T. Ompyr, bis(trifluorométhylsulfonyl)imidure de 1-octyl-1-méthylpyrrolidinium Liste des tableaux Tableau 1-1 : principaux composés du platine utilisés dans l'industrie [5]

B. 1. Cea, Dans l'intimité d'une pile à combustible, 2014.

P. Thierry, Pile à combustible et cogénération. Techniques de l'ingénieur Stockage de l'énergie, 2014. base documentaire : TIB638DUO(ref. article : d3360)

S. Curtin and J. G. , Fuel cell technologies market report, 2015.

A. J. Kadjo, P. Brault, and A. Caillard, Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation, Journal of Power Sources, vol.172, issue.2, pp.613-622, 2007.
DOI : 10.1016/j.jpowsour.2007.05.019

URL : https://hal.archives-ouvertes.fr/hal-00180179

M. Cavarroc, A. Ennadjaoui, and M. Mougenot, Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings, Electrochemistry Communications, vol.11, issue.4, pp.859-861, 2009.
DOI : 10.1016/j.elecom.2009.02.012

URL : https://hal.archives-ouvertes.fr/hal-00361475

A. Caillard, C. Charles, and R. Boswell, Plasma based platinum nanoaggregates deposited on carbon nanofibers improve fuel cell efficiency, Applied Physics Letters, vol.9, issue.22, p.90, 2007.
DOI : 10.1016/S0013-4686(00)00505-3

URL : https://hal.archives-ouvertes.fr/hal-00180176

E. Billy, F. Maillard, and A. Morin, Impact of ultra-low Pt loadings on the performance of anode/cathode in a proton-exchange membrane fuel cell, Journal of Power Sources, vol.195, issue.9, pp.2737-2746, 2010.
DOI : 10.1016/j.jpowsour.2009.10.101

A. Schenk, C. Grimmer, and M. Perchthaler, Platinum???cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells ??? Long term behavior under ex-situ and in-situ conditions, Journal of Power Sources, vol.266, issue.266, pp.313-322, 2014.
DOI : 10.1016/j.jpowsour.2014.05.023

H. A. Gasteiger, S. S. Kocha, and B. Sompalli, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, vol.56, issue.1-2, pp.9-35, 2005.
DOI : 10.1016/j.apcatb.2004.06.021

M. Pourbaix, Atlas d'équilibres électrochimiques à 25 The aqueous geochemistry of platinum, palladium and gold -recent experimental constraints and reevaluation of theoritical predictions, Canadian Mineralogist, vol.30, pp.955-982, 1992.

M. S. Lee, J. Y. Lee, and J. R. Kumar, Solvent Extraction of PtCl4 from Hydrochloric Acid Solution with Alamine336 Stability constants of metal-ion complexes1971: Chemical Society. 19 Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review, Materials Transactions Hydrometallurgy, vol.17, issue.133, pp.49-2823, 2008.
DOI : 10.2320/matertrans.mra2008305

URL : https://www.jstage.jst.go.jp/article/matertrans/49/12/49_MRA2008305/_pdf

M. K. Jha, D. Gupta, and J. C. Lee, Solvent extraction of platinum using amine based extractants in different solutions: A review, Hydrometallurgy, vol.142, issue.142, pp.60-69, 2014.
DOI : 10.1016/j.hydromet.2013.11.009

J. S. Zhao, X. M. He, and J. H. Tian, Reclaim/recycle of Pt/C catalysts for PEMFC. Energy Conversion and Management, pp.450-453, 2007.
DOI : 10.1016/j.enconman.2006.06.020

T. Oki, T. Katsumata, and K. Hashimoto, Recovery of Platinum Catalyst and Polymer Electrolyte from Used Small Fuel Cells by Particle Separation Technology, MATERIALS TRANSACTIONS, vol.50, issue.7, pp.50-1864, 2009.
DOI : 10.2320/matertrans.M-M2009812

URL : https://www.jstage.jst.go.jp/article/matertrans/50/7/50_M-M2009812/_pdf

H. Shiroishi, S. Hayashi, and M. Yonekawa, Dissolution Rate of Noble Metals for Electrochemical Recycle in Polymer Electrolyte Fuel Cells, Electrochemistry, vol.80, issue.11, pp.898-903, 2012.
DOI : 10.5796/electrochemistry.80.898

C. R. Rao and D. C. Trivedi, Chemical and electrochemical depositions of platinum group metals and their applications, Coordination Chemistry Reviews, vol.249, issue.5-6, pp.613-631, 2005.
DOI : 10.1016/j.ccr.2004.08.015

P. T. Anastas, J. C. Warner-plechkova, N. V. , and K. R. Seddon, Green chemistry : theory and practice1998 Applications of ionic liquids in the chemical industry, Chemical Society Reviews, vol.626, issue.371, pp.123-150, 2008.
DOI : 10.1021/bk-1996-0626

A. P. Abbott, G. Frisch, K. , and P. T. Jones, Ionometallurgy: Processing of Metals using Ionic Liquids, in Element Recovery and Sustainability, A Solvometallurgy: An Emerging Branch of Extractive Metallurgy, Journal of Sustainable Metallurgy, vol.3, issue.3, pp.570-600, 2013.

T. L. Greaves and C. J. Drummond, Protic Ionic Liquids:?? Properties and Applications, Chemical Reviews, vol.108, issue.1, pp.206-237, 2008.
DOI : 10.1021/cr068040u

D. R. Macfarlane, J. M. Pringle, and K. M. Johansson, Lewis base ionic liquids, Chemical Communications, issue.18, pp.1905-1917, 2006.

H. F. Hurley, H. F. Hurley, J. T. Wier-chum, H. L. , V. R. Koch et al., Electrodeposition of aluminum Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt, Journal of the American Chemical Society, vol.38, issue.3911, pp.97-3264, 1948.

P. Hapiot and C. Lagrost, Electrochemical Reactivity in Room-Temperature Ionic Liquids, Chemical Reviews, vol.108, issue.7, pp.2238-2264, 2008.
DOI : 10.1021/cr0680686

URL : https://hal.archives-ouvertes.fr/hal-01151567

J. S. Wilkes, M. J. Zaworotko-fuller, J. , R. T. Carlin, H. C. De et al., Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts, Journal of the Chemical Society, Chemical Communications Journal of the Chemical Society, Chemical Communications, vol.42, issue.133, pp.965-967, 1992.

T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chemical Reviews, vol.99, issue.8, pp.2071-2084, 1999.
DOI : 10.1021/cr980032t

A. E. Visser, R. P. Swatloski, and W. M. Reichert, Task-specific ionic liquids for the extraction of metal ions from aqueous solutions, Chemical Communications, issue.1, pp.135-136, 2001.
DOI : 10.1039/b008041l

J. H. Davis, C. M. Gordon, and C. Hilgers, Synthesis and Purification of Ionic Liquids, Ionic Liquids in Synthesis2003, pp.7-40

A. P. Abbott, D. Boothby, and G. Capper, Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids:?? Versatile Alternatives to Ionic Liquids, Journal of the American Chemical Society, vol.126, issue.29, pp.126-9142, 2004.
DOI : 10.1021/ja048266j

Q. B. Li, J. Y. Jiang, and G. F. Li, The electrochemical stability of ionic liquids and deep eutectic solvents, Science China Chemistry, vol.24, issue.5, pp.59-571, 2016.
DOI : 10.1039/b007172m

H. L. Ngo, K. Lecompte, and L. Hargens, Thermal properties of imidazolium ionic liquids, Thermochimica Acta, vol.357, issue.358, pp.97-102, 2000.
DOI : 10.1016/S0040-6031(00)00373-7

N. V. Ignat-'ev, U. Welz-biermann, and A. Kucheryna, New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions, Journal of Fluorine Chemistry, issue.8, pp.126-1150, 2005.

S. Carda-broch, A. Berthod, D. W. Armstrong, J. G. , A. E. Visser et al., Solvent properties of the 1-butyl-3- methylimidazolium hexafluorophosphate ionic liquid Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Anal Bioanal Chem Green Chemistry, vol.375, issue.34, pp.156-164, 2001.

G. B. Appetecchi, M. Montanino, and D. Zane, Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids, Electrochimica Acta, vol.54, issue.4, pp.1325-1332, 2009.
DOI : 10.1016/j.electacta.2008.09.011

J. D. Holbrey and K. R. Seddon, The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals, Journal of the Chemical Society, Dalton Transactions, issue.13, pp.2133-2139, 1999.
DOI : 10.1039/a902818h

H. Ohno, Physical Properties of Ionic Liquids for Electrochemical Applications, Electrodeposition from Ionic Liquids2008, pp.47-82
DOI : 10.1002/9783527622917.ch3

M. Galinski, A. Lewandowski, and I. Stepniak, Ionic liquids as electrolytes, Electrochimica Acta, vol.51, issue.26, pp.51-5567, 2006.
DOI : 10.1016/j.electacta.2006.03.016

S. Fendt, S. Padmanabhan, and H. W. Blanch, Viscosities of Acetate or Chloride-Based Ionic Liquids and Some of Their Mixtures with Water or Other Common Solvents, Journal of Chemical & Engineering Data, vol.56, issue.1, pp.31-34, 2011.
DOI : 10.1021/je1007235

M. Montanino, M. Carewska, and F. Alessandrini, The role of the cation aliphatic side chain length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids, Electrochimica Acta, vol.57, issue.32, pp.153-159, 2002.
DOI : 10.1016/j.electacta.2011.03.089

A. J. Carmichael and K. R. Seddon, Polarity study of some 1-alkyl-3-methylimidazolium ambienttemperature ionic liquids with the solvatochromic dye, Nile Red, Journal of Physical Organic Chemistry, issue.10, pp.13-591, 2000.
DOI : 10.1002/1099-1395(200010)13:10<591::aid-poc305>3.0.co;2-2

S. N. Aki, J. F. Brennecke, and A. Samanta, How polar are room-temperature ionic liquids?, Chemical Communications, issue.5, pp.413-414, 2001.
DOI : 10.1039/b008039j

C. Reichardt, Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes, Green Chemistry, vol.33, issue.1, pp.339-351, 2005.
DOI : 10.1039/b408334b

J. L. Anderson, J. Ding, and T. Welton, Characterizing Ionic Liquids On the Basis of Multiple Solvation Interactions, Journal of the American Chemical Society, vol.124, issue.47, pp.124-14247, 2002.
DOI : 10.1021/ja028156h

URL : http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1329&context=chem_pubs

S. A. Bolkan and J. T. Yoke, Room-temperature fused salts based on copper(I) chloride-1-methyl-3- ethylimidazolium chloride mixtures. 2. Reactions with dioxygen, Inorganic Chemistry, issue.20, pp.25-3587, 1986.
DOI : 10.1149/1.2100739

E. R. Schreiter, J. E. Stevens, and M. F. Ortwerth, A Room-Temperature Molten Salt Prepared from AuCl3 and 1-Ethyl-3-methylimidazolium Chloride, Inorganic Chemistry, issue.17, pp.38-3935, 1999.
DOI : 10.1021/ic990062u

M. Klähn, C. Stüber, and A. Seduraman, What Determines the Miscibility of Ionic Liquids with Water? Identification of the Underlying Factors to Enable a Straightforward Prediction, The Journal of Physical Chemistry B, vol.114, issue.8, pp.2856-2868, 2002.
DOI : 10.1021/jp1000557

A. P. Abbott, K. J. Mckenzie-sakaebe, H. , H. Matsumoto-mcewen, A. B. et al., Application of ionic liquids to the electrodeposition of metals N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP 13-TFSI) -novel electrolyte base for Li battery Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications, Physical Chemistry Chemical Physics Electrochemistry Communications Journal of the Electrochemical Society, vol.71, issue.725, pp.4265-4279, 1999.

O. Mahony, A. M. , D. S. Silvester, and L. Aldous, Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids, Journal of Chemical & Engineering Data, issue.12, pp.53-2884, 2008.

U. Schroder, J. D. Wadhawan, and R. G. Compton, Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids, New Journal of Chemistry, vol.24, issue.12, pp.24-1009, 2000.
DOI : 10.1039/b007172m

J. N. Barisci, G. G. Wallace, and D. R. Macfarlane, Investigation of ionic liquids as electrolytes for carbon nanotube electrodes, Electrochemistry Communications, vol.6, issue.1, pp.22-27, 2004.
DOI : 10.1016/j.elecom.2003.09.015

A. Lewandowski and I. Stepniak, Relative molar Gibbs energies of cation transfer from a molecular liquid to ionic liquids at 298.15 K, Phys. Chem. Chem. Phys., vol.62, issue.19, pp.4215-4218, 2003.
DOI : 10.1351/pac199062091839

T. G. Dong, Y. X. Hua, and Q. B. Zhang, Leaching of chalcopyrite with Br??nsted acidic ionic liquid, Hydrometallurgy, vol.99, issue.1-2, pp.33-38, 2009.
DOI : 10.1016/j.hydromet.2009.06.001

M. J. Chen, J. X. Huang, and O. A. Ogunseitan, Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids, Waste Management, vol.41, issue.41, pp.142-147, 2015.
DOI : 10.1016/j.wasman.2015.03.037

URL : https://cloudfront.escholarship.org/dist/prd/content/qt6776g3c2/qt6776g3c2.pdf

J. A. Whitehead, J. Zhang, and N. Pereira, Application of 1-alkyl-3-methyl-imidazolium ionic liquids in the oxidative leaching of sulphidic copper, gold and silver ores, Hydrometallurgy, vol.88, issue.1-4, pp.1-4, 2007.
DOI : 10.1016/j.hydromet.2007.03.009

E. Billy, M. R. Houchin, T. Rodopoulos, and D. H. Jenkins, Application des liquides ioniques à la valorisation des métaux précieux par une voie de chimie verteThesis 82, Google Patents. 83. Huang, J.F. and H.Y. Chen, Heat-Assisted Electrodissolution of Platinum in an Ionic Liquid, 2006.

C. Deferm, J. Hulsegge, and C. Moller, Electrochemical dissolution of metallic platinum in ionic liquids, Journal of Applied Electrochemistry, vol.10, issue.15, pp.789-796, 2013.
DOI : 10.1021/bk-2003-0856.ch035

P. He, H. T. Liu, and Z. Y. Li, Electrodeposition of Platinum in Room-Temperature Ionic Liquids and Electrocatalytic Effect on Electro-oxidation of Methanol, Journal of The Electrochemical Society, vol.98, issue.4, pp.146-153, 2005.
DOI : 10.1149/1.1643071

D. Zhang, W. C. Chang, and T. Okajima, Electrodeposition of Platinum Nanoparticles in a Room-Temperature Ionic Liquid, Langmuir, vol.27, issue.23, pp.27-14662, 2011.
DOI : 10.1021/la202992m

H. Y. Huang, C. J. Su, and C. L. Kao, Electrochemical study of Pt and Fe and electrodeposition of PtFe alloys from air- and water-stable room temperature ionic liquids, Journal of Electroanalytical Chemistry, vol.650, issue.1, pp.1-9, 2010.
DOI : 10.1016/j.jelechem.2010.09.017

C. Colombo, C. J. Oates, and A. J. Monhemius, Complexation of platinum, palladium and rhodium with inorganic ligands in the environment. Geochemistry-Exploration Environment Analysis, pp.91-101, 2008.
DOI : 10.1144/1467-7873/07-151

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/12851/2/GEEA-2007.pdf

C. Kolbeck, N. Taccardi, and N. Paape, Redox chemistry, solubility, and surface distribution of Pt(II) and Pt(IV) complexes dissolved in ionic liquids, Journal of Molecular Liquids, vol.192, pp.103-113, 2014.
DOI : 10.1016/j.molliq.2013.07.007

J. Wu, X. Zhu, and H. N. Li, Combined Raman Scattering and X-ray Diffraction Study of Phase Transition of the Ionic Liquid [BMIM][TFSI] Under High Pressure, Journal of Solution Chemistry, vol.118, issue.10, pp.44-2106, 2015.
DOI : 10.1021/jp510672z

T. Wu, I. W. Sun, and S. Gung, High conductivity and low viscosity Br??nsted acidic ionic liquids with oligomeric anions, Journal of the Taiwan Institute of Chemical Engineers, vol.42, issue.5, pp.42-874, 2011.
DOI : 10.1016/j.jtice.2011.01.008

C. P. Fredlake, J. M. Crosthwaite, and D. G. Hert, Thermophysical Properties of Imidazolium-Based Ionic Liquids, Journal of Chemical & Engineering Data, vol.49, issue.4, pp.954-964, 2004.
DOI : 10.1021/je034261a

L. G. Sanchez, J. R. Espel, and F. Onink, Density, Viscosity, and Surface Tension of Synthesis Grade Imidazolium, Pyridinium, and Pyrrolidinium Based Room Temperature Ionic Liquids Physicochemical properties and structures of roomtemperature ionic liquids. 3. Variation of cationic structures 10.1021/jpO53396f, Journal of Chemical and Engineering Data Journal of Physical Chemistry B, issue.106, pp.54-110, 2006.

R. L. Gardas, M. G. Freire, and P. J. Carvalho, High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids, Journal of Chemical & Engineering Data, vol.52, issue.1, pp.80-88, 2007.
DOI : 10.1021/je060247x

URL : http://estudogeral.sib.uc.pt/jspui/bitstream/10316/10386/1/High-Pressure%20Densities%20and%20Derived%20Thermodynamic%20Properties.pdf

R. Gomes-de-azevedo, J. M. Esperança, and J. Szydlowski, Thermophysical and thermodynamic properties of ionic liquids over an extended pressure range: [bmim][NTf2] and [hmim][NTf2], The Journal of Chemical Thermodynamics, vol.37, issue.9, pp.37-888, 2005.
DOI : 10.1016/j.jct.2005.04.018

O. O. Okoturo and T. J. Vandernoot, Temperature dependence of viscosity for room temperature ionic liquids, Journal of Electroanalytical Chemistry, vol.568, issue.12, pp.167-181, 2004.
DOI : 10.1016/j.jelechem.2003.12.050

R. A. Carpio, L. A. King, and R. E. Lindstrom, Density, electric-conductivity and viscosity of several N-alkylpyridinium halides and their mixtures with aluminium chloride, Journal of the Electrochemical Society, issue.10, pp.126-1644, 1979.
DOI : 10.1149/1.2128768

J. R. Sanders, E. H. Ward, and C. L. Hussey, Aluminium bromide-1-methyl-3-ethylimidazolium bromide ionic liquids .1. densities, viscosities, electrical conductivities, and phase transitions, Journal of the Electrochemical Society, issue.2, pp.133-325, 1986.

A. P. Abbott, S. Nandhra, and S. Postlethwaite, Electroless deposition of metallic silver from a choline chloride-based ionic liquid: a study using acoustic impedance spectroscopy, SEM and atomic force microscopy, Physical Chemistry Chemical Physics, vol.20, issue.6, pp.3735-3743, 2007.
DOI : 10.1039/b703954a

URL : https://lra.le.ac.uk/bitstream/2381/627/1/10.1039_b703954a.pdf

C. Bonnaud, I. Billard, and N. Papaiconomou, Rationale for the implementation of reference electrodes in ionic liquids, Physical Chemistry Chemical Physics, vol.9, issue.126, pp.18-8148, 2016.
DOI : 10.1039/b703954a

H. J. Sun, L. P. Yu, and X. B. Jin, Unusual anodic behaviour of chloride ion in 1-butyl-3-methylimidazolium hexafluorophosphate, Electrochemistry Communications, vol.7, issue.7, pp.685-691, 2005.
DOI : 10.1016/j.elecom.2005.04.020

L. E. Barrosse-antle, A. M. Bond, and R. G. Compton, Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents., Chemistry - An Asian Journal, vol.24, issue.183, pp.202-230, 2010.
DOI : 10.1007/978-1-4615-7467-5

D. R. Macfarlane, S. A. Forsyth, and J. Golding, Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion, Green Chemistry, vol.4, issue.5, pp.444-448, 2002.
DOI : 10.1039/b205641k

D. Vos, N. , C. Maton, and C. V. Stevens, Electrochemical Stability of Ionic Liquids: General Influences and Degradation Mechanisms. Chemelectrochem, pp.1258-1270, 2014.

L. Aldous, D. S. Silvester, and C. Villagran, Electrochemical studies of gold and chloride in ionic liquids, New Journal of Chemistry, issue.11, pp.30-1576, 2006.
DOI : 10.1039/b609261f

Q. B. Zhang, Y. X. Hua, and R. Wang, Anodic oxidation of chloride ions in 1-butyl-3-methyl-limidazolium tetrafluoroborate ionic liquid, Electrochimica Acta, vol.105, pp.419-423, 2013.
DOI : 10.1016/j.electacta.2013.05.014

A. P. Abbott, G. Frisch, and J. Hartley, Anodic dissolution of metals in ionic liquids, Progress in Natural Science-Materials International, pp.25-595, 2015.
DOI : 10.1016/j.pnsc.2015.11.005

URL : https://doi.org/10.1016/j.pnsc.2015.11.005

J. Estager, J. D. Holbrey, and M. Swadzba-kwasny, Halometallate ionic liquids ??? revisited, Chem. Soc. Rev., vol.12, issue.2, pp.847-886, 2014.
DOI : 10.1021/cg300969u

URL : https://pure.qub.ac.uk/portal/files/10361409/EstagerHS_K_ChemSocRev_accepted_Oct2013.pdf

C. M. Wang, H. M. Luo, and H. R. Li, Direct UV-spectroscopic measurement of selected ionicliquid vapors, Physical Chemistry Chemical Physics, issue.26, pp.12-7246, 2010.
DOI : 10.1039/c001101k

K. R. Seddon, A. Stark, and M. J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure and Applied Chemistry, vol.72, issue.12, pp.72-2275, 2000.
DOI : 10.1351/pac200072122275

C. L. Bentley, A. M. Bond, and A. F. Hollenkamp, Concentration and electrode material dependence of the voltammetric response of iodide on platinum, glassy carbon and boron-doped diamond in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, Electrochimica Acta, vol.109, pp.554-561, 2013.
DOI : 10.1016/j.electacta.2013.07.101

B. Trémillon, Electrochimie analytique et réactions en solution1993

S. Randstrom, M. Montanino, and G. B. Appetecchi, Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, Electrochimica Acta, vol.53, issue.22, pp.53-6397, 2008.
DOI : 10.1016/j.electacta.2008.04.058