.. Et-granulaire, 38 III.1. Controverse sur la transformation bainitique en lattes, III. Mécanismes de formation des bainites en lattes, p.39

E. C. Bain, American Society for Metals, 1939.

H. Okamoto and M. Oka, Lower bainite with midrib in hypereutectoid steels, Metallurgical Transactions A, vol.3, issue.7, pp.1113-1120, 1986.
DOI : 10.1007/BF02917555

S. M. Van-bohemen, M. J. Santofimia, and J. Sietsma, Experimental evidence for bainite formation below Ms in Fe???0.66C, Scripta Materialia, vol.58, issue.6, pp.488-491, 2008.
DOI : 10.1016/j.scriptamat.2007.10.045

S. Samanta, P. Biswas, S. Giri, . Shiv-brat, S. Singh et al., Formation of bainite below the M S temperature: Kinetics and crystallography, Acta Materialia, vol.105, issue.2016, pp.390-403
DOI : 10.1016/j.actamat.2015.12.027

B. M. Leister and &. J. Pont, Development of a continuous cooling transformation diagram for Eglin steel, Materials Science and Technology, vol.203, issue.12, pp.1425-1432, 2015.
DOI : 10.1016/S0364-5916(02)00037-8

H. Bhadeshia-http, Materials Science & Metallurgy Part II Course C9, Alloys, 2000.

R. F. Mehl, Hardenability of alloy steels, pp.1-54, 1939.

G. Konoval, L. Zwell, L. A. Gorman, and W. C. Leslie, X-Ray Diffraction Pattern of Carbide in Low-Carbon Iron-Silicon Alloys, Nature, vol.158, issue.4702, pp.1862-1863, 1959.
DOI : 10.1016/0001-6160(59)90133-6

S. J. Matas and R. F. Hehemann, Retained Austenite and the Tempering of Martensite, Nature, vol.193, issue.4738, pp.685-686, 1960.
DOI : 10.1038/187685a0

G. Spanos, H. S. Fang, and H. I. Aaronson, A mechanism for the formation of lower bainite, Metallurgical Transactions A, vol.31, issue.6, pp.1381-1390, 1990.
DOI : 10.1007/BF02642392

G. Krauss and S. W. Thompson, Ferritic Microstructures in Continuously Cooled Low- and Ultralow-carbon Steels., ISIJ International, vol.35, issue.8, pp.937-945, 1995.
DOI : 10.2355/isijinternational.35.937

URL : https://www.jstage.jst.go.jp/article/isijinternational1989/35/8/35_8_937/_pdf

Z. X. Qiao and Y. C. Liu, Formation mechanism of granular bainite in a 30CrNi3MoV steel, Journal of Alloys and Compounds, vol.475, issue.1-2, pp.560-564, 2009.
DOI : 10.1016/j.jallcom.2008.07.110

C. Cabus, Etude et modélisation des textures de transformations de phases dans les aciers destinés à l'emboutissage, Thèse de doctorat

M. Kelly, Crystallography of Lath Martensite in Steels, Materials Transactions, JIM, vol.33, issue.3, pp.235-242, 1992.
DOI : 10.2320/matertrans1989.33.235

URL : https://www.jstage.jst.go.jp/article/matertrans1989/33/3/33_3_235/_pdf

A. Lambert-perlade, A. F. Gourgues, and A. Pineau, Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel, Acta Materialia, vol.52, issue.8, pp.2337-2348, 2004.
DOI : 10.1016/j.actamat.2004.01.025

URL : https://hal.archives-ouvertes.fr/hal-00166070

B. P. Sandvik, The Bainite reaction in Fe-Si-C Alloys: The primary stage, Metallurgical Transactions A, vol.29, issue.2, pp.777-787, 1982.
DOI : 10.1007/BF02658309

G. Kurdjumov and G. Sachs, Über den Mechanismus der Stahlhärtung, pp.325-343, 1930.

W. Pitsch, The martensite transformation in thin foils of iron-nitrogen alloys, Philosophical Magazine, vol.197, issue.41, pp.577-584, 1959.
DOI : 10.1002/srin.195702209

G. Nolze, Crystal research and technology, pp.61-73, 2008.

S. Lubin, Etude des mécanismes de la transformation de phase bainitique dans les aciers bas carbone, 2009.

P. Blaineau, Restitution de la microtexture parente à partir de la microtexture héritée mesurée par EBSD Une application aux aciers faiblement alliés, 2010.

S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Materialia, vol.51, issue.6, pp.1789-1799, 2003.
DOI : 10.1016/S1359-6454(02)00577-3

A. F. Gourgues, H. M. Flower, and T. C. Lindley, Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures, Materials Science and Technology, vol.12, issue.1, pp.26-40, 2000.
DOI : 10.1016/0001-6160(67)90207-6

H. Nakashima, D. Terada, F. Yoshida, H. Hayakawa, and H. Abe, EBSP analysis of Modified 9Cr-1Mo Martensitic steel, ISIJ International, vol.41, issue.Suppl, pp.97-100, 2001.
DOI : 10.2355/isijinternational.41.Suppl_S97

URL : https://www.jstage.jst.go.jp/article/isijinternational1989/41/Suppl/41_Suppl_S97/_pdf

S. H. Lee, J. Kang, H. N. Han, K. H. Oh, H. Lee et al., Variant Selection in Mechanically-induced Martensitic Transformation of Metastable Austenitic Steel, ISIJ International, vol.45, issue.8, pp.1217-1219, 2005.
DOI : 10.2355/isijinternational.45.1217

M. Humbert, B. Gardiola, C. Esling, G. Flemming, and K. E. Hensger, Modelling of the variant selection mechanism in the phase transformation of HSLA steel produced by compact strip production, Acta Materialia, vol.50, issue.7, pp.1741-1747, 2002.
DOI : 10.1016/S1359-6454(02)00023-X

URL : https://hal.archives-ouvertes.fr/hal-00111065

B. Gardiola, C. Esling, M. Humbert, and K. E. Hensger, EBSD Study of the?? to?? Phase Transormation in an CSP???HSLA Steel, Advanced Engineering Materials, vol.5, issue.8, pp.583-587, 2003.
DOI : 10.1002/adem.200300389

S. Godet, J. C. Glez, Y. He, J. J. Jonas, and P. J. Jacques, Grain-scale characterization of transformation textures, Journal of Applied Crystallography, vol.37, issue.3, pp.417-425, 2004.
DOI : 10.1107/S0021889804007320

S. Zaefferer, J. Ohlert, and W. Bleck, A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel, Acta Materialia, vol.52, issue.9, pp.2765-2778, 2004.
DOI : 10.1016/j.actamat.2004.02.044

P. M. Kelly, A. Jostsons, and R. G. Blake, The orientation relationship between lath martensite and austenite in low carbon, low alloy steels, Acta Metallurgica et Materialia, vol.38, issue.6, pp.1075-1081, 1990.
DOI : 10.1016/0956-7151(90)90180-O

G. Miyamoto, N. Takayama, and T. Furuhara, Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis, Scripta Materialia, vol.60, issue.12, pp.1113-1116, 2009.
DOI : 10.1016/j.scriptamat.2009.02.053

H. J. Bunge, W. Weiss, H. Klein, L. Wcislak, U. Garbed et al., Orientation relationship of Widmannst??tten plates in an iron meteorite measured with high-energy synchrotron radiation, Journal of Applied Crystallography, vol.36, issue.1, pp.137-140, 2003.
DOI : 10.1107/S0021889802021386

B. P. Sandvik and C. M. Wayman, Characteristics of lath martensite: Part I. crystallographic and substructural features, Metallurgical Transactions A, vol.21, issue.4, pp.809-822, 1983.
DOI : 10.1007/BF02642391

A. J. Wilkinson, A new method for determining small misorientations from electron back scatter diffraction patterns, Scripta Materialia, vol.44, issue.10, pp.2379-2385, 2001.
DOI : 10.1016/S1359-6462(01)00943-5

F. J. Humphreys, Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD), Scripta Materialia, vol.51, issue.8, pp.771-776, 2004.
DOI : 10.1016/j.scriptamat.2004.05.016

G. Brückner, J. Pospiech, I. Seidl, and G. Gottstein, Orientation correlation during diffusional ?? ??? ?? phase transformation in a ferritic low carbon steel, Scripta Materialia, vol.44, issue.11, pp.2635-2640, 2001.
DOI : 10.1016/S1359-6462(01)00956-3

D. W. Suh, J. H. Kang, K. Hwan-oh, and H. C. Lee, Evaluation of the deviation angle of ferrite from the Kudjumov???Sachs relationship in a low carbon steel by EBSD, Scripta Materialia, vol.46, issue.5, pp.375-378, 2002.
DOI : 10.1016/S1359-6462(01)01254-4

G. Nolze, Crystal research and technology, pp.61-73, 2008.

M. Humbert and N. Gey, The calculation of a parent grain orientation from inherited variants for approximate (b.c.c.???h.c.p.) orientation relations, Journal of Applied Crystallography, vol.35, issue.4, pp.401-405, 2002.
DOI : 10.1107/S0021889802005824

M. Humbert, L. Germain, N. Gey, and E. Boucard, Evaluation of the orientation relations from misorientation between inherited variants: Application to ausformed martensite, Acta Materialia, vol.82, pp.137-144, 2015.
DOI : 10.1016/j.actamat.2014.09.007

URL : https://hal.archives-ouvertes.fr/hal-01514142

A. F. Gourgues, Application of electron backscatter diffraction to the study of phase transformations, International Materials Reviews, vol.55, issue.2, pp.65-128, 2007.
DOI : 10.1016/S1359-6454(02)00022-8

URL : https://hal.archives-ouvertes.fr/hal-00146341

H. Sato and S. Zaefferer, A study on the formation mechanisms of butterfly-type martensite in Fe???30% Ni alloy using EBSD-based orientation microscopy, Acta Materialia, vol.57, issue.6, pp.1931-1937, 2009.
DOI : 10.1016/j.actamat.2008.12.035

S. Nambu, N. Shibuta, M. Ojima, J. Inoue, T. Koseki et al., In situ observations and crystallographic analysis of martensitic transformation in steel, Acta Materialia, vol.61, issue.13, pp.4831-4839, 2013.
DOI : 10.1016/j.actamat.2013.04.065

T. Furuhara, H. Kawatab, S. Morito, and T. Maki, Crystallography of upper bainite in Fe???Ni???C alloys, Materials Science and Engineering: A, vol.431, issue.1-2, pp.228-236, 2006.
DOI : 10.1016/j.msea.2006.06.032

H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Materialia, vol.54, issue.5, pp.1279-1288, 2006.
DOI : 10.1016/j.actamat.2005.11.001

N. Takayama, G. Miyamoto, and T. Furuhara, Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Materialia, vol.60, issue.5, pp.2387-2396
DOI : 10.1016/j.actamat.2011.12.018

S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda, and S. Ogata, Comparison of the Dislocation Density in Martensitic Steels Evaluated by Some X-ray Diffraction Methods, ISIJ International, vol.50, issue.6, pp.875-882, 2010.
DOI : 10.2355/isijinternational.50.875

T. Berecz, P. Jenei, A. Csóré, J. Lábár, J. Gubicz et al., Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite, Materials Characterization, vol.113, pp.117-124, 2016.
DOI : 10.1016/j.matchar.2015.11.014

S. H. He, B. B. He, K. Y. Zhu, and M. X. Huang, On the correlation among dislocation density, lath thickness and yield stress of bainite, Acta Materialia, vol.135, pp.382-389, 2017.
DOI : 10.1016/j.actamat.2017.06.050

J. Bouquerel, K. Verbeken, and B. C. De-cooman, Microstructure-based model for the static mechanical behaviour of multiphase steels, Acta Materialia, vol.54, issue.6, pp.1443-1456, 2006.
DOI : 10.1016/j.actamat.2005.10.059

S. D. Catteau, Carbon and nitrogen effects on microstructure and kinetics associated with bainitic transformation in a low-alloyed steel, Journal of Alloys and Compounds, vol.658, pp.832-838, 2016.
DOI : 10.1016/j.jallcom.2015.11.007

URL : https://hal.archives-ouvertes.fr/hal-01614334

M. Hillert, The Nature of Bainite., ISIJ International, vol.35, issue.9, pp.1134-1140, 1995.
DOI : 10.2355/isijinternational.35.1134

URL : https://www.jstage.jst.go.jp/article/isijinternational1989/35/9/35_9_1134/_pdf

M. Takahashi and H. K. Bhadeshia, Model for transition from upper to lower bainite, Materials Science and Technology, vol.1, issue.7, pp.592-603, 1990.
DOI : 10.1179/030634582790427244

D. Quidort and Y. Bréchet, The role of carbon on the kinetics of bainite transformation in steels, Scripta Materialia, vol.47, issue.3, pp.151-156, 2002.
DOI : 10.1016/S1359-6462(02)00121-5

G. R. Purdy and Y. J. Brechet, A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels, Acta Metallurgica et Materialia, vol.43, issue.10, pp.3763-3774, 1995.
DOI : 10.1016/0956-7151(95)90160-4

W. W. Sun, H. S. Zurob, and C. R. Hutchinson, Coupled solute drag and transformation stasis during ferrite formation in Fe-C-Mn-Mo, Acta Materialia, vol.139, pp.62-74, 2017.
DOI : 10.1016/j.actamat.2017.08.010

P. Cizek, B. P. Wynne, C. H. Davies, B. C. Muddle, and P. D. Hodgon, Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultralow-carbon microalloyed steels, Metallurgical and Materials Transactions A, vol.35, issue.5, pp.1331-1349, 2002.
DOI : 10.2355/isijinternational.35.982

S. Okaguchi, H. Ohtani, and Y. Ohmori, Morphology of Widmanstätten and Bainitic Ferrites, Materials Transactions, JIM, vol.32, issue.8, pp.697-704, 1991.
DOI : 10.2320/matertrans1989.32.697

URL : https://www.jstage.jst.go.jp/article/matertrans1989/32/8/32_8_697/_pdf

Z. Nishiyama, Marutensaito Hentai, Oyo-hen, Martensitic Transformation, Application Part Chap, 1974.

G. Badinier, C. W. Sinclair, S. Allain, F. Danoix, and M. Gouné, The Mechanisms of Transformation and Mechanical Behavior of Ferrous Martensite, Encyclopedia, Reference Module in Materials Science and Materials Engineering, 2017.
DOI : 10.1016/b978-0-12-803581-8.02518-2

S. Oketani, S. Hitomi, and S. Nagakura, Study of Tempering of Quenched Carbon Steel by Specific Heat Measurement, Journal of the Japan Institute of Metals and Materials, vol.26, issue.8, pp.494-498, 1962.
DOI : 10.2320/jinstmet1952.26.8_494

URL : https://www.jstage.jst.go.jp/article/jinstmet1952/26/8/26_8_494/_pdf

D. Kalish and M. Cohen, Structural changes and strengthening in the strain tempering of martensite, Materials Science and Engineering, vol.6, issue.3, pp.156-166, 1970.
DOI : 10.1016/0025-5416(70)90045-5

M. E. Bush and P. M. Kelly, Strengthening mechanisms in bainitic steels, Acta Metallurgica, vol.19, issue.12, pp.1363-1371, 1971.
DOI : 10.1016/0001-6160(71)90074-5

W. Li, M. Cai, D. Wang, J. Zhang, S. Zhao et al., Studying on tempering transformation and internal friction for low carbon bainitic steel, Materials Science and Engineering: A, vol.679, issue.2017, pp.410-416
DOI : 10.1016/j.msea.2016.10.053

J. H. Pak, H. K. Bhadeshia, L. Karlsson, and E. Keehan, Coalesced bainite by isothermal transformation of reheated weld metal, Science and Technology of Welding and Joining, vol.29, issue.7, pp.593-597, 2008.
DOI : 10.1179/174328408X275982

E. Keehan, L. Karlsson, H. K. Bhadeshia, and M. Thuvander, Three-dimensional analysis of coalesced bainite using focused ion beam tomography, Materials Characterization, vol.59, issue.7, pp.877-882, 2008.
DOI : 10.1016/j.matchar.2007.07.011

J. C. Li, Possibility of Subgrain Rotation during Recrystallization, Journal of Applied Physics, vol.200, issue.10, pp.2958-2965, 1962.
DOI : 10.1016/0001-6160(56)90114-6

D. Hull and D. J. Bacon, Introduction to Dislocations, pp.137-155, 2011.
DOI : 10.1119/1.1974472

P. A. Beck and P. R. Sperry, Strain Induced Grain Boundary Migration in High Purity Aluminum, Journal of Applied Physics, vol.188, issue.2, pp.150-152, 1950.
DOI : 10.1063/1.1699614

F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2004.

P. Faivre and R. D. , Nucleation of recrystallization in compressed aluminium: studies by electron microscopy and Kikuchi diffraction, Journal of Materials Science, vol.26, issue.4, pp.897-919, 1979.
DOI : 10.1080/14786437208227370

J. W. Martin and R. D. Doherty, Stability of Microstructure in Metallic Systems, C. U. P, p.236, 1976.
DOI : 10.1017/CBO9780511623134

S. Wang, E. A. Holm, J. Suni, M. H. Alvi, P. N. Kalu et al., Modeling the recrystallized grain size in single phase materials, Acta Materialia, vol.59, issue.10, pp.3872-3882, 2011.
DOI : 10.1016/j.actamat.2011.03.011

I. M. Montaño-zuñiga, G. Sepulveda-cervantes, V. M. Lopez-hirata, D. I. Rivas-lopez, and J. L. Gonzalez-, Numerical simulation of recrystallization in BCC metals, Computational Materials Science, vol.49, issue.3, pp.512-517, 2010.
DOI : 10.1016/j.commatsci.2010.05.042

M. Winning, G. Gottstein, and L. S. Shvindlerman, On the mechanisms of grain boundary migration, Acta Materialia, vol.50, issue.2, pp.353-363, 2002.
DOI : 10.1016/S1359-6454(01)00343-3

S. Ratanaphan, D. L. Olmsted, V. V. Bulatov, E. A. Holm, A. D. Rollett et al., Grain boundary energies in body-centered cubic metals, Acta Materialia, vol.88, pp.346-354, 2015.
DOI : 10.1016/j.actamat.2015.01.069

URL : https://manuscript.elsevier.com/S1359645415000828/pdf/S1359645415000828.pdf

S. J. Plimpton, LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator. Sandia National Laboratories, 2007.

I. Chapitre, . Matériaux, I. Techniques, and .. Aciers-Étudiés, 67 I.1. Réflexion sur le choix des nuances d'acier, p.67

.. De-phase, 84 IV.1. Notion d'orientation et de désorientation, IV. Caractérisation des microtextures de transformation, p.85

.. Avec-decrypt, Organisation spatiale des variants en blocs et en paquets, p.93

M. Soliman and H. Palkowski, Development of the low temperature bainite, Archives of Civil and Mechanical Engineering, vol.16, issue.3, pp.403-412, 2016.
DOI : 10.1016/j.acme.2016.02.007

S. H. He, B. B. He, K. Y. Zhu, and M. X. Huang, On the correlation among dislocation density, lath thickness and yield stress of bainite, Acta Materialia, vol.135, pp.382-389, 2017.
DOI : 10.1016/j.actamat.2017.06.050

C. Edgar and . Bain, Functions of the alloying elements in steel, 1939.

B. Krebs, Caractérisation et prévision des structures en bandes dans les aciers Dual-Phase_ Lien avec les propriétés d, 2009.

J. C. Hell, Aciers bainitiques sans carbure : Caractérisations microstructurale multi-échelle et in situ de la transformation austénite-bainite et relations entre microstructure et comportement mécanique, 2011.

G. E. Totten and M. A. Howes, Steel Heat Treatment Handbook, 1997.

H. K. Bhadeshia, Thermodynamic analysis of isothermal transformation diagrams, Metal Science, vol.183, issue.3, p.159, 1982.
DOI : 10.1016/0001-6160(63)90157-3

K. E. Thelning, Steels and its Heat Treatment, 1984.

J. Barralis and G. Maeder, Métallurgie Tome 1 : Métallurgie Physique, Collection Scientifique ENSAM, 1982.

C. Ouchi, T. Sampei, and I. Kozasu, The Effect of Hot Rolling Condition and Chemical Composition on the Onset Temperature of ??-?? Transformation after Hot Rolling, Transactions of the Iron and Steel Institute of Japan, vol.22, issue.3, pp.214-222, 1982.
DOI : 10.2355/isijinternational1966.22.214

S. M. Van-bohemen, Bainite and martensite start temperature calculated with exponential carbon dependence, Materials Science and Technology, vol.60, issue.4, pp.487-495
DOI : 10.1007/BF02649788

H. Yang and H. K. Bhadeshia, Austenite grain size and the martensite-start temperature, Scripta Materialia, vol.60, issue.7, pp.493-495, 2009.
DOI : 10.1016/j.scriptamat.2008.11.043

M. Salib, Étude cinétique et cristallographique de la précipitation de la phase ? aux joints de grains, 2015.

E. Boucard, Étude de l'influence de l'état métallurgique de l'austénite sur la microstructure de transformation de phase dans les aciers bas carbone, 2014.

G. Cliff and G. W. Lorimer, The quantitative analysis of thin specimens, Journal of Microscopy, vol.22, issue.2, pp.203-207, 1975.
DOI : 10.1016/0001-6160(74)90138-2

C. Maurice and R. Fortunier, A 3D Hough transform for indexing EBSD and Kossel patterns, Journal of Microscopy, vol.524, issue.3, pp.520-529, 2008.
DOI : 10.1016/j.ultramic.2006.10.006

URL : https://hal.archives-ouvertes.fr/emse-00498510

M. Humbert and N. Gey, The calculation of a parent grain orientation from inherited variants for approximate (b.c.c.???h.c.p.) orientation relations, Journal of Applied Crystallography, vol.35, issue.4, pp.401-405, 2002.
DOI : 10.1107/S0021889802005824

URL : http://journals.iucr.org/j/issues/2002/04/00/ks0119/ks0119.pdf

L. Germain, N. Gey, R. Mercier, P. Blaineau, and M. Humbert, An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: Application to steels, Acta Materialia, vol.60, issue.11, pp.4551-4562, 2012.
DOI : 10.1016/j.actamat.2012.04.034

M. Humbert, L. Germain, N. Gey, and &. E. Boucard, Evaluation of the orientation relations from misorientation between inherited variants: Application to ausformed martensite, Acta Materialia, vol.82, pp.137-144, 2015.
DOI : 10.1016/j.actamat.2014.09.007

URL : https://hal.archives-ouvertes.fr/hal-01514142

S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Materialia, vol.51, issue.6, pp.1789-1799, 2003.
DOI : 10.1016/S1359-6454(02)00577-3

A. Hammersley, Model Fitting Within FIT2D, html [30] J. Rodríguez-Carvajal, Recent Developments of the Program FULLPROF, in Commission on Powder Diffraction (IUCr). Newsletter, pp.12-19, 2001.

G. Dini, R. Ueji, A. Najafizadeh, and S. M. Monir-vaghefi, Flow stress analysis of TWIP steel via the XRD measurement of dislocation density, Materials Science and Engineering: A, vol.527, issue.10-11, pp.2759-2763, 2010.
DOI : 10.1016/j.msea.2010.01.033

S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda-and, and S. Ogata, Comparison of the Dislocation Density in Martensitic Steels Evaluated by Some X-ray Diffraction Methods, ISIJ International, vol.50, issue.6, pp.875-882, 2010.
DOI : 10.2355/isijinternational.50.875

T. Ungar, G. Ribarik, G. Zilahi, R. Mulay, U. Lienert et al., Slip systems and dislocation densities in individual grains of polycrystalline aggregates of plastically deformed CoTi and CoZr alloys, Acta Materialia, vol.71, pp.264-282, 2014.
DOI : 10.1016/j.actamat.2014.03.024

H. Sato and S. Zaefferer, A study on the formation mechanisms of butterfly-type martensite in Fe???30% Ni alloy using EBSD-based orientation microscopy, Acta Materialia, vol.57, issue.6, pp.1931-1937, 2009.
DOI : 10.1016/j.actamat.2008.12.035

A. F. Gourgues, Application of electron backscatter diffraction to the study of phase transformations, International Materials Reviews, vol.55, issue.2, pp.65-128, 2007.
DOI : 10.1016/S1359-6454(02)00022-8

URL : https://hal.archives-ouvertes.fr/hal-00146341

P. W. Trimby, Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope, Ultramicroscopy, vol.120, issue.2012, pp.16-24
DOI : 10.1016/j.ultramic.2012.06.004

T. Furuhara, H. Kawata, S. Morito, and T. Maki, Crystallography of upper bainite in Fe???Ni???C alloys, Materials Science and Engineering: A, vol.431, issue.1-2, pp.228-236, 2006.
DOI : 10.1016/j.msea.2006.06.032

N. Takayama, G. Miyamoto, and T. Furuhara, Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Materialia, vol.60, issue.5, pp.2387-2396
DOI : 10.1016/j.actamat.2011.12.018

R. Ou-de, après maintien isotherme I. Vieillissement en condition de sur-transformation 134 I.1 Microstructure bainitique basse température et martensitique, Chapitre IV: Etude comparée des microstructures bainitiques et martensitiques, p.125

Y. Ohmori, T. Ohtani, and . Kunitake, Tempering of the Bainite and the Bainite/Martensite Duplex Structure in a Low-Carbon Low-Alloy Steel, Metal Science, vol.73, issue.1, p.357, 1974.
DOI : 10.1016/0001-6160(61)90244-9

W. J. Nam, Effect of Initial Microstructure on the Coarsening Behavior of Cementite Particles., ISIJ International, vol.39, issue.11, pp.1181-1187, 1999.
DOI : 10.2355/isijinternational.39.1181

S. Zaefferer, P. Romano, and &. , EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels, Journal of Microscopy, vol.118, issue.10, pp.499-508, 2008.
DOI : 10.1016/j.actamat.2004.02.044

K. Zhu, O. Bouaziz, C. Oberbillig, and M. Huang, An approach to define the effective lath size controlling yield strength of bainite, Materials Science and Engineering: A, vol.527, issue.24-25, pp.6614-6619, 2010.
DOI : 10.1016/j.msea.2010.06.061

URL : https://hal.archives-ouvertes.fr/hal-00523140

I. Bmixte and D. , Etude in situ de la granularisation des microstructures, p.170

F. G. Caballero, M. K. Miller, C. Garcia-mateo, C. Capdevila, and S. S. Babu, Redistribution of alloying elements during tempering of a nanocrystalline steel, Acta Materialia, vol.56, issue.2, pp.188-199, 2008.
DOI : 10.1016/j.actamat.2007.09.018

C. Garcia-mateo, J. A. Jimenez, H. Yen, M. K. Miller, L. Morales-rivas et al., Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality, Acta Materialia, vol.91, pp.162-173, 2015.
DOI : 10.1016/j.actamat.2015.03.018

URL : https://manuscript.elsevier.com/S1359645415001858/pdf/S1359645415001858.pdf

J. H. Jang, H. K. Bhadeshia, and D. Suh, Solubility of carbon in tetragonal ferrite in equilibrium with austenite, Scripta Materialia, vol.68, issue.3-4, pp.195-198, 2013.
DOI : 10.1016/j.scriptamat.2012.10.017

T. Ungar, G. Ribarik, G. Zilahi, R. Mulay, U. Lienert et al., Slip systems and dislocation densities in individual grains of polycrystalline aggregates of plastically deformed CoTi and CoZr alloys, Acta Materialia, vol.71, issue.2014, pp.264-282
DOI : 10.1016/j.actamat.2014.03.024

M. Winning, G. Gottstein, and L. S. Shvindlerman, On the mechanisms of grain boundary migration, Acta Materialia, vol.50, issue.2, pp.353-363, 2002.
DOI : 10.1016/S1359-6454(01)00343-3