R. Bibliographiques-?-références-bibliographiques, ?. Q. Chen, G. A. Thouas, M. Kulkarni, A. Mazare et al., Europe 2016 State of Health in the EU Cycle Titanium nanostructures for biomedical applications On the mechanisms of biocompatibility Surface modification of titanium, titanium alloys, and related materials for biomedical applications Titanium an Titanium Alloys, Metals for Biomedical Devices, 1st Editio Handbook of Materials for Medical Devices Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes, Mater. Sci. Eng. R Reports, pp.1-57, 2003.

Y. Oshida, Bioscience and Bioengineering of Titanium Materials, 2010.

A. Arsiwala, P. Desai, and V. Patravale, Recent advances in micro/nanoscale biomedical implants, Journal of Controlled Release, vol.189
DOI : 10.1016/j.jconrel.2014.06.021

Y. Bai, I. S. Park, H. H. Park, M. H. Lee, T. S. Bae et al., The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes, Surface and Interface Analysis, vol.5, issue.181, pp.998-1005, 2011.
DOI : 10.1016/j.actbio.2009.05.008

K. Das, S. Bose, and A. Bandyopadhyay, TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction, J. Biomed. Mater. Res. -Part A, vol.90, pp.225-237, 2009.

G. A. Crawford, N. Chawla, K. Das, S. Bose, and A. Bandyopadhyay, Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate???, Acta Biomaterialia, vol.3, issue.3, pp.359-367, 2007.
DOI : 10.1016/j.actbio.2006.08.004

T. Kokubo, H. M. Kim, and M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, vol.24, issue.13, pp.24-2161, 2003.
DOI : 10.1016/S0142-9612(03)00044-9

X. Zhou, N. T. Nguyen, S. Özkan, and P. Schmuki, Anodic TiO2 nanotube layers: Why does self-organized growth occur???A mini review, Electrochemistry Communications, vol.46, 2014.
DOI : 10.1016/j.elecom.2014.06.021

URL : http://arxiv.org/pdf/1610.03643

K. Lee, A. Mazare, and P. Schmuki, One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes, Chemical Reviews, vol.114, issue.19, pp.9385-9454, 2014.
DOI : 10.1021/cr500061m

URL : http://arxiv.org/pdf/1610.05197

S. J. Ku, G. C. Jo, C. H. Bak, S. M. Kim, Y. R. Shin et al., Highly ordered freestanding titanium oxide nanotube arrays using Sicontaining block copolymer lithography and atomic layer deposition, Nanotechnology, vol.248, pp.24-2013
DOI : 10.1088/0957-4484/24/8/085301

S. Minagar, C. C. Berndt, J. Wang, E. Ivanova, and C. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomaterialia, vol.8, issue.8, pp.2875-88, 2012.
DOI : 10.1016/j.actbio.2012.04.005

J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn et al., TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Current Opinion in Solid State and Materials Science, vol.11, issue.1-2, pp.3-18, 2007.
DOI : 10.1016/j.cossms.2007.08.004

M. Assefpour-dezfuly, C. Vlachos, and E. H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces, Journal of Materials Science, vol.15, issue.11, pp.3626-3639, 1984.
DOI : 10.1007/BF02396935

V. Zwilling, E. Darque-ceretti, A. Boutry-forveille, D. David, M. Y. Perrin et al., Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surface and Interface Analysis, vol.41, issue.7, pp.629-637, 1999.
DOI : 10.1016/0013-4686(95)00504-8

URL : https://hal.archives-ouvertes.fr/hal-00542118

D. Gong, C. Grimes, O. K. Varghese, W. Hu, R. S. Singh et al., Titanium oxide nanotube arrays prepared by anodic oxidation, Journal of Materials Research, vol.68, issue.12, pp.3331-3334, 2001.
DOI : 10.1063/1.121004

K. Huo, B. Gao, J. Fu, L. Zhao, and P. K. Chu, nanotube arrays, RSC Adv., vol.44, issue.33
DOI : 10.1021/es1003507

P. Roy, S. Berger, and P. Schmuki, TiO2 Nanotubes: Synthesis and Applications, Angewandte Chemie International Edition, vol.517, issue.23, pp.2904-2943, 2011.
DOI : 10.1016/j.tsf.2009.02.042

J. M. Macak, H. Hildebrand, U. Marten-jahns, and P. Schmuki, Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes, Journal of Electroanalytical Chemistry, vol.621, issue.2, 2008.
DOI : 10.1016/j.jelechem.2008.01.005

P. Roy, S. P. Albu, and P. Schmuki, TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops, Electrochemistry Communications, vol.12, issue.7, 2010.
DOI : 10.1016/j.elecom.2010.04.029

Q. Gui, D. Yu, D. Li, Y. Song, X. Zhu et al., Efficient suppression of nanograss during porous anodic TiO 2 nanotubes growth, Applied Surface Science, vol.314, pp.505-509, 2014.
DOI : 10.1016/j.apsusc.2014.07.046

S. P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. Leclere et al., Formation of double-walled TiO2 nanotubes and robust anatase membranes, Adv. Mater, vol.20, pp.4135-4139, 2008.
DOI : 10.1002/adma.200801189

R. Beranek, H. Hildebrand, and P. Schmuki, Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes, Electrochem. Solid-State Lett, vol.6, 2003.

J. M. Macák, H. Tsuchiya, and P. Schmuki, Nanotubes by Anodization of Titanium, Angewandte Chemie International Edition, vol.151, issue.14, pp.2100-2102, 2005.
DOI : 10.1149/1.1753581

J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Smooth Anodic TiO2 Nanotubes, Angewandte Chemie International Edition, vol.23, issue.45, pp.7463-7468, 2005.
DOI : 10.1002/anie.200502781

J. M. Macak, S. P. Albu, and P. Schmuki, Towards ideal hexagonal self-ordering of TiO2 nanotubes, Phys. Status Solidi -Rapid Res, Lett, vol.183, pp.181-183, 2007.
DOI : 10.1002/pssr.200701148

A. Ghicov, H. Tsuchiya, J. M. Macak, and P. Schmuki, Titanium oxide nanotubes prepared in phosphate electrolytes, Electrochemistry Communications, vol.7, issue.5, 2005.
DOI : 10.1016/j.elecom.2005.03.007

Q. Cai, M. Paulose, O. K. Varghese, and C. Grimes, The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation, Journal of Materials Research, vol.26, issue.01, pp.230-236, 2005.
DOI : 10.1111/j.1151-2916.1996.tb08512.x

J. M. Macak, K. Sirotna, and P. Schmuki, Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes, Electrochimica Acta, vol.50, issue.18, 2005.
DOI : 10.1016/j.electacta.2005.01.014

M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese et al., Nanotube Arrays to 134 ??m in Length, The Journal of Physical Chemistry B, vol.110, issue.33, pp.16179-16184, 2006.
DOI : 10.1021/jp064020k

S. P. Albu and P. Schmuki, TiO2 nanotubes grown in different organic electrolytes: Two-size self-organization, single vs. double-walled tubes, and giant diameters, Phys. Status Solidi -Rapid Res, Lett, vol.4, pp.215-217, 2010.
DOI : 10.1002/pssr.201004244

I. Paramasivam, J. M. Macak, T. Selvam, and P. Schmuki, Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4), Electrochimica Acta, vol.54, issue.2, 2008.
DOI : 10.1016/j.electacta.2008.07.031

J. M. Macak and P. Schmuki, Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes, Electrochimica Acta, vol.52, issue.3, 2006.
DOI : 10.1016/j.electacta.2006.07.021

S. P. Albu, A. Ghicov, J. M. Macak, and P. Schmuki, 250 ??m long anodic TiO2 nanotubes with hexagonal self-ordering, physica status solidi (RRL) ??? Rapid Research Letters, vol.17, issue.2, pp.65-67, 2007.
DOI : 10.1002/pssr.200600069

H. Masuda and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science, vol.268, issue.5216, 1995.
DOI : 10.1126/science.268.5216.1466

Y. Shin and S. Lee, Nanotubes, Nano Letters, vol.8, issue.10, pp.3171-3173, 2008.
DOI : 10.1021/nl801422w

URL : https://hal.archives-ouvertes.fr/hal-01554392

G. D. Sulka, J. Kapusta-ko?odziej, A. Brzózka, and M. Jasku?a, Anodic growth of TiO2 nanopore arrays at various temperatures, Electrochimica Acta, vol.104, pp.526-535, 2013.
DOI : 10.1016/j.electacta.2012.12.121

T. Kondo, S. Nagao, T. Yanagishita, N. T. Nguyen, K. Lee et al., Ideally ordered porous TiO2 prepared by anodization of pretextured Ti by nanoimprinting process, Electrochemistry Communications, vol.50, pp.73-76, 2015.
DOI : 10.1016/j.elecom.2014.11.013

S. So, K. Lee, and P. Schmuki, Nanotubes in Lactic Acid Electrolytes, Journal of the American Chemical Society, vol.134, issue.28, pp.11316-11318, 2012.
DOI : 10.1021/ja301892g

S. So, K. Lee, and P. Schmuki, Nanotubes, Chemistry - A European Journal, vol.164, issue.9, pp.2966-70, 2013.
DOI : 10.1016/j.jphotochem.2004.02.023

K. Lee, J. Kim, H. Kim, Y. Lee, Y. Tak et al., Effect of Electrolyte Conductivity on the Formation of a Nanotubular TiO2 Photoanode for a Dye-Sensitized Solar Cell, Journal of the Korean Physical Society, vol.54, issue.3, pp.54-1027, 2009.
DOI : 10.3938/jkps.54.1027

R. Narayanan, T. Kwon, and K. Kim, TiO2 nanotubes from stirred glycerol/NH4F electrolyte: Roughness, wetting behavior and adhesion for implant applications, Materials Chemistry and Physics, vol.117, issue.2-3, 2009.
DOI : 10.1016/j.matchemphys.2009.06.023

R. Sánchez-tovar, K. Lee, J. García-antón, and P. Schmuki, Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions, Electrochemistry Communications, vol.26, 2013.
DOI : 10.1016/j.elecom.2012.09.041

R. Sánchez-tovar, R. M. Fernández-domene, D. M. García-garcía, and J. , Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization, Journal of Power Sources, vol.286, pp.224-231, 2015.
DOI : 10.1016/j.jpowsour.2015.03.174

K. F. Albertin, A. Tavares, and I. Pereyra, Optimized Ti polishing techniques for enhanced order in TiO2 NT arrays, Applied Surface Science, vol.284, 2013.
DOI : 10.1016/j.apsusc.2013.08.005

S. Leonardi, A. L. Bassi, V. Russo, F. Di-fonzo, O. Paschos et al., Nanotubes: Interdependence of Substrate Grain Orientation and Growth Characteristics, The Journal of Physical Chemistry C, vol.116, issue.1, pp.384-39210, 1021.
DOI : 10.1021/jp209418n

Z. Su, L. Zhang, F. Jiang, W. Zhou, Z. Deng et al., Formation of anodic TiO2 nanotube arrays with bimodal pore size distribution, Electrochemistry Communications, vol.31, p.31, 2013.
DOI : 10.1016/j.elecom.2013.03.007

L. Mohan, C. Anandan, and N. Rajendran, Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized TiO2 nanotube arrays on Ti???6Al???7Nb for biomedical applications, Materials Science and Engineering: C, vol.50, pp.394-401, 2015.
DOI : 10.1016/j.msec.2015.02.013

M. St?pie?, P. Handzlik, and K. Fitzner, Electrochemical synthesis of oxide nanotubes on Ti6Al7Nb alloy and their interaction with the simulated body fluid, Journal of Solid State Electrochemistry, vol.35, issue.10, pp.1-11, 2016.
DOI : 10.1016/0013-4686(90)80010-L

S. Tamilselvi, V. Raman, and N. Rajendran, Corrosion behaviour of Ti???6Al???7Nb and Ti???6Al???4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy, Electrochimica Acta, vol.52, issue.3, 2006.
DOI : 10.1016/j.electacta.2006.06.018

J. M. Hernández-lópez, A. Conde, J. J. De-damborenea, and M. A. , Electrochemical response of TiO 2 anodic layers fabricated on Ti6Al4V alloy with nanoporous, dual and nanotubular morphology, Corrosion Science, vol.112, pp.194-203, 2016.
DOI : 10.1016/j.corsci.2016.07.021

V. S. Saji, H. C. Choe, and W. A. Brantley, Nanotubular oxide layer formation on Ti???13Nb???13Zr alloy as a function of applied potential, Journal of Materials Science, vol.43, issue.15, pp.3975-3982, 2009.
DOI : 10.1007/s10853-009-3542-4

H. Choe, J. Kim, and Y. Jeong, Nanotube growth analysis in the interface between oxide film and titanium alloy substrate using STEM and FE-SEM, Surface and Interface Analysis, vol.9, issue.11-12, pp.1473-1478, 2012.
DOI : 10.1016/j.msea.2003.12.011

S. Minagar, Y. Li, C. C. Berndt, and C. Wen, Cell response and bioactivity of titania???zirconia???zirconium titanate nanotubes with different nanoscale topographies fabricated in a non-aqueous electrolyte, Biomaterials Science, vol.17, issue.4, pp.636-644, 2015.
DOI : 10.1021/nl070678d

D. Khudhair, A. Bhatti, Y. Li, H. A. Hamedani, H. Garmestani et al., Anodization parameters influencing the morphology and electrical properties of TiO 2 nanotubes for living cell interfacing and investigations, Materials Science and Engineering: C, vol.59, pp.1125-1142, 2016.
DOI : 10.1016/j.msec.2015.10.042

V. S. Saji, H. C. Choe, and W. A. Brantley, An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti???35Nb???5Ta???7Zr alloy for biomedical applications, Acta Biomaterialia, vol.5, issue.6, pp.2303-2310, 2009.
DOI : 10.1016/j.actbio.2009.02.017

G. Cognard, Electrocatalyseurs à base d'oxydes métalliques poreux pour pile à combustible à membrane échangeuse de protons, 2017.

Y. C. Nah, I. Paramasivam, and P. Schmuki, Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications, ChemPhysChem, vol.6, issue.10, pp.2698-2713, 2010.
DOI : 10.1002/jbm.b.31201

P. Pu, Etude électrochimique et photoélectrochimique des modes de conduction dans les films de TiO2 nanostructurés, Thèse pour obtenir le grade de docteur de l, 2012.

M. Kulkarni, A. Mazare, P. Schmuki, and A. Iglic, Influence Of Anodization Parameters On Morphology Of TiO2 Nanostructured Surfaces, Advanced Materials Letters, vol.7, issue.1, 2016.
DOI : 10.5185/amlett.2016.6156

O. K. Varghese, D. Gong, M. Paulose, C. Grimes, and E. C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, Journal of Materials Research, vol.16, issue.01, pp.156-165, 2003.
DOI : 10.1126/science.279.5350.548

Y. Yang, X. Wang, and L. Li, Crystallization and Phase Transition of Titanium Oxide Nanotube Arrays, Journal of the American Ceramic Society, vol.84, issue.2, pp.632-635, 2008.
DOI : 10.1002/anie.200500410

A. Roguska, M. Pisarek, A. Belcarz, L. Marcon, M. Holdynski et al., Janik-Czachor, Improvement of the bio-functional properties of TiO2 nanotubes, Appl. Surf. Sci, pp.388-775, 2016.

A. Tighineanu, S. P. Albu, and P. Schmuki, Conductivity of anodic TiO2 nanotubes: Influence of annealing conditions, Phys. Status Solidi -Rapid Res, Lett, vol.8, pp.158-162, 2014.
DOI : 10.1002/pssr.201308221

A. Tighineanu, T. Ruff, S. Albu, R. Hahn, and P. Schmuki, Conductivity of TiO2 nanotubes: Influence of annealing time and temperature, Chemical Physics Letters, vol.494, issue.4-6, 2010.
DOI : 10.1016/j.cplett.2010.06.022

S. A. Ali-yahia, L. Hamadou, N. Kadri, E. M. Benbrahim, and . Sutter, Effect of Anodizing Potential on the Formation and EIS Characteristics of TiO2 Nanotube Arrays, Journal of The Electrochemical Society, vol.15, issue.4, 2012.
DOI : 10.1149/1.2069096

URL : https://hal.archives-ouvertes.fr/hal-00785614

A. G. Kontos, A. I. Kontos, D. S. Tsoukleris, V. Likodimos, J. Kunze et al., Photo-induced effects on self-organized TiO 2 nanotube arrays : the influence of surface morphology, 45603 (n.d.). doi:10, pp.957-4484045603, 1088.
DOI : 10.1088/0957-4484/20/4/045603

B. Munirathinam and L. Neelakantan, Titania nanotubes from weak organic acid electrolyte: Fabrication, characterization and oxide film properties, Materials Science and Engineering: C, vol.49, 2015.
DOI : 10.1016/j.msec.2015.01.045

H. Tsuchiya, J. M. Macak, L. Müller, J. Kunze, F. Müller et al., Hydroxyapatite growth on anodic TiO2 nanotubes, Journal of Biomedical Materials Research Part A, vol.84, issue.3, pp.77-534, 2006.
DOI : 10.1007/978-3-642-56486-4

F. Hilario, V. Roche, R. P. Nogueira, and A. M. Junior, Influence of morphology and crystalline structure of TiO 2 nanotubes on their electrochemical properties and apatite-forming ability, Electrochimica Acta, vol.245, pp.337-349, 2017.
DOI : 10.1016/j.electacta.2017.05.160

T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, vol.27, issue.15, pp.2907-2922, 2006.
DOI : 10.1016/j.biomaterials.2006.01.017

A. Iso, (E), Implants for surgery -In vitro evaluation for apatite-forming ability of implant materials, p.2014, 2014.

C. Gabrielli and H. Takenouti, Méthodes électrochimiques appliquées à la corrosion -Techniques stationnaires, Tech, p.33, 2010.

V. Bertagna, M. Chemla, and L. 'indispensable-en-electrochimie, , 2001.

C. Boissy, Transport de matière au sein du film passif -Développement d'une méthodologie sélective corrélant les Point Defect Model et les modèles descriptifs, Thèse pour obtenir le grade de Docteur de l'Institut National des Sciences Appliquées de Lyon, 2014.

H. H. Girault, Electrochimie physique et analytique, Deuxième édition, Presses Polytechniques et Universitaires Romandes, 2007.

F. Miomandre, S. Sadki, P. Audebert, and R. Méallet-renault, Electrochimie -Des concepts aux applications, 2005.

J. Cunat, Aciers inoxydables-Propriétés. Résistance à la corrosion, Tech. l'Ingénieur, Trait, Matériaux Métalliques, 2000.

J. Crolet, Métaux et alliages passivables Règles de choix et emplois types, 2008.

C. Gabrielli, Méthodes électrochimiques -Mesures d'impédances, Tech. l'Ingénieur, p.2210, 1994.

A. Sadkowski and J. P. Diard, On the Fletcher's two-terminal equivalent network of a three-terminal electrochemical cell, Electrochimica Acta, vol.55, issue.6, 1907.
DOI : 10.1016/j.electacta.2009.11.008

L. Hamadou, L. Aïnouche, A. Kadri, S. A. Yahia, and N. Benbrahim, Electrochemical impedance spectroscopy study of thermally grown oxides exhibiting constant phase element behaviour, Electrochimica Acta, vol.113, 2013.
DOI : 10.1016/j.electacta.2013.09.054

A. Mazare, G. Totea, C. Burnei, P. Schmuki, I. Demetrescu et al., Corrosion, antibacterial activity and haemocompatibility of TiO 2 nanotubes as a function of their annealing temperature, Corrosion Science, vol.103, pp.215-222, 2016.
DOI : 10.1016/j.corsci.2015.11.021

B. Munirathinam and L. Neelakantan, Role of crystallinity on the nanomechanical and electrochemical properties of TiO2 nanotubes, Journal of Electroanalytical Chemistry, vol.770, pp.73-83, 2016.
DOI : 10.1016/j.jelechem.2016.03.032

A. Carnot, I. Frateur, P. Marcus, and B. Tribollet, Corrosion mechanisms of steel concrete moulds in the presence of a demoulding agent, Journal of Applied Electrochemistry, vol.32, issue.8, pp.865-869, 2002.
DOI : 10.1023/A:1020510506504

S. Chakri, P. David, I. Frateur, A. Galtayries, P. Marcus et al.,

S. Vivier and . Zanna, Effet de la composition chimique de la solution interstitielle de bétons jeunes sur la passivation d'un acier doux, 2015016.

M. Talha, C. K. Behera, and O. P. Sinha, Potentiodynamic polarization study of Type 316L and 316LVM stainless steels for surgical implants in simulated body fluids, J. Chem. Pharm. Res, vol.4, pp.203-208, 2012.

V. S. Saji and H. C. Choe, Electrochemical corrosion behaviour of nanotubular Ti???13Nb???13Zr alloy in Ringer???s solution, Corrosion Science, vol.51, issue.8, 2009.
DOI : 10.1016/j.corsci.2009.04.013

J. Candy, P. Fouilloux, M. Keddam, and H. Takenouti, The characterization of porous electrodes by impedance measurements, Electrochimica Acta, vol.26, issue.8, pp.1029-1034, 1981.
DOI : 10.1016/0013-4686(81)85072-4

J. Kunze, L. Müller, J. M. Macak, P. Greil, P. Schmuki et al., Timedependent growth of biomimetic apatite on anodic TiO2 nanotubes, Electrochim. Acta, pp.53-6995, 2008.
DOI : 10.1016/j.electacta.2008.01.027

A. Pittrof, S. Bauer, and P. Schmuki, Micropatterned TiO2 nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid, Acta Biomaterialia, vol.7, issue.1, pp.424-455, 2011.
DOI : 10.1016/j.actbio.2010.09.028

H. C. Hsu, S. C. Wu, S. K. Hsu, Y. C. Chang, and W. F. Ho, Fabrication of nanotube arrays on commercially pure titanium and their apatite-forming ability in a simulated body fluid, Materials Characterization, vol.100, pp.170-177, 2015.
DOI : 10.1016/j.matchar.2014.12.023

M. Uchida, H. Kim, T. Kokubo, S. Fujibayashi, and T. Nakamura, Structural dependence of apatite formation on titania gels in a simulated body fluid, Journal of Biomedical Materials Research, vol.73, issue.1, pp.164-170, 2003.
DOI : 10.1006/jcis.1997.5329

T. Dey, P. Roy, B. Fabry, and P. Schmuki, Anodic mesoporous TiO2 layer on Ti for enhanced formation of biomimetic hydroxyapatite, Acta Biomaterialia, vol.7, issue.4, 2011.
DOI : 10.1016/j.actbio.2010.11.011

S. Oh and S. Jin, Titanium oxide nanotubes with controlled morphology for enhanced bone growth, Materials Science and Engineering: C, vol.26, issue.8, 2006.
DOI : 10.1016/j.msec.2005.08.014

S. Oh, R. R. Finõnes, C. Daraio, L. Chen, and S. Jin, Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes, Biomaterials, vol.26, issue.24, pp.4938-4981, 2005.
DOI : 10.1016/j.biomaterials.2005.01.048

Y. Huang, Z. Xu, X. Zhang, X. Chang, X. Zhang et al., Nanotube-formed Ti substrates coated with silicate/silver co-doped hydroxyapatite as prospective materials for bone implants, Journal of Alloys and Compounds, vol.697, pp.182-199, 2017.
DOI : 10.1016/j.jallcom.2016.12.139

S. Ahmadi, I. Mohammadi, and S. K. Sadrnezhaad, Hydroxyapatite based and anodic Titania nanotube biocomposite coatings: Fabrication, characterization and electrochemical behavior, Surface and Coatings Technology, vol.287, 2016.
DOI : 10.1016/j.surfcoat.2015.12.062

A. Kar, K. S. Raja, and M. Misra, Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications, Surface and Coatings Technology, vol.201, issue.6, 2006.
DOI : 10.1016/j.surfcoat.2006.09.008

H. A. Lowenstam and S. Weiner, On Biomineralization, 1989.

, JCPDS): Card no. 73-0293, Joint Committee on Powder Diffraction Standards

H. Takadama, H. M. Kim, T. Kokubo, and T. Nakamura, TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid, 3<441::AID-JBM1187>3.0.CO, pp.441-448, 2001.
DOI : 10.1002/(SICI)1097-4636(199911)47:2<213::AID-JBM11>3.0.CO;2-C

S. H. Oh, R. R. Finõnes, C. Daraio, L. H. Chen, and S. Jin, Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes, Biomaterials, vol.26, issue.24, pp.26-4938, 2005.
DOI : 10.1016/j.biomaterials.2005.01.048

Z. Zhang, H. Liu, Q. Shi, X. Liu, and L. Wan, Calcium ion modification of TiO 2 nanotube arrays to enhance apatite formation, Mater. Technol, pp.31-791, 2016.

A. Kodama, S. Bauer, A. Komatsu, H. Asoh, S. Ono et al., Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite, Acta Biomaterialia, vol.5, issue.6, 2009.
DOI : 10.1016/j.actbio.2009.02.032

M. Mirzaee, M. Vaezi, and Y. Palizdar, Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid, Materials Science and Engineering: C, vol.69, 2016.
DOI : 10.1016/j.msec.2016.07.057

Y. Huang, X. Zhang, H. Zhang, H. Qiao, X. Zhang et al., Fabrication of silver- and strontium-doped hydroxyapatite/TiO 2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity, Ceramics International, vol.43, issue.1, pp.992-1007, 2017.
DOI : 10.1016/j.ceramint.2016.10.031

Y. Zhang, W. Gao, Z. Liu, Y. Jiang, K. Duan et al., Mineralization and osteoblast behavior of multilayered films on TiO2 nanotube surfaces assembled by the layer-by-layer technique, Chinese Chemical Letters, vol.27, issue.7, pp.1091-1096, 2016.
DOI : 10.1016/j.cclet.2016.03.035

X. Zhu, K. H. Kim, and Y. Jeong, Anodic oxide films containing Ca and P of titanium biomaterial, Biomaterials, vol.22, issue.16, pp.2199-220610, 2001.
DOI : 10.1016/S0142-9612(00)00394-X

G. F. Santana-melo, B. V. Rodrigues, E. Da-silva, R. Ricci, F. R. Marciano et al., Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone, Colloids and Surfaces B: Biointerfaces, vol.155, pp.544-552, 2017.
DOI : 10.1016/j.colsurfb.2017.04.053

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, Journal of Immunological Methods, vol.65, issue.1-2, pp.55-6310, 1983.
DOI : 10.1016/0022-1759(83)90303-4

A. Sabokbar, P. J. Millett, B. Myer, and N. Rushton, A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro, Bone and Mineral, vol.27, issue.1, pp.57-67, 1994.
DOI : 10.1016/S0169-6009(08)80187-0

C. A. Gregory, W. G. Gunn, A. Peister, and D. J. Prockop, An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction, Analytical Biochemistry, vol.329, issue.1, pp.77-84, 2004.
DOI : 10.1016/j.ab.2004.02.002

A. Oryan, S. Alidadi, A. Moshiri, and N. Maffulli, Bone regenerative medicine: classic options, novel strategies, and future directions, Journal of Orthopaedic Surgery and Research, vol.9, issue.1, pp.1-27, 2014.
DOI : 10.3109/03008207.2010.531332

URL : https://josr-online.biomedcentral.com/track/pdf/10.1186/1749-799X-9-18?site=josr-online.biomedcentral.com

I. Roman, R. Doina, M. Soare, C. Fratila, E. Krasicka-cydzik et al., Titanium dioxide nanotube films, Materials Science and Engineering: C, vol.37, pp.374-382, 2014.
DOI : 10.1016/j.msec.2014.01.036

S. Minagar, J. Wang, C. C. Berndt, E. P. Ivanova, and C. Wen, Cell response of anodized nanotubes on titanium and titanium alloys, Journal of Biomedical Materials Research Part A, vol.17, issue.4
DOI : 10.1007/s10934-009-9307-2

J. Zuo, X. Huang, X. Zhong, B. Zhu, Q. Sun et al., A comparative study of the influence of three pure titanium plates with different micro- and nanotopographic surfaces on preosteoblast behaviors, Journal of Biomedical Materials Research Part A, vol.93, pp.3278-3284, 2013.
DOI : 10.1002/(SICI)1097-4636(199801)39:1<77::AID-JBM10>3.0.CO;2-L

Y. Wang, C. Wen, P. Hodgson, and Y. Li, nanotubes with different topographies, Journal of Biomedical Materials Research Part A, vol.131, issue.3, pp.743-751, 2014.
DOI : 10.1021/ja810130h

J. He, W. Zhou, X. Zhou, X. Zhong, X. Zhang et al., The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation, Journal of Materials Science: Materials in Medicine, vol.81, issue.11, pp.3465-3472, 2008.
DOI : 10.1002/jbm.b.30638

S. An, R. Narayanan, T. Matsumoto, H. Lee, T. Kwon et al., Nanotubes and Bioactivity, Journal of Nanoscience and Nanotechnology, vol.11, issue.6, pp.4910-4918, 2011.
DOI : 10.1166/jnn.2011.4114

F. Hilario, V. Roche, A. M. Jorge, and R. P. Nogueira, Application of the transmission line model for porous electrodes to analyse the impedance response of TiO 2 nanotubes in physiological environment, Electrochimica Acta, vol.253, pp.599-608, 2017.
DOI : 10.1016/j.electacta.2017.09.045

M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, 2008.

M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin et al., Dielectric Properties of Materials Showing Constant-Phase-Element (CPE) Impedance Response, Dielectric Properties of Materials Showing Constant-Phase-Element (CPE) Impedance Response, pp.215-225, 2013.
DOI : 10.1149/2.033306jes

URL : https://hal.archives-ouvertes.fr/hal-00804229

B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur et al., Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films, Journal of The Electrochemical Society, vol.85, issue.12, pp.452-457, 2010.
DOI : 10.1149/1.2168377

B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur et al., Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films, Journal of The Electrochemical Society, vol.157, issue.12, pp.458-463, 2010.
DOI : 10.4028/www.scientific.net/MSF.289-292.813

B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur et al., Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochimica Acta, vol.55, issue.21, pp.6218-6227, 2010.
DOI : 10.1016/j.electacta.2009.10.065

G. J. Brug, A. L. Van-den-eeden, M. Sluyters-rehbach, and J. H. Sluyters, The analysis of electrode impedances complicated by the presence of a constant phase element, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.176, issue.1-2, pp.176-275, 1984.
DOI : 10.1016/S0022-0728(84)80324-1

C. H. Hsu and F. Mansfeld, into a Capacitance, CORROSION, vol.57, issue.9, pp.747-748, 2001.
DOI : 10.5006/1.3280607

A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol.44, issue.5358, p.238, 1972.
DOI : 10.1038/238037a0

A. Mazare, M. Dilea, D. Ionita, and I. Demetrescu, Electrochemical behavior in simulated body fluid of TiO2 nanotubes on TiAlNb alloy elaborated in various anodizing electrolyte, Surface and Interface Analysis, vol.8, issue.3, pp.186-192, 2014.
DOI : 10.1166/jnn.2008.N07

C. Liu, Y. Wang, M. Wang, W. Huang, and P. K. Chu, Electrochemical stability of TiO2 nanotubes with different diameters in artificial saliva, Surface and Coatings Technology, vol.206, issue.1, pp.63-67, 2011.
DOI : 10.1016/j.surfcoat.2011.06.038

W. Yu, J. Qiu, and F. Zhang, In vitro corrosion study of different TiO2 nanotube layers on titanium in solution with serum proteins, Colloids and Surfaces B: Biointerfaces, vol.84, issue.2, 2011.
DOI : 10.1016/j.colsurfb.2011.01.033

Q. Muñoz, P. Chen, and . Schmuki, Interfacial properties of self-organized TiO2 nanotubes studied by impedance spectroscopy, Journal of Solid State Electrochemistry, vol.100, issue.8, pp.1077-1084, 2006.
DOI : 10.1007/s10008-006-0241-9

L. Aïnouche, L. Hamadou, N. Kadri, D. Benbrahim, and . Bradai, Interfacial Barrier Layer Properties of Three Generations of TiO2 Nanotube Arrays, Electrochimica Acta, vol.133, 2014.
DOI : 10.1016/j.electacta.2014.04.086

P. Córdoba-torres, N. T. Oliveira, C. Bolfarini, V. Roche, and R. P. Nogueira, Electrochemical impedance analysis of TiO2 nanotube porous layers based on an alternative representation of impedance data, Journal of Electroanalytical Chemistry, vol.737, pp.54-64, 2015.
DOI : 10.1016/j.jelechem.2014.06.034

J. M. Hernández-lópez, A. Conde, J. De-damborenea, and M. , Correlation of the nanostructure of the anodic layers fabricated on Ti13Nb13Zr with the electrochemical impedance response, Corrosion Science, vol.94, pp.61-69, 2015.
DOI : 10.1016/j.corsci.2015.01.041

B. Munirathinam, H. Pydimukkala, and N. Ramaswamy, Influence of crystallite size and surface morphology on electrochemical properties of annealed TiO 2 nanotubes, Applied Surface Science, vol.355, pp.1245-1253, 2015.
DOI : 10.1016/j.apsusc.2015.08.017

A. Atyaoui, H. Cachet, E. M. Sutter, and L. Bousselmi, Effect of the anodization voltage on the dimensions and photoactivity of titania nanotubes arrays, Surface and Interface Analysis, vol.256, issue.9, pp.1751-1759, 2013.
DOI : 10.1016/j.apsusc.2010.02.037

URL : https://hal.archives-ouvertes.fr/hal-00863010

A. Chatzitakis, N. Papaderakis, J. Karanasios, E. Georgieva, G. Pavlidou et al., Comparison of the photoelectrochemical performance of particulate and nanotube TiO2 photoanodes, Catal. Today, vol.280, 2017.

L. Giorgi, E. Salernitano, T. D. Makris, R. Giorgi, E. Leoni et al., Titania nanotubes self-assembled by electrochemical anodization: Semiconducting and electrochemical properties, Thin Solid Films, pp.28-34, 2016.
DOI : 10.1016/j.tsf.2015.11.078

R. and D. Levie, On porous electrodes in electrolyte solutions, Electrochimica Acta, vol.8, issue.10, pp.751-780, 1963.
DOI : 10.1016/0013-4686(63)80042-0

J. Bisquert, Influence of the boundaries in the impedance of porous film electrodes, Physical Chemistry Chemical Physics, vol.2, issue.18, pp.4185-4192, 2000.
DOI : 10.1039/b001708f

J. Bisquert, G. Garcia-belmonte, F. Fabregat-santiago, N. S. Ferriols, P. Bogdanoff et al., Nanoporous in Aqueous Solution, The Journal of Physical Chemistry B, vol.104, issue.10, pp.2287-2298, 2000.
DOI : 10.1021/jp993148h

S. Gimenez, H. K. Dunn, P. Rodenas, F. Fabregat-santiago, S. G. Miralles et al., Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy, Journal of Electroanalytical Chemistry, vol.668, pp.668-119, 2012.
DOI : 10.1016/j.jelechem.2011.12.019

URL : http://repositori.uji.es/xmlui/bitstream/10234/64954/1/Registro_acceso_restringido.pdf

F. Fabregat-santiago, J. Bisquert, A. Zaban, and P. Salvador, /Electrolyte System by Impedance Methods, The Journal of Physical Chemistry B, vol.106, issue.2, pp.334-339, 2002.
DOI : 10.1021/jp0119429

H. Yao, G. Yang, C. Li, and C. Li, Influence of TiO2 film/substrate contact on photovoltaic performance and improved efficiency in dye-sensitized solar cells, J. Nanosci. Nanotechnol, pp.16-7395, 2016.

M. Mahbuburrahman, N. Chandradebnath, and J. J. Lee, Electrochemical Impedance Spectroscopic Analysis of Sensitization-Based Solar Cells, Israel Journal of Chemistry, vol.116, issue.9, pp.990-1001, 2015.
DOI : 10.1021/jp210002c

L. Tsui and G. Zangari, Water content in the anodization electrolyte affects the electrochemical and electronic transport properties of TiO2 nanotubes: a study by electrochemical impedance spectroscopy, Electrochimica Acta, vol.121, 2014.
DOI : 10.1016/j.electacta.2013.12.163

R. and D. Levie, On porous electrodes in electrolyte solutions???IV, Electrochimica Acta, vol.9, issue.9, pp.1231-1245, 1964.
DOI : 10.1016/0013-4686(64)85015-5

R. and D. Levie, Electrochemical response of porous and rough electrodes, Adv. Electrochem. Electrochem. Eng, vol.6, pp.329-397, 1967.

R. and D. Levie, On the impedance of electrodes with rough interfaces, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.261, issue.1, pp.1-9, 1989.
DOI : 10.1016/0022-0728(89)87121-9

R. and D. Levie, Fractals and rough electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.281, issue.1-2, pp.281-282, 1990.
DOI : 10.1016/0022-0728(90)87025-F

A. Lasia, Modeling of Impedance of Porous Electrodes, Asp. Electrochem. Number, vol.43, pp.67-137, 2009.
DOI : 10.1007/978-0-387-49582-8_3

O. E. Barcia, E. D. Elia, I. Frateur, O. R. Mattos, N. Pébère et al., Application of the impedance model of de Levie for the characterization of porous electrodes, Electrochimica Acta, vol.47, issue.13-14, pp.47-2109, 2002.
DOI : 10.1016/S0013-4686(02)00081-6

URL : https://hal.archives-ouvertes.fr/hal-00476969

S. Cattarin, M. Musiani, B. Tribollet, and V. Vivier, Impedance Response of Resistive ITO Electrodes, Journal of The Electrochemical Society, vol.158, issue.7, 2011.
DOI : 10.1016/j.electacta.2009.10.065

URL : https://hal.archives-ouvertes.fr/hal-00811801

O. E. Barcia, S. Cattarin, E. D. Elia, I. Frateur, O. R. Mattos et al., Further to the paper " Application of the impedance model of de Levie for the characterization of porous electrodes, Electrochim . Acta, vol.47, pp.51-2096, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00080434

J. Bisquert, G. Garcia-belmonte, F. Fabregat-santiago, and A. Compte, Anomalous transport effects in the impedance of porous film electrodes, Electrochemistry Communications, vol.1, issue.9, pp.429-435, 1999.
DOI : 10.1016/S1388-2481(99)00084-3

G. Garcia-belmonte, J. Bisquert, E. C. Pereira, and F. Fabregat-santiago, Switching behaviour in lightly doped polymeric porous film electrodes. Improving distributed impedance models for mixed conduction conditions, Journal of Electroanalytical Chemistry, vol.508, issue.1-2, pp.48-58, 2001.
DOI : 10.1016/S0022-0728(01)00504-6

J. Bisquert, Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer, The Journal of Physical Chemistry B, vol.106, issue.2, pp.325-333, 2002.
DOI : 10.1021/jp011941g

M. E. Orazem, N. Pe?be?pe?be?-re, and B. Tribollet, Enhanced Graphical Representation of Electrochemical Impedance Data, Journal of The Electrochemical Society, vol.51, issue.4, 2006.
DOI : 10.1149/1.2054888

URL : http://jes.ecsdl.org/content/153/4/B129.full.pdf

F. Fabregat-santiago, J. Bisquert, G. Garcia-belmonte, G. Boschloo, and A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy, Solar Energy Materials and Solar Cells, vol.87, issue.1-4, pp.117-131, 2005.
DOI : 10.1016/j.solmat.2004.07.017

J. Bisquert and A. Compte, Theory of the electrochemical impedance of anomalous diffusion, Journal of Electroanalytical Chemistry, vol.499, issue.1, pp.112-120, 2001.
DOI : 10.1016/S0022-0728(00)00497-6

P. Pu, H. Cachet, and E. M. Sutter, Electrochemical impedance spectroscopy to study photo - induced effects on self-organized TiO2 nanotube arrays, Electrochimica Acta, vol.55, issue.20, pp.55-5938, 2010.
DOI : 10.1016/j.electacta.2010.05.048