by

p(x) = exp
'

"
1
2

xT # x + ! T x + $
(

. (1.6)

A comparison of Eq. 1.5 and Eq. 1.6 shows that # = " $ 1, ! = " $ 1µ, and
$ = " 1

2

)
N log(2#) " log(|# |) + ! T # $ 1!

*
is a normalization constant which does
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not depend on x. # and ! are called the canonical parameters ofp(x), and # is
also referred to as theinverse covariancematrix or the precision matrix.

As in Sec. 1.2, if we interpret Eq. 1.6 as a Gibbs distribution, the canoni-
cal form of a Gaussian distribution can be seen as a CRF of the formp(x |I ) =
exp

)
" 1

2xT # I x + ! T
I x + $

*
, where the subscript I denotes dependence of# , ! on

the (image) data I . In the rest of the section, it is assumed that the parameters# , !
depend on the input, and we omit the conditioning onI for notational convenience.

We recall from Sec. 1.2 that the probability in conditional random Þelds is
deÞned as the negative exponential of the corresponding energy. Therefore, the
energy corresponding to the G-CRF is given by÷E(x) = 1

2xT # x " ! T x " $. Since
in this thesis our objective is to ÔminimizeÕ this energy to Þnd the best solution to
a labeling problem, we can ignore the normalization constant$ because it does not
depend onx. Therefore, we deÞne the energy of a G-CRF to be

E(x) =
1
2

xT Ax! "# $
pairwise

" B T x! "# $
unary

(1.7)

where we replace# , ! with A, B for notational convenience. We note that both
the G-CRF energy in Eq. 1.7 and the CRF energy in Eq. 1.2 consist of unary and
pairwise terms. This similarity is further explored in Sec. 1.2.1.1.

Even though we begin our discourse on G-CRFs as probabilistic models, in
the rest of the thesis we discard the probabilistic underpinning of the G-CRF and
understand G-CRF inference as an energy-based model, using it as a structured
prediction module which can be used at any stage of a CNN. In Sec.1.2.1.1 we
discuss how discrete CRFs with unary and pairwise terms can be modeled using the
quadratic cost function in Eq. 1.7.

Inference in G-CRFs. We now discuss the problem of inference in G-CRFs.
Given A and B , inference involves Þnding the outputx which minimizes the energy
in Eq. 1.7. We also refer to the energy function as the objective in mathematical
optimization. We will use the terms energy function and objective interchangeably
in the rest of the thesis.

Consider the energy (objective) function in Eq. 1.7:

E (x) =
1
2

xT Ax " B T x.

This is an example of anunconstrained quadratic optimization problem: it is
called quadratic because it is quadratic inx , and it is unconstrained becausex is
allowed to take continuous real values in the setRP L without any constraints. An
objective function of a quadratic form as in Eq. 1.7 has a unique global minimum
if A is positive deÞnite (A & 0) [Boyd 2004]. In this thesis, we therefore take
precautions to ensure that our pairwise terms will constitute A & 0.

To Þnd the minimum of our objective function, we set its derivative to zero.
The derivative of the objective is

%
%x

E(x) =
1
2

AT x +
1
2

Ax " B (1.8)
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In this thesis we will be dealing with symmetric pairwise terms, therefore A is
symmetric by design, i.e. A = AT . Thus, !

! x E (x) = Ax " B . Setting this to zero
gives usAx = B . Therefore, if our pairwise matrix A is positive deÞnite, the energy
function has a unique global minimum which can be obtained by the solution of a
system of linear equations:

Ax = B. (1.9)

Expressive power of G-CRFs. While a Gaussian model allows e" cient infer-
ence, it is restrictive because it is always uni-modal and symmetric. However, in
this thesis, all model parameters are computed (regressed) from the input data via
non-linear CNNs which are trained in a supervised fashion. Thus, the G-CRF pa-
rameters areconditioned on the data, and represent di! erent Gaussians for di! erent
image-dependent contexts. In other terms, even though Gaussian Random Fields
are unimodal and as such less expressive, GaussianConditional Random Fields are
unimodal conditioned on the data, e! ectively reßecting the fact that given the image
one solution dominates the posterior distribution. Jancsaryet al. [Jancsary 2012]
also discuss this and make a similar conclusion. They add further that high dimen-
sional encoding of labels (as described in Sec.1.2.1.1) allows capturing associative
as well as repulsive interactions. Associative interactions mean that the model en-
courages adjacent variables to take on the same labels, while repulsive interactions
mean that the model encourages adjacent variables to take di! erent labels. Com-
mon G-CRF based models [Tappen 2008], and even discrete models [Taskar 2004]
su! er with the restriction that they can only expressive associative interactions. We
provide empirical results in Chap. 2 and 3 which demonstrate that using G-CRFs to
model the interactions between image regions helps boost performance on a variety
of benchmarks.

We next discuss the relationship between discrete CRFs and G-CRFs.

1.2.1.1 Modeling Discrete CRFs with Unary and Pairwise Terms using
the Quadratic Cost Function.

In this section we establish a connection between the quadratic cost function used in
our G-CRF formulation and discrete CRFs with unary and pairwise terms. Consider
a toy labeling example with two (pixels) variable nodesp, q, each allowed to take one
of 2 labels l # { 0, 1} . We denote the unary terms bybl

p. Thus, b0
p is the energy/cost

of assigning a label0 to the pixel p, and so on. We denote the pairwise terms by
alp lq

pq . Thus a10
pq is the pairwise cost of assigning the label1 to pixel p and 0 to pixel

q. This toy problem is illustrated as a trellis graph in Fig. 1.9.
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Figure 1.9: 2 pixels, 2 labels toy example. The green solid lines indicate unary
terms, and the red dashed lines indicate pairwise terms.

Now, consider a particular labeling wherep takes the label 1 and q takes the
label 0. The total energy E of this labeling would then be the sum of unary costs,
and the pairwise cost, i.e.E =

)
b1

p + b0
q + a10

pq

*
.

Let us now express this labeling energy as a matrix equation. Consider the
following matrices A and B , composed of the pairwise terms and the unary terms
respectively :

A =

+

,
,
,
-

0 0 a00
pq a01

pq

0 0 a10
pq a11

pq

a00
pq a10

pq 0 0
a01

pq a11
pq 0 0

.

/
/
/
0

; B =

+

,
,
,
-

" b0
p

" b1
p

" b0
q

" b1
q

.

/
/
/
0

. (1.10)

We denote by P, L the number of variable nodes (pixels) and number of states
(labels) respectively. In this case,P = L = 2 . To understand the construction of
these matrices, we Þrst notice the sizes ofA, B : A # R4! 4 and B # R4! 1. Since we
have 2 pixels, both allowed to take one of2 labels, we have2 ! 2 = 4 unary terms
in B . To understand the construction of A, we note that A is a square matrix
with a width of 2 ! 2 = 4. The matrix A is constructed asA := { al1 l2

p1p2
|l1, l2 #

{ 1, á á á, L } , p1, p2 # { 1, á á á, P}} . By virtue of this construction, A also contains
terms of the form al1 l2

pp , i.e. pairwise terms corresponding to the same pixel taking
di! erent or same labels, but we have set them to0, because we will not use them
in the toy problem. We also notice that A is symmetric, since our pairwise terms
are symmetric, i.e. theal1 l2

p1p2
= al2 l1

p2p1
. We will use this symmetry in all the labeling

problems we study in this thesis.

In the general case, the size of matrixA is (PL ! PL), and that of B is (PL ! 1).
As described above, the zero entries in the matrixA correspond to non-existent
pairwise relationships, i.e. terms like al i l j

pp , and ali l j
qq $l i , l j etc. Now consider a

labeling indicator (prediction) vector x =
1
x0

p, x1
p, x0

q, x1
q

2T
. The vector x has entries

corresponding to each pairing of a pixel with a label, and the entryxl
p indicates

whether the pixel p takes the labell . For our chosen labeling,x = [0 , 1, 1, 0]T . With
this notation in place, we can now compute the G-CRF energy of the labelingE
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using Eq. 1.7, i.e. E = 1
2xT Ax " xT B as,

E =
1
2

1
0 1 1 0

2

+

,
,
,
-

0 0 a00
pq a01

pq

0 0 a10
pq a11

pq

a00
pq a10

pq 0 0
a01

pq a11
pq 0 0

.

/
/
/
0

+

,
,
,
-

0
1
1
0

.

/
/
/
0

"
1

0 1 1 0
2

+

,
,
,
-

" b0
p

" b1
p

" b0
q

" b1
q

.

/
/
/
0

=
)
b1

p + b0
q + a10

pq

*
,

(1.11)

and we arrive at the familiar expression. In this manner by constructing the unary
and pairwise terms B, A , we can model dense labeling problems using the energy
function in Eq. 1.7. We now note that Eq. 1.7 is equivalent to the following form

E(x) =
1
2

%

i,j

al i l j
ij xi xj "

%

i

bl i
i xi ; i, j # { 1, á á á, P} , (1.12)

which is similar in structure to the energy function for CRFs with unary and pairwise
terms as described in Eq.1.2.

G-CRFs for discrete labeling tasks.

Figure 1.10: G-CRFs for discrete labeling tasks: The G-CRF module receives unary
and pairwise terms (A) from a CNN. bu

i denotes the unary score for pixeli taking
the label u. The G-CRF module performs structured prediction and outputs the
predictions: xu

i denotes the prediction score for pixeli taking the label u. These
predictions are fed as input to a Softmax module which converts these predictions
to probabilities: p(xu

i ) denotes the probability of pixel i taking the label u.

As described in Sec.1.1, our goal is to predict a distribution of scoresx corre-
sponding to each labelu at each pixel i . We usexu

i to denote the score of assigning
a label u to pixel i . Each pixel is assigned the label with the maximum score, i.e.
l i = arg max u xu

i . The per-pixel prediction xi is often referred to as high dimen-
sional encoding of the discrete labell i [Jancsary 2012]. With a high-dimensional
encoding of the labels, we are no longer constrained to restrict our predictionx
to be composed ofsparse indicator vectors, rather we can let x take real values.
This is advantageous because relaxing our predictionsx to take continuous values
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allows us to use probabilistic loss functions such as thesoftmax cross-entropyloss
to train our model parameters. Assigning a label to a pixel can then be understood
as converting these scores to softmax probabilities, and assigning to each pixel the
most probable label. This is described as a schematic diagram in Fig.1.10.

A note on the Exactness of G-CRF Inference. In this thesis, we refer to the
G-CRF inference as being exact. In the context of this thesisexact inference merely
implies that we are able to perform MAP inference for the G-CRF objective. This
does not imply that we are able to solve exactly the original discrete CRF problem.
As demonstrated with the aid of the toy problem in this section, unlike discrete
CRFs, the predictions of a G-CRF are allowed to take continuous values which can
be interpreted as probabilities delivered by a Softmax function as shown in Fig.1.10.

1.3 Structured Prediction in Deep Learning

Having described G-CRFs in the previous section, we now discuss some of the
relevant works which have contributed to the recent developments in the use of
graphical models alongside deep learning for structured prediction.

ClassiÞcation of deep structured prediction approaches. There are several
characteristics of deep structured prediction approaches that can be used to group
them together:

1. Complexity of spatial interactions i.e. the structure of the graphical model:
while some approaches exploit simpler graphical models with only short-
range interactions [Jampani 2016, Vemulapalli 2016b, Liu 2015a], i.e. inter-
actions between an image patch and neighbouring patches, others exploit
fully-connected (long-range) interactions [Chen 2014a, Zheng 2015, Lin 2016]
where each image patch is connected to every other patch

2. Ability to train all model parameters in an end-to-end fashion: some ap-
proaches use graphical models for structured prediction merely as a post-
processing step [Chen 2014a,Lin 2016,Kundu 2016], and others allow learning
of graphical model parameters in conjunction with the features in an end-to-
end manner [Liu 2015a,Vemulapalli 2016b,Zheng 2015]

3. Assumptions on the form of spatial interactions: some approaches use hand-
crafted expressions for pairwise terms [Chen 2014a,Zheng 2015,Barron 2016],
while others allow their discovery through deep architectures [Jampani 2016,
Vemulapalli 2016b]

4. Use of approximate or exact inference: while most approaches rely on approx-
imate inference [Chen 2014a, Zheng 2015, Jampani 2016, Vemulapalli 2016b],
there are some approaches which allow exact inference [Liu 2015a,Barron 2016]
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method dense end2end learnt exact
[Chen 2014a,Chen 2015b] ! " " "

[Zheng 2015] ! ! " "
[Liu 2015a] " ! " !

[Vemulapalli 2016b] " ! ! "
[Vu 2015] " ! ! "

[Liu 2015b] " ! ! "
[Jampani 2016] " ! ! "

[Lin 2016] ! " ! "
[Barron 2016] ! ! " !

[Bratieres 2015] ! " " "
[Kundu 2016] ! " " "

Table 1.2: Comparison of deep structured prediction approaches in terms of whether
they accommodate (i) dense connectivity, (ii) end-to-end training, (iii) use of learnt,
CNN-based pairwise terms, and (iv) exact inference.

In this thesis, we aim to develop an algorithm which possesses all the desirable
properties: (i.) fully-connected interactions, (ii.) end-to-end training, (iii.) CNN
based potentials, and (iv.) exact inference, while ensuring (v.) fast inference. We
classify the recent deep structured prediction approaches based on these character-
istics in Tab. 1.2. In the rest of this section, we attempt to describe the relevant
literature in a rough chronological order, grouping together works which share con-
ceptual similarities. We will revisit some of the most relevant works in Chap. 2, 3
and 4 to discuss them in relation with our contributions in this thesis.

1.3.1 CRFs for Post Processing CNN Outputs: Dense-CRF and
CNNs

We begin our discussion with methods that employ hand-crafted pairwise terms
and approximate inference and use CRFs as a post processing strategy to reÞne the
outputs delivered by a deep network. As described in Sec.1.2, for general graph-
ical models exact inference is intractable because the size of the solution space is
exponential in the number of variables. Consequently, methods employing graph-
ical models have to resort to using approximate solutions [Chen 2015a, KrŠhen-
bŸhl 2011, Chen 2014a, Vemulapalli 2016b, Vu 2015, Zheng 2015, Liu 2015b, Jam-
pani 2016, Lin 2016]. An important work in this context is the Deeplab network
from [Chen 2014a,Chen 2015b], which combined CNNs with the Dense-CRF method
from [KrŠhenbŸhl 2011].

Deeplab. The Deeplab pipeline [Chen 2014a,Chen 2015b] was the Þrst deep learn-
ing method to exploit fully-connected CRFs for structured prediction as a post
processing step. This pipeline is described in Fig.1.11. The CNN outputs are fed
to a fully-connected CRF as unary terms alongside hand-crafted pairwise terms as
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inputs. The fully-connected CRF performs approximate inference to reÞne the pre-
dictions made by the CNN. They used the Dense-CRF work from [KrŠhenbŸhl 2011]
for inference. We next discuss this work in detail.

Figure 1.11: Illustration of the Deeplab [Chen 2014a] pipeline: The CNN gener-
ates unary scores, and these are upsampled to the original resolution via bilinear
interpolation. These unary scores are fed to a fully-connected CRF alongside hand-
crafted pairwise terms. The Dense-CRF algorithm is used as a post-processing step
to obtain a sharper segmentation map which better captures Þner details in the
image.

Mean Þeld inference and Dense-CRF . The Dense-CRF method of [KrŠhen-
bŸhl 2011] expresses the energy of a fully-connected CRF model as the sum of unary
and pairwise potentials given by

EI (l ) =
%

i

&u(l i ) +
%

i

%

j<i

&p(l i , l j ), (1.13)

where

&p(l i , l j ) =

µ(l i , l j )
K%

m=1

w1
m exp("

|si " sj |2

2! 2
"

"
|pi " pj |2

2! 2
#

) + w2
m exp("

|si " sj |2

2! 2
$

). (1.14)

Here l = { l i } denotes the labels for all the pixels indexed byi coming from a set of
candidate labels l i # { 1, 2, . . . , L } . &u denotes the image dependent unary poten-
tials, and the image dependent pairwise potentials&p(l i , l j ) are expressed by the
product of a label compatibility function µ and a weighted sum over Gaussian ker-
nels. They use the pixel intensitiespi = ( r, g, b) and spatial positions si = ( x, y) to
deÞne the appearance kernel, and the spatial positions alone to deÞne the smooth-
ness kernel. The appearance kernel tries to assign the same class labels to nearby
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pixels with similar colour, and the hyperparameters ! " and ! # control the degrees
of nearness and similarity. The smoothness kernel aims to remove small isolated re-
gions. The model parameters (! " , ! # , ! $, w1

m , w2
m ) are set by doing parameter sweeps

using a validation set. As described in Sec.1.2, the Gibbs distribution correspond-
ing to the energy in Eq. 1.13 is given by p(l |I ) = 1

Z exp(" EI (l )) . The inference
problem involves solvingl " = arg max l p(l |I ).

Rather than computing the exact distribution p(l), the authors in [KrŠhen-
bŸhl 2011] propose using a mean-Þeld approximation to the modelp with a fully
factorized distribution q =

3
i qi (l i ) and solve forq by minimizing the KL divergence

KL (q||p). This simpliÞes to a Þxed point equation which can be solved iteratively
to update the marginal distributions qi ,

qt+1
i (l i ) =

1
ZI

exp{ " &u(l i ) "
%

j %= i

%

lj

&p(l i , l j )qt
j (l j )

! "# $
message passing

} , (1.15)

where ZI is a normalization coe" cient.
Further, the authors realize that message passing in Eq.1.15 can be performed

using Gaussian Þltering in feature space, and this observation allows them to exploit
highly e" cient approximations for high-dimensional Þltering, reducing the complex-
ity of message passing from quadratic in the number of pixels to linear. This results
in an approximate inference algorithm for fully connected CRFs which is linear in
the number of pixels and sublinear in the number of edges in the model.

The authors in [KrŠhenbŸhl 2011] justify the use of long-range connections by
empirically studying the e! ect of variation of ! " on the accuracy on multi-label
image segmentation. They show that segmentation accuracy consistently increases
as the longer-range connections are added, however in some cases these long-range
connections were shown to be propagating false information as well e! ectively de-
creasing accuracy.

We note that the pairwise terms in Eq. 1.14 are hand-crafted in that they are
constrained to be Gaussian kernels in a5" dimensional feature space given by the
(r,g,b) colour, i.e. pi and the (x,y) spatial location in the image plane, i.e. si . This
limitation raises concerns about whether pairwise terms coming from5" dimensional
features are expressive enough. This question has inspired a number of recent works
to extend this algorithm to make it more expressive. The authors in [Vineet 2013]
extended the pairwise terms to include non-zero mean mixtures of Gaussians at
some extra computational cost. Finally, the authors in [Campbell 2013] generalized
the pairwise potential to a non-parametric model learnable from the data, via metric
learning, while keeping the inference e" cient.

While the approximate mean-Þeld inference proposed in [KrŠhenbŸhl 2011] is
e" cient and works well in practice, it comes with no theoretical guarantees about
how good or bad the approximation is. In a more recent work [Desmaison 2016],
rather than using the mean-Þeld approximation, the authors demonstrate that the
high dimensional Þltering approach used in [KrŠhenbŸhl 2011] can also be used
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to speed up linear- or quadratic- programming relaxations of the original CRF
objective. These proposed relaxations have better theoretical bounds for energy
minimization compared to the mean-Þeld algorithm.

1.3.2 End-to-end Training and Approximate Inference

The use of Dense-CRF as a post processing step yielded signiÞcant improvements in
performance. The next natural step was to try to learn all the model parameters via
end-to-end training. Schwing et al. [Schwing 2015] exploited the mean-Þeld algo-
rithm to train semantic segmentation networks in an end-to-end manner. In an in-
dependent work, the authors of theCRF as RNN method from [Zheng 2015], posed
the approximate mean-Þeld CRF inference method as a Recurrent Neural Network
(RNN). This formulation allowed end-to-end training of CRFs via back-propagation,
using common deep learning modules, alleviating the need to post-process the out-
put. Here the authors rephrased a single mean-Þeld iteration (Eq.1.15) as a se-
quence of common CNN modules. A simpliÞed version of the mean-Þeld inference in
Eq. 1.15can be performed as illustrated in Alg. 1. They perform CRF inference by
the RNN forward pass amounting to 5 iterations at training and 10 at testing time.
Fig. 1.12 gives a schematic overview of how the mean-Þeld iteration is rephrased
using common CNN modules.

Similarly, Jampani et al. [Jampani 2016] use the observation that mean-Þeld
inference can be approximated via high-dimensional Þltering and devise strategies
for learning pairwise terms from the data, eliminating the restriction on the pairwise
potentials to be Gaussian in (r, g, b,x, y) unlike [KrŠhenbŸhl 2011, Zheng 2015].
Wang et al. [Wang 2016] show that inference in proximal methods can be expressed
as an RNN, and show that these methods can be trained in an end-to-end fashion
for tasks such as image denoising, depth reÞnement and optical ßow estimation.

Algorithm 1 Mean-Field Inference using CNN operations [Zheng 2015]

1: procedure Mean-Field Inference
2: qi (l i ) := 1

ZI
exp(" &u(l i )) ' Initialize

3: repeat
4: ÿq(m)

i (l ) =
4

j %= i k(m) (f i , f j )qj (l ) $m ' Message Passing

5: 5qi (l ) =
4

m wm ÿq(m)
i (l ) ' Weighting Filter Outputs

6: öqi (l ) =
4

l ! µ(l, l &)5qi (l&) ' Compatibility Transform
7: øqi (l ) = " &u(l i ) " öqi (l ) ' Adding Unary Potentials
8: qi = 1

ZI
exp (øqi (l )) ' Normalizing

9: end repeat
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Figure 1.12: CRF-as-RNN: The authors of [Zheng 2015] reformulate a single mean-
Þeld iteration as a stack of common CNN modules. With this rephrasing, approx-
imate CRF inference can be achieved with an RNN, allowing end-to-end learning
via back-propagation.

Vemulapalli et al. [Vemulapalli 2016b] use G-CRFs (Sec.1.2.1) for the task
of semantic segmentation and use approximate mean-Þeld inference for a sparsely
connected graphical model. While we show in the rest of the thesis that exact yet
e" cient inference is feasible for G-CRFs, the authors, while acknowledging that a
closed form solution to inference exists, refrain from using it citing computational
challenges. We demonstrate in the following chapters how these computational
challenges can be overcome.

Further, as in [Zheng 2015], the authors of the Deep Parsing Network [Liu 2015b]
propose learning to approximate the mean-Þeld inference using convolutional and
pooling operations alone, and do not rely on iterative reÞnement of the solution.
They also incorporate higher-order interactions among image regions. Indepen-
dently of this work, Arnab et al. [Arnab 2016] enable training of end-to-end CRFs
approximately with high-order interactions using the mean-Þeld algorithm.

Lin et al. [Lin 2016] proposed using a two stage CRF for semantic segmenta-
tion: a coarse resolution CRF that uses unary and pairwise terms from a CNN and
is trained using the approximate piecewise training method from [Sutton 2012a],
and a full resolution Dense-CRF used as a post-processing method. Both of these
approaches use a limited number of mean-Þeld iterations (Deeplab uses10 itera-
tions while the authors in [Lin 2016] use 3), treating the inference problem as a
sequence of operations, thereby taking the pragmatic route of acknowledging and
accommodating the approximation.

1.3.3 Deep Structured Prediction for Other Vision Tasks

Structured prediction has also been exploited for computer vision applications other
than dense labeling. Vu et al. [Vu 2015] propose end-to-end training of CRFs
with their network for the task of person head detection. In this work they use
structured prediction to reason about the presence of multiple person heads in the
image. In particular, they use a pretrained network to generate object proposals
and construct a CRF with the top 16 proposals as nodes. The unary and pairwise
potentials are delivered by a CNN which is trained with a structured output loss.
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They use the QPBO [Kolmogorov 2007] and TRW-S [Kolmogorov 2006] algorithms
for approximate inference. Their approach can be visualized in Fig.1.13.

Similarly, Chen et al. [Chen 2015a] use CRFs alongside CNNs for character/word
recognition and image tagging in an end-to-end manner. They use an approximate
message passing algorithm for inference.

Figure 1.13: Context-aware CNNs for person head detection [Vu 2015]: Schematic
visualization of the end-to-end trainable CRFs for object detection. The authors
use QPBO and TRW-S for approximate CRF inference.
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1.4 Contributions of this thesis

Having described the most relevant literature on structured prediction in deep learn-
ing, we now give an overview of our contributions in this thesis. The following
chapters will discuss each of these in detail.

method dense end2end learnt exact temporal
[Chen 2014a,Chen 2015b] ! " " " "

[Zheng 2015] ! ! " " "
[Liu 2015a] " ! " ! "

[Vemulapalli 2016b] " ! ! " "
[Vu 2015] " ! ! " "

[Liu 2015b] " ! ! " "
[Jampani 2016] " ! ! " "

[Lin 2016] ! " ! " "
[Barron 2016] ! ! " ! "

[Bratieres 2015] ! " " " !
[Kundu 2016] ! " " " !

Our contributions in this thesis
Chap. 2 " ! ! ! "
Chap. 3 ! ! ! ! "
Chap. 4 ! ! ! ! !

Table 1.3: Comparison of deep structured prediction approaches in terms of whether
they accommodate (i) dense connectivity, (ii) end-to-end training, (iii) use of learnt,
CNN-based pairwise terms, (iv) exact inference and (v) temporal pairwise terms.
We also classify our contributions in Chap.2, Chap. 3 and Chap. 4 based on these
properties.

E! cient Sparse Deep G-CRFs. (Chap. 2) Building on standard tools from
numerical analysis we develop very e" cient algorithms for inference and learning
of deep G-CRFs for sparsely connected graphical models in FCN-based dense la-
beling pipelines. We derive analytical expressions to compute gradients of G-CRF
parameters and use them to learn all model parameters directly from the training
data. While recently published deep structured prediction approaches have resorted
to inaccurate inference via mean-Þeld approximations, our inference procedure is
exact, and computes the unique global minimum of the G-CRF energy. Despite the
exactness of our solution, our approach is e" cient and orders of magnitude faster
than contemporary structured prediction approaches. We additionally introduce
multi-resolution architectures to couple contextual information across scales in a
joint optimization framework. We demonstrate the utility of our approach on the
challenging VOC PASCAL 2012 image segmentation benchmark, showing substan-
tial improvements over strong baselines. Our implementation is fully GPU based,
exploits sparse linear algebra optimizations using the CUDA Sparse library and is
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publicly available.

E! cient Deep Fully Connected G-CRFs. (Chap. 3) We extend the deep G-
CRF model to incorporate a fully-connected graph structure. Overcoming technical
hurdles that accompany inference and learning over fully-connected graphical mod-
els, we keep memory and computational complexity under control by expressing the
pairwise interactions as inner products of low-dimensional, learnable embeddings.
This particular construction allows the G-CRF precision matrix to be low-rank, and
we exploit this to develop e" cient inference and learning strategies for deep fully-
connected G-CRFs. We demonstrate empirically that the computational overhead
when going from a sparsely-connected graphical model to a fully-connected one is
negligible using our approach. As qualitative results, we show that the learned em-
beddings capture pixel-to-pixel a" nities in a task-speciÞc manner. As quantitative
results, we demonstrate improvements in performance over sparse G-CRFs on three
challenging dense labeling benchmarks, namely semantic segmentation, human part
segmentation, and saliency estimation. Our results are competitive to the state of
the art approaches on three di! erent computer vision benchmarks at the time of
publication.

Fully Connected G-CRFs for dense labeling in Videos. (Chap. 4) We extend
the deep fully-connected G-CRF model to videos. In particular, we introduce a
time- and memory-e" cient method for structured prediction that couples neuron
decisions across both space at time. We show that we are able to perform exact
and e" cient inference on a densely-connected spatio-temporal graph. We present an
ablation study by experimenting with multiple connectivity patterns in the temporal
domain. We present empirical improvements over strong baselines on the tasks of
semantic and instance segmentation of videos. We also demonstrate improvements
over the state of the art approach for the task of instance tracking.

We list the contributions of this thesis alongside other contemporary approaches
for structured prediction in Tab. 1.3 and compare all methods on whether they
accommodate (i.) fully-connected spatial interactions, (ii.) end-to-end training,
(iii.) CNN based pairwise potentials, (iv.) exact inference, and (v.) spatio-temporal
structured prediction. Thus our contributions in this thesis combine all the desirable
characterisics from Tab. 1.3. Further, our methods are also the most e" cient in
terms of inference speed. Inference times of our methods are available in Chapters
2, 3 and 4.
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github.io . We are further planning a journal submission based on our contribu-
tions in this thesis and open sourcing all software for public use.



Chapter 2

E! cient Deep Sparse Gaussian
CRFs

In this chapter we propose a structured prediction technique that combines the
virtues of Gaussian Conditional Random Fields (G-CRF) with Deep Learning: (a)
our structured prediction task has a unique global optimum that is obtained exactly
from the solution of a linear system (b) the gradients of our model parameters are
analytically computed using closed form expressions, in contrast to the memory-
demanding contemporary deep structured prediction approaches [Zheng 2015,Vem-
ulapalli 2016b] that rely on back-propagation-through-time, (c) our pairwise terms
do not have to be simple hand-crafted expressions, as in the line of works build-
ing on the DenseCRF [Zheng 2015, Chen 2014a], but can rather be ÔdiscoveredÕ
from data through deep architectures, and (d) out system can trained in an end-to-
end manner. Building on standard tools from numerical analysis we develop very
e" cient algorithms for inference and learning, as well as a customized technique
adapted to the semantic segmentation task. This e" ciency allows us to explore
more sophisticated architectures for structured prediction in deep learning: we in-
troduce multi-resolution architectures to couple information across scales in a joint
optimization framework, yielding systematic improvements. We demonstrate the
utility of our approach on the challenging VOC PASCAL 2012 image segmentation
benchmark, showing substantial improvements over strong baselines.

This work was published at the European Conference on Computer Vision (ECCV),
2016.

2.1 Introduction

Motivated by [ Tappen 2007,Jancsary 2012], our starting point in this chapter is the
observation that the Gaussian Conditional Random Field (G-CRF), allows us to
perform exact and e" cient Maximum-A-Posteriori (MAP) inference. Even though
Gaussian Random Fields are unimodal and as such less expressive, GaussianCon-
ditional Random Fields are unimodalconditioned on the data, e! ectively reßecting
the fact that given the image one solution dominates the posterior distribution. The
G-CRF model thus allows us to construct rich expressive structured prediction mod-
els that still lend themselves to e" cient inference. In particular, the log-likelihood
of the G-CRF posterior has the form of a quadratic energy function which cap-
tures unary and pairwise interactions between random variables. There are two
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advantages to using a quadratic function: (a) unlike the energy of general graphical
models, a quadratic function has a unique global minimum if the system matrix is
positive deÞnite, and (b) this unique minimum can be e" ciently found by solving a
system of linear equations. We can actually discard the probabilistic underpinning
of the G-CRF and understand G-CRF inference as an energy-based model, casting
structured prediction as sparse G-CRF (sparse G-CRF). This allows us to look at
G-CRFs as generic deep learning modules which can be used at any stage in a net-
work for structured prediction. Owing to their continuous nature, G-CRFs can also
be exploited for dense regression tasks such as the estimation of depth or surface
normals at each pixel in an image. Thus, G-CRFs can be seen as a computation
module or a network layer which performs structured prediction: it models inter-
dependencies among the output variables for any dense labeling/regression task via
unary and pairwise terms. When employed in thefeature extraction stage of a CNN,
G-CRFs can be used to ÔdiscoverÕ mid-level features, which can better capture the
spatial context. In this context, these mid-level features represent the output of a
G-CRF and these naturally take continuous real values. We use G-CRFs for mid-
level feature learning in Sec.4.3.1 for the task of instance segmentation on videos.
Jampani and Gehler also use CRFs for mid-level feature learning in [Jampani 2016]

Secondly, building further on the connection between MAP inference and linear
system solutions, we propose memory- and time-e" cient algorithms for weight-
sharing (Sec.2.3.5) and multi-scale inference (Sec.2.4.2). In particular, in Section
2.3.5 we show that one can further reduce the memory footprint and computation
demands of our method by introducing a Potts-type structure in the pairwise term.
This results in multifold accelerations, while delivering results that are competitive
to the ones obtained with the unconstrained pairwise term. In Sec.2.4.2 we show
that our approach allows us to work with arbitrary neighbourhoods that go beyond
the common 4" connected neighbourhoods. In particular we explore the merit of
using multi-scale networks, where variables computed from di! erent image scales in-
teract with each other. This gives rise to a ßow of information across di! erent-sized
neighborhoods. We show experimentally that this yields substantially improved
results over single-scale baselines.

In this chapter we focus our attention on the the image segmentation task. In
Chap. 3, we will use the approach developed in this chapter for other dense labeling
tasks.

In Sec. 2.2, we discuss relationship of our contributions in this chapter with
some related methods. In Sec.2.3 we describe our approach in detail, and derive
the expressions for weight update rules for parameter learning that are used to
train our networks in an end-to-end manner. In Sec.2.4 we analyze the e" ciency
of the linear system solvers and present our multi-resolution structured prediction
algorithm. In Sec. 2.5 we report consistent improvements over well-known baselines
and state-of-the-art results on the VOC PASCAL test set.
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Figure 2.1: Schematic of a fully convolutional neural network with a G-CRF mod-
ule: we show a detailed schematic representation of our fully convolutional neural
network with a G-CRF module. The G-CRF module is shown as the box outlined
by dotted lines. The factor graph inside the G-CRF module shows a4" connected
neighbourhood. The white blobs represent pixels, red blobs represent unary factors,
the green and blue squares represent vertical and horizontal connectivity factors.
The input image is shown in (b). The network populates the unary terms (c), and
horizontal and vertical pairwise terms. The G-CRF module collects the unary and
pairwise terms from the network and proposes an image hypothesis, i.e. scores (d)
after inference. These scores are Þnally converted to probabilities using the Softmax
function (e), which are then thresholded to obtain the segmentation.

2.2 Relation to Previous Works

G-CRFs were exploited for instance in the regression tree Þelds model of Jancsaryet
al. [Jancsary 2012] where decision trees were used to construct G-CRFÕs and address
a host of vision tasks, including inpainting, segmentation and pose estimation. In an
independent work [Vemulapalli 2016b], the authors proposed a similar approach for
the task of image segmentation with CNNs, whereas in [Lin 2016,Liu 2015b,Vu 2015]
FCNs are augmented with discriminatively trained convolutional layers that model
and enforce pairwise consistencies between neighbouring regions.

One major di! erence to [Vemulapalli 2016b], as well as other prior works [Zheng 2015,
Chen 2014a,Vemulapalli 2016a,Lin 2016,Liu 2015b], is that we use exact inference
and do not use back-propagation-through-time during training. In particular build-
ing on the insights of [Tappen 2007, Jancsary 2012], we observe that the MAP
solution, as well as the gradient of our objective with respect to the inputs of our
structured prediction module can be obtained through the solution of linear sys-
tems. Casting the learning and inference tasks in terms of linear systems allows us
to exploit the wealth of tools from numerical analysis. As we show in Sec.2.4, for
Gaussian CRFs sequential/parallel mean-Þeld inference amounts to solving a lin-
ear system using the classic Gauss-Seidel/Jacobi algorithms respectively. Instead
of these under-performing methods we use conjugate gradients which allow us to
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(a) Input Image (b) Person unary (c) G-CRF output

(d) Horizontal Pairwise (e) Vertical Pairwise (f) Person Probability

Figure 2.2: G-CRF Inference: This Þgure compares the unary terms with the G-
CRF prediction for semantic segmentation. It can be seen that the unary scores
in (b) miss part of the torso because it is occluded behind the hand. The ßow
of information from the neighbouring region in the image, via the pairwise terms,
encourages pixels in the occluded region to take the same label as the rest of the
torso (c). It can also be seen that the person boundaries are more pronounced
in the output (c) due to pairwise constraints between pixels corresponding to the
person and background classes. We also show heatmaps of the horizontal and
vertical pairwise terms learnt by our network in (d) and (e). These heatmaps show
spikes in image regions where the model thinks that the horizontally and vertically
adjacent pixels are likely to belong to di! erent classes. Finally, we show the posterior
probability of the person class in (f).

perform exact inference and back-propagation in a small number (typically 10) it-
erations, with a negligible cost (0.02s for the general case in Sec.2.3, and 0.003s for
the simpliÞed formulation in Sec.2.3.5) when implemented on the GPU.

A number of other recent approaches have used CRF models that lend them-
selves to exact inference. Barronet al. [Barron 2016] propose an end-to-end train-
able algorithm for bilateral Þltering, which can be rephrased as a G-CRF. Please
note that this work was done independently and published after our work; However,
while the application of this work is limited to bilateral Þltering, our contributions
in this thesis allow learning of data-driven pairwise terms, and therefore generalize
this work.

In another work, authors in [Liu 2015a] use a G-CRF for depth estimation from
a single image. Their pipeline involves computing super-pixels on the image and the
super-pixels act as the nodes of their graphical model. They use data-driven unary
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terms and hand-crafted similarity metrics to get the pairwise terms, and use direct
solvers for inference. We hypothesize that the use of direct solvers in [Liu 2015a]
is feasible since the super-pixel computation keeps a check on the number of nodes
in their graphical model. Further, their network takes 10 seconds per image which
can be prohibitive for some applications. In fact, e" ciency is one of the primary
objectives of this thesis, and our methods are more than2 orders of magnitude
faster than the direct solver approach, while dealing with much bigger graphical
models.

2.3 Sparse G-CRF Formulation

We now describe our approach. Consider an imageI containing P pixels. Each
pixel p # { p1, . . . , pP } can take a labell # { 1, . . . , L } . Although our objective is to
assign discrete labels to the pixels, we phrase our problem as a continuous inference
task. Rather than performing a discrete inference task that delivers one label per
variable, we use a continuous function of the formx(p, l) which gives a score for
each pairing of a pixel to a label. This score can be intuitively understood as being
proportional to the log-odds for the pixel p taking the label l , if a ÔsoftmaxÕ unit is
used to post-processx.

We denote the pixel-level ground-truth labeling by a discrete valued vector
y # YP where Y # { 1, . . . , L } , and the inferred hypothesis by a real valued vector
x # RN , where N = P ! L . Our formulation is posed as an energy minimization
problem. In the following subsections, we describe the form of the energy function,
the inference procedure, and the parameter learning approach, followed by some
technical details pertinent to using our framework in a fully convolutional neural
network. Finally, we describe a simpler formulation with pairwise weight shar-
ing which achieves competitive performance while being substantially faster. Even
though our inspiration was from the probabilistic approach to structured prediction
(G-CRF), from now on we treat our structured prediction technique as a Sparse
G-CRF (sparse G-CRF) module, and will refer to it as sparse G-CRF henceforth.

2.3.1 Energy of a Hypothesis

We deÞne the energy of a hypothesis in terms of a function of the following form:

E(x) =
1
2

xT (A + ( I )x " B x (2.1)

whereA denotes the symmetricN ! N matrix of pairwise terms, and B denotes the
N ! 1 vector of unary terms. In our case, as shown in Fig.3.2, the pairwise terms
A and the unary terms B are learned from the data using a fully convolutional
network. In particular and as illustrated in Fig. 3.2, A and B are the outputs of
the pairwise and unary streams of our network, computed by a forward pass on
the input image. These unary and pairwise terms are then combined by the sparse



34 Chapter 2. E ! cient Deep Sparse Gaussian CRFs

G-CRF module to give the Þnal per-class scores for each pixel in the image. As we
show below, during training we can easily obtain the gradients of the output with
respect to the A and B terms, allowing us to train the whole network end-to-end.

Eq. 2.1 is a standard way of expressing the energy of a system with unary
and pair-wise interactions among the random variables [Jancsary 2012] in a vector
labeling task. We chose this function primarily because it has a unique global mini-
mum and allows for exact inference, alleviating the need for approximate inference.
Note that in order to make the matrix A strictly positive deÞnite, we add to it (
times the Identity Matrix I , where ( is a positive constant (hyper-parameter) set
empirically in the experiments with the aid of a validation set.

2.3.2 Inference

Given A and B , inference involves solving for the value ofx that minimizes the
energy function in Eq. 2.1. If ( A + ( I ) is symmetric positive deÞnite, then E(x)
has a unique global minimum [Shewchuk 1994] at:

(A + ( I )x = B . (2.2)

As such, inference is exact and e" cient, only involving a system of linear equations.

2.3.3 Learning Unary and Pairwise Terms

Our model parametersA and B are learned in an end-to-end fashion via the back-
propagation method. In the back-propagation training paradigm each module or
layer in the network receives the derivative of the Þnal lossL with respect to its
output x, denoted by ! L

! x , from the layer above. ! L
! x is also referred to as the gradient

of x. The module then computes the gradients of its inputs and propagates them
down through the network to the layer below.

To learn the parametersA and B via back-propagation, we require the expres-
sions of gradients ofA and B , i.e. ! L

! A and ! L
! B respectively. We now derive these

expressions.

2.3.3.1 Derivative of Loss with respect to the Unary Terms

The loss between the predictionx and the ground truth y is denoted by L (x , y),
and we denote the derivative of the loss with respect to the prediction by' L :

%L
%x

( ' L . (2.3)

To compute the derivative of the loss with respect to B, we use the chain rule
of di! erentiation,

%Bi

%xi

%L
%Bi

=
%L
%xi

. (2.4)
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We rewrite equation 2.4 in the matrix notation as:

%B
%x

%L
%B

=
%L
%x

. (2.5)

Since both B and x are N " dimensional, ! B
! x is an N ! N matrix. Since the lossL

is a scalar quantity, both ! L
! B and ! L

! B are N ! 1 vectors.
Di! erentiating both sides of equation2.2 with respect to x gives,

%B
%x

= ( A + ( I ). (2.6)

Substituting terms from equations 2.6 and 2.3 into 2.5, we have:

(A + ( I )
%L
%B

= ' L . (2.7)

Thus ! L
! B can be obtained by solving the system of linear equations in2.7.

When training a deep network, the right hand side ! L
! x % ' L is delivered by the

layer above, and the derivative on the left hand side! L
! B is sent to the unary layer

below.

2.3.3.2 Derivative of Loss with respect to the Pairwise Terms

As in the last section, we use the chain rule of di! erentiation to express ! L
! A as

follows:

%L
%Aij

=
%L
%xk

%xk

%Aij
. (2.8)

Again, we rewrite equation 2.8 in the matrix notation for brevity as follows:

%L
%A

=
'

%L
%x

( T %x
%A

. (2.9)

We transpose ! L
! x in equation 2.9 only to achieve consistency of dimensions in the

matrix notation.
SinceA is an N ! N matrix, and L is a scalar quantity, ! L

! A is an N ! N matrix.

In the matrix notation,
)

! L
! x

* T
would be a 1! N row vector, while ! x

! A would be an
N ! N ! N tensor matrix. The right hand side thus can be seen as a matrix of size
N ! N , just like the left hand side.

We know that (A+ ( I ) is a positive deÞnite matrix. All positive deÞnite matrices
are invertible. We can therefore rewrite Equation 2.2 as,

x = ( A + ( I )$ 1B . (2.10)

We recall from [Fackler 2005], the expression for the derivative of the inverse of a
matrix with respect to the matrix itself to be

%A$ 1

%A
= " A$ T ) A$ 1 (2.11)
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where) denotes the kronecker product of two matrices. As expected, the kronecker
product has N 4 terms, because we are di! erentiating an N ! N matrix with respect
to another N ! N matrix.

Using equations2.10 and 2.11, we obtain the following expression:

%x
%A

= "
)
(A + ( I )$ T ) (A + ( I )$ 1

*
B . (2.12)

Substituting terms from equations 2.12 and 2.3 into 2.9, we obtain:

%L
%A

= " (' L )T (A + ( I )$ T ) (A + ( I )$ 1B . (2.13)

Substituting terms from equations 2.7 and 2.10 into 2.13, we obtain the Þnal ex-
pression for the derivative as follows:

%L
%A

= "
%L
%B

) x. (2.14)

Thus, the gradient of A is given by the negative of the kronecker product of the
output x and the gradient of B .

Kindly note that while in our experiments we use the softmax loss function, in
theory any di! erentiable loss function can be used in this formulation. For sake of
completeness, we give the expressions for the softmax loss, and its derivative in the
next subsection.

2.3.4 Softmax Cross-Entropy Loss

Please note that while in this work we use the sparse G-CRF module as the penul-
timate layer of the network, followed by the softmax cross-entropy loss, it can be
used at any stage in a network and not only as the Þnal classiÞer. We now give
the expressions for the softmax cross-entropy loss and its derivative for sake of
completeness.

We denote the score of pixeli taking the label u by xu
i . The softmax probability

for the pixel i taking the label u is then given by pu
i = ex u

i4 L
u =1

ex u
i

. Dropping the

subscript i for brevity, these probabilities are penalized by the cross-entropy loss
deÞned asL = "

4
u yu logpu, where yu is the indicator function for the ground

truth label u" , i.e. yu = 0 if u *= u" , and yu = 1 otherwise. Finally the derivative
of the softmax-loss with respect to the input is given by: ! L

! xu = pu " yu.

2.3.5 Sparse G-CRF with Shared Pairwise Terms

We now describe a simpliÞedsparse G-CRF formulation with shared pairwise terms
which is signiÞcantly faster in practice than the one described above. We denote
by Api ,pj (l i , l j ) the pairwise energy term for pixel pi taking the label l i , and pixel
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pj taking the label l j . In this section, we propose aPotts-type pairwise model,
described by the following equation:

Api ,pj (l i , l j ) =

6
0 li = l j
Api ,pj l i *= l j .

7

(2.15)

In simpler terms, unlike in the general setting, the pairwise terms here depend
on whether the pixels take the same label or not, and not on the particular labels
they take. Thus, the pairwise terms areshared by di! erent pairs of classes. While
in the general setting we learnPL ! PL pairwise terms, here we learn onlyP ! P
terms. To derive the inference and gradient equations after this simpliÞcation, we
rewrite our inference equation(A + ( I ) x = B as,

+
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wherexk, denotes the vector of scores for all the pixels for the classk # { 1, á á á, L } .
The per-class unaries are denoted bybk, and the pairwise terms öA are shared be-
tween each pair of classes. The equations that follow are derived by specializing the
general inference (Eq.2.2) and gradient equations (Eq. 2.7,2.14) to this particular
setting. Following simple manipulations, the inference procedure becomes a two
step process where we Þrst compute the sum of our scores

4
i x i , followed by xk,

i.e. the scores for the classk as:

)
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Derivatives of the unary terms with respect to the loss are obtained by solving:
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Finally, the gradients of öA are computed as

%L

%öA
=

%

k

%L
%bk

)
%

i %= k

x i . (2.21)

Thus, rather than solving a system with A # RP L ! P L , we solveL + 1 systems with
öA # RP ! P . In our case, whereL = 21 for 20 object classes and1 background class,
this simpliÞcation empirically reduces the inference time by a factor of6, and the
overall training time by a factor of 3. We expect even larger acceleration for the
MS-COCO dataset which has80 semantic classes. Despite this simpliÞcation, the
results are competitive to the general setting as shown in Sec.2.5.
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Method Iterations
Jacobi 24.8
Gauss Seidel 16.4
GMRES 14.8
Conjugate Gradient 13.2
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Figure 2.3: The table in (a) shows the average number of iterations required by
various algorithms, namely Jacobi, Gauss Seidel, Conjugate Gradient, and Gener-
alized Minimal Residual (GMRES) iterative methods to converge to a residual of
tolerance 10$ 6. Figure (b) shows a plot demonstrating the convergence of these it-
erative solvers. The conjugate gradient method outperforms the other competitors
in terms of number of iterations taken to converge.

In this section we have established that in case of Potts type pairwise terms,
the system of linear equations with all variables is equivalent to solvingL + 1
smaller linear systems. The same gain in computation speed can be achieved by
adapting the conjugate gradient implementation to this structure and avoiding re-
dundant computations. We further explore this direction in Sec. 3.2.4 and propose
customizations to the conjugate gradient algorithm to this e! ect.

2.4 Linear Systems for E ! cient Structured Prediction

Having identiÞed that both the inference problem in Eq. 2.2 and computation of
pairwise gradients in Eq. 2.7 require the solution of a linear system of equations,
we now discuss methods for accelerated inference that rely on standard numerical
analysis techniques for linear systems [Press 1992, Golub 1996]. Our main contri-
butions consist in (a) using fast linear system solvers that exhibit fast convergence
(Sec. 2.4.1) and (b) performing inference on multi-scale graphs by constructing
block-structured linear systems (Sec.2.4.2).

Our contributions in (a) indicate that standard conjugate gradient based linear
system solvers can be up to 2.5 faster than the solutions one could get by a naive
application of parallel mean-Þeld when implemented on the GPU. Our contribution
in (b) aims at accuracy rather than e" ciency, and is experimentally validated in
Sec.2.5

2.4.1 Fast Linear System Solvers

The computational cost of solving the linear system of equations in Eq.2.2 and
Eq. 2.7 depends on the size of the matrixA, i.e. N ! N , and its sparsity pattern.
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In our experiments, while N % 105, the matrix A is quite sparse, since we deal
with small 4" connected,8" connected and12" connected neighbourhoods. While
a number of direct linear system solver methods exist, the sheer size of the system
matrix A renders them prohibitive, because of large memory requirements. For
large problems, a number of iterative methods exist, which require less memory,
come with convergence (to a certain tolerance) guarantees under certain conditions,
and can be faster than direct methods. In this work, we considered theJacobi,
Gauss-Seidel, Conjugate Gradient, and Generalized Minimal Residual(GMRES)
methods [Press 1992], as candidates for iterative solvers. The table in Fig.2.3 (a)
shows the average number of iterations required by the aforementioned methods
for solving the inference problem in Eq.2.2. We used 25 images in this analysis,
and a tolerance of10$ 6. Fig. 2.3 shows the convergence of these methods for one
of these images. Conjugate gradients clearly stand out as being the fastest of these
methods, so our following results use the conjugate gradient method. Our Þndings
are consistent with those of Grady in [Grady 2006].

As we show below, mean-Þeld inference for the Gaussian CRF can be understood
as solving the linear system of Eq.2.2, namely parallel mean-Þeld amounts to
using the Jacobi algorithm while sequential mean-Þeld amounts to using the Gauss-
Seidel algorithm, which are the two weakest baselines in our comparisons. This
indicates that by resorting to tools for solving linear systems we have introduced
faster alternatives to those suggested by mean Þeld.

In particular the Jacobi and Gauss-Seidelmethods solve a system of linear
equationsAx = B by generating a sequence of approximate solutions

8
x(k)

9
, where

the current solution x(k) determines the next solution x(k+1) .
The update equation for the Jacobi method [Golub 1996] is given by
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The updates in Eq. 2.22 only use the previous solutionx(k) , ignoring the most
recently available information. For instance, x(k)

1 is used in the calculation ofx(k+1)
2 ,

even though x(k+1)
1 is known. This allows for parallel updates for x. In contrast,

the Gauss-Seidel[Golub 1996] method always uses the most current estimate ofxi

as given by:
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As in [Rue 2005], the Gaussian Markov Random Field (GMRF) in its canon-
ical form is expressed as#(x) , exp

8
1
2xT # x + ! T x

9
, where ! and # are called

the canonical parameters associated with the multivariate Gaussian distribution
#(x). The update equation corresponding to mean-Þeld inference is given by [Wain-
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Figure 2.4: Schematic diagram of matrix A for the multi-resolution formulation
in Sec. 2.4.2. In this example, we have the input image at 2 resolutions. The
pairwise matrix A contains two kinds of pairwise interactions: (a) neighbourhood
interactions between pixels at the same resolution (these interactions are shown as
the blue and green squares), and (b) interactions between the same image region at
two resolutions (these interactions are shown as red rectangles). While interactions
of type (a) encourage the pixels in a neighbourhood to take the same or di! erent
label, the interactions of type (b) encourage the same image region to take the same
labels at di! erent resolutions.
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The expression in Eq.2.24is exactly the expression for theJacobi iteration (Eq. 2.22),
or the Gauss-Seideliteration in Eq. 2.23 for solving the linear systemµ = " # $ 1! ,
depending on whether we use sequential or parallel updates.

One can thus understand sequential and parallel mean-Þeld inference and learn-
ing algorithms as relying on weaker system solvers than the conjugate gradient-
based ones we propose here. The connection is accurate for Gaussian CRFs, as
in our work and [Vemulapalli 2016b], and only intuitive for Discrete CRFs used
in [Zheng 2015,Chen 2014a].

2.4.2 Multiresolution Graph Architecture

We now turn to incorporating computation from multiple scales in a single system.
Even though CNNs are designed to be largely scale-invariant, it has been repeatedly
reported [Chen 2016b] that fusing information from a CNN operating at multiple
scales can improve image labeling performance. These results have been obtained
for feedforward CNNs - we consider how these could be extended to CNNs with
lateral connections, as in our case. A simple way of achieving this would be to use
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multiple image resolutions, construct one structured prediction module per resolu-
tion, train these as disjoint networks, and average the Þnal results. This amounts
to solving three decoupled systems which by itself yields a certain improvement as
reported in Sec.2.5

We advocate however a richer connectivity that couples the scale-speciÞc sys-
tems, allowing information to ßow across scales. As illustrated in Fig.2.4 the
resulting linear system captures the following multi-resolution interactions simulta-
neously: (a) pairwise constraints between pixels at each resolution, and (b) pairwise
constraints between the same image region at two di! erent resolutions. These inter-
resolution pairwise terms connect a pixel in the image at one resolution, to the pixel
it would spatially correspond to at another resolution. The inter-resolution connec-
tions help enforce a di! erent kind of pairwise consistency: rather than encouraging
pixels in a neighbourhood to have the same/di! erent label, these encourage image
regions to have the same/di! erent labels across resolutions. This is experimen-
tally validated in Sec. 2.5 to outperform the simpler multi-resolution architecture
outlined above.

2.4.3 Implementation Details and Computational E ! ciency

Our implementation is fully GPU based, and implemented using theCa! e library.
Our network processes input images of size865 ! 673, and delivers results at a
resolution that is 8 times smaller, as in [Chen 2014a]. The input to our sparse G-
CRF modules is thus a feature map of size109! 85. Our inference procedure takes
% 0.02s for the general setting in Sec.2.3, and 0.003s for the simpliÞed formulation
(Sec.2.3.5). This is signiÞcantly faster than dense CRF postprocessing, which takes
2.4s for a 375! 500 image on a CPU and the0.24s on a GPU. Please note that
Dense-CRF operates at full image resolution. Our implementation uses the highly
optimized cuBlas and cuSparselibraries for linear algebra on large sparse matrices.
The cuSparse library requires the matrices to be in the compressed-storage-row
(CSR) format in order to fully optimize linear algebra for sparse matrices. Our im-
plementation caches the indices of the CSR matrices, and as such their computation
time is not taken into account in the calculations above, since their computation
time is zero for streaming applications, or if the images get warped to a canonical
size. In applications where images may be coming at di! erent dimensions, con-
sidering that the indexes have been precomputed for the changing dimensions, an
additional overhead of% 0.1s per image is incurred to read the binary Þles contain-
ing the cached indexes from the hard disk.

2.5 Experiments

In this section, we describe our experimental setup, network architecture and re-
sults.

Dataset. We evaluate our methods on theVOC PASCAL 2012 image segmentation



42 Chapter 2. E ! cient Deep Sparse Gaussian CRFs

benchmark. This benchmark uses the VOC PASCAL 2012 dataset, which consists of
1464training and 1449validation images with manually annotated pixel-level labels
for 20 foreground object classes, and1 background class. In addition, we exploit
the additional pixel-level annotations provided by [Hariharan 2015], obtaining 10582
training images in total. The test set has1456unannotated images. The evaluation
criterion is the pixel intersection-over-union (IOU) metric, averaged across the21
classes.

Baseline network (basenet). Our basenet is based on the Deeplab-LargeFOV
network from [Chen 2014a]. We extend it to get a multi-resolution network, which
operates at three resolutions with tied weights. More precisely, our network down-
samples the input image by factors of2 and 3 and later fuses the downsampled
activations with the original resolution via concatenation followed by convolution.
The layers at three resolutions share weights. This acts like a strong baseline for
a purely feedforward network. Our basenet has49 convolutional layers, 20 pooling
layers, and was pretrained on the MS-COCO 2014 trainval dataset [Len 2014]. The
initial learning rate was set to 0.01 and decreased by a factor of10 at 5K iterations.
It was trained for 10K iterations. We use a momentum of 0.9 and a weight-decay
of 0.0005in all our experiments.

sparse G-CRF network. We extend our basenet to accommodate the binary
stream of our network. Fig. 2.1 shows a rough schematic diagram of our network.
The basenet forms the unary stream of our sparse G-CRF network, while the pair-
wise stream is composed by concatenating the3rd pooling layers of the three res-
olutions followed by batch normalization [Io! e 2015] and two convolutional layers.
Thus, in Fig. 2.1, layersC1" C3 are shared by the unary and pairwise streams in our
experiments. Like our basenet, the sparse G-CRF networks were trained for10K
iterations; The initial learning rate was set to 0.01 which was decreased by a factor
of 10 at 5K iterations. We consider three main types of sparse G-CRF networks:
plain (sparseG " CRF ), shared weights (sparseG " CRF s) and multi-resolution
(sparseG " CRF mres ). We use a momentum of0.9 and a weight-decay of0.0005
in all our experiments.

2.5.1 Experiments using the Validation Set

In this set of experiments we train our methods on thetrain+aug images, and eval-
uate them on the val images. All our images were upscaled to an input resolution of
865! 673. The hyper-parameter ( was set to10 to ensure positive deÞniteness. We
Þrst study the e! ect of having larger neighbourhoods among image regions, thus
allowing richer connectivity. More precisely, we study three kinds of connectivi-
ties: (a) 4" connected (sparse G-CRF4), where each pixel is connected to its left,
right, top, and bottom neighbours, (b) 8" connected (sparse G-CRF8), where each
pixel is additionally connected to the 4 diagonally adjacent neighbours, and (c)
12" connected (sparse G-CRF12), where each pixel is connected to2 left, right, top,



2.5. Experiments 43

Method sparse G-CRF4 sparse G-CRF8 sparse G-CRF12

IoU 76.36 76.40 76.42

Table 2.1: Connectivity: Here we study the e! ect of increasing the connectivity in
the sparsely connected graphical model for semantic segmentation.

Method sparse G-CRF sparse G-CRFs sparse G-CRFres sparse G-CRFmres

IoU 76.36 76.59 76.69 76.93

Table 2.2: Comparison of4 variants of our G-CRF network for semantic segmen-
tation. We compare (i) the vanilla sparse G-CRF model, (ii) sparse G-CRF model
with Potts-type Pairwise Terms (sparse G-CRFs), (iii) element-wise fusion of per-
scale G-CRF models (sparse G-CRFres), and (iv) multi-scale G-CRF model (sparse
G-CRFmres )

bottom neighbours besides the diagonally adjacent ones. Table2.1 demonstrates
that while there are improvements in performance upon increasing connectivities,
these are not substantial. Given that we obtain diminishing returns, rather than
trying even larger neighbourhoods to improve performance, we focus on increas-
ing the richness of the representation by incorporating information from various
scales. As described in Sec.2.4.2, there are two ways to incorporate information
from multiple scales; the simplest is to have one sparse G-CRF unit per resolution
(sparseG" CRF res), thereby enforcing pairwise consistencies individually at each
resolution before fusing them, while the more sophisticated one is to have infor-
mation ßow both within and across scales, amounting to a joint multi-scale CRF
inference task, illustrated in Fig. 2.4. In Table 2.2, we compare4 variants of our
sparse G-CRF network: (a) sparse G-CRF (Sec.2.3), (b) sparse G-CRF with shared
weights (Sec.2.3.5), (c) three sparse G-CRF units, one per image resolution, and (d)
multi-resolution sparse G-CRF (Sec.2.4.2). It can be seen that our weight sharing
simpliÞcation, while being signiÞcantly faster, also gives better results than sparse
G-CRF. Finally, the multi-resolution framework outperforms the other variants, in-
dicating that having information ßow both within and across scales is desirable, and
a uniÞed multi-resolution framework is better than merely averaging sparse G-CRF
scores from di! erent image resolutions.

2.5.2 Experiments using the Test Set

In this set of experiments, we train our methods on thetrain+aug+val images, and
evaluate them on thetest images. The image resolutions and( values are the same
as those in Sec.2.5.1. In these experiments, we also use the Dense CRF post process-
ing using the code from [KrŠhenbŸhl 2011] as in [Chen 2014a,Chen 2015b] (we set
the Dense CRF hyper-parameters as in [Chen 2014a,Chen 2015b] using a validation
set). Our results are tabulated in Tables 2.3 and 2.4. We Þrst compare our meth-



44 Chapter 2. E ! cient Deep Sparse Gaussian CRFs

Method IoU + CRF [KrŠhenbŸhl 2011]
Basenet 72.72 73.78
sparse G-CRF 73.41 75.13
sparse G-CRFs 73.20 75.41
sparse G-CRFmres 73.86 75.46

Table 2.3: Performance of our methods on the VOC PASCAL 2012 Image Seg-
mentation Benchmark. Our baseline network (Basenet) is a variant of Deeplab-
LargeFOV [Chen 2014a] network. In this table, we demonstrate systematic im-
provements in performance upon the introduction of our Sparse G-CRF (sparse
G-CRF), and multi-resolution (sparse G-CRFmres ) approaches. DenseCRF post-
processing using [KrŠhenbŸhl 2011] gives a consistent boost in performance (we set
the Dense CRF hyper-parameters as in [Chen 2014a,Chen 2015b] using validation).

ods sparse G-CRF, sparse G-CRFs and sparse G-CRFmres with the basenet, where
the relative improvements can be most clearly demonstrated. Our multi-resolution
network outperforms the basenet and other sparse G-CRF networks. We achieve a
further boost in performance upon using the Dense CRF post processing strategy,
consistently for all methods. We observe that our method yields an improvement
that is entirely complementary to the improvement obtained by combining with
Dense-CRF.

We also compare our results to previously published benchmarks in Table2.4.
When benchmarking against directly comparable techniques, we observe that even
though we do not use end-to-end training for the CRF module stacked on top of our
sparse G-CRF network, our method outperforms the previous state of the art CRF-
RNN system of [Zheng 2015] by a margin of 0.8%. We anticipate further improve-
ments by integrating end-to-end CRF training with our sparse G-CRF. In Table
2.4, we compare our methods to previously published, directly comparable methods,
namely those that use a variant of the VGG [Simonyan 2015] network, are trained
in an end-to-end fashion, and use structured prediction in a fully-convolutional
framework.

Method mean IoU (%)
Deeplab-Cross-Joint [Chen 2015b] 73.9
CRFRNN [Zheng 2015] 74.7
Basenet 73.8
sparse G-CRF 75.1
sparse G-CRFs 75.4
sparse G-CRFmres 75.5

Table 2.4: Comparison of our method with directly comparable previously published
approaches on the VOC PASCAL 2012 image segmentation benchmark.
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2.5.3 Experiments with Deeplab-V2 Resnet-101

In this section we use our Potts-type model alongside the deeplab-v2 [Chen 2016a]
Resnet-101 network. This network is a3 branch multi-resolution version of the
Resnet-101 network from [He 2016]. It processes the input image at3 resolutions,
with scaling factors of 0.5, 0.75, and 1.0, and then combines the network responses
at the di ! erent resolutions by upsampling the responses at the lower scales to the
original scale, and taking an element-wise maximum of the responses corresponding
to each pixel. We learn Potts type shared pairwise terms, and these pairwise terms
are drawn from a parallel Resnet-101 network which has layers throughconv-1
to res5c , and processes the input image at the original scale. Table2.5 reports
quantitative results on the PASCAL VOC 2012 test set. We show some qualitative
results in Fig. 2.5. It can be seen that our method reÞnes the object boundaries,
leading to a better segmentation performance.

Method mean IoU (%)
Deeplab-v2 + CRF [Chen 2016a] 79.7
sparse G-CRFs 79.5
sparse G-CRFs + CRF 80.2

Table 2.5: Performance of our Potts type pairwise terms on the VOC PASCAL
2012 test set with the deeplab-v2 Resnet-101 network.
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(a) image (b) unary (c) output (d) probability

Figure 2.5: Qualitative results when our Potts type pairwise terms are used in
combination with the deeplab-V2 Resnet-101 network. Column (a) shows the input
image, (b) shows the heatmap of the unary scores, (c) shows the heatmap of the
scores after inference, and (d) shows the softmax probabilities. We notice that the
object boundaries are signiÞcantly Þner after incorporating cues from the pairwise
terms.
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2.6 Summary

In this chapter we propose a sparse G-CRF method for deep networks which can be
used for predicting continuous vector-valued variables. The inference is e" cient and
exact and can be solved in0.02 seconds on the GPU for each image in the general
setting, and 0.003 seconds for the Potts-type pairwise case using the conjugate
gradient method. We propose a deep-learning framework which learns features and
model parameters simultaneously in an end-to-end FCN training algorithm. Our
implementation is fully GPU based, and implemented using theCa! e library. Our
experimental results indicate that using pairwise terms boosts performance of the
network on the task of image segmentation, and our results are competitive with
the state of the art methods on the VOC 2012 benchmark, while being substantially
simpler.

While in this chapter we focused on simple4 " 12 connected neighbourhoods,
in the next chapter we extend this framework for inference on a fully-connected
graphical model.
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(a) Image (b) Basenet (c) Basenet
+ CRF

(d) sparse
G-CRFmres

(e) sparse
G-CRFmres

+ CRF

Figure 2.6: Visual results on the VOC PASCAL 2012 test set. The Þrst column
shows the colour image, the second column shows the basenet predicted segmenta-
tion, the third column shows the basenet output after Dense CRF post processing.
The fourth column shows the sparse G-CRFmres predicted segmentation, and the
Þnal column shows the sparse G-CRFmres output after Dense CRF post processing.
It can be seen that our multi-resolution network captures the Þner details better
than the basenet: the tail of the airplane in the Þrst image, the personÕs body in the
second image, the aircraft fan in the third image, the road between the carÕs tail in
the fourth image, and the wings of the aircraft in the Þnal image, all indicate this.
While Dense CRF post-processing quantitatively improves performance, it tends to
miss very Þne details.



Chapter 3

Dense and Low-Rank Gaussian
CRFs Using Deep Embeddings

In this chapter we introduce a structured prediction model that endows the Deep
Gaussian Conditional Random Field (G-CRF) described in the previous chapter
with a fully-connected graph structure. We keep memory and computational com-
plexity under control by expressing the pairwise interactions as inner products of
low-dimensional, learnable embeddings. The G-CRF system matrix is therefore
low-rank, allowing us to solve the resulting system in a few milliseconds on the
GPU by using conjugate gradient. As in the previous chapter, inference is exact,
the unary and pairwise terms are jointly trained end-to-end by using analytic ex-
pressions for the gradients, while we also develop even faster, Potts-type variants
of our embeddings.

We show that the learned embeddings capture pixel-to-pixel a" nities in a task-
speciÞc manner, while at the time of publication our approach achieves state of the
art results on three challenging benchmarks, namely semantic segmentation, human
part segmentation, and saliency estimation.

This work was published at the International Conference on Computer Vision
(ICCV), 2017.

3.1 Introduction

Our contribution in this chapter is the Þrst work that combines (a) inference on
fully-connected graphical models, (b) end-to-end training, (c) CNN based pairwise
terms, and (d) exact inference, while using e" cient inference by relying on linear
system methods. For this, we build on the sparse GCRF model (Chap.2) which
combined these advances for sparsely-connected CRFs and extend it to make the
densely-connected case tractable. Figure3.1 provides an overview of our approach.
As in Chap. 2 we perform structured prediction by solving a linear systemAx = B ,
where A and B respectively correspond to pairwise and unary terms, delivered by
an end-to-end trainable CNN. Solving this system of linear equations results in
couplings among all the node variables.

The core development (Sec.3.2) consists in replacing the sparse system matrix
used to couple the labels of neighboring nodes in Chap.2 with a low-rank matrix
that connects any node with all other image nodes through inner products of learn-
able, D -dimensional embeddings:Ai,j = -A i , A j . , where i, j # { 1, . . . , N } , with N
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Figure 3.1: Method overview: each image patch amounts to a node in our fully-
connected graph structure. As in the G-CRF model, we infer the predictionx by
solving a system of linear equationsAx = B , based on CNN-based unary (B) and
pairwise (A) terms. We express pairwise terms as dot products of low-dimensional
embeddings (Ai,j = -A i , A j . ) , delivered by a devoted sub-network. This ensures
that A is low-rank, allowing for e " cient, conjugate gradient-based solutions. The
embeddings are optimized in a task-speciÞc manner through end-to-end training.

indexing the Cartesian product of pixels and labels. Rather than computing and
inverting the full N ! N matrix A, our network only needs to deliver the much
smaller N ! D embedding matrix A , which is all that is needed by the conjugate
gradient method. Apart from low memory complexity, this can also result in fast
conjugate-gradient based structured prediction.

We note that several other works have concurrently explored the use of em-
beddings in the context of grouping tasks, employing them as a soft, di! erentiable
proxy for cluster assignments [Fathi 2017, Harley 2015, Harley 2017, Newell 2016].
Ours however is the Þrst to make the connection between embeddings, low-rank
matrices and densely connected random Þelds, e! ectively training embeddings for
the propagation of information across the full image domain through the solution
of a linear system.

We further exploit the structure of the problem by developing Potts-type em-
beddings that allow us to reduce the memory complexity byL 2 and computational
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Figure 3.2: Illustration of our end-to-end trainable, fully convolutional network
employing a dense-G-CRF module. We get our unary terms from Deeplab-v2 (we
only show one of its three ResNet-101 branches, for simplicity). Our pairwise (pw)
terms are generated by a parallel sub-network, resnet-pw, which outputs the pixel
embeddings of our formulation. The unary terms and pairwise embeddings are
combined by our fully connected G-CRF module (dense-G-CRF). This outputs the
prediction x by solving the linear systemA T Ax = B .

complexity by a factor of L , where L is the number of classes. The computation
time of our fastest method is 0.004s on a GPU for a 321! 321 image, 2 orders of
magnitude less than GPU-based implementations of Dense-CRF inference, while at
the same time achieving higher accuracy across all tasks. Compared to the sparse
Potts variant described in Chap. 2 which takes 0.003s on a GPU, this additional
complexity comes at neglegible cost.

Our approach is loss-agnosticand works with arbitrary di ! erentiable losses. as
shown in Fig. 3.3, 3.4, and 3.6, our embeddings can learn task-speciÞc a" nities
through end-to-end training. The resulting networks deliver systematic improve-
ments when compared to strong baselines on saliency estimation, human part seg-
mentation, and semantic segmentation.

We provide a detailed description of our approach in Sec.3.2, and Þnally demon-
strate the merits of our approach on three challenging tasks, namely, semantic
segmentation (Sec. 3.3.1), human part segmentation (Sec. 3.3.2), and saliency
estimation (Sec. 3.3.3).

3.2 Deep-and-Dense Gaussian-CRF

3.2.1 Low-Rank G-CRF through Embeddings

While the Deep G-CRF model described in Chap.2 allows for e" cient and exact in-
ference, in practice it only captures interactions in small (4" ,8" and 12" connected)
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neighborhoods. The model may thereby lose some of its power by ignoring a richer
set of long-range interactions. The extension to fully-connected graphs is technically
challenging because of the non-sparse matrixA it involves. Assuming an image size
of 800! 800 pixels, 21 labels (PASCAL VOC benchmark), and a network with a
spatial downsampling factor of8 [Chen 2014a,Chen 2016a], the number of variables
is N = (100 ! 100) ! 21 and the number of elements inA would be N 2 % 1010.
This is prohibitively large due to both memory and computational requirements.

To overcome this challenge, we advocate forcingA to be a low-rank. In par-
ticular, we propose decomposing theN ! N matrix A into a product of the form

A = A T A, (3.1)

where A is a D ! N matrix associating every pixel-label combination with a D-
dimensional vector (ÔembeddingÕ), whereD << N . This amounts to expressing
the pairwise terms for every pair of pixels and labels in the label set as the inner
product of their respective embeddings, as follows:

Api ,pj (lm , ln ) = -A lm
pi

, A ln
pj

. ,

where i, j # { 1, . . . , P} and m, n # { 1, . . . , L } .
Since A is symmetric and positive semi deÞnite by design,A& = A T A + ( I is

positive deÞnite for any ( > 0, unlike the case Chap.2, where ( had to be set
empirically.

Adapting the development leading to Eq. 2.2, we see that we now have to solve
the system:

(A T A + ( I )x = B . (3.2)

We take advantage of the positive deÞniteness ofA&and use the conjugate gra-
dient method [Shewchuk 1994] for solving the system of linear equations iteratively.

Setting D allows us to control both the memory and the computational com-
plexity of inference: solving the linear system with conjugate gradient only requires
keepingA in memory and forming inner products betweenA and a vector. As such
we have a way of trading-o! accuracy with speed and memory demands; as indi-
cated in our experiments, with a su" ciently low embedding dimension we obtain
excellent results.

3.2.2 Gradients of the Dense G-CRF parameters

We now turn to learning the model parameters via end-to-end network training. To
achieve this we require derivatives of the overall lossL with respect to the model
parameters, namely ! L

! A and ! L
! B . As described in Eq. 3.2, we have an analytical

closed form relationship between our model parametersA ,B , and the prediction x.
Therefore, by applying the chain rule of di! erentiation, we can analytically express
the gradients of the model parameters in terms of the gradients of the prediction.
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Figure 3.3: Visualization of pairwise terms obtained by our G-CRF embeddings
trained for the human part segmentation. Column (a) shows the reference pixel
(p" ), marked with a dartboard, on the image. The pairwise term corresponding
to p" taking the ground truth label l " and any other pixel p taking the label l is
given by the inner product Ap" ,p (l " , l ) = -A l

p, A l"
p" . . We show the pairwise terms

Ap" ,p (l " , head) in (b), Ap" ,p (l " , torso) in (c), and Ap" ,p (l " , upper-limb) in (d).
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Figure 3.4: Visualization of pairwise terms obtained by our G-CRF embeddings
trained for the semantic segmentation task. Column (a) shows the reference pixel
(p" ), marked with a dartboard, on the image. The pairwise term corresponding
to p" taking the ground truth label l " and any other pixel p taking the label l is
given by the inner product Ap" ,p (l " , l ) = -A l

p, A l"
p" . . We show the pairwise terms

Ap" ,p (l " , bkg) in (b), Ap" ,p (l " , l " ) in (c), and Ap" ,p (l " , l2) in (d), where l2 is the most
dominant class in the image besidesl " .
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Figure 3.5: Here we visualize how the pairwise terms change as we vary the reference
point. These pairwise terms are obtained by our G-CRF embeddings trained for
the semantic segmentation task. Column 1 shows the reference pixel (p" ), marked
with a plus sign, on the image. In column 2, we show the heatmap of the pairwise
terms corresponding top" taking the ground truth label l " and other pixelsp taking
the label l " , given by Ap" ,p (l " , l " ) = -A l"

p , A l "
p" . . In column 3, we show the ground

truth, followed by the heatmap of unary terms delivered by the network.
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The gradients of the prediction are delivered by the neural network layer on top of
our dense-G-CRF module through backpropagation.

The gradients of the unary terms are straightforward to obtain by substituting
Eq. 3.1 in Eq. 2.7 as:

(A T A + ( I )
%L
%B

=
%L
%x

. (3.3)

We thus obtain the gradients of the unary terms by solving a system of linear
equations.

Turning to the gradients of the pixel embeddings, A , we use the chain rule of
di! erentiation as follows:

%L
%A

=
'

%L
%A

( '
%A
%A

(
=

'
%L
%A

( '
%

%A
A T A

(
. (3.4)

We know the expression for ! L
! A from Eq. 2.14, but to obtain the expression for

!
! A A T A we need to follow some more tedious steps. As in [Fackler 2005], we deÞne
a permutation matrix Tm,n of sizemn ! mn as follows:

Tm,n vec(M ) = vec(M T ), (3.5)

where vec(M ) is the vectorization operator that vectorizes a matrix M by stack-
ing its columns. When premultiplied with another matrix, Tm,n rearranges the
ordering of rows of that matrix, while when postmultiplied with another matrix,
Tm,n rearranges its columns. Using this matrix, we can form the following expres-
sion [Fackler 2005]:

%
%A

A T A =
)
I ) A T

*
+

)
A T ) I

*
TD,N , (3.6)

whereI is the N ! N identity matrix. Substituting Eq. 2.14and Eq. 3.6 into Eq. 3.4,
we obtain:

%L
%A

= "
'

%L
%B

) x
( ))

I ) A T
*

+
)
A T ) I

*
TD,N

*
. (3.7)

Despite the apparently complex form, this Þnal expression is particularly simple to
implement.

These equations allow us to train embeddings in a task-speciÞc manner, cap-
turing the patch-to-patch a " nities that are desirable for a particular structured
prediction task. We visualize the a" nities learned by our embeddings in Fig.3.3
and 3.4 - we observe that our embeddings indeed learn to group pixels in a way
that is dictated by the task: on the left pixels belonging to similar human parts are
grouped together, while on the right this is done for patches belonging to similar
object classes. Similar results can also be seen in Fig.3.6 for the more compact
embeddings described below.
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Figure 3.6: Visualization of pairwise terms obtained by our Potts-Type task-speciÞc
G-CRF embeddings. The Þrst column shows the reference pixel (p" ), marked with
a dartboard, on the image. The pairwise term betweenp" and any other pixel p is
given by the dot product Ap" ,p = A p

T A p" . We show the pairwise termsAp" ,p for
the (b) segmentation task, (c) human part estimation, (d) and saliency estimation.
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3.2.3 Potts Type G-CRF Pixel Embeddings

We now describeclass-agnosticG-CRF pixel embeddings, which simplify and ac-
celerate the G-CRF model by sharing the pairwise terms between pairs of classes.
More speciÞcally, thesePotts-type embeddings compose pairwise terms between a
pair of pixels that depend only on whether they take the same label or not, and are
invariant to the particular labels they take. As in Chap. 2 we denote byApi ,pj (l i , l j )
the pairwise energy term for pixel pi taking the label l i , and pixel pj taking the
label l j . The Potts-type embeddings describe the following model:

Api ,pj (l i , l j ) =

6
0 li = l j
Api ,pj l i *= l j .

7

(3.8)

The model in Eq. 3.8 reduces the size of the embeddings fromP ! L to P, and
allows for signiÞcantly faster inference (Sec.3.2.4) since the number of computations
are reduced by a factor ofL . As demonstrated in Sec.3.3, this leads to fewer model
parameters and better performance. ThePotts-type embeddings are realized by
posing our inference problem in Eq.3.2 as:
+
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where xk, denotes the scores for all the pixels for the classk. The per-class
unaries are denoted bybk, and the embeddings öA are shared between all class
pairs. In the following subsection, we demonstrate how we can adapt the linear
system solving method to better exploit the structure of the matrix A and avoid
redundant computations.

3.2.4 Implementation and E ! ciency

We now provide numerical analysis details that will be useful for the reproduction
of our method. Our approach is implemented as a layer inCa! e [Jia 2014]. We
exploit fast linear algebra routines of the CUDA blas library to e" ciently implement
the conjugate gradient method.

For these timing comparisons, we use a GTX-1080 GPU. Our general-inference
procedure takes0.029s, and Potts-type inference takes0.004s on average for the
semantic segmentation task (21 labels) for an image patch of size321! 321 pixels
downsampled by a factor of8, and for an embedding dimension of128. This is an
order of magnitude faster than the approximate dense CRF mean-Þeld inference
which takes 0.2s on average. The sparse G-CRF, and the Potts-type sparse G-
CRF from Chap. 2 take 0.021s and 0.003s respectively for the same input size.
Thus, our dense inference procedure comes at negligible extra cost compared to the
sparse G-CRF. A more comprehensive study of inference time of our methods for
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Embedding Size Dense DensePotts
32 0.0094 0.0017
64 0.0163 0.0019
128 0.0286 0.0037
256 0.0301 0.0039
512 0.0404 0.0043
1024 0.0509 0.0062
2048 0.1008 0.0121

Table 3.1: Average Inference Time in seconds for General and Potts Inference for
varying embedding dimensions. The input image size is321! 321 pixels, and the
number of labels is21. A network downsampling factor of 8 is assumed.

Image Size Dense DensePotts
256! 256 0.0148 0.0024
512! 512 0.0328 0.0051

1024! 1024 0.1056 0.0221
2048! 2048 0.2703 0.0457
4096! 4096 0.8407 0.1429

Table 3.2: Average Inference Time in seconds for General and Potts Inference for
varying input image height/width. A network downsampling factor of 8 is assumed.
The embedding size is128, and the number of labels is21.

varying sizes of the embedding and input image is available in Tab.3.1 and Tab. 3.2
respectively.

We now describe our approach to e" ciently implement the conjugate gradient
method for G-CRF pixel embeddings. We begin by describing the conjugate gradi-
ent algorithm in Algorithm 2. The conjugate gradient algorithm poses the solution
of the system of linear equationsAx = B as Þnding the minimum of the energy
function 1

2xT Ax " B T x. It then solves this minimization by building a sequence of
points { x1, x2, . . .} , iteratively progressing towards the solution starting from an ini-
tial solution x0. At each step, the error residual is computed and a gradient descent
step is taken while ensuring that the direction of descent is orthogonal (conjugate)
to all previous directions taken.

The conjugate gradient algorithm thus relies on computing the matrix-vector
product q = Ap in each iteration (Algorithm 2, line:10 ). This operation is com-
putationally the most expensive step of this method. We now describe how to
e" ciently compute this quantity for our case.

Conjugate Gradient for G-CRF Embeddings. To solve Eq.3.2, each iteration
of the conjugate gradient algorithm (Algorithm 2, line:10 ) involves computing
q = ( A T A + ( I )p. Explicitly computing (A T A + ( I ) is unnecessary because (a)
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Algorithm 2 Conjugate Gradient Algorithm

1: procedure ConjugateGradient
2: Input: A , B , x0

3: Output: x | Ax = B
4: r 0 := B " Ax 0

5: p0 := r 0

6: k := 0
7: repeat

8: $k := r T
k r k

p T
k Ap k

9: xk+1 := xk + $kpk

10: r k+1 := r k " $kAp k

11: if r k+1 is su" ciently small, then exit loop

12: ) k :=
r T

k +1 r k +1

r T
k r k

13: pk+1 := r k+1 + ) kpk

14: k := k + 1
15: end repeat
16: x = xk+1

it requires us to keep P L ! P L terms in memory, and (b) it is computationally
expensive. We therefore computeq as

øq = Ap; q = A T øq + ( p. (3.10)

Conjugate Gradient for Potts-type G-CRF Embeddings. The recurring
matrix-vector product for this case is given by

q =

+

,
,
,
,
-

q1

q2
...

qL

.

/
/
/
/
0

=

+

,
,
,
,
,
-

( I öA T öA á á á öA T öA
öA T öA ( I á á á öA T öA

...
öA T öA öA T öA á á á ( I

.

/
/
/
/
/
0

+

,
,
,
,
-

p1

p2
...

pL

.

/
/
/
/
0

. (3.11)

We make two observations by carefully examining Eq.3.11:

(1) The terms öA T öA are repeatedL " 1 times per column of the precision matrix.
A naive implementation would compute ( öA T öA)pk exactly L " 1 times for each class
k.

(2) Each qk can be computed as a sum ofL terms, and for each pair(qk , qk! %= k),
L " 2 of these terms are equal.

Using these observations, and further simpliÞcations, we computeqk for each
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class as

øöq = öA
L%

i =1

pi ; öq = öA T øöq (3.12)

øöqk = öApk; qk = öq + ( pk " öA T øöqk (3.13)

Please note that the quantity öq in Eq. 3.12 is computed once, and used to
compute qk for each class using Eq.3.13.

3.3 Experiments and Results

Base network. Our base network is Deeplab-v2-ResNet-101 [Chen 2016a], a three
branch multi-resolution network which processes the input image at scale factors
of 1, 0.75, 0.5 and then combines the network responses by upsampling the lower
scales and taking an element-wise maximum. It uses random horizontal ßipping,
and random scaling of the input image to achieve data augmentation.

Fully-Connected G-CRF network. Our fully-connected G-CRF (dense-G-CRF)
network is shown in Fig. 3.2. It uses the base network to provide unaries, and a
sub-network (ResNet-pw) in parallel to the base network to construct the pixel em-
beddings for the pairwise terms. As dictated by our experiments in Sec.3.3.1 the
ResNet-pw has layers conv1 through res4a. We use a3" phase training strategy.
We Þrst train the unary network without the pairwise stream. We train the pair-
wise sub-network next, with the softmax cross-entropy loss to enforce the following
objective: Ap1,p2 (l1, l2) < A p1,p2 (l&1 *= l1, l&2 *= l2), where l1, l2 are the ground truth
labels for pixels p1, p2. Finally, we combine the unary and pairwise networks, and
train them together in end-to-end fashion. Each training phase uses20K iterations
with a batch size of 10. The initial learning rate for the Þrst two phases is Þxed to
0.001, while for the third phase we set it to 2.5e$ 4. We use a polynomial decaying
learning rate with power= 0 .9. We use a momentum of0.9 and a weight-decay of
0.0005 in all our experiments. Training each network takes around2.5 days on a
GTX-1080 GPU.

3.3.1 Semantic Segmentation

Dataset. We use the PASCAL VOC 2012 dataset which has1464 training, 1449
validation and 1456 test images containing20 foreground object classes. We also
use the additional ground-truth from [ Hariharan 2015], obtaining 10582 training
images in total. The evaluation criterion is the mean pixel intersection-over-union
(IOU) metric.

Ablation Studies. In these experiments, we train on the train set, and evaluate
on the val set. We study the e! ect of varying the depth of the pairwise network
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stream by chopping the ResNet-101 at three lengths, indicated by the standard
ResNet layer names. We also study the e! ect of changing the size of G-CRF pixel-
embeddings. These results are reported in Tab.3.3. The best results are obtained at
embedding size of128and 1024for general- and Potts-type embeddings respectively.
Results improve as we increase the depth of ResNet-pw. Even though the Potts-
type embeddings are higher dimensional than the general embeddings, we learn
less than half the parameters (128! 21 = 2688 > 1024). Improvement over the
base-network is0.91%.

Base network [Chen 2016a] 76.30

dense-G-CRF Embedding Dimension/
ResNet-pw depth0 64 128 256 512
res2a 76.79 76.81 76.80 76.80
res3a 76.98 76.85 76.84 76.71
res4a 76.95 77.05 76.95 76.97

densepotts-G-CRF Embedding Dimension/
ResNet-pw depth 0 256 512 1024 2048
res2a 76.95 76.86 77.10 76.82
res3a 76.98 76.86 77.15 76.85
res4a 76.99 77.10 77.21 76.92

Table 3.3: Ablation study- mean Intersection Over Union (IOU) accuracy on PAS-
CAL VOC 2012 validation set. We compare the performance of our method against
that of the base network, and study the e! ect of varying the depth of the pairwise
stream network, and the size of pixel embeddings.

Performance on test set. We now compare our approach with the base net-
work [Chen 2016a], the base network with the sparse deep G-CRF from Chap.2,
as well as other leading approaches on this benchmark. In these experiments, we
train with the train and val sets, and evaluate performance on the test set. In all
of the following sections we use our best conÞgurations from table3.3.

Baselines. The mainstream approach on this task is to use fully convolutional net-
works [Chen 2014a,Chen 2016a,Long 2015] trained with the Softmax cross-entropy
loss. For this task, we compare our approach with the state of the art methods on
this benchmark. The baselines include (a) the CRF as RNN network [Zheng 2015],
(b) the Deeplab+Boundary network [ Kokkinos 2016] which exploits an edge detec-
tion detection network to boost the performance of the Deeplab network, (c) the
Adelaide Context network [Lin 2016], (d) the deep parsing network [Liu 2015b],
(e) the Deeplab-v2 base network [Chen 2016a] and (f) the sparse-G-CRF network
(Chap. 2) which combines the Deeplab-v2 network with sparse, Potts-type pairwise
terms.
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We report the results in table 3.4. With our dense-Potts embeddings, we get an
improvement of 0.8% over the sparse deep G-CRF approach, and1.3% over the base
network. We get a 0.1% boost in performance when we train our dense-Potts model
with the sparse G-CRF from Chap. 2 (the output after dense-GCRF inference is
fed as input to the sparse-GCRF inference module). Further experiments in the
rest of the section indicate that coupling sparse and dense versions of G-CRF leads
to very minor improvements and may not be necessary. Qualitative results are
shown in Fig. 3.7. We note that performances of two recent deep-architectures
namely PSPNet [Zhao 2016] and Deeplab-v3 [Chen 2017] are signiÞcantly better
than those of our baseline and other competing approaches. However, the authors
of these works have not yet released their training pipelines publicly. We expect
similar improvements by using our approach on these networks. We will experiment
with these networks once their training pipelines are made available.

Method mean IoU
CRFRNN [Zheng 2015] 74.7
Deeplab Multi-Scale + CRF [Kokkinos 2016] 74.8
Adelaide Context [Lin 2016] 77.8
Deep Parsing Network [Liu 2015b] 77.4
Deeplab V2 (base network) [Chen 2016a] 79.0
Deeplab V2 + CRF [Chen 2016a] 79.7
sparsepotts-G-CRF (Chap.2) 79.5
dense-G-CRF 80.1
densepotts-G-CRF 80.3
densepotts+sparsepotts-G-CRF 80.4

Table 3.4: Semantic segmentation - mean Intersection Over Union (IOU) accuracy
on PASCAL VOC 2012 test.

3.3.2 Human Part Segmentation

Dataset. We use the PASCAL Person Parts dataset [Chen 2014b]. As in [Liang 2016a],
we merge the annotations to obtain six person part classes, namely the head, torso,
upper arms, lower arms, upper legs, and lower legs. This dataset has1716 train
images and1817test images. The evaluation criterion is the mean pixel intersection-
over-union (IOU) metric.

Baselines. The state of the art approaches on human part segmentation also use
fully convolutional networks, sometimes additionally exploiting Long Short Term
Memory Units [Liang 2016a,Liang 2016b]. For this task, we compare our approach
to the following methods: (a) the Deeplab attention to scale network [Chen 2016b],
(b) the Auto Zoom network [ Xia 2016], (c) the Local Global LSTM network [ Liang 2016b]
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which combines local and global cues via LSTM units, (d) the Graph LSTM net-
work [Liang 2016a], (e) the base network with and without dense CRF post-
processing, and (f) the sparse G-CRF Potts model.

We report the results in table 3.5. While the previous state of the art approach
Deeplab-v2 achieves64.94 with Dense-CRF post-processing, out Potts-type model
outperforms it by 1.33% mean IoU without using Dense-CRF post-processing. Ad-
ditionally, we outperform the Deeplab-V2 G-CRF Potts baseline from Chap. 2 by
1.06%. Using the sparse-G-CRF on top of our results gives us a minor boost of
0.04%. We show qualitative results in Fig. 3.8.

Attention [ Chen 2016b] 56.39
Auto Zoom [Xia 2016] 57.54
LG-LSTM [ Liang 2016b] 57.97
Graph LSTM [ Liang 2016a] 60.16
Deeplab V2 (base network) [Chen 2016a] 64.40
Deeplab V2 + CRF [Chen 2016a] 64.94
sparsepotts-G-CRF (Chap.2) 65.21
dense-G-CRF 66.10
densepotts-G-CRF 66.27
densepotts+sparsepotts-G-CRF 66.31

Table 3.5: Part segmentation - mean Intersection-Over-Union accuracy on the PAS-
CAL Parts dataset of [Chen 2014b].

Method PASCAL-S HKU-IS
LEGS [Wang 2015b] 0.752 0.770
MC [Zhao 2015] 0.740 0.798
MDF [ Li 2015] 0.764 0.861
FCN [Li 2016] 0.793 0.867
DCL [Li 2016] 0.815 0.892
DCL + CRF [ Li 2016] 0.822 0.904
Ubernet 1-Task [Kokkinos 2017] 0.835 -
Deeplab V2 (base network) [Chen 2016a] 0.859 0.916
sparse-G-CRF (Chap.2) 0.861 0.914
dense-G-CRF 0.872 0.927
dense+sparse-G-CRF 0.864 0.927

Table 3.6: Saliency estimation results: we report the Maximal F-measure (MF) on
the PASCAL Saliency dataset of [Li 2014], and the HKU-IS dataset of [Li 2015].
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3.3.3 Saliency Estimation

Datasets. As in [Kokkinos 2017], we use the MSRA-10K saliency dataset [Wang 2015a]
for training, and evaluate our performance on the PASCAL-S [Li 2014], and the
HKU-IS [Li 2015] datasets. The MSRA-10K dataset contains10000 images with
annotated pixel-wise segmentation masks for salient objects. The Pascal-S saliency
dataset contains pixel-wise saliency for850 images. The HKU-IS dataset has4447
images, with multiple salient objects in each image. The evaluation criterion is the
maximal F-Measure as in [Kokkinos 2017,Li 2014].

Baselines. Our baselines for the saliency estimation task include (a) the Local Esti-
mation and Global Search (LEGS) framework [Wang 2015b], (b) the multi-context
network [Zhao 2015], (c) the multiscale deep features network [Li 2015], (d) the
deep contrast learning networks [Li 2016] which proposes a network structure that
better exploits object boundaries to improve saliency estimation and additionally
uses a fully connected CRF model, (e) the Ubernet architecture [Kokkinos 2017]
which demonstrates that sharing parameters for mutually symbiotic tasks can help
improve overall performance of these tasks, (f) our base network, i.e. Deeplab-v2,
and (g) the sparse G-CRF Potts model alongside the base network.

Results are tabulated in table 3.6. Our method signiÞcantly outperforms the
competing methods on both datasets. Additionally, we do not obtain improvements
when combining our method with the sparse G-CRF approach. Qualitative results
can be seen in Fig.3.9.

3.4 Summary

In this Chapter we propose a fully-connected G-CRF model for end-to-end training
of deep architectures. We propose strategies for e" cient implementation and show
that inference over a fully-connected graph comes with negligible computational
overhead compared to a sparsely connected graph. Our experimental evaluation
indicates consistent improvements over the state of the art approaches on three
challenging public benchmarks for semantic segmentation, human part segmenta-
tion and saliency estimation.
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Figure 3.7: Qualitative Results of Semantic Segmentation. (a) shows the unary
network output, (b) shows the sparsepotts-G-CRF output, (c) shows the densepotts-
G-CRF output, and (d) shows the input image and ground truth.
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Figure 3.8: Qualitative Results of Part Segmentation. (a) shows the unary network
output, (b) shows the sparsepotts-G-CRF output, (c) shows the densepotts-G-CRF
output, and (d) shows the input image and ground truth.
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Figure 3.9: Qualitative Results of Saliency Estimation. (a) shows the unary network
output, (b) shows the sparsepotts-G-CRF output, (c) shows the densepotts-G-CRF
output, and (d) shows the input image and ground truth.



Chapter 4

Deep Spatio-Temporal Random
Fields for E ! cient Video

Segmentation

In this chapter we extend the fully-connected Deep G-CRF model described in the
previous chapter to videos. In particular, we introduce a time- and memory-e" cient
method for structured prediction in videos that couples neuron decisions across both
space and time. We show that we are able to perform exact and e" cient inference
on a densely-connected spatio-temporal graph by capitalizing on recent advances on
deep Gaussian random Þelds. We experiment with multiple connectivity patterns
in the temporal domain, and present empirical improvements over strong baselines
on the tasks of both semantic and instance segmentation of videos. Our proposed
approach is (a) e" cient, (b) has a unique global minimum, and (c) can be trained
end-to-end alongside contemporary deep networks for video understanding.

This work will be published at the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

4.1 Introduction

Video understanding remains largely unsolved despite dramatic improvements in
image understanding over the past Þve years. The accuracy of current image classi-
Þcation, or semantic segmentation models is not yet matched in action recognition
and video segmentation, to some extent due to the lack of large-scale benchmarks,
but also due to the complexity introduced by introducing the time variable. Com-
bined with increase in memory and computation demands, video understanding
poses additional challenges that call for novel methods.

Our objective in this chapter is to go beyond the frame-by-frame processing cur-
rently used in most CNN-based architectures. We focus on coupling the decisions
taken by a neural network in time, in a manner that allows information to ßow across
frames resulting in decisions that are consistent both spatially and temporally. To-
wards this goal we pursue a structured prediction approach, where the structure of
the output space is exploited in order to train classiÞers of higher accuracy. For
this we introduce into video segmentation the Deep G-CRF method proposed for
single-frame structured prediction in Chap. 3. Our main technical contribution
in this chapter consists in adapting this method so that it becomes a! ordable for
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video segmentation, both from a time- and memory- complexity viewpoint. To this
end, we propose a customized conjugate gradient method that eliminates redundant
computations by exploiting the structure of the temporal neighbourhood.

Figure 4.1: Overview of our VideoGCRF approach: we jointly segment multiple
images by passing them Þrstly through a fully convolutional network to obtain per-
pixel class scores (ÔunaryÕ terms U), alongside with spatial (S) and temporal (T)
embeddings. We couple predictions at di! erent spatial and temporal positions in
terms of the inner product of their respective embeddings, shown here as arrows
pointing to a graph edge. The Þnal prediction is obtained by solving a linear
system; this can eliminate spurious responses, e.g. on the left pavement, by di! using
the per-pixel node scores over the whole spatio-temporal graph. The CRF and
CNN architecture is jointly trained end-to-end, while CRF inference is exact and
particularly e " cient.

We show that our algorithm can be used for a variety of video segmenta-
tion tasks: semantic segmentation (CamVid dataset), instance tracking (DAVIS
dataset), and a combination of instance segmentation with Mask-RCNN-style ob-
ject detection, customized in particular for the person class (DAVIS Person dataset).

Our approach proposed in this chapter inherits all favorable properties of the
G-CRF method: in particular, our method has the advantage of delivering (a) exact
inference results through the solution of a linear system, unlike contemporary video
understanding approaches such as [Kundu 2016], (b) allowing for exact computation
of the gradient during back-propagation, (c) making it possible to use rich CNN-
based expression for the pairwise term, rather than conÞning ourselves to pairwise
terms of a predetermined form, and (d) facilitating end-to-end training of all model
parameters.

Within the literature on spatio-temporal structured prediction, the work that is
closest in spirit to ours is the work of [Kundu 2016] on Feature Space Optimization.
Even though our works share several conceptual similarities, our method is entirely
di! erent at the technical level in the sense that it is conceived as a neural network
module for structured prediction that is trained jointly with CNNs that process the
individual frames, while the method of [Kundu 2016] is applied at a post-processing
stage to reÞne a classiÞerÕs results.
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4.1.1 Previous work

In Chap. 1 Sec. 1.3, we discuss contemporary structured prediction approaches
which capture spatial constraints within an image frame. These approaches may
be extended naively to videos, by making predictions individually for each frame.
However, in doing so, we ignore the temporal context, thereby ignoring the ten-
dency of consecutive video frames to be similar to each other. To address this
shortcoming, a number of deep learning methods employ some kind of structured
prediction strategy to ensure temporal coherence in the predictions. Initial at-
tempts to capturing spatio-temporal context involved designing deep learning ar-
chitectures [Karpathy 2014] that implicitly learnt interactions between consecutive
image frames. A number of subsequent approaches used Recurrent Neural Net-
works (RNNs) [Adi 2017,Donahue 2015] to capture interdependencies between the
image frames. Further, several approaches have exploited optical ßow computed
from state of the art approaches, as in [Ilg 2017], as additional input to the net-
work [Gadde 2017, Jain 2017]. Finally, methods that rely on explicit capturing of
these temporal constraints via pairwise terms over probabilistic graphical models
also exist [Bratieres 2015,Kundu 2016].

In this chapter, we focus on three problems, namely (i) semantic and (ii) in-
stance video segmentation, and (iii) semantic instance tracking. Semantic instance
tracking refers to the problem where we are given the ground truth for the Þrst
frame of a video, and the goal is to predict these instance masks on the subse-
quent frames of the video. Contemporary deep learning literature describes two
distinct approaches to this task. The Þrst set of approaches start with a deep
network pretrained for image classiÞcation on large datasets such as Imagenet
or COCO, and Þnetune it on the Þrst frame of the video with labeled ground
truth [ Caelles 2017,Voigtlaender 2017], optionally leveraging a variety of data aug-
mentation regimes [Khoreva 2017] to increase robustness to scale/pose variation
and occlusion/truncation in the subsequent frames of the video. The second set of
approaches pose this problem as a warping problem [Perazzi 2017], where the goal
is to warp the segmentation of the Þrst frame using the images and optical ßow as
additional inputs [ Jampani 2017,Khoreva 2017,Li 2017].

A number of approaches have attempted to exploit temporal information to
improve over static image segmentation approaches for video segmentation. Clock-
work convnets [Shelhamer 2016] were introduced to exploit the persistence of fea-
tures across time and schedule the processing of some layers at di! erent update
rates according to their semantic stability. Similar feature ßow propagation ideas
were employed in [Kundu 2016,Zhu 2016]. In [Nilsson 2016], the images are warped
using the ßow and spatial transformer networks. Rather than using optical ßow,
the prediction of future segmentations [Jin 2016] may also temporally smooth frame
by frame results. Finally, the state-of-the-art improving over PSPnet [Zhao 2016]
is achieved by warping the feature maps of a static segmentation CNN to emulate
a video segmentation network [Gadde 2017].
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Figure 4.2: VideoGCRF schematic for2 video frames. Our network takes in2 input
images, and delivers the per frame unariesb1, b2, spatial embeddingsA 1, A 2, and
temporal embeddingsT1, T2 in the feed-forward mode. Our VideoGCRF module
collects these and solves the inference problem in Eq.4.2 to recover predictions
x1, x2. During backward pass, the gradients of the predictions are delivered to the
VideoGCRF model. It uses these to compute the gradients for the unary terms
as well as the spatio-temporal embeddings and back-propagates them through the
network.

4.2 Spatio-Temporal Gaussian Random Fields

In this chapter we extend the fully-connected Deep Gaussian CRF approach intro-
duced in Chap. 3 to operate e" ciently for video segmentation. Introducing a CRF
allows us to couple the decisions between sets of variables that should be inßuencing
each other; spatial connections were already explored in Chap.2 and 3 and can be
understood as propagating information from distinctive image positions (e.g. the
face of a person) to more ambiguous regions (e.g. the personÕs clothes). In this
chapter we introduce temporal connections, which allow us to smooth information
over time, allowing us for instance to correctly segment frames where the object is
not clearly visible by propagating information from di ! erent time frames.

We consider that the input to our system is a video V = { I 1, I 2, . . . , I V } con-
taining V frames. We denote our networkÕs prediction asxv, v = 1 , . . . , V , where
at any frame the prediction x i # RP L provides a real valued vector giving a distri-
bution of scores over theL classes for each of theP image patches; for brevity, we
denote by N = P ! L the number of prediction variables. As in earlier chapters,
the L scores corresponding to a patch can be understood as inputs to a softmax
function that yields the label posteriors.

As in the previous chapters, we treat the G-CRF as a structured prediction
module that is part of a deep network. In the forward pass, the unary and the
pairwise termsBV and AV, delivered by a feed-forward CNN described in Sec.4.2.1,
are fed to the G-CRF module which performs inference to recover the predictionx
by solving a system of linear equations given by

(AV + ( I )x = BV, (4.1)
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Our Þrst contribution in this chapter consists in designing the structure of the
matrix AV so that obtaining the resulting system solution remains manageable as
the number of frames increases. Once we describe how we structureAV, we then
will turn to learning our network in an end-to-end manner. In the rest of this
chapter we omit the conditioning on V for notational convenience.

4.2.1 Spatio-temporal Connections

In order to capture the spatio-temporal context, we are interested in capturing
two kinds of pairwise interactions: (a) pairwise terms between patches in the same
frame, and (b) pairwise terms between patches in di! erent frames.

Denoting the spatial pairwise terms at framev by Av and the temporal pairwise
terms between framesu, v as Tu,v we can rewrite Eq. 4.1 as follows:
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where we group the variables by frames. Solving this system allows us to couple
predictions xv across all video framesv # { 1, . . . , V } , positions, p and labels l . If
furthermore Av = AT

v , $v and Tu,v = TT
v,u , $u, v then the resulting system is positive

deÞnite for any positive ( .
We start by describing how the pairwise termsAv, Tu,v are constructed through

our CNN, and then turn to how the solution of the linear system in Eq. 4.2 can be
accelerated by exploiting its structure.

Spatial Connections: We deÞne the spatial pairwise terms in terms of inner
products of pixel-wise embeddings, following Chap.3. At frame v we couple the
scores for a pair of patchespi , pj taking the labels lm , ln respectively as follows:

Av,pi ,pj (lm , ln ) = -A lm
v,pi

, A ln
v,pj

. , (4.3)

wherei, j # { 1, . . . , P} and m, n # { 1, . . . , L } , v # { 1, . . . , V } , and A ln
v,pj

# RD is the
embedding associated to pointpj . In Eq. 4.3 the A ln

v,pj
terms are image-dependent

and delivered by a fully-convolutional ÒembeddingÓ branch that feeds from the same
CNN backbone architecture, and is denoted byA v in Fig. 4.2.

The implication of this form is that we can a! ord inference with a fully-connected
graph. In particular the rank of the block matrix Av = A '

v A v, equals the embed-
ding dimension D, which means that both the memory- and time- complexity of
solving the linear system drops fromO(N 2) to O(ND ), which can be several orders
of magnitude smaller.

Temporal Connections: Turning to the temporal pairwise terms, we couple
patchespi , pj coming from di! erent framesu, v taking the labels lm , ln respectively
as

Tu,v,pi ,pj (lm , ln ) = -T lm
u,pi

, T ln
v,pj

. , (4.4)
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whereu, v # { 1, . . . , V } . The respective embedding terms are delivered by a branch
of the network that is separate, temporal embedding network, denoted byTv in
Fig. 4.2. In short, both the spatial pairwise and the temporal pairwise terms are
composed as Gram matrices of spatial and temporal embeddings asAv = A '

v A v,
and Tu,v = T '

u Tv. We visualize our spatio-temporal pairwise terms in Fig.4.3.

Spatio-Temporal G-CRFs in Deep Learning: Our VideoGCRFs can be
viewed as generic deep learning modules for spatio-temporal structured prediction,
and as such can be used at any stage of a deep learning pipeline: either as the
last layer, i.e. classiÞer, as in our semantic segmentation experiments (Sec.4.3.3),
or even in the low-level feature learning stage, as in our instance segmentation
experiments (Sec.4.3.1).

4.2.2 E! cient Conjugate-Gradient Implementation

We now describe an e" cient implementation of the conjugate gradient method
[Shewchuk 1994], described in in Algorithm 3 that is customized for our spatio-
temporal G-CRFs.

Algorithm 3 Conjugate Gradient Algorithm

1: procedure ConjugateGradient
2: Input: A , B , x0 Output: x | Ax = B
3: r 0 := B " Ax 0; p0 := r 0; k := 0
4: repeat

5: $k := r T
k r k

p T
k Ap k

6: xk+1 := xk + $kpk

7: r k+1 := r k " $kAp k

8: if 1r k+1 1 is su" ciently small, then exit loop

9: ) k :=
r T

k +1 r k +1

r T
k r k

10: pk+1 := r k+1 + ) kpk

11: k := k + 1
12: end repeat
13: x = xk+1

The computational complexity of the conjugate gradient algorithm is determined
by the computation of the matrix-vector product q = Ap, corresponding to line
:7 of Algorithm 3 (we drop the subscript k for convenience).

We now discuss how to e" ciently compute q in a manner that is customized for
this work. In our case, the matrix-vector product q = Ap is expressed in terms of
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the spatial (A ) and temporal (T ) embeddings as follows:
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From Eq. 4.5, we can expressqi as follows:

qi = A T
i A i pi + ( pi +

%

j %= i

T T
i Tj pj . (4.6)

One optimization that we exploit in computing qi e" ciently is that we do not
ÔexplicitlyÕ compute the matrix-matrix productsA T

i A i or T T
i Tj . We note that

A T
i A i pi can be decomposed into two matrix-vector products asA T

i (A i pi ), where
the expression in the brackets is evaluated Þrst and yields a vector, which can then
be multiplied with the matrix outside the brackets. This simpliÞcation alleviates
the need to keepN ! N terms in memory, and is computationally cheaper.

Further, from Eq. 4.6, we note that computation of qi requires the matrix-
vector product Tj pj $j *= i . A black-box implementation would therefore involve
redundant computations. We eliminate this redundancy by rewriting Eq. 4.6 as

qi = A T
i A i pi + ( pi + T T

i

@

A (
%

j

Tj pj ) " Ti pi

B

C . (4.7)

This rephrasing allows us to precompute and cache
4

j Tj pj , thereby eliminating
redundant calculations.

While so far we have assumed dense connections between the image frames, if
we have sparse temporal connections (Sec.4.3.1), i.e. each frame is connected to a
subset of neighbouring frames in the temporal domain, the linear system matrixA
is sparse, andqi is written as

qi = A T
i A i pi + ( pi +

%

j # N (i )

T T
i Tj pj , (4.8)

where N (i ) denotes the temporal neighbourhood of framei . For very sparse con-
nections caching may not be necessary because these involve little or no redundant
computations.

4.2.3 Backward Pass

By virtue of relying on the Gaussian CRF we can get the back-propagation equa-
tion for the gradient of the loss with respect to the unary terms, bv, and the
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spatial/temporal embedding terms A v, Tv in closed form, thereby sparing us from
having to perform back-propagation in time which was needed e.g. in [Zheng 2015]
for DenseCRF inference. Following Chap.3, the gradients of the unary terms ! L

! b v

are obtained from the solution of the following system:
+
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Once these are computed, the gradients of the spatial embeddings can be com-
puted as follows:
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while the gradients of the temporal embeddings are given by the following form:
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whereQD,N is a permutation matrix, deÞned along the lines of Chap.3; we provide
the details of the derivation in the Appendix 4.A.

4.2.4 Implementation and Inference Time

Our implementation is GPU based and exploits fast CUDA-BLAS routines for
linear algebra. It is implemented as a module in the Ca! e2 library. For spatial and
temporal embeddings of size128, 12 classes (Sec.4.3.3), a 321! 321 input image,
and network stride of 8, our 2, 3, 4 frame inferences take0.032s, 0.045s and 0.061s
on average respectively. Without the caching procedure described in Sec.4.2.2, the
4 frame inference takes0.080s on average. This is orders of magnitude faster than
the Dense-CRF method [KrŠhenbŸhl 2011] which takes 0.2s on average for spatial
CRF per frame; For 4 frames this would be 0.8s if we ignore any computational
overheads to to the addition of temporal connections, compared to0.08s in our case.
These timing statistics were estimated on aGTX-1080GPU.

Memory Consumption. The memory footprint of VideoGCRFs primarily de-
pends on the network architecture and the temporal context. Compared to the
baseline network, the memory overhead comes from the additional spatio-temporal
embedding sub-network branches. For segmentation experiments (Sec.4.3.1) with
a ResNet-101 network, an input image of321! 321 pixels, spatio-temporal embed-
dings of size128, we can simultaneously Þt7 frames in12 GB of GPU RAM. For the
same embedding size, in our instance segmentation experiments (Sec.4.3.1) with
the Mask-RCNN framework, which uses a ResNet-50 network, resizes the image
to ensure that the smaller side is600 pixels, and 128 bounding-box proposals per
image, we can Þt4 video frames simultaneously in12 GB of GPU RAM.
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Figure 4.3: Visualization of instance segmentation through VideoGCRF: In row
1 we focus on a single point of the CRF graph, shown as a cross, and show as a
heatmap its spatial (inter-frame) and temporal (intra-frame) a " nities to all other
graph nodes. These correspond to a single column of the linear system in Eq.4.2. In
row 2 we show the predictions that would be obtained by frame-by-frame segmen-
tation, relying exclusively on the FCNÕs unary terms, while in row 3 we show the
results obtained after solving the VideoGCRF inference problem. We observe that
in frame-by-frame segmentation a second camel is incorrectly detected due to its
similar appearance properties. However, VideoGCRF inference exploits temporal
context and focuses solely on the correct object.

4.3 Experiments

Experimental Setup. We describe the basic experimental setup followed for
our experiments. As in Chap. 3, we use a3" phase training strategy for our
methods. We Þrst train the unary network without the spatio-temporal embed-
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dings. We next train the subnetwork delivering the spatio-temporal embeddings
with the cross-entropy loss to enforce the following objectives: Ap1,p2 (l1, l2) <
Ap1,p2 (l&1 *= l1, l&2 *= l2), and Tu,v,p1,p2 (l1, l2) < T u,v,p1,p2 (l&1 *= l1, l&2 *= l2), where l1, l2
are the ground truth labels for pixels p1, p2. Finally, we combine the unary and
pairwise networks, and train them together in end-to-end fashion. For the em-
bedding branches, we use sub-networks of10 layers each on top of the standard
ResNet-101conv-4 layer. Unless otherwise stated, we use stochastic gradient de-
scent to train our networks with a momentum of 0.9 and a weight decay of5e$ 4.
For segmentation experiments, we use a base-learning rate of2.5e$ 3 for training the
unaries, 2.5e$ 4 for training the embeddings, and1e$ 4 for Þnetuning the unary and
embeddings together, using a polynomial-decay with power of0.9. For the instance
segmentation network, we use a single stage training for the unary and pairwise
streams: we train the network for 16K iterations, with a base learning rate of 0.01
which is reduced to 0.001 after 12K iterations. The weight decay is 1e$ 4. For our
instance tracking experiments, we use unaries from [Voigtlaender 2017] and do not
reÞne them, rather use them as an input to our network. We employ horizontal
ßipping and scaling by factors between0.5 and 1.5 during training/testing for all
methods, except in the case of instance segmentation experiments (Sec.4.3.1).

Datasets. We now describe the datasets for experiments.

DAVIS. The DAVIS dataset [Perazzi 2016] consists of30 training and 20 vali-
dation videos containing 2079and 1376frames respectively. Each video comes with
manually annotated segmentation masks for foreground object instances.

DAVIS-Person. While the DAVIS dataset [ Pont-Tuset 2017] provides densely
annotated frames for instance segmentation, it lacks object category labels. For
category prediction tasks such as semantic and instance segmentation, we create a
subset of the DAVIS dataset containing videos from the category person. By means
of visual inspection, we select35 and 18 video sequences from the training and
validation sets respectively containing 2463 training and 1182 validation images,
each containing at least one person. Since the DAVIS dataset comes with only the
foreground instances labeled, we manually annotate the image regions containing
unannotated personinstances with the do-not-care label. These image regions do
not participate in the training or the evaluation. We call this the DAVIS-person
dataset.

CamVid. The CamVid dataset [Brostow 2017], is a dataset containing videos of
driving scenarios for urban scene understanding. It comes with701 images anno-
tated with pixel-level category labels at 1 fps. Although the original dataset comes
with 32 class-labels, as in [Badrinarayanan 2015,Kundu 2016,JŽgou 2017], we pre-
dict 11 semantic classes and use the train-val-test split of367, 101 and 233 frames
respectively.
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Figure 4.4: Illustration of the various temporal neighbourhoods we consider in our
ablation study. Each box denotes a video frame and the arcs connecting them are
pairwise connections. We show a frame in red with all neighbours present in the
temporal context.

4.3.1 Ablation Study on Semantic and Instance Segmentation Tasks

In these experiments, we use the DAVIS Person dataset described in Sec.4.3. The
aim here is to explore the various design choices available to us when designing
networks for spatio-temporal structured prediction for semantic segmentation, and
proposal based instance segmentation tasks.

Semantic Segmentation Experiments. Our Þrst set of experiments studies the
e! ect of varying the sizes of the spatial and temporal embeddings, the degree of the
temporal connections, and multi-scale temporal connections for the spatio-temporal
G-CRFs. For these set of experiments, our baseline network, orbase-netis a single
resolution ResNet-101 network, with altered network strides as in [Chen 2016a] to
produce a spatial down-sampling factor of8. The network was pretrained on the
PASCAL VOC 2012 dataset for semantic segmentation. The evaluation metric used
in these experiments is the mean pixel Intersection over Union.

In Tab. 4.1 we study the e! ect of varying the sizes of the spatial and temporal
embeddings, and compare the performance of our methods that couple2" frames at
a time, against that of the base-net. Our best results are achieved at when the sizes
of our spatio-temporal embeddings are128. The improvement over the base-net is
4.2%. In the rest of our experiments in this work, we Þx the size of our embeddings
to 128. We next study the e! ect of varying the size of the temporal context and
temporal neighbourhoods. The temporal context is deÞned as the number of video
frames V which are considered simultaneously in one linear system (Eq.4.2). The
temporal context V is limited by the size of the network and GPU RAM: for a
ResNet-101 network, an input image of size321! 321, embeddings of size128, we
can currently Þt V = 7 frames on12 GB of GPU RAM, thus the maximum temporal
context possible in this setting is 7 frames. SinceV is smaller than the number of
frames in the video, we divide the video into overlapping sets ofV frames, and
average the predictions for the common frames.

The temporal neighbourhood for a frame (Fig. 4.4) is deÞned as the number
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of frames it is directly connected to via pairwise connections. A fully connected
neighbourhood (fc" ) is one in which there are pairwise terms between every pair of
frames available in the temporal context. We experiment with 2" , 4" , multiscale
6ms" and fc" connections. The6ms" neighbourhood connects a frame to neigh-
bours at distances of20, 21 and 22 (or 1, 2, 4) frames on either side. Tab.4.2 reports
our results for di! erent combinations of temporal neighbourhood and context. It
can be seen that dense connections improve performance for smaller temporal con-
texts, but for a temporal context of 7 frames, an increase in the complexity of
temporal connections leads to decrease in performance.

base-net 81.16

VideoGCRF spatial dimension/
temporal dimension0 64 128 256 512
64 84.89 85.21 85.20 84.98
128 85.18 86.38 86.34 84.91
256 85.92 86.37 85.95 84.92
512 84.85 85.95 84.95 84.21

Table 4.1: Ablation study: mean IoU on the DAVIS-person dataset using2 frame
fc" connections. Here we study the e! ect of varying the size of the spatial &
temporal embeddings. We Þx the size of these embeddings to128 for subsequent
experiments.

base-net 81.16

VideoGCRF temporal neighbourhood/
temporal context0 2" 4" 6ms" fc"
2 " " " 86.38
3 86.42 " " 86.51
4 86.70 " " 86.82
7 86.98 86.79 86.82 86.42

Table 4.2: Ablation study: mean IoU on the DAVIS-person dataset. Here we study
the e! ect of varying the size of the temporal context and neighbourhood.

Instance Segmentation Experiments. In this set of experiments, we demon-
strate the utility of our spatio-temporal G-CRF method for the task of proposal
based instance segmentation. Our hypothesis is that coupling of predictions across
frames is advantageous for instance segmentation methods, and our goal is to show
that the performance of the instance segmentation methods improves as we in-
crease the temporal context via spatio-temporal G-CRFs: we use fully connected
temporal neighbourhoods. Our baseline for this task is the Mask-RCNN frame-
work of [He 2017] using the ResNet-50 network as the convolutional backbone.
The Mask-RCNN framework uses precomputed bounding box proposals for this
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Figure 4.5: Spatio-temporal structured prediction in Mask-RCNN. Here we use
CRFs in the feature learning stage before the ROI-Pooling (and not as the Þnal
classiÞer). This helps learn mid-level features which are better aware of the spatio-
temporal context.

task. It computes convolutional features on the input image using the convolu-
tional backbone network, crops out the features corresponding to image regions in
the proposed bounding boxes via Region-Of-Interest (RoI) pooling, and then has3
head networks to predict (i) class scores and bounding box regression parameters,
(ii) keypoint locations, and (iii) instance masks. Structured prediction coupling
the predictions of all the proposals over all the video frames is a computationally
challenging task, since typically we have100" 1000s of proposals per image, and
it is not obvious which proposals from one frame should inßuence which proposals
in the other frame. To circumvent this issue, we use our G-CRFs before the RoI
pooling stage as shown in Fig.4.5. Thus, rather than coupling Þnal predictions, we
are coupling mid-level features over the video frames in an attempt to improve the
features which will ultimately be used to make predictions.

For evaluation, we use the standard COCO performance metrics: AP50, AP75,
and AP (averaged over IoU thresholds), evaluated using mask IoU. Tab.4.3 reports
our instance segmentation results. We note that the performance of the Mask-
RCNN framework increases consistently as we increase the temporal context for
predictions. We show the qualitative results of our instance segmentation experi-
ments in Fig. 4.8 and Fig. 4.9.

Method AP50 AP75 AP
ResNet50-baseline 0.610 0.305 0.321
spatial G-CRF (Chap. 3) 0.618 0.310 0.329
2-frame VideoGCRF 0.619 0.310 0.331
3-frame VideoGCRF 0.631 0.321 0.330
4-frame VideoGCRF 0.647 0.336 0.349

Table 4.3: Instance Segmentation using ResNet-50 Mask R-CNN on the Davis
Person Dataset
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Method mean IoU
Mask Track [Perazzi 2017] 79.7
OSVOS [Caelles 2017] 79.8
Online Adaptation [ Voigtlaender 2017] 85.6
Online Adaptation + Spatial G-CRF (Chap. 3) 85.9
Online Adaptation + 2-Frame VideoGCRF 86.3
Online Adaptation + 3-Frame VideoGCRF 86.5

Table 4.4: Instance Tracking on the Davis val Dataset

4.3.2 Instance Tracking on DAVIS Dataset

Here we use the DAVIS dataset described in Sec.4.3. Instance tracking involves
predicting segmentation masks for foreground object instances for each frame in
the video when presented with the ground truth segmentation for the Þrst video
frame. Our goal here is to demonstrate that incorporating temporal context helps
improve performance in instance tracking methods. To this end, we extend the
state-of-the-art approach on the DAVIS benchmark, online adaptation approach
from [Voigtlaender 2017] with our spatio-temporal G-CRFs. We use their publicly
available software based on the TensorFlow library to generate the unary terms for
each of the frames in the video, and keep them Þxed. We use a ResNet-50 net-
work to generate spatio-temporal embeddings and use these alongside the unaries
computed from [Voigtlaender 2017]. The results are reported in table Tab. 4.4. We
compare performance of spatio-temporal G-CRFs against that of just the unaries
from [Voigtlaender 2017], and also with spatial G-CRFs from Chap. 3. The eval-
uation criterion is the mean pixel-IoU. It can be seen that temporal context helps
improve the performance. We expect that re-implementing the software from [Voigt-
laender 2017] in Ca! e2 and back-propagating on the unary branch of the network
would yield further performance boosts.

4.3.3 Semantic Segmentation on CamVid Dataset

In this set of experiments, we employ our VideoGCRFs for the task of seman-
tic video segmentation. Here we use the CamVid dataset described in Sec.4.3.
The results are reported in Tab. 4.5. Our base network here is our own imple-
mentation of ResNet-101 with pyramid spatial pooling as in [Zhao 2016]. Addi-
tionally, we pretrain our networks on the Cityscapes dataset [Cordts 2016], and
report results both with and without Cityscapes pretraining. Our approach out-
performs the baseline approaches both with and without Cityscapes pretraining.
We see substantial boosts in performance after the pretraining. Without pretrain-
ing, we see an improvement of1.3% over the base-net, and with pretraining we
see an improvement of1.9%. The qualitative results are shown in Fig. 4.6. A
high-resolution video comparison of the base network with VideoGCRF output is
available at https://siddharthachandra.github.io/projects/gcrf3.html .



4.4. Summary 83

Model B
ui

ld
in

g

Tr
ee

S
ky

C
ar

S
ig

n

R
oa

d

P
ed

es
tr

ia
n

Fe
nc

e

P
ol

e

S
id

ew
al

k

C
yc

lis
t

m
-I

oU

SegNet [Badrinarayanan 2015] 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4
Bayesian SegNet [Kendall 2015] ! 63.1

DeconvNet [Noh 2015] ! 48.9
Visin et al. [ Visin 2016] ! 58.8

FCN8 [Long 2015] 77.8 71.0 88.7 76.1 32.7 91.2 41.7 24.4 19.9 72.7 31.0 57.0
DeepLab-LFOV [ Chen 2014a] 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 61.6

Dilation8 [ Yu 2016] 82.6 76.2 89.0 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3
Dilation8 + FSO [ Kundu 2016] 84.0 77.2 91.3 85.6 49.9 92.5 59.1 37.6 16.9 76.0 57.2 66.1

Tiramisu [ JŽgou 2017] 83.0 77.3 93.0 77.3 43.9 94.5 59.6 37.1 37.8 82.2 50.5 66.9
Results with our ResNet-101 Implementation

Basenet ResNet-101 (Ours) 81.2 75.1 90.3 85.2 48.3 93.9 57.7 39.9 15.9 80.5 54.8 65.7
Basenet + Spatial G-CRF (Chap. 3) 81.6 75.7 90.4 86.8 48.1 94.0 59.1 39.2 15.7 80.7 54.7 66.0

Basenet + 2-Frame VideoGCRF 82.0 76.1 91.1 86.2 51.7 93.8 64.2 24.5 25.0 80.1 61.7 66.9
Basenet + 3-Frame VideoGCRF 82.1 76.0 91.1 86.1 52.0 93.7 64.5 24.9 24.4 79.9 61.8 67.0

Results after Cityscapes Pretraining
Basenet ResNet-101 (Ours) 85.5 77.4 90.9 88.4 62.3 95.4 64.8 62.1 33.3 85.5 60.5 73.3

Basenet + Spatial G-CRF (Chap. 3) 86.0 77.8 91.2 90.8 63.6 95.9 66.5 61.2 35.3 86.9 65.8 74.6
Basenet + 2-Frame VideoGCRF 86.0 78.3 91.2 92.0 63.4 96.3 67.0 62.5 34.4 87.7 66.1 75.0
Basenet + 3-Frame VideoGCRF 86.1 78.3 91.2 92.2 63.7 96.4 67.3 63.0 34.4 87.8 66.4 75.2

Table 4.5: Results on CamVid dataset. We compare our results with some of the
previously published methods, as well as our own implementation of the ResNet-101
network which serves as our base network.

4.4 Summary

In this chapter, we propose e" cient, end-to-end trainable G-CRFs for e" cient
spatio-temporal structured prediction. On a number of benchmarks, we experi-
mentally demonstrate performance boosts when we increase the temporal context of
predictions. This additional complexity comes at negligible computational overhead
compared to spatial structured prediction owing to our e" cient implementation.
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Figure 4.6: Qualitative results on the CamVid dataset. We note that the temporal
context from neighbouring frames helps improve the prediction of the truck on the
right in the Þrst video, and helps distinguish between the road and the pavement
in the second video, overall giving us smoother predictions in both cases.
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Figure 4.7: Visualization of G-CRF embeddings on2 videos in the DAVIS dataset.
The pairwise a" nity between two pixels in the image is given by the dot product of
the feature embeddings computed at these two pixels. We choose areference pixel
from the Frame-1 (marked by the red cross). We show the heat-map produced
by computing the dot-product of the embedding at the reference pixel, with other
pixels in the same frame, as well as in two other frames from the video. We also plot
the pairwise a" nities between every pair of pixels as a heatmap in the3 frames of
the video in the last column of the Þgure. Here the pixels are ordered according to
their class (background followed by object). The bright areas indicate high a" nity
between pixels belonging to the same class, and the dull areas indicate low a" nity
between pixels belonging to di! erent classes.
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Figure 4.8: Qualitative results for instance segmentation on the DAVIS Person
Dataset. We notice that the base-net and the spatial G-CRF in (a),(b) miss the
school-girl on the right in the second frame. Temporal context from spatio-temporal
G-CRFs in (c) helps recover her.
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Figure 4.9: Qualitative results for instance segmentation on the DAVIS Person
Dataset. We notice that the base-net and the spatial G-CRF in (a),(b) miss in-
stances or parts of instances of dancing persons frequently. Temporal context from
spatio-temporal G-CRFs in (c) helps recover missing parts / instances and yield
smoother predictions over the video, as seen in row 2.





Appendix

In this appendix, we derive the expressions for weight-update rules for learning for
the theory developed in Chap.4.

4.A Deep Spatio-Temporal Random Fields for E ! cient
Video Segmentation

As described in Chap.4, to capture the spatio-temporal context, we propose two
kinds of pairwise interactions: (a) pairwise terms between patches in the same frame
(spatial pairwise terms), and (b) pairwise terms between patches in di! erent frames
(temporal pairwise terms).

Denoting the spatial pairwise terms at framev by Av and the temporal pairwise
terms between framesu, v as Tu,v , our inference equation is written as
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where we group the variables by frames. Solving this system allows us to couple
predictions xv across all video framesv # { 1, . . . , V } , positions, p and labels l . If
furthermore Av = AT

v , $v and Tu,v = TT
v,u , $u, v then the resulting system is positive

deÞnite for any positive ( .
As in Chap. 4, at frame v we couple the scores for a pair of patchespi , pj taking

the labels lm , ln respectively as follows:

Av,pi ,pj (lm , ln ) = -A lm
v,pi

, A ln
v,pj

. , (4.13)

where i, j # { 1, . . . , P} and m, n # { 1, . . . , L } , v # { 1, . . . , V } , and A ln
v,pj

# RD is
the embedding associated to pointpj .

Thus, A v # RN ! D , where N = P ! L . Further, to design the temporal pairwise
terms, we couple patchespi , pj coming from di! erent framesu, v taking the labels
lm , ln respectively as

Tu,v,pi ,pj (lm , ln ) = -T lm
u,pi

, T ln
v,pj

. , (4.14)

where u, v # { 1, . . . , V } .
In short, both the spatial pairwise and the temporal pairwise terms are composed

as Gram matrices of spatial and temporal embeddings asAv = A '
v A v, and Tu,v =

T '
u Tv.
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Using the deÞnitions from Eq. 4.13 and Eq. 4.14, we can rewrite the inference
equation as
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From Eq. 4.15, we can expressbv as follows:

bv = A T
v A vxv + ( xv +

%

u%= v

T T
v Tuxu, (4.16)

which can be compactly written as

bv = Avxv + ( xv +
%

u%= v

Tv,uxu. (4.17)

We will use Eq. 4.17 to derive gradient expressions for ! L
! A v

and ! L
! Tv

.

4.B Gradients of the Unary Terms

As in Chap. 2, Chap. 3 the gradients of the unary terms ! L
! b v

are obtained from the
solution of the following system of linear equations:
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where L is the network loss. Once we have ! L
! b v

, we use it to compute the
gradients of the spatio-temporal embeddings.

4.C Gradients of the Spatial Embeddings

We begin with the observation that computing ! L
! A v

requires us to Þrst derive the
expression for ! L

! A v
. To this end, we ignore terms from Eq.4.17 that do not depend

on bv or Av and write it as bv = Avxv + c. We now use the result from Chap.2
that when

Avxv = bv,
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the gradients of Av are expressed as

%L
%Av

= "
%L
%bv

) xv, (4.19)

where ) denotes the Kronecker product operator.
To compute ! A v

! L , we use the chain rule of di! erentiation as follows:
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where Av = A T
v A v, by deÞnition. We know the expression for ! L

! A v
from Eq. 4.19,

but to obtain the expression for !
! A v

A T
v A v we deÞne a permutation matrixQm,n of

sizemn ! mn (as in [Fackler 2005]) as follows:

Qm,n vec(M ) = vec(M T ), (4.21)

where vec(M ) is the vectorization operator that vectorizes a matrix M by stacking
its columns. Thus, the operator Qm,n is a permutation matrix, composed of0s and
1s, and has a single1 in each row and column. When premultiplied with another
matrix, Qm,n rearranges the ordering of rows of that matrix, while when postmulti-
plied with another matrix, Qm,n rearranges its columns. Using this matrix, we can
form the following expression [Fackler 2005]:
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where I is the N ! N identity matrix. Substituting Eq. 4.19 and Eq. 4.22 into
Eq. 4.20, we obtain:
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4.D Gradients of the Temporal Embeddings

As in the last section, from Eq. 4.17, we ignore any terms that do not depend on
bv or Tv,u and write it as bv = c +

4
u%= v Tv,uxu.

Using the strategies in the previous section and the sum rule of di! erentiation,
the gradients of the temporal embeddings are given by the following form:

%L
%Tv

= "
%

u

'
%L
%bu

) xv

( ))
I ) T '

u

*
+

)
T '

u ) I
*

QD,N

*
(4.24)





Chapter 5

Concluding Remarks

While the majority of approaches in literature have relied on approximate inference
for general graphical models, in this thesis we have chosen exactness of inference
over expressive power in choosing G-CRFs. Through our systematic experimental
evaluations, we have demonstrated that G-CRFs do not lack in expressive power as
they out-perform competing approaches which use approximate inference for gen-
eral graphical models. Further, we demonstrate that G-CRFs can be implemented
very e" ciently with the inference time orders of magnitude lower than contempo-
rary methods such as the Dense-CRF (see Chap.2 and 3 for timing comparisons).
Additionally, we overcome the computational and memory challenges posed by long-
range interactions (Chap.3) by constructing the pairwise terms as a low-rank Gram
matrix of pixel-embeddings. Finally, we derive the gradient expressions and update
rules to enable learning of all model parameters in an end-to-end fashion. To sum
up, in this thesis, we have proposed a structure prediction method which has (i)
exact inference, (ii) long-range connections, (iii) CNN based pairwise terms, (iv)
end-to-end trainable, and is (v) e" cient.

In this chapter, we Þrst recapitulate the main contributions of this thesis, and
then discuss future avenues that we would like explore.

5.1 Contributions

We now give a formal, more detailed list of our technical contributions in this thesis,
organized by the chapters.

5.1.1 G-CRFs for Sparsely Connected Graphical Models

In Chap. 2, we propose a sparse G-CRF method for deep networks which can be
trained in an end-to-end fashion. We demonstrate that our inference problem can
be solved in closed-form by solving a system of linear equations, and derive the
gradients for unary and pairwise terms for back-propagation. We show that back-
propagation also involves solving a system of linear equations. Further, we study a
number of algorithms for iteratively solving systems of linear equations, and empir-
ically determine that the conjugate gradient algorithm works best for our setting.
We also establish parallels between the mean-Þeld iterations that contemporary em-
ploy for approximate inference with the Jacobi and Gauss-Seidel approaches that
converge slower than conjugate gradient in our experiments.

We also propose a Potts-type variant of our G-CRFs for a simpler, and faster
model which uses memory footprint. Further, we propose a multi-scale inference



94 Chapter 5. Concluding Remarks

strategy to capture interactions between image regions at multiple scales. We devise
strategies for e" cient implementation on the GPU using the CUDA-BLAS library
and exploit optimized linear algebra routines for sparse matrices using the CUDA-
Sparse library. Our implementation is e" cient and exact and can be solved in0.02
seconds on the GPU for each image in the general setting, and0.003 seconds for
the Potts-type pairwise case using the conjugate gradient method.

Our experimental results indicate that using pairwise terms boosts performance
of the network on the task of image segmentation, and our results are competi-
tive with the state of the art methods on the VOC 2012 benchmark, while being
substantially simpler.

5.1.2 G-CRFs for Fully-Connected Graphical Models

In Chap. 3, we propose a fully-connected G-CRF model for end-to-end training
of deep architectures. To cope with the prohibitive memory and computational
demands of a fully-connected graphical model we compose the G-CRF precision
matrix as a low-rank Gram matrix of pixel embeddings delivered by a CNN. We
derive the gradient expressions and update rules to train all model parameters via
back-propagation.

To better exploit the low-rank structure of the G-CRF precision matrix, we
propose acustomizedconjugate gradient algorithm which lends itself to very e" cient
implementation on the GPU. With our customized conjugate gradient algorithm
we demonstrate that inference over a fully-connected graph comes with neglegible
computational overhead compared to a sparsely connected graph.

Further, we propose a Potts-type variant of our fully-connected G-CRF model
which is faster, has a lower memory footprint and contains fewer parameters. We
empirically show that the Potts-type variant also outperforms the general model.

Our experimental evaluation indicates consistent improvements over the state
of the art approaches on three challenging public benchmarks for semantic segmen-
tation, human part segmentation and saliency estimation.

5.1.3 G-CRFs for Fully-Connected Spatio-Temporal Structured Pre-
diction

In Chap. 4, we extend our fully-connected G-CRF for videos. In particular, we
develop G-CRFs for spatio-temporal structured prediction by incorporating pairwise
terms between patches in the same and di! erent frames of a video. We derive
the gradient expressions and update rules for end-to-end training of all G-CRF
parameters via back-propagation.

To allow e" cient implementation, we provide a customized conjugate gradient
algorithm which eliminates redundant computations. On a number of benchmarks,
namely semantic and instance segmentation on videos, and instance tracking in
videos, we experimentally demonstrate performance boosts when we increase the
temporal context of predictions.
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5.2 Future Work

We now discuss some of the novel extensions or domains where we would like to
use the methods proposed in this thesis.

Introducing spatial or temporal distance in fully-connected G-CRFs.
While the G-CRF models for fully-connected graphs that we have proposed in this
thesis ( in Chap. 3 and 4 ) are capable of discovering and learning all the pairwise
interactions directly from the data, they do not include a term that captures spatial
distance between pixels in the same frame, or even temporal distance between pixels
in di ! erent frames. As such the long-range connections share the same importance
as the short-range connections. While this might not be an issue when we pretrain
the embeddings in a supervised fashion, this could be a limitation when we want
to train the pairwise terms without any additional supervision. Without any addi-
tional supervision, it might make sense to allow the model to place more conÞdence
in the immediate context, i.e. short-range interactions to have more weight than
long-range interactions. To this end, we would like to complement the pairwise term
coming from the embeddings with spatial or temporal distance. There are a couple
of ways to achieving this: (i) either add a ÔconstantÕ distance based pairwise matrix
to A during inference, or (ii) try to learn embeddings on top of the spatio-temporal
coordinates, alongside appearance based embeddings, and train them with addi-
tional supervision so they capture the spatio-temporal distance between pixels. In
connection with this, we are trying to approximate spatio-temporal distance be-
tween two pixels using feature embeddings as in [Vedaldi 2010,Li 2010]. We would
like to explore further this direction of research.

Using G-CRFs in other domains. Having developed the theory for e" cient
inference and learning for sparse and fully-connected graphical models, we would
like to apply these techniques to other domains such as regression and detection.
We would like to employ our structured prediction models for tasks such as image
denoising, prediction of depth and normals, object detection, scene classiÞcation and
so on. G-CRFs are naturally suitable to all these tasks owing to their continuous
nature. Training of these models would require further exploration into initialization
or pre-training of the pairwise terms, and this is one avenue we would like to explore.

Semi- and Weakly-Supervised Methods. We would also like to use our models
in the semi-supervised and weakly-supervised settings. We believe these problems
will become increasingly important as the performance of fully-supervised meth-
ods saturates. Annotation is expensive and the amount of un-annotated data is
enormous. The next natural step is to use data from all available sources without
relying on exhaustive manual labeling. To this end, we can exploit the pairwise
a" nities coming from a pretrained network to cluster patches in unseen images.
This will also allow discovery of novel categories, and could be used to speed up
manual annotation. Clustering could allow us to transfer annotations from a la-
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beled exemplar image to similar images, followed by a reÞnement labeling phase
if necessary. Furthermore, we could train a classiÞcation network containing the
G-CRF structured prediction module using image-level labels alone, and use the
pairwise a" nities to capture patch-level similarities between images.

Extension to Mixture Models. While the G-CRF energy function is unimodal
and symmetric by deÞnition, one possible extension is to use a mixture of G-CRFs.
However, mixture models are typically learnt iteratively using expectation maxi-
mization, and hence computationally expensive. Rather than relying on expectation
maximization to learn all G-CRF parameters, we could learn the mixture weights
alongside each component via back-propagation. Coming up with strategies to en-
able e" cient training of such models is another research problem which needs to be
looked at.

Other Structured Prediction Approaches based on G-CRFs. We have also
been working towards simplifying the G-CRF formulation by directly training the
network to deliver the inverse C of the G-CRF precision matrix A, i.e. C = A$ 1.
In other words, we express the G-CRF energy function asE(x) = 1

2xT C$ 1x " bT x.
With this simpliÞcation, inference becomesC$ 1x = b, i.e. x = Cb. Thus, to
perform inference for this system, we do not need to solve system of linear equations,
as inference and update rules only involve matrix-vector products. This can be
interpreted as seeing the output as a linear combination of all inputs. While this
structured prediction approach is signiÞcantly faster than G-CRF inference (which
relies on iterative conjugate gradient computations), it requires us to impose a
structure on the inverse of the precision matrix for compact representation (as
opposed to imposing structure on the precision matrix). This direction of research
is being pursued in several independent works [Wang 2017,Bertasius 2016].

Extension of Spatio-Temporal G-CRFs. With regard to capturing spatio-
temporal pairwise terms, we would like to incorporate optical ßow techniques in
this framework as they provide a natural way of capturing temporal correspondence.
This would allow us to exploit both motion-based and appearance-based cues for
video understanding. Finally, we would like to exploit this framework for regression
and detection tasks, and in the weakly-supervised setting as well.

Sampling from G-CRFs. Papandreouet al. [Papandreou 2010,Papandreou 2011]
demonstrate that sampling from a Gaussian MRF is equivalent to adding random
noise to the MRF parameters and performing inference. With this knowledge, we
can sample from G-CRFs by injecting noise into the G-CRF parameters delivered by
a CNN and performing inference. We can use this strategy to make the the classiÞer
more robust by using the samples from the G-CRF for data augmentation. Fur-
ther, by introducing G-CRFs in generative models such as Generative Adversarial
Networks [Goodfellow 2014], we can induce diversity in their outputs by carefully
designing the distribution of noise. This is another direction of research we would
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like to explore.

Structure in the Loss. In this thesis, we use two evaluation metrics for the seg-
mentation / saliency estimation tasks we solve: (i) mean Intersection over Union,
and (ii) maximal F-measure. Both these metrics are structured i.e. they are de-
Þned globally for an image or a dataset and cannot be decomposed over pixels or
patches in the image. As such these metrics are non-di! erentiable, and cannot be
directly optimized during training via standard back-propagation. While several
recent works propose strategies to directly optimize sctructured losses during train-
ing [Yue 2007,Dokania 2014,Ahmed 2015,Berman 2017] by exploiting the structure
in the loss, in this thesis we have focussed instead on exploiting structure in the
output by modeling interdependencies between output variables. We have used the
standard softmax cross-entropy loss during training. In the future, we would like
to use structured losses to train our methods.





Bibliography

[Adi 2017] Yossi Adi, Joseph Keshet, Emily Cibelli and Matthew Goldrick. Se-
quence segmentation using joint RNN and structured prediction models. In
Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International
Conference on, pages 2422Ð2426. IEEE, 2017. (Cited on page71.)

[Ahmed 2015] Faruk Ahmed, Dany Tarlow and Dhruv Batra. Optimizing expected
intersection-over-union with candidate-constrained crfs. In Proceedings of
the IEEE International Conference on Computer Vision, pages 1850Ð1858,
2015. (Cited on page97.)

[Arnab 2016] Anurag Arnab, Sadeep Jayasumana, Shuai Zheng and Philip HS Torr.
Higher order conditional random Þelds in deep neural networks. In European
Conference on Computer Vision, pages 524Ð540. Springer, 2016. (Cited on
pages13 and 24.)

[Badrinarayanan 2015] V. Badrinarayanan, A. Kendall and R. Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image segmentation. In
ArXiV CoRR, abs/1511.00561, 2015. (Cited on pages78 and 83.)

[Barron 2016] Jonathan T Barron and Ben Poole. The fast bilateral solver. In
ECCV, 2016. (Cited on pages14, 19, 20, 26 and 32.)

[Bengio 2013] Yoshua Bengio, Aaron Courville and Pascal Vincent.Representation
Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 8, pages 1798Ð1828, August 2013. (Cited on
page4.)

[Berman 2017] Maxim Berman and Matthew B. Blaschko. Optimization of the
Jaccard index for image segmentation with the Lov‡sz hinge. CoRR,
vol. abs/1705.08790, 2017. (Cited on page97.)

[Bertasius 2016] Gedas Bertasius, Lorenzo Torresani, Stella X. Yu and Jianbo Shi.
Convolutional Random Walk Networks for Semantic Image Segmentation.
CoRR, vol. abs/1605.07681, 2016. (Cited on page96.)

[Boyd 2004] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004. (Cited on page15.)

[Bratieres 2015] SŽbastien Bratieres, Novi Quadrianto and Zoubin Ghahramani.
GPstruct: Bayesian structured prediction using Gaussian processes. IEEE
transactions on pattern analysis and machine intelligence, vol. 37, no. 7,
pages 1514Ð1520, 2015. (Cited on pages20, 26 and 71.)

[Breiman 2001] Leo Breiman. Random forests. Machine learning, vol. 45, no. 1,
pages 5Ð32, 2001. (Cited on page4.)



100 Bibliography

[Brostow 2017] G. J. Brostow, J. Shotton, J. Fauqueur and R. Cipolla. Segmen-
tation and recognition using structure from motion point clouds. In ECCV,
2017. (Cited on page78.)

[Caelles 2017]S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-TaixŽ, D. Cremers
and L. Van Gool. One-Shot Video Object Segmentation. In Computer Vision
and Pattern Recognition (CVPR), 2017. (Cited on pages71 and 82.)

[Campbell 2013] Neill D. F. Campbell, Kartic Subr and Jan Kautz. Fully-
Connected CRFs with Non-Parametric Pairwise Potentials. In CVPR, 2013.
(Cited on page 22.)

[ChatÞeld 2011] Ken ChatÞeld, Victor Lempitsky, Andrea Voedaldi and Andrew
Zisserman.The devil is in the details: an evaluation of recent feature encod-
ing methods. In BMVC, 2011. (Cited on page 4.)

[ChatÞeld 2014] Ken ChatÞeld, K. Simonyan, A. Vedaldi and A. Zisserman.Return
of the Devil in the Details: Delving Deep into Convolutional Nets. In British
Machine Vision Conference, 2014. (Cited on page4.)

[Chen 2014a]Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin
Murphy and Alan L Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062,
2014. (Cited on pages7, 8, 11, 12, 14, 19, 20, 21, 26, 29, 31, 40, 41, 42, 43,
44, 52, 62 and 83.)

[Chen 2014b] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun and A. Yuille.
Detect what you can: Detecting and representing objects using holistic models
and body parts. In CVPR, 2014. (Cited on pages63 and 64.)

[Chen 2015a]L.-C. Chen, A. G. Schwing, A. L. Yuille and R. Urtasun. Learning
Deep Structured Models. In ICML, 2015. (Cited on pages 14, 20 and 25.)

[Chen 2015b] Liang-Chieh Chen, George Papandreou, Kevin Murphy and Alan L
Yuille. Weakly- and Semi-Supervised Learning of a Deep Convolutional Net-
work for Semantic Image Segmentation. ICCV, 2015. (Cited on pages8, 14,
20, 26, 43 and 44.)

[Chen 2016a]Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin
Murphy and Alan L Yuille. DeepLab: Semantic Image Segmentation with
Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.
arXiv:1606.00915, 2016. (Cited on pages45, 52, 61, 62, 63, 64 and 79.)

[Chen 2016b] Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu and Alan L. Yuille.
Attention to Scale: Scale-aware Semantic Image Segmentation. CVPR, 2016.
(Cited on pages40, 63 and 64.)



Bibliography 101

[Chen 2017] Liang-Chieh Chen, George Papandreou, Florian Schro! and Hartwig
Adam. Rethinking Atrous Convolution for Semantic Image Segmentation.
CoRR, vol. abs/1706.05587, 2017. (Cited on page63.)

[Cooper 1990]Gregory F Cooper. The computational complexity of probabilistic
inference using Bayesian belief networks. ArtiÞcial intelligence, vol. 42, no. 2-
3, pages 393Ð405, 1990. (Cited on page14.)

[Cordts 2016] M. Cordts, M. Omran, S. Ramos, T. Scharwachter, M. Enzweiler,
R. Benenson, U. Franke, S. Roth and B. Schiele.The Cityscapes dataset for
semantic urban scene understanding. CVPR, 2016. (Cited on page82.)

[Cortes 1995] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine learning, vol. 20, no. 3, pages 273Ð297, 1995. (Cited on page4.)

[Dalal 2005] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pages 886Ð893.
IEEE, 2005. (Cited on page4.)

[Deng 2009] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR09, 2009. (Cited on
pages4 and 8.)

[Desmaison 2016]Alban Desmaison, Rudy Bunel, Pushmeet Kohli, Philip HS Torr
and M Pawan Kumar. E" cient continuous relaxations for dense CRF. In
European Conference on Computer Vision, pages 818Ð833. Springer, 2016.
(Cited on page 22.)

[Dokania 2014] P. K. Dokania, A. Behl, C. V. Jawahar and P. K. Kumar. Learning
to Rank using High-Order Information. ECCV, 2014. (Cited on page97.)

[Donahue 2015]Je! rey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Mar-
cus Rohrbach, Subhashini Venugopalan, Kate Saenko and Trevor Darrell.
Long-term recurrent convolutional networks for visual recognition and de-
scription. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2625Ð2634, 2015. (Cited on page71.)

[Fackler 2005] Paul L. Fackler. Notes on Matrix Calculus. 2005. (Cited on pages35,
56 and 91.)

[Farabet 2012] Clement Farabet, Camille Couprie, Laurent Najman and Yann Le-
cun. Scene parsing with Multiscale Feature Learning, Purity Trees, and
Optimal Covers. In ICML, 2012. (Cited on page 6.)

[Farabet 2013] Clement Farabet, Camille Couprie, Laurent Najman and Yann Le-
Cun. Learning Hierarchical Features for Scene Labeling. PAMI, 2013. (Cited
on page6.)



102 Bibliography

[Fathi 2017] Alireza Fathi, Zbigniew Wojna, Vivek Rathod, Peng Wang, Hyun Oh
Song, Sergio Guadarrama and Kevin P. Murphy.Semantic Instance Segmen-
tation via Deep Metric Learning. CoRR, vol. abs/1703.10277, 2017. (Cited
on page50.)

[Fu 2017] Jun Fu, Jing Liu, Yuhang Wang and Hanqing Lu. Stacked Deconvo-
lutional Network for Semantic Segmentation. CoRR, vol. abs/1708.04943,
2017. (Cited on page8.)

[Gadde 2017]Raghudeep Gadde, Varun Jampani and Peter V. Gehler.Semantic
Video CNNs through Representation Warping. In ICCV, 2017. (Cited on
page71.)

[Ganin 2014] Y. Ganin and V. Lempitsky. N4-Þelds: Neural network nearest neigh-
bor Þelds for image transforms. In ACCV, 2014. (Cited on page 6.)

[Girshick 2014] B. Hariharan P. Arbel‡ez R. Girshick and J. Malik. Simultaneous
detection and segmentation.In ECCV, 2014. (Cited on page6.)

[Golub 1996] Gene H. Golub, Van Loan and Charles F. Matrix Computations.
vol. 3, no. 1-2, page 510, January 1996. (Cited on pages38 and 39.)

[Goodfellow 2014] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville and Yoshua Bengio.
Generative adversarial nets. In Advances in neural information processing
systems, pages 2672Ð2680, 2014. (Cited on page96.)

[Grady 2006] Leo Grady. Random walks for image segmentation. In PAMI, 2006.
(Cited on page 39.)

[Gupta 2014] S. Gupta, R. Girshick, P. Arbelaez and J. Malik. Learning rich fea-
tures from RGB-D images for object detection and segmentation. In ECCV,
2014. (Cited on page6.)

[Hahnloser 2000]Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald,
Rodney J Douglas and H Sebastian Seung.Digital selection and analogue
ampliÞcation coexist in a cortex-inspired silicon circuit. Nature, vol. 405,
no. 6789, page 947, 2000. (Cited on pages5 and 6.)

[Hariharan 2015] Bharath Hariharan, Pablo Arbel‡ez, Ross Girshick and Jitendra
Malik. Hypercolumns for Object Segmentation and Fine-grained Localization.
In CVPR, 2015. (Cited on pages6, 42 and 61.)

[Harley 2015] Adam Harley, Konstantinos Derpanis and Iasonas Kokkinos. Deep
networks for saliency detection via local estimation and global search.In
CVPR, 2015. (Cited on page50.)



Bibliography 103

[Harley 2017] Adam W. Harley, Konstantinos G. Derpanis and Iasonas Kokkinos.
Learning Dense Convolutional Embeddings for Semantic Segmentation. In
ICCV, 2017. (Cited on page50.)

[He 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun.Deep Residual
Learning for Image Recognition. In CVPR, 2016. (Cited on pages4, 7, 9
and 45.)

[He 2017] Kaiming He, Georgia Gkioxari, Piotr Doll‡r and Ross Girshick. Mask
R-CNN. ICCV, 2017. (Cited on page80.)

[Huang 2017] Gao Huang, Zhuang Liu, Kilian Q Weinberger and Laurens van der
Maaten. Densely connected convolutional networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
(Cited on page 8.)

[Ilg 2017] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy and T. Brox.
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jul 2017. (Cited on page71.)

[Io! e 2015] Sergey Io! e and Christian Szegedy.Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
conference on machine learning, pages 448Ð456, 2015. (Cited on page42.)

[Jain 2017] Suyog Jain, Bo Xiong and Kristen Grauman. FusionSeg: Learning to
combine motion and appearance for fully automatic segmention of generic
objects in videos. arXiv preprint arXiv:1701.05384, 2017. (Cited on page71.)

[Jampani 2016] Varun Jampani, Martin Kiefel and Peter V. Gehler. Learning
Sparse High Dimensional Filters: Image Filtering, Dense CRFs and Bi-
lateral Neural Networks. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pages 4452Ð4461, 2016. (Cited on pages19, 20, 23, 26 and 30.)

[Jampani 2017] Varun Jampani, Raghudeep Gadde and Peter V. Gehler. Video
Propagation Networks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. (Cited on page71.)

[Jancsary 2012]Jeremy Jancsary, Sebastian Nowozin, Toby Sharp and Carsten
Rother. Regression Tree Fields - An E" cient, Non-parametric Approach
to Image Labeling Problems. In CVPR, 2012. (Cited on pages4, 16, 18, 29,
31 and 34.)

[JŽgou 2017]Simon JŽgou, Michal Drozdzal, David Vazquez, Adriana Romero and
Yoshua Bengio. The one hundred layers tiramisu: Fully convolutional
densenets for semantic segmentation. In Computer Vision and Pattern



104 Bibliography

Recognition Workshops (CVPRW), 2017 IEEE Conference on, pages 1175Ð
1183. IEEE, 2017. (Cited on pages78 and 83.)

[Jia 2014] Yangqing Jia, Evan Shelhamer, Je! Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama and Trevor Darrell. Ca! e:
Convolutional Architecture for Fast Feature Embedding. arXiv preprint
arXiv:1408.5093, 2014. (Cited on page58.)

[Jin 2016] Xiaojie Jin, Xin Li, Huaxin Xiao, Xiaohui Shen, Zhe Lin, Jimei Yang,
Yunpeng Chen, Jian Dong, Luoqi Liu, Zequn Jie, Jiashi Feng and Shuicheng
Yan. Video Scene Parsing with Predictive Feature Learning. CoRR,
vol. abs/1612.00119, 2016. (Cited on page71.)

[Karpathy 2014] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Le-
ung, Rahul Sukthankar and Li Fei-Fei. Large-scale video classiÞcation with
convolutional neural networks. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 1725Ð1732, 2014. (Cited
on page71.)

[Kendall 2015] A. Kendall, V. Badrinarayanan, and R. Cipolla. Bayesian segnet:
Model uncertainty in deep convolutional encoder-decoder architectures for
scene understanding. In ArXiV CoRR, abs/1511.02680, 2015. (Cited on
page83.)

[Khoreva 2017] Anna Khoreva, Rodrigo Benenson, Eddy Ilg, Thomas Brox and
Bernt Schiele. Lucid Data Dreaming for Object Tracking. arXiv preprint
arXiv:1703.09554, 2017. (Cited on page71.)

[Kokkinos 2016] Iasonas Kokkinos.Pushing the Boundaries of Boundary Detection
using Deep Learning. In ICLR, 2016. (Cited on pages62 and 63.)

[Kokkinos 2017] Iasonas Kokkinos. UberNet: A Universal CNN for the joint treat-
ment of Low-, Mid-, and High- Level Vision Problems. In CVPR, 2017.
(Cited on pages64 and 65.)

[Koller 2007] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles
and Techniques. In MIT Press, 2007. (Cited on page13.)

[Kolmogorov 2006] Vladimir Kolmogorov. Convergent tree-reweighted message
passing for energy minimization. IEEE transactions on pattern analysis
and machine intelligence, vol. 28, no. 10, pages 1568Ð1583, 2006. (Cited on
page25.)

[Kolmogorov 2007] Vladimir Kolmogorov and Carsten Rother. Minimizing nonsub-
modular functions with graph cuts-a review. IEEE transactions on pattern
analysis and machine intelligence, vol. 29, no. 7, 2007. (Cited on page25.)



Bibliography 105

[KrŠhenbŸhl 2011]Philipp KrŠhenbŸhl and Vladlen Koltun. E" cient Inference
in Fully Connected CRFs with Gaussian Edge Potentials. In NIPS, 2011.
(Cited on pages13, 14, 20, 21, 22, 23, 43, 44 and 76.)

[Krizhevsky 2012] Alex Krizhevsky, Ilya Sutskever and Geo! rey E. Hinton. Im-
ageNet ClassiÞcation with Deep Convolutional Neural Networks. In NIPS,
2012. (Cited on pages4 and 7.)

[Kundu 2016] Abhijit Kundu, Vibhav Vineet and Vladlen Koltun. Feature space
optimization for semantic video segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3168Ð3175,
2016. (Cited on pages19, 20, 26, 70, 71, 78 and 83.)

[La! erty 2001] John La! erty, Andrew McCallum and Fernando CN Pereira. Con-
ditional random Þelds: Probabilistic models for segmenting and labeling se-
quence data. 2001. (Cited on page12.)

[Laina 2016] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico
Tombari and Nassir Navab. Deeper depth prediction with fully convolutional
residual networks. In 3D Vision, pages 239Ð248. IEEE, 2016. (Cited on
page8.)

[Lecun 1998] Yann Lecun, Leon Bottou, Yoshua Bengio and Patrick Ha! ner.
Gradient-based learning applied to document recognition. In Proceedings
of the IEEE, 1998. (Cited on pages5 and 6.)

[Len 2014] Len. Microsoft COCO: Common objects in context. In ECCV, 2014.
(Cited on pages4 and 42.)

[Li 2010] Fuxin Li, Catalin Ionescu and Cristian Sminchisescu. Random Fourier
approximations for skewed multiplicative histogram kernels. In Joint Pattern
Recognition Symposium, pages 262Ð271. Springer, 2010. (Cited on page95.)

[Li 2014] Y. Li, X. Hou, C. Koch, J. M. Rehg and A. L. Yuille. The secrets of
salient object segmentation.In CVPR, 2014. (Cited on pages64 and 65.)

[Li 2015] G. Li and Y. Yu. Visual saliency based on multiscale deep features. In
CVPR, 2015. (Cited on pages64 and 65.)

[Li 2016] G. Li and Y. Yu. Deep contrast learning for salient object detection. In
CVPR, 2016. (Cited on pages64 and 65.)

[Li 2017] Xiaoxiao Li, Yuankai Qi, Zhe Wang, Kai Chen, Ziwei Liu, Jianping Shi,
Ping Luo, Xiaoou Tang and Chen Change Loy.Video Object Segmentation
with Re-identiÞcation. arXiv preprint arXiv:1708.00197, 2017. (Cited on
page71.)



106 Bibliography

[Liang 2016a] Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin and Shuicheng
Yan. Semantic object parsing with graph lstm. In European Conference
on Computer Vision, pages 125Ð143. Springer, 2016. (Cited on pages63
and 64.)

[Liang 2016b] Xiaodan Liang, Xiaohui Shen, Donglai Xiang, Jiashi Feng, Liang
Lin and Shuicheng Yan. Semantic Object Parsing With Local-Global Long
Short-Term Memory. In CVPR, 2016. (Cited on pages63 and 64.)

[Lin 2016] Guosheng Lin, Chunhua Shen, Ian D. Reid and Anton van den Hengel.
E" cient piecewise training of deep structured models for semantic segmen-
tation. CVPR, 2016. (Cited on pages19, 20, 24, 26, 31, 62 and 63.)

[Liu 2015a] F. Liu, C. Shen, and G. Lin. Deep Convolutional Neural Fields for
Depth Estimation from a Single Image. In CVPR, 2015. (Cited on pages19,
20, 26, 32 and 33.)

[Liu 2015b] Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen-Change Loy and Xiaoou Tang.
Semantic image segmentation via deep parsing network. In CVPR, pages
1377Ð1385, 2015. (Cited on pages13, 20, 24, 26, 31, 62 and 63.)

[Liu 2016] Fayao Liu, Chunhua Shen, Guosheng Lin and Ian Reid.Learning depth
from single monocular images using deep convolutional neural Þelds. PAMI,
vol. 38, no. 10, pages 2024Ð2039, 2016. (Cited on page6.)

[Long 2015] Jonathan Long, Evan Shelhamer and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In CVPR, pages 3431Ð3440,
2015. (Cited on pages6, 7, 62 and 83.)

[Lowe 2004] David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, vol. 60, no. 2, pages 91Ð110,
2004. (Cited on page4.)

[Matan 1992] Ofer Matan, Christopher JC Burges, Yann LeCun and John S
Denker. Multi-digit recognition using a space displacement neural network.
In Advances in neural information processing systems, pages 488Ð495, 1992.
(Cited on page 6.)

[Mostajabi 2015] M. Mostajabi, P. Yadollahpour and G. Shakhnarovich. Feedfor-
ward semantic segmentation with zoom-out features. In CVPR, 2015. (Cited
on page6.)

[Newell 2016] Alejandro Newell and Jia Deng. Associative Embedding: End-to-End
Learning for Joint Detection and Grouping. CoRR, vol. abs/1611.05424,
2016. (Cited on page50.)

[Nilsson 2016] David Nilsson and Cristian Sminchisescu.Semantic Video Segmen-
tation by Gated Recurrent Flow Propagation. CoRR, vol. abs/1612.08871,
2016. (Cited on page71.)



Bibliography 107

[Noh 2015] H. Noh, S. Hong, and B. Han. Learning deconvolution network for
semantic segmentation. In arXiv preprint arXiv:1505.04366, 2015. (Cited
on page83.)

[Nowozin 2011] Sebastian Nowozin, Christoph H Lampertet al. Structured learn-
ing and prediction in computer vision. Foundations and TrendsR2 in Com-
puter Graphics and Vision, vol. 6, no. 3Ð4, pages 185Ð365, 2011. (Cited on
page10.)

[Papandreou 2010]G. Papandreou and A. Yuille. Gaussian Sampling by Local Per-
turbations. In Proc. Int. Conf. on Neural Information Processing Systems
(NIPS), pages 1858Ð1866, Vancouver, B.C., Canada, December 2010. (Cited
on page96.)

[Papandreou 2011]G. Papandreou and A. Yuille. Perturb-and-MAP Random
Fields: Using Discrete Optimization to Learn and Sample from Energy Mod-
els. In Proc. IEEE Int. Conf. on Computer Vision (ICCV), pages 193Ð200,
Barcelona, Spain, November 2011. (Cited on page96.)

[Perazzi 2016]F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross
and A. Sorkine-Hornung. A Benchmark Dataset and Evaluation Methodology
for Video Object Segmentation. In Computer Vision and Pattern Recogni-
tion, 2016. (Cited on page78.)

[Perazzi 2017]F. Perazzi, A. Khoreva, R. Benenson, B. Schiele and A.Sorkine-
Hornung. Learning Video Object Segmentation from Static Images. In Com-
puter Vision and Pattern Recognition, 2017. (Cited on pages71 and 82.)

[Perronnin 2010] Florent Perronnin, Jorge S‡nchez and Thomas Mensink.Improv-
ing the Þsher kernel for large-scale image classiÞcation. In European confer-
ence on computer vision, pages 143Ð156. Springer, 2010. (Cited on page4.)

[Pinheiro 2014] P. H. Pinheiro and R. Collobert. Recurrent convolutional neural
networks for scene labeling. In ICML, 2014. (Cited on page 6.)

[Pont-Tuset 2017] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
bel‡ez, Alexander Sorkine-Hornung and Luc Van Gool.The 2017 DAVIS
Challenge on Video Object Segmentation. arXiv:1704.00675, 2017. (Cited
on page78.)

[Press 1992]William H. Press, Saul A. Teukolsky, William T. Vetterling and
Brian P. Flannery. Numerical recipes in c, 2nd edition. Cambridge Uni-
versity Press, 1992. (Cited on pages38 and 39.)

[Roth 1996] Dan Roth. On the hardness of approximate reasoning. ArtiÞcial Intel-
ligence, vol. 82, no. 1-2, pages 273Ð302, 1996. (Cited on page14.)



108 Bibliography

[Rue 2005] H. Rue and L. Held. Gaussian Markov random Þelds: Theory and ap-
plications, volume 104 ofMonographs on Statistics and Applied Probability.
Chapman & Hall, London, 2005. (Cited on pages14 and 39.)

[Schmidhuber 2015]J. Schmidhuber. Deep Learning in Neural Networks: An
Overview. Neural Networks, vol. 61, pages 85Ð117, 2015. (Cited on page4.)

[Schwing 2015]Alexander G Schwing and Raquel Urtasun. Fully connected deep
structured networks. arXiv preprint arXiv:1503.02351, 2015. (Cited on
page23.)

[Sermanet 2013]Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala and Yann
LeCun. Pedestrian detection with unsupervised multi-stage feature learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3626Ð3633, 2013. (Cited on page6.)

[Shelhamer 2016]Evan Shelhamer, Kate Rakelly, Judy Ho! man and Trevor Dar-
rell. Clockwork Convnets for Video Semantic Segmentation. CoRR,
vol. abs/1608.03609, 2016. (Cited on page71.)

[Shewchuk 1994]Jonathan Richard Shewchuk. An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain. In https://www.cs.cmu.
edu/~quake-papers/painless-conjugate-gradient.pdf , 1994. (Cited
on pages34, 52 and 74.)

[Shotton 2009] Jamie Shotton, John Winn, Carsten Rother and Antonio Crimin-
isi. Textonboost for image understanding: Multi-class object recognition and
segmentation by jointly modeling texture, layout, and context. International
Journal of Computer Vision, vol. 81, no. 1, pages 2Ð23, 2009. (Cited on
page4.)

[Simonyan 2015]Karen Simonyan and Andrew Zisserman.Very deep convolutional
networks for large-scale image recognition. ICLR, 2015. (Cited on pages4,
7 and 44.)

[Sutton 2012a] Charles Sutton and Andrew McCallum. Piecewise training for undi-
rected models. arXiv preprint arXiv:1207.1409, 2012. (Cited on page24.)

[Sutton 2012b] Charles Sutton, Andrew McCallumet al. An introduction to condi-
tional random Þelds. Foundations and TrendsR2 in Machine Learning, vol. 4,
no. 4, pages 267Ð373, 2012. (Cited on pages10 and 14.)

[Tappen 2007] Marshall F. Tappen, Ce Liu, Edward H. Adelson and William T.
Freeman. Learning Gaussian Conditional Random Fields for Low-Level Vi-
sion. In CVPR, 2007. (Cited on pages14, 29 and 31.)

[Tappen 2008] Marshall F Tappen, Kegan GG Samuel, Craig V Dean and David M
Lyle. The logistic random Þeld - A convenient graphical model for learning



Bibliography 109

parameters for MRF-based labeling. In Computer Vision and Pattern Recog-
nition, 2008. CVPR 2008. IEEE Conference on, pages 1Ð8. IEEE, 2008.
(Cited on page 16.)

[Taskar 2004] Ben Taskar, Vassil Chatalbashev and Daphne Koller. Learning as-
sociative Markov networks. In Proceedings of the twenty-Þrst international
conference on Machine learning, page 102. ACM, 2004. (Cited on page16.)

[Vedaldi 2010] A. Vedaldi and A. Zisserman. E" cient Additive Kernels via Explicit
Feature Maps. In Proceedings of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2010. (Cited on page 95.)

[Vemulapalli 2016a] Raviteja Vemulapalli, Oncel Tuzel and Ming-Yu Liu. Deep
Gaussian Conditional Random Field Network: A Model-based Deep Network
for Discriminative Denoising . In CVPR, 2016. (Cited on page31.)

[Vemulapalli 2016b] Raviteja Vemulapalli, Oncel Tuzel, Ming-Yu Liu and Rama
Chellapa. Gaussian Conditional Random Field Network for Semantic Seg-
mentation. In CVPR, June 2016. (Cited on pages19, 20, 24, 26, 29, 31
and 40.)

[Vineet 2013] Vibhav Vineet, Jonathan Warrell, Paul Sturgess and Philip HS Torr.
Improved Initialization and Gaussian Mixture Pairwise Terms for Dense
Random Fields with Mean-Þeld Inference.2013. (Cited on page22.)

[Visin 2016] F. Visin, M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio,
M. Matteucci and A. Courville. Reseg: A recurrent neural network-based
model for semantic segmentation. In CVPR workshop, 2016. (Cited on
page83.)

[Voigtlaender 2017] Paul Voigtlaender and Bastian Leibe. Online Adaptation of
Convolutional Neural Networks for Video Object Segmentation. In BMVC,
2017. (Cited on pages71, 78 and 82.)

[Vu 2015] Tuan-Hung Vu, Anton Osokin and Ivan Laptev. Context-aware CNNs for
person head detection. In ICCV, pages 2893Ð2901, 2015. (Cited on pages20,
24, 25, 26 and 31.)

[Wainwright 2008] Martin J. Wainwright and Michael I. Jordan. Graphical Mod-
els, Exponential Families, and Variational Inference. Found. Trends Mach.
Learn., vol. 1, no. 1-2, pages 136Ð138, January 2008. (Cited on page39.)

[Wang 2015a] K. Wang, L. Lin, J. Lu, C. Li and K. Shi. PISA: pixelwise image
saliency by aggregating complementary appearance contrast measures with
edge-preserving coherence.2015. (Cited on page65.)

[Wang 2015b] L. Wang, H. Lu, X. Ruan and M. Yang. Deep networks for saliency
detection via local estimation and global search.In CVPR, 2015. (Cited on
pages64 and 65.)



110 Bibliography

[Wang 2016] Shenlong Wang, Sanja Fidler and Raquel Urtasun. Proximal deep
structured models. In Advances in Neural Information Processing Systems,
pages 865Ð873, 2016. (Cited on page23.)

[Wang 2017] Xiaolong Wang, Ross B. Girshick, Abhinav Gupta and Kaiming He.
Non-local Neural Networks. CoRR, vol. abs/1711.07971, 2017. (Cited on
page96.)

[Wolf 1994] Ralph Wolf and John C Platt. Postal address block location using a
convolutional locator network. In Advances in Neural Information Processing
Systems, pages 745Ð752, 1994. (Cited on page6.)

[Xia 2016] F. Xia, P. Wang, L. Chen and A. L. Yuille. Zoom better to see clearer:
Human part segmentation with auto zoom net.In ECCV, 2016. (Cited on
pages63 and 64.)

[Xie 2015] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In
ICCV, pages 1395Ð1403, 2015. (Cited on page6.)

[Yu 2016] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions. ICLR, 2016. (Cited on pages7 and 83.)

[Yu 2017] Zhiding Yu, Chen Feng, Ming-Yu Liu and Srikumar Ramalingam.
CASENet: Deep Category-Aware Semantic Edge Detection. arXiv preprint
arXiv:1705.09759, 2017. (Cited on page8.)

[Yue 2007] Yisong Yue, Thomas Finley, Filip Radlinski and Thorsten Joachims.
A support vector method for optimizing average precision. In Proceedings
of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 271Ð278. ACM, 2007. (Cited on
page97.)

[Zagoruyko 2016] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Net-
works. In BMVC, 2016. (Cited on page 8.)

[Zhao 2015] R. Zhao, W. Ouyang, H. Li and X. Wang. Saliency detection by multi-
context deep learning.In CVPR, 2015. (Cited on pages64 and 65.)

[Zhao 2016] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang and
Jiaya Jia. Pyramid Scene Parsing Network. CoRR, vol. abs/1612.01105,
2016. (Cited on pages8, 63, 71 and 82.)

[Zheng 2015]Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vib-
hav Vineet, Zhizhong Su, Dalong Du, Chang Huang and Philip Torr. Condi-
tional Random Fields as Recurrent Neural Networks. In ICCV, 2015. (Cited
on pages13, 19, 20, 23, 24, 26, 29, 31, 40, 44, 62, 63 and 76.)



Bibliography 111

[Zhu 2016] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan and Yichen Wei. Deep
Feature Flow for Video Recognition. CoRR, vol. abs/1611.07715, 2016.
(Cited on page 71.)



UniversitŽ Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de lÕOrme aux Merisiers RD 128 / 91190 Saint-Aubin, France


