
HAL Id: tel-01810645
https://theses.hal.science/tel-01810645

Submitted on 8 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed algorithms for large-scale robotic ensembles :
centrality, synchronization and self-reconfiguration

André Naz

To cite this version:
André Naz. Distributed algorithms for large-scale robotic ensembles : centrality, synchronization and
self-reconfiguration. Robotics [cs.RO]. Université Bourgogne Franche-Comté, 2017. English. �NNT :
2017UBFCD027�. �tel-01810645�

https://theses.hal.science/tel-01810645
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE L’ÉTABLISSEMENT UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ

PRÉPARÉE À L’UNIVERSITÉ DE FRANCHE-COMTÉ

École doctorale n°37

Sciences Pour l’Ingénieur et Microtechniques

Doctorat d’Informatique

par

ANDRÉ NAZ

Distributed Algorithms for Large-Scale Robotic Ensembles: Centrality,

Synchronization and Self-Reconfiguration

Thèse présentée et soutenue à Montbéliard, le 4 décembre 2017

Composition du Jury :

RÖMER KAY Professeur des Universités à Graz

University of Technology (Autriche)

Président

WATTENHOFER ROGER Professeur des Universités à ETH

Zurich (Suisse)

Rapporteur

CORRELL NIKOLAUS Maı̂tre de conférences à University of

Colorado of Boulder (Etats-Unis)

Examinateur

BOURGEOIS JULIEN Professeur des Universités à

l’Université Bourgogne Franche-

Comté (France)

Directeur de thèse

GOLDSTEIN SETH COPEN Maı̂tre de conférences à Carnegie

Mellon University (Etats-Unis)

Co-directeur de thèse

PIRANDA BENOÎT Maı̂tre de conférences à l’Université

Bourgogne Franche-Comté (France)

Co-encadrant de thèse

N◦ 7 7 4 3 1

À ma famille

To my family

“Happiness lies in the joy of achievement

and the thrill of creative effort.”

FRANKLIN D. ROOSEVELT

ACKNOWLEDGMENTS

My special thanks go to my supervisors Benoı̂t Piranda, Julien Bourgeois and Seth Copen

Goldstein. The supervision and support they have provided to me over the past years

has truly helped the progression of my thesis and made my PhD journey a memorable,

educational and enjoyable experience.

I express my sincere gratitude to my thesis committee members who have reviewed my

dissertation. Their feedback and ideas have been absolutely invaluable.

Furthermore, I would also like to thank Abderahman Ait-Ali, my dear and faithful friend

who is currently a PhD student at the KTH Royal Institute of Technology in Stockholm, for

his availability and his constructive comments on my thesis work.

I would also like to thank my new office mate and recently PhD student, Pierre Thalamy,

for having re-read the first three chapters of this manuscript and provided useful com-

ments. I also thank him for his engineering work on VisibleSim as an intern in 2016. His

code refactoring and test suite helped me to save time and focus on the design of my

algorithms and simulation experiments. I wish him all the best for his PhD!

I would like to thank Catherine Maire for her proofreading that greatly improved the overall

quality of this manuscript.

I am also thankful to the administrative staff of the University of Franche-Comté and to

that of Carnegie Mellon University, in particular to Sylvie Klinkas, Dominique Ménétrier,

Murielle Figuière, Marie-Thérèse Barthelet and Christina Contreras for their administra-

tive support during my thesis.

Moreover, I would like to take this opportunity to thank the National Agency for Research

(ANR) for funding my PhD research. This work is indeed part of the ANR - CO2Dim

project (contracts ANR-12-IS02-0004-01).

In addition, I would like to thank my enthusiastic office mates, Nicolas Boillot, Thadeu Kny-

chala Tucci and, more recently, Pierre Thalamy, along with all the laboratory colleagues

with whom I spent pleasant moments. Thadeu will definitely remain for ever in my mind

as an incredible table soccer player (or not ;)! All joking aside, I wish him all the best for

the end of his PhD!

Mais avant tout, je tiens sincèrement à remercier ma famille et ma fiancée bien aimées

pour leur soutien sans faille et leur patience sans limite durant mes années d’études. Je

les remercie aussi pour leur relecture de mon manuscrit de thèse ainsi que leurs sugges-

tions de corrections. Je remercie aussi tout particulièrement mes grands-parents d’être

vaillamment venus assister à ma soutenance malgré leur grand âge et les nombreux

kilomètres qui nous séparent. Je repense souvent aux cours de lecture de l’été 1996,

chez mes grands-parents, pour combler mes lacunes à l’issue du cours préparatoire, aux

nombreuses récitations de leçons le dimanche avec mes parents et aux coups de fil à

ma tante pour discuter des cours d’histoire avant le brevet des collèges ! Que les années

sont passées vite, merci à tous !

iii

ABSTRACT

Technological advances, especially in the miniaturization of robotic devices foreshadow

the emergence of large-scale ensembles of small-size resource-constrained robots

that distributively cooperate to achieve complex tasks (e.g., modular self-reconfigurable

robots, swarm robotic systems, distributed microelectromechanical systems, etc.). These

ensembles are formed by independent, intelligent and communicating units which act

as a whole ensemble. These units cooperatively self-organize themselves to achieve

common goals. These systems are thought to be more versatile and more robust than

conventional robotic systems while having at the same time a lower cost.

These ensembles form complex asynchronous distributed systems in which every unit is

an embedded system with its own but limited capabilities. Coordination of such large-

scale distributed embedded systems poses significant algorithmic issues and open new

opportunities in distributed algorithms. In my thesis, I defend the idea that distributed

algorithmic primitives suitable for the coordination of these ensembles should be both

identified and designed.

In this work, we focus on a specific class of modular robotic systems, namely large-scale

distributed modular robotic ensembles composed of resource-constrained modules that

are organized in a lattice structure and which can only communicate with neighboring

modules. We identified and implemented three building blocks, namely centrality-based

leader election, time synchronization and self-reconfiguration.

We propose a collection of distributed algorithms to realize these primitives. We evaluate

them using both hardware experiments and simulations on systems ranging from a dozen

modules to more than ten thousand modules. We show that our algorithms scale well

and are suitable for large-scale embedded distributed systems with scarce memory and

computing resources.

Keywords: Distributed algorithms, Modular robotics, Centrality-based leader election,

Time synchronization, Self-reconfiguration.

v

RÉSUMÉ

Les récentes avancées technologiques, en particulier dans le domaine de la miniatu-

risation de dispositifs robotiques, laissent présager l’émergence de grands ensembles

distribués de petits robots qui coopéreront en vue d’accomplir des tâches complexes

(e.g., robotique modulaire, robots en essaims, microsystèmes électromécaniques dis-

tribués). Ces grands ensembles seront composés d’entités indépendantes, intelligentes

et communicantes qui agiront comme un ensemble à part entière. Pour cela, elles s’auto-

organiseront et collaboreront en vue d’accomplir des tâches complexes. Ces systèmes

présenteront les avantages d’être plus polyvalents et plus robustes que les systèmes

robotiques conventionnels tout en affichant un prix réduit.

Ces ensembles formeront des systèmes distribués complexes dans lesquels chaque en-

tité sera un système embarqué à part entière avec ses propres capacités et ressources

toutefois limitées. Coordonner de tels systèmes pose des défis majeurs et ouvre de nou-

velles opportunités dans l’algorithmique distribuée. Je défends la thèse qu’il faut d’ores

et déjà identifier et implémenter des algorithmes distribués servant de primitives de base

à la coordination de ces ensembles.

Dans ce travail, nous nous focalisons sur une classe particulière de robots, à savoir les

robots modulaires distribués formant de grands ensembles de modules fortement con-

traints en ressources (mémoire, calculs, etc.), placés dans une grille régulière et capa-

bles de communiquer entre voisins connexes uniquement. J’ai identifié et implémenté

trois primitives servant à la coordination de ces systèmes, à savoir l’élection d’un nœud

central au réseau, la synchronisation temporelle ainsi que l’auto-reconfiguration.

Dans ce manuscrit, je propose un ensemble d’algorithmes distribués réalisant ces prim-

itives. Les algorithmes développés dans le cadre de ce travail ont été évalués sur des

modules matériels et par simulation avec des systèmes composés de quelques dizaines

à plus d’une dizaine de milliers de modules. Ces expériences montrent que nos algo-

rithmes passent à l’échelle et sont adaptés aux grands ensembles distribués de systèmes

embarqués avec des ressources fortement limitées à la fois en mémoire et en calcul.

Mots-clés: algorithmique distribuée, robots modulaires, élection de leader basée sur la

centralité, synchronisation temporelle, auto-reconfiguration.

vii

CONTENTS

Abstract v

Résumé vii

Contents ix

List of Figures xv

List of Tables xxi

List of Abbreviations xxiii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions . 6

1.3 Outline . 9

2 Context 11

2.1 Introduction . 12

2.2 Modular Robotics . 12

2.2.1 Definition . 12

2.2.2 Advantages over Traditional Robotics 12

2.2.3 Examples of Potential Applications 13

2.2.4 Existing Systems and Classification 15

2.2.5 Network Properties of Large-Scale LMRs 16

2.3 Research Environment: Evaluation Hardware and Simulation Tools 18

2.3.1 Blinky Blocks . 19

2.3.2 2D Catoms . 20

2.3.3 VisibleSim . 21

2.4 Conclusion . 22

ix

x CONTENTS

3 Centrality-Based Leader Election 23

3.1 Introduction . 25

3.2 System Model and Assumptions . 27

3.3 Network Centrality Metrics and Definitions 28

3.3.1 Definitions . 28

3.3.2 Properties and Applications . 30

3.4 State of the Art . 32

3.4.1 Exhaustive Methods . 32

3.4.2 Methods for Specific Classes of Graphs 34

3.4.3 Sampling-based Methods . 35

3.4.4 Probabilistic-Counter-based Methods 37

3.4.5 Other Approaches . 37

3.4.6 Summary . 38

3.5 Preliminary Materials on Network Traversal and Tree Algorithms 40

3.5.1 Breadth-First Network Traversal and Spanning-Tree Construction . . 40

3.5.2 Leader Election based on Network Traversal Algorithms 43

3.5.3 Broadcast and Convergecast on a Spanning Tree 46

3.5.4 Global Data Diffusion and Global-Aggregate Computation 47

3.5.5 Robustness to Module Mobility and Faults 49

3.5.6 Summary of the Primitives and Notation 50

3.6 k-BFS SumSweep Framework . 50

3.6.1 Description at a Glance . 50

3.6.2 Distributed Implementation . 52

3.6.3 Termination Proof and Complexity Analysis 54

3.7 ABC-Center . 54

3.7.1 Description at a Glance . 55

3.7.2 ABC-CenterV1: Distributed Implementation 57

3.7.3 ABC-CenterV2: Distributed Implementation 61

3.8 Probabilistic-Counter-based Central-Leader Election Framework 63

3.8.1 Probabilistic Counters . 63

3.8.2 Description at a Glance . 64

3.8.3 Distributed Implementation . 65

CONTENTS xi

3.8.4 Termination Proof and Complexity Analysis 66

3.9 Evaluation . 67

3.9.1 Evaluation of ABC-CenterV1 on Hardware 68

3.9.2 Simulation Model and Fidelity . 70

3.9.3 Large-scale Evaluation and Comparison to Existing Algorithms . . . 71

3.10 Discussion . 76

3.11 Conclusion . 78

4 Time Synchronization 79

4.1 Introduction . 80

4.2 Example of Application: The Distributed Bitmap Scroller 81

4.2.1 Our Implementation . 82

4.2.2 Need for Global Time Synchronization 83

4.3 State of the Art . 84

4.3.1 Architecture : from Master/Slave to fully Distributed Protocols 85

4.3.2 Infrastructure of Master/Slave Protocols 86

4.3.3 Communication Delay Compensation Methods 87

4.3.4 Clock Model: from Clock Offset Adjustment only to Clock Skew

Compensation . 88

4.3.5 Time Master Election . 89

4.3.6 Summary . 89

4.4 System Model and Assumptions . 91

4.4.1 Clocks: Notation and Assumptions 91

4.4.2 Sources of Network Delays . 92

4.4.3 Predictive Method to Compensate for Communication Delays 92

4.5 The Modular Robot Time Protocol . 93

4.5.1 Method to Compensate for Communication Delays 93

4.5.2 Step 1: Initialization . 93

4.5.3 Step 2: Periodic Synchronization . 95

4.6 The Target System: the Blinky Blocks . 97

4.6.1 Local Clock Properties . 98

4.6.2 Communication Properties . 100

4.7 Experimental Evaluation . 103

xii CONTENTS

4.7.1 Evaluation on Hardware and Validation of VisibleSim 104

4.7.2 Large-Scale Evaluation and Comparison to Existing Protocols

through Simulations . 112

4.8 Discussion . 120

4.9 Conclusion . 122

5 Modular Robot Self-Reconfiguration 123

5.1 Introduction . 124

5.2 System Model and Assumptions . 125

5.3 State of the Art . 127

5.4 C2SR Algorithm at a Glance . 129

5.5 C2SR Implementation . 132

5.6 Experimental Evaluation . 136

5.6.1 Effectiveness Evaluation . 137

5.6.2 Communication Evaluation . 137

5.6.3 Motion Efficiency . 139

5.6.4 Execution Time Efficiency . 140

5.7 Conclusion . 142

6 Conclusion 143

6.1 Summary . 143

6.2 Future Work . 144

Bibliography 151

Appendices 167

A Demonstrations of LMR Network Properties 167

A.1 Introduction . 168

A.2 Related Work . 168

A.3 System Model and Definitions . 169

A.4 Network Density . 170

A.5 Network Radius and Diameter . 170

A.5.1 Preliminary Materials . 171

CONTENTS xiii

A.5.2 Radius and Diameter Bounds . 172

LIST OF FIGURES

1.1 Application scenario that drives the research presented in this dissertation.1 4

2.1 Smart conveyance surface formed from Smart Blocks. The system sorts

the objects it distributively conveyes. Purple circles and green hexagons

are transported toward two different holes. 13

2.2 Programmable matter as a cyber-physical conjugation to enhance the

computer-aided design process (from [Bourgeois et al., 2016]). The cyber-

ized representation of a cup is transferred to the matter composed of hun-

dreds of thousands of modules. The physical representation is then ma-

nipulated and manually modified. The cyberized representation remains

consistent with the physical one and reflects the change. 14

2.3 Different lattice arrangements associated with modular robotic systems de-

veloped in the Smart Blocks and the Claytronics projects. For a lattice L,

∆L denotes its coordination number, i.e, the maximum number of modules

to which a module can be connected. 16

2.4 Diameter bounds versus the number of nodes in the network for the dif-

ferent lattices considered. The terms “LB” and “UB” respectively stand for

“lower bound” and “upper bound”. 19

2.5 On the left, dissection of a Blinky Blocks hardware prototype. On the right,

an ensemble of 58 Blinky Blocks hardware prototypes running the Rainbow

program (from [Kirby et al., 2011]). In the Rainbow program, blocks are

colored depending on their level in the structure. 20

2.6 2D-Catom prototype (from [Karagozler, 2012]). 20

2.7 Screenshot of VisibleSim simulating the execution of the ABC-CenterV1

algorithm (see Section 3.7) in an ensemble of 500 Blinky Blocks. 21

2.8 Screenshot of VisibleSim simulating the execution of the Cylindrical

Catoms Self-Reconfiguration (C2SR) algorithm in an ensemble of 1073

2D-Catoms (see Section 5.4). 22

3.1 Difference between the geometric centroid (represented by C) and the Jor-

dan center (in red). The Jordan center is defined as the set of nodes of

minimum maximum distance to the others (see Section 3.3). 26

3.2 Differences between the different types of central module in a Blinky Blocks

system. 31

xv

xvi LIST OF FIGURES

3.3 Minimax and 4-Sweep failure case. 35

3.4 Simulated execution time of the Breadth-First Spanning Tree (BFST) con-

struction and leader election algorithms. 41

3.5 Total number of messages sent during the execution of the BFST construc-

tion and leader election algorithms. 41

3.6 Maximum queue length of the BFST construction and leader election algo-

rithms. 45

3.7 Maximum memory usage of the BFST construction and leader election

algorithms. Memory usage takes into account both the algorithm variables

and the messages in the queues. 45

3.8 The k-BFS SumSweep framework running on a random two-dimensional

Blinky Blocks system composed of 200 modules with k = 10. The initial

module from which is performed the first distance computation is in brown.

The other k−1 external nodes selected are in yellow and the order of selec-

tion is written on them. In the center version of our framework, the module

in red is elected and it matches the theoretical center. In the centroid ver-

sion, the module in cyan is elected while the exact centroid is the (nearby)

module in grey. 52

3.9 ABC-CenterV2 step-by-step execution on a 4 × 4 × 4 cube of Blinky Blocks.

For every block vi we note dλvi
= <d(vi, A

λ), d(vi, B
λ), d(vi,C

λ)> and gλvi
=

|d(vi, B
λ) − d(vi,C

λ)|. 56

3.10 Two executions of ABC-CenterV2 on the same system with different posi-

tions for A1. In the system on the left, the elected module belongs to the

theoretical center, while it is one module off in the system on the right. . . . 56

3.11 Specific ABC-Center approximation error case. On the left, execution with

ABC-Center. On the right, execution with an approach we envisioned but

abandoned. 57

3.12 ABC-CenterV1 detailed execution on a line of 4 Blinky Blocks. 60

3.13 ABC-CenterV1 executions on different hardware Blinky Blocks configura-

tions. 68

3.14 ABC-CenterV1 execution in a dynamic network. 69

3.15 Effectiveness of centrality-based leader election algorithms: relative ec-

centricity and centroid accuracy versus the number of modules in the sys-

tem. For frameworks, the centroid (resp. center) version is considered for

the centroid (resp. center) accuracy. 73

3.16 Simulated average execution duration (± standard deviation) of centrality-

based leader election algorithms versus the system diameter. For each

point, at least 5 executions were performed. 74

LIST OF FIGURES xvii

3.17 Average total number of messages (± standard deviation) of centrality-

based leader election algorithms according to the size of the system. 75

3.18 Average number of messages sent per node (± standard deviation) of

centrality-based leader election algorithms according to the size of the sys-

tem. 76

3.19 Above, the maximum memory usage (considering both the local algorithm

variables and the message queue usage) according to the size of the sys-

tem. Below, the maximum message queue per module (considering both

the incoming and outgoing queues). 77

4.1 A distributed bitmap scroller made from 72 Blinky Blocks. The system

scrolls “Femto-st” in different colors. The blocks are synchronized using

MRTP. The time master stays in red. 82

4.2 Unsynchronized bitmap scroller of 72 Blinky Blocks. 83

4.3 Sources of delivery delays in the exchange of a message m between two

neighbor modules. 92

4.4 Two Blinky Blocks systems synchronized using MRTP. On the left, the sys-

tem forms a cross. On the right, blocks are deployed in a doubled L-

configuration. In both configurations, the time master, in red, is connected

to the power supply. Slave modules are in green. Experimental data are

sent by the systems to the PC through a serial cable. 98

4.5 Local clock offset with respect to the real time (LMi(t) − t). The plot on the

left shows the long-term deviation of the local clocks, while the plot on the

right shows these deviations in the shorter term. The PRED method was

used to compensate for communication delays. 99

4.6 Statistics on the parameters of the model used to simulate clocks. From

left to right: D density function, y0 density function and the noise signals

over the time. 100

4.7 Scheme of a two-way message exchange between two blocks. 101

4.8 Transfer delay/rate distribution of 21-byte-long frames. 101

4.9 Workflow of the communication model used for the simulation of time syn-

chronization protocols. In this example, module M1 has scheduled a syn-

chronization phase. Upon timeout expiration, module M1 executes the syn-

chronization procedure and sends a synchronization message to module

M2 which will process it after a possible delay due to queueing. 102

4.10 Two successive images of a video recording 28 Blinky Blocks connected in

a line topology. The time master is in red. Slave modules have to simul-

taneously change their color every 3 seconds. On the left, a color change

starts in the system. On the right, 40 milliseconds later, the color of every

slave module has changed. 105

xviii LIST OF FIGURES

4.11 Scheme of a virtual line of emulated modules on hardware Blinky Blocks

connected in a line. 106

4.12 Global time dissemination error (± standard deviation) in MRTP according

to the hop distance. On the left, the distribution of the error. On the right,

the average error (± standard deviation). 107

4.13 On the left, the estimated clock offset (LMi(t) − G̃(t)). On the right, the

distribution of the relative synchronization error in MRTP. 108

4.14 On the left, stability of the local clock of M7 and M8 with respect to the global

timescale: above, the estimated offset (LMi(40) − G̃(40) + (LMi(t) − G̃(t)))

and below, the estimation of the estimated average skew ratio between

synchronization points (
∆LMi (t)

∆G̃(t)
). On the right, the synchronization error of

these two blocks. 109

4.15 Relative synchronization error of the whole system as a function of the

synchronization periods. On the left, the distribution of the error. On the

right, the average error (± standard deviation). 110

4.16 Relative synchronization error of the whole system as a function of the

number of synchronization points used for the linear regressions. On the

left, the distribution of the error. On the right, the average error (± standard

deviation). 111

4.17 Maximum pairwise synchronization error over time. This figure shows both

the time of convergence and the achievable precision for each protocol on

the different Ball systems. 117

4.18 Synchronization precision. At the top, average maximum pairwise syn-

chronization error in the last 30 minutes of the experiment (± standard

deviation). At the bottom, the maximum pairwise synchronization error. . . . 118

4.19 Average number of messages sent per module in time synchronization pro-

tocols. 119

5.1 Example of initial and goal shapes. Self-reconfiguration is the process

during which the initial clump of modules on the left self-reconfigures into

the car shape on the right. 124

5.2 On the left, motion constraints in our model: examples of feasible (at the

top) and infeasible moves (at the bottom). On the right, a labeled system:

gray cells are occupied by a module, whereas white cells are empty. Some

of the empty cells are labeled with their position (e.g., pa, pb, etc.). 125

LIST OF FIGURES xix

5.3 Invalid (at the top) and valid (at the bottom) initial and goal configurations

in C2SR. Modules in yellow, which are not part of the initial or goal shapes,

progress along the peripheral path in the same direction with an empty

space of at least one cell between successive modules. The configurations

at the top are not valid for several reasons. First, they do not intersect in at

least one cell. Second, they both contain a hole. Third, the peripheral path

is not large enough at the locations in red. Indeed, the modules in yellow

could not move without violating our motion constraints and without getting

attached to each other. 129

5.4 Screenshot during the self-reconfiguration process using C2SR with the

initial and goal shapes of Figure 5.1. The modules in the stream progress

by rotating CW. 130

5.5 C2SR state diagram. 130

5.6 Different module states in C2SR. Note that, at this particular moment of

the reconfiguration, no Catom is in the moving state. 131

5.7 C2SR stream progression rule: a simple example. Modules should rotate

CW. White cells are empty and some of them are labeled with their position

in the lattice (e.g., pa, pb, etc.). Modules C1, C2, C3 and C4 are in the stream.

C3 is moving. C1 cannot move because C2 is in the stream and C2 ∈ NK
pa

.

C2 cannot move because C3 is in the stream and C3 ∈ NK
pb

. C3 can move to

p′
C3

because NK
p′

C3

contains only three modules and none of them is in the

stream, except for C3. C4 cannot move because |NK
pe
| = 5. 132

5.8 Screenshots of VisibleSim at the end of the simulation of C2SR with differ-

ent kinds of goal shapes composed of about 10,000 2D Catoms. 137

5.9 Average total number of messages (± standard deviation) sent in C2SR

versus the size of the system for different goal shapes. 138

5.10 Average number of messages sent per 2D Catom (± min/max) during the

execution of C2SR versus the size of the system for different goal shapes. . 138

5.11 Maximum message queue size (incoming and outgoing messages)

reached by any node versus the size of the system during the execution

of C2SR. 139

5.12 Average number of hops traveled by data (± min/max) in the execution of

C2SR versus the size of the system. 139

5.13 Average total number of atomic moves (± standard deviation) versus the

size of the system for different goal shapes. 140

5.14 Screenshot of VisibleSim during a self-reconfiguration process with C2SR.

Modules in the stream progress by rotating CW. Blocked modules are in

gray, waiting ones in yellow, moving ones in red and modules that have

converged are in green. 140

xx LIST OF FIGURES

5.15 Average C2SR simulated time (± standard deviation) versus the size of the

system for different goal shapes. 141

5.16 Average C2SR simulated time (± standard deviation) versus the communi-

cation bitrate (random initial configuration into the car of 1,073 2D Catoms). 141

A.1 An S -Ball(4) and an H-Ball(4) with color gradient from the center of the ball. 172

A.2 An S C-Ball(2) of Blinky Blocks and its decomposition into horizontal layers

with color gradient from the center of the ball. 174

A.3 An FCC-Ball(2) of 3D Catoms and its decomposition into horizontal layers

with color gradient from the center of the ball. 175

LIST OF TABLES

3.1 Impact of the position of the time master on the synchronization error in an

enlarged version of the system depicted in Figure 3.2. The system is syn-

chronized using the Modular Robot Time Protocol (see Section 4.5). This

system is composed of 1,456 nodes and has an 83-hop diameter. Every

module in the system of Figure 3.2 is actually enlarged in a cube of 2x2x2

modules in this experiment. Results were computed on 3.5-hour-long sim-

ulations during which the synchronization error was measured every 3 sec-

onds. 31

3.2 Summary of the state of the art on network centrality in distributed systems.

If the algorithm comes with an election mechanism, we provide the type of

the elected (approximate) central node. Otherwise, we give the name of the

computed/estimated centrality measure. Note ∗: a specific low-complexity

measure is proposed and used to elect a most central node. “UN” stands

for “Unknown”. 39

3.3 Primitives used to build our centrality-based leader election algorithms.

Note ∗: in memory complexity calculation it is assumed that propagated

and computed data can be stored using O(1) memory space. 50

3.4 Average execution time of ABC-CenterV1 on hardware Blinky Blocks and in

simulations. Statistics on the execution time were computed over 25 runs

for every configuration. Simulation timing results were computed several

times, each time on 25 independent runs, and we kept the values that

matched best the hardware execution time. 69

3.5 Communication model. N(µ, σ) refers to the normal probabilistic law with µ

being the mean and σ the standard deviation. U(l, u) refers to the uniform

probabilistic law with the minimum value l and the maximum value u. 70

4.1 Summary of the state of the art on time synchronization. 90

4.2 Blinky Blocks hardware-clock model parameters used in VisibleSim.

N(µ, σ) refers to the normal probabilistic law, with µ being the mean and σ

the standard deviation. 99

xxi

xxii LIST OF TABLES

4.3 Communication model used for the evaluation of time synchronization pro-

tocols. N(µ, σ) refers to the normal probabilistic law, with µ being the mean

and σ, the standard deviation. U(l, u) refers to the uniform probabilistic

law with the minimum value l and the maximum value u. P(λ) refers to the

Poisson probabilistic law with λ mean. 104

4.4 Average dissemination error (± standard deviation) with respect to the

global time in MRTP for 2 and 4 hops using different methods of com-

pensating for communication delays in the line and the compact systems. . 107

4.5 Statistics on the average relative synchronization error of the whole system

showing the impact of using linear models to compensate for clock skew in

MRTP. 109

4.6 Network characteristics of the systems used for the evaluation of time syn-

chronization protocols. 112

4.7 Performance of election algorithms on the systems used for the evaluation

of time synchronization protocols. 114

5.1 Summary of the state of the art on self-reconfiguration in MSRs where

modules are arranged in a hexagonal lattice. “UN” stands for “Unknown”. . 128

LIST OF ABBREVIATIONS

APSP: All-Pair Shortest Paths

BFS: Breadth-First Search

BFST: Breadth-First Spanning Tree

C2SR: Cylindrical-Catoms Self-Reconfiguration (algorithm)

MRTP: Modular Robot Time Synchronization Protocol

CW: Clockwise

CCW: Counter-Clockwise

IoT: Internet of Things

IoRT: Internet of Robotic Things

MSR: Modular Self-Reconfigurable Robot

LMR: Distributed modular robotic ensemble composed of resource-constrained

identical modules that are organized in a lattice structure and communicate together

using only neighbor-to-neighbor communications.

PC2LE: Probabilistic-Counter-based Central-Leader Election (algorithm)

PM: Programmable Matter

RTC: Real-Time Counter

SSSP: Single-Source Shortest Paths

UART: Universal Asynchronous Receivers/Transmitters

WSN: Wireless Sensor Network

xxiii

1

INTRODUCTION

1.1/ PROBLEM STATEMENT

Before stating our research problems in detail, it seems to us necessary to expose in a

few paragraphs our vision of the broad context and ecosystem in which this thesis takes

place.

Since the invention of the computer and later on with the Internet, many human activities

have been transferred into the digital world, or said differently, virtualized or cyberized [Ma

et al., 2015]. Listening to music, reading a book or the news are now mostly digital

activities. Social media have pushed this trend further by virtualizing every social link

humans can have: friendly relationships with Facebook, professional links with LinkedIn,

photos or multimedia content sharing with EyeEm, Instagram or Tumblr, to cite a very few.

Computer gaming is now the principal leisure activity at nearly all ages and is now referred

to as e-sport. Large-scale virtual worlds have been created and a new culture coming

from e-sport has emerged, linking together people from all around the world as this culture

is completely international and does not belong to any part of the world. For example,

Leagues of Legends or Clash of Clans are two different games and universes with their

own rules and a really international community. The next revolution will certainly be the

democratization of virtual reality, augmented reality and mixed reality. Many companies

have already marketed products in these emerging fields (e.g., Oculus VR with the Oculus

Rift, Microsoft with HoloLens, Samsung, Magic Leap, etc.). This evolution could made us

think that our lives will become virtual in great part.

Another trend exists. The cyber world is indeed getting into the physical one by em-

bedding computation, communication and sensing capabilities into day-to-day products

with the Internet of Things (IoT). Smart things that are nowadays deeply embedded in

our daily life, are not only able to sense and react to their environment but also to inter-

act with people and things, providing valuable services to human beings. The goal of

the IoT is to “allow people and things to be connected anytime, anyplace, with anything

and anyone, ideally using any path/network and any service” [Vermesan et al., 2013].

The IoT involves human-to-machine, machine-to-machine and human-to-human commu-

nications. Most popular IoT applications include smart homes, smart cities, smart envi-

ronment, eHealth, smart supply chain, etc. For instance, smart homes propose a wide

variety of domotic-related services (e.g., temperature management, user-friendly voice

1

2 CHAPTER 1. INTRODUCTION

assistant, intrusion detection, etc.). Smart cities and smart highways monitor the traffic

in real time to optimize the driving experience (e.g., diversions according to traffic jams

or climatic conditions). eHealth enables patients surveillance, fall detection of elderly

people, etc. Smart behavior and cooperation among many interconnected smart devices

rise significant algorithmic challenges. Smart objects are not only interconnected through

the Internet but may also communicate together in an ad-hoc fashion, potentially forming

large-scale infrastructure-less distributed systems.

Among these smart objects, robotic things go one step further by providing physical ser-

vices as they can act over the physical world thanks to actuation capabilities. Intelligent

and networked robotic devices form the Internet of Robotic Things (IoRT) [Vermesan

et al., 2017]. Autonomous cars, collaborative floor-cleaning robots, co-working robots,

etc. fall into the IoRT. Technological advances, especially in the miniaturization of robotic

devices, foreshadow the emergence of large-scale ensembles of small-size robots that

distributively cooperate to achieve complex tasks (e.g., modular robotic systems [Yim

et al., 2009], swarm robotic systems [Şahin, 2004], distributed MicroElectroMechanical

Systems (diMEMS) [Bourgeois et al., 2012], etc.). These ensembles are formed from

independent, intelligent and communicating units which act as a whole ensemble. These

units cooperatively self-organize in order to perform specific complex tasks and achieve

common goals. These systems are thought to be more versatile and more robust than

conventional robotic systems while having at the same time a lower cost. When consid-

ered as a whole ensemble, a set of such units is a full IoRT object that takes part in the

IoT ecosystem. At the same time, when viewed as a set of interconnected units, the en-

semble is a complex intranet of robotic things, in which every unit is an embedded system

with its own but limited capabilities.

In line with that trend, this dissertation deals with distributed coordination in large-scale

distributed embedded systems and more specifically in resource-constrained modular

robotic ensembles. The Smart Blocks [Piranda et al., 2013] and the Claytronics [Gold-

stein et al., 2004] projects envision interesting applications based on large-scale modular

robotic systems. The former aims to build a large distributed modular system to convey

small and fragile objects, by attaching many modules together, each one equipped with a

conveyance surface. The conveyance system can rearrange its global shape to self-adapt

to new situations (e.g., new tasks, self-healing after a module failure, etc.). The goal of

the Claytronics project is to use up to millions of micro modules to build Programmable

Matter (PM), i.e., matter that can change its physical properties in response to external

and programmed events.

PM is a physical instance of a virtual representation. This synthetic reality has a wide

range of applications (e.g., sending/downloading copies of physical objects, morpheable

objects reshapable at will, injectable surgical instruments, 3D interactive life-size TV, etc.).

In addition, PM could also provide a bidirectional mapping between the virtual representa-

tion of an object and its physical one formed from PM. PM will, therefore, be a technology

which will literally bridge the gap between the physical and the virtual worlds. It will enable

people not only to control their environment but also to shape it. It goes even further as

it will allow them to create intelligent objects that act like living things. Implications may

drastically change our society. This concept definitely fits the ultimate desire of human

1.1. PROBLEM STATEMENT 3

beings to master their world.

Modular robotics is a cross-disciplinary domain which poses both hardware and software

challenges. In this thesis, we focus on software and algorithmic problems. With PM,

people will, for instance, hold in their hands large-scale networks of resource-constrained

micro robotic devices. Coordination of such large-scale distributed embedded systems

poses significant algorithmic issues and opens new opportunities in distributed algo-

rithms.

In my thesis, I defend the idea that distributed high-level algorithmic primitives suitable for

the coordination of these ensembles should be both identified and designed. Besides,

these needs were stated during the 2016 Dagstuhl Seminar on “Algorithmic Foundations

of Programmable Matter” [Fekete et al., 2016]. This point of view has also been recently

defended by Z. Derakhshandeh in her doctoral thesis entitled “Algorithmic Foundations of

Self-Organizing Programmable Matter” [Derakhshandeh, 2017], in which she addresses

the leader election, shape formation and coating problems in the theoretical Amoebot

model [Derakhshandeh et al., 2014].

The complexity that lies in the coordination of these ensembles depends on the hardware

features of the individual modules (computation power, communication model, structure

organization, motion capabilities, etc.). Communication is central to module coordination.

The communication model and the structure organization determine the overall network

properties. Complexities of distributed algorithms are generally expressed as a function of

network properties (e.g., number of nodes, number of links, node degree, radius/diameter

of the system). Many algorithms target a specific class of networks. For instance, some

algorithms are more efficient in sparse networks than in dense networks (e.g, the virtual

coordinate-based routing protocol in [Zhao et al., 2007]). Thus, it is crucial to take into

account the network properties in order to design and choose appropriate algorithms,

especially in large-scale systems.

In this work, we focus on a specific class of modular robotic systems, namely distributed

modular robotic ensembles composed of resource-constrained identical modules that are

organized in a lattice structure and which can only communicate with neighboring mod-

ules. We name this class of robots LMRs. As explained in Section 2.2.4, this class

captures a variety of existing systems and is particularly suitable to realize large-scale

ensembles. In the same chapter, we show that these ensembles form asynchronous,

sparse, low-degree, large-diameter and large-average-hop-distance networks.

The contributions of this thesis are motivated by the application scenario depicted in Fig-

ure 1.1. This scenario considers a Modular Self-Reconfigurable Robot (MSR) [Yim et al.,

2007] composed of more than ten thousand millimeter-scale cylindrical rolling robots de-

veloped in the Claytronics project [Karagozler et al., 2009]. These robots move in 2D

space and thus form 2D ensembles only. We call these robots the 2D Catoms, even if

they are 3D objects. The term “catom” stands for “Claytronics atom”, which is the basic

unit for Claytronics PM. In our scenario, the modular robot first self-reconfigures its shape

into a car shape. Then, modules into the turn-signal area coordinate themselves in order

to blink in a synchronized fashion. This scenario rises several challenges. We identified

and addressed three of them, namely centrality-based leader election, time synchroniza-

4 CHAPTER 1. INTRODUCTION

tion and self-reconfiguration.

Initial clumb of 16,000 2D
Catoms

Car-shaped smart 2D-object
formed from 2D Catoms

Synchronous
signal blinking

Shape self-reconfiguration

A 2D Catom

Figure 1.1: Application scenario that drives the research presented in

this dissertation.1

The three algorithmic challenges we tackle in this thesis are:

• Self-reconfiguration: Self-reconfiguration is the process during which an MSR

transforms itself from an initial configuration into a goal one. This process has sev-

eral applications. In the context of programmable matter, it enables an MSR to

assume different shapes. Self-reconfiguration can also be used to adapt an MSR

to changes in the environment or to specific tasks. For instance, in [Lakhlef et al.,

2013], the authors use self-reconfiguration to rearrange the modules connectivity in

order to reach an optimal network topology. Self-reconfiguration poses several soft-

ware challenges. Firstly, planning is challenging as the number of possible unique

configurations is huge: (c × w)n where n is the number of modules, c the number

of possible connections per module and w the ways of connecting the modules to-

gether [Park et al., 2008]. Depending on the physical constraints, modules can often

move concurrently, which makes the configuration space grow at the rate of O(mn)

with m the number of possible movements and n the number of modules free to

move [Barraquand et al., 1991]. The exploration space for reconfiguration between

two random configurations is therefore exponential in the number of modules, which

prevents us from finding a complete optimal planning for all but the simplest config-

urations. The optimal self-reconfiguration planning for chain-type MSRs is then an

NP-complete problem [Hou et al., 2014], and, to the best of our knowledge, noth-

ing has been proved so far for lattice-based MSRs. Secondly, in addition to the

path planning problem, the self-reconfiguration process is also challenging as it is a

distributed process that requires the distributed coordination of mobile autonomous

modules connected in time-varying ways. In particular, modules have to coordinate

their motions in order not to collide with each other. Self-reconfiguration algorithms

are often tailored for a specific class of modular robots, with specific motion con-

straints. Here, we base our model on the 2D Catoms. Our research question in

this perspective is: How to self-reconfigure an MSR composed of thousands of 2D

1The magnifying glass image is a modified version of an image taken from Pixabay https://pixabay.com.

To generate the 2D-Catom car image, we used a modified version of a car image taken from Fotomelia http://

www.fotomelia.com. Those two original images have been dedicated to the public domain under the Creative

Commons CC0 license.

https://pixabay.com
http://www.fotomelia.com
http://www.fotomelia.com

1.1. PROBLEM STATEMENT 5

Catoms into various shapes?

• Time Synchronization: Coordination (e.g., synchronous blinking) among a group

of modules often relies on the existence of a common notion of time. Every mod-

ule has its own notion of time provided by its own hardware clock. Since com-

mon hardware clocks are imperfect, local clocks tend to run at slightly different

and variable frequencies, drifting apart from each other over time. Consequently, a

distributed time synchronization is necessary to keep the local clock of each mod-

ule synchronized. Several approaches to time synchronization exist (continuous vs

on-demand, network-wide vs clustering, timescale transformation vs clock synchro-

nization, etc.) [Römer et al., 2005]. The approach to be used depends on the target

application. In the continuous model, nodes strive to kept synchronized at all times.

This model is opposed to the on-demand synchronization model where nodes can

either a posteriori agree on the time at which an event has occurred or anticipate

synchronizations in order to trigger some coordinated actions at a given time. In

our application scenario, we aim at simultaneously and repeatedly executing a lo-

cal algorithm, namely a color change. For this specific scenario, the existence of a

common notion of time among all modules is required. Here, our goal is to achieve

network-wide and continuous time synchronization. This is the most general ap-

proach. Synchronization protocols based on this approach aim to keep a small

offset between local clocks and a global reference time. In most of the existing pro-

tocols, devices exchange timestamped messages in order to estimate the current

global time. Since time keeps going during communications, modules have to cor-

rectly compensate for network delays in order to evaluate the current global time

upon reception of synchronization messages. Although it is non-trivial to accurately

estimate communication delays, especially in the presence of unpredictable delays

(due for example, to queueing or retransmissions), it is crucial in order to achieve

high-precision performance. In this work, we assume that every module is equipped

with a local clock, which can be low-precision and low-resolution, typically in the or-

der of the millisecond. Moreover, we target fairly static ensembles. Our research

on this topic is driven by the questions: How to efficiently and accurately synchro-

nize fairly-static large-scale distributed embedded ensembles in which entities are

equipped with low-precision clocks and communicate with their immediate neigh-

bors only? What is the largest network we can synchronize and how accurately?

• Centrality-based leader election: Many distributed algorithms require a specific

role to be played by a leader, a single node in the system. The choice of this

node often has a direct impact on the performance. Leaders are often used to

provide such varied services as time synchronization, message routing [Blazevic

et al., 2005], etc. In many algorithms and protocols, ensuring the proper selection

of the leader is crucial for the performance. In particular, selecting a central node

as the leader can significantly improve algorithm efficiency by reducing the network

traffic or the time of convergence, especially in large-average-distance and large-

diameter networks. For example, in time-master-based synchronization protocols,

placing the time-master at a central node leads to more synchronization precision

in large-diameter networks as the precision of remote clock readings tends to de-

crease with the hop distance (see Chapter 4). It is thus essential to have a fast and

6 CHAPTER 1. INTRODUCTION

efficient way to select a good leader. Several centrality definitions have been pro-

posed in the literature. In this dissertation, we focus on the center and the centroid,

i.e., the sets of nodes which respectively minimize the maximum and the average

network distance to all the others. Classical distributed algorithms require global

information about the connectivity network to elect a node that belongs to the exact

center or centroid. Thus, they are not suitable for large-scale distributed embed-

ded systems with scarce computation, memory and energy resources. Electing a

central node actually involves a trade-off between the cost that can be afforded in

terms of resources (time, memory, computation, energy) and the desired level of

accuracy. This leads to the following research question: How to elect accurate ap-

proximate center and centroid nodes with both a reasonable convergence time and

a limited memory usage in large-scale resource-constrained distributed embedded

systems?

It must be well understood that we use the scenario presented in Figure 1.1 for illustrative

purposes only. The primitives proposed in this thesis can be used to realize our scenario

but we do not claim this is the only or the optimal way to do it. Moreover, this work is

applicable to other applications and systems.

Although some functionalities of the 2D Catom have been physically validated by the re-

alization of a hardware prototype (i.e., powering, adhesion and motion on a conductive

surface) [Karagozler et al., 2009], no 2D-Catom ensemble has been erected yet and the

current prototype still needs to be enhanced with different capabilities (e.g., communi-

cation). Hence, we use simulations in order to evaluate our algorithms on this platform.

However, we consider that hardware deployment is an important step in the evaluation

process of distributed algorithms. For experiments on hardware, we have at our disposal

several dozen hardware Blinky Blocks [Kirby et al., 2011]. Blinky Blocks are centimeter-

size modular robotic systems that were also developed in the Claytronics project. We

evaluate compatible algorithms on this platform using both hardware experiments and

simulations. Simulations enable evaluation in larger-scale ensembles. We present these

two modular robotic systems in more detail in the next chapter.

We emphasize that our research strongly intersects with the work achieved in the fields

of distributed systems, computer networks, sensor networks, ad-hoc networks, etc. In

particular, centrality and time synchronization have been widely studied in the literature

but rarely in ad-hoc networks composed of tens of thousands of resource-constrained

devices. In this thesis, we address these problems from an efficiency and scalability

perspective.

1.2/ CONTRIBUTIONS

In this thesis, we establish the network properties of our target systems and propose

a collection of distributed algorithms to tackle our three research problems. It must be

well understood that beyond proposing tailored contributions, our work is applicable to

a variety of systems. We leverage the complete source code of all our algorithms on

1.2. CONTRIBUTIONS 7

GitHub2,3.

The principal contributions of this thesis are:

• Centrality-based leader-election algorithms: We propose a collection of efficient

and effective distributed algorithms to elect approximate-centroid and approximate-

center nodes in asynchronous distributed systems. We introduce the k-BFS Sum-

Sweep framework, the ABC-Center algorithm and the Probabilistic-Counter-based

Central-Leader Election (PC2LE) framework. Frameworks are declined in two ver-

sions, one for approximate-center node election, another for approximate-centroid

node election. Our algorithms and frameworks do not require any prior knowledge

of the network, have a well-defined termination criterion, converge in a reasonable

amount of time and are memory-efficient. k-BFS SumSweep and ABC-Center per-

form distributed Breadth-First Search network traversals (BFSes) from a sample of

nodes, while PC2LE uses probabilistic counting:

– k-BFS SumSweep: In the k-BFS SumSweep, nodes compute their partial

centrality value to a subset of root nodes composed of a random initial node

and k − 1 most external nodes. Root nodes are consecutively selected using

the SumSweep approach that was originally proposed as a starting point of the

sequential algorithms for exact radius and diameter computation of external

graphs in [Borassi et al., 2014]. The main idea behind our framework is that

central nodes are first and foremost central to the most external ones. Let n be

the number of nodes in the system, m, the number of links and ∆ the maximum

network degree. Our framework runs in O(kd) time using O(mn2) messages

of size O(1) and O(∆) memory space per node4. As shown in the evaluation

section, our framework provides good accuracy with small k values even in

large-scale Blinky Blocks systems with more than 104 modules.

– ABC-Center: ABC-Center5 extends the sequential Minimax [Handler, 1973]

and 4-Sweep [Crescenzi et al., 2013] algorithms. ABC-Center identifies an

extreme path and recursively isolates midpoints on it until electing a single

node. The main idea of ABC-Center is that central nodes lie in the middle of

a diameter path. ABC-Center may be more convenient to use than the k-BFS

framework as ABC-Center converges by itself, i.e., its termination does not rely

on any input parameter. We propose two versions of ABC-Center. The latest

version, ABC-CenterV2, runs in O(sd) time using O(mn2) messages of size

O(1) and O(∆) memory space per node, where s is the number of iterations

that ABC-CenterV2 requires to terminate. ABC-Center requires only a few

iterations in Blinky Blocks systems where nodes are organized in a simple-

2GitHub repository that hosts our algorithm codes for simulations: https://github.com/nazandre/thesis
3Official Blinky Blocks firmware repository in which some of our algorithm codes are hosted: https:

//github.com/claytronics/oldbb
4We adopt a system approach to quantify the asymptotic memory usage of our algorithms. Unless other-

wise mentioned, memory complexities are expressed in machine words rather than in bits (see Section 3.2).

The size of words, however, limits the number of nodes the network may contain. For instance, we assume

that a node identifier is stored using a single word, thus, O(1) memory space. If a word is composed of w

bits, then the network may only contain up to 2w nodes.
5Some examples of ABC-Center executions on Blinky Blocks systems are available online in video at

https://youtu.be/QxK12UAq42o and https://youtu.be/PYnJn6tXKa8

https://github.com/nazandre/thesis
https://github.com/claytronics/oldbb
https://github.com/claytronics/oldbb
https://youtu.be/QxK12UAq42o
https://youtu.be/PYnJn6tXKa8

8 CHAPTER 1. INTRODUCTION

cubic lattice.

– Probabilistic-Counter-based Central-Leader Election (PC2LE): PC2LE is

based on the input-graph analysis algorithms [Kang et al., 2011a, Kang et al.,

2011b] and the distributed synchronous algorithm [Garin et al., 2012] which

use low-memory-footprint probabilistic counters (e.g., Flajolet-Martin [Flajolet

et al., 1985], HyperLogLog [Flajolet et al., 2007]) to estimate node centrality

measures. In PC2LE, an estimated centrality value is computed for all nodes.

PC2LE is approximately equivalent to running a BFS from every node but at

less expense in terms of computations and communications. PC2LE runs in

O(d) time using O(mn2) messages of size O(c) and O(∆ + c) memory space

per node, where c is the memory complexity of the probabilistic counter that is

used.

To the best of our knowledge, our algorithms are the most precise existing dis-

tributed algorithms designed to elect an approximate centroid or an approximate

center in our target systems, with both a reasonable convergence time and a lim-

ited storage cost.

• Modular Robot Time Synchronization Protocol (MRTP)6: We propose MRTP,

a network-wide time synchronization protocol for modular robots with neighbor-

to-neighbor communications. Our protocol achieves its performance by combin-

ing several mechanisms: central time-master election, selection of the most suited

mechanism to compensate for communication delays depending on the target sys-

tem and clock skew compensation using linear regression. MRTP is strongly in-

spired by time synchronization protocols proposed in ad-hoc wireless sensor net-

works (the Timing-sync Protocol for Sensor Networks (TPSN) [Ganeriwal et al.,

2003], the Flooding Time Synchronization Protocol (FTSP) [Maróti et al., 2004]

and the PulseSync protocol [Lenzen et al., 2009]). We evaluate our protocol on

the Blinky Blocks system both on hardware and through simulations. Experimen-

tal results show that MRTP can potentially manage real systems composed of up

to 27,775 Blinky Blocks. We show that our protocol is able to keep a Blinky Blocks

system synchronized to a few milliseconds, using few network resources at runtime,

even though the Blinky Blocks hardware clocks exhibit very poor accuracy and res-

olution. We compare MRTP to existing synchronization protocols ported to fit our

system model. Simulation results show that MRTP exhibits on average a lower

maximum pairwise synchronization error than the most precise compared protocols

while sending more than half less messages in compact systems.

• Cylindrical-Catoms Self-Reconfiguration (C2SR) algorithm7: We propose

C2SR, a self-reconfiguration algorithm for rolling cylindrical modules arranged in

a two-dimensional vertical hexagonal lattice. Our algorithm is a parallel, asyn-

chronous and decentralized distributed algorithm to self-reconfigure robots from an

initial configuration into a goal one. It is able to manage almost any kind of initial

and goal compact shapes (i.e., without any hole). Although our work is focused on

6Some examples of MRTP running on the Blinky Blocks platform are available online in video at https:

//youtu.be/66D12ESGc98 and https://youtu.be/X6QzivsmJBo
7Some examples of self-reconfiguration with C2SR are available online in video at https://youtu.be/

XGnY-oS4Nw0

https://youtu.be/66D12ESGc98
https://youtu.be/66D12ESGc98
https://youtu.be/X6QzivsmJBo
https://youtu.be/XGnY-oS4Nw0
https://youtu.be/XGnY-oS4Nw0

1.3. OUTLINE 9

the algorithm, we carry out our analysis with respect to the hardware constraints of

the 2D Catoms. C2SR extends the algorithm in [Rubenstein et al., 2014] proposed

for swarm robotic systems which assume different mechanical constraints. C2SR

is a step toward realizing programmable matter. We evaluate our algorithm through

simulation of large ensembles composed of more than ten thousand modules. We

show the effectiveness of our algorithm and study its performance in terms of com-

munications, movements and execution time. Our observations indicate that the

number of communications, the number of movements and the execution time of

our algorithm are highly predictable. Furthermore, we observe execution times that

are linear in the size of the goal shape.

1.3/ OUTLINE

This dissertation is organized as follows. In Chapter 2, we present the context of this

thesis, including the specific features of our target modular robotic systems. Research

problems are then addressed in three separate chapters. In Chapter 3, we present our

work on network centrality. Afterwards, we develop our work on time synchronization

in Chapter 4. Our work on self-reconfiguration is presented in Chapter 5. These three

contribution chapters are organized in a similar way. First, we briefly explain the research

problem once more and then state the system model. Then, we provide a comprehensive

overview of the state of the art on that problem. After that, we detail our contribution(s)

and subsequently present experimental results before concluding the chapter. Finally, in

Chapter 6, we summarize the contributions of this thesis and propose some directions for

future work.

2

CONTEXT

Contents

2.1 Introduction . 12

2.2 Modular Robotics . 12

2.2.1 Definition . 12

2.2.2 Advantages over Traditional Robotics 12

2.2.3 Examples of Potential Applications 13

2.2.4 Existing Systems and Classification 15

2.2.5 Network Properties of Large-Scale LMRs 16

2.3 Research Environment: Evaluation Hardware and Simulation Tools 18

2.3.1 Blinky Blocks . 19

2.3.2 2D Catoms . 20

2.3.3 VisibleSim . 21

2.4 Conclusion . 22

11

12 CHAPTER 2. CONTEXT

2.1/ INTRODUCTION

In this chapter, we provide a contextual overview of the modular robotic systems and their

applications. In this dissertation, we primarily target large-scale ones (LMRs), namely

the large-scale lattice-based modular robots composed of resource-constrained identical

modules that communicate together using only neighbor-to-neighbor communications.

This chapter offers a network characterization of those systems along with a discussion

of the challenges involved in the design of distributed algorithms for such systems. Finally,

we present our research environment, i.e., the hardware and simulation tools we use to

apply and evaluate our research.

2.2/ MODULAR ROBOTICS

In this section we introduce modular robotics. We first define this concept. Then, we

present the advantages offered by modular robotic systems. Afterwards, we show some

applications based on modular robotic systems. We then offer a classification of existing

modular robotic systems. Finally, we discuss the network properties of LMRs.

2.2.1/ DEFINITION

Over the past decades, modular robotics has emerged as a new way to design robotic

systems. A modular robot is formed from independent, intelligent and communicating

modules which act as a whole ensemble. It forms a distributed system in which modules

cooperatively self-organize, perform specific tasks and achieve common goals. Modular

Self-Reconfigurable Robot (MSR) can rearrange their global shape to adapt to a task or

a given situation.

2.2.2/ ADVANTAGES OVER TRADITIONAL ROBOTICS

Compared to traditional robotic systems, MSRs have four main advantages: versatility,

robustness, extensibility and low cost. The versatility property directly comes from the

fact that an MSR can self-adapt to a specific, possibly unexpected, situation by rearrang-

ing its global morphology. This enables modules to perform a wide variety of different

tasks, including tasks not even envisaged at the time of designing. Modules are inter-

changeable both inside a robot and potentially with some surrounding systems. Hence,

modular robotic systems are more robust, they may self-repair in case of module failure

by discarding or replacing faulty modules on the fly. Moreover, modular robotic systems

can be scaled up by adding/deleting modules when necessary. In addition, they also

have economic advantages as a wide variety of different and complex systems can be

built from mass-produced modules.

2.2. MODULAR ROBOTICS 13

2.2.3/ EXAMPLES OF POTENTIAL APPLICATIONS

This section presents some interesting potential applications of modular robotic systems.

To the best of our knowledge, none of the presented applications has been physically

realized yet.

Conveyance System The Smart Blocks [Piranda et al., 2013] project aims to build a

large distributed modular system to convey small and fragile objects, by attaching many

modules together, each one equipped with a conveyance surface (see Figure 2.1). This

surface can be deployed in inhospitable and remote locations (e.g., a remote planet,

hazardous areas of a nuclear plant, etc.). The conveying system makes it possible to

sort objects and transport them to different locations according to some criteria (e.g.,

shape, color, etc.). Moreover, if a module fails, the system can autonomously self-repair

by replacing the faulty module by a functional one.

Figure 2.1: Smart conveyance surface formed from Smart Blocks. The

system sorts the objects it distributively conveyes. Purple circles and

green hexagons are transported toward two different holes.

Programmable Matter Programmable Matter (PM) is a matter that can change its phys-

ical properties in response to external and programmed events. Different approaches

and technologies to realize PM are envisioned in the literature, e.g., PM using 4D print-

ing [Tibbits et al., 2014], quantum wellstone [McCarthy, 2000], DNA structures [Ke et al.,

2012, Kim et al., 2011] and robotic-based approaches. The latter include the use of self-

folding robots [Hawkes et al., 2010], tendon-driven robotic chains [Lasagni et al., 2016],

robotic materials [McEvoy et al., 2015], swarm robotic systems [Rubenstein et al., 2014]

and modular self-reconfigurable robots [Goldstein et al., 2004, Gilpin et al., 2010].

In the Clay-Electronics (Claytronics) project [Goldstein et al., 2004], it is envisioned to

use large-scale micro modular robotic systems, composed of up to millions of modules

called Claytronics Atoms (Catoms), to build PM. Every Catom is a mass-producible micro

robot that will have very restricted (i.e., strictly mandatory) functionalities. PM promises

synthetic reality and has a wide range of applications (e.g., sending/downloading copies

of physical objects, morpheable objects reshapable at will, injectable surgical instruments,

3D interactive life-size TV, etc.). It will enable people not only to control their environment

but also to shape it.

14 CHAPTER 2. CONTEXT

As shown in Figure 2.2, PM offers, for instance, a drastic evolution of the computer-aided

design process. In this vision, a computer holds a virtual representation of an object that

can be transferred to some programmable matter in order to obtain a physical represen-

tation of that object. The virtual and the physical representations remain consistent at

all times, i.e., if one changes, the other reflects this change. The user can modify the

virtual representation and it will have an immediate impact on the physical representation

of the object considered. He can also manually change the physical representation as

he whishes, which will immediately update the virtual representation. Hence, designers

will be able to simultaneously design a model and a prototype of their object, reducing

significantly the time to prototype. Furthermore, the matter can be endlessly re-used and

reshaped, thus this process will also minimize the waste of resources.

Figure 2.2: Programmable matter as a cyber-physical conjugation to

enhance the computer-aided design process (from [Bourgeois et al.,

2016]). The cyberized representation of a cup is transferred to the mat-

ter composed of hundreds of thousands of modules. The physical rep-

resentation is then manipulated and manually modified. The cyberized

representation remains consistent with the physical one and reflects the

change.

Space Exploration Modular robotic systems can be used to overcome volume limita-

tions in spacecraft during space exploration missions as explained in [Yim et al., 2009].

Modules can be packed in a dense way in order to meet vessel volume constraints and

deploy at will during a mission to perform different tasks. Moreover, MSR-based objects

can potentially self-repair, thus limiting the risk of a mission aborting in case of critical-

equipment failure.

Search and Rescue Modular robotic systems may also be used in search and rescue

operations in collapsed buildings, as explained in [Yim et al., 2009]. For instance, an MSR

system can transform its shape to sneak in ruins and pass through narrow passages in

2.2. MODULAR ROBOTICS 15

order to locate victims. Once a victim is found, the robot can emit a signal with its position

and take the form of a shelter to protect the victim until rescued.

2.2.4/ EXISTING SYSTEMS AND CLASSIFICATION

Existing modular robotic systems differ by their architecture (e.g., lattice, chain, mo-

bile), their communication model (e.g., neighbor-to-neighbor communication, global com-

munication through a shared medium, hybrid model), their module and overall scale

(nanometer, micrometer, millimeter, centimeter, meter, etc.), their sensing and actuation

(self-reconfigurable, manually reconfigurable, etc.) capabilities, etc. A comprehensive

overview of the existing modular robotic systems can be found in surveys [Chennareddy

et al., 2017, Ahmadzadeh et al., 2016, Yim et al., 2007]. The complexity that lies in the

coordination of large-scale modular robotic systems depends on these hardware param-

eters [Yim et al., 2009].

In lattice-based modular robots, modules are arranged in some regular 2-dimensional

or 3-dimensional lattice structures. In chain-based structures, modules are connected

together in a serial manner forming an articulated chain or tree. By contrast, in mobile

architectures, modules are free to move in the continuous space and can dock together

to form lattice, chain or free structures.

In the neighbor-to-neighbor communication model, modules communicate only with ad-

jacent modules. This communication model is fundamentally different than the global

communication model where all modules can directly communicate together, for exam-

ple, through a global bus. The later approach works well in small networks, but it is not

scalable. Indeed, packet collisions may frequently occur. Moreover, if the shared com-

munication medium is a bus, the number of hosts it can support is limited. Some hybrid

approaches have been proposed but they are not common in modular robotics and com-

plex to implement in a resource-constrained environment.

In this dissertation, we focus our attention on lattice-based modular robots composed of

identical resource-constrained modules that communicate together using only neighbor-

to-neighbor communications. We name this class of modular robotic systems LMRs. As

shown in [Bourgeois et al., 2016], LMRs are particularly suitable to realize large-scale en-

sembles of modular robotic systems (e.g., Claytronics PM). Moreover, the class of mod-

ular robots considered captures a variety of existing systems, e.g., the Telecubes [Suh

et al., 2002], the Miche [Gilpin et al., 2008] and the Distributed Flight Array [Oung et al.,

2011] modular robots, some of the self-assembling systems used in [Bhalla et al., 2007]

and most of the modular robotic systems developed in the Smart Blocks and the Claytron-

ics projects. Figure 2.3 shows some LMRs developed in these two projects, namely the

Smart Blocks, the millimeter-scale 2D Catoms, the Blinky Blocks and the 3D Catoms [Pi-

randa et al., 2016b]. These modular robots are respectively arranged in the square, the

hexagonal, the simple cubic, and the face-centered cubic lattices.

16 CHAPTER 2. CONTEXT

Figure 2.3: Different lattice arrangements associated with modular

robotic systems developed in the Smart Blocks and the Claytronics

projects. For a lattice L, ∆L denotes its coordination number, i.e, the

maximum number of modules to which a module can be connected.

2.2.5/ NETWORK PROPERTIES OF LARGE-SCALE LMRS

In this section, we present key network characteristics of large-scale LMRs and discuss

the challenges implied by these properties in the design of efficient distributed algorithms

for large-scale ensembles.

• Restricted Resources: Nodes are low-cost small electronic devices. Thus, they

are equipped with limited capabilities. They have scarce computation, memory and

energy resources. They may also have, for instance, low-precision clocks making

distributed real-time control a difficult task.

• Asynchrony: Modules of LMRs are inherently asynchronous. Indeed, there is no

global clock and every module processes independently of the others. In particular,

2.2. MODULAR ROBOTICS 17

communication between modules is asynchronous.

• Neighbor-to-Neighbor Communications: In the neighbor-to-neighbor commu-

nication model, a module uses a separate network interface and communication

channel for each of its neighbors. The network has neither local nor global shared

broadcast medium. A remarkable advantage of the absence of shared communi-

cation medium is that we do not have to deal with potential network collisions. In

our model, a module can communicate simultaneously with all its neighbors. More-

over, in order to locally broadcast a message, a module has to send an individual

copy of that message to all neighbors. Although trivial, these two properties have to

be taken into account when designing algorithms at risk of overwhelming the net-

work. For instance, if all nodes simultaneously start a network flooding operation, a

node may generate messages at a higher rate than it can send them. A node may

receive a message per neighboring node in a short amount of time, thus adding

several messages in the channel to each of its other neighbors. A short amount of

time later, the same node might again receive a message from all its neighbors and

add messages in its outgoing message queues, although only a part of the mes-

sages previously inserted into the outgoing queue has been sent. Thus, messages

progressively pile up. If this situation occurs several times, the outgoing queues

keep growing and the network gets congested. This issue is further discussed in

Section 3.5.1.2.

• Sparse Networks: We demonstrate in Appendix A that LMRs form sparse net-

works, i.e., m ≪ n2, where n is the number of modules in the system and m the

number of links in the network. Moreover, we show that the number of links is Θ(n).

We compare lattice-based networks to small-world networks [Watts et al., 1998]

(e.g., the Internet network [Jin et al., 2006]) and to wireless ad-hoc networks (e.g.,

wireless sensor networks, multi-robot networks, etc.). Since many large real-world

networks are small-world networks, it is legitimate to consider them for compar-

ison. Wireless ad-hoc networks are highly spatially dependent, like our class of

networks. Indeed, in wireless ad-hoc networks, nodes can only communicate with

some neighboring nodes within some limited range. Note that wireless ad-hoc net-

works can fall in the class of lattice-based networks if they are deployed in a lattice

structure. Lattice-based networks are sparser than small-world networks that have

Ω(n log(n)) edges [Watts et al., 1998]. Wireless ad-hoc networks can be sparse or

dense, depending on the deployment environment (area/volume, obstacles, etc.),

the deployment density and the node communication range. An example of sparse

sensor network is the 46-hop network of 64 sensors deployed in a long-linear topol-

ogy on the Golden Gate Bridge, in San Francisco (United States), in order to monitor

the effects of wind and earthquakes on the structure [Kim et al., 2007].

• Large Hop Distances: In systems where nodes use neighbor-to-neighbor com-

munications, the node spatial arrangement directly reflects the connectivity graph.

Modular robotic systems often have a bounded number of connectors, i.e., of po-

tential neighbors. As a direct consequence, large-scale modular robotic ensem-

bles tend to exhibit large hop distances. Due to the regular tiling of the space

in lattices, networks of LMRs obey certain geometric rules. In regular lattice net-

works, the typical distance between two nodes is ∼ n
1

DL [Barthélemy, 2011] where

18 CHAPTER 2. CONTEXT

DL is the geometric dimension of the lattice L. Thus, in lattice-based networks,

i.e., lattice networks with potential holes, this distance is lower bounded by Ω(n
1

DL),

while in small-world networks, this distance is ∼ log(n) [Barthélemy, 2011]. In Ap-

pendix A, we provide exact bounds on the radius and the diameter of these networks

based on their lattice type and the number of modules in the system. Moreover, we

demonstrate that the radius and the diameter of lattice-based networks are lower

bounded by Ω(3
√

n). Small-world networks have typically short distances between

arbitrary pairs of nodes due to the presence of a few long-range edges. As a con-

sequence, small-world networks tend to have a small diameter. In lattice-based and

sparse wireless ad-hoc networks, such long-range edges do not exist. Thus, these

networks tend to have a larger average distance and a larger diameter. These

phenomena are accentuated as the number of nodes in the network increases.

Studies indicate that the diameter of the Internet is around 30 hops [Latapy et al.,

2006, Leguay et al., 2005, Cardozo et al., 2012]. This is corroborated by the sug-

gested values for Time-To-Live (TTL) for Internet Protocol (IP) packets. The TTL

should be twice the diameter of the Internet [Braden, 1989] and the actual value

recommended is 64 [Reynolds et al., 1994, The Internet Assigned Numbers Au-

thority (IANA), 2016]. As shown in Figure 2.4, systems with a million 3D Catoms

have a diameter of at least 132 hops, while systems with 100 million 3D Catoms

have a diameter of at least 620 hops. Similarly, Blinky Blocks systems have a large

diameter, e.g., a 40,000 Blinky Blocks system has a diameter greater than 30 hops.

Thus, a 40,000 Blinky Blocks system which fits in a 1.4 m3 cube, would have a di-

ameter larger than the entire Internet that spans the whole world. It is crucial to

take into account the large diameter and large average distance to design efficient

and effective distributed algorithms for large-scale modular robotic systems. For

example, communication over a large number of hops causes latency and reliability

issues. Let us consider time synchronization and data sharing algorithms. These

algorithms are, for instance, required for real-time responsive programmable matter

and to distribute, store and access geometry data for self-reconfiguration. How-

ever, these algorithms are challenging to design for such large-diameter and large-

average-distance systems. Unpredictable delays (due, for example, to queueing or

retransmissions) accumulate every hop, which tends to disturb the time synchro-

nization process and decrease the achievable synchronization precision. Moreover,

in data sharing algorithms, lookup latency may be extremely long if it involves mes-

sages that have to travel a large number of hops.

2.3/ RESEARCH ENVIRONMENT: EVALUATION HARDWARE AND

SIMULATION TOOLS

This section presents the hardware and simulation tools we use to apply and evaluate the

contributions introduced in this thesis. We consider the Blinky Blocks [Kirby et al., 2011]

and the 2D Catoms [Karagozler et al., 2009, Karagozler, 2012] modular robotic systems.

We first present technical features of these two systems.

2.3. RESEARCH ENVIRONMENT: EVALUATION HARDWARE AND SIMULA... 19

 1

 10

 100

 1000

101 102 103 104 105 106 107 108

D
ia

m
e
te

r
(h

o
p
)

Number of nodes

UB
Square Lattice LB

Hexagonal Lattice LB
Simple Cubic Lattice LB

Face-Centered Cubic Lattice LB

Figure 2.4: Diameter bounds versus the number of nodes in the network

for the different lattices considered. The terms “LB” and “UB” respec-

tively stand for “lower bound” and “upper bound”.

In the next chapters, we evaluate our algorithms using both hardware prototypes and

simulations. We have at our disposal several dozens of hardware Blinky Blocks to perform

experimental evaluations. In order to carry out evaluations on 2D Catoms systems and

on large-scale Blinky Blocks systems, we use VisibleSim [Dhoutaut et al., 2013], our

simulator of modular robotic systems. This section also presents VisibleSim.

2.3.1/ BLINKY BLOCKS

Blinky Blocks are centimeter-size blocks that were developed in the Claytronics project.

Figure 2.5 shows the details of a single block and an example of program running on an

ensemble of hardware Blinky Blocks. We have at our disposal a few dozen Blinky Blocks

to evaluate our algorithms on real hardware.

Blocks are attached to each other using magnets. Each module has its own com-

putational power provided by an ATMEL ATxmega256A3-AU 8/16-bits 32-MHz micro-

controller having 256KB ROM and 16KB RAM [ATMEL, 2013], as well as sensors and

actuators such as RGB leds to glow with different colors according to the programmer’s

will.

All the blocks of a system execute the same program. A single block is connected to a

power supply. Power is distributed through the system using dedicated pins. A block can

have up to 6 neighbors and can communicate with them through serial links on the block

faces. Ensembles of Blinky Blocks are manually reconfigurable at will. Blinky Blocks use

full-duplex neighbor-to-neighbor communications over serial links controlled by Universal

Asynchronous Receivers/Transmitters (UARTs) configured with a bitrate of 38.4 kBauds.

20 CHAPTER 2. CONTEXT

Figure 2.5: On the left, dissection of a Blinky Blocks hardware proto-

type. On the right, an ensemble of 58 Blinky Blocks hardware proto-

types running the Rainbow program (from [Kirby et al., 2011]). In the

Rainbow program, blocks are colored depending on their level in the

structure.

Modules exchange frames that contain up to 17 bytes of data. Furthermore, a distributed

logging system enables all modules to send information to a computer connected to the

system using a serial connection.

More details on the Blinky Blocks communication system along with the characteristics of

the block hardware clocks are provided in Section 4.6.

2.3.2/ 2D CATOMS

2D Catoms are millimeter-scale cylindrical robots [Karagozler et al., 2009, Karagozler,

2012] developed in the Claytronics project. 2D Catoms have been partially validated with

the realization of a hardware prototype (see Figure 2.6).

Figure 2.6: 2D-Catom prototype (from [Karagozler, 2012]).

A 2D Catom consists of a 6-mm long-and 1-mm-diameter cylindrical shell. A high-voltage

CMOS die is attached inside the tube. The chip includes a storage capacitor and a

simple logic unit. The tube has electrodes used for power transfer, communications and

actuation.

2.3. RESEARCH ENVIRONMENT: EVALUATION HARDWARE AND SIMULA... 21

In our work, we assume the power is spread from a powered floor through the ensemble

using neighbor-to-neighbor power transfer. We consider that 2D Catoms are organized

into a horizontal pointy-topped hexagonal lattice where modules have up to six neighbors.

Modules can communicate together using neighbor-to-neighbor communications.

Moreover, a 2D Catom can roll Clockwise (CW) or Counter-Clockwise (CCW) around a

stationary module. During an atomic move, a module rotates 60, going from one cell of

the lattice to its adjacent cell. We assume that a 2D Catom has only the capability to

lift itself, it cannot carry or push other modules. In the current design, a 2D Catom is

theoretically able to perform a revolution in 1.67 seconds or 3.35 seconds [Karagozler,

2012], which corresponds to an average speed1 of 1.88 mm · s−1 or 0.94 mm · s−1.

2.3.3/ VISIBLESIM

The VisibleSim simulator [Dhoutaut et al., 2013] is a discrete-event simulator for modular

robots developed in our team (see Figures 2.7 and 2.8).

Figure 2.7: Screenshot of VisibleSim simulating the execution of the

ABC-CenterV1 algorithm (see Section 3.7) in an ensemble of 500

Blinky Blocks.

1Let tr and tu respectively denote the time for a complete revolution and the time for a unit movement. In

a revolution, a d-millimeter diameter cylindrical catom horizontally travels πd millimeters. Hence, v = dπ
tr

. For

tr = 1.67s, v = dπ
tr
= 1.88mm · s−1. In a unit movement, this catom travels 1

6
× πd = 0.523mm. Thus, tu =

0.523
v

.

Note that tu can be computed without determining v. Indeed, tu = tr × 60
360

. For tr = 1.67s, tu = 0.278s.

22 CHAPTER 2. CONTEXT

Figure 2.8: Screenshot of VisibleSim simulating the execution of the

Cylindrical Catoms Self-Reconfiguration (C2SR) algorithm in an en-

semble of 1073 2D-Catoms (see Section 5.4).

VisibleSim supports a variety of different modular robotic systems (e.g., the Blinky Blocks,

the 2D Catoms, the Smart Blocks, the 3D Catoms). We use VisibleSim to simulate the

behavior of algorithms on modular robotic ensembles and also to benchmark their perfor-

mance in terms of execution time, communications, number of motions, etc.

VisibleSim enables to perform experiments on large-scale ensembles as it can handle

simulations with dozens of thousands of modules. VisibleSim also allows us to carry

out experiments on modular robotic systems for which we do not have fully functional

hardware prototypes at our disposal (e.g., the 2D Catoms).

To properly simulate system asynchrony, VisibleSim can be run with variable motion and

communication models. The simulation models used in the evaluation of the contributions

of this thesis are chapter-specific and thus detailed later on in the evaluation section of

the different contribution chapters.

2.4/ CONCLUSION

In this chapter, we provide a short overview of modular robotics. In addition, we present

the hardware and simulation tools we use to apply and evaluate the contributions intro-

duced in this thesis.

Moreover, we show that large-scale LMRs form asynchronous, low-degree, sparse, large-

average-distance and large-diameter networks. In addition, units have limited computa-

tion, memory and energy resources. It is important to take into account these properties

to design efficient and effective distributed algorithms for large-scale ensembles. In the

next chapter, we propose algorithms to distributively elect a central module that is well

located to communicate with all the others.

3

CENTRALITY-BASED LEADER

ELECTION

Contents

3.1 Introduction . 25

3.2 System Model and Assumptions . 27

3.3 Network Centrality Metrics and Definitions 28

3.3.1 Definitions . 28

3.3.2 Properties and Applications . 30

3.4 State of the Art . 32

3.4.1 Exhaustive Methods . 32

3.4.2 Methods for Specific Classes of Graphs 34

3.4.3 Sampling-based Methods . 35

3.4.4 Probabilistic-Counter-based Methods 37

3.4.5 Other Approaches . 37

3.4.6 Summary . 38

3.5 Preliminary Materials on Network Traversal and Tree Algorithms . . 40

3.5.1 Breadth-First Network Traversal and Spanning-Tree Construction 40

3.5.2 Leader Election based on Network Traversal Algorithms 43

3.5.3 Broadcast and Convergecast on a Spanning Tree 46

3.5.4 Global Data Diffusion and Global-Aggregate Computation 47

3.5.5 Robustness to Module Mobility and Faults 49

3.5.6 Summary of the Primitives and Notation 50

3.6 k-BFS SumSweep Framework . 50

3.6.1 Description at a Glance . 50

3.6.2 Distributed Implementation . 52

3.6.3 Termination Proof and Complexity Analysis 54

3.7 ABC-Center . 54

3.7.1 Description at a Glance . 55

3.7.2 ABC-CenterV1: Distributed Implementation 57

3.7.3 ABC-CenterV2: Distributed Implementation 61

3.8 Probabilistic-Counter-based Central-Leader Election Framework . 63

23

24 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

3.8.1 Probabilistic Counters . 63

3.8.2 Description at a Glance . 64

3.8.3 Distributed Implementation . 65

3.8.4 Termination Proof and Complexity Analysis 66

3.9 Evaluation . 67

3.9.1 Evaluation of ABC-CenterV1 on Hardware 68

3.9.2 Simulation Model and Fidelity . 70

3.9.3 Large-scale Evaluation and Comparison to Existing Algorithms . 71

3.10 Discussion . 76

3.11 Conclusion . 78

3.1. INTRODUCTION 25

3.1/ INTRODUCTION

In this chapter, we present our work on network centrality. Distributed systems are com-

posed of independent connected nodes that coordinate their activities through commu-

nications in order to achieve common goals. Coordination in distributed systems often

requires a single node to act as a leader and to perform some specific roles in the sys-

tem. We address the issues of effectively and efficiently electing an approximate-centroid

node or an approximate-center node in distributed embedded systems.

The centroid is the set of nodes of minimum average distance to the others while the

center is the set of nodes of minimum maximum distance to the others. These sets

of nodes exhibit interesting properties for distributed system applications. For instance,

centroid nodes are ideal nodes for hosting query-oriented service providers. Indeed, as-

suming that queries are likely to originate from any node in the network, placing service

providers at the centroid minimizes the expected traveling distance for queries and an-

swers, which implies low average time delays and message costs. To elect such nodes

in an arbitrary asynchronous network, classical distributed algorithms require complete

information about the network topology. Therefore, these algorithms are not scalable and

not suitable for distributed embedded systems with limited computational, memory and

energy resources.

Since modular robots form shapes, a first intuition is to use a geometric approach by

computing the centroid of the configuration. In Figure 3.1, the geometric centroid is the

point C that stands in the middle of the object. Blocks in red represent the set of blocks

that minimizes the worst-case network distance to all the other blocks. As we can see,

the geometric centroid corresponds to a block in red for the grid shape and the S-line

shape. However, for the torus, there is no block present at the location of the geometric

centroid and all the blocks have the same worst-case distance. The case of the G-shape

is even worse, as the geometric centroid of the shape leads to the worst case in terms of

network distance. The S-line and G-line shapes are similar in the sense that they form a

topological line and the block that minimizes the worst-case network distance stands in

the middle of this line. There is an obvious mismatch between geometrical distances and

network ones. Therefore, we need to consider network topologies instead of geometrical

shapes and to use computations based on network distances instead of geometric ones.

Note that geometrical information could potentially still be used as a hint to start central

node computation. Nevertheless, we decided to not use such information, in order to

design generic distributed algorithms that do not rely on geometry.

In this chapter, we consider a rather general system model. We assume a distributed sys-

tem formed from an asynchronous non-anonymous point-to-point unweighted and undi-

rected network in which nodes can only communicate with their immediate neighbors

(neighbor-to-neighbor communication model). The complete system model is defined in

Section 3.2.

The contribution of this chapter is to propose a collection of both efficient and effective dis-

tributed algorithms to elect approximate-centroid and approximate-center nodes in asyn-

chronous distributed systems. We propose the ABC-Center algorithm, the k-BFS Sum-

26 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

Figure 3.1: Difference between the geometric centroid (represented by

C) and the Jordan center (in red). The Jordan center is defined as the

set of nodes of minimum maximum distance to the others (see Sec-

tion 3.3).

Sweep framework and the Probabilistic-Counter-based Central-Leader Election (PC2LE)

framework. Frameworks are declined in two versions, one for approximate-center node

election, another for approximate-centroid node election. Our algorithms and frameworks

do not require any prior knowledge of the network, have a well-defined termination cri-

terion, converge in a reasonable amount of time and are memory-efficient. The source

code of our algorithms is available online1,2.

In the k-BFS SumSweep, nodes compute their partial centrality value to a subset of root

nodes composed of a random initial node and k − 1 most external nodes. Root nodes

are consecutively selected using the SumSweep approach that was originally proposed

in the sequential algorithm for the exact radius and diameter computation of external

graphs [Borassi et al., 2014]. Distributed Breadth-First Searches (BFSes) are used for

distributed Single-Source Shortest Paths (SSSP) computations. The main idea behind

our framework is that central nodes are first and foremost central to the most external

nodes.

ABC-Center extends the sequential Minimax [Handler, 1973] and 4-Sweep [Crescenzi

et al., 2013] algorithms3. ABC-Center identifies an extreme path and recursively isolates

midpoints on it until electing a single module. The main idea of ABC-Center is that central

nodes lie in the middle of a diameter path. ABC-Center may be more convenient to use

than the k-BFS framework as ABC-Center converges by itself, i.e., its termination does

not rely on any input parameter.

PC2LE is based on the input-graph analysis algorithms [Kang et al., 2011a, Kang et al.,

2011b] and the distributed synchronous algorithm [Garin et al., 2012] which use low-

1GitHub repository that hosts our algorithm codes for simulations: https://github.com/nazandre/thesis
2Official Blinky Blocks firmware repository in which some of our algorithm codes are hosted: https:

//github.com/claytronics/oldbb. At the time of submitting the final version of this manuscript, the k-BFS Sum-

Sweep and ABC-CenterV2 algorithms have been implemented for hardware Blinky Blocks.
3Some examples of ABC-Center executions on Blinky Blocks systems are available online in video at

https://youtu.be/QxK12UAq42o and https://youtu.be/PYnJn6tXKa8

https://github.com/nazandre/thesis
https://github.com/claytronics/oldbb
https://github.com/claytronics/oldbb
https://youtu.be/QxK12UAq42o
https://youtu.be/PYnJn6tXKa8

3.2. SYSTEM MODEL AND ASSUMPTIONS 27

memory-footprint probabilistic counters (e.g., Flajolet-Martin [Flajolet et al., 1985], Hy-

perLogLog [Flajolet et al., 2007]) to estimate node centrality measures. In PC2LE, an

estimated centrality value is computed for all nodes. PC2LE is approximately equivalent

to running a BFS from every node, but at less expense in terms of computations and

communications.

To test our algorithms and frameworks, we apply them to the Blinky Blocks (see Sec-

tion 2.3.1). Although we use modular robots to present and evaluate our algorithms, they

work on all distributed systems that satisfy the assumptions detailed in Section 3.2. We

evaluate our algorithms both on hardware prototypes and through simulations. Experi-

mental results show that our algorithms scale well accuracy, execution time, number of

messages and memory usage. To the best of our knowledge, our algorithms are the most

precise distributed algorithms to elect an approximate centroid or an approximate center

in our target systems, with both a reasonable convergence time and a limited storage

cost.

This chapter is organized as follows. In Section 3.2, we define the system model. Af-

terwards, we provide a comprehensive overview of the existing centrality measures and

definitions. Then, we discuss the related work in Section 3.4. In Sections 3.6, 3.7 and 3.8

we respectively detail the k-BFS SumSweep framework, the ABC-Center algorithm, and

the PC2LE framework. In Section 3.9, we provide experimental results. In Section 3.11,

we conclude this chapter.

3.2/ SYSTEM MODEL AND ASSUMPTIONS

System Model In this chapter, we consider distributed systems forming asynchronous

non-anonymous point-to-point unweighted and undirected networks in which nodes can

only communicate with their immediate neighbors (neighbor-to-neighbor communication

model). Every node vi has a unique identifier, idvi
. We assume that communication

channels are FIFO (first in first out) and bidirectional , i.e., messages are received in

the order in which they have been sent and the channels can carry messages in both

directions (as in Section 1.1.1 of [Raynal, 2013]). Similarly to [Awerbuch, 1985], we further

consider that messages have a bounded length and may carry only a limited amount of

information. Each message sent by a node to its neighbor arrives within some finite but

unpredictable time.

Distributed algorithms often involve a resource-performance trade-off (e.g., memory us-

age, execution time, communication). We make design choices considering that our al-

gorithms target large-scale Distributed modular robotic ensemble composed of resource-

constrained identical modules that are organized in a lattice structure and communicate

together using only neighbor-to-neighbor communications. (LMR) ensembles.

Notation These systems can be modeled by an undirected and unweighted graph of

inter-connected entities G = (V, E), where V is the set of vertices (representing the nodes),

E the set of edges (representing the connections), |V | = n, the number of vertices, |E| = m,

28 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

the number of edges. d(vi, v j) refers to the distance between vertices vi and v j, i.e., the

number of edges on a shortest path between vi and v j. The diameter, d, of the network

is defined as d = max
vi∈V

max
v j∈V

d(vi, v j). ∆ is the maximum network degree, i.e., the maximum

number of neighbors that a node has in the network.

Nvi
(h) represents the set of nodes within distance h hops from node vi and Nh

vi
represents

the set of nodes exactly at distance h hops from vi. We assume that every node vi has a

unique identifier idvi
and maintains a consistent list of its immediate neighbors N1

vi
using

an external link-layer protocol. A message loss is considered to be a link failure and thus

a neighbor departure.

Note on Complexity Calculation Unless otherwise mentioned, memory complexities

are expressed in terms of machine words rather than in bits. Hence, we consider that a

variable of a primitive data type (integer, boolean, etc.) uses O(1) memory space. The

number of values that can be encoded using variables may, however, induce limitations

on the system size. For example, if node identifiers are encoded on w bits, the system

may contain at most 2w nodes.

The memory usage of a distributed algorithm is composed of both its application layer

memory requirements and the space it needs to store messages. For instance, if during

the execution of an algorithm that uses O(1) space at the application layer, a module may

simultaneously receive or send up to one message from/to all neighbors, this algorithm

has a memory complexity of O(∆).

Unless explicitly mentioned, we take into account message pileups in time and memory

calculations.

3.3/ NETWORK CENTRALITY METRICS AND DEFINITIONS

Graph and network centrality have been extensively studied in various domains such as

in biology to identify the oldest metabolites [Wuchty et al., 2003], in social networks to find

the most influential persons [Hanneman et al., 2005], in computer networks to elect the

most suitable root node to start message broadcasting [Korach et al., 1984], etc. Many

metrics and definitions of centrality have been proposed. This section offers an overview

of the most commonly used and their possible applications.

3.3.1/ DEFINITIONS

The Jordan center [Wasserman, 1994] is the set of all nodes of minimum eccentricity,

where the eccentricity ecc(vi) of a node vi is the maximum distance from vi to any other

node (see Equations (3.1),(3.2) and (3.3)). The inverse of the eccentricity is sometimes

called the graph centrality [Lehmann et al., 2003]. In this work, we use the term center to

refer to the Jordan center.

3.3. NETWORK CENTRALITY METRICS AND DEFINITIONS 29

ecc(vi) = max
v j∈V

d(vi, v j) (3.1)

= min argmax
r∈N

|Nvi
(r)| (3.2)

Jordan Center = {vc ∈ V | ecc(vc) = min
vi∈V

ecc(vi)} (3.3)

The centroid [Dutot et al., 2011] is the set of all nodes of minimum farness, where the

farness f ar(vi) of a node vi is the sum of the distances to all the other nodes (see Equa-

tions (3.4) and (3.8)). The farness can be equivalently computed using the size of the sets

of nodes at increasing hop distances [Kang et al., 2011a] (see Equation (3.5) and (3.6)).

The centroid can be equivalently defined as the set of all nodes of maximum closeness,

where the closeness clo(vi) [Freeman et al., 1979] of a node vi is the inverse of its farness

(see Equations (3.7) and (3.9)). The centroid can also be seen as the set of all nodes

of minimum average distance to the others. The centroid is also called the barycen-

ter [Mamei et al., 2005] or the median [Korach et al., 1984] of the graph.

f ar(vi) =
∑

v j∈V
d(vi, v j) (3.4)

=

d∑

r=1

r × |Nr
vi
| (3.5)

=

d∑

r=1

r × (|Nvi
(r)| − |Nvi

(r − 1)|) (3.6)

clo(vi) =
1

f ar(vi)
(3.7)

Centroid ={vc ∈ V | f ar(vc) = min
vi∈V

f ar(vi)} (3.8)

={vc ∈ V | clo(vc) = max
vi∈V

clo(vi)} (3.9)

(3.10)

The center of gravity or the center of mass [Dutot et al., 2011] is the set of all nodes

of minimum weight, where the weight we(vi) of a node vi is the average of the squared

distances to all the other nodes (see Equations (3.11) and (3.12)). In a graph with positive

distances, the center of mass is equivalent to the centroid.

30 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

we(vi) =
1

n

∑

v j∈V
d(vi, v j)

2 (3.11)

Center o f mass = {vc ∈ V | we(vc) = min
vi∈V

we(vi)} (3.12)

The degree centrality metric [Freeman et al., 1979] is based on the number of links a

node possesses (see Equation (3.13)). It is straightforward to compute it, but it only

captures local information. This metric is not relevant in modular robots where modules

have a bounded number of neighbors. Indeed, many of the modules will usually have the

maximum number of neighbors a module can have.

deg(vi) = | {e | e = (vi, v j) ∈ E, v j ∈ V} | (3.13)

The betweenness centrality metric [Freeman et al., 1979] is based on how much a given

node belongs to the shortest path of other nodes (see Equation (3.14)). σv jvk
is the total

number of shortest paths from node v j to node vk and σv jvk
(vi) represents the number

of those paths that pass through vi. We choose to name the set of nodes of minimum

betweenness the betweenness center (see Equation (3.15)).

bet(vi) =
∑

v j,vk∈V
vi,v j,vk

σv jvk
(vi)

σv jvk

(3.14)

Betweenness center = {vc ∈ V | bet(vc) = max
vi∈V

bet(vi)} (3.15)

For the sake of brevity, other centrality measures proposed in the literature (e.g., the

stress centrality [Shimbel, 1953] that reflects the volume of traffic that passes through

a given node, the eigenvector centrality [Bonacich, 1972] which measures the influence

of a node in a network, etc.) fall beyond the scope of this chapter. Recently, some

low-complexity centrality measures that aim at approximate common centrality measures

have been proposed (e.g., the tree-based centrality [Kim et al., 2013], the localized bridg-

ing centrality [Nanda et al., 2008], etc.). We choose to consider them as approximation

algorithms and present those related to our work in the next section.

3.3.2/ PROPERTIES AND APPLICATIONS

Figure 3.2 illustrates the differences between the different notions of center. The Jordan

center is strongly influenced by the diameter of the system. The betweenness center is

sensitive to critical paths between large sets of modules. Indeed, the modules that con-

nect the two large squares are on all the paths between any module of the two squares.

In the context of distributed system applications, each type of central node has its own

interesting properties. We assume that messages travel along the shortest paths. The

Jordan center is suitable as initiator of parallel communications to all the other nodes, e.g.,

3.3. NETWORK CENTRALITY METRICS AND DEFINITIONS 31

Figure 3.2: Differences between the different types of central module in

a Blinky Blocks system.

network flooding of broadcast messages. Flooding from the Jordan center minimizes the

maximum traveling distance of the messages, which implies low maximum time costs.

Centroid is ideal for unicast communications with all the other nodes, e.g., query-oriented

services. Assuming that queries are likely to originate from any node, placing service

providers at the centroid of the network minimizes the expected traveling distance for

queries and answers, which implies low average time and message costs. The between-

ness center is most useful for controlling and analyzing the network traffic. Indeed, the

betweenness centrality of a node reflects the proportion of traffic that passes through this

node. As a consequence, this measure favors nodes that join communities (i.e., dense

subnetworks), rather than nodes that lie inside a community. The betweenness centrality

can also be interpreted as a congestion sensitivity measure [Lehmann et al., 2003].

Time master position Maximum pairwise difference (ms) Mean absolute difference (ms)

extremity (front of the

left arm)
49.00 2.78

center 28.00 2.39

centroid 33.00 2.37

betweenness center 35.00 2.42

Table 3.1: Impact of the position of the time master on the synchroniza-

tion error in an enlarged version of the system depicted in Figure 3.2.

The system is synchronized using the Modular Robot Time Protocol

(see Section 4.5). This system is composed of 1,456 nodes and has an

83-hop diameter. Every module in the system of Figure 3.2 is actually

enlarged in a cube of 2x2x2 modules in this experiment. Results were

computed on 3.5-hour-long simulations during which the synchroniza-

tion error was measured every 3 seconds.

Table 3.1 shows the impact of the position of the time master on the synchronization

error in an enlarged version of the Blinky Blocks system depicted in Figure 3.2. The

32 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

system is synchronized using the Modular Robot Time Protocol (see Section 4.5). As

shown, placing the time master at a central node definitely leads to more synchronization

precision. Moreover, placing the time master at the center (resp. centroid) tends to

minimize the maximum (resp. average) synchronization error.

As shown in this section, existing types of central nodes have different features and

applications. In this chapter, we propose efficient and effective algorithms to elect an

approximate-center node or an approximate-centroid node.

3.4/ STATE OF THE ART

As explained in the previous section, several types of centrality definitions exist. For

conciseness reasons, we restrict our study to the work related to the center and to the

centroid. For criticality centrality measures, the reader can refer to [Nanda et al., 2008,

Tizghadam et al., 2010, Kermarrec et al., 2011, Kang et al., 2011a].

Existing algorithms for centrality computation can be categorized into four major fami-

lies, namely exhaustive, graph-specific, sampling-based and probabilistic-counter-based.

Other proposed approaches include tree-based computations, random-walk-based meth-

ods and linear programming approaches.

Centrality computation is an active research topic in both the graph analysis and the

distributed system communities. They address computation on graphs with two different

perspectives, namely input-graph analysis and distributed computation on the network

graph. In input-graph analysis algorithms, one or several computers perform calculations

on (external) graphs provided as input. These algorithms can be sequential or, for higher

performance, parallel and/or distributed. In distributed graph algorithms, the graph is the

network itself and the nodes cooperatively self-perform computation on it, in a distributed

fashion. These algorithms generally do not require nodes to hold a global view of the

networks. This work is about distributed graph algorithms.

Only the algorithms for asynchronous distributed systems match our system model, but

we still present the different approaches as they are closely related to our problem. We

consider that recent advances in graph analysis should be taken into consideration to

design efficient and scalable distributed algorithms.

3.4.1/ EXHAUSTIVE METHODS

Exhaustive methods are exact and involve a distributed All-Pair Shortest Paths (APSP)

computation. We first discuss the APSP problem and then present exhaustive ap-

proaches to compute node centrality.

Different methods exist to solve the APSP problem in asynchronous networks. APSP

can be computed using the distributed Floyd–Warshall’s shortest path algorithm [Toueg,

1980] which runs in O(n2) time using O(n3) messages with O(n) messages that carry O(n)

distances [Raynal, 2013]. APSP can also be computed using BFSes. Performing a sin-

3.4. STATE OF THE ART 33

gle BFS using Cheung’s algorithm [Cheung, 1983] takes O(d) time, if we ignore message

pileups, and uses O(nm) messages [Raynal, 2013]. All nodes can initiate a BFS traversal

in parallel. However, the network may get congested, since messages will pileup, thus in-

curring a large time and memory overhead. On the other hand, BFSes can be performed

one by one but it is expensive in terms of time. It uses in total O(nd) time and O(∆) space

per node if message pileups are ignored. Also note that computing all the distances in

parallel require the storage of O(n) distances per node while, in sequential approaches,

only the distance to the current-BFS root along with the partial farness/eccentricity are

stored per node and progressively updated.

An almost asymptotically optimal distributed synchronous APSP algorithm has been pro-

posed in [Holzer et al., 2012]. In this algorithm, a node triggers a BFS traversal one

time unit after having been visited by a depth-first search traversal. This ensures that

BFSes do not collide. Thus, to compute its eccentricity/farness, a node only needs to

store information about a single BFS at a time. This algorithm runs in O(n) synchronous

rounds.

In [Korach et al., 1984], the authors propose algorithms to distributively elect the center

and the centroid of graphs in different settings (asynchronous and synchronous networks,

tree and arbitrary networks). The algorithms for asynchronous arbitrary networks use an

exhaustive approach in which an initiator orders all nodes, through a depth-first search

traversal of a spanning-tree, to compute their centrality value (eccentricity or farness),

and then elects a node of minimum centrality value over the spanning tree. Any shortest

path algorithm can be used to compute the distances from one node to all the others.

A distributed algorithm designed to elect the network centroid using n parallel breadth-first

network traversals without acknowledgment was proposed in [Mamei et al., 2005]. Each

node initiates a BFS by broadcasting a message that contains a hop counter increased

at each hop. The authors claim that since the farness decreases monotonically to the

centroid, nodes determine locally whether they are in the centroid or not by comparing

their farness value to those of their neighbors. This algorithm converges but the termi-

nation is implicit, nodes do not have a defined global termination criterion. Some nodes

may temporarily consider themselves as belonging to the centroid. Although this works in

most situations, this local election mechanism is, for instance, not sufficient to elect a sin-

gle centroid node in torus-like networks (see Figure 3.1-d)) where all nodes are centroid

and they are not all neighbors to each other. This algorithm uses O(n) memory space

per node (we ignore message storage cost), as each node has to store a list of already

known minimal distances to the other nodes to handle cycles.

In [Lehmann et al., 2003], Lehmann et al. propose a distributed synchronous framework

to compute the eccentricity, closeness and betweenness of all nodes. Initially, all nodes

broadcast a message that contains its unique node identifier and the currently traveled

number of hops. Every node receives back a report message that contains an id-pair

(source and destination) along with the distance between them. To avoid circles, every

node constructs a data structure of O(n2) id-pairs.

A distributed synchronous algorithm dedicated to the computation of the eccentricity of all

nodes along with the network radius and diameter was proposed [Almeida et al., 2012].

34 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

It uses breadth-first search network traversals. Initially, all nodes initiate a BFS traversal

that contains its unique node identifier and a hop counter. Nodes progressively learned

the distance to all the others. Local criteria to detect convergence in each node, using

the computed values and the number of consecutive rounds with no new BFS messages,

are introduced. This algorithm requires the storage of O(n) distances per node.

In [You et al., 2017], K. You et al. propose a distributed algorithm to compute the exact

closeness centrality measures using only local interactions. At each round r, every node

vi sends its set of (r−1)-hop neighbors to all its (1-hop) neighbors. Upon reception of these

messages by all neighbors, a node v j can determine its set of r-hop neighbors using these

messages and its own set of nodes within r − 1 hops. This algorithm converges in O(d)

rounds but has a high storage cost per node as it ultimately requires the storage of O(n)

information. Moreover, the termination criterion relies on the knowledge of the diameter

of the network, that can be distributively computed using the algorithm in [Garin et al.,

2012].

As a consequence, existing asynchronous distributed algorithms designed to elect a node

belonging to the exact center or centroid of arbitrary networks are not scalable. They in-

volve a distributed APSP computation which has either a large time complexity or/and a

large storage cost in systems composed of thousands of nodes with constrained compu-

tational power and restricted memory resources.

3.4.2/ METHODS FOR SPECIFIC CLASSES OF GRAPHS

Efficient heuristics have been proposed to compute the center and the centroid of tree

graphs.

For instance, [Bruell et al., 1999, Patterson, 2014] propose distributed methods to com-

pute the center of a tree graph in r rounds during which each node determines a sort

of distance to the border of the network. The center is the set of nodes which have a

greater value than all their neighbors. In [Bruell et al., 1999], the authors also propose an

algorithm to compute the centroid of a tree graph in d rounds using a similar approach.

In [Handler, 1973], the authors propose Minimax, an efficient sequential algorithm to

compute the center of undirected tree graphs using only two BFSes. It picks A, a random

node of the tree, B the farthest node from A and C the farthest node from B. The center

is at midpoint of path between B and C. However, in arbitrary graphs, Minimax does not

always return the exact center. For example, in Figure 3.3, Minimax returns one of the

module in the diagonal in blue.

Other sequential algorithms for specific classes of graphs include [Chepoi et al., 1994] for

chordal graphs and [Lan et al., 1999] for weighted cactus graphs.

Although these approaches are efficient for the graphs they target, they are unfortunately

not directly generalizable to arbitrary graphs.

3.4. STATE OF THE ART 35

Figure 3.3: Minimax and 4-Sweep failure case.

3.4.3/ SAMPLING-BASED METHODS

Sampling-based methods consist in computing a sampling of values (shortest paths, node

degree, etc.). These algorithms fall into two main categories, namely the approaches that

compute shortest paths from a sampling of nodes and the methods that use limited-scope

value computations.

3.4.3.1/ SHORTEST PATHS FROM A SAMPLING OF NODES

Some input-graph analysis approaches have recently been proposed in order to compute

a central vertex of arbitrary graphs using a limited number of SSSP computations. Most

of them use BFS computations.

In [Crescenzi et al., 2013], Crescenzi et al. propose the 4-Sweep sequential algorithm

which finds a node with low eccentricity in arbitrary graphs using 4 BFSes. It essentially

performs two consecutive Minimax. A1, B1 and C1 are selected exactly as in Minimax.

Then, A2 is selected as a node at midpoint between B1 and C1. Repeating Minimax a

second time, B2 is one of the farthest nodes from A2 and C2 is one of the farthest nodes

from B2. 4-Sweep returns a node at mid-distance between B2 and C2. In the general case,

the 4-Sweep algorithm does not return the exact center. For instance, in Figure 3.3, 4-

Sweep returns one of the nodes on the two diagonals, depending on the position of A1

and A2 just as Minimax would have done.

In [Takes et al., 2013], the authors propose a sequential algorithm to compute the exact

eccentricity of all nodes using a limited number of consecutive BFSes. This algorithm

refines lower and upper bounds on the vertex eccentricities until convergence is reached.

In [Borassi et al., 2014], Borassi et al. propose a similar sequential algorithm to find

the exact radius (i.e., the eccentricity of the center) and diameter. The algorithm stops

earlier as all the eccentricities are not computed. The authors suggest that the algorithm

should start by performing some BFSes from the least central vertices and propose the

SumSweep approach. In this approach, the root of the next BFS is the node of minimum

partial farness to the root of the previous BFSes, i.e., the nodes that maximize the sum to

the roots of the previously performed BFSes. The complete algorithm may still require that

a considerable number of BFSes should be performed, sometimes more than a hundred

36 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

in Blinky Blocks systems composed of 500 modules4. A distributed implementation of the

complete algorithm to find an exact center is, thus, not an option as performing a hundred

distributed BFSes in a consecutive way will take too much time.

In [Eppstein et al., 2001], the authors propose a sequential algorithm to estimate

node closeness using partial closeness computation from a random sample of nodes.

In [Dissler et al., 2016], the authors propose a distributed synchronous implementation of

this algorithm. In this evaluation section, we show that performing BFSes from external

nodes rather than from random ones leads to a better estimation of node centrality.

In [Roditty et al., 2013, Chechik et al., 2014], the authors propose input-graph analysis

algorithms to estimate node eccentricity. These algorithms start to run some BFSes from

a random sample of S nodes. Then they compute a BFS from node v, one of the farthest

node to any another node in S, and from a certain number of the closest nodes from v.

Finally, they derive some estimation of the node eccentricities.

A sequential framework to approximate node closeness and node betweenness was in-

troduced in [Chan et al., 2009]. Closeness computations are performed on an abstract

graph of small-diameter communities formed from tightly connected nodes.

All these existing approaches based on shortest paths computation from a sampling of

nodes are promising but they do not fit our system model. They have been designed for

input-graph analysis or target synchronous distributed systems.

3.4.3.2/ LIMITED-SCOPE CENTRALITY COMPUTATION

In Distributed Assessment of Network CEntrality (DANCE) [Wehmuth et al., 2011] and

Distributed Assessment of the Closeness CEntrality Ranking (DACCER) [Wehmuth et al.,

2013], every node computes its volume centrality, i.e., the sum of the node degree of the

k-hop neighboring nodes, using O(k) time and O(|Nk
vi
|) memory per node vi. The value of

k impacts both the accuracy and the cost of these algorithms. k should be large enough

to derive an accurate global centrality value from localized computations. DANCE and

DACCER are best suited to networks that do not present a highly regular structure, have a

small diameter compared to their size and have a low density. As shown in Section 2.2.5,

LMRs do not exhibit these properties. In general, small-world (e.g., the Internet) or scale-

free networks share such characteristics.

DANCE also builds a 3-level hierarchical structure that enables to locate both local and

global central nodes. In large-scale systems, DANCE may have an important memory

usage per node with regard to our strong storage restrictions for two reasons. Firstly,

the number of neighbors at k hops may be important, e.g., in the Blinky Blocks system,

|Nvi
(k)| = O(k3) (see Sections 2.2.5 and A.5.2). In terms of figures, the 2-hop neighbor-

hood can be composed of up to 25 nodes, and the 3-hop neighborhood of up to 63 nodes.

Secondly, the memory cost of the hierarchical structure can be important. Indeed, every

node that exhibits a higher centrality value within a range of (2k)-hops, knows all the other

4Based on practical experiments realized using our implementation of this algorithm, which is available

online at: https://github.com/nazandre/GraphAnalyzer

https://github.com/nazandre/GraphAnalyzer

3.4. STATE OF THE ART 37

nodes that satisfy the same property. This knowledge is then used to identify the highest

centrality node in the whole network.

3.4.4/ PROBABILISTIC-COUNTER-BASED METHODS

Algorithms based on low-memory-footprint probabilistic counters to estimate node cen-

trality measures have recently been proposed in [Kang et al., 2011b, Kang et al.,

2011a, Garin et al., 2012]. These algorithms are approximately equivalent to running

a BFS from every node but at less expense in terms of computations and communica-

tions.The algorithms run in O(d) rounds. At each round r, nodes estimate the size of their

r-hop neighborhood using local interactions with their 1-hop neighbors. The averaged

farness can be estimated using equation (3.6). The eccentricity of a node is either esti-

mated using equation (3.2) or corresponds to the last round at which the internal state of

the probabilistic counter has been updated.

In [Kang et al., 2011b, Kang et al., 2011a], the authors propose efficient input-graph anal-

ysis algorithms to respectively estimate the node averaged farness and eccentricity using

the Flajolet-Martin probabilistic counter [Flajolet et al., 1985]. The algorithms terminate

when no update has been performed for any node during a complete round. The internal

state of a Flajolet-Martin counter is composed of k bitstrings of O(log n) bits, with k ≥ 1 an

input parameter. These algorithms run in O(dm) time and store O(dk) bitstrings of O(log n)

bits instead of an array of O(n) information per node in naive sequential approaches. In

practice, these algorithms even require storage for only two counter states per node, i.e.,

one for the previous and current rounds. These algorithms have been evaluated on a

distributed implementation based on the MapReduce programming model for large-scale

and distributed data processing. However, these implementations still require a global

view of the graph.

A synchronous distributed algorithm built to estimate node eccentricity in anonymous

networks has been proposed in [Garin et al., 2012]. It uses a statistical network size esti-

mation algorithm [Varagnolo et al., 2010] which is based on random number generations

and a max-consensus procedure. This algorithm converges in O(d) time and needs to

store O(k) random numbers per node. In [Garin et al., 2012], the algorithm assumes the

number of rounds to be provided as input or computed using an external algorithm.

Interesting probabilistic counter-based algorithms have been proposed but they do not fit

our assumptions.

3.4.5/ OTHER APPROACHES

3.4.5.1/ THE TREE-BASED CENTRALITY MEASURE

In [Kim et al., 2013], the authors propose the tree-based centrality measure. It uses only

distance calculations in T (vr), a BFST of the network rooted at some random node vr. The

tree-based centrality of a node vi is equal to a fixed programmer-defined centrality weight

38 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

wc with wc > 1, if the height of vi in T (vr) is equal to the average distance to vr. Otherwise,

it is equal to 1. The authors suggest the combination of the tree-based centrality measure

with other parameters, e.g., the remaining energy, to elect the more suitable node for a

specific task. We name the set of nodes that maximize the tree-based centrality measure

the tree-based center. Nodes with a height equal to the average distance to vr belongs to

that center. As shown in [Kim et al., 2013], the closeness centrality and the expected tree-

based centrality over all possible choices of vr and T (vr) have similar priorities. Therefore,

we consider that the tree-based centrality is an approximation of the closeness centrality

measure.

Electing a node in the tree-based center requires the election of an initiator and the con-

struction of a single BFST rooted at this initiator. This algorithm runs in O(d) time and

O(∆) memory space per node.

3.4.5.2/ RANDOM WALKS

An emergent approach to compute an approximate centroid of a distributed system is

proposed in [Dutot et al., 2011]. A virtual ant colony explores the graph, virtually dropping

pheromones on edges and nodes. The node that accumulates the largest amount of

virtual pheromones is designated as the centroid. The main drawback of this method is

that every ant must maintain a tabu list of visited nodes to handle cycles. This list is O(n)

memory space in the worst case. Moreover, the quality of the computed solution depends

on the topology of the system. It performs well for trees but badly for grids.

3.4.5.3/ LINEAR PROGRAMMING

In [Wang et al., 2015], the authors propose a scalable distributed algorithm to estimate

node closeness centrality with only local interactions and a memory complexity per node

of O(∆). They define a regularized linear program based on the aggregation of a set of

constraints that involves only nearby variables. A gradient algorithm is used to distribu-

tively solve this linear program over the network. The constraints of the linear program

are augmented to its objective function as barriers and the algorithm converges progres-

sively. An evaluation on networks with 6 to 50 nodes shows that this algorithm is on

average 91% accurate in terms of closeness ordering. However, this algorithm has no

well-established termination criterion that would be desirable to use the closeness values

to elect an approximate centroid of the system.

3.4.6/ SUMMARY

Table 3.2 summarizes the existing distributed algorithms. Computing exact center and

centroid nodes in asynchronous distributed systems is an expensive operation in terms

of messages and in terms of storage requirement and/or time. Algorithms designed for

a specific class of graphs (e.g., tree graphs) are not generalizable to arbitrary graphs.

3.4. STATE OF THE ART 39

Algorithm

Type of center or, if

none, centrality

measure

Approach
Async.

vs Sync.

[Korach et al., 1984] center, centroid exhaustive async

[Lehmann et al.,

2003]

closeness,

eccentricity,

betweenness

exhaustive sync

[Almeida et al., 2012] eccentricity exhaustive sync

[You et al., 2017] closeness exhaustive UN

BARYCENTER

[Mamei et al., 2005]
centroid exhaustive async

[Bruell et al., 1999] centroid, center
Method for specific classes of

graphs (tree)
UN

[Patterson, 2014] center
Method for specific classes of

graphs (tree)
sync

[Dissler et al., 2016] closeness
Shortest path computations from

a sampling of nodes
sync

DANCE [Wehmuth

et al., 2011]

DACCER [Wehmuth

et al., 2013]

volume-based

center∗
Limited-scope centrality

computation
async

[Garin et al., 2012] eccentricity
Probabilistic-Counter-based

method
async

[Dutot et al., 2011] centroid Random walks async

[Wang et al., 2015] closeness Linear programming async

[Kim et al., 2013] tree-based center∗ Computation on a tree async

Our contributions:

k-BFS SumSweep center, centroid
Shortest path computations from

a sampling of nodes
async

ABC-Center center
Shortest path computations from

a sampling of nodes
async

PC2LE center, centroid
Probabilistic-Counter-based

method
async

Table 3.2: Summary of the state of the art on network centrality in dis-

tributed systems. If the algorithm comes with an election mechanism,

we provide the type of the elected (approximate) central node. Other-

wise, we give the name of the computed/estimated centrality measure.

Note ∗: a specific low-complexity measure is proposed and used to

elect a most central node. “UN” stands for “Unknown”.

Efficient sampling-based and probabilistic-counter-based methods have been proposed

but they have not been applied to distributed asynchronous systems so far.

In this chapter, we propose asynchronous distributed algorithms to elect approximate-

centroid and approximate-center nodes, namely ABC-Center, k-BFS SumSweep and

Probabilistic-Counter-based Central-Leader Election (PC2LE). k-BFS SumSweep and

ABC-Center are sample-based algorithms, i.e., they perform distributed BFSes from a

sample of nodes, while PC2LE use probabilistic counting.

40 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

k-BFS SumSweep is based on the sequential SumSweep heuristic [Borassi et al., 2014].

ABC-Center extends the sequential Minimax [Handler, 1973] and 4-Sweep [Crescenzi

et al., 2013] algorithms. PC2LE is inspired by the input-graph analysis algorithms [Kang

et al., 2011a, Kang et al., 2011b] and the distributed synchronous algorithm [Garin et al.,

2012]. PC2LE differs from these approaches. First of all, PC2LE targets asynchronous

distributed systems. Secondly, PC2LE uses its own mechanism to estimate the diameter

of the system in order to bound the number of computation rounds. Thirdly, any prob-

abilistic counter can be used in PC2LE and we have experimentally observed that, for

similar resource usage, the HyperLogLog counter [Flajolet et al., 2007] leads to more

accuracy than the counters used in [Kang et al., 2011a, Kang et al., 2011b, Garin et al.,

2012]. Finally, PC2LE comes with an election procedure to elect the most central node.

3.5/ PRELIMINARY MATERIALS ON NETWORK TRAVERSAL AND

TREE ALGORITHMS

This section presents the primitives used to design our algorithms.

3.5.1/ BREADTH-FIRST NETWORK TRAVERSAL AND SPANNING-TREE CON-

STRUCTION

Our centrality-based leader election algorithms are all based on BFST constructions,

which are used to compute distances and build paths to particular nodes. Construct-

ing a BFST enables one to solve the SSSP problem since the distance from a node to

the root in the tree corresponds to the distance from that node to the root in the complete

network.

3.5.1.1/ ALGORITHM CHOICE

Building a spanning tree involves a time-communication trade-off [Awerbuch et al., 1985].

It requires at least Ω(d) time and Ω(m) messages [Awerbuch et al., 1985]. Different algo-

rithms have been proposed for asynchronous systems.

Some of our algorithms (ABC-CenterV2 and k-BFS SumSweep) consecutively build a

dozen or more BFSTs. It is crucial to use an algorithm that builds such a tree quickly in

order to ensure an acceptable time of convergence for these algorithms. To the best of

our knowledge, only Cheung’s algorithm [Cheung, 1983] and Aspnes’ one [Aspnes, 2017]

run in O(d) time (time due to message pileups is ignored here). Both of them use O(∆)

memory space at the application layer to store their neighbor states. Cheung’s algorithm

uses O(nm) messages [Lynch, 1996] while Aspnes’ algorithm uses O(dm) messages.

CHEUNG-BFS-ST refers to Cheung’s algorithm. Aspnes’ algorithm does not have a

global termination (i.e., the root of the tree does not know when the tree construction

is finished). Our algorithms require the detection of the global termination of the tree

3.5. PRELIMINARY MATERIALS ON NETWORK TRAVERSAL AND TREE ALGO... 41

construction in order to continue their execution. In [Boulinier et al., 2008], the authors

show how to enhance Aspnes’ algorithm with a global termination criterion. ASPNES-

BFS-ST-T refers to the Aspnes’ algorithm combined with that global termination detection

method.

Figures 3.4 and 3.5 respectively show the simulated execution time and the number of

messages used by the CHEUNG-BFS-ST and the ASPNES-BFS-ST-T algorithms to con-

struct a BFST on random Blinky Blocks systems. The tree construction is initiated by the

root node and the other nodes locally start to execute the algorithm upon reception of

the first message. It appears Cheung’s algorithm performs better, both in terms of time

and messages than Aspnes’ algorithm in our experimental setup. Thus, we decide to use

Cheung’s algorithm with an optimization explained in the next section.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70

0 ≈500 ≈1000 ≈5000 ≈10000 ≈25000

S
im

u
la

ti
o
n
 t

im
e
 (

s
)

Diameter (hop)

Size (module)

ASPNES-BFS-ST-T
CHEUNG-BFS-ST

CHEUNG-BFS-ST-CB
LE_CHEUNG-BFS-ST

LE_CHEUNG-BFS-ST-CB

Figure 3.4: Simulated execution time of the BFST construction and

leader election algorithms.

101

102

103

104

105

106

107

101 102 103 104 105

To
ta

l
n
u
m

b
e
r

o
f

m
e
s
s
a
g
e
s

Size (module)

ASPNES-BFS-ST-T
CHEUNG-BFS-ST

CHEUNG-BFS-ST-CB
LE_CHEUNG-BFS-ST

LE_CHEUNG-BFS-ST-CB

Figure 3.5: Total number of messages sent during the execution of the

BFST construction and leader election algorithms.

42 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

3.5.1.2/ THE CONTROLLED-BROADCAST OPTIMIZATION

CHEUNG-BFS-ST adopts an echo approach. Initially, the root of the tree under construc-

tion starts a network traversal by sending to all its immediate neighbors a BFS GO mes-

sage which contains a hop counter initialized to 0. When a node receives a BFS GO mes-

sage with a smaller hop counter than the previously known one, then it forgets about the

previous network traversal and starts participating in the new one. BFS BACK messages

are progressively sent back to the root node from the leaf nodes. The graph traversal

terminates as soon as the root node gets notified by all its neighbors through BFS BACK

messages.

As stated in [Lynch, 1996], messages might pile up, which increases the execution time

and the memory space usage. A module vi might, for instance, receive up to |N1
vi
| − 1

increasingly “better” BFS GO messages in such a short amount of time from all of its

neighbors except v j and consequently insert (|N1
vi
|−1) BFS GO messages in the outgoing-

message queue dedicated to v j in a so short amount of time that vi is not able to com-

pletely send a message to v j. This outgoing-message queue keeps growing if this situa-

tion happens several times. Furthermore, if it happens many times, at many nodes, the

system gets congested.

To avoid this situation, we propose the controlled-broadcast optimization. This optimiza-

tion is inspired by [Gallager, 1982] where the author’s suggestion is to send in priority

BFS GO messages with a lower hop counter. In the controlled-broadcast optimization,

a single BFS GO message is present in any outgoing-message queue at a time. If the

firmware/operating system allows the modification of a queued message, we propose to

update the currently queued BFS GO message (if there is any) rather than insert a new

one in the queue. Otherwise, a node sends a new BFS GO message to a neighboring

node only if the previous BFS GO message has been completely sent and removed from

the outgoing-message queue. If the operating system enables to know when a message

has been sent, this solution comes for free. Otherwise, nodes use an extra message

to acknowledge every BFS GO message they receive and a node does not send a new

BFS GO message until the previous one has been acknowledged. Note that this solution

is not suitable in dense networks with shared communication medium where acknowledg-

ment messages may cause many collisions.

We call Cheung’s algorithm combined with the controlled-broadcast optimization the

CHEUNG-BFS-ST-CB algorithm. The pseudo-code of CHEUNG-BFS-ST-CB is given in

Algorithm 1.

The controlled-broadcast optimization ensures that only O(1) messages are present in

any outgoing-message queue at a time. Thus, it prevents message pileups. It follows that

there are at most O(∆) messages at each node. Moreover, the algorithm variable memory

usage is O(∆). Hence, the total memory usage of CHEUNG-BFS-ST-CB is O(∆). More-

over, the controlled-broadcast assumption does not change the asymptotic complexities

(where pileups are ignored). The first two solutions come for free. In the third case,

every BFS GO message is acknowledged, thus at most O(2nm) = O(nm) messages are

sent. Moreover, since there are at most O(1) messages in every single outgoing-message

3.5. PRELIMINARY MATERIALS ON NETWORK TRAVERSAL AND TREE ALGO... 43

queue, the best BFS GO message propagates through the network in O(d) time. In this

work, we use the third solution as it is the most general one, even though it is the most

expensive one.

As shown in Figures 3.6 and 3.7, the controlled-broadcast optimization has no perceptible

benefit on the maximum queue occupancy and the maximum memory usage of Cheung’s

algorithm in our experimental setup. This is because our optimization prevents a worst-

case issue that rarely occurs in our target systems where the network is unloaded and

all the links are configured with the same bitrate. However, our optimization has a signif-

icant impact on the maximum memory usage of the leader election algorithm based on

Cheung’s algorithm presented in the next section. Also note that the controlled-broadcast

optimization only generates a low time and message overhead (see Figures 3.4 and 3.5).

3.5.2/ LEADER ELECTION BASED ON NETWORK TRAVERSAL ALGORITHMS

Our centrality-based leader elections all start by electing an initiator.

Network traversal algorithms can be used to elect a leader [Raynal, 2013]. All nodes

initiate concurrent parallel network traversals and a single one terminates. The node

that initiates this traversal becomes the initiator. We call the leader election algorithm

Variants : CHEUNG-BFS-ST-CB // Black lines only

xLE CHEUNG-BFS-ST-CBq // Black + x q lines

†CHEUNG-BFS-ST-CB-AGG† // Black + †
† lines

Input : N1
vi
// vi’s 1-hop neighborhood

idvi
// unique identifier of vi

†size† // network size

// handler functions:

†handleAppData, resetAppAggs, updateAppAggs and getAppAggs†

Output : // Constructed tree (composed of vi’s parent and vi’s children):

tree<parent,Children>

distance // Distance of vi to the root of the tree

†data†// Ordered list of data propagated from the root

†aggregates†// Ordered list of aggregates computed on vi’s subtree

1 Initialization of node vi:

2 f inished ← f alse; tree.parent ←⊥; tree.Children← ∅; Wait ← ∅;
3 if vi root of the tree then // (true for all nodes in LE CHEUNG-BFS-ST-CB)

4 distance← 0; id ← idvi
;

5 else

6 distance← +∞; id ←⊥;

7 † data← ∅; branchS ize← ∅; resetAppAggs(); aggregates← <1> ∪ getAppAggs(); †

8 When Algorithm variant starts at node vi do:

9 // Executed by the root node only

for each v j ∈ N1
vi

do

10 send BFS GO<id, distance,†data†> to v j;

11 Wait ← Wait ∪ {v j};
12 if Wait = ∅ then

13 Algorithm variant terminates;

44 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

14 When BFS GO(mid, dist,†dat†) is received by vi from v j do:

15 † data← dat; handleAppData(); †

16 if x(mid < id)q OR id =⊥ then

17 id ← mid; distance← +∞; tree.parent ←⊥;

18 if (id = mid) AND (dist + 1 < distance) then

19 if (tree.parent ,⊥) then

20 send BFS BACK<id, distance − 1, f alse,†{}†> to tree.parent;

21 tree.parent ← v j; tree.Children← ∅; distance← dist + 1; Wait ← ∅;
22 † branchS ize← ∅;
23 resetAppAggs(); †

24 for each vk ∈ N1
vi
\ {tree.parent} do

25 send BFS GO<id,distance,†data†> to vk. /* Controlled-broadcast optimization (avoid

congestion): send that message only if vi’s outgoing queue to vk does not

contain any other BFS GO message. Otherwise, wait until this message has

been sent and then send the best known <id, distance> value(s) at that future

time in a BFS GO message */

26 Wait ← Wait ∪ {vk};
27 if Wait = ∅ then

28 s← 1; aggregates← <s> ∪ getAppAggs();

29 send BFS BACK<id, distance − 1, f alse,†aggregates†> to tree.parent;

30 else if id = mid then

31 send BFS BACK<mid,dist, f alse,{}> to v j;

32 When BFS BACK(mid, dist, c,†aggs†) is received by vi from v j do:

33 if (id = mid) AND (distance = dist) AND ¬ finished then

34 Wait ← Wait − {v j};
35 if c = true then

36 tree.Children← tree.Children ∪ v j;

37 † branchS ize[v j]← aggs[0]†;

38 else

39 tree.Children← tree.Children − v j;

40 † remove branchS ize[v j]
†;

41 † appAggU pdate(v j, c, aggs); †

42 if Wait = ∅ then

43 † s← 1 +
∑

vk
branchS ize[vk]; †

44 if tree.parent =⊥ then

45 f inished ← true;

46 † if s , size then

4747 // Wait (aggregate values may be uncorrect)

48 f inished ← f alse;

49 return;

50 aggregates← <size> ∪ getAppAggs(); †

51 Algorithm variant terminates;

52 else

53 † aggregates← <s> ∪ getAppAggs(); †

54 send BFS BACK<id, distance − 1, true,†aggregates†> to tree.parent;

Algorithm 1: Pseudo-code for any code vi of different algorithms based on Cheung’s

BFST algorithm: CHEUNG-BFS-ST-CB, LE CHEUNG-BFS-ST-CB and CHEUNG-

BFS-ST-CB-AGG.

3.5. PRELIMINARY MATERIALS ON NETWORK TRAVERSAL AND TREE ALGO... 45

1

101

102

101 102 103 104 105

M
a
x
im

u
m

 m
e
s
s
a
g
e
 q

u
e
u
e
 s

iz
e

Size (module)

ASPNES-BFS-ST-T
CHEUNG-BFS-ST

CHEUNG-BFS-ST-CB
LE_CHEUNG-BFS-ST

LE_CHEUNG-BFS-ST-CB

Figure 3.6: Maximum queue length of the BFST construction and leader

election algorithms.

101

102

103

101 102 103 104 105

M
a
x
im

u
m

 m
e
m

o
ry

 u
s
a
g
e
 p

e
r

m
o
d
u
le

(a
lg

o
ri

th
m

 v
a
ri

a
b
le

s
 +

 m
e
s
s
a
g
e
 q

u
e
u
e
s
)

(b
y
te

)

Size (module)

ASPNES-BFS-ST-T
CHEUNG-BFS-ST

CHEUNG-BFS-ST-CB
LE_CHEUNG-BFS-ST

LE_CHEUNG-BFS-ST-CB

Figure 3.7: Maximum memory usage of the BFST construction and

leader election algorithms. Memory usage takes into account both the

algorithm variables and the messages in the queues.

based on the CHEUNG-BFS-ST algorithm the LE CHEUNG-BFS-ST. At the end of

LE CHEUNG-BFS-ST, an initiator has been elected and a BFST rooted at this node has

been constructed. In addition, all nodes know their distance to the root.

LE CHEUNG-BFS-ST-CB refers to the LE CHEUNG-BFS-ST combined with the

controlled-broadcast optimization. Algorithm 1 provides the pseudo-code of

LE CHEUNG-BFS-ST-CB. In LE CHEUNG-BFS-ST-CB, nodes initiate n concurrent

CHEUNG-BFS-ST-CB. Thus, LE CHEUNG-BFS-ST-CB runs in O(d) and uses O(mn2)

messages and O(∆) memory space per node.

We compare LE CHEUNG-BFS-ST and LE CHEUNG-BFS-ST-CB to show the impor-

tance of the controlled-broadcast optimization in the leader election algorithm. As shown

in Figure 3.6, LE CHEUNG-BFS-ST-CB has a significantly lower maximum queue occu-

pancy than LE CHEUNG-BFS-ST. Hence, the controlled-broadcast optimization greatly

46 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

reduces the maximum memory usage (see Figure 3.7), while it only generates a low time

and message overhead (see Figures 3.4 and 3.5).

3.5.3/ BROADCAST AND CONVERGECAST ON A SPANNING TREE

The Spanning-Tree Broadcast (STB) and Spanning-Tree Convergecast (STC) algorithms

are two fundamental primitives used in distributed algorithms [Lynch, 1996, Raynal,

2013].

In STB, some data are propagated down from the root of the spanning tree to all the

nodes of the system along the edges of the tree. Algorithm 2 shows the pseudo-code of

STB.

Variants : STB // Black lines only

xSTB-STCq // Black + x q lines

Input : tree<parent,Children> // tree: vi’s parent and Children

handleAppData // handler function

xupdateAppAggsq // handler function

Output : data// Ordered list of data propagated from the root

aggregates// Ordered list of aggregates computed over vi’s subtree

Primitive(s) : xSTC(tree : tree, handlers : updateAppAggs)q // see Algorithm 3

1 Initialization of node vi:

2 data← ∅;

3 When STB starts at root node vi do:

4 for each v j ∈ tree.Children do

5 send STB GO(data) to v j;

6 When STB GO<dat> is received by vi from v j do:

7 data← dat;

8 handleAppData();

9 xinitialize STC; start STC;q

10 for each v j ∈ tree.Children do

11 send STB GO<data> to v j;

Algorithm 2: Pseudo-code for any code vi of the Spanning-Tree Broadcast (STB) al-

gorithm with data propagation and the STB-STC (Spanning-Tree Broadcast followed

by Spanning-Tree Convergecast) algorithm.

The STC algorithm is the inverse of STB. In STC, a convergecast message is forwarded

back from the leaves to the root of the tree. Leaves start to send a convergecast message

to their parent. Inner nodes wait until they have received a convergecast message from

all their children before sending a convergecast message to their respective parent. The

algorithm terminates once the root of the tree has received a convergecast message from

all its neighbors. STC can be triggered by an STB (see Algorithm 2, line 9). STB-STC

refers to this combination of the execution of STB immediately followed by the execution

of STC. Algorithm 3 shows the pseudo-code of STC.

STB, STC and STB-STC use O(d) time, O(n) messages and require O(∆) memory space

per node, if we assume that the propagated and computed data can be stored using

3.5. PRELIMINARY MATERIALS ON NETWORK TRAVERSAL AND TREE ALGO... 47

O(1) memory space per node. These algorithms use only O(1) variables, but they have a

memory complexity of O(∆) due to the storage cost of both the input spanning tree and

the messages.

Input : tree<parent,Children> // tree: vi’s parent and Children

updateAppAggs // handler function

Output : aggregates// Ordered list of aggregates computed over vi’s subtree

1 Initialization of node vi:

2 aggregates← <>; waiting← |tree.Children|;

3 When STC starts at node vi do:

4 if waiting = 0 then

5 if tree.parent =⊥ then

6 STC terminates;

7 else

8 send STC BACK<aggregates> to tree.parent;

9 When STC BACK<aggs> is received by node vi from v j do:

10 waiting← waiting − 1;

11 updateAppAggs(v j, aggs);

12 if waiting = 0 then

13 if tree.parent =⊥ then

14 STC terminates;

15 else

16 send STC BACK<aggregates> to tree.parent;

Algorithm 3: Pseudo-code for any code vi of the Spanning-Tree Convergecast (STC)

algorithm with aggregate computation.

3.5.4/ GLOBAL DATA DIFFUSION AND GLOBAL-AGGREGATE COMPUTATION

STB can be used to globally spread some information to all nodes in the system. STC

can be used to compute network-wide aggregates [Lynch, 1996, Raynal, 2013] (e.g., the

number of nodes in the system, the maximum distance to the root node, i.e., the height

of the tree, the next hop on the path to a node that minimizes/maximizes a specific value,

etc.). In this chapter, propagated data and aggregates are assumed to be stored using

O(1) memory space per node.

CHEUNG-BFS-ST-CB can also be used to spread information to all nodes in the network

and to compute aggregates during the construction of a spanning-tree. CHEUNG-BFS-

ST-CB-AGG refers to the execution of CHEUNG-BFS-ST-CB during which some data is

spread through the system and some aggregates are computed. The pseudo-code of

CHEUNG-BFS-ST-CB-AGG is provided in Algorithm 1. The information to be spread to

all nodes is directly attached with the BFS GO messages. Computing aggregates about

the tree (e.g., its height, path to the farthest node, etc.) during its construction is more

tricky, as CHEUNG-BFS-ST-CB does not have a local termination criterion, i.e., a non-

root node does not know when its involvement in the tree construction process is finished.

Indeed, a node may finally leave a subtree for a better one at any time [Raynal, 2013].

48 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

Hence, a node maintains aggregate values of all its subtree branches and these par-

tial aggregates are updated whenever a change occurs in its subtree (see Algorithm 1,

lines 37, 40 and 41). Moreover, it may happen that a leaf node finally leaves a subtree,

whereas its previous parent has already initiated the BFS BACK wave, with a possibly

wrong aggregate value, toward the root of the tree. The previous parent then initiates a

second BFS BACK wave. This second wave, with the correct aggregated branch value,

might possibly arrive anytime after the root has received a BFS BACK message from all

its other branches (i.e., after having detected the termination of the tree construction and

possibly after having launched some other processes which use the wrong computed

value). To ensure that the last BFS BACK message has been received, we check that

all nodes have participated in the aggregate computation only once. In order to do it,

CHEUNG-BFS-ST-CB maintains at the root node a counter of the number of nodes that

have participated in the aggregate computation. The value of this counter is compared

to the actual network size which must be provided as input. The root node knows that

the aggregate has been properly computed when these two values are equal (see Algo-

rithm 1, line 47).

We do not assume that the network size is known at the system startup. In practice, our

centrality-based leader election algorithms first elect an initiator using LE CHEUNG-BFS-

ST-CB and then perform an STB-STC to compute the network size and other aggregates.

LE CHEUNG-BFS-ST-CB STB-STC refers to this procedure. The pseudo-code of LE -

CHEUNG-BFS-ST-CB STB-STC is given in Algorithm 4. The value of the network size

can then be used to control the execution of CHEUNG-BFS-ST-CB.

Primitive(s) : LE CHEUNG-BFS-ST-CB

STB-STC(tree : LE CHEUNG-BFS-ST-CB.tree, handlers :⊥, stcHandler)

// Initialization and start handlers:

1 Initialization of vi:

2 size← 1; height ← 0; nextHopToFarthest ←⊥;

3 STB-STC.aggregates← {size, height};

4 When LE CHEUNG-BFS-ST-CB STB-STC starts at node vi do:

5 start LE CHEUNG-BFS-ST-CB;

// Primitive handlers for aggregate computation and data propagation:

6 Function stcHandler(source, aggs):

7 size← size + aggs[0];

8 if height < aggs[1] + 1 then

9 height ← aggs[1] + 1; nextHopToFarthest ← source;

10 STB-STC.aggregates← <size, height>;

// Primitive termination handlers:

11 When LE CHEUNG-BFS-ST-CB terminates at root node vi do:

12 start STB-STC;

13 When STB-STC terminates at root node vi do:

14 LE CHEUNG-BFS-ST-CB STB-STC terminates;

Algorithm 4: LE CHEUNG-BFS-ST-CB STB-STC detailed for any node vi.

3.5. PRELIMINARY MATERIALS ON NETWORK TRAVERSAL AND TREE ALGO... 49

3.5.5/ ROBUSTNESS TO MODULE MOBILITY AND FAULTS

To handle dynamic topology changes due to module mobility or to failure, a node launches

a new central node election upon detection of a neighbor arrival or departure. Any local

change may indeed have drastically changed the global topology of the network. Our

algorithms are designed for fairly static networks where faults and node mobility only

occur occasionally.

We use the technique proposed in [Vasudevan et al., 2004]. Each node participates in

only one central node election at a time. In order to achieve this, an election index is used.

This election index is a pair <e, id> where id is the identifier of the node that has initiated

the election and e is a number that is locally incremented each time a node triggers a new

election. id is used to break the tie among concurrent elections with the same e value.

A total order is defined on the election indices to determine election priority: <e1, id1>

has a higher priority than <e2, id2> if e1 > e2 or if e1 = e2 and id1 < id2. Whenever a

module receives a message for an election with a higher priority, it starts participating in

this election and stops participating in any potential ongoing election of lower priority.

Note that this mechanism is used as an underlying transparent service and does not

appear in the description of our algorithms.

50 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

3.5.6/ SUMMARY OF THE PRIMITIVES AND NOTATION

Table 3.3 summarizes the properties of the different primitives used to build our centrality-

based leader election algorithms.

Algorithm Description
Complexity

Mem-

ory

space

Time

#

Mes-

sages

LE CHEUNG-BFS-

ST-CB STB-STC

Elect the minimum-id node as a leader and

construct a BFST rooted at it. Then, perform a

broadcast/convergecast to compute the size of

the network along with height of the tree and a

path to the farthest node (see Section 3.5.4).

O(∆)∗ O(d)
O(mn2)

CHEUNG-BFS-ST-

CB(tree, handlers)

Construct a BFST rooted at the initiator with

data propagation and aggregate computation

using the handler functions (see

sections 3.5.1 and 3.5.4).

O(∆)∗ O(d)
O(nm)

STB(tree, handler)

Broadcast on tree with data propagation. Data

is handled using the input handler function (see

sections 3.5.3 and 3.5.4).

O(∆)∗ O(d) O(n)

STC(tree, handler)

Convergecast on tree with aggregate

computation using the input handler function

(see sections 3.5.3 and 3.5.4).

O(∆)∗ O(d) O(n)

STB-

STC(tree, handlers)

Broadcast, then convergecast on tree with data

propagation and aggregate computation using

the input handler functions (see

sections 3.5.3 and 3.5.4).

O(∆)∗ O(d) O(n)

Table 3.3: Primitives used to build our centrality-based leader election

algorithms. Note ∗: in memory complexity calculation it is assumed

that propagated and computed data can be stored using O(1) memory

space.

3.6/ K-BFS SUMSWEEP FRAMEWORK

The k-BFS SumSweep framework elects either an approximate center or an approximate

centroid node of the system. We first describe the general idea of our framework. Then

we provide a detailed description of its distributed implementation. Afterwards, we ana-

lyze the complexity of that implementation.

3.6.1/ DESCRIPTION AT A GLANCE

The k-BFS SumSweep framework is based on the SumSweep heuristic proposed as a

starting point of the sequential algorithm in [Borassi et al., 2014] to compute the exact

graph diameter and radius. SumSweep aims at consecutively selecting the most external

3.6. K-BFS SUMSWEEP FRAMEWORK 51

vertices of a graph. Our distributed implementation of k-BFS SumSweep uses distributed

BFSes to compute SSSP.

In our framework, a partial centrality value (eccentricity or farness, depending on the

framework version) is computed for every node using distances to {uλ}1≤λ≤k ⊆ V, a subset

of k nodes, with k ≤ n. This subset is formed from a random initial vertex and k−1 external

vertices selected in a consecutive manner. The main idea behind our framework is that

central nodes are first and foremost central to the most external nodes.

For pedagogical purposes, a sequential version of the k-BFS SumSweep framework is

shown in Algorithm 5. Our framework runs in at most k iterations. During each iteration λ,

a node uλ is selected and the partial centrality value of every node is updated using the

distance to uλ (line 5-13). {uλ}1<λ≤k are some of the most external nodes consecutively

selected using the SumSweep heuristic, i.e., the next vertex is the vertex of maximum

partial farness that has not been previously selected (line 6). Note than u1 is selected at

random as initially all partial farness values are null. In our distributed implementation,

the node of minimum identifier is elected as u1. At the end, the node of minimum partial

eccentricity (resp. farness) is elected as the approximate center (resp. centroid) of the

system (line 14).

Input : G = (V, E) // network representation

version ∈ {center, centroid}
k // Number of nodes to select

Output : centrality[] // approximate eccentricity or farness of every node

central // approximate center or centroid of the system

1 for each vi ∈ V do

2 f ar[vi]← 0;

3 centrality[vi]← 0;

4 Candidates← V;

5 for λ = 1 to min{k, n} do

6 u← vi ∈ argmax
v j∈Candidates

f ar[v j]; // SumSweep heuristic (ties are broken arbitrarily)

7 Candidates← V − {u};
8 for each vi ∈ V do

9 f ar[vi]← f ar[vi] + d(u, vi);

10 if version = center then

11 centrality[vi]← max{centrality[vi], d(u, vi)};
12 else

13 centrality[vi]← f ar[vi];

14 central← vi ∈ argmin
v j∈V

centrality[v j]; // a node of minimum centrality value is elected

Algorithm 5: Sequential version of k-BFS SumSweep framework.

Figure 3.8 depicts an execution of the k-BFS SumSweep framework on a 200-node Blinky

Blocks system with k = 10. For both the center and centroid versions, the elected node

is close to the theoretical node. In the evaluation section, we show that k = 10 provides

accurate results even with large-scale systems of 104 nodes.

52 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

Figure 3.8: The k-BFS SumSweep framework running on a random

two-dimensional Blinky Blocks system composed of 200 modules with

k = 10. The initial module from which is performed the first distance

computation is in brown. The other k − 1 external nodes selected are

in yellow and the order of selection is written on them. In the center

version of our framework, the module in red is elected and it matches

the theoretical center. In the centroid version, the module in cyan is

elected while the exact centroid is the (nearby) module in grey.

3.6.2/ DISTRIBUTED IMPLEMENTATION

Algorithm 6 provides the pseudo-code of our distributed implementation of the k-BFS

SumSweep framework. It uses two of our primitives (LE CHEUNG-BFS-ST-CB STB-

STC and CHEUNG-BFS-ST-CB-AGG) and two specific types of messages (NEXT BFS

and ELECTED).

We recall that our framework runs in at most k iterations. During each iteration λ, a node

uλ is selected and the partial centrality value of every node is updated using the distance

to uλ. u1 is elected using LE CHEUNG-BFS-ST-CB STB-STC (lines 5 and 47). If both

k > 1 and n > 1, then a NEXT BFS message is sent toward u2, the farthest node from that

initiator (lines 50-51 and 63-75). Otherwise, u1 is elected as the central node and k-BFS

SumSweep terminates (line 53).

Every iteration λ > 1 starts when uλ receives a NEXT BFS message. Upon reception of

that message, uλ initiates a CHEUNG-BFS-ST-CB-AGG (lines 63-75). CHEUNG-BFS-

ST-CB-AGG is used to compute the node distance to uλ and to construct both a path

to a candidate node of maximum partial farness and a path to a node of minimum cen-

trality value (lines 30-46). Upon termination of CHEUNG-BFS-ST-CB-AGG, uλ sends a

NEXT BFS message toward uλ+1 in order to trigger a next iteration if k > λ and λ > n

(line 62). Otherwise, uλ elects the node of minimum partial centrality value. If uλ has the

minimum centrality value, k-BFS SumSweep terminates and uλ is elected as the central

3.6. K-BFS SUMSWEEP FRAMEWORK 53

node (line 58). Otherwise, uλ sends an ELECTED messsage toward the node of mini-

mum centrality value (lines 60 and 76-80). Upon reception of that message by the node

of minimum centrality value, our framework terminates and this node is elected as the

central node (line 78).

Note that, because the distance to uλ may change several times during the execution

of the CHEUNG-BFS-ST-CB-AGG launched by uλ, the partial farness and centrality are

actually updated only after the execution of CHEUNG-BFS-ST-CB-AGG triggered by uλ+1

has started (see lines 6-14, 19 and 69). Hence, upon termination of the k-BFS SumSweep

framework with k > 1, the elected node is the node of minimum partial centrality value

computed over all the selected nodes, but the actual value in the variable centrality of all

Input : version ∈ {center, centroid}
k // Number of BFSes to perform

Output : a single central node is elected

Primitive(s) : LE CHEUNG-BFS-ST-CB STB-STC

CHEUNG-BFS-ST-CB-AGG(handlers : handleBFS Data, updateBFS Aggs, getBFS Aggs,

resetBFS Aggs)

// Initialization and start handlers:

1 Initialization of vi:

2 candidate← true; iteration← 0; f ar ← 0 centrality← 0;

branchCentrality← {}; branchFarCandidate← {};
nextHopToMinCentrality←⊥;

nextHopToMaxFarCandidate←⊥;

3 start k-BFS SumSweep;

4 When k-BFS SumSweep starts at node vi do:

5 start LE CHEUNG-BFS-ST-CB STB-STC;

// Helper functions:

6 Function updateLocalValues() :

7 dist ← CHEUNG-BFS-ST-CB-AGG.distance;

8 if iteration = 1 then

9 dist ←
LE CHEUNG-BFS-ST-CB STB-STC.distance;

10 f ar ← f ar + dist;

11 if version = center then

12 centrality← max{centrality, dist};
13 else

14 centrality← f ar;

// Primitive handlers for aggregate computation

and data propagation:

15 Function handleBFSData():

16 iter ← CHEUNG-BFS-ST-CB-AGG.data[0];

17 if iter > iteration then

18 iteration← iter;

19 updateLocalValues() ;

// Take part in this BFS as non-root:

20 re-initialize CHEUNG-BFS-ST-CB-AGG;

21 Function resetBFSAggs():

22 branchCentrality← {}; branchFarCandidate← {};

23 Function updateBFSAggs(v j, child, aggs) :

24 if child = true then

25 branchCentrality[v j] = aggs[1];

26 branchFarCandidate[v j] = aggs[2];

27 else

28 remove branchFarCandidate[v j];

29 remove branchCentrality[v j];

30 Function getBFSAggs():

31 dist ← CHEUNG-BFS-ST-CB-AGG.distance;

// Maximum candidate farness:

32 maxCandidateFar ← 0;

nextHopToMaxFarCandidate←⊥;

33 if candidate = true then

34 maxFar ← f ar + dist;

35 v f ← argmaxvk∈N1
vi

branchFarCandidate[vk];

36 if v f ,⊥ AND branchFarCandidate[v f] > maxFar then

37 maxCandidateFar ← branchFarCandidate[v f];

nextHopToMaxFarCandidate← v f ;

// Minimum centrality value:

38 if version = center then

39 minCentrality← max{centrality, dist};
40 else

41 minCentrality← centrality + dist;

42 nextHopToMinCentrality←⊥;

43 v f ← argmaxvk∈N1
vi

branchMinCentrality[vk];

44 if v f ,⊥ AND branchMinCentrality[v f] < minCentrality

then

45 minCentrality← branchMinCentrality[v f];

nextHopToMinCentrality← v f ;

46 return <maxFar,minCentrality>;

54 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

// Primitive termination handlers:

47 When LE CHEUNG-BFS-ST-CB STB-STC terminates

at root node vi do:

48 candidate← f alse;

49 size← LE CHEUNG-BFS-ST-CB STB-STC.size;

50 if size > 1 AND k > 1 then

51 send NEXT BFS<size> to LE CHEUNG-BFS-ST-

CB STB-STC.nextHopToFarthest;
52 else

53 k-BFS SumSweep terminates; // vi is elected

54 When CHEUNG-BFS-ST-CB-AGG terminates at root

node vi do:

55 size← CHEUNG-BFS-ST-CB-AGG.size;

56 if iteration + 1 = k OR iteration + 1 = size then

57 if nextHopToMinCentrality =⊥ then

58 k-BFS SumSweep terminates; // vi is

elected

59 else

60 send ELECTED<> to nextHopToMinCentrality;

61 else

62 send NEXT BFS<size> to

nextHopToMaxFarCandidate;

// k-BFS SumSweep message handlers:

63 When NEXT BFS<size> message is received by the

node vi do:

64 pathNextBFS = nextHopToMaxFarCandidate;

65 if iteration = 0 then //

66 pathNextBFS ← LE CHEUNG-BFS-ST-CB STB-

STC.nextHopToFarthest;

67 if pathNextBFS =⊥ then

68 iteration← iteration + 1;

69 candidate← f alse; updateLocalValues();

// Start a new BFS as root:

70 re-initialize CHEUNG-BFS-ST-CB-AGG;

71 CHEUNG-BFS-ST-CB-AGG.size← size;

72 CHEUNG-BFS-ST-CB-AGG.data[0]← iteration;

73 start CHEUNG-BFS-ST-CB-AGG;

74 else

75 send NEXT BFS<size> to pathNextBFS ;

76 When ELECTED<> message is received by node vi do:

77 if nextHopToMinCentrality =⊥ then

78 k-BFS SumSweep terminates; // vi is elected

79 else

80 send ELECTED<> to nextHopToMinCentrality;

Algorithm 6: Distributed implementation of the k-BFS SumSweep framework detailed

for any node vi.

nodes does not take into account the distance to the last selected node.

3.6.3/ TERMINATION PROOF AND COMPLEXITY ANALYSIS

The k-BFS framework sequentially runs 1× LE CHEUNG-BFS-ST-CB STB-STC, then

(k − 1)× CHEUNG-BFS-ST-CB-AGG and finally forwards an ELECTED message toward

the node of minimum centrality value through the last constructed spanning-tree. This

message reaches its final destination using O(d) time and O(d) messages. All these

steps terminate, thus our framework terminates. Moreover, we have k ≤ n. Using the

primitive complexity given in Section 3.5, the k-BFS framework runs in O(kd) time using

O(mn2) messages and O(∆) memory space per module.

3.7/ ABC-CENTER

This section presents the ABC-Center algorithm which elects an approximate center of

the system. We have designed two versions of ABC-Center, namely ABC-CenterV1 and

ABC-CenterV2. ABC-CenterV2 was designed later in time and improves our first version

in terms of accuracy, communication efficiency, memory usage and execution time. We

present both of them in this section.

3.7. ABC-CENTER 55

3.7.1/ DESCRIPTION AT A GLANCE

ABC-Center extends the sequential Minimax [Handler, 1973] and 4-Sweep [Crescenzi

et al., 2013] algorithms. The main idea of ABC-Center is that central nodes lie in the

middle of a diameter path. ABC-Center identifies an extreme path and recursively isolates

midpoints on it until electing a single node. In contrast to the k-BFS SumSweep, the

termination of ABC-Center does not rely on an input parameter.

Variants : ABC-CenterV2 // Black lines only

xABC-CenterV1q // Black + x q lines

Input : G = (V, E) // network representation

Output : central // a central node

1 Candidates← V; // all nodes are initially candidate

2 while |Candidates| > 2 do

3 A← vi ∈ Candidates; // A is a random candidate node

4 B← vi ∈ argmax
v j∈Candidates

d(A, v j); // B is one of the farthest candidate node from A

5 C ← vi ∈ argmax
v j∈Candidates

d(B, v j); // C is one of the farthest candidate node from B

// most equi-distant candidates from B and C remain candidate:

6 Candidates← argmin
v j∈Candidates

|d(B, v j) − d(C, v j)|;

// B and C are eliminated (if not already purged by the previous line)

7 Candidates← Candidates − {B,C};
8 x if |Candidates| = 2 then

// Final step: most equi-distant candidates on a shortest path from B to C

remain candidate

9 Candidates← argmin
v j∈Candidates

max{d(B, v j), d(C, v j)}; q

10 central← vi ∈ Candidates; // a node that remains candidate is arbitrarily selected

Algorithm 7: Sequential versions of ABC-CenterV1 and ABC-CenterV2.

For pedagogical purposes, a sequential version of ABC-Center is shown in Algorithm 7.

ABC-Center iteratively finds an approximate center of the system. At the beginning, all

the nodes are candidates (line 1). At each iteration λ, we pick Aλ, a random node among

the candidates (line 3). Then, we select Bλ, one of the farthest candidates from Aλ (line

4) and Cλ, one of the farthest candidates from Bλ (line 5). Bλ and Cλ are extremities

of the system composed with the candidates. Candidates for the (λ + 1)th iteration are

the most equidistant nodes from Bλ and Cλ among the candidates at iteration λ (line 6).

The most equidistant modules from Bλ and Cλ are defined as the modules that minimize

|distance to Bλ − distance to Cλ|. This scheme stops when less than 3 nodes remain

candidates. At this point, ABC-CenterV1 filters the set of candidates and only keeps the

closest candidates from the last B and the last C (line 9). Then, ABC-Center picks one of

the remaining candidate nodes as the approximate center of the network (line 10).

Ties are broken arbitrarily. In our distributed implementation, A1 is the node of minimum

identifier. Ties in the next node selections are broken using node identifiers in ABC-

CenterV1 and at random in ABC-CenterV2.

The computation scheme of our two versions of ABC-Center differs in the selection of the

central node when only two nodes remain candidate after the final step. ABC-CenterV2

56 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

picks a node at random, while ABC-CenterV1 selects one of the most equi-distant node

on a shortest path from B to C (lines 8-9).

Figure 3.9 shows the ABC-CenterV2 step-by-step execution on a cube of 64 Blinky

Blocks. Let Pλ be the plane that contains the most equidistant candidate blocks from

Bλ and Cλ. The candidates at iteration λ + 1 are the blocks that belong to
⋂
κ=1..λ

Pκ. At

each iteration, the problem is simplified by one dimension. The first iteration gives a

discrete plane, the second a discrete line and the third a set of two blocks. One of the

two remaining candidates is then arbitrarily selected as the center at the end of the third

iteration.

Figure 3.9: ABC-CenterV2 step-by-step execution on a 4 × 4 × 4

cube of Blinky Blocks. For every block vi we note dλvi
=

<d(vi, A
λ), d(vi, B

λ), d(vi,C
λ)> and gλvi

= |d(vi, B
λ) − d(vi,C

λ)|.

Figure 3.10 shows that the position of the initial node, A1, impacts the execution of ABC-

Center in terms of both accuracy and efficiency (number of steps, i.e., time, number of

messages, etc.). We recall that A1 is the minimum identifier module, thus the execution

of ABC-Center depends on the node identifier distribution.

Figure 3.10: Two executions of ABC-CenterV2 on the same system with

different positions for A1. In the system on the left, the elected module

belongs to the theoretical center, while it is one module off in the system

on the right.

As experimentally shown in Section 3.9, ABC-Center exhibits a high accuracy in many

systems. Nevertheless, we identified a tricky case (see Figure 3.11). In this example,

all the modules in the right arm of Blinky Blocks are equidistant from B1 and C1 and

3.7. ABC-CENTER 57

thus remain candidates for a second step, although they do not belong to the theoretical

center. To solve the issue, we envisioned to keep only the modules on the shortest path

between B1 and C1 as candidates for the second step, i.e., to replace line 6 by line 9 in

Algorithm 7. As shown in Figure 3.11, this approach requires only one step and elects

an exact center. However, we experimentally observed that using this method decreases

the overall precision of our algorithm in large-scale compact random systems of Blinky

Blocks. Hence, this very specific case remains to be investigated in future work.

Figure 3.11: Specific ABC-Center approximation error case. On the left,

execution with ABC-Center. On the right, execution with an approach

we envisioned but abandoned.

3.7.2/ ABC-CENTERV1: DISTRIBUTED IMPLEMENTATION

Our distributed version of ABC-CenterV1, uses for each iteration λ, a multi-criterion leader

election algorithm to find Aλ, Bλ and Cλ. We first describe this election algorithm. We

subsequently detail step-by-step how the distributed version of ABC-CenterV1 works on

a basic example. We then discuss the complexity of this version.

3.7.2.1/ MULTI-CRITERION LEADER ELECTION ALGORITHM

Our multi-criterion leader election algorithm is based on CHEUNG-BFS-ST algorithm. We

recall that network traversal algorithms such as Cheung’s algorithm can be used for leader

election. Note that CHEUNG-BFS-ST does not use the controlled-broadcast optimization

presented in Section 3.5.1.2.

We modified CHEUNG-BFS-ST into electBlock(c, optFunc, x, id) to elect, among the can-

didate nodes for which the boolean c is equal to true, a single node that optimizes a

variable x according to optFunc ∈ {min,max} using the node identifier as a tie breaker (see

Algorithm 8). Each node has its own variables c, x and id. c is equal to true if the module

is candidate for the election, false otherwise. x can be a tuple. A comparison order has

to be defined on x. In case of equality, the tuple with the lowest id is selected.

In electBlock, every node locally stores the temporary optimized value of x in the variable

optX. The id of the candidate node that optimizes x is stored in optId and the distance

to that node is stored in optDist. The values of optX, optId and optDist are progressively

learned by all the nodes during the execution of electBlock.

58 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

1 electBlock(c,optFunc,x,id) algorithm detailed for any node vi:

2 Initialization of vi:

3 optX ← WORS T X VALUE; optId ← 0;

4 optDist ← 0; parent ←⊥; Wait ← ∅;
5 if c = true then

6 optX ← x; // value of the variable we want to optimize during the election

7 optId ← id;

8 for each v j ∈ N1
vi

do

9 send ELECT<optX, optId, optDist> to v j;

10 wait ← wait ∪ {v j};

11 When ELECT<x, i, d> is received by vi from v j do:

12 if (evaluation(optFunc,x,i) = BETTER) OR ((evaluation(optFunc,x,i) = EQUAL AND (optDist > d+1))

then

13 if (evaluation(optFunc,x,i) = EQUAL) AND (parent != ⊥) then

14 send CONFIRM<optX, optId, optDist − 1> to parent;

15 optX ← x; optId ← i; optDist ← d + 1;

16 parent ← v j; Wait ← ∅;
17 for each v j ∈ N1

vi
\ {v j} do

18 send ELECT<optX, optId, optDist> to v j;

19 Wait ← Wait ∪ {v j};
20 if Wait = ∅ then

21 send CONFIRM<optX, optId, optDist − 1> to parent;

22 else if evaluation(optFunc,x,i) = EQUAL then

23 send CONFIRM<x, i, d> to v j;

24 When CONFIRM<x, i, d> is received by vi from v j do:

25 if (evaluation(optFunc,x,i) = EQUAL) AND (optDist = d) then

26 Wait ← Wait − {v j};
27 if Wait = ∅ then

28 if optId = id then

2929 // Node vi wins the election

30 else

31 send CONFIRM<optX, optId, optDist − 1> to parent;

Algorithm 8: Multi-criterion leader election algorithm electBlock(c, optFunc, x, id) de-

tailed for any node vi.

The evaluation function evaluation(optFunc, x, i) returns BETTER if the tuple (x, i) opti-

mizes the local solution (optX, optId) according to optFunc. It returns EQUAL if (x, i) =

(optX, optId). Otherwise, it returns WORSE. For instance, if optX = 2 and optId = 1,

evaluation(max, 3, 2) returns BETTER. The same call, returns EQUAL if optX = 3 and

optId = 2, whereas it returns WORSE if optX = 3 and optId = 1.

In our leader election algorithm, each candidate node starts a network traversal by send-

ing to all its neighbors an ELECT message that contains its value of x and its id (lines

2-10). Network traversals are concurrent. If a node receives better values according

to optFunc via an ELECT message, it forgets about the previous network traversal, and

starts participating in the new one (lines 11-23). Modules send back confirmation mes-

sages CONFIRM which progressively go back up to the module that will win the election.

A module vi sends a CONFIRM message to the node v j, either if vi has received from v j

3.7. ABC-CENTER 59

an ELECT message containing values equal to the current optimal values stored in optX

and optId but with a farther distance to the node of identifier optId (lines 14 and 23), or if

vi has received a CONFIRM message from each of its other neighbors (lines 21 and 31).

A graph traversal terminates as soon as the module that initiated it, has been informed by

all its neighbors that it has the best values for x and id among the candidate nodes (line

29). Although all modules initiate a network traversal, only a single one will terminate and

the node that initiates this traversal will win the election.

3.7.2.2/ ABC-CENTERV1 DETAILED EXECUTION ON A LINE OF 4 BLINKY BLOCKS

Figure 3.12 shows ABC-CenterV1 step-by-step execution on a line of four blocks. Election

messages are tagged with the iteration number and the role (A,B or C) to prevent the

current election from being disrupted by delayed messages of a previous election. At

the beginning every block is candidate and launches the election of A1. When A1 is

finally elected, all the blocks know their distance to A1. A1 starts the election of B1 which

is one of the farthest blocks from A1. Similarly, B1 starts the election of C1. Then, C1

launches the election of A2. Only the blocks k that have g1
k
[0] = g1

A2[0] remain candidates

for the second iteration, i.e., the blocks at half-distance between B1 and C1. If less than 3

blocks remain candidates, A2 is elected as an approximate center of the system and the

algorithm terminates. Otherwise, the same scheme is repeated until less than 3 blocks

remain candidates. An easy way to determine if less than 3 blocks remain candidates is

to store the identifiers of 2 remaining candidates in the CONFIRM election messages. If

Aλ receives 2 different identifiers, it means that at least 3 blocks remain candidates: Aλ

and the other two. The message size is thus constant.

3.7.2.3/ TERMINATION PROOF AND COMPLEXITY ANALYSIS

M. Raynal’s termination proof for Cheung’s BFST algorithm [Raynal, 2013] is applicable

to show the termination of our multi-criterion leader election. Since the number of candi-

date nodes always decreases at each iteration, the ABC-CenterV1 algorithm necessarily

terminates.

Cheung’s algorithm has a message complexity of O(nm), where m is the number of

edges [Lynch, 1996]. During the multi-criterion leader election process, in the worst case,

each node launches a graph traversal and a single one terminates. Three elections are

performed at each step. Hence, the message complexity of ABC-CenterV1 is O(smn2)

with s representing the number of steps.

If we ignore pileups, Cheung’s BFST algorithm has a time complexity of O(d) [Raynal,

2013], as a node is at most at d hops from any other node. Under the same assumption,

our multi-criterion leader election algorithm also has a time complexity of O(d). A step

is composed of exactly three multi-criteria elections, thus, the time complexity of a step

is O(d). Hence, ABC-CenterV1 uses O(sd) time with s denoting the number of iterations

required for termination. However, ABC-CenterV1 does not use the controlled-broadcast

optimization presented in Section 3.5.1.2 and, thus, messages may pile up, incurring a

60 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

id: 2
d: <0,0,0>
g: <0,0>
c: true

id: 1
d: <0,0,0>
g: <0,0>
c: true

id: 4
d: <0,0,0>
g: <0,0>
c: true

id: 3
d: <0,0,0>
g: <0,0>
c: true

id: 2

d: <1,0,0>
g: <0,0>
c: true

A1

id: 1
d: <0,0,0>
g: <0,0>
c: true

id: 4

d: <1,0,0>
g: <0,0>
c: true

id: 3

d: <2,0,0>
g: <0,0>
c: true

Id: 2

d: <1,3,0>
g: <0,0>
c: true

A1

id: 1

d: <0,2,0>
g: <0,0>
c: true

id: 4

d: <1,1,0>
g: <0,0>
c: true

B1

id: 3

d: <2,0,0>
g: <0,0>
c: true

C1

id: 2

d: <1,3,0>

g: <3,3>
c: true

A1

id: 1

d: <0,2,1>

g: <1,2>
c: true

id: 4

d: <1,1,2>

g: <1,2>
c: true

B1

id: 3

d: <2,0,3>

g: <3,3>
c: true

id: 2

d: <1,0,0>

g: <0,0>
c: false

 A
2
= Elected

id: 1 Center

d: <0,0,0>

g: <0,0>
c: true

id: 4

d: <1,0,0>

g: <0,0>
c: true

id: 3

d: <2,0,0>

g: <0,0>
c: false

ABC-Center Step-by-Step Detailed Execution

Local variables:
id: unique identifier of the block.
d: vector of distances: <distance to Ai, distance to Bi, distance to Ci>.
g: after having elected Ci,

g = <| distance to Bi - distance to Ci|, max(distance to Bi, distance to Ci)>.
c: boolean, true if the block is still candidate, false otherwise.

1st multi-criteria leader election: A1

= electBlock(c,min,g,id)

Only 2 blocks remain candidate: block with ids 1 and 4. g
1
= g

4
, but block

with id 1 has the minimum-id, thus it is elected as the center.

2nd election: B1= electBlock(c,max,distance to A1,id)

3rd election: C1

= electBlock(c,max,distance to B1,id)

4th election: A2

= electBlock(c,min,g,id)

Figure 3.12: ABC-CenterV1 detailed execution on a line of 4 Blinky

Blocks.

time overhead.

The ABC-CenterV1 algorithm stores O(∆) information at the application level. However,

its total memory usage can be important, due to potential message pileups.

ABC-CenterV2 presented in the next section overcomes these limitations of ABC-

CenterV1.

3.7. ABC-CENTER 61

3.7.3/ ABC-CENTERV2: DISTRIBUTED IMPLEMENTATION

3.7.3.1/ PSEUDO-CODE

Our distributed implementation of ABC-CenterV2 is described in Algorithm 9. It uses

three primitives (LE CHEUNG-BFS-ST-CB STB-STC, CHEUNG-BFS-ST-CB-AGG and

STB-STC) and two specific types of messages (NEXT BFS and ELECTED).

A1 is elected using LE CHEUNG-BFS-ST-CB STB-STC (lines 5 and 49). If there are

more than 2 nodes in the system, a NEXT BFS message is sent toward B1, a farthest

candidate node from A1 (lines 50-51 and 66-81). Otherwise, A1 is elected as the cen-

Output : a single central node is elected

Primitive(s) : LE CHEUNG-BFS-ST-CB STB-STC

CHEUNG-BFS-ST-CB-AGG(handlers : handleBFS Data, updateBFS Aggs, getBFS Aggs,

resetBFS Aggs)

STB-STC(tree : CHEUNG-BFS-ST-CB-AGG.tree, handlers : stbHandler, stcHandler)

// Initialization and start handlers:

1 Initialization of vi:

2 candidate← true; iteration← 0; distances← <0, 0>;

branchFarthest ← {}; f arthest ← 0;

nextHopToFarthest ←⊥; branchGMin← {};
gMin← 0; nextHopToGMin←⊥; numCandidates← 0;

3 start ABC-CenterV2;

4 When ABC-CenterV2 starts at node vi do:

5 start LE CHEUNG-BFS-ST-CB STB-STC;

// Helper functions:

6 Function updateBCDistances():

7 role← iteration%3;

8 if role > 0 then // is B or C

9 distances[role − 1]←
10 CHEUNG-BFS-ST-CB-AGG.distance;

// Primitive handlers for aggregate computation

and data propagation:

11 Function handleBFSData():

12 iter ← CHEUNG-BFS-ST-CB-AGG.data[0];

13 if iter > iteration then

14 iteration← iter;

// Take part in this BFS as non-root:

15 re-initialize CHEUNG-BFS-ST-CB-AGG;

16 Function updateBFSAggs(v j, child, aggs) :

17 if child = true then

18 branchFarthest[v j] = aggs[1];

19 branchGMin[v j] = aggs[2];

20 else

21 remove branchFarthest[v j], branchGMin[v j];

22 Function resetBFSAggs():

23 branchFarthest ← {}; branchGMin← {};

24 Function getBFSAggs:

25 updateBCDistances();

26 if candidate = true then

27 f arthest ← CHEUNG-BFS-ST-CB-AGG.distance;

28 gMin← |distances[0] − distances[1]|;
29 else

30 f arthest ← 0; gMin← +∞;

31 nextHopToFarthest ←⊥;

32 v f ← argmaxvk∈N1
vi

branchFarthest[vk];

33 if v f ,⊥ AND branchFarthest[v f] > f arthest then

34 f arthest ← branchFarthest[v f];

nextHopToFarthest ← v f ;

35 nextHopToGMin←⊥;

vg ← argminvk∈N1
vi

branchGMin[vk];

36 if vg ,⊥ AND branchGMin[vg] < g then

37 g← branchGMin[vg]; nextHopToGMin← vg;

38 CHEUNG-BFS-ST-CB-AGG.aggregates←
CHEUNG-BFS-ST-CB-AGG.aggregates ∪
{ f arthest, gMin};

39 Function handleSTB() :

40 nextHopToGMin←⊥; numCandidates← 1;

g← |distances[0] − distances[1]|;
41 if g > STB-STC.data[0] then

42 candidate← f alse; numCandidates← 0;

43 STB-STC.aggregates← {numCandidates};
44 Function handleSTC(v j, aggs) :

45 numCandidates← numCandidates + aggs[0];

46 if nextHopToGMin =⊥ AND aggs[0] , 0 then

47 nextHopToGMin← v j;

48 STB-STC.aggregates← {numCandidates};

62 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

// Primitive termination handlers:

49 When LE CHEUNG-BFS-ST-CB STB-STC terminates

at root node vi do:

50 if LE CHEUNG-BFS-ST-CB STB-STC.size > 2 then

51 send NEXT BFS<LE CHEUNG-BFS-ST-CB STB-

STC.size> to

LE CHEUNG-BFS-ST-CB STB-

STC.nextHopToFarthest;
52 else

53 ABC-CenterV2 terminates; // vi is elected

54 When CHEUNG-BFS-ST-CB-AGG terminates at root

node vi do:

55 updateBCDistances();

56 if iteration%3 , 2 then // is A or B

57 send NEXT BFS<CHEUNG-BFS-ST-CB-AGG.size>

to nextHopToFarthest;

58 else

59 STB-STC.data← {gMin};
60 start STB-STC;

61 When STB-STC terminates at root node v j do:

62 if numCandidates > 2 then

63 send NEXT BFS<CHEUNG-BFS-ST-CB-AGG.size>

to STB-STC.nextHopToGMin;

64 else

65 send ELECTED<> to STB-STC.nextHopToGMin;

// ABC-CenterV2 message handlers:

66 When NEXT BFS<size> message is received by the

node vi do:

67 pathNextBFS ← nextHopToFarthest;

68 if iteration = 0 then // is A1

69 pathNextBFS ← LE CHEUNG-BFS-ST-CB STB-

STC.nextHopToFarthest;

70 if iteration%3 = 2 then // is C

71 pathNextBFS ← STB-STC.nextHopToGMin;

72 if pathNextBFS =⊥ then

73 iteration← iteration + 1;

74 if iteration%3 , 0 then // is B or C

75 candidate← f alse;

// Start a new BFS as root:

76 re-initialize CHEUNG-BFS-ST-CB-AGG;

77 CHEUNG-BFS-ST-CB-AGG.size← size;

78 CHEUNG-BFS-ST-CB-AGG.data[0]← iteration;

79 start CHEUNG-BFS-ST-CB-AGG;

80 else

81 send NEXT BFS<size> to pathNextBFS ;

82 When ELECTED<> message is received by node vi do:

83 if candidate then

84 ABC-CenterV2 terminates; // vi is elected

85 else

86 send ELECTED<> to STB-STC.nextHopToGMin;

Algorithm 9: ABC-CenterV2 detailed for any node vi.

tral node and ABC-CenterV2 terminates (line 53). Upon reception of that NEXT BFS

message, B1 initiates a CHEUNG-BFS-ST-CB-AGG (lines 72-79) during which all nodes

determine their distance to B1 and a path from B1 toward C1, a farthest candidate node

from B1, is constructed (lines 16-38). Similarly to A1, B1 sends a NEXT BFS message to

C1 that initiates a CHEUNG-BFS-ST-CB-AGG during which modules distributively com-

pute gMin1
= min

v j∈Candidates
g1

v j
= min

v j∈Candidates
|d(v j, B

1) − d(v j,C
1)| (lines 16-38).

Afterwards, C1 initiates an STB-STC (line 60). During the STB phase, gMin1 is broad-

cast across the network (line 59). Only the candidate nodes v j with g1
v j
= gMin1 remain

candidates for the second step (lines 39-43). The STC phase is used to determine the

number of remaining candidate nodes and to construct a path toward a candidate node

(lines 44-48). If less than 3 nodes remain candidates, C1 sends an ELECTED message

toward one of these candidate nodes (lines 65 and 82-86). ABC-CenterV2 terminates

upon reception of an ELECTED message by a candidate node which is elected as the

central node (line 84). Otherwise, if more than 2 nodes remain candidates, C1 sends a

NEXT BFS message to A2, one of the remaining candidate nodes (lines 63 and 66-81).

A2 initiates a CHEUNG-BFS-ST-CB-AGG to locate B2, the farthest candidate node from

A2 (lines 72-79). At this point, the execution of the second step is identical to the execu-

tion of the first one after the NEXT BFS message has reached B1. The scheme of the

3.8. PROBABILISTIC-COUNTER-BASED CENTRAL-LEADER ELECTION FRA... 63

second iteration is repeated at every step until less than 3 nodes remain candidates.

3.7.3.2/ TERMINATION PROOF AND COMPLEXITY ANALYSIS

Let s be the number of iterations required by ABC-CenterV2 to terminate. Our algorithm

first runs a LE CHEUNG-BFS-ST-CB STB-STC, then (3s − 1)× CHEUNG-BFS-ST-CB-

AGG and s× STB-STC in a sequential way. All these primitives have been proved to

terminate. Since the number of candidate nodes always decreases at each iteration, the

ABC-CenterV2 algorithm necessarily terminates. Moreover, at least two nodes (i.e., B

and C) are eliminated at each step, thus s ≤ n.

The NEXT BFS and ELECTED messages use O(d) time and O(n) messages to reach

their final destination. Hence, using the primitive complexity given in Section 3.5, ABC-

CenterV2 runs in O(sd) time using O(mn2) messages and O(∆) memory space per module.

3.8/ PROBABILISTIC-COUNTER-BASED CENTRAL-LEADER ELEC-

TION FRAMEWORK

This section presents the Probabilistic-Counter-based Central-Leader Election Frame-

work (PC2LE) designed to elect either an approximate center node or an approximate

centroid node. PC2LE is an extended version of our algorithm presented in [Naz et al.,

2016] and combines the idea introduced in the input-graph analysis algorithms [Kang

et al., 2011a, Kang et al., 2011b] and in the distributed synchronous algorithm [Garin

et al., 2012].

3.8.1/ PROBABILISTIC COUNTERS

PC2LE is based on probabilistic counting. Probabilistic counters are designed to estimate

the number of unique elements in a set, using both a low time complexity and a low

memory footprint.

Any probabilistic counter can be used (e.g., the Flajolet-Martin [Flajolet et al., 1985], the

HyperLogLog [Flajolet et al., 2007] and the counters proposed in [Varagnolo et al., 2010]).

Note that the choice of the counter has an impact on the precision of PC2LE and on its

memory requirements. As explained in the evaluation section, we obtained the most

accurate results using the HyperLogLog counter.

A probabilistic counter comes with 3 operations, namely the initialization, merge and es-

timate size operations. The initialization operation initializes the probabilistic counter and

encodes a single initial value in its set. The merge operation makes it possible to merge

two probabilistic counters. The size of the set encoded by a probabilistic counter is esti-

mated using the estimate size function.

Flajolet-Martin uses h bitstrings of log2 w bits each to estimate the number of distinct el-

64 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

ements, L, with L ≤ w, in a set of items with a standard error of O(0.78√
h

) [Flajolet et al.,

1985]. In turn, HyperLogLog uses k registers of O(log log w) bits each to provide a stan-

dard error of 1.04√
k

where k is the number of registers [Flajolet et al., 2007]. h and k are

input parameters. Thus, the actual memory usage is a design choice. In practice, there

is a trade-off between the memory requirement of a counter, its precision and the number

of elements to be counted.

These counters have a low work complexity. In Flajolet-Martin, the add, merge and count

functions require O(h) operations [Gibbons, 2016]. In HyperLogLog, the add, merge and

count functions respectively need O(1), O(k) and O(k) operations. Note that we assume

the call to the hash function performed by the add function to be a constant time operation.

3.8.2/ DESCRIPTION AT A GLANCE

For pedagogical purposes, a sequential version of the PC2LE framework is shown in

Algorithm 10.

Input : G = (V, E) // network representation

version ∈ {center, centroid}
Output : centrality[] // approximate eccentricity or farness of every node

central // approximate center or centroid of the system

1 for each vi ∈ V do

2 PC[vi][0]← init(idvi
);// PC is an n × 2 matrix of probabilistic counters that encodes

the sets of reachable nodes at the current/previous iteration for every "line"

node.

3 centrality[vi]← 0;

4 I ← vi ∈ argmin
v j∈V

idv j
; // node of minimum-identifier

5 d̄ ← 2 ×max
vi∈V

d(vi, I)// Compute an upper-bound on the network diameter

6 for r = 1 to d̄ do

7 prev← (r − 1)%2;

8 cur ← r%2;

9 for each vi ∈ V do

10 for each v j ∈ N1
vi

do

11 PC[vi][cur]← merge(PC[vi][prev], PC[v j][prev]);

12 if version = centroid then

13 sizeCur ← estimateS ize(PC[vi][cur]); // ≈ |Nvi
(r)|

14 sizePrev← estimateS ize(PC[vi][prev]); // ≈ |Nvi
(r − 1)|

/* Farness estimation using Equation (3.6): */

15 centrality[vi]← centrality[vi] + r ∗ (sizeCur − sizePrev);

16 else // center

17 if PC[vi][cur] , PC[vi][prev] then

18 centrality[vi] = r; // Eccentricity estimation using Equation (3.2)

19 central← vi ∈ argmin
v j∈V

centrality[v j]; // a node of minimum estimated centrality is elected

Algorithm 10: Sequential version of the PC2LE framework.

Every node vi starts with a probabilistic counter PC[vi][0] encoding a set that contains only

vi itself and a null centrality value (lines 1-3). PC2LE runs in O(d) rounds. At the end of

3.8. PROBABILISTIC-COUNTER-BASED CENTRAL-LEADER ELECTION FRA... 65

round r, the probabilistic counter of a node represents the set of nodes within r-hops from

that node. At each round r, every node vi updates its probabilistic counter by merging it

with the (r− 1)-round probabilistic counter of all its immediate neighbor nodes v j (line 11).

The centrality of every node is computed using Equations (3.2) or (3.6), depending on the

version of the framework that is run (lines 12-18).

PC2LE requires d rounds to converge. The sequential algorithms presented in [Kang

et al., 2011a, Kang et al., 2011b] continue their execution until there is no more update,

i.e., the internal state of no probabilistic counter has changed. This method will be ex-

pensive in distributed settings as it requires all nodes to be queried at the end of every

round. In [Garin et al., 2012], an upper bound of the diameter is assumed to be known or

pre-computed using an external algorithm. PC2LE initially finds I, the minimum-identifier

node and computes d̃ = 2ecc(I) as upper bound of the network diameter (lines 4-5). In-

deed, the eccentricity of any given node vi provides bounds of the diameter of the system:

ecc(vi) ≤ d ≤ 2ecc(vi) ≤ 2d [Magnien et al., 2009]. Note that this implies that PC2LE runs

in O(d) rounds.

After d̃ rounds, a node of minimum centrality value is elected (line 19). PC2LE is approx-

imately equivalent to running a BFSes from every node but at less memory and com-

putation expense. Notice that the computed values depend on the probabilistic counter

internal algorithms and on the node identifier distribution.

3.8.3/ DISTRIBUTED IMPLEMENTATION

Algorithm 11 details the pseudo-code of the PC2LE framework for any node. Our frame-

work uses three primitives (LE CHEUNG-BFS-ST-CB STB-STC, STB and STC) and two

specific types of messages (UPDATE and ELECTED). PC2LE is composed of three

steps.

During the first step, nodes run the LE CHEUNG-BFS-ST-CB STB-STC algorithm to elect

an initiator, construct a spanning-tree and compute d̃, an upper bound of the network

diameter (lines 9 and 28). d̃ is used to bound the execution of the second step. If there

are 2 nodes or less in the system, the initiator is elected as the central node and PC2LE

terminates (line 26).

Otherwise, the initiator then initiates an STB to broadcast d̃ across the network and to

start the second-step computations (lines 28-30). During the second step, nodes com-

pute their estimation of the node farness or eccentricity, depending on the running version

of the framework, in d̃ synchronous rounds. Note that the second step actually embeds

the Alpha synchronizer [Awerbuch, 1985, Lynch, 1996, Raynal, 2013] in it. At each round

r, immediate neighbor nodes exchange their current probabilistic counter that encodes

the set of nodes at distance r − 1 to allow them to compute their next-round probabilistic

counter (lines 37-58).

Upon termination of the second step, all nodes have an estimation of their centrality value

(line 53). Finally, in the third step, nodes execute an STC over the tree constructed in

the first step in order to elect the node of minimum estimated centrality value (line 55). If

66 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

the initiator elected in the first step has the minimum centrality value, PC2LE terminates

upon the termination of STC and the initiator is elected as the central node (line 34).

Otherwise, an ELECTED message is sent toward the node of minimum centrality value

(lines 36 and 59-63). Upon reception of that message by the node of minimum centrality,

PC2LE terminates and this node is elected as the central node (line 61).

3.8.4/ TERMINATION PROOF AND COMPLEXITY ANALYSIS

PC2LE uses the LE CHEUNG-BFS-ST-CB STB-STC and STC primitives. We recall that

their complexity is given in Section 3.5. Let c denote the memory complexity of the prob-

abilistic counter that is used in our framework.

PC2LE first elects an initiator using LE CHEUNG-BFS-ST-CB STB-STC. PC2LE then

broadcasts a START message through the constructed tree to trigger the round-based

centrality computation, using O(d) time and O(n) messages. Nodes then estimate their

centrality values in O(d) rounds as the estimation of the diameter is bounded by 2d. During

each round, every node exchanges two messages with all of its immediate neighbors.

Input : version ∈ {center, centroid}
Output : a single central node is elected

centrality // vi’s approximate eccentricity or farness

Primitive(s) : LE CHEUNG-BFS-ST-CB STB-STC

STB(tree : LE CHEUNG-BFS-ST-CB STB-STC.tree, handler : startHandler)

STC(tree : LE CHEUNG-BFS-ST-CB STB-STC.tree, handler : electionHandler)

// Initialization and start handlers:

1 Initialization of vi:

2 round ← 0; bound ← 0 centrality← 0;

3 pc← init(idvi
);// probabilistic counter

4 npcprev ← pc; npccur ← pc;// neighborhood

probabilistic counters

5 receivedprev ← 0; receivedcur ← 0;

6 minCentrality← +∞; nextHopToMinCentrality←⊥;

7 start PC2LE;

8 When PC2LE starts at node vi do:

9 start LE CHEUNG-BFS-ST-CB STB-STC;

// Primitive handlers for aggregate computation

and data propagation:

10 Function initNextRound():

11 for each vk ∈ N1
vi

do

12 send UPDATE(pc, round) to vk;

13 round ← round + 1; npcprev ← merge(npcprev, npccur);

14 receivedprev ← receivedcur; receivedcur ← 0;

15 Function startHandler():

16 bound ← STB.data;

17 initialize STC;

18 STC.waiting← STC.waiting + 1;

19 initNextRound();

20 Function electionHandler(v j, aggs):

21 if minCentrality > aggs[0] then

22 minCentrality← aggs[0];

23 nextHopToMinCentrality← v j;

// Primitive termination handlers:

24 When LE CHEUNG-BFS-ST-CB STB-STC terminates at

root node vi do:

25 if LE CHEUNG-BFS-ST-CB STB-STC.size < 3 then

26 PC2LE terminates; // vi is elected

27 else

28 bound ←
2 × LE CHEUNG-BFS-ST-CB STB-STC.height;

29 STB.data ← bound;

30 start STB;

31 startHandler();

32 When STC terminates at root node vi do:

33 if nextHopToMinCentrality =⊥ then

34 PC2LE terminates; // vi is elected

35 else

36 send ELECTED<> to nextHopToMinCentrality;

3.9. EVALUATION 67

// PC2LE message handlers:

37 When UPDATE(c, r) is received by vi do:

38 if round < bound then

39 if round = r + 1 then

40 receivedprev ← receivedprev
+ 1;

41 merge(npcprev, c);

42 if receivedprev
= |N1

vi
| then

43 if version = center then

44 if pc , npcprev then

45 centrality← round;

46 merge(pc, npcprev);

47 else

48 sizeprev
= estimateS ize(pc);

49 pc← merge(pc, npcprev);

50 sizecur
= estimateS ize(pc);

51 centrality←
centrality + round ∗ (sizecur − sizeprev);

52 initNextRound();

53 if round = bound − 1 then

// vi starts the minimum

centrality value election.

electionHandler(⊥, centrality);

54 STC.waiting← STC.waiting − 1;

55 start STC;

56 else // r = round

57 receivedcur ← receivedcur
+ 1;

58 npccur ← merge(npccur, c);

59 When ELECTED<> message is received by node vi do:

60 if nextHopToMinCentrality =⊥ then

61 PC2LE terminates; // vi is elected

62 else

63 send ELECTED<> to nextHopToMinCentrality;

Algorithm 11: Distributed implementation of the PC2LE framework detailed for any node

vi.

Thus, nodes exchange at most O(m) messages of size O(c) per round.

Afterwards, nodes run an STC toward the initiator which then sends an ELECTED mes-

sage toward the node of minimum centrality value. The elected node is, at most, at

distance d from the initiator, thus at most O(d) time and messages are required to route a

message from the initiator to the elected node through the tree rooted at the initiator.

All the steps described above terminate, thus, PC2LE terminates. Moreover, our frame-

work converges in O(d) time using O(∆+c) memory space per node and O(mn2) messages

of size O(c).

3.9/ EVALUATION

This section presents our experimental evaluation performed both on hardware Blinky

Blocks and in the VisibleSim simulator (see Sections 2.3.1 and 2.3.3). Through our ex-

periments, we show the effectiveness, the efficiency and the scalability of our algorithms.

More precisely, we first show that ABC-CenterV1 works well on hardware through some

68 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

examples. Then, we present our simulation model and show that VisibleSim accurately

simulates the Blinky Blocks behavior. Finally, we use VisibleSim to evaluate the perfor-

mance of our algorithms in large-scale systems and to compare them to existing algo-

rithms in terms of accuracy, execution time, number of messages and memory usage.

3.9.1/ EVALUATION OF ABC-CENTERV1 ON HARDWARE

We implemented ABC-CenterV1 in C and evaluated on the Blinky Blocks hardware. Fig-

ure 3.13 shows ABC-CenterV1 results in some basic configurations with hardware Blinky

Blocks. For all the configurations considered, the computed center exactly match one

of the nodes in the exact center of the systems. For your information, ABC-CenterV2

successfully finds an exact-center node in these configurations as well.

a) Line (50 modules). b) Square (49 modules).

c) Cube (64 modules). d) Dumbbell (59 modules).

Figure 3.13: ABC-CenterV1 executions on different hardware Blinky

Blocks configurations.

Table 3.4 gives the execution times of ABC-CenterV1 in these configurations on different

scales formed from 5 to 64 modules. The execution time depends on the diameter of

the system and on the number of steps of our algorithm. We observe that the number of

steps does not only depend on the geometrical dimension of the system shape (e.g., a

3D cube needs 3 steps, while a 3D dumbbell requires only 1 step like the line).

Figure 3.14 illustrates ABC-CenterV1 tolerance to network dynamics. The system initially

3.9. EVALUATION 69

ABC-CenterV1

Average execution

Shape Size (module)
Diameter

(hop)

#

steps
time ± standard

deviation (ms)

Hardware Simulator

Line

5 4

1

234 ± 1 244 ± 3

10 9 545 ± 5 544 ± 5

50 49 2873 ± 23 2885 ± 17

Square

9 4

2

598 ± 45 588 ± 14

25 8 1117 ± 30 1119 ± 27

49 12 1684 ± 48 1686 ± 44

Cube
27 6

3
1229 ± 56 1214 ± 31

64 9 1927 ± 51 1941 ± 33

Dumbbell 59 15 1 1262 ± 56 1252 ± 57

Table 3.4: Average execution time of ABC-CenterV1 on hardware Blinky

Blocks and in simulations. Statistics on the execution time were com-

puted over 25 runs for every configuration. Simulation timing results

were computed several times, each time on 25 independent runs, and

we kept the values that matched best the hardware execution time.

forms a 7x7 square. Modules take about 2.5 seconds to boot up, initialize themselves,

discover their neighborhood and elect their center. An extra arm of 11 Blinky Blocks is

then connected to the square-shaped ensemble which detects the network change and

elects its new center in approximately 2 seconds. Note that ABC-CenterV1 is locally

launched on a module at the earliest: 1 second after the module complete initialization

using a software timeout, 1 second after a neighbor change detection or upon reception of

an ABC-CenterV1 message. New neighbors are detected in a few hundred milliseconds.

a) System of 49 nodes starts up. b) ABC-Center terminates.

c) Adding 11 nodes. d) ABC-Center terminates.

Figure 3.14: ABC-CenterV1 execution in a dynamic network.

70 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

3.9.2/ SIMULATION MODEL AND FIDELITY

This section shows the simulation model we have implemented in VisibleSim to simulate

the behavior of the Blinky Blocks. Our model takes into account the processing time, the

queuing time and the communication time (see Table 3.5).

Parameters Value

Transfer

rate (kbit/s)

|N1
vi
| ≤ 2 N(28.331, 1.112)

2 < |N1
vi
| ≤ 4 N(26.667, 2.471)

4 < |N1
vi
| ≤ 6 N(25.846, 2.471)

Processing time (s) U(25 × 10−6, 125 × 10−6)

Table 3.5: Communication model. N(µ, σ) refers to the normal proba-

bilistic law with µ being the mean and σ the standard deviation. U(l, u)

refers to the uniform probabilistic law with the minimum value l and the

maximum value u.

The processing time represents the time necessary to handle an incoming message.

We used the micro-controller clock running at 32 MHz (nano-second scale resolution)

to measure the processing time of different message handlers and arbitrarily chose to

simulate the processing time using a uniform distribution with the range of the measured

time.

In our work on time synchronization presented in Chapter 4, we estimate the transfer rate

between neighboring modules using round-trip time measurements (see Section 4.4).

The transfer rate corresponds to the communication rate from the data-link layer to the

data-link layer of neighboring nodes. We observed that the transfer rate depends on the

number of simultaneous communications. In this section model, the communication rate

depends on the size of the neighborhood of a node.

The reader may have noted that the simulation model presented here differs from the

model we use in Chapter 4. There are several reasons for that. Firstly, we use here

some newly fabricated Blinky Blocks hardware with some different hardware components

(e.g., the network connectors). Secondly, their firmware is slightly modified as well. In

particular, we have reduced the time a module needs to find a free frame using dy-

namic frame allocation instead of a static array of frames with a free-frame search cost of

O(# static frames). This reduces the message processing time as modules require less

time to send messages in response to incoming ones. Last but not least, we use here

a less fine-grained simulation model for the sake of time efficiency. For instance, we do

not check every single byte of a message for special bytes to escape; instead, we only

increase the average and the standard deviation of the communication rate to mimic that

phenomenon. We slightly adapt the transfer rate in order to obtain simulation times that

match the ABC-CenterV1 execution time on new Blinky Blocks hardware prototypes.

Table 3.4 shows that the simulated execution times on VisibleSim closely match the exe-

cution time obtained experimentally on hardware Blinky Blocks, for small and larger con-

3.9. EVALUATION 71

figurations, and for sparse (e.g., lines), less-sparse (e.g., squares), compact (e.g., cubes)

and mixed-density configurations with compact components linked by a critical path (e.g.,

the dumbbell). Thus, VisibleSim can be used to accurately benchmark the performance

of our algorithms on much bigger configurations.

3.9.3/ LARGE-SCALE EVALUATION AND COMPARISON TO EXISTING ALGO-

RITHMS

We use VisibleSim to evaluate the performance of our algorithms and to compare them

with existing ones in terms accuracy, execution time, number of messages and memory

usage on random large-scale Blinky Block systems. Random systems were generated by

connecting the modules one by one to the system at random, starting from a single node.

This guarantees the connectivity of the network and tends to generate compact systems

with a reasonable diameter. Modules have a unique identifier in {1..n}. Unless explicitly

mentioned, every single point on the result plots represents 50 independent executions.

3.9.3.1/ COMPARED ALGORITHMS AND PARAMETERS

We compare our algorithms to several approaches that we potentially ported to fit our

system models.

Our work: We consider ABC-CenterV1, ABC-CenterV2, k-BFS SumSweep, PC2LE and

the algorithm we proposed in [Naz et al., 2016]. We use the following parameters:

• In the k-BFS SumSweep framework, we arbitrarily choose k = 10.

• In our implementation of PC2LE, we use the HyperLogLog [Flajolet et al., 2007]

probabilistic counter using 16 registers of 5 bits each for a total of 80 bytes with

the 32-bit Knuth multiplicative hash function [Knuth, 1998]. Actually, we experimen-

tally compared several combinations of counters (the Flajolet-Martin [Flajolet et al.,

1985] and HyperLogLog [Flajolet et al., 2007] counters) and hash functions (affine

functions, Knuth’s multiplicative hash functions [Knuth, 1998], the MurMur3 [Ap-

pleby, 2011] hash function and the FNV hash function [Fowler et al., 1991]). Proba-

bilistic counting involves a trade-off between the memory space used by the counter

and its accuracy. In our tests, we limit the size of the different counters so that any

PC2LE message fits into a single Blinky Blocks frame, i.e., a counter can occupy

10 bytes at most. We choose the HyperLogLog along with the Knuth multiplicative

hash function as it leads to more accurate results. For the reader’s information, the

Flajolet-Martin counter based on five 16-bit affine functions h(x) = ax + b, where a

and b are small odd numbers, also performs very well.

• In [Naz et al., 2016], we proposed the E2ACE (Efficient and Effective Approximate-

Centroid Election) algorithm which approximately corresponds to the centroid ver-

sion of PC2LE based on the Flajolet-Martin probabilistic counter combined with the

identity hash function. To compare the accuracy of the current version of PC2LE

with our early work, we also consider the PC2LE-FM-1 (Flajolet-Martin with the

identity hash function) approach.

72 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

MIN-ID: we consider the minimum-id leader election algorithm in Section 4.5 of [Raynal,

2013], extended with our controlled-broadcast optimization (see Section 3.5.1.2). As

module identifiers are randomly attributed in the network, this corresponds to the election

of a random node.

BARYCENTER: We consider the exhaustive BARYCENTER algorithm presented

in [Mamei et al., 2005]. It computes all-pair shortest paths using n simultaneous asyn-

chronous BFSes without acknowledgment. BARYCENTER was proposed as an applica-

tion of the TOTA tuple-space-based middleware. We use our own implementation of this

approach. In our implementation, modules wait for 500 milliseconds after the reception

of the last distance update triggered by a BFS message to check for convergence. Note

that BARYCENTER does not have a global termination criterion and some nodes can

temporarily recognize themselves as centroid.

k-BFS-RAND: We consider our own distributed implementation of the sequential ap-

proach [Eppstein et al., 2001] to approximate the node centrality using k BFSes from

random nodes. We refer to it as the k-BFS-RAND approach. To be fair in comparison

with the k-BFS SumSweep framework, we also fix k = 10. In our implementation, ev-

ery node generates a random number and the k nodes of minimum generated number

perform a BFS (ties are broken arbitrarily). Every node estimates its partial farness/ec-

centricity values using the distance to the k random nodes. In the k-BFS-RAND-SEQ, the

BFSes are performed sequentially. The node of minimum generated number is elected

as initiator using a variant of the LE CHEUNG-BFS-ST-CB algorithm. In k-BFS-RAND-

PAR, the k BFSes are performed in parallel. All nodes initiate a BFS using a variant of

the CHEUNG-BFS-ST-CB algorithm modified with a mechanism to ensure that only the

BFSes initiated by the k nodes of minimum generated number terminate (i.e., 10 simulta-

neous elections). Node identifiers are used to break the ties. Note that k-BFS-RAND-PAR

is prone to network congestion because our current version of the controlled-broadcast

optimization does not enable to run multiple parallel elections. Once the k BFSes have

terminated, the node of minimum centrality value is elected using an STC followed by an

STB on the tree rooted at the kth node.

TBCE: We also consider the Tree-Based Center Election (TBCE) algorithm, our own

implementation of the election of the node of maximum tree-based centrality [Kim et al.,

2013]. We choose this algorithm as it is both time- and memory-efficient.

PC2LE-MC2: The algorithm proposed in [Garin et al., 2012] to estimate node eccentricity

is not directly applicable because it targets synchronous distributed systems, because it

requires providing an upper bound of the graph diameter and because it does not elect a

node but only estimates every node eccentricity value. Thus, to evaluate the performance

of the approach proposed in [Garin et al., 2012] in our target system, we use the PC2LE

along with the probabilistic counter [Varagnolo et al., 2010] applied in [Garin et al., 2012].

We call this approach PC2LE-MC2 (Maximum-Consensus Counter).

3.9. EVALUATION 73

3.9.3.2/ EFFECTIVENESS EVALUATION

In order to exhibit the accuracy of an algorithm, we use the relative center accuracy and

the relative centroid accuracy (see Equations (3.16) and (3.17)). We have computed

the exact center/centroid and node eccentricity/farness using our tool5 for external graph

analysis.

relative centroid accuracy = 1 −
∣∣∣∣∣
f ar(centroid) − f ar(elected node)

f ar(centroid)

∣∣∣∣∣ (3.16)

relative center accuracy = 1 −
∣∣∣∣∣
ecc(center) − ecc(elected node)

ecc(center)

∣∣∣∣∣ (3.17)

Figure 3.15 shows the relative center and centroid accuracy of the different algorithms

considered.

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

101 102 103 104 105

A
v
e
ra

g
e
 r

e
la

ti
v
e
 c

e
n
tr

o
id

 a
c
c
u
ra

c
y

Size (module)

Best algorithms (accuracy > 90 %)

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

101 102 103 104 105

A
v
e
ra

g
e
 r

e
la

ti
v
e
 c

e
n
tr

o
id

 a
c
c
u
ra

c
y

Size (module)

Worst algorithms (accuracy < 90 %)

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

101 102 103 104 105

A
v
e
ra

g
e
 r

e
la

ti
v
e
 c

e
n
te

r
a
c
c
u
ra

c
y

Size (module)

Best algorithms (accuracy > 87%)

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

101 102 103 104 105

A
v
e
ra

g
e
 r

e
la

ti
v
e
 c

e
n
te

r
a
c
c
u
ra

c
y

Size (module)

Worst algorithms (accuracy < 87 %)

Relative centroid accuracy

Relative center accuracy

Algorithms
MIN-ID
ABC-CENTER-V1
ABC-CENTER-V2
PC2LE
PC2LE-MFC

PC2LE-FM-1
TBCE
10-BFS-SUMSWEEP
10-BFS-RAND

Figure 3.15: Effectiveness of centrality-based leader election algo-

rithms: relative eccentricity and centroid accuracy versus the number

of modules in the system. For frameworks, the centroid (resp. center)

version is considered for the centroid (resp. center) accuracy.

5GraphAnalyzer. Tool available online at: https://github.com/nazandre/GraphAnalyzer

https://github.com/nazandre/GraphAnalyzer

74 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

We observe that ABC-Center, PC2LE and k-BFS SumSweep are more accurate than

the other algorithms. In systems with 25,000 modules, our algorithms provide a relative

centroid accuracy between 96%-99% and a relative center accuracy between 88%-94%.

Note that ABC-CenterV2 seems slightly more precise at large scale than the other two.

Furthermore, we observe that performing BFSes from external nodes using the Sum-

Sweep heuristic (10-BFS-SUMSWEEP) leads to more accurate results than performing

the BFSes from a random sample of nodes (10-BFS-RAND).

Moreover, using the HyperLogLog counter (PC2LE) with the PC2LE framework leads

to more accurate results than using the maximum consensus-based probabilistic

counter [Varagnolo et al., 2010] used in [Garin et al., 2012] (PC2LE-MC2) and than using

the Flajolet-Martin algorithm with a single bitstring, as done in our early work [Naz et al.,

2016] (PC2LE-FM-1).

3.9.3.3/ EFFICIENCY EVALUATION

In this section, we study the time efficiency, the communication efficiency and the memory

usage of the different algorithms.

Simulated Execution Time To measure the execution time, we consider that an algo-

rithm terminates when the node to be elected considers itself elected.

Figure 3.16 shows that the simulated average execution time of all the considered algo-

rithms except BARYCENTER seems to increase linearly with the diameter of the system.

The average execution time of BARYCENTER explodes in systems with more than 1,000

modules. We believe that this is due to network congestion.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70

0 ≈500 ≈1000 ≈5000 ≈10000 ≈25000

S
im

u
la

te
d
 t

im
e
 (

s
)

Diameter (hop)

Size (module)

MIN-ID

ABC-CENTER-V1

ABC-CENTER-V2

PC2LE

BARYCENTER

TBCE

10-BFS-SUMSWEEP

10-BFS-RAND-SEQ

10-BFS-RAND-PAR

Figure 3.16: Simulated average execution duration (± standard devia-

tion) of centrality-based leader election algorithms versus the system

diameter. For each point, at least 5 executions were performed.

ABC-CenterV1, ABC-CenterV2 and k-BFS SumSweep are longer to converge than the

other algorithms considered, except for BARYCENTER. Nevertheless, as previously

3.9. EVALUATION 75

shown, these algorithms tend to have better center accuracy results than all the oth-

ers. To give an idea of the convergence time, ABC-Center requires on average 3-4 steps

to converge in our systems. Also note that ABC-CenterV2 is slightly faster than ABC-

CenterV1.

MIN-ID, TBCE, PC2LE and k-BFS-RAND-PAR scale well in terms of execution time. For

Blinky Blocks systems with a diameter of more than 65 hops and a size of approximately

25,000 modules, MIN-ID, TBCE and PC2LE respectively elect a central module in less

than 1, 2 and 4 seconds. PC2LE is slightly slower than TBCE and MIN-ID, but is definitely

more precise, as shown in the previous section.

Number of Messages Figure 3.17 shows the total number of messages exchanged

during the execution of the centrality algorithms considered according to the size of the

system. Figure 3.18 shows the average number of messages sent per module. The

number of messages used by an algorithm includes all the messages that it generates,

even those sent after the final node has been elected. The number of messages sent

also reflects the energy consumption of the modules.

102

103

104

105

106

107

108

101 102 103 104 105

To
ta

l
n
u
m

b
e
r

o
f

m
e
s
s
a
g
e
s

Size (module)

MIN-ID
ABC-CENTER-V1
ABC-CENTER-V2

PC2LE
BARYCENTER

TBCE
10-BFS-SUMSWEEP
10-BFS-RAND-SEQ
10-BFS-RAND-PAR

Figure 3.17: Average total number of messages (± standard deviation)

of centrality-based leader election algorithms according to the size of

the system.

We observe that BARYCENTER uses a lot more messages than the other algorithms.

PC2LE tends to use more messages at large scale than ABC-CenterV2 and the se-

quential k-BFS approaches. Moreover, the latter approaches use more messages than

TBCE and MIN-ID. For large-scale systems with 25,000 Blinky Blocks, PC2LE uses about

20 × 106 messages while ABC-CenterV2, 10-BFS-SumSweep, 10-BFS-RAND-SEQ use

6 × 106 messages and TBCE uses only about 3 × 106 messages.

ABC-CenterV1 uses fewer messages than ABC-CenterV2. 10-BFS-SumSweep and 10-

BFS-RAND-SEQ approximately use the same number of messages. Notice that 10-BFS-

RAND-PAR generates more messages than 10-BFS-RAND-SEQ.

76 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

101

102

103

104

101 102 103 104 105

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

m
e
s
s
a
g
e
s
 s

e
n
t

p
e
r

n
o
d
e

Size (module)

MIN-ID

ABC-CENTER-V1

ABC-CENTER-V2

PC2LE

BARYCENTER

TBCE

10-BFS-SUMSWEEP

10-BFS-RAND-SEQ

10-BFS-RAND-PAR

Figure 3.18: Average number of messages sent per node (± standard

deviation) of centrality-based leader election algorithms according to

the size of the system.

Memory Usage Figure 3.19 shows the maximum memory usage of the different algo-

rithms. The memory usage of an algorithm is composed of its memory footprint, both at

the application level and in the different message queues. Note that in the Blinky Blocks

firmware, whenever a module broadcasts a message to all its neighbors, a copy of the

message is inserted in all its outgoing-message queues. Moreover, the Blinky Blocks

store a message using 19 bytes of memory (17 bytes of data and 2 bytes for data related

to message handling).

We recall that, in BARYCENTER, every node locally stores O(n) information at the appli-

cation level and PC2LE stores O(c + ∆), where c is the cost of the probabilistic counter

used. The other algorithms store O(∆) information.

ABC-CenterV2, MIN-ID, PC2LE, k-BFS-SumSweep, k-BFS-RAND-SEQ and TBCE scale

well in terms of memory usage. In systems with 25,000 nodes, they use less than 500

bytes of memory, among which 380 bytes6 are due to message queue occupancy. ABC-

CenterV1 and 10-BFS-RAND-PAR use up to 10 kbytes in systems with 25,000 modules

because of the memory overhead due to message pileups. 10-BFS-RAND-PAR perform

BFSes in parallel, thus being faster but requiring much more memory. BARYCENTER

uses 600 kbytes in systems with 5,000 modules.

3.10/ DISCUSSION

Electing a central node involves a trade-off between the cost that can be afforded in terms

of resources (time, memory, computation, energy) and the desired level of accuracy. Thus

the algorithm to be used in order to elect a central node depends on the application, i.e.,

the role that this central node will play, the stability of the network, the scarcest resource,

etc.

620 × 19 = 380 bytes

3.10. DISCUSSION 77

 250

 300

 350

 400

 450

 500

101 102 103 104 105

M
a
x
im

u
m

 m
e
m

o
ry

u
s
a
g
e
 p

e
r

n
o
d
e
 (

b
y
te

)

Size (module)

Best algorithms (usage < 500 bytes)

103

104

105

106

101 102 103 104 105

M
a
x
im

u
m

 m
e
m

o
ry

u
s
a
g
e
 p

e
r

n
o
d
e
 (

b
y
te

)

Size (module)

Worst algorithms (usage > 500 bytes)

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

101 102 103 104 105

M
a
x
im

u
m

 m
e
s
s
a
g
e

q
u
e
u
e
 s

iz
e
 (

m
e
s
s
a
g
e
)

Size (module)

Best algorithms (queue length < 21)

102

103

104

101 102 103 104 105

M
a
x
im

u
m

 m
e
s
s
a
g
e

q
u
e
u
e
 s

iz
e
 (

m
e
s
s
a
g
e
)

Size (module)

Worst algorithms (queue length > 30)

Maximum memory usage per node (algorithm variable + message queue)

Maximum message queue size

Algorithms
MIN-ID
ABC-CENTER-V1
ABC-CENTER-V2
PC2LE

TBCE
10-BFS-SUMSWEEP
10-BFS-RAND-SEQ
10-BFS-RAND-PAR

Figure 3.19: Above, the maximum memory usage (considering both

the local algorithm variables and the message queue usage) according

to the size of the system. Below, the maximum message queue per

module (considering both the incoming and outgoing queues).

Exact approaches (e.g., BARYCENTER) are exhaustive and tend to overwhelm the net-

work. They are definitely not suitable for large-scale systems since they are slow to con-

verge, they generate a significant number of messages and may have a large memory

footprint. It is paradoxical, since the importance of central nodes increases with the sys-

tem size. In 5,000 node systems, BARYCENTER requires nearly 45 seconds to converge

and uses more than 500 kbytes per node.

Electing a random node using MIN-ID leads to poor accuracy but scales well in terms of

efficiency. TBCE provides a better accuracy while being only slightly slower and using a

similar number of messages. In systems of 25,000 modules, TBCE runs on average in

2.3 seconds and has a relative centroid (resp. center) accuracy of 81% (resp. 64%).

We proposed PC2LE which is slightly slower than TBCE but is definitely more accurate. In

systems of 25,000 modules, PC2LE runs in 3.3 seconds and provides a relative centroid

accuracy of 96% and a relative center accuracy of 88%. However, this better accuracy

78 CHAPTER 3. CENTRALITY-BASED LEADER ELECTION

comes at the price of a higher message cost.

We proposed ABC-CenterV2 and k-BFS-SumSweep which are the most accurate center

approximation algorithms. They perform BFSes from specific nodes, which leads to more

accurate results than computing BFSes from random nodes as in k-BFS-RAND. In 25,000

Blinky Blocks systems, ABC-CenterV2 elects, on average, a 99% accurate centroid and

a 94% accurate center. ABC-CenterV2 and the k-BFS-SumSweep are, however, slow to

converge as the BFSes are performed consecutively. In 25,000 module systems, they

run in almost 13 seconds. These two algorithms use more messages than PC2LE and

MIN-ID but less messages than PC2LE.

BFSes cannot be parallelized in ABC-CenterV2 and k-BFS-SumSweep, but if it was pos-

sible, naively performing BFSes in parallel would overwhelm the network and incur a large

memory overhead. Indeed, k-BFS-RAND-PAR, which performs k BFSes in parallel, uses

at most 10 kbytes per node, while k-BFS-RAND-SEQ, in which the k BFSes are computed

consecutively, only uses 423 bytes.

ABC-CenterV2, k-BFS SumSweep, MIN-ID, TBCE and PC2LE all have a limited memory

cost. They use between 400 and 480 bytes per node max.

3.11/ CONCLUSION

In this chapter, we proposed a collection of efficient and effective distributed algorithms

to elect approximate-centroid and approximate-center nodes in asynchronous distributed

systems. We evaluated our algorithm on the Blinky Blocks modular robotic system, using

both hardware experiments and simulations. Results show that our algorithm scales well

in terms of accuracy, execution time, number of messages and memory usage. To the

best of our knowledge, our algorithms are the most precise existing distributed algorithms

dedicated to the election of an approximate centroid or an approximate center in our

target systems, with both a reasonable convergence time and a limited storage cost.

In the next chapter, we study time synchronization in LMRs. We use the algorithms

proposed in this chapter to elect a central node that synchronizes all the others. As

shown in the Introduction section of this chapter, using a central module rather than a

random one leads to more precision.

4

TIME SYNCHRONIZATION

Contents

4.1 Introduction . 80

4.2 Example of Application: The Distributed Bitmap Scroller 81

4.2.1 Our Implementation . 82

4.2.2 Need for Global Time Synchronization 83

4.3 State of the Art . 84

4.3.1 Architecture : from Master/Slave to fully Distributed Protocols . . 85

4.3.2 Infrastructure of Master/Slave Protocols 86

4.3.3 Communication Delay Compensation Methods 87

4.3.4 Clock Model: from Clock Offset Adjustment only to Clock Skew

Compensation . 88

4.3.5 Time Master Election . 89

4.3.6 Summary . 89

4.4 System Model and Assumptions . 91

4.4.1 Clocks: Notation and Assumptions 91

4.4.2 Sources of Network Delays . 92

4.4.3 Predictive Method to Compensate for Communication Delays . . 92

4.5 The Modular Robot Time Protocol . 93

4.5.1 Method to Compensate for Communication Delays 93

4.5.2 Step 1: Initialization . 93

4.5.3 Step 2: Periodic Synchronization 95

4.6 The Target System: the Blinky Blocks 97

4.6.1 Local Clock Properties . 98

4.6.2 Communication Properties . 100

4.7 Experimental Evaluation . 103

4.7.1 Evaluation on Hardware and Validation of VisibleSim 104

4.7.2 Large-Scale Evaluation and Comparison to Existing Protocols

through Simulations . 112

4.8 Discussion . 120

4.9 Conclusion . 122

79

80 CHAPTER 4. TIME SYNCHRONIZATION

4.1/ INTRODUCTION

In modular robotic systems, coordination among a group of modules often relies on the

existence of a common notion of time. For instance, in the conveyance surface presented

in Section 2.2.3, modules cooperate to convey the object using distributed real-time con-

trol. They have to remain synchronized in order to satisfy timing constraints, otherwise

the object may get out of the trajectory, hit obstacles or fall off the surface. The next

section presents another interesting application, the distributed bitmap scroller, in which

every module is a pixel and the modules collaboratively scroll a bitmap in a synchronous

way. Coordination of the modules requires synchronized clocks. More generally, many

applications that involve distributed control and actuators need a common notion of time.

Modules can share a common timing signal through dedicated pins, but this requires

a specific hardware design. In this chapter, we consider a system without a global clock

signal. Every module has its own notion of time provided by its own hardware clock. Since

common hardware clocks are imperfect, local clocks tend to run at slightly different and

variable frequencies, drifting apart from each other over time. Consequently, a distributed

time synchronization is necessary to keep the local clock of each module synchronized

to a global timescale. The offset of two clocks denotes the time difference between them,

whereas the skew between two clocks denotes their frequency difference.

Network-wide synchronization protocols aim to keep a small offset between local clocks

and a global reference time. In most of the existing protocols, devices exchange times-

tamped messages in order to estimate the current global time. Since time keeps go-

ing during communications, modules have to correctly compensate for network delays in

order to evaluate the current global time upon reception of synchronization messages.

Although it is non-trivial to accurately estimate communication delays, especially in the

presence of unpredictable delays (due, for example, to queueing or retransmissions), it is

crucial in order to achieve high-precision performance.

The contribution of this chapter is to propose the Modular Robot Time Protocol (MRTP), a

network-wide time synchronization protocol for modular robots with neighbor-to-neighbor

communications. MRTP is intended to synchronize fairly stable systems where changes

in the network topology, due for instance to module mobility, or potential module or link

failures, are infrequent. We assume that every module has a local clock, which can be

low-precision and low-resolution, typically in the order of the millisecond. Furthermore,

modules can use low communication bitrates (e.g, 38.4 kbit/s). In addition, we assume

that modules can timestamp messages at the data-link layer. Such a low resolution, low

precision and high communication latency make accurate synchronization challenging.

First, the local time cannot be accurately read. Second, it is hard to accurately com-

pensate for network delays if they are not negligible and, at the same time, only roughly

measurable. Third, clock skew and clock instability may not be negligible during high-

latency (multi-hop) communications.

To the best of our knowledge, MRTP is the first protocol for modular robots that provides

an accurate low-skew global timescale without dedicated hardware. Our protocol com-

bines new ideas with existing methods proposed in the domains of computer networks

4.2. EXAMPLE OF APPLICATION: THE DISTRIBUTED BITMAP SCROLLER 81

and wireless sensor networks. In our protocol, a dynamically elected central module pe-

riodically broadcasts the current global time along the edges of a spanning tree. Placing

the time master close to the center of the system reduces the time of the synchronization

phases and increases the overall precision as cumulative estimations are made every

hop. The method to compensate for communication delays is carefully chosen, depend-

ing on the target systems. In Blinky Blocks systems, we use data-link layer timestamping

and predictions of the transfer time (as defined in Section 4.4.2) to correctly compensate

for network delays. A module gets synchronized by a single timestamped message from

its parent one level higher in the tree, incurring little message overhead. Furthermore,

modules use linear regression to compensate for clock skew.

We implemented our protocol and evaluated it on the Blinky Blocks system, both on hard-

ware1,2 and in the VisibleSim simulator3 (see Section 2.3). We show that MRTP is able

to manage systems composed of up to 27,775 Blinky Blocks. Furthermore, experimental

results show that MRTP is capable of successfully maintaining a Blinky Blocks system

synchronized to a few milliseconds, using few network resources at runtime, although the

Blinky Blocks use 38.4 kbit/s communications and are equipped with very low accuracy

(10,000 parts per million (ppm)) and poor resolution (1 millisecond) clocks.

The rest of this chapter is organized as follows. Section 4.2 presents a practical applica-

tion of MRTP in order to motivate our work and to show its necessity. Section 4.3 offers

an overview of the existing time synchronization protocols. Section 4.4 details the system

model and assumptions. Section 4.5 describes MRTP. Section 4.6 describes the tech-

nical characteristics of the Blinky Blocks, i.e., the target platform. Section 4.7 presents

experimental results. Section 4.9 concludes our work.

4.2/ EXAMPLE OF APPLICATION: THE DISTRIBUTED BITMAP

SCROLLER

This section presents the distributed bitmap scroller application4. In this application orig-

inally imagined by Benoı̂t Piranda, every module represents a pixel and the modules

cooperatively scroll a text (here “Femto-st”) using color changes. The scroller is extensi-

ble and robust to system split and merge. Figure 4.1 shows a distributed bitmap scroller

made from 72 Blinky Blocks. We first present our implementation and then discuss the

need for global time synchronization.

1The source code of MRTP is included in the Blinky Blocks firmware, available online at https://github.

com/claytronics/oldbb
2Some examples of MRTP running on the Blinky Blocks platform are available online in video at https:

//youtu.be/66D12ESGc98 and https://youtu.be/X6QzivsmJBo
3The source code of VisibleSim and the applications written for the evaluation of our protocol are available

online at: https://github.com/nazandre/thesis
4A video of a distributed bitmap scroller made from 72 Blinky Blocks synchronized using MRTP is avail-

able online at https://youtu.be/66D12ESGc98

https://github.com/claytronics/oldbb
https://github.com/claytronics/oldbb
https://youtu.be/66D12ESGc98
https://youtu.be/66D12ESGc98
https://youtu.be/X6QzivsmJBo
https://github.com/nazandre/thesis
https://youtu.be/66D12ESGc98

82 CHAPTER 4. TIME SYNCHRONIZATION

Figure 4.1: A distributed bitmap scroller made from 72 Blinky Blocks.

The system scrolls “Femto-st” in different colors. The blocks are syn-

chronized using MRTP. The time master stays in red.

4.2.1/ OUR IMPLEMENTATION

In our implementation, modules first distributively build a coordinate system. Then, they

start to display the text that is shifted one column to the left every 250 milliseconds. From

a local point of view, every module stores the global bitmap to display and locally updates

its color on a regular basis, based on the module position and on its current clock time,

only. The vision persistence is around 40 milliseconds. Hence, when the text is shifted

one column to the left, all modules should change their color within 40 milliseconds in

order for the color changes to appear synchronized. In our implementation, the system is

globally synchronized using MRTP. The time master stays in red.

As shown in Figure 4.1, the bitmap scroller and thus MRTP are robust to system merge

4.2. EXAMPLE OF APPLICATION: THE DISTRIBUTED BITMAP SCROLLER 83

and split.

4.2.2/ NEED FOR GLOBAL TIME SYNCHRONIZATION

In order to show that the distributed bitmap scroller requires a global timescale, we sub-

sequentially discuss the issues risen by a non-exhaustive list of alternative approaches.

Unsynchronized scroller Figure 4.2 shows our implementation of the bitmap scroller

running without time synchronization. Because of clock skew, module clocks progres-

sively drift apart from each others causing the modules to light asynchronously and the

text being scrolled to become unreadable. Hence, individual color changes need to be

synchronized in order to ensure a synchronous scrolling at the global scale.

Figure 4.2: Unsynchronized bitmap scroller of 72 Blinky Blocks.

Centralized or Distributed Control based on Order Propagation A different ap-

proach than clock synchronization is to use color change orders to control the system

and to dictate the pace of the text shifting.

After having locally observed a delay of 250 ms, a single elected module, or any module,

can flood a message to request all the modules to update their color upon reception.

However, immediate-term order propagation relies on fast propagation. In our example,

a Blinky Block sends a message to a neighboring module on average in 6 milliseconds.

If we do not consider message time of residence at nodes, a message needs at least 42

milliseconds to travel over seven hops. Hence, after seven hops, a delay in color changes

will be observed and the one-column text shifting will appear unsynchronized.

Color updates can also be scheduled to a future date at which all modules will have

received the information. However, it is difficult to predict that time. Indeed, order propa-

gation may be delayed due to the network load for instance. Moreover, it is not possible

to precisely schedule a global event too far in the future because of hardware-clock im-

precision (skew, noise, etc.).

Moreover, this approach is less robust to message loss than the clock synchronization

approach. If an order message is lost, then some modules will not update their color for

a step. On the other hand, in our implementation, if an MRTP synchronization message

gets lost, all modules will still update their color, but with a slight delay.

84 CHAPTER 4. TIME SYNCHRONIZATION

Right-to-Left Pixel Propagation In this approach, a module holds for 250 milliseconds

the current pixel that it has to display. Pixels are propagated from the left to the right using

messages to produce column shifts. The right-most module of every row is responsible

to start displaying a given pixel. We name these modules the pixel initiators.

An immediate limitation of this approach is that it requires some routing procedure in the

presence of holes. Indeed, the left-next module may not be an immediate neighbors.

Moreover, this approach less robust to failures than the previous one. Indeed, a pixel

gets lost if the message that carries it is lost.

Regarding synchronization, pixel initiators have to be synchronized in order to syn-

chronously start the propagation of the pixels. However, even-though pixel initiators are

synchronized, delays in color updates may still be observable. As every module has its

own notion of time, pixels will reside at modules for slightly different durations. Hence,

pixels will not propagate at the exact same speed in all rows, causing color changes to

become more and more unsynchronized with the hop distance.

Limited-scope Time Synchronization One may envision to synchronize only neigh-

boring modules together. As shown in the Section 4.7.2, with this approach, modules

are not well synchronized to a global time in large-scale systems. Hence, delays will be

observed in the color changes.

Alternatively, one can also envision to synchronize all modules of a same column to-

gether. However, because of clock skew, columns will progressively drift apart from each

others and color changes will not appear to be all synchronous. Moreover, this approach

may be tricky to implement in the presence of holes.

Hence, limited-scope synchronization is not sufficient. In the distributed bitmap scroller,

all modules have to synchronously perform an action (i.e., update their color). Hence, all

clocks should be synchronized to a global timescale.

4.3/ STATE OF THE ART

Time synchronization has been extensively studied in various domains. Many algo-

rithms and protocols have been proposed for computer networks such as Cristian’s al-

gorithm [Cristian, 1989], the Berkeley algorithm [Gusella et al., 1989], the Network Time

Protocol (NTP) [Mills, 1991] and the IEEE 1588 Precise Time Protocol (PTP) [IEEE,

2008]. Time synchronization is also an important topic of interest in Wireless Sensor

Networks (WSNs) where many protocols have been proposed, e.g., Reference Broad-

cast Synchronization (RBS) [Elson et al., 2002], the Timing-sync Protocol for Sensor

Networks (TPSN) [Ganeriwal et al., 2003], the Flooding Time Synchronization Protocol

(FTSP) [Maróti et al., 2004], the Time-Diffusion Synchronization Protocol (TDP) [Su et al.,

2005], the Rapid Time Synchronization (RATS) [Kusy, 2007], the PulseSync [Lenzen

et al., 2009, Lenzen et al., 2015], the Asynchronous Diffusion algorithm (AD) [Li et al.,

2006], the Gradient Time Synchronization Protocol (GTSP) [Sommer et al., 2009], the

4.3. STATE OF THE ART 85

Average TimeSynch (ATS) protocol [Schenato et al., 2011] and the Maximum Time Syn-

chronization (MTS) [He et al., 2014a]. Like modular robots, WSNs generally form sponta-

neous peer-to-peer networks of resource-constrained devices. To the best of our knowl-

edge, time synchronization has not attracted any attention in the modular robotic com-

munity. Methods to provide a global metronome-like signal in modular robots have been

proposed in [Kokaji et al., 1996, Baca et al., 2010]. However, these mechanisms syn-

chronize clock phase or/and frequency, but not actual clock time. Moreover, [Kokaji et al.,

1996] is purely theoretical, the authors consider ideal clocks running at the same exact

frequency and do not provide any performance evaluation. In [Stoy, 2003, Stoy et al.,

2002b, Stoy et al., 2002a], the authors propose the role-based distributed control algo-

rithm for modular robotic systems. It enables to coordinate module actions in order to

produce a global behavior. In this method, a periodic logical signal is established in the

system using message passing (e.g., a sine wave signal to produce a caterpillar-like loco-

motion in a chain of modules). However, this control method does not establish a global

timescale and ignores communication delays.

4.3.1/ ARCHITECTURE : FROM MASTER/SLAVE TO FULLY DISTRIBUTED PRO-

TOCOLS

Existing time synchronization protocols differ by the network architecture they adopt. NTP,

PTP, TPSN, FTSP, PuleSync, RBS and TDP adopt a master/slave approach. In a mas-

ter/slave approach, one or more masters are in charge of synchronizing slave nodes.

In NTP, PTP, TPSN, FTSP, PuleSync and TDP, slave node clocks are adjusted to a ref-

erence time held by the time master(s). The reference time can be the Coordinated

Universal Time or the master local clock. In the Berkeley algorithm, slave node clocks

are adjusted to an aggregated value of some or all the system clock values. These ap-

proaches aim at performing global synchronization, i.e., keeping all nodes synchronized

together. These protocols provide a satisfactory synchronization precision between arbi-

trary nodes but may poorly synchronize neighboring nodes. This is due to the fact that

two neighboring nodes can be synchronized by messages that have traveled on long and

almost independent paths, causing the error accumulated at every hop to be propagated

differently.

In contrast, AD, ATS, GTSP and MTS are fully distributed. In these protocols, nodes

exchange timing information with all their one-hop neighbors on a regular basis. In AD,

every node frequently adjusts its clock to the average value of its neighbors’ clock. ATS

and GTSP use a similar consensus-based averaging technique. These average-based

approaches primarily aim at achieving local synchronization, i.e., keeping neighboring

nodes synchronized together, allowing nodes to have a larger pairwise synchronization

error with nodes that are faraway. MTS and its variants proposed in [He et al., 2014a, He

et al., 2014b] use extremum-value-based consensus to achieve faster convergence. In

general, fully distributed methods are naturally fault-tolerant and robust to node mobility.

However, they can lead to a long convergence time and to a high message complexity,

especially in point-to-point networks without broadcast support. Indeed, in systems with-

out local or global shared broadcast medium, a node has to send individual messages to

86 CHAPTER 4. TIME SYNCHRONIZATION

all neighbors in order to broadcast messages.

4.3.2/ INFRASTRUCTURE OF MASTER/SLAVE PROTOCOLS

Master/slave time synchronization protocols differ by the infrastructure they use. Proto-

cols can use tree-like structures, cluster-based structures or be infrastructure-less.

Tree-like Structures NTP, PTP and TPSN use tree-like hierarchical structures rooted

at the time master(s) to spread timing information. Logical neighbors in the tree(s) can

be neighbors in the physical network as in TPSN, or potentially distant as in NTP. The

latter case may require multi-hop communications that rely on the existence of an under-

lying routing service. In our case, we assume no routing service. In TPSN, nodes are

recursively synchronized hop-by-hop along the edges of the synchronization tree starting

from the time master. Hence, during each synchronization phase, the current global time

gets quickly disseminated through the entire network. In addition to providing a relatively

quick synchronization convergence, this reduces the impact of clock inaccuracies (due to

noise, skew variations, time-increasing errors in the local estimation of the global time) on

the synchronization process.

Clustering based on Broadcast Domains In RBS, nodes maintain relative timescales

of their neighborhood using reference pulses broadcast by some master nodes. In multi-

hop networks, nodes can be grouped into overlapping clusters based on broadcast do-

mains and border nodes act as gateways to translate clock values.

Infrastructure-less Approaches In contrast, FTSP, RATS and PulseSync are

infrastructure-less. They provide robustness to network topology changes and to link fail-

ures using either periodic local broadcasts or periodic network-wide floodings. In FTSP,

the time master and the synchronized nodes periodically broadcast their estimation of the

current global time to all their neighbors, in an asynchronous way. Synchronization waves

propagate with a limited speed through the network. Indeed, after having received a new

synchronization message, a node has to wait until the expiration of its broadcast period to

transmit the information to its neighbors. As a consequence, the time-increasing estima-

tion error of the global time is amplified at every hop and FTSP exhibits a synchronization

error that grows exponentially with the size of the network [Lenzen et al., 2009]. Hence,

optimal synchronization requires fast network flooding [Lenzen et al., 2009]. RATS and

PulseSync employ rapid network-wide floodings using recursive broadcasts to quickly

disseminate the global time through the network. The time master periodically launches

synchronization waves using broadcasts. Slave modules re-broadcast new synchroniza-

tion messages shortly after reception. In [Ferrari et al., 2011], the authors propose a so-

phisticated mechanism to provide fast network flooding in IEEE 802.15.4 WSNs and thus

accurate time synchronization. In reliable and fairly static point-to-point networks with-

out broadcast support, recursive synchronizations using a tree-like structure are more

4.3. STATE OF THE ART 87

communication-efficient than network-wide flooding.

4.3.3/ COMMUNICATION DELAY COMPENSATION METHODS

Time synchronization protocols also differ by the methods they use to compensate for

communication delays. The method to be applied depends on the target platform and

more precisely on the communication mechanism and the precision with which time can

be measured. This choice directly impacts the precision of the synchronization protocol.

Existing methods can be divided into three categories: approaches based on the round-

trip time, methods based on byte-level timestamping and approaches based on reference

broadcasts.

Round-Trip Time based Methods Cristian’s algorithm, the Berkeley algorithm, NTP,

PTP, TPSN and TDP measure half the round-trip time to estimate one-way communica-

tion delays. Cristian’s algorithm and NTP perform end-to-end synchronization on pos-

sibly multi-hop paths. They use statistical analysis to mitigate variations in delays due

to retransmission(s), queueing, route selection, etc. These methods are expensive in

communications and in computations. PTP and TPSN propose to perform per-hop syn-

chronization with low-level timestamping to prevent unpredictable delays induced at the

different layers of the network stack from affecting delay measurements. PTP can use

timestamps recorded at the physical layer to achieve high accuracy if dedicated hardware

is available. In TPSN, a node exchanges a single bidirectional message timestamped

at the boundary of the data-link layer to synchronize itself to another node and compen-

sates for communication delays using half the round-trip time. We call this method RTT

(for Round-Trip Time). Round-trip time methods assume symmetrical nominal delays

and usually neglect the effect of clock skew during the round trip. In [Syed et al., 2006],

Syed et al. study time synchronization in underwater acoustic sensor networks where

propagation times of several hundred milliseconds are observed. They propose to use

skew-compensated two-way message exchanges in these systems.

Byte-level Timestamp based Methods FTSP, PulseSync and the practical implemen-

tations of both ATS [Schenato et al., 2011] and MTS [He et al., 2014b] use byte-level

time-stamping, which requires an intimate access to the data-link layer.

In the last two methods, nodes exchange a single unidirectional message timestamped

just before the transmission of the first byte (i.e., the Frame Delimiter byte) and upon

reception of this byte. The time elapsed between the transmission and the reception of

the frame delimiter byte is neglected and ATS / MTS consider that the two timestamps

refer to the same real time. We call this method FD (for Frame Delimiter). This method

neglects the interrupt handling time, the frame delimiter byte transmission / reception,

the propagation time and the time required for the detection of the frame delimiter byte.

Although FD works well in low-latency networks, the neglected time can be important

in higher-latency systems. For instance, our target system uses 38.4 kbit/s connections

while WSNs that use IEEE 802.11b communications have a maximal bitrate of 11 Mbit/s.

88 CHAPTER 4. TIME SYNCHRONIZATION

At 38.4 kbit/s, a byte is transmitted in roughly 208 µs, while at 11 Mbit/s a byte is sent in

less than 1 µs.

FTSP goes one step further in order to eliminate most of the sources of delays in message

transmission (except for the propagation time). FTSP synchronizes neighbors using a

single message broadcast with statistical operations on timestamps captured at the byte

boundary during interrupts at the data-link layer. The latest version of PulseSync [Lenzen

et al., 2015] is based on an enhanced version of the FD method. The authors use the

slotted programming approach [Flury et al., 2010] to minimize the interrupt latency and

use a static value measured experimentally during a calibration phase to compensate

for the time between the insertion of the timestamp, just before transmitting the frame

delimiter byte, and its detection upon reception. However, the method proposed in FTSP

and PulseSync cannot be applied directly to our target system. Indeed, we assume low-

resolution clocks, typically in the order of the millisecond, that cannot efficiently capture

phenomena at the byte transmission level which occurs on the microsecond scale.

Reference Broadcast In RBS, some reference nodes periodically broadcast reference

messages. Neglecting propagation delays, receiving nodes use the data-link reception

times as reference points to compare their clock values all together. This requires a

shared broadcast medium and it is not usable in point-to-point networks.

Discussion We argue that the method of compensating for communication delays has

to be selected as a function of the target system. If we assume a predictable transfer time

between neighbor modules, we propose to perform per-hop synchronization using a sin-

gle unidirectional message timestamped at the data-link layer and predictive communica-

tion delay compensation (see Section 4.4.3). We call this method PRED (for Predictive).

We show in the evaluation section 4.7.1.3 that, in our target system, PRED is on average

more precise than the other two methods that can be applied to our target system, namely

FD and RTT. Note that this is mainly due to the fact that the average transfer delay of a

frame is almost a round number (on the millisecond scale) in this system.

4.3.4/ CLOCK MODEL: FROM CLOCK OFFSET ADJUSTMENT ONLY TO CLOCK

SKEW COMPENSATION

Furthermore, time synchronization protocols differ in the clock model they use. In some

protocols, e.g., AD and TPSN, nodes perform clock offset adjustment only and do not

take into account clock skew. Compensation for clock skew enables modules to be syn-

chronized less frequently without degrading the synchronization precision.

NTP uses phase-locked loops and/or frequency-locked loops. In [Kim et al., 2012], the

authors use a Kalman filter to track clock offset and skew with low-precision oscillators

and time-varying skew. Indeed, in the presence of ambient environment variations (e.g.,

temperature variations), the clock skew may vary over time.

ATS, Belief Propagation (BP) [Etzlinger et al., 2014], GTSP, Mean Field (MF) [Etzlinger

4.3. STATE OF THE ART 89

et al., 2014], MTS, FTSP, RBS, PulseSync, RATS and [Noh et al., 2007, Leng et al., 2010]

propose to model clock using a linear model computed from recent observations, assum-

ing that oscillators have high short-term stability. Indeed, if we assume that environment

changes do not happen or happen gradually, the clock skew will change smoothly. RBS,

FTSP, PulseSync and RATS use least-square linear regression on a recent window of ob-

servations. ATS and GTSP use an averaging technique to estimate the clock skew based

on the previous synchronization point. In [Noh et al., 2007, Leng et al., 2010], the authors

propose to enhance TPSN by using a linear model and maximum likelihood estimators.

BP and MF derive maximum a posteriori estimators of the clock parameters using belief

propagation and mean field on factor graphs, respectively. Different methods for clock

skew compensation including linear regression, exponential averaging and phase-locked

loops have been evaluated in [Amundson et al., 2008]. Although results are nearly iden-

tical, experiments suggest that linear regression leads to slightly more precision.

Note that, in addition to compensating for clock skew, these aggregating techniques also

tend to reduce the impact of the measurement errors due to the resolution of the times-

tamps.

4.3.5/ TIME MASTER ELECTION

Master/slave time synchronization protocols also differ by the mechanisms they employ to

select the time master. In NTP and RATS, time masters are pre-configured. In our case,

it is more flexible if the system itself elects its time master. In PTP and TDP, elections are

based on the quality of the clocks. In addition, TDP periodically re-elects time masters

to balance the load. FTSP and PulseSync implicitly elect the minimum-identifier node as

the time master during the synchronization phases.

In our case, we consider systems where all modules are identical and equipped with the

same hardware clocks. Although these clocks differ slightly in their accuracy and stability,

we consider that with a careful selection of the hardware, the impact of cumulative errors

in network delay estimations will be predominant in large-diameter systems. A random er-

ror is experienced at each hop. Let us assume that these per-hop errors are independent

and identically distributed with a mean of λ and a standard deviation of σ. The Central

Limit theorem states that the error accumulated over k hops follows a normal distribution

with a mean of λk and a standard deviation of δ
√

k. Experimental results presented in

Section 4.7.1.3 confirm this trend. Hence, we propose to elect a central module as the

time master.

4.3.6/ SUMMARY

Table 4.1 summarizes the related work. Existing protocols contain interesting ideas but

fail to efficiently adapt to homogeneous modular robot systems where modules use low-

bitrate neighbor-to-neighbor communications, hardware clocks have low precision and

the network diameter can be large. In the absence of a (locally) shared communication

medium, infrastructure-less approaches are too expensive in terms of communication in

90 CHAPTER 4. TIME SYNCHRONIZATION

Name Domain Architecture
Infrastruc-

ture
Synchronization Technique

Clock Skew
Compensation

NTP [Mills,
1991]

Computer
Networks

Master/Slave
Master(s):

pre-configured
Tree

(Multi-hop) round-trip
messages with frame-level
timestamps and statistics

Phase-locked
and/or

frequency-locked
loops

PTP [IEEE,
2008]

Computer
Networks

Master/Slave
Master: clock
quality based

election

Tree

Round-trip messages with
low-level (data-link to

physical layer) timestamps
and per-hop delay

compensation

TPSN [Ganer-
iwal et al.,

2003]

Sensor
Networks

Master/Slave Tree

Recursive per-hop
synchronization. Round-trip
messages with frame-level

timestamps

/

TPSN +
MLE [Leng
et al., 2010]

Sensor
Networks

Master/Slave Tree

Recursive per-hop
synchronization. Round-trip
messages with frame-level
timestamps and statistics

Linear model with
maximum
likelihood
estimators

TDP [Su
et al., 2005]

Sensor
Networks

Masters/Slave
multiple

changing
masters: clock
quality based

election

/

Recursive per-hop
synchronization.

Bidirectional round-trip
messages with statistics

/

RBS [Elson
et al., 2002]

Sensor
Networks

Master/Slave

Broadcast-
domain
based

clustering

Reference broadcast
Linear model with

least-square
linear regression

FTSP [Maróti
et al., 2004]

Sensor
Networks

Master/Slave
Master:

id-based implicit
election

/

Periodic asynchronous
broadcasts. Unidirectional
broadcast with byte-level
timestamps and statistics

Linear model with
least-square

linear regression

RATS [Kusy,
2007]

Sensor
Networks

Master/Slave
Master:

pre-configured
/

Recursive per-hop
synchronization.

Unidirectional broadcast with
byte-level timestamps and

statistics

Linear model with
least-square
regression

Pulse-
Sync [Lenzen

et al.,
2009, Lenzen
et al., 2015]

Sensor
Networks

Master/Slave
Master:

id-based implicit
election

/

Recursive per-hop
synchronization.

Unidirectional broadcast with
byte-level timestamps and

statistics

Linear model with
least-square

linear regression

AD [Li et al.,
2006]

Sensor
Networks

Fully distributed / Average-based consensus /

GTSP [Som-
mer et al.,

2009]

Sensor
Networks

Fully distributed /

Average-based consensus.
Unidirectional broadcast with

byte-level timestamps and
statistics

Linear model with
an averaging

technique

ATS [Schen-
ato et al.,

2011]

Sensor
Networks

Fully distributed /
Average-based consensus.

Unidirectional broadcast with
byte-level timestamps

Linear model with
an averaging

technique

MTS and its
variants [He

et al.,
2014a, He

et al., 2014b]

Sensor
Networks

Fully distributed /

Extremum-value based
consensus. Unidirectional
broadcast with byte-level

timestamps

Linear model with
possibly an
averaging
technique

BP and
MF [Etzlinger
et al., 2014]

Sensor
Networks

Master/Slave or
fully distributed

/

Belief propagation and mean
field. Single-hop

bidirectional messages with
frame-level timestamps

Linear model with
maximum a
posteriori
estimators

Our
Contribution:

MRTP

Modular
Robotic

Master/Slave
Master:

centrality-based
election

Tree

Recursive per-hop
synchronization. Selection of

the most suited
communication delay

compensation method for
the target system

Linear model with
least-square

linear regression

Table 4.1: Summary of the state of the art on time synchronization.

4.4. SYSTEM MODEL AND ASSUMPTIONS 91

compact systems compared to tree-based approaches. The method to compensate for

network delays has to be carefully selected in function of the target platform. Furthermore,

criteria considered for time master election are not adapted to modular robots running

under our assumptions. Node centrality can be considered for the election in order to

increase the overall synchronization precision.

4.4/ SYSTEM MODEL AND ASSUMPTIONS

In this chapter, we consider modular reconfigurable robots that form asynchronous

non-anonymous point-to-point connected networks in which modules use neighbor-to-

neighbor communications. We assume that every module has a unique identifier and

maintains a consistent list of its neighbors. Furthermore, our protocol is intended to syn-

chronize fairly stable systems where changes in the network topology, due for instance to

module mobility, or potential module or link failures, are infrequent. A modular robot can

be modeled by an undirected and unweighted graph of interconnected entities G = (V, E),

with V the set of vertices representing the modules, E the set of edges representing the

connections, |V | = n, the number of vertices and |E| = m, the number of edges. We use the

general graph theory concepts such as the distance between two nodes and the diameter

d of the graph.

4.4.1/ CLOCKS: NOTATION AND ASSUMPTIONS

Each module Mi is equipped with its own internal clock and has its own local time LMi(t),

an approximation of the real time t. The goal of MRTP is to maintain a global timescale

G(t) across the system. We denote GMi(t), the estimation of G(t) of the module Mi. MRTP

preserves time monotonicity and prevents time from running backward, i.e., for any mod-

ule Mi, ∀(t, t′), t ≥ t′,GMi(t) ≥ GMi(t′). Moreover, we consider clocks which have high

short-term frequency stability but which can be low-precision and can have high skew

with respect to one another. Such clocks tend to drift apart from each other in a quasi-

linear way over a short period of time.

We consider two synchronization error metrics. We define the module Mi relative syn-

chronization error with respect to the global time at real time t as:

ǫMi(t) = GMi(t) −G(t) (4.1)

We define the maximum pairwise synchronization error at real time t, ǫ(t), as the maxi-

mum difference between any two global clocks in the system:

ǫ(t) = max
Mi,M j

∣∣∣GMi(t) −GM j(t)
∣∣∣ (4.2)

Since our goal is to achieve global synchronization, we do not consider local synchroniza-

tion error metrics such as the maximum pairwise synchronization error between neigh-

92 CHAPTER 4. TIME SYNCHRONIZATION

boring nodes [Lenzen et al., 2009].

4.4.2/ SOURCES OF NETWORK DELAYS

AccessSender: Transmission

Reception Receive

Propagation

Send
Time

Receiver:

t
s

m
t
r

m

Figure 4.3: Sources of delivery delays in the exchange of a message m

between two neighbor modules.

As indicated in [Ganeriwal et al., 2003, Maróti et al., 2004, Amundson et al., 2008], the

exchange of a single message m between two neighbor modules can be typically char-

acterized by the steps presented in Figure 4.3. Sending and receiving times represent

the times necessary for the message to travel from the application to the data-link layers.

These delays are introduced by the operating system and are highly non-deterministic.

The access time represents the waiting time at the data-link layer for accessing the com-

munication channel. This time is also highly non-deterministic. The transmission and

reception times represent, respectively, the times to transmit and to receive the frame us-

ing a bit-by-bit transmission at the physical layer. These delays are mainly deterministic

and depend on the length of the frame and the bitrate. The propagation time represents

the time necessary for the bits to travel from the sender to the receiver over the physical

link. This delay is highly deterministic and depends on the distance between the mod-

ules involved in the communication and on the propagation speed over the physical link.

We define the transfer time, T m
trans f er

, as the sum of the transmission, propagation and

reception times for a message m. These times are highly deterministic.

4.4.3/ PREDICTIVE METHOD TO COMPENSATE FOR COMMUNICATION DELAYS

We propose to use the predictive method (PRED) to compensate for communication de-

lays whenever they can be predicted. PRED is a naive method that relies on the assump-

tion that T m
trans f er

is predictable with a certain accuracy that directly impacts the precision

of our protocol. Moreover, it assumes that messages can be timestamped at the data-

link layer, shortly before the beginning of the transmission at time tm
s and upon complete

reception at time tm
r . If we neglect the interrupt handling time, T m

trans f er
= tm

r − tm
s .

To compensate for communication delays, the predictive method (PRED) works as fol-

lows: Let us assume that a module Mi receives a message m from a module M j and that

m has been timestamped at the data-link layer on both sides (i.e., m contains LM j(tm
s) and

LMi(tm
r)). Then, the module Mi can compensate for the communication delays of m and

4.5. THE MODULAR ROBOT TIME PROTOCOL 93

estimate the local time of M j at the reception of m by:

LM j(tm
r) ≈ LM j(tm

s) + T m
trans f er (4.3)

4.5/ THE MODULAR ROBOT TIME PROTOCOL

MRTP works in two steps. The first step initializes the system: election of a central

module as the time master TM, construction of a spanning tree and initialization of the

global clock. In the second step, the time master periodically synchronizes the slave

modules.

4.5.1/ METHOD TO COMPENSATE FOR COMMUNICATION DELAYS

The method of compensating for communication delays in MRTP has to be carefully se-

lected depending on the target system. The choice of this method has a direct impact on

both the precision of the synchronization and its efficiency in terms of communications.

The precision of an approach mainly depends on the hardware-clock precision, its reso-

lution and the communication mechanism. In Section 4.7.1.3, we describe a procedure

to experimentally evaluate the precision of a given approach over multiple hops.

In that section, we also show that, in our target system, i.e., the Blinky Blocks, PRED is on

average more precise than the other two existing methods that can be applied to this sys-

tem (i.e., FD and RTT). Moreover, PRED uses a unidirectional message exchange while

RTT requires a bidirectional message exchange, thus incurring a larger communication

overhead.

In the rest of this section, we describe MRTP, assuming PRED is used. Note that in

practice, any method compatible with the target system can be used in MRTP.

4.5.2/ STEP 1: INITIALIZATION

Time Master Election A module is elected as the time master using an external algo-

rithm. Different criteria can be used for the election of the time master (e.g., minimum-

identifier node, etc.). Modular robotic systems with neighbor-to-neighbor communications

form large-diameter networks (see Section 2.2.5).

To achieve a better synchronization precision, we recommend electing a central module

as the time master, i.e., a node that tends to minimize the maximum or the average hop

distance to any other module. Placing the time master close to the center of the sys-

tem reduces the time of the synchronization phases and increases the overall precision

because cumulative estimations are made at every hop. Note that we do not claim that

one can infer the synchronization precision of MRTP knowing the diameter of the target

network. We only suggest a suitable position for the time master in a given system. Of

course, the node density, the traffic distribution and the clock distribution may have an

94 CHAPTER 4. TIME SYNCHRONIZATION

impact on the overall synchronization precision.

Any center election algorithm can be used to elect a central module. We suggest using

one of the algorithms defined in the previous chapter (k-BFS SumSweep, ABC-Center or

PC2LE) or the algorithm presented in [Kim et al., 2013]. These algorithms scale well in

terms of memory usage and execution time.

To handle dynamic topology changes, a module launches a time master re-election if it

detects a new neighbor or a neighbor departure, and the system goes through the whole

initialization process again.

Breadth-First Spanning Tree Construction At the end of the election process, our

protocol creates a breadth-first spanning tree rooted at the time master. The CHEUNG-

BFS-ST-CB algorithm, presented in Section 3.5.1, can be used. This algorithm guar-

antees that modules at distance dTM hops of the time master in the physical configura-

tion, are at distance dTM hops in the tree. Logical neighbors in the tree are neighbors

in the physical configuration. At this point, every module knows its parent and children

in the tree. This tree will be used to recursively propagate synchronization waves from

the time master through the system. As explained in Section 4.3.2, this approach is,

in compact systems running under our assumptions, more communication-efficient than

infrastructure-less network-wide flooding based approaches.

Global Clock Initialization Initially, slave modules estimate the global time with their

local time. Slave modules adjust their estimation of the global time during synchronization

phases, in the second step of MRTP. When a new time master is elected, modules keep

their previous estimation of the global time but do not keep the previous corrections of

the clock skew. They can indeed disturb the synchronization process when two distinct

systems are merged together.

Since time cannot run backward, clocks ahead of the global timescale have to slow down

or to wait during the synchronization process, and clocks behind the global timescale have

to jump to it. To make time synchronization faster, the global time, held by the time master,

is initially set to an estimation of the most advanced global time in the system using the

convergecast-max-time algorithm. Note that this approach can cause important jumps

into the future.

The pseudo-code of convergecast-max-time for any module Mi is provided in Algo-

rithm 12. At any time, a module Mi estimates the maximum global time with:

Y Mi(t) = LMi(t) + o f f setMi(t) (4.4)

with o f f setMi(t) being the estimated offset between the estimation of Mi concerning the

maximum global time in the system and the local clock of Mi at time t. Initially, Mi consid-

ers it has the maximum global time (line 2). This algorithm uses a single type of message,

namely BACK message. Every BACK message m is timestamped twice at the data-link

layer: the sender M j inserts Y M j(tm
s) just before transmission starts and the receiver Mk in-

4.5. THE MODULAR ROBOT TIME PROTOCOL 95

Input : Mp // parent in the tree

Children // set of children in the tree

1 Initialization of Mi at time tinit:

2 o f f set ← GMi (tinit) − LMi (tinit); Wait ← Children;

3 if Mp =⊥ then

44 // convergecast-max-time terminates

5 else if Wait = ∅ then

6 send m = BACK(,) to Mp;

// Mp will receive BACK(Y
Mi (tm

s) = LMi (tm
s) + o f f setMi (tm

s), LMp (tm
r)) at the application

layer. Y Mi (tm
s) is inserted by Mi at the data-link layer, just before

transmission start. Mp will insert LMp (tm
r) upon reception, at the data-link

layer.

7 When m = BACK(Y Mc (tm
s), LMi (tm

r)) is received by Mi from Mc such that Mc ∈ Children do:

8 Y Mc (tm
r)← Y Mc (tm

s) + T m
trans f er

;

9 o f f set ← max(o f f set,Y Mc (tm
r) − LMi (tm

r));

10 Wait ← Wait − {Mc};
11 if Mp =⊥ then

1212 // convergecast-max-time terminates

13 else if Wait = ∅ then

14 send m′ = BACK(,) to Mp;

// As explain in comment line 6, Mp will receive BACK(Y
Mi (tm′

s), LMp (tm′
r)) at the

application layer.

Algorithm 12: The convergecast-max-time algorithm for a module, Mi.

serts LMk (tm
r) upon complete reception (see Figure 4.3).Each leaf module sends a BACK

message to its parent (line 6). Every non-leaf module waits for a BACK message from

all its children. When Mi receives a BACK (Y Mc(tm
s), LMi(tm

r)) message m from one of its

children Mc, Mi estimates Y Mc(tm
r) ≈ Y Mc(tm

s)+T m
trans f er

using the PRED method (line 8) and

adjusts o f f setMi(t) accordingly (line 9). When Mi has received a BACK message from

all its children, it sends in turn a BACK message to its parent. When the convergecast

terminates (lines 4 or 12), the time master has an estimation of the maximum global time

in the system YTM(t). The time master then sets the global timescale G(t) to YTM(t). The

convergecast-max-time algorithm neglects the effect of clock skew, and considers offsets

to be constant in the system during convergecast.

4.5.3/ STEP 2: PERIODIC SYNCHRONIZATION

The time master holds the global timescale and periodically initiates synchronization

phases. During each synchronization phase, the time master disseminates the current

global time along the edges of the spanning tree built in the first step. G̃(t), an estimation

of the global time, is disseminated through the spanning tree, module-by-module, starting

from the time master. At each hop, the transmitted time is updated to take into account

communication delays and time of residence in intermediate modules. Slave modules use

a linear model to compensate for clock skew. As explained in the related-work section,

this is a common choice.

The time master starts a synchronization phase by sending the actual global time to all

96 CHAPTER 4. TIME SYNCHRONIZATION

its children. Algorithm 13 details the synchronization process of any slave module Mi.

Input : Mp // parent in the tree

Children // set of children in the tree

w // maximum number of synchronization points used for linear

regressions

1 Initialization of Mi:

2 a← 1.0; b← 0; W ← ∅;

3 When m = SYNC(G̃(tm
s),LMi (tm

r)) is received by Mi from its parent Mp do:

4 G̃(tm
r) = G̃(tm

s) + T m
trans f er

;

5 if |W | = w then

6 W ← W − {argmin
G̃(t)

W(<G̃(t), L(t)>)};

7 W ← W ∪ <G̃(tm
r), LMi (tm

r)>;

8 computeLinearRegression(a, b,W);

9 for each Mc ∈ Children do

10 send m′ = SYNC(,) to Mc;

// Mc will receive SYNC(G̃(tm′
s), LMc (tm′

r)) at the application layer.

G̃(tm′
s) = G̃(tm

r) + aMi (W Mi (tm′
s)) ∗ (LMi (tm′

s) − LMi (tm
r)) is inserted at the data-link layer,

just before transmission start. Mc will insert LMc (tm′
r) upon reception, at the

data-link layer.

Algorithm 13: Synchronization protocol for a slave module, Mi.

Time-stamping and Global Time Estimation The synchronization process uses a sin-

gle type of message SYNC. Every SYNC message m is timestamped twice at the data-

link layer: the sender, M j, inserts G̃(tm
s) just before transmission starts and the receiver,

Mk, inserts LMk (tm
r) upon complete reception. When Mi receives a SYNC(G̃(tm

s), LMi(tm
r))

message m from its parent, Mi computes G̃(tm
r) = G̃(tm

s) + T m
trans f er

, an estimation of the

global time at the reception of the synchronization message, using the PRED method

(line 4). <G̃(tm
r), LMi(tm

r)> forms a synchronization point that contains both the local clock

value of Mi and the estimation of the global time at nearly the same real time. Mi can esti-

mate its relative synchronization error with respect to the global time using Equation (4.5).

ǫ̃Mi(t) = GMi(tm
r) − G̃(tm

r) (4.5)

Global Clock Adjustment Mi computes aMi(W Mi(t)) and bMi(W Mi(t)) such that

G̃(t) ∼ aMi(W Mi(t)) × LMi(t) + bMi(W Mi(t)) (4.6)

using least-squares linear regression based on W Mi(t), a window of the last w synchro-

nization points (line 8). aMi(W Mi(t)) denotes the Mi estimated skew with respect to the

global time, and bMi(W Mi(t)) its estimated offset at time t. This mechanism compensates

for clock skew and enables modules to be synchronized less frequently without degrad-

ing the synchronization precision. In order to preserve time monotonicity, our protocol

4.6. THE TARGET SYSTEM: THE BLINKY BLOCKS 97

prevents GMi(t) from running backward:

∀(t, t′), t ≥ t′, GMi(t) = max
(
GMi(t′), aMi

(
W Mi(t)

)
× LMi(t) + bMi

(
W Mi(t)

))
(4.7)

If a new computed model leads to an estimated global time behind the maximum time al-

ready reached by GMi(t), then GMi(t) is blocked until the new model reaches this maximum

time. Otherwise, GMi(t) jumps into the future.

Global Time Dissemination Mi then sends a SYNC message m′ to each of its children

Mc in the tree (line 10). At the data-link layer, Mi inserts

G̃(tm′
s) = G̃(tm

r) + aMi

(
W Mi

(
tm′
s

))
×
(
LMi

(
tm′
s

)
− LMi

(
tm
r

))
(4.8)

into m′, just before it starts to transmit the frame over the communication medium. This

compensates for the time of residence at module Mi, assuming the Mi clock skew to be

constant and equal to aMi(W Mi(tm′
s)) during this time. Mc inserts its local time LMc(tm′

r) into

the incoming message at the data-link layer, immediately after Mc has pulled the synchro-

nization message from the interface buffer. At the Mc application layer, m′ contains G̃(tm′
s)

and LMc(tm′
r). Mc then repeats the same synchronization process as Mi.

Synchronization Periods Our protocol contains two synchronization phases: a cali-

bration phase and a runtime phase. During the calibration phase, modules are more fre-

quently synchronized with a period Pca in order to collect enough synchronization points

to compute skew models while preserving a satisfying level of precision. The calibration

phase lasts w × Pca. Then, during the runtime phase, modules are synchronized less fre-

quently, with a period Pru, and use the computed models to compensate for clock skew.

The values of w, Pca, and Pru have to be chosen according to the target platform hardware

and the desired precision, with resource usage in mind.

In our experimental evaluation, we empirically selected w = 5, Pca = 2 seconds and Pru =

5 seconds (unless otherwise mentioned). These values provide, in our target platform, a

satisfactory precision at a reasonable cost in terms of communications and computations.

4.6/ THE TARGET SYSTEM: THE BLINKY BLOCKS

We implemented MRTP and evaluated it on the Blinky Blocks system using both hardware

prototypes and simulations on VisibleSim. Figure 4.4 shows MRTP running on hardware

Blinky Blocks. This section presents the characteristics of the Blinky Blocks local clocks

and communication systems on the hardware prototypes along with the simulation models

used in the simulations.

98 CHAPTER 4. TIME SYNCHRONIZATION

Figure 4.4: Two Blinky Blocks systems synchronized using MRTP. On

the left, the system forms a cross. On the right, blocks are deployed

in a doubled L-configuration. In both configurations, the time master,

in red, is connected to the power supply. Slave modules are in green.

Experimental data are sent by the systems to the PC through a serial

cable.

4.6.1/ LOCAL CLOCK PROPERTIES

Hardware System Each module maintains its local time using a Real-Time Counter

(RTC) driven by an internal RC oscillator running at a frequency of 1.024 kHz with an

accuracy of 1% (10,000 ppm), at 3V and 25°C [ATMEL, 2016]. The RTC counts the time

elapsed since the module started with a resolution of about 0.98 millisecond5. Thus,

the synchronization precision results announced in the evaluation section are actually

expressed in 0.98 a millisecond, even though we express them in milliseconds for the

sake of simplicity. It is important to understand that these oscillators exhibit a very poor

accuracy and low resolution that directly affects the performance of our protocol. For

instance, a frequency deviation of 1% causes a clock error of approximately 10 mil-

liseconds per second. Most previous work on time synchronization, e.g., [Elson et al.,

2002, Ganeriwal et al., 2003, Maróti et al., 2004, Schenato et al., 2011], was evaluated on

devices equipped with crystal oscillators that have a typical accuracy between 0.0001%

and 0.01% (1 to 100 ppm) and a resolution in the order of tens of microseconds. Under

constant temperature and constant supply voltage conditions, RC oscillators are fairly

stable over a short period of time. As shown in Figure 4.5, Blinky Blocks local clocks tend

to drift apart in a roughly linear fashion in the short term.

Simulation Model In [Allan, 1987], the authors propose a general model for oscillators:

LMi(t) =
1

2
DMi t2

+ y
Mi

0
t + x

Mi

0
+ ηMi(t) (4.9)

where t is the real time (i.e., simulation time), L(t) is the local time, x0 is the time offset, y0

is the frequency offset, D is the frequency drift and η(t) is a random noise. As explained

in [Allan, 1987], y0 and D may vary over time (e.g., due to aging, temperature variations,

5Resolution= 1
1.024
≈ 0.98ms

4.6. THE TARGET SYSTEM: THE BLINKY BLOCKS 99

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5 6 7

L
o
c
a
l
c
lo

c
k
 o
ffs

e
t

to
 t

h
e
 r

e
a
l
ti

m
e
 (

m
in

)

Real time (h)

Module:
M1

M2

M3

M4

M5

X+200

X+400

X+600

X+800

X+1000

X+1200

X+1400

10:30 11:30 10 11 12
X=LMi(10)

L
o
c
a
l
c
lo

c
k
 o
ffs

e
t

to
 t

h
e
 r

e
a
l
ti

m
e
 (

m
s
)

Real time (min)

Module:
M1

M2

M3

M4

M5

Figure 4.5: Local clock offset with respect to the real time (LMi(t) − t).

The plot on the left shows the long-term deviation of the local clocks,

while the plot on the right shows these deviations in the shorter term.

The PRED method was used to compensate for communication delays.

etc.). For the sake of simplicity, we consider them to be constant and express their small

variations in the noise signal η(t).

We assume that Blinky Blocks clocks follow the model shown in (4.9). We conducted

experiments on hardware using Blinky Blocks in order to compute model parameters.

We used a system of five blocks deployed in a cross configuration (see Figure 4.4) to

collect time reference points < t, LMi(t) >, with i being the block unique identifier, every 10

seconds during 7 hours (see Figure 4.5). The real time t was provided by a computer. We

assumed the computer clock to be perfect. We use the PRED method of compensating

for communication delays.

Figure 4.6 shows the distribution of the parameter values obtained using polynomial re-

gression with R. The parameters D and y0 seem normally distributed. As a consequence,

we randomly generate clock parameters following normal distributions with the corre-

sponding mean and standard deviation (see Table 4.2). Noise signals are the residual

standard errors. We extract the 5 noise signals and replay them in our simulations.

Parameters Simulation Model

D (µs−1) N(7.132315 × 10−14, 5.349995 × 10−14)

y0 (none) N(0.9911011, 0.002114563)

x0 (µs) additive inverse of the simulation time at module start-up

η (µs) Noise replayed from extracted data signals

Table 4.2: Blinky Blocks hardware-clock model parameters used in Vis-

ibleSim. N(µ, σ) refers to the normal probabilistic law, with µ being the

mean and σ the standard deviation.

100 CHAPTER 4. TIME SYNCHRONIZATION

0.0e+00 6.0e−14 1.2e−130
.0

e
+

0
0

5
.0

e
+

1
2

1
.0

e
+

1
3

1
.5

e
+

1
3

Density function of D

µs
−1

D
e
n
s
it
y

0.986 0.990 0.994

0
5
0

1
0
0

1
5
0

Density function of y0

none

D
e
n
s
it
y

0 100 200 300 400

−
1
0
0
0

0
5
0
0

1
5
0
0

Noise over time

Time (min)

n
o
is

e
 (

m
s
)

Noises

Noise 1

Noise 2

Noise 3

Noise 4

Noise 5

Noises

Noise 1

Noise 2

Noise 3

Noise 4

Noise 5

Noises

Noise 1

Noise 2

Noise 3

Noise 4

Noise 5

Noises

Noise 1

Noise 2

Noise 3

Noise 4

Noise 5

Figure 4.6: Statistics on the parameters of the model used to simulate

clocks. From left to right: D density function, y0 density function and the

noise signals over the time.

4.6.2/ COMMUNICATION PROPERTIES

Hardware System We recall that Blinky Blocks use full-duplex neighbor-to-neighbor

communications over serial links controlled by Universal Asynchronous Receivers/Trans-

mitters (UARTs) configured with a bitrate of 38.4 kBauds. Modules exchange messages

that contain up to 17 bytes of application data. A message is sent over the link into a

frame composed of a minimum of 21 bytes: 17 bytes of payload data, 2 bytes for data

related to message handling (active messaging [Eicken et al., 1992]) and 2 bytes of con-

trol (i.e., a frame delimiter byte and a checksum byte). Some special bytes need to be

escaped using an extra byte in order to dissociate command bytes from data ones. Thus,

the number of bytes actually sent on the link varies a little according to the data being

sent.

A frame is transferred byte per byte to/from the UART. The transfer is interrupt-controlled,

i.e., the UART generates an interrupt when it has finished transmitting or receiving a byte.

The transmission time starts when the first byte of data is moved to the UART buffer and

ends when the last byte leaves this buffer. The reception time starts when the first byte of

data is received by the UART and ends when the last byte is received.

Transfer Time Estimation The PRED method used to compensate for communication

delays assumes that the transfer time, defined in subsection 4.4.2, is predictable. The

transfer time includes the transmission time, the propagation time and the reception time.

The Blinky Blocks are identical and physically connected, thus the propagation time be-

tween two neighbor modules can be considered to be deterministic. The transmission

time and the reception time of a message depend on the actual frame size and on the

communication rate.

Ttrans f er can be estimated using two-way timestamped-message exchanges (see Fig-

4.6. THE TARGET SYSTEM: THE BLINKY BLOCKS 101

ures 4.7-4.8 and Equation (4.10)). Equation (4.10) assumes the communication delays

for frames of same size to be symmetrical. In addition, the exchange of messages is

assumed to be fast enough so that the skew between the clock of the two modules is

insignificant during the exchange.

Ttrans f er ≈
(LM2(tm′

r) − LM2(tm
s)) − (LM1(tm′

s) − LM1(tm
r))

2
(4.10)

Module M
1

Module M
2

Local time

Local time

m m'

L
M

1(t
r

m) L
M

1(t
s

m')

L
M

2(t
s

m) L
M

2(t
r

m')

Figure 4.7: Scheme of a two-way message exchange between two

blocks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 5 5.5 6 6.5 7 7.5

33.600 30.545 28.000 25.846 24.000 22.400

P
ro

b
a
b
il
it

y

Transfer delay (ms)

Transfer bitrate (kbit/s)

Number of simultaneous
two-way message exchanges:

1
2
3
4
5

x, 5 < x < 12

Figure 4.8: Transfer delay/rate distribution of 21-byte-long frames.

We experimentally measured T̃trans f er for 300,000 two-way message exchanges between

neighbor modules in sparse and compact Blinky Blocks systems (see Figure 4.8). We

observed that T̃trans f er is always between 5 and 7 milliseconds. On average, T̃trans f er of

21-byte long frames varies slightly around 6 milliseconds, depending on the number of

simultaneous communications. Moreover, at the resolution of 1 millisecond, the transfer

time of identical-length frames is fairly constant. A transfer time of 6 milliseconds for a

21-byte long frame corresponds to a transfer rate of 28 kbit/s. Based on these results, we

consider that the transfer rate of a message can be estimated by R̃trans f er = 28 kbit/s. As

a consequence, we use Equation (4.11) to estimate the transfer delay of a message and

to compensate for communication delays in the PRED method.

T̃trans f er =
frame size

R̃trans f er

(4.11)

102 CHAPTER 4. TIME SYNCHRONIZATION

Simulation Model In order to accurately simulate the time, our simulation model takes

into account the timeout triggering time, the processing time, the queueing delays, and the

transfer rate of the messages (see Figure 4.9). We did not observe any node crash or any

transmission failure or message loss during the experiments of the previous subsection,

when the network is not overwhelmed. Thus, our simulation model does not incorporate

any special mechanism to mimic such phenomena. Table 4.3 summarizes the different

random variables of our model.

Timeout
handler

execution time
Module M

1
: Synchronization

message m
transfer delay

Timeout
triggering

time

Module M
2
:

Message m
queueing

time

Message m
processing

time

Message m
queueing

time

Real time

Date of the
synchronization phase

(scheduled using a timeout)

Figure 4.9: Workflow of the communication model used for the simula-

tion of time synchronization protocols. In this example, module M1 has

scheduled a synchronization phase. Upon timeout expiration, module

M1 executes the synchronization procedure and sends a synchroniza-

tion message to module M2 which will process it after a possible delay

due to queueing.

Timeout triggering time The timeout triggering time is the amount of time a module

needs to trigger an action scheduled using a software timeout (e.g., the synchronization

timeout that initiates a synchronization phase). In the Blinky Blocks firmware, software

timeouts are checked with a frequency of 2000 Hz. Thus, if we neglect the interrupt delay,

an action scheduled at time t can be executed at any time t′, such that t ≤ t′ ≤ t + 500µs.

Processing time We use the micro-controller clock running at 32 MHz (nanosecond

scale resolution) to measure the processing time of the synchronization-timeout handler

and the synchronization-message handler. We define two generic models to simulate the

message-handler processing time: one for handlers with low-computation cost (e.g., clock

adjustment without linear regression) and one for handlers with medium-computation cost

(e.g., clock adjustment with linear regression computation on a window of 5 measures).

Note that the queueing and transfer delays include some processing time. In our evalua-

tion, modules were running a rather simple application, in which every module periodically

changes its color based on the current global time and does nothing the rest of the time

using an active sleep (while loop with a time limit). Thus, they were actually computing

all of the time. The transfer time includes the interrupt time to fetch bytes from the inter-

face buffer. Our target platform (and many others) uses interrupt-driven communications.

Hence, only a very few elementary micro-controller instructions are executed before a

byte is fetched. We reasonably assume that interrupts are never disabled and that there

4.7. EXPERIMENTAL EVALUATION 103

are not a large number of interrupts to be simultaneously handled. The queueing delays

include interrupt time to enter the routine that handles incoming messages and the time

to handle potential messages that were already present in the queue at the message

arrival.

Queueing delays and network load VisibleSim uses a queueing system to handle

both incoming and outgoing messages. We propose two queue load models. The first

model is dedicated to lightly loaded networks where modules only exchange neighbor-

hood management messages, with a period of 500 milliseconds. The second model is

intended to simulate moderate network traffic due to extra-applications running on the

nodes. In this model, in addition to simulating the neighborhood management messages,

the queue occupancy at a message arrival follows a Poisson distribution of mean 1. This

simulates a moderate network traffic in which message queues contain, most of the time,

0 to 2 messages and in a few cases more messages. The light-load model is used in the

experiments of subsection 4.7.1. The moderate-load model is used in our evaluation on

large-scale systems (see Section 4.7.2).

Transfer rate Below the millisecond unit, the transfer rate is scenario-dependent. It

depends, for instance, on the number of simultaneous communications. For each ex-

periment performed on the hardware platform, we empirically derive the average system

transfer rate using statistics on the round-trip time. We use similar experiments to the

ones presented in subsection 4.7.1.3. We define three transfer rate models, namely for

sparse, intermediate and compact systems. In a given simulation, all the modules use

the same transfer rate model. The model for sparse systems is used in the experiments

of subsection 4.7.1.3, on the line system. The model for intermediate systems is used

in the experiments of subsections 4.7.1.5 and 4.7.1.6, on the L-shaped system (see Fig-

ure 4.4). The model for compact systems is used in our evaluation on large-scale systems

(see Section 4.7.2).

4.7/ EXPERIMENTAL EVALUATION

This section presents our experimental evaluation of MRTP, performed both on hard-

ware Blinky Blocks and in the VisibleSim simulator. Through our experiments, we show

the effectiveness, the efficiency and the scalability of our protocol. More precisely, we

first evaluate the precision of MRTP on hardware and show through some examples

that VisibleSim accurately simulates Blinky Blocks systems. Then, we use VisibleSim to

evaluate the performance of MRTP in large-scale systems and to compare it to existing

synchronization protocols in terms of precision, time of convergence and communication

efficiency. Unless otherwise mentioned, we use the PRED method to compensate for

communication delays in MRTP.

104 CHAPTER 4. TIME SYNCHRONIZATION

Parameters Value

Timeouts
Triggering time (s) U(0, 500 × 10−6)

Processing time (s) U(250 × 10−6, 300 × 10−6)

Messages

Queue

occupancy at

arrival

Light load neighborhood management

Moderate load
neighborhood management

+ P(1)

Transfer rate

(kbit/s)

Sparse systems (e.g., line

system)
N(28.134, 0.660)

Intermediate systems (e.g.,

L-shaped systems)
N(28.085, 0.938)

Compact systems (e.g., ball

systems)
N(27.696, 1.143)

Processing

time (s)

Low complexity U(250 × 10−6, 300 × 10−6)

Medium complexity U(475 × 10−6, 525 × 10−6)

Table 4.3: Communication model used for the evaluation of time syn-

chronization protocols. N(µ, σ) refers to the normal probabilistic law,

with µ being the mean and σ, the standard deviation. U(l, u) refers to

the uniform probabilistic law with the minimum value l and the maximum

value u. P(λ) refers to the Poisson probabilistic law with λ mean.

4.7.1/ EVALUATION ON HARDWARE AND VALIDATION OF VISIBLESIM

In this subsection, we evaluate the precision of the synchronization achieved by MRTP

on the Blinky Blocks hardware. In addition, we show that VisibleSim accurately simulates

Blinky Blocks systems.

4.7.1.1/ METHODOLOGY

We first use color changes to show that MRTP can potentially manage systems composed

of up to 27,775 Blinky Blocks.

Then, we show how the hop distance impacts the precision of the estimated global time

G̃(t) disseminated through the network during synchronization phases. We compare

different methods to compensate for communication delays and show that the PRED

method is on average the most accurate in our target platform. Furthermore, we show

that within a few hops, G̃(t) can be used as a reference time to estimate the relative

synchronization error of the Blinky Blocks with respect to the global time. The relative

synchronization error can thus be estimated using Equation (4.5).

We then use this estimation to study the local clock behaviors and to show the impact of

various parameters on the precision of our protocol.

All experiments presented in this subsection were one-hour long. Unless otherwise men-

tioned, modules were synchronized every 2 seconds in the calibration phase, then every 5

seconds in the runtime phase and modules used five synchronization points for the linear

regressions. These values were empirically chosen with the aim of obtaining, a satisfac-

tory synchronization precision in practice, at reasonable computation and communication

costs.

4.7. EXPERIMENTAL EVALUATION 105

4.7.1.2/ EVALUATION OF THE PRECISION OF MRTP USING COLOR CHANGES

Measuring clock offsets using message exchanges is as challenging as performing time

synchronization because time keeps going during communications.

In this subsection, we apply MRTP to a system of 28 Blinky Blocks6 that have to simul-

taneously change their color. Potential delays between module color changes reflect the

synchronization error of the modules. Modules are connected in a line topology. The

time master is manually placed at an extremity of the system and it synchronizes the

other modules every 500 milliseconds. With a such runtime synchronization period, ev-

ery link of the synchronization tree is theoretically used by MRTP only about 1.2% of the

time7. Slave modules have to simultaneously change their color every 3 seconds. This

experiment was recorded using a 40-millisecond-resolution camera.

We observed that every time the system started to change its color, all slave modules

changed their color in the next image, 40 milliseconds later (see Figure 4.10). Hence,

MRTP is potentially able to synchronize a system with a radius of up to 27 hops to a

less than 40 milliseconds, if the time master is at the center of that system. To give an

order of magnitude, a Blinky Blocks system with a radius of 27 hops can be composed of

up to 27,775 modules and have a diameter of 54 hops (using formulas demonstrated in

Section A.5.2).

Figure 4.10: Two successive images of a video recording 28 Blinky

Blocks connected in a line topology. The time master is in red. Slave

modules have to simultaneously change their color every 3 seconds.

On the left, a color change starts in the system. On the right, 40 mil-

liseconds later, the color of every slave module has changed.

In the next subsections, we present a more precise and automated evaluation of MRTP.

6At the time of the evaluation of MRTP, we only had at our disposal 28 hardware Blinky Blocks.
7 Ttrans f er

Pru
≈ 6

500
≈ 1.2% (without retransmission due to potential message loss or corruption)

106 CHAPTER 4. TIME SYNCHRONIZATION

4.7.1.3/ IMPACT OF THE HOP DISTANCE AND THE METHOD TO COMPENSATE FOR

COMMUNICATION DELAYS ON THE PRECISION OF THE DISSEMINATED GLOBAL

TIME G̃(t)

We expect that the estimation of the global time, G̃(t), disseminated during the synchro-

nization phases gets less precise as the depth of the synchronization tree increases be-

cause small but cumulative errors in the estimation of the global time are made at every

hop. In this section, we first propose a generic method to evaluate compensation de-

lay methods over multiple hops. Then, we present results obtained using the FD, RTT

and PRED methods of compensating for communication delays (see Sections 4.3.3 and

4.4.3). We show that the PRED method is on average more accurate. Finally, we show

that within a few hops, G̃(t) can be used as a reference time to estimate the synchroniza-

tion error of the Blinky Blocks.

Methodology We evaluate the precision of G̃(t) using virtual modules emulated on

Blinky Blocks hardware systems. Figure 4.11 gives the intuition behind our experiments

in a line system. This method, inspired by the approach presented in [Römer et al., 2005],

allows us to compare the estimated global time received by the module M2n−1 to the actual

global time held by the time master TM = M1, because these two modules are emulated

on the same physical block and can both read the actual global time G(t).

In the example depicted in Figure 4.11, every physical block hosts 2 virtual modules,

except for one block. Each slave virtual module maintains its own estimation of the global

time. The synchronization tree rooted at the time master TM links the virtual modules

together in a virtual line, so that neighbor modules in the tree are hosted on a separate

physical block. The leaf module M2n−1 is at a distance of 2(n − 1) hops from TM in the

synchronization tree. M2n−1 computes the global-time dissemination error as G(t) − G̃(t).

In our experiments, we generalize the example of the virtual line to measure the global-

time dissemination error versus the hop distance in arbitrary systems. Modules host a

number of virtual modules equal to the diameter of the system, and every physical module

initiates a return trip to the root of the tree. The root of the tree receives timing messages

that have physically traveled from 2 hops to 2(d−1) hops (or 2d−1, if the diameter is odd).

TM = M
1

M
2n-1

M
2

M
2n-2

M
n-1

M
n+1

M
n

…

Physical block Virtual module

Edge of the synchronization tree

Figure 4.11: Scheme of a virtual line of emulated modules on hardware

Blinky Blocks connected in a line.

4.7. EXPERIMENTAL EVALUATION 107

Results Figure 4.12 and Table 4.4 show the impact of the hop distance on the global-

time dissemination error. As expected, the precision of the disseminated global time

decreases with the hop distance. As stated in Section 4.3.5, the absolute mean error

increases linearly with the number of hops and the standard error tends to increase with

the square root of the number of hops. As a consequence, placing the time master at the

center of the system appears to be a judicious choice.

0%

20%

40%

60%

80%

100%

-10 -5 0 5 10

P
ro

b
a
b
il
it

y

Global time dissemination error (ms)

PRED-hardware
PRED-simulator

Number of hops: 2

0%

20%

40%

60%

80%

100%

-10 -5 0 5 10

P
ro

b
a
b
il
it

y

Global time dissemination error (ms)

PRED-hardware
PRED-simulator

Number of hops: 18

-10.0

-5.0

0.0

5.0

10.0

 0 5 10 15 20 25

A
v
e
ra

g
e
 g

lo
b
a
l-

ti
m

e
d
is

s
e
m

in
a
ti

o
n
 e

rr
o
r

(m
s
)

Distance (hops)

PRED-hardware
PRED-simulator

RTT-hardware
RTT-simulator
FD-hardware

Figure 4.12: Global time dissemination error (± standard deviation) in

MRTP according to the hop distance. On the left, the distribution of the

error. On the right, the average error (± standard deviation).

Average global-time dissemination error (ms)

Compensation Line configuration Compact configuration

delay method 2 hops 4 hops 2 hops 4 hops

PRED −0.03 ± 0.70 −0.11 ± 1.11 −0.27 ± 0.67 −0.36 ± 1.02

RTT −0.42 ± 0.62 −0.88 ± 1.01 −0.50 ± 0.63 −0.80 ± 0.97

FD −0.71 ± 0.50 −1.53 ± 0.76 −0.87 ± 0.54 −1.63 ± 0.80

Table 4.4: Average dissemination error (± standard deviation) with re-

spect to the global time in MRTP for 2 and 4 hops using different meth-

ods of compensating for communication delays in the line and the com-

pact systems.

It appears that PRED is on average more precise than FD and RTT methods in sparse

and more compact systems. We observe that regardless of the distance, the error distri-

bution of PRED seems Gaussian and nearly centered around zero. This is mainly due to

the fact that, in Blinky Blocks systems, the average transfer delay of a frame is almost a

round number at the millisecond scale.

Note that PRED has a more important standard deviation than the other two methods. FD

has the smallest standard deviation as only the transfer time of a single byte is involved

108 CHAPTER 4. TIME SYNCHRONIZATION

in the estimation of the global time whereas PRED and RTT use the transfer time of

complete messages. In future work, it would be interesting to evaluate the performance

of FD combined with a method that would compensate for the dissemination error only

after several hops when this error has become greater than the resolution of the clock

and can effectively be compensated for. From now, we only consider the PRED method

for the evaluation on hardware.

For a distance of 4 hops, 95% of the error measures are between [-2;2] milliseconds and

the average error is close to zero. Because of the poor accuracy of the Blinky Blocks

hardware clocks, we expect synchronization error using our protocol to be greater than

1 to 2 milliseconds. Thus, within a few hops, G̃(t) can be used as a reference time to

estimate the synchronization error of the Blinky Blocks. Upon reception of a synchroniza-

tion message, a module Mi estimates its relative synchronization error with respect to the

global time by ǫ̃Mi(t) = GMi(t) − G̃(t). We do not use virtual modules any more in the rest

of the evaluation.

4.7.1.4/ ANALYSIS OF THE LOCAL CLOCK BEHAVIOR AND IMPACT OF THE HARDWARE

CLOCK STABILITY ON THE SYNCHRONIZATION PRECISION

We measured the clock values of five blocks deployed in the cross-configuration depicted

in Figure 4.4. The slave modules, denoted M6, M7, M8 and M9, ran under the same

conditions: they were all synchronized using the same parameters and they were all

neighbors of the time master which was connected to the power supply. Note that the

physical modules used in these experiments differ from the ones used in Section 4.6

to compute our simulation model. As shown in Figure 4.13, local clocks seem to drift

apart from the global time in a roughly linear fashion. As indicated in Table 4.5, using

linear models to compensate for clock skew significantly increases the synchronization

precision.

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0 10 20 30 40 50 60

E
s
ti

m
a
te

d
 o
ffs

e
t

(s
)

Time (min)

Module
M6

M7

M8

M9

0%

5%

10%

15%

20%

25%

30%

35%

40%

-20-15-10 -5 0 5 10 15 20 25

P
ro

b
a
b
il
it

y

Synchronization error estimation (ms)

Module
M6

M7

M8

M9

Figure 4.13: On the left, the estimated clock offset (LMi(t) − G̃(t)). On

the right, the distribution of the relative synchronization error in MRTP.

The distributions of the estimated relative synchronization errors observed for all blocks

are shown in Figure 4.13. The distributions seem to be Gaussian. They are bell-shaped

4.7. EXPERIMENTAL EVALUATION 109

Clock skew Average Standard deviation Maximum absolute

compensation (ms) (ms) (ms)

Linear model 0.22 3.55 21

None -12.13 18.05 67

Table 4.5: Statistics on the average relative synchronization error of the

whole system showing the impact of using linear models to compensate

for clock skew in MRTP.

and nearly centered around 0. All modules remain synchronized to a few milliseconds.

However, it must be noted that the distribution for M8 is much more spread out than the

others. It is shorter and flatter. Thus, M8 is less precisely synchronized. Figure 4.14

shows the stability with respect to the global time and the synchronization error of the

modules M7 and M8 during two minutes of the experiment. We observe that the syn-

chronization error oscillates around 0 for both blocks. However, its magnitude is more

important for block M8 than for block M7. This is because the local clocks of the two

modules do not exhibit the same stability with respect to the global time. The offset with

respect to the global time is less linear for the local clock of M8, and its skew with respect

to the global timescale varies much more.

X+200

X+400

X-600

X-400

X-200

40:30 41:30 40 41 42

X=LMi(40)

E
s
ti

m
a
te

d
 o
ffs

e
t

(m
s
)

Time (min)

Module
M2

M3

0.992

0.994

0.996

0.998

1.000

1.002

1.004

40:30 41:30 40 41 42

X=LMi(40)

E
s
ti

m
a
te

d
 s

k
e
w

 r
a
ti

o

Time (min)

Module
M8

M7

-20

-15

-10

-5

0

5

10

15

20

40:30 41:30 40 41 42

X=LMi(40)

E
s
ti

m
a
te

d
 s

y
n
c
h
ro

n
iz

a
ti

o
n
 e

rr
o
r

(m
s
)

Time (min)

Module
M7

M8

Figure 4.14: On the left, stability of the local clock of M7 and M8 with

respect to the global timescale: above, the estimated offset (LMi(40) −
G̃(40)+(LMi(t)−G̃(t))) and below, the estimation of the estimated average

skew ratio between synchronization points (
∆LMi (t)

∆G̃(t)
). On the right, the

synchronization error of these two blocks.

Since all modules ran under the same experimental conditions, such an important differ-

ence in the synchronization precision should be due to the clock oscillator relative stability.

Among the dozens of blocks we have, all modules behave similarly to M6, M7, and M9,

except for M8. As a consequence, we consider M8 to be an outlier and do not use it in

the rest of the experiments. Note that we do not consider M8 to compute our simulation

model. We suggest that such outliers should be removed from the system when a precise

time synchronization is required.

110 CHAPTER 4. TIME SYNCHRONIZATION

Furthermore, we experimentally checked that the hop distance to the block that is con-

nected to the power supply has no significant impact on the individual synchronization

precision.

4.7.1.5/ IMPACT OF THE SYNCHRONIZATION PERIODS ON THE SYNCHRONIZATION

PRECISION

Figure 4.15 shows the impact of the synchronization periods on the relative synchroniza-

tion error in the doubled L-shaped system depicted in Figure 4.4. Distributions seem to

be Gaussian. They are all bell-shaped and centered around 0. For a runtime synchro-

nization period of 5 seconds, the average relative synchronization error is equal to 0.22

millisecond.

0%

10%

20%

30%

40%

50%

60%

-20 -10 0 10 20

P
ro

b
a
b
il
it

y

Synchronization error estimation (ms)

hardware
simulator

Runtime synchronization
period: 5s

0%

10%

20%

30%

40%

50%

60%

-20 -10 0 10 20

Runtime synchronization
period: 20s

P
ro

b
a
b
il
it

y

Synchronization error estimation (ms)

hardware
simulator

-20

-15

-10

-5

0

5

10

15

20

 0 10 20 30 40 50 60

A
v
e
ra

g
e
 r

e
la

ti
v
e
 s

y
n
c
h
ro

n
iz

a
ti

o
n

e
rr

o
r

e
s
ti

m
a
ti

o
n
 (

m
s
)

Runtime synchronization period (s)

hardware
simulator

Figure 4.15: Relative synchronization error of the whole system as a

function of the synchronization periods. On the left, the distribution of

the error. On the right, the average error (± standard deviation).

We observe in Figure 4.15 that the distribution shape becomes shorter and larger, as the

runtime synchronization period increases. The error dispersion reflects the synchroniza-

tion error. The standard deviation increases with the runtime synchronization period. As a

consequence, the longer the resynchronization interval is, the worse the synchronization

precision will be. However, it must be noted that in all cases, the system stays synchro-

nized to a few milliseconds. The average synchronization error amplitude remains below

4 milliseconds for runtime synchronization periods ranging from 2 seconds to 30 seconds.

With a runtime period of 5 seconds, every link of the synchronization tree is theoretically

used by MRTP only about 0.12% of the time during the runtime phase.

4.7. EXPERIMENTAL EVALUATION 111

4.7.1.6/ IMPACT OF THE NUMBER OF SYNCHRONIZATION POINTS USED FOR THE LIN-

EAR REGRESSIONS ON THE SYNCHRONIZATION PRECISION

Figure 4.16 shows the impact of the number of synchronization points used for the lin-

ear regressions on the synchronization error in the doubled L-shaped system depicted in

Figure 4.4. With a running synchronization period of 5 seconds, we observe that the max-

imum synchronization precision is obtained using 5 synchronization points for the linear

regressions. Indeed, when using 5 synchronization points, the relative synchronization

error has a mean close to 0 and the smallest standard deviation. We suppose that the

linear regression does not make it possible to properly capture the clock models when

using less synchronization points. When using more than five synchronization points, the

synchronization precision decreases as the window size increases. We believe, without

proving it, that this is because the clock frequencies vary too quickly for a large number

of observations.

0%

10%

20%

30%

40%

50%

60%

-20 -15 -10 -5 0 5 10 15 20

5 synchronization points

P
ro

b
a
b
il
it

y

Synchronization error estimation (ms)

hardware

0%

10%

20%

30%

40%

50%

60%

-20 -15 -10 -5 0 5 10 15 20

30 synchronization points

P
ro

b
a
b
il
it

y

Synchronization error estimation (ms)

hardware

-6

-4

-2

0

2

4

6

 0 5 10 15 20 25 30

A
v
e
ra

g
e
 r

e
la

ti
v
e
 s

y
n
c
h
ro

n
iz

a
ti

o
n

e
rr

o
r

e
s
ti

m
a
ti

o
n
 (

m
s
)

Number of synchronization points

hardware

Figure 4.16: Relative synchronization error of the whole system as a

function of the number of synchronization points used for the linear re-

gressions. On the left, the distribution of the error. On the right, the

average error (± standard deviation).

4.7.1.7/ SIMULATION FIDELITY

As shown in figures 4.12 and 4.15, the results obtained using simulations closely match

the results from the hardware-based experiments. Indeed, the results of the simulations

have distributions and statistical measure values (i.e., means and standard deviations)

that are almost identical to the results of the experiments on hardware systems. The

global-time dissemination error according to the hop distance is well simulated even af-

ter many hops. Thus, we can safely assume that VisibleSim can be used to study the

performance of synchronization protocols on large-scale Blinky Blocks systems.

Note that we do not simulate the experiment in Section 4.7.1.6 because we did not com-

112 CHAPTER 4. TIME SYNCHRONIZATION

pute the processing times for linear regression on a large number of synchronization

points (i.e., more than five) in our simulation model.

4.7.2/ LARGE-SCALE EVALUATION AND COMPARISON TO EXISTING PROTO-

COLS THROUGH SIMULATIONS

In this subsection, we use the VisibleSim simulator to evaluate the performance of our

protocol and compare it with existing synchronization protocols. Section 4.7.2.1 presents

the synchronization protocols and their variants that we consider for the comparisons.

We study the precision, the convergence time and the communication efficiency of the

synchronization protocols on three systems of different sizes and diameters (see Ta-

ble 4.6). These systems are organized in a ball topology, i.e., the largest network topology

that can be formed for a given diameter (see Sections A.3 and A.5.2 for more details).

We use this compact network topology because there is an increasing number of mod-

ules, therefore an increasing number of clock models, at a given network distance from

any given module. Moreover, we consider the ball system composed of 27,775 mod-

ules to show that MRTP can effectively synchronize this system to a few milliseconds, as

announced in subsection 4.7.1.2.

System Size (modules) Radius (hops) Diameter (hops)

Ball(5) 231 5 10

Ball(15) 4,991 15 30

Ball(27) 27,775 27 54

Table 4.6: Network characteristics of the systems used for the evalua-

tion of time synchronization protocols.

To compare protocols fairly, we evaluate them on identical systems, i.e., for all experi-

ments, a module always has the same position, the same communication model and the

same clock parameters. In addition, for centralized protocols, the time master always

has the same communication model and clock parameters. Furthermore, the minimum-

identifier module is deliberately placed at the extremity of the systems in order to show

the impact of the maximum hop distance to the time master on the overall synchronization

precision of the system.

All the experiments last for two hours. During the first hour, the system is left unsynchro-

nized. Then, the modules start running one of the considered synchronization protocol.

For all the protocols, we use a synchronization period of 5 seconds. In protocols that use

a linear model to compensate for clock skew, modules perform the model parameter esti-

mations using the last 5 synchronization points, unless otherwise mentioned. To evaluate

the synchronization precision, we measure the maximum pairwise synchronization error

every 3 seconds.

4.7. EXPERIMENTAL EVALUATION 113

4.7.2.1/ COMPARED SYNCHRONIZATION PROTOCOLS AND MODIFICATIONS

We compare MRTP to leading protocols designed for ad-hoc networks, namely MLE -

TPSN (i.e., TPSN [Ganeriwal et al., 2003] combined with MLE [Leng et al., 2010]),

FTSP [Maróti et al., 2004], PulseSync [Lenzen et al., 2009], WMTS [He et al., 2014a]

(a variant of MTS [He et al., 2014a]) and ATS [Schenato et al., 2011]. These protocols

were proposed for wireless sensor networks and need modifications to be used on our

target platform8. This section lists these modifications. Note that the modifications oper-

ated do not alter the general high-level framework of the compared protocols.

Communication Medium One of the adaptation is to consider a local and wired com-

munication medium instead of a wireless and shared one. The main differences this

adaptation causes, from a data-link point of view, are twofold. First, it entails the absence

of message loss due to interferences/collisions on the communication medium. Second,

in order to broadcast a message to all neighbors, a node has to send an individual copy

of that message to all of them.

Communication Delay Compensation As explained in the state-of-the-art section, the

methods used by these protocols to compensate for communication delays are not all di-

rectly applicable to our target platform. We recall that three methods are applicable to our

target system, namely RTT, FD and PRED (see Section 4.3.3). TPSN is based on RTT.

MLE TPSN uses round-trip messages and computes the maximum likelihood estimation

of the current global time on the last 5 synchronization points. We use FTSP with PRED

because the method proposed in FTSP, which is highly accurate, is not applicable to our

target system and because PRED is, on average, the most precise method for our sys-

tem. PulseSync employs the same method as FTSP, thus we use PulseSync with PRED.

In ATS, the authors suggest using the most precise method and utilizing FD for the ex-

perimental evaluation. Since PRED is, on average, more precise than FD in our system,

we use ATS with PRED. We also use PRED to compensate for communication delays in

WMTS.

The ATS and the WMTS Protocols ATS and WMTS are respectively average- and

maximum-value consensus-based decentralized protocols. WMTS and ATS compen-

sates for clock skew using averaging techniques. In WMTS and in the original version of

ATS, modules use the last two clock readings of a neighbor to estimate its relative clock

skew. In our modified version of ATS, we use the oldest and the newest clock readings to

estimate the relative clock skew. This modification leads to better performance in our sys-

tem. The ATS protocol takes input parameters, e.g., the probability of updating the clock

offset and the clock skew of the modules at each synchronization round. We adopted

the parameters used in the evaluation subsection of the original article [Schenato et al.,

2011].

8Our implementation of these protocols is available online at: https://github.com/nazandre/thesis

https://github.com/nazandre/thesis

114 CHAPTER 4. TIME SYNCHRONIZATION

The MRTP and the TPSN Protocols MRTP and TPSN are centralized protocols in

which modules get periodically synchronized with the time master. In MRTP and TPSN,

the time master is elected using an external algorithm and child modules are recursively

synchronized by their parents along the edges of a spanning tree. For the leader election

problem, we consider two algorithms. To elect the minimum-identifier module, we use the

MIN ID algorithm that we defined as MIN-ID in Section 3.9.3.1. To elect a central node,

we use PC2LE-CENTER, the center version of the PC2LE framework introduced in Sec-

tion 3.8. In the rest of the evaluation section, we use PC2LE to refer to PC2LE-CENTER

for conciseness reasons. Table 4.7 shows the performance of these two election algo-

rithms on our target systems. We use the CHEUNG-BFS-ST-CB algorithm presented in

Section 3.5 to build the synchronization tree. In [Ganeriwal et al., 2003], the author states

that any method can be used to select the time master and suggests that the minimum-

identifier election algorithm presented in [Malpani et al., 2000] can be used. Thus, we

use TPSN with MIN-ID. In addition, in the original version of TPSN, child modules over-

hear the messages exchanged during the synchronization process of their parent. As our

platform uses contact communications, messages sent to a node cannot be overheard by

other nodes. Thus, in our version of TPSN, we added an extra message sent by the par-

ent to trigger the synchronization of child modules. Moreover, the modules use a linear

model and MLE [Leng et al., 2010] to estimate the clock parameters. During a synchro-

nization phase, modules only use the last timing information to disseminate the global

time through the system. Without this last modification, MLE TPSN diverges slowly in our

simulations.

System Algorithms
Simulated

execution time (s)

Average number of

messages (per

module)

Elected-node

eccentricity

Ball(5)
MIN ID 0.25 38 10

PC2LE 0.72 133 5

Ball(10)
MIN ID 0.53 84 30

PC2LE 1.96 420 17

Ball(27)
MIN ID 0.83 107 54

PC2LE 3.41 735 30

Table 4.7: Performance of election algorithms on the systems used for

the evaluation of time synchronization protocols.

The FTSP and the PulseSync Protcols FTSP and PulseSync are centralized proto-

cols in which modules get periodically synchronized with the time master. FTSP and Puls-

eSync are infrastructure-less. During the synchronization phases, the minimum-identifier

module gets implicitly elected as the time master. If a module has not received new

synchronization messages for some synchronization periods (5 in our implementation),

it declares itself time master and starts synchronizing the other modules. A module up-

dates its belief concerning the current time master in the system whenever it receives a

synchronization message advertising for a time master with a lower identifier.

4.7. EXPERIMENTAL EVALUATION 115

In FTSP, a new time master ignores synchronization messages advertising for lower-

identifier nodes during 3 synchronization periods. The FTSP protocol also takes as a

parameter the number of synchronization messages that a node needs to have received

before it considers itself to be synchronized and starts to synchronize neighboring nodes.

In our simulations, we use the value of 3. For a better performance, we proceed to

the subsequent modifications of FTSP, also suggested in [Lenzen et al., 2009]. In the

original version of FTSP, synchronized modules ignore the received global time values

that are too far from their own estimation of the current global time. As shown in the

next subsection, FTSP does not provide precise synchronization in our target system and

we had to suppress this filtering procedure in order to obtain better results. Additionally,

in our version of FTSP, modules clear their linear regression table whenever they get

synchronized by a new time master.

PulseSync accurately synchronizes nodes using rapid network-wide flooding. Sophisti-

cated methods have been proposed to achieve fast flooding in WSN where messages

may interfere and collide with each other (e.g., [Ferrari et al., 2011]). Our target sys-

tem does not assume any specific mechanism to quickly disseminate a message through

the network. Moreover, Blinky Blocks networks are not prone to message collisions. In

our implementation of PulseSync, synchronization messages are handled like any other

message. In particular, messages are not prioritized in message queues.

Naming Convention We use the following format to name the different approaches

compared: [ORIGINAL PROTOCOL NAME]-[LEADER ELECTION ALGORITHM]-[COMMUNI-

CATION DELAY COMPENSATION METHOD]. For instance, MRTP-PC2LE-PRED refers to

the MRTP synchronization protocol based on the PC2LE leader election algorithm and

our predictive model to compensate for communication delays.

4.7.2.2/ TIME OF CONVERGENCE AND ACHIEVABLE PRECISION

Figure 4.17 shows the average maximum pairwise synchronization error of the modules

over time for the compared synchronization protocols. During the first hour, the modules

were not synchronized and progressively drifted apart. The system reached a synchro-

nization error of more than 40 seconds.

MRTP, MLE TPSN and PulseSync centralized protocols converge in a few seconds in

the three systems. We recall that MRTP and MLE TPSN first elect a leader, build a

spanning tree, and then start synchronizing the modules. In PulseSync, modules wait for

5 synchronization periods (i.e., 25 seconds) without hearing a synchronization message

before declaring themselves time masters and trying to synchronize the other nodes. This

mechanism causes PulseSync to converge slightly more slowly but makes this protocol

inherently tolerant of faults.

As expected, ATS, which is an average consensus-based decentralized protocol, con-

verges much more slowly and the time of convergence significantly increases with the

system size. In Ball(15), ATS converges only after about 30 minutes of periodic syn-

116 CHAPTER 4. TIME SYNCHRONIZATION

chronization. WMTS, which is a maximum-value consensus-based protocol, converges

more quickly than ATS. But WMTS is still slightly slower than the MRTP, MLE TPSN and

PulseSync centralized protocols.

FTSP does not converge in large ensembles of Blinky Blocks. Theoretically, FTSP should

have converged in less than 15 minutes in Ball(27) [Maróti et al., 2004]. As explained in

the related work subsection, the FTSP synchronization waves are slowly flooded through

the network using asynchronous broadcasts, whereas in MRTP, MLE TPSN and Puls-

eSync, the current global time gets quickly disseminated throughout the entire network.

This last scheme significantly reduces the impact of clock inaccuracies (due to noise,

skew variations, time-increasing errors in the local estimation of the global time) on the

synchronization precision and the time of convergence.

Figure 4.18 shows statistics on the maximum pairwise synchronization error after conver-

gence. Unsurprisingly, the synchronization precision of all the protocols decreases with

the network size. MRTP, MLE TPSN and PulseSync, which are centralized protocols,

have a synchronization precision of a few dozen milliseconds in all the systems consid-

ered.

MRTP-PC2LE-PRED is the most precise protocol. As shown in Figure 4.18, using a

central node as the time master improves the average maximum pairwise synchroniza-

tion error of MRTP by about 0.6 to 3.5 milliseconds in the different ball systems (MRTP-

PC2LE-PRED vs MRTP-MIN ID-PRED). Moreover, the precision improvement increases

with the diameter of the ball.

Unsurprisingly, MRTP-MIN ID-PRED and PulseSync-PRED have, on average, a similar

synchronization precision. It was awaited as the two protocols only differ by the mecha-

nism they use to elect the minimum-identifier node and by their infrastructure (i.e., MRTP

uses a breadth-first spanning tree while PulseSync is infrastructure-less and floods the

network). However, it must be noted that MRTP-MIN ID-PRED has a slightly lower worst-

case synchronization error. We did not investigate this point but we suspect this could

be due to the fact that, in MRTP, a node always gets synchronized by a message that

has traveled on the same and shortest path while in our implementation of PulseSync

synchronization messages can come from different and possibly not shortest paths, de-

pending on the network traffic.

MRTP-MIN ID-PRED is on average about 2.3 milliseconds more precise than MLE TPSN

in Ball(27) but has a 2-millisecond higher worst-case synchronization error in both the

Ball(15) and Ball(27) systems. We recall that these two protocols only differ by the method

they use to compensate for communication delays and clock skew. Moreover, as shown in

the next subsection, MRTP with PRED is more communication-efficient than MLE TPSN.

As announced in subsection 4.7.1.2, MRTP can effectively synchronize the Ball(27) sys-

tem, composed of 27,775 modules, to less than 40 milliseconds. Indeed, it synchronizes

this system to 17 milliseconds on average and to 24 milliseconds at worst.

As expected, the ATS decentralized method is less precise than the centralized ones. The

WMTS decentralized method exhibits similar synchronization precision in Ball(5) to that

of the centralized methods, while it fails to accurately synchronize the Ball(27) system.

4.7. EXPERIMENTAL EVALUATION 117

1

101

102

103

104

105

106

 60 70 80 90 100 110 120

60m: synchronization start

M
a
x
im

u
m

 p
a
ir

w
is

e
sy

n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

(m
s)

Time (min)

MRTP-PC2LE-PRED
MRTP-MINID-PRED
MLE_TPSN-MIN_ID

WMTS-PRED
ATS-PRED

FTSP-PRED
PulseSync-PRED

 0

 5

 10

 15

 20

 25

 30

 35

 40

59:30 60:30 61:30 60 61 62

M
a
x
im

u
m

 p
a
ir

w
is

e
sy

n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

(m
s)

Time (min)

Zoomed version

1

101

102

103

104

105

106

 60 70 80 90 100 110 120

60m: synchronization start

M
a
x
im

u
m

 p
a
ir

w
is

e
sy

n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

(m
s)

Time (min)

 0

 5

 10

 15

 20

 25

 30

 35

 40

59:30 60:30 61:30 60 61 62

M
a
x
im

u
m

 p
a
ir

w
is

e
sy

n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

(m
s)

Time (min)

Zoomed version

1

101

102

103

104

105

106

 60 70 80 90 100 110 120

60m: Synchronization start

M
a
x
im

u
m

 p
a
ir

w
is

e
sy

n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

(m
s)

Time (min)

 0

 5

 10

 15

 20

 25

 30

 35

 40

59:30 60:30 61:30 60 61 62

Ball(5): 10-hop diameter and 231 modules

Ball(15): 30-hop diameter and 4,991 modules

Ball(27): 54-hop diameter and 27,775 modules

M
a
x
im

u
m

 p
a
ir

w
is

e
sy

n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

(m
s)

Time (min)

Zoomed version

Figure 4.17: Maximum pairwise synchronization error over time. This

figure shows both the time of convergence and the achievable precision

for each protocol on the different Ball systems.

118 CHAPTER 4. TIME SYNCHRONIZATION

5

101

102

103

 10 15 20 25 30 35 40 45 50 55

A
v
e

ra
g

e
 m

a
x
im

u
m

 p
a

ir
w

is
e

s
y
n

c
h

ro
n

iz
a

ti
o

n
 e

rr
o

r
(m

s
)

Diameter (hop)

MRTP-PC2LE-PRED
MRTP-MIN_ID-PRED
MLE_TPSN-MIN_ID

WMTS-PRED
ATS-PRED

PulseSync-PRED

5

 10

 15

 20

 25

 10 15 20 25 30 35 40 45 50 55

A
v
e

ra
g

e
 m

a
x
im

u
m

 p
a

ir
w

is
e

s
y
n

c
h

ro
n

iz
a

ti
o

n
 e

rr
o

r
(m

s
)

Diameter (hop)

Zoomed version

101

102

103

 10 15 20 25 30 35 40 45 50 55

M
a

x
im

u
m

 p
a

ir
w

is
e

s
y
n

c
h

ro
n

iz
a

ti
o

n
 e

rr
o

r
(m

s
)

Diameter (hop)

 10

 15

 20

 25

 30

 35

 40

 10 15 20 25 30 35 40 45 50 55

M
a

x
im

u
m

 p
a

ir
w

is
e

s
y
n

c
h

ro
n

iz
a

ti
o

n
 e

rr
o

r
(m

s
)

Diameter (hop)

Zoomed version

Figure 4.18: Synchronization precision. At the top, average maximum

pairwise synchronization error in the last 30 minutes of the experiment

(± standard deviation). At the bottom, the maximum pairwise synchro-

nization error.

4.7.2.3/ COMMUNICATION EFFICIENCY

Figure 4.19 shows the average number of messages sent per module and its decomposi-

tion according to the message types. We consider three types of message: the messages

due to the leader election process, the ones due to the tree infrastructure creation and

the synchronization messages.

As expected, ATS and WMTS decentralized synchronization protocols use on average

more messages per module than the MRTP, MLE TPSN and PulseSync centralized pro-

tocols. In addition, PulseSync, which uses network-wide floodings, generates on average

more messages per module than MRTP and MLE TPSN that use a tree-like structure.

Thus, the message cost induced by both the leader election process and the infrastruc-

ture construction is compensated for in less than one hour.

Let k denote the number of messages used by the compensation delay method (k = 1 for

PRED and k = 3 for round-trip-time-based methods as in MLE TPSN). In decentralized

4.7. EXPERIMENTAL EVALUATION 119

methods, 2km messages9 are sent per synchronization round, while k(n − 1) messages10

are sent in MRTP and MLE TPSN, and 2m − (n − 1) messages11 are sent in PulseSync-

PRED (after the implicit time-master election has converged). We recall that n − 1 ≤ m

in connected networks. As MLE TPSN uses a round-trip time based method, it gener-

ates three times more synchronization messages per synchronization phase than MRTP

with PRED. In compact systems, the number of links is more important than the number

of nodes. Thus, in these systems, PulseSync generates more messages per synchro-

nization round than MRTP with PRED. However, PulseSync is inherently more tolerant of

network failures because synchronization waves are flooded through all links and not only

along the links of a spanning tree. Thus, if a link fails but the system remains connected,

PulseSync may still be able to synchronize all the modules. Nevertheless, in a spanning

tree, if a link fails, all the nodes of a sub-tree will not get synchronized.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

M
RTP-PC2LE-PRED

M
RTP-M

IN_ID
-PRED

M
LE_TPSN-M

IN_ID

W
M
TS-PRED

ATS-PRED

PulseSync-PRED

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
m

e
ss

a
g
e
s

p
e
r

m
o
d
u
le

Ball(5)

231 modules

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

M
RTP-PC2LE-PRED

M
RTP-M

IN_ID
-PRED

M
LE_TPSN-M

IN_ID

W
M
TS-PRED

ATS-PRED

PulseSync-PRED

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
m

e
ss

a
g
e
s

p
e
r

m
o
d
u
le

Ball(15)

 4,991 modules

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

M
RTP-PC2LE-PRED

M
RTP-M

IN_ID
-PRED

M
LE_TPSN-M

IN_ID

W
M
TS-PRED

ATS-PRED

PulseSync-PRED

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
m

e
ss

a
g
e
s

p
e
r

m
o
d
u
le

Ball(27)

27,775 modules

Types of message:
Leader Election Infrastructure Synchronization

Figure 4.19: Average number of messages sent per module in time

synchronization protocols.

We measured the maximum message queue size reached by the modules taking into ac-

count both the incoming and the outgoing messages. We observed that for any module,

the ratio of the maximum queue size reached to the number of neighbors of that module,

remains below or equal to three, regardless of the size of the networks for all the pro-

tocols, except for PulseSync. For PulseSync, the ratio reached the value of 4.5. This is

due to the uncontrolled-broadcast problem explained in Section 3.5.1.2. This issue does

not have a big impact in this case. Indeed, because clocks are drifting apart, nodes trig-

ger synchronization waves at slightly different instants. Thus, neither the leader election

9Every module sends a synchronization message to all its neighbors.
10Every module except the time master gets synchronized by a single node.
11Every module sends a synchronization message to all its neighbors except to the one from which it got

synchronized.

120 CHAPTER 4. TIME SYNCHRONIZATION

process, which involves network-wide flooding(s), nor the actual synchronization phases

overwhelm the network. The traffic generated by the synchronization protocols remains

well controlled and modules do not require a lot of memory space to store incoming and

outgoing messages.

4.8/ DISCUSSION

MRTP is intended to synchronize large-scale and fairly stable systems where changes in

the network topology, due for instance to module mobility, or potential module or link

failures, are infrequent. Our protocol achieves its performance by combining several

mechanisms: distributed central-time-master election, fast and recursive propagation of

synchronization waves along the edges of a breadth-first spanning tree, low-level times-

tamping and per-hop compensation for communication delays using the most-appropriate

method for the target platform, and clock skew compensation using linear regression.

Design Choices In MRTP, a dynamically elected central module periodically synchro-

nizes the system. We assume the network traffic to be evenly distributed in the network.

Placing the time master close to the center of the network increases the overall syn-

chronization precision because cumulative errors are made every hop. This strategy is

particularly judicious in our context because large-scale modular robots with neighbor-

to-neighbor communications tend to exhibit long hop distances. In order to synchronize

the system, the time master periodically launches synchronization waves, which are re-

cursively propagated along the edge of a breadth-first spanning tree. Slave modules

propagate these waves to their children in the tree shortly after reception. As explained

in [Lenzen et al., 2009], optimal synchronization requires a fast propagation scheme.

Also note that using a tree is more communication-efficient in compact systems than

flooding approaches. Indeed, since there is no broadcast support in the neighbor-to-

neighbor communication model, a node has to send an individual copy of a message to

all its neighbors in order to broadcast that message. Furthermore, using a breadth-first

tree guarantees that synchronization messages always travel on the same and shortest

paths. This also leads to better synchronization precision. MRTP performs per-hop syn-

chronization, i.e., a module gets synchronized by a one-hop neighbor. At each hop, the

propagated estimation of the current global time is updated to take into account commu-

nication delays and time of residence in intermediate modules. Any approach to com-

pensate for these delays can be used in MRTP. Most of the existing approaches use

low-level timestamping to suppress the main sources of uncertainty in delay estimations.

The best-suited technique to be actually used in MRTP depends on the target platform

(i.e., the clock precision, its resolution, the communication mechanism and the network

load) and should be carefully selected, since it has a direct impact on the performance

of our protocol, both in terms of precision and communication efficiency. We provided a

method to experimentally evaluate the precision of a given approach over multiple hops.

4.8. DISCUSSION 121

Network Density We showed that, with a central time master, MRTP can synchro-

nize the 54-hop-diameter ball system composed of 27,775 modules to 24 milliseconds,

at worst. In Section 3.3.2, we showed that MRTP can synchronize a sparser 83-hop-

diameter system, composed of 1,456 nodes, to 29 milliseconds, at worst, when the time

master is placed at the center of the system. These worst-case synchronization errors

(i.e., the maximum value over all the maximum pairwise synchronization error values that

were captured every 3 seconds) are consistent with each other. However, we observed

that the averaged maximum pairwise synchronization error is smaller on the sparser sys-

tem (13 milliseconds versus 17 milliseconds), although it exhibits a larger diameter. We

did not investigate this phenomenon, but we believe this is because bad cases happen

more rarely in the sparser system, in part because there are less nodes and less long

independent paths in that system. Indeed, nodes that receive synchronization messages

that have traveled on long and almost independent paths, causing the error accumulated

at every hop to be propagated differently, tend to exhibit a high maximum pairwise syn-

chronization error.

Moreover, it must be noted that, on the Blinky Blocks, the number of simultaneous com-

munications impacts the transfer time (see Section 4.6.2). Thus, methods of compensat-

ing for communication delays may exhibit a different precision depending on the network

density, as shown in Section 4.7.1.3. Hence, the achievable synchronization precision

may differ depending on the network density.

Portability Our protocol is portable to any modular robot system where modules inter-

act together using only neighbor-to-neighbor communications even if their internal clocks

are low precision and have high skew relative to one another. Depending on the time

master election procedure, it may also be required that every module has a unique iden-

tifier. We evaluated MRTP on the Blinky Blocks platform, which is equipped with a very

low-accuracy and poor-resolution clock, but it must be noted that our protocol can also

be used in systems with more precise clocks. It will indeed have two main effects. First,

a lower resolution will lead to more precise local clock readings, i.e., more precise mes-

sage timestamps. Hence, communication delays may be more precisely captured and

compensated for, using potentially a different method than the predictive one we use

with the Blinky Blocks. Second, a more precise clock implies reduced clock skew, drift

(variation of skew) and noise. This can only increase our protocol precision. It must be

noted that, even with higher-precision clocks, it is still appropriate to use a linear model to

compensate for short-term clock skew. Indeed, this approach is also commonly used in

systems equipped with more precise clocks (e.g., RBS [Elson et al., 2002], FTSP [Maróti

et al., 2004], PulseSync [Lenzen et al., 2015], etc.). Consequently, our protocol should

also be able to efficiently synchronize systems equipped with higher-precision clocks. We

let the evaluation of our protocol in such systems for future works.

122 CHAPTER 4. TIME SYNCHRONIZATION

4.9/ CONCLUSION

In this chapter, we described the Modular Robot Time Protocol (MRTP), a network-wide

time synchronization protocol for modular robots. We evaluated our protocol on the Blinky

Blocks platform, both on hardware and through simulations. We showed that MRTP can

potentially manage systems composed of up to 27,775 Blinky Blocks. Furthermore, the

experimental results show that MRTP is able to successfully maintain a Blinky Blocks sys-

tem synchronized to a few milliseconds, using few network resources at runtime, although

the Blinky Blocks are equipped with very low-accuracy and poor-resolution clocks. Simu-

lations results show that MRTP exhibits on average a lower maximum pairwise synchro-

nization error than the compared protocols, while sending more than half less messages

in compact systems.

5

MODULAR ROBOT

SELF-RECONFIGURATION

Contents

5.1 Introduction . 124

5.2 System Model and Assumptions . 125

5.3 State of the Art . 127

5.4 C2SR Algorithm at a Glance . 129

5.5 C2SR Implementation . 132

5.6 Experimental Evaluation . 136

5.6.1 Effectiveness Evaluation . 137

5.6.2 Communication Evaluation . 137

5.6.3 Motion Efficiency . 139

5.6.4 Execution Time Efficiency . 140

5.7 Conclusion . 142

123

124 CHAPTER 5. MODULAR ROBOT SELF-RECONFIGURATION

5.1/ INTRODUCTION

The most studied algorithm in Modular Self-Reconfigurable Robots (MSRs) is the self-

reconfiguration algorithm which causes the modules to move from one configuration (the

initial shape) to another (the goal shape) (see Figure 5.1).

Figure 5.1: Example of initial and goal shapes. Self-reconfiguration is

the process during which the initial clump of modules on the left self-

reconfigures into the car shape on the right.

As explained in the Introduction chapter, self-reconfiguration algorithms pose several al-

gorithmic challenges. In the first place, planning is challenging as the number of possible

unique configurations is huge and the exploration space between two random configura-

tions is exponential in the number of modules, due to potential concurrent moves. This

prevents us from finding a complete optimal planning for all but the simplest configura-

tions. In addition to the path-planning problem, the distributed coordination of mobile

autonomous modules connected in time-varying ways is also a challenging issue. In par-

ticular, modules have to coordinate their motions in order not to collide with each other.

Self-reconfiguration algorithms are tailored for a specific class of modular robots, with

specific motion constraints [Stoy et al., 2011], for example using cubes sliding on the floor,

some motions need a cooperation process that complicates motion algorithms [Piranda

et al., 2016a]. In this work, we consider the 2D Catoms (see Chapter 2). Our assumptions

and system model are detailed in Section 5.2).

The contribution of this chapter is to propose the Cylindrical-Catoms Self-Reconfiguration

(C2SR) algorithm1 which is asynchronous, deterministic, fully decentralized and able to

manage almost any kind of initial and goal compact shapes (see Section 5.4). Although

our work is focused on the algorithm, we carry out our analysis with respect to the hard-

ware constraints of the 2D Catoms. C2SR is inspired by the algorithm in [Rubenstein

et al., 2014] proposed for swarm robotic systems which assume different physical con-

straints. C2SR is a step toward realizing programmable matter.

We implemented our algorithm and evaluated it through simulations with VisibleSim. We

show the effectiveness of C2SR on large-scale ensembles composed of up to ten thou-

sand modules. We also show the effectiveness of our algorithm and study its performance

in terms of communications, movements, and execution time.

The rest of this chapter is organized as follows. In section 5.2, we define the system model

1Some simulations of self-reconfiguration with C2SR are available online in video at https://youtu.be/

XGnY-oS4Nw0

https://youtu.be/XGnY-oS4Nw0
https://youtu.be/XGnY-oS4Nw0

5.2. SYSTEM MODEL AND ASSUMPTIONS 125

and assumptions. Afterwards, we discuss the related work in section 5.3. In section 5.4,

we present the general idea of C2SR and in section 5.5, we describe its implementation.

In section 5.6, experimental results are presented and analyzed. Section 5.7 concludes

this chapter.

5.2/ SYSTEM MODEL AND ASSUMPTIONS

In this chapter, we consider the 2D Catoms. This section presents our assumptions and

system model.

We assume that 2D Catoms are organized in a horizontal pointy-topped hexagonal lattice

where modules have up to six neighbors. Modules can communicate together using

neighbor-to-neighbor communications. We assume that modules automatically discover

their neighbors, using communications after becoming attached. We consider that moving

modules cannot communicate with any other module. NN
Ci

denotes the network neighbors

of the module Ci. Catoms on the periphery have Clockwise (CW) and Counter-Clockwise

(CCW) neighboring Catoms that also belong to the periphery. For instance, in Figure 5.2,

C9 is the Clockwise (CW) peripheral neighbor of C6 and the Counter-Clockwise (CCW)

neighbor of C10. C11 is both the CW and CCW peripheral neighbor of C12.

Figure 5.2: On the left, motion constraints in our model: examples of

feasible (at the top) and infeasible moves (at the bottom). On the right,

a labeled system: gray cells are occupied by a module, whereas white

cells are empty. Some of the empty cells are labeled with their position

(e.g., pa, pb, etc.).

pCi
= (xCi

, yCi
) denotes the coordinates of the 2D Catom Ci in the horizontal hexagonal

lattice. pCi
.x denotes the column of Ci in the lattice, while pCi

.y denotes the row of Ci. For

instance, in Figure 5.2, pC2
.y = 0 and pC9

.y = 2. We assume that, at any time, modules

know both their coordinates in the lattice and the coordinates of their neighbor through

an external algorithm, e.g., [Funiak et al., 2009] or a distributed and incremental version

of [Moffo et al., 2016].

Moreover, a 2D Catom can roll CW or CCW around a stationary module. During an

atomic move, a module rotates 60, going from one cell of the lattice to its adjacent cell.

We assume that a 2D Catom has only the capability to lift itself, it cannot carry or push

126 CHAPTER 5. MODULAR ROBOT SELF-RECONFIGURATION

other modules. A module can move if it satisfies the freedom of movement rule (see

Rule 1).

Rule 1: the freedom of movement rule. Because of possible mismatching issues due

to physical constraints, a 2D Catom can only move from/into a cell if this cell is currently

unoccupied and if no two symmetrically opposing cells adjacent to that cell are occupied

(see Figure 5.2). Furthermore, we consider the floor as if it were filled with 2D Catoms.

If a 2D Catom, Ci, satisfies the freedom of movement rule, f ree(Ci) is true, otherwise it is

false.

We assume that 2D Catoms are not provided with any hardware mechanism to handle

collision. Thus, collisions have to be prevented by the self-reconfiguration algorithm, using

communications.

We use NK
p to denote the set of modules geographically adjacent to position p. A module

Ci, moving from pCi
to p′

Ci
, is somewhere between these two positions, and thus, Ci

belongs to the set of geographically adjacent modules of all the cells adjacent to pCi
or

p′
Ci

. For instance, in the labeled system depicted in Figure 5.2, module C12 is moving

and thus it belongs to NK
pa

, NK
pb

, NK
pd

, NK
pC12

, NK
pe

, NK
pC11

, NK
p′

C12

, NK
p f

, NK
pg

and NK
ph

. Note

that in the presence of moving modules, NK
pCi

may be different from NN
Ci

. Also notice that

the construction of the NK sets is not automatic. 2D Catoms are not equipped with any

presence sensor. Maintaining on Catoms the NK set of some specific nearby positions,

using only communications, is one of the key operations in the implementation of our

distributed algorithm.

I and G denote the initial and the goal shapes, respectively. Our algorithm assumes some

admissibility conditions for I and G (see Section 5.4). We also consider that every mod-

ule stores a representation of the shape geometry of G. The goal shape can be stored

efficiently using Constructive Solid Geometry for Programmable Matter (CSG4PM) [Tucci

et al., 2017]. CSG4PM encodes a vectorial representation of a shape using operations on

primitive shapes. The shape can be scaled up without increasing the memory usage to

store it. Moreover, CSG4PM provides processing-efficient methods of checking whether

a given lattice cell belongs to the described shape or not. For instance, CSG4PM re-

quires only 233 bytes to store goal configurations (shape and colors) similar to the car

configurations in Figures 5.1 and 5.8, which are respectively composed of 120 and 9,644

modules.

Note that colors are used for illustration purposes only. The current prototype is not

equipped with any mechanism to glow with color. It is possible to do so, but the weight

of that color mechanism will probably change the 2D Catom motion speed (see Sec-

tion 2.3.2).

Furthermore, we assume a failure-free environment, i.e., we assume there is no module,

communication, move or lattice failure during the algorithm execution.

5.3. STATE OF THE ART 127

5.3/ STATE OF THE ART

Self-reconfiguration and self-assembly have attracted a lot of attention in the last two

decades. Algorithms have been proposed for modules of different shapes, with different

physical motion constraints and arranged in various ways. In this chapter, we only con-

sider the self-reconfiguration of systems composed of elements organized in a vertical

and two-dimensional hexagonal lattice. Algorithms also differ by their restrictions on the

initial and goal shapes. Our algorithm can manage almost any kind of initial and goal

compact shapes (see Section 5.4). Algorithms also vary in their control properties. In

particular, they can be centralized or distributed, and synchronous or asynchronous.

In [Walter et al., 2000], the authors propose a distributed algorithm to perform chain-to-

chain self-reconfiguration in a hexagonal lattice. Modules move in synchronous rounds.

This work was later extended in order to allow self-reconfiguration from a chain configura-

tion into an arbitrary shape with some admissibility conditions [Walter et al., 2005, Bateau

et al., 2012]. These algorithms assume less restrictive motion constraints than those we

assume for the 2D Catoms. For instance, these algorithms allow the first two motions

described as infeasible in Figure 5.2, starting from the left.

In [Hurtado et al., 2013], Hurtado et al. propose a self-reconfiguration algorithm for mod-

ular robots arranged in a two-dimensional square or a two-dimensional hexagonal lattice.

This algorithm is intended to run in a synchronized framework. The proposed method

runs in two stages. It first reconfigures the robot from the initial configuration into a strip

configuration and then from the strip configuration into the goal shape. A leader assigns

a final destination location for every module in the strip configuration using a tree-based

approach.

Self-reconfiguration presented in [Lakhlef et al., 2014, Lakhlef et al., 2015b, Lakhlef et al.,

2015a] consists in using map-less representation for describing shapes. The benefit lies

in a reduced memory footprint, but the number of supported goal shapes is limited. Pro-

posed distributed algorithms manage to construct square shapes with spherical modules

arranged in a two-dimensional hexagonal lattice. In [Lakhlef et al., 2015b, Lakhlef et al.,

2015a], the authors propose to self-reconfigure a chain of modules into a square shape

and demonstrate that the number of movements can be predicted. A more general al-

gorithm designed to self-reconfigure arbitrary connected shapes into a square shape is

presented in [Lakhlef et al., 2014].

Algorithms allowing the reconfiguration of an initial clump of modules arranged in a hexag-

onal lattice into a chain configuration were proposed in [Wong et al., 2013, Wong et al.,

2015]. These algorithms do not require message passing and do not use any pre-

processing. In these algorithms, modules can both rotate and slide over other modules.

Thus, these algorithms assume less restrictive motion constraints than ours.

In [De Rosa et al., 2006], the authors propose a distributed shape formation algorithm

based on hole motions, for ensembles arranged in a hexagonal lattice. This algorithm

can construct various shapes by randomly moving empty spaces within the ensemble.

Although a wide variety of shapes can be built, this algorithm requires less restrictive

motion constraints than ours, e.g., it allows the first two infeasible motions in Figure 5.2.

128 CHAPTER 5. MODULAR ROBOT SELF-RECONFIGURATION

In [Rubenstein et al., 2014], the authors propose a parallel, decentralized and asyn-

chronous algorithm for the Kilobot swarm system [Rubenstein et al., 2014] to self-

assemble almost any kind of compact two-dimensional shapes. This algorithm has been

applied to hardware systems with more than a thousand individual robots per swarm en-

tity. However, these swarm robots have different physical motion constraints. During the

self-assembly process, Kilobots may collide with one another. While this is possible with

Kilobots, this is not acceptable in our system.

Table 5.1 summarizes the related work. Existing algorithms contain interesting ideas but

consider different physical motion constraints, different restrictions on the initial and goal

shapes and different control properties. The contribution of this chapter is to propose a

distributed, fully decentralized, asynchronous and parallel self-reconfiguration algorithm

for 2D Catoms that can manage almost any kind of initial and final compact shapes.

Cite Shapes

Module

movement

capabilities

Collision and deadlock

avoidance

[Walter et al., 2000] chain to chain relaxed

centralized

pre-computation,

synchronous rounds

[Walter et al.,

2005, Bateau et al., 2012]
chain to 2D relaxed

centralized

pre-computation,

synchronous rounds

[Hurtado et al., 2013] 2D UN

synchronized framework,

single direction,

intermediate configuration

and priority numbers

[Lakhlef et al.,

2015b, Lakhlef et al.,

2015a]

chain to square
relaxed and

very relaxed

predefined shape

construction

[Lakhlef et al., 2014]

arbitrary

connected to

square

relaxed
predefined shape

construction

[Wong et al., 2015]
compact 2D to

chain
relaxed

touch sensors,

synchronous rounds,

single direction

[De Rosa et al., 2006] 2D relaxed UN

[Rubenstein et al., 2014]
horizontal 2D

compact
very relaxed

collision allowed (swarm

robotic)

Our Contribution: C2SR
vertical 2D

compact
strict messages, single direction

Table 5.1: Summary of the state of the art on self-reconfiguration in

MSRs where modules are arranged in a hexagonal lattice. “UN” stands

for “Unknown”.

5.4. C2SR ALGORITHM AT A GLANCE 129

5.4/ C2SR ALGORITHM AT A GLANCE

In this section, we present the general idea of the Cylindrical-Catoms Self-

Reconfiguration (C2SR) algorithm that reconfigures a robot composed of modules from

an initial shape I into a goal one G.

Both shapes have to satisfy some admissibility conditions. We provide some intuitions

about them in this paragraph and in Figure 5.3. A more formal description of the con-

ditions and their demonstration are left for future work. Both shapes are compact, i.e.,

they do not contain holes, they are homeomorphic to a sphere. Moreover, both shapes

are next to each other and intersect in one or more bottom cells. Let the peripheral path

be the path formed from the empty cells on the periphery of both shapes, starting from

and ending at the second horizontal layer (see Figure 5.3). This path has to be large

enough to allow some modules, which progress along that path in the same direction with

an empty space of at least one cell between successive modules, to move without vio-

lating our motion constraints and without risking colliding/getting attached to one another

(see Figure 5.3 and Rule 1). Note that this condition implies that, in the upper layers, the

horizontal space between the initial shape and the goal shape has to be sufficiently large

to enable these modules to move between the two shapes. Furthermore, the number of

2D Catoms in I has to be greater than or at least equal to the number of target positions

in G (i.e., |I| ≥ |G|).

Figure 5.3: Invalid (at the top) and valid (at the bottom) initial and goal

configurations in C2SR. Modules in yellow, which are not part of the

initial or goal shapes, progress along the peripheral path in the same

direction with an empty space of at least one cell between successive

modules. The configurations at the top are not valid for several reasons.

First, they do not intersect in at least one cell. Second, they both contain

a hole. Third, the peripheral path is not large enough at the locations in

red. Indeed, the modules in yellow could not move without violating our

motion constraints and without getting attached to each other.

During the execution of C2SR with shapes individually composed of only continuous hor-

izontal layers, the goal shape is progressively constructed from the bottom layer to the

130 CHAPTER 5. MODULAR ROBOT SELF-RECONFIGURATION

top one by stripping the initial shape, module by module in reverse order (see Figure 5.4).

Because of physical constraints, at a given instant, only modules on the periphery can

move. In order to avoid module collisions and deadlocks, peripheral modules form a

stream: modules roll in the same direction d (CW in Figures 5.1 and 5.4), and maintain

an empty cell between one another using message exchanges. Modules in the stream

do not overtake one another.

Figure 5.4: Screenshot during the self-reconfiguration process using

C2SR with the initial and goal shapes of Figure 5.1. The modules in the

stream progress by rotating CW.

C2SR is based on a set of states and transition rules. Figure 5.5 shows the state diagram

of our algorithm. Modules can have different states, namely INIT, BLOCKED, WAITING,

MOVING, or GOAL. Modules are initially in the INIT state. Modules in the WAITING

and MOVING states belong to the stream. Figure 5.6 shows the different states of the

modules in Figure 5.4.

INITstart

GOAL

BLOCKED

WAITING MOVING

¬stream

converged
stream

stream

progression

¬converged

converged

Figure 5.5: C2SR state diagram.

A module locally decides to start taking part in the stream if it satisfies the stream entrance

rule (see Rule 2). Intuitively, a free module enters the stream if moving in the direction d

consists in: moving around a module on the ground or descending I.

5.4. C2SR ALGORITHM AT A GLANCE 131

Figure 5.6: Different module states in C2SR. Note that, at this particular

moment of the reconfiguration, no Catom is in the moving state.

Rule 2: the stream entrance rule. Let us consider two modules Ci and C j such that both

Ci and C j are on the periphery and C j is the next peripheral neighbor of Ci in the direction

of rotation, d. p′
Ci

denotes the position that Ci would occupy after its rotation around C j.

Ci decides to take part in the stream if the following logical condition is satisfied:

stream(Ci) : − state(Ci) , GOAL // has not converged yet

∧ f ree(Ci) // mechanical constraints

∧ ((pCi
< G ∧ pC j

.y = 0) // move around a module on the ground

∨ (pCi
< G ∧ p′Ci

.y ≤ pCi
.y)) // descend I

A module in the stream decides to move if it satisfies the stream progression rule (see

Rule 3). More precisely, a module in the stream can move if the set of modules geograph-

ically adjacent to its destination cell contains no more than three modules and none of

them, except the module itself, belongs to the stream (see Figure 5.7). This rule requires

local interactions with neighbors adjacent to its source and destination positions. These

modules are at most two cells away. The admissibility conditions on I, combined with the

two rules above, guarantee that these modules are five network hops away at most.

Rule 3: the stream progression rule. A module Ci can move from its position pCi
to the

position p′
Ci

if the following condition is satisfied:

progression(Ci) : − state(Ci) =WAITING // in the stream

∧ |NK
p′

Ci

| ≤ 3 // no more than 3 modules near the destination cell

// no other stream module in the surroundings of the destination cell:

∧ ∄C j ∈ NK
p′

Ci

| C j , Ci ∧ (state(Ci) =WAITING ∨ state(Ci) = MOVING)

Rule 3 prevents collisions. The admissibility conditions on I and G, combined with

Rules 2 and 3, prevent deadlock. Note that, because of the stripping order and the

construction order, our algorithm also guarantees that, at all times the system remains

connected.

Each module checks for convergence using Rule 4 at initialization and after every move.

A module has converged if it is initially in a goal position, or if it has reached G and moving

in the direction d will cause it to leave G or to go up.

132 CHAPTER 5. MODULAR ROBOT SELF-RECONFIGURATION

Figure 5.7: C2SR stream progression rule: a simple example. Modules

should rotate CW. White cells are empty and some of them are labeled

with their position in the lattice (e.g., pa, pb, etc.). Modules C1, C2, C3

and C4 are in the stream. C3 is moving. C1 cannot move because C2

is in the stream and C2 ∈ NK
pa

. C2 cannot move because C3 is in the

stream and C3 ∈ NK
pb

. C3 can move to p′
C3

because NK
p′

C3

contains only

three modules and none of them is in the stream, except for C3. C4

cannot move because |NK
pe
| = 5.

Rule 4: the local convergence rule. Let us consider two modules Ci and C j such that

both Ci and C j are on the periphery and C j is the next peripheral neighbor of Ci in the

direction of rotation. p′
Ci

denotes the position that Ci would occupy after its rotation around

C j. Ci has converged if it satisfies the following condition:

converged(Ci) : − (state(Ci) = INIT ∧ pCi
∈ G) // initially in G

∨ (pCi
∈ G ∧ p′Ci

< G) // about to leave G

∨ (pCi
∈ G ∧ p′Ci

∈ G ∧ p′Ci
.y > pCi

.y) // about to go up in G

Applying these rules in a distributed asynchronous system with parallel communications

and motions is challenging. It is especially complex to maintain NK sets using only com-

munications. A complete implementation that overcomes this challenge is presented in

the next section.

5.5/ C2SR IMPLEMENTATION

In this section, we provide a detailed implementation of C2SR2. Algorithm 14 shows the

input and local variables of C2SR along with its initialization pseudo-code. Every module

knows its position in the lattice, the goal shape, G, and the rotation direction, d. Algorithm

15 describes some helper functions used in the description of our implementation of

C2SR. Algorithm 16 provides the message handler pseudo-code of C2SR. Algorithm 17

gives the pseudo-code executed by a module after it has finished an atomic move. We

assume that interrupts are disabled during message and event handler execution.

At initialization and during the execution, modules locally decide their state using

Rules 1, 2 and 4. Modules in the stream move in the rotation direction d around their

peripheral neighbor in the d direction. Before moving, modules have to ensure that the

2The complete source code of C2SR is available online at: https://github.com/nazandre/thesis

https://github.com/nazandre/thesis

5.5. C2SR IMPLEMENTATION 133

Input :

pCi
// position of Ci

d ∈ {CW,CCW} // direction of rotation
G // goal shape
Local Variables :

state // state of Ci

Movings // cells from/into which a neighbor module is moving

Pendings // pending clearance requests

clearance // clearance for the current move (if any)

1 Initialization of Ci:

2 Movings← ∅; Pendings← ∅; clearance←⊥;

3 if pCi
∈ G then

4 state← GOAL;

5 else if isInS tream() then

6 state←WAITING;

7 requestClearance();

8 else

9 state← BLOCKED;

Algorithm 14: C2SR algorithm input, local variables and initialization detailed for any

module Ci.

1 Function hasConverged():

// The local convergence rule (Rule 4)

2 return converged(Ci);

3 Function areAdjacentCells(p1, p2):

4 return true if cells at positions p1 and p2 are adjacent in the hexagonal lattice, false otherwise;

5 Function oppositeDirection(d):

// d ∈ {CW,CCW}
6 return the opposite direction of d;

7 Function isFree():

// The freedom of movement rule (Rule 1)

8 return free(Ci) considering both NN
Ci

and Movings;

9 Function isInStream():

// The stream entrance rule (Rule 2)

10 return stream(Ci) considering both NN
Ci

and Movings;

11 Function getNeighbor(dir):

12 return the peripheral neighbor in direction dir (see Section 5.2);

13 Function getNeighbor(dir, pos):

14 return Ck ∈ NN
Ci

such that Ci is connected to Ck on the connected interface that immediately

follows the interface pointing to position pos in direction dir;

134 CHAPTER 5. MODULAR ROBOT SELF-RECONFIGURATION

15 Function requestClearance():

16 Ck ← getNeighbor(d);

17 p′Ci
← position after rotation in direction d around Ck;

18 r ← (src← pCi
, dest ← p′Ci

, cnt ← 0);

19 send CLEARANCE REQUEST(r) to Ck;

20 Function forwardClearance(c(src, dest),C j):

21 if areAdjacentCells(c.src, pCi
) then

22 Ck ← getNeighbor(oppositeDirection(d), c.src);

23 if Ck , C j AND areAd jacentCells(c.src, pCk
) then

24 send CLEARANCE(c) to Ck;

25 else

26 Movings← Movings ∪ {c.src};
27 send CLEARANCE(c) to Cl | pCl

= c.src;

28 else if areAdjacentCells(c.dest, pCi
) then

29 Ck ← getNeighbor(oppositeDirection(d), c.dest);

30 send CLEARANCE(c) to Ck;

31 Function forwardEndOfMove(c(src, dest),C j):

32 if areAdjacentCells(c.src, pCi
) then

33 Ck ← getNeighbor(oppositeDirection(d), c.src);

34 if Ck , C j AND areAd jacentCells(c.src, pCk
) then

35 send END OF MOVE(c) to Ck;

36 else if areAdjacentCells(c.dest, pCi
) then

37 Ck ← getNeighbor(oppositeDirection(d), c.dest);

38 send END OF MOVE(c) to Ck;

Algorithm 15: C2SR helper functions detailed for any module Ci.

1 When CLEARANCE REQUEST(r(src, dest, cnt)) is received by Ci from C j do:

2 if state =WAITING then

3 send DELAYED CLEARANCE(r) to C j;

4 return;

5 if r.dest ∈ Movings then

6 Pendings← Pendings ∪ {r};
7 return;

8 if state = BLOCKED OR state = GOAL then

9 if r.cnt = 3 then

10 send DELAYED REQUEST(r) to C j;

11 return;

12 r.cnt ← r.cnt + 1;

13 Cn ← getNeighbor(d, r.dest);

14 if Cn , C j AND areAd jacentCells(pCn
, r.dest) then

15 send CLEARANCE REQUEST(r) to Cn;

16 else

17 c← (r.src, r.dest);

18 Movings← Movings ∪ {r.dest};
19 f orwardClearance(c,⊥);

5.5. C2SR IMPLEMENTATION 135

20 When CLEARANCE(c(src, dest)) is received by Ci from C j do:

21 if c.src = pCi
then

22 clearance← c;

23 send START TO MOVE to C j;

24 else

25 f orwardClearance(c,C j);

26 When DELAYED CLEARANCE(r(src, dest, cnt)) is received by Ci from C j do:

27 if r.src , pCi
then

28 Pendings← Pendings ∪ {r};

29 When START TO MOVE is received by Ci from C j do:

30 send START TO MOVE ACK to C j;

31 When START TO MOVE ACK is received by Ci from C j do:

32 state← MOVING;

33 Ck ← getNeighbor(d);

34 move around Ck in direction d;

35 When END OF MOVE(c(src, dest)) is received by Ci from C j do:

36 Movings← Movings − {c.src, c.dest};
37 f orwardEndO f Move(c,C j);

38 if isInS tream() then

39 state←WAITING;

40 requestClearance();

41 else if ∃r ∈ Pendings | r ∈ areAd jacentCells(r.dest, c.src) then

42 Cn ← getNeighbor(d, r.dest);

43 if areAd jacentCells(r.dest, pCn
) then

44 send CLEARANCE REQUEST(r) to Cn;

45 else

46 cl← (r.src, r.dest);

47 Movings← Movings ∪ {cl.dest};
48 f orwardClearance(cl,⊥);

Algorithm 16: C2SR algorithm message handler detailed for any module Ci.

1 When Ci has finished to move do:

2 pCi
← clearance.dest;

3 send END OF MOVE(clearance) to getNeighbor(d);

4 clearance←⊥;

5 if hasConverged() then

6 state← GOAL;

7 else

8 state←WAITING;

9 requestClearance();

Algorithm 17: C2SR algorithm event handler detailed for any module Ci.

stream progression rule (Rule 3) is satisfied. WAITING modules send CLEARANCE RE-

QUEST messages to get the authorization to move. Clearance requests are composed

of the module source position and of its destination. These requests travel around the

module destination cell. At each hop, modules check if the requested move satisfies the

stream progression rule (see Algorithm 16, lines 1-19). If the stream progression rule is

not satisfied, the clearance request has either to be stored locally (see Algorithm 16, lines

136 CHAPTER 5. MODULAR ROBOT SELF-RECONFIGURATION

5-7) or to be stored at the previous module using a DELAYED CLEARANCE message

(see Algorithm 16, lines 2-4, 9-11 and 26-28). If the stream progression rule is satisfied,

the clearance is granted (see Algorithm 16, lines 16-19). The clearance is then progres-

sively forwarded back to the module that has initiated the request (see Algorithm 16, lines

20-25).

To prevent collision, modules maintain a list of neighbor cells from/into which a module

is moving. After having moved to a new position, modules send an END OF MOVE

(EOM for short) message that is progressively forwarded around the cell of their previous

position (see Algorithm 17, line 3 and Algorithm 16, lines 35-48). Upon reception of an

EOM message, delayed clearances are potentially re-activated (see Algorithm 16, lines

41-48).

START TO MOVE and START TO MOVE ACK messages guarantee that no message is

lost when a module decides to actually move (see Algorithm 16, lines 29-34).

Modules never need to communicate with modules farther than two cells away in the lat-

tice, which means that, due to our requirements, modules never need to send messages

that have to travel more than five hops. Thus, our algorithm uses only local interactions

between modules.

5.6/ EXPERIMENTAL EVALUATION

We implemented C2SR and evaluated it using VisibleSim, our simulator for modular

robotic systems. This section presents our experimental results. Through our experi-

ments, we show the effectiveness of C2SR and its efficiency in terms of communications,

movements and execution time.

VisibleSim enables one to perform simulations with different and variable motion and com-

munication delays. In our evaluation, we assume that neighboring modules communicate

together using 8-N-1 serial communications. Hence, we assume that the effective bitrate

is equal to 80% of the link bitrate. We assume that the effective average communication

bitrate between two neighboring modules follows a Gaussian distribution. Moreover, we

assume that the average motion speed during the atomic moves of a 2D Catom also

follows a Gaussian distribution. We do not simulate delays due to processing and inter-

ruptions as we assume them to be negligible in comparison to communication and motion

delays.

Unless explicitly mentioned, we assume the following simulation parameters. We con-

sider that the effective average communication bitrate during message exchanges be-

tween two neighboring modules has a distribution centered on 38.9 kbit/s with a standard

deviation of 389 bit/s (1% of the mean). In the current hardware prototype, a 2D Catom

can move at a speed of 1.88 mm × s−1 (see Section 2.3.2). We assume that the aver-

age motion speed during the atomic moves of a module has a distribution centered on

1.88 mm × s−1 with a standard deviation of 0.0188 mm × s−1 (1% of the mean).

We evaluate C2SR on the self-reconfiguration of random clumps of 2D Catoms into four

5.6. EXPERIMENTAL EVALUATION 137

kinds of shapes, namely a car, a flag, a magnet and a pyramid shape (see Figures 5.1

and 5.8). For each target shape, we generated different versions of the goal configura-

tions using different scales ranging from a dozen to ten thousand modules. For every

single point on the result plots, 10 were performed.

5.6.1/ EFFECTIVENESS EVALUATION

As shown in Figure 5.8, C2SR is able to self-reconfigure ensembles composed of more

than 10,000 2D Catoms.

a) Car (9,644 Catoms). b) Flag (12,047 Catoms).

c) Magnet (10,220 Catoms). d) Pyramid (8,033 Catoms).

Figure 5.8: Screenshots of VisibleSim at the end of the simulation of

C2SR with different kinds of goal shapes composed of about 10,000

2D Catoms.

5.6.2/ COMMUNICATION EVALUATION

Figure 5.9 shows the total number of messages sent during the execution of C2SR ac-

cording to the size of the goal shape. For the shapes we considered, the number of

messages seems to depend on the size of the goal configuration and not on the actual

shape of the arrangement. Moreover, the standard deviation is very small, so small that

it is not visible in the figure. Thus, for a goal shape of a given size, C2SR always sends

approximately the same number of messages. Furthermore, as shown in Figure 5.9 by

the curve of best fit y(x) = 20.29x1.53, this number of messages is highly predictable and

increases polynomially with the size of the goal shape.

Figure 5.10 indicates that a few modules tend to send a lot more messages than the other

modules. Intuitively, modules that stay at the boundary between I and G are communica-

tion hotspots because many modules have to communicate with them before rolling over

them in order to reach G (see Figure 5.14).

138 CHAPTER 5. MODULAR ROBOT SELF-RECONFIGURATION

102

103

104

105

106

107

108

101 102 103 104 105

y(x) =
 20.29x

1.53

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 5.9: Average total number of messages (± standard deviation)

sent in C2SR versus the size of the system for different goal shapes.

10

101

102

103

104

105

106

10 101 102 103 104 105 106

y(x) = 20.29x
0.53

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s
 p

e
r

2
D

 C
a
to

m

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 5.10: Average number of messages sent per 2D Catom (± min/-

max) during the execution of C2SR versus the size of the system for

different goal shapes.

Figure 5.11 shows the maximum message queue size reached by the modules during the

execution of C2SR, taking into account both the incoming and the outgoing messages.

The maximum message queue size is constant and equal to two, regardless of the shape

of the goal configuration and regardless of its size. We recall that messages generated by

C2SR have a small and constant size. As a consequence, the traffic generated by C2SR

is well controlled and modules do not require a lot of memory space to store incoming

and outgoing messages.

Figure 5.12 shows the average number of hops traveled by the packets during the exe-

cution of C2SR. The average and the maximum number of hops traveled by the packets

is small and relatively constant, regardless of the shape of the goal configuration and

regardless of its size. This confirms that C2SR only involves local interactions, as stated

in the previous section.

5.6. EXPERIMENTAL EVALUATION 139

 0

 1

 2

 3

 4

 5

 0 3000 6000 9000 12000 15000

y = 2.00

M
a
x
im

u
m

 m
e
s
s
a
g

e
 q

u
e
u

e
 s

iz
e

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 5.11: Maximum message queue size (incoming and outgoing

messages) reached by any node versus the size of the system during

the execution of C2SR.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 3000 6000 9000 12000 15000

y = 1.99

In
fo

rm
a
ti

o
n

 t
ra

v
e
le

d
 h

o
p

s

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 5.12: Average number of hops traveled by data (± min/max) in

the execution of C2SR versus the size of the system.

5.6.3/ MOTION EFFICIENCY

Figure 5.13 shows the total number of atomic moves performed during the execution of

C2SR according to the size of the system for different goal shapes. Note that this figure

is really similar to Figure 5.9. Here again, the number of atomic moves seems to depend

only on the size of the goal configuration and not on the actual shape of the arrangement.

As shown in Figure 5.13 by the curve of best fit y(x) = 2.09x1.53, the number of atomic

moves is highly predictable and increases polynomially with the size of the goal shape.

Notice that the number of messages is approximately equal to ten times the number

of moves (see Figures 5.9 and 5.13). Thus, an atomic move requires on average 10

messages.

As shown in Figure 5.14, many modules can move concurrently during the execution of

140 CHAPTER 5. MODULAR ROBOT SELF-RECONFIGURATION

C2SR. Thus, although the self-reconfiguration process may require many atomic moves,

it remains reasonably time-efficient, as shown in the next subsection.

101

102

103

104

105

106

107

101 102 103 104 105

y(x) =
 2.09x

1.53

N
u

m
b

e
r

o
f

m
o
ti

o
n

s

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 5.13: Average total number of atomic moves (± standard devia-

tion) versus the size of the system for different goal shapes.

Figure 5.14: Screenshot of VisibleSim during a self-reconfiguration

process with C2SR. Modules in the stream progress by rotating CW.

Blocked modules are in gray, waiting ones in yellow, moving ones in red

and modules that have converged are in green.

5.6.4/ EXECUTION TIME EFFICIENCY

Figure 5.15 shows the average simulated time of C2SR execution according to the size

of the system. For the different goal shapes we considered, this time seems to depend

only on the size of the configuration and not on the actual shape of the arrangement.

Moreover, the standard deviation is very small and not visible in the figure. Thus, for a

goal shape of a given size, C2SR always approximately lasts for the same duration. As

shown in Figure 5.15 by the curve of best fit y(x) = 0.017x + 0.149, the simulated time

is highly predictable and increases linearly with the size of the goal shape. The slope

of the line gives the reconfiguration speed: C2SR fills, on average, 1
0.017

≈ 59 goal cells

per minute, i.e., approximately 1 cell per second. Note that, in these experiments, the

reconfiguration speed is independent of the goal shape.

5.6. EXPERIMENTAL EVALUATION 141

 0

 50

 100

 150

 200

 250

 0 3000 6000 9000 12000 15000

y(x
) =

 0
.0

17x+0.1
49

S
im

u
la

te
d

 t
im

e
 (

m
in

)

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 5.15: Average C2SR simulated time (± standard deviation) ver-

sus the size of the system for different goal shapes.

Figure 5.16 shows the average simulated time of the C2SR execution according to the

average communication bitrate for the two different motion speeds supported by the 2D

Catoms. We consider the usual bitrates of serial communications. We conducted this

experiment for the car goal shape composed of 1,073 modules. Until 38.9 kbit/s, the

self-reconfiguration process becomes much faster, as the average communication bitrate

increases. Beyond 38.9 kbit/s, the self-reconfiguration speed increases less quickly and

tends to stabilize.

 10

 100

 1000

 10000

 0 20 40 60 80 100 120

S
im

u
la

te
d

 T
im

e
 (

m
in

)

Average Bitrate (kbit/s)

Average motion speed
0.94 mm⋅s-1

1.88 mm⋅s-1

Figure 5.16: Average C2SR simulated time (± standard deviation) ver-

sus the communication bitrate (random initial configuration into the car

of 1,073 2D Catoms).

142 CHAPTER 5. MODULAR ROBOT SELF-RECONFIGURATION

5.7/ CONCLUSION

In this chapter, we proposed the Cylindrical-Catoms Self-Reconfiguration (C2SR) al-

gorithm, a parallel, asynchronous and fully decentralized distributed algorithm to self-

reconfigure a lattice-based MSR from an initial shape into a goal one. We evaluated our

algorithm using simulations on ensembles with up to 10,020 Catoms. The results show

that C2SR has nice properties.

6

CONCLUSION

6.1/ SUMMARY

In this work, we considered systems composed of resource-constrained modules that

are organized in a lattice structure and which can only communicate with neighboring

modules. We identified and implemented three high-level primitives, namely centrality-

based leader election, time synchronization and self-reconfiguration.

We proposed a collection of efficient and effective distributed algorithms to elect

approximate-centroid and approximate-center nodes in asynchronous distributed sys-

tems. We introduced the k-BFS SumSweep framework, the ABC-Center algorithm and

the Probabilistic-Counter-based Central-Leader Election (PC2LE) framework. Our algo-

rithms and frameworks do not require any prior knowledge of the network, have a well-

defined termination criterion, converge in a reasonable amount of time and are memory-

efficient. The k-BFS SumSweep framework runs in O(kd) time using O(mn2) messages of

size O(1) and O(∆) memory space per node. We proposed two versions of ABC-Center.

The latest version, ABC-CenterV2, runs in O(sd) time using O(mn2) messages of size O(1)

and O(∆) memory space per node, where s is the number of iterations ABC-CenterV2 re-

quires to terminate. PC2LE runs in O(d) time using O(mn2) messages of size O(c) and

O(∆+c) memory space per node, where c is the memory usage of the probabilistic counter

used in PC2LE. If we consider that the maximum number of neighbors a node can have

is bounded by a constant, the memory usage of our algorithms is further reduced to O(1),

for k-BFS SumSweep and ABC-CenterV2, and to O(c) for PC2LE. It is, for instance, the

case in many modular robotic systems that use neighbor-to-neighbor communications

(e.g, the Blinky Blocks, the Smart Blocks, etc.). We evaluated the proposed algorithms

on the Blinky Blocks modular robotic system both on hardware prototypes and through

simulations. Our algorithms scale well in terms of accuracy, execution time, number of

messages and memory usage. In large-scale systems with 25,000 modules, our algo-

rithms provide a relative centroid accuracy between 96%-99% and a relative center accu-

racy between 88%-94%. As a consequence, our algorithms are suitable for large-scale

embedded distributed systems with scarce memory, computing and energy resources. To

the best of our knowledge, our algorithms are the most precise existing distributed algo-

rithms designed to elect an approximate centroid or an approximate center in our target

systems, with both a reasonable convergence time and a limited storage cost.

143

144 CHAPTER 6. CONCLUSION

Furthermore, we introduced the Modular Robot Time Protocol (MRTP), a network-wide

time synchronization protocol for modular robots. Our protocol achieves its performance

by combining several mechanisms: central time master election, fast and recursive prop-

agation of synchronization waves along the edges of a breadth-first spanning tree, low-

level timestamping with per-hop compensation for communication delays using the most-

appropriate method for the target platform, and clock skew compensation using linear

regression. We evaluated our protocol on the Blinky Blocks system both on hardware

and through simulations. Experimental results show that MRTP can potentially manage

real systems composed of up to 27,775 Blinky Blocks. Furthermore, we showed that our

protocol is able to keep a Blinky Blocks system synchronized to a few milliseconds, using

few network resources at runtime, even though the Blinky Blocks use low-bitrate commu-

nications (38.4 kbit/s) and are equipped with very low-accuracy (10,000 parts per million

(ppm)) and poor-resolution (1 millisecond) clocks. We compared MRTP to existing syn-

chronization protocols ported to fit our system model. Simulation results show that MRTP

can achieve better synchronization precision than the most precise protocols compared,

while sending more than half less messages in compact systems.

Additionally, we presented the Cylindrical-Catoms Self-Reconfiguration (C2SR) algo-

rithm, a self-reconfiguration algorithm for rolling cylindrical modules arranged in a two-

dimensional vertical hexagonal lattice. Our algorithm is a parallel, asynchronous and

decentralized distributed algorithm allowing the self-reconfiguration of robots from an ini-

tial configuration into a goal one. It is able to manage almost any kind of initial and goal

compact shapes (i.e., without any hole). We showed the effectiveness of our algorithm

and studied its performance in terms of communications, movements and execution time

using simulations. Our observations indicate that the number of communications, the

number of movements and the execution time of our algorithm are highly predictable.

Furthermore, we observed execution times that are linear in the size of the goal shape.

6.2/ FUTURE WORK

This section presents perspectives on future research. We first discuss improvements to

our three primitives and then suggest more general future work.

Centrality-based Leader Election In future work, it will be interesting to carry out a

formal analysis of the accuracy of our algorithms in order to derive bounds or to try to

find bad cases, where our algorithms fail. For now, we did not faced any really bad case

during our experiments.

PC2LE estimates d, the diameter of the network, to bound the number of rounds. With

the method proposed in this chapter, the estimation is upper-bounded by 2d. Thus, in the

worst case, PC2LE unnecessarily performs d rounds, which uses O(d) time and generates

O(dm) messages for nothing. In future work, it will be interesting to find an efficient method

to better estimate d.

Furthermore, our work on network centrality can potentially be applied to a wide variety of

6.2. FUTURE WORK 145

distributed systems. In future work, we plan to evaluate the performance of our algorithms

on different systems and, if necessary, to propose system-specific adaptations.

The number of iterations required for ABC-Center to terminate increases with the diam-

eter thickness. Intuitively, the number of iterations tends to increase with the network

density, as the number of equidistant nodes between any two nodes tends to be greater

in dense networks. While ABC-Center requires only a few iterations in modular robotic

systems where nodes are organized in a simple-cubic lattice, its efficiency has to be

studied in other types of networks.

In addition, we plan to study the problems of centrality-based leader election in networks

that exhibit a high degree of dynamics due to nodes failure and/or mobility. Currently,

our algorithms restart computations from scratch upon neighbor change detection. This

mechanism will be too expensive in terms of resource usage in highly dynamic networks.

We also plan to extend the controlled-broadcast optimization, proposed in Section 3.5.1.2,

into a framework that will make it possible to run multiple BFS traversals (including elec-

tion traversals) in parallel, without network congestion. In the envisaged framework, we

will ensure that at most O(1) BFS messages for all BFS traversals will be present in any

outgoing-message queue at all times. We would like to use this framework to design a

more efficient version of the k-BFS-RAND-PAR algorithm (see Section 3.9.3.1).

Time Synchronization We plan to test MRTP in large-scale hardware systems running

real applications, which have time synchronization requirements and which may poten-

tially generate a significant network and computing load.

In addition, it would be interesting to design more precise methods of compensating for

network delays in Blinky Blocks systems. We envision, for instance, to enhance FD with

a method that will compensate for the dissemination error after several hops, i.e., when

this error has become greater than the resolution of the clock and can effectively be

compensated for. Also, different network delay compensation methods can be combined

to provide a better estimation of the current global time. In order not to increase the

communication load, a same message can carry multiple timestamps inserted by different

methods.

In future versions of MRTP, we want to consider both centrality and clock stability in the

time-master election. We also want to adapt MRTP to deal with outlier slave modules

equipped with less stable clocks than the others.

Furthermore, MRTP should be tested in other modular robotic systems that fit its system

model. In particular, it will be interesting to determine if the predictive method to com-

pensate for communication delays is still more precise than the other methods in systems

with higher hardware-clock accuracy.

Moreover, we plan to study time synchronization in highly dynamic modular robotic

systems where module mobility and failures may occur frequently. In particular, we

want to address the problem of time synchronization throughout the process of self-

reconfiguration, during which modules move to rearrange the global shape of the modular

146 CHAPTER 6. CONCLUSION

robot (e.g., [Piranda et al., 2016a],[Lakhlef et al., 2014]). MRTP needs to be adapted to

efficiently handle such network dynamics, because the frequent re-elections of a cen-

tral module and the maintenance of the synchronization tree will be too expensive. For

now, we suggest using the high-level framework of the PulseSync protocol [Lenzen et al.,

2015] in those systems. This framework is indeed inherently tolerant of module mobility

and failures.

Self-Reconfiguration In future work, we will demonstrate the correctness of C2SR, i.e.,

we will prove that the goal configuration can be built if the shape admissibility conditions

are satisfied. Moreover, we will study the performance of C2SR on other types of shapes

and compare it to existing algorithms. We will also study the distribution of both the

number of messages sent per module and the number of atomic moves performed per

module. Our observations seem to indicate that our algorithm is highly predictable and

that its execution time is linear with respect to the size of the goal shape. A further step

would be to prove it.

In the design of C2SR, we tried to prevent modules from unnecessarily climbing over

others, assuming that going up may consume more energy. C2SR fulfills this goal when

modules travel on the periphery of the initial shape, which is progressively stripped so

that no module can go up. However, if the goal shape contains hills on its periphery, hills

close to the initial shape will be completely constructed before modules can continue to

roll on the periphery of the goal shape. Hence, many modules will then have to climb

up these hills to reach the other side of the goal shape. We would like to overcome this

limitation in the future version of C2SR. Peripheral modules that have already converged

can, for instance, advertise remote modules in the stream about farther goal cells to be

filled, thus, causing modules in the stream not to freeze in a hill.

Modules of modular robotic ensembles are low-cost mass-produced tiny electronic de-

vices that are inherently prone to failures. Failures should then be considered when de-

signing primitives for these ensembles. In particular, we do not consider module failures

in our self-reconfiguration algorithm and it would be interesting to adapt our algorithm so

that it can cope with such failures.

In addition, it will be interesting to extend our algorithm so that it will be able to cope

with 3D modular robotic systems such as the 3D Catoms [Piranda et al., 2016b] which

can roll over neighboring modules in the 3D space. It could be done by constructing the

goal shape plane by plane, every plane being constructed line by line, as in the current

version of C2SR. However, in ensembles of 3D Catoms, several paths may exist to reach

a given cell, thus, faster approaches which allow many modules to move concurrently can

be envisioned.

Set of Primitives Other primitives have to be identified and studied in future work.

Some challenging algorithmic problems in large-scale robotic ensembles have already

been studied for years, e.g., robot localization [Funiak et al., 2009, Moffo et al., 2016], re-

configuration goal shape compression [Tucci et al., 2017], locomotion [Fitch et al., 2007],

6.2. FUTURE WORK 147

coating [Derakhshandeh, 2017], reconfiguration termination detection [Butler et al., 2002].

In my opinion, other interesting primitives include data dissemination, data sharing, mes-

sage routing and construction of a virtual representation of robot ensembles.

In chapter 2, we explain how Programmable Matter (PM) could be used to enhance the

computer-aided design process because PM provides a consistent mapping between the

virtual and physical representations of a same object. Hardware modules have limited

memory capacity and may not afford to store the complete reconfiguration goal shape

even in a compressed format. Data dissemination algorithms, data sharing protocols

combined with appropriate routing methods will, for instance, enable to disseminate and

share large virtual representations between all modules. In this approach, every module

does not store the complete virtual representation of an object but instead, only a part of

it and can transparently access locally and remotely stored parts of the goal representa-

tion. This will reduce the individual memory usage of modules during the reconfiguration

process.

The construction of a virtual representation of robot ensembles would enable designers to

update their virtual representation of an object after having manually modified its physical

representation made of PM. The virtual representation could possibly be reconstructed

using external means (e.g., cameras and imagery processing) or by the modules them-

selves using communications.

Furthermore, it will be interesting to release primitive implementations in a set of libraries

in order to provide a complete software environment for large-scale distributed modular

robotic ensemble coordination.

PUBLICATIONS

André Naz, Benoı̂t Piranda, Julien Bourgeois, and Seth Copen Goldstein. A

Time Synchronization Protocol for Large-Scale Distributed Embedded Sys-

tems with Low-Precision Clocks and Neighbor-to-Neighbor Communications.

In Journal of Network and Computer Applications (JNCA), accepted on December

2017. Elsevier.

André Naz, Benoı̂t Piranda, Thadeu Tucci, Seth Copen Goldstein, and Julien

Bourgeois. Network Characterization of Lattice-based Modular Robots with

Neighbor-to-Neighbor Communications. In 2016 13th International Symposium

on Distributed Autonomous Robotic Systems (DARS), pages 415 – 429, London,

UK, November 2016. Springer..

André Naz, Benoı̂t Piranda, Seth Copen Goldstein, and Julien Bourgeois. A Time

Synchronization Protocol for Modular Robots. In PDP 2016, 24th Euromicro Int.

Conf. on Parallel, Distributed, and Network-Based Processing, pages 109 – 118,

Heraklion Crete, Greece, February 2016. IEEE. Core Rank: C. Acceptance Rate:

32%.

André Naz, Benoı̂t Piranda, Seth Copen Goldstein, and Julien Bourgeois. A Dis-

tributed Self-Reconfiguration Algorithm for Cylindrical Lattice-based Modu-

lar Robots. In 2016 IEEE 15th International Symposium on Network Computing

and Applications (NCA), pages 254 – 263, Cambridge, MA, USA, November 2016.

IEEE. Core Rank: A. Acceptance Rate: 28%.

André Naz, Benoı̂t Piranda, Seth Copen Goldstein, and Julien Bourgeois.

Approximate-Centroid Election in Large-Scale Distributed Embedded Sys-

tems. In AINA 2016, 30th IEEE International Conference on Advanced Informa-

tion Networking and Applications, pages 548 – 556, Crans-Montana, Switzerland,

March 2016. IEEE. Core Rank: B. Acceptance Rate: 29%.

Julien Bourgeois, Benoı̂t Piranda, André Naz, Nicolas Boillot, Hakim Mabed, Do-

minique Dhoutaut, Thadeu Tucci, and Hicham Lakhlef. Programmable Matter as

a Cyber-Physical Conjugation. In 2016 IEEE International Conference on Sys-

tems, Man, and Cybernetics (SMC 2016), pages 2942 – 2947, Budapest, Hungary,

October 2016. IEEE. Core Rank: B.

André Naz, Benoı̂t Piranda, Seth Copen Goldstein, and Julien Bourgeois. ABC-

Center: Approximate-Center Election in Modular Robots. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 2951

– 2957, Hamburg, Germany, September 2015. Core Rank: A. Acceptance Rate:

46%.

149

BIBLIOGRAPHY

[Ahmadzadeh et al., 2016] Ahmadzadeh, H., Masehian, E., and Asadpour, M. (2016).

Modular robotic systems: Characteristics and applications. J. Intell. Robotics

Syst., 81(3-4):317–357.

[Albert et al., 1999] Albert, R., Jeong, H., and Barabási, A.-L. (1999). Internet: Diameter

of the world-wide web. Nature, 401(6749):130–131.

[Allan, 1987] Allan, D. W. (1987). Time and frequency (time-domain) characterization,

estimation, and prediction of precision clocks and oscillators. IEEE transactions

on ultrasonics, ferroelectrics, and frequency control, 34(6):647–654.

[Almeida et al., 2012] Almeida, P. S., Baquero, C., and Cunha, A. (2012). Fast dis-

tributed computation of distances in networks. In Decision and Control (CDC),

2012 IEEE 51st Annual Conference on, pages 5215–5220. IEEE.

[Amundson et al., 2008] Amundson, I., Kusy, B., Volgyesi, P., Koutsoukos, X., and

Ledeczi, A. (2008). Time synchronization in heterogeneous sensor networks. In

Distributed Computing in Sensor Systems, pages 17–31. Springer.

[Appleby, 2011] Appleby, A. (2011). Murmur3 hash function. https://github.com/

aappleby/smhasher.

[Aspnes, 2017] Aspnes, J. (2017). Notes on theory of distributed systems cpsc

465/565: Fall 2017.

[ATMEL, 2013] ATMEL (2013). XMEGA A3 microcontroller data-sheet.

[ATMEL, 2016] ATMEL (2016). AVR1003: using the XMEGATM clock system.

[Awerbuch, 1985] Awerbuch, B. (1985). Complexity of network synchronization. Jour-

nal of the ACM (JACM), 32(4):804–823.

[Awerbuch et al., 1985] Awerbuch, B., and Gallager, R. G. (1985). Distributed bfs al-

gorithms. In Foundations of Computer Science, 1985, 26th Annual Symposium on,

pages 250–256. IEEE.

[Baca et al., 2010] Baca, J., Ferre, M., Collar, M., Fernandez, J., and Aracil, R. (2010).

Synchronizing a modular robot colony for cooperative tasks based on intra-inter

robot communications. In Electronics, Robotics and Automotive Mechanics Confer-

ence (CERMA), 2010, pages 388–393. IEEE.

[Barraquand et al., 1991] Barraquand, J., and Latombe, J.-C. (1991). Robot motion

planning: A distributed representation approach. The International Journal of

Robotics Research, 10(6):628–649.

151

https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher

152 BIBLIOGRAPHY

[Barrenetxea et al., 2006] Barrenetxea, G., Berefull-Lozano, B., and Vetterli, M. (2006).

Lattice networks: Capacity limits, optimal routing, and queueing behavior.

IEEE/ACM Transactions on Networking (TON), 14(3):492–505.

[Barthélemy, 2011] Barthélemy, M. (2011). Spatial networks. Physics Reports,

499(1):1–101.

[Bateau et al., 2012] Bateau, J., Clark, A., McEachern, K., Schutze, E., and Walter, J.

(2012). Increasing the efficiency of distributed goal-filling algorithms for self-

reconfigurable hexagonal metamorphic robots. In Proceedings of the International

Conference on Parallel and Distributed Techniques and Applications, pages 509–515.

[Bhalla et al., 2007] Bhalla, N., and Jacob, C. (2007). A framework for analyzing and

creating self-assembling systems. In 2007 IEEE Swarm Intelligence Symposium,

pages 281–288. IEEE.

[Blazevic et al., 2005] Blazevic, L., Le Boudec, J.-Y., and Giordano, S. (2005). A location-

based routing method for mobile ad hoc networks. IEEE Transactions on mobile

computing, 4(2):97–110.

[Bonacich, 1972] Bonacich, P. (1972). Factoring and weighting approaches to status

scores and clique identification. Journal of Mathematical Sociology, 2(1):113–120.

[Borassi et al., 2014] Borassi, M., Crescenzi, P., Habib, M., Kosters, W., Marino, A., and

Takes, F. (2014). On the solvability of the six degrees of kevin bacon game. In Fun

with Algorithms, pages 52–63. Springer.

[Boulinier et al., 2008] Boulinier, C., Datta, A. K., Larmore, L. L., and Petit, F. (2008).

Space efficient and time optimal distributed bfs tree construction. Information

Processing Letters, 108(5):273–278.

[Bourgeois et al., 2012] Bourgeois, J., and Goldstein, S. (2012). Distributed intelligent

mems: Progresses and perspectives. ICT Innovations 2011, pages 15–25.

[Bourgeois et al., 2016] Bourgeois, J., Piranda, B., Naz, A., Lakhlef, H., Boillot, N.,

Mabed, H., Douthaut, D., and Tucci, T. (2016). Programmable matter as a cyber-

physical conjugation. In Proceedings of the IEEE International Conference on Sys-

tems, Man and Cybernetics, pages 2942–2947, Budapest, Hungary. IEEE.

[Braden, 1989] Braden, R. (1989). Requirements for Internet Hosts – Communication

Layers. RFC 1122, RFC Editor.

[Bruell et al., 1999] Bruell, S. C., Ghosh, S., Karaata, M. H., and Pemmaraju, S. V. (1999).

Self-stabilizing algorithms for finding centers and medians of trees. SIAM Journal

on Computing, 29(2):600–614.

[Butler et al., 2002] Butler, Z., Fitch, R., Rus, D., and Wang, Y. (2002). Distributed goal

recognition algorithms for modular robots. In Robotics and Automation, 2002.

Proceedings. ICRA’02. IEEE International Conference on, volume 1, pages 110–116.

IEEE.

BIBLIOGRAPHY 153

[Cardozo et al., 2012] Cardozo, T. B., Silva, A. P. C., Vieira, A. B., and Ziviani, A. (2012).

On the end-to-end connectivity evolution of the internet.

[Chan et al., 2009] Chan, S. Y., Leung, I. X., and Liò, P. (2009). Fast centrality approx-

imation in modular networks. In Proceedings of the 1st ACM international work-

shop on Complex networks meet information & knowledge management, pages 31–38.

ACM.

[Chechik et al., 2014] Chechik, S., Larkin, D. H., Roditty, L., Schoenebeck, G., Tarjan,

R. E., and Williams, V. V. (2014). Better approximation algorithms for the graph

diameter. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete

algorithms, pages 1041–1052. SIAM.

[Chennareddy et al., 2017] Chennareddy, S., Agrawal, A., and Karuppiah, A. (2017).

Modular self-reconfigurable robotic systems: A survey on hardware architec-

tures. Journal of Robotics, 2017.

[Chepoi et al., 1994] Chepoi, V., and Dragan, F. (1994). A linear-time algorithm for find-

ing a central vertex of a chordal graph. Algorithms—ESA’94, pages 159–170.

[Cheung, 1983] Cheung, T.-Y. (1983). Graph traversal techniques and the maximum

flow problem in distributed computation. Software Engineering, IEEE Transactions

on, SE-9(4):504–512.

[Crescenzi et al., 2013] Crescenzi, P., Grossi, R., Habib, M., Lanzi, L., and Marino, A.

(2013). On computing the diameter of real-world undirected graphs. Theoretical

Computer Science, 514:84–95.

[Cristian, 1989] Cristian, F. (1989). Probabilistic clock synchronization. Distributed

Computing, 3(3):146–158.

[De Rosa et al., 2006] De Rosa, M., Goldstein, S., Lee, P., Campbell, J., and Pillai, P.

(2006). Scalable shape sculpting via hole motion: Motion planning in lattice-

constrained modular robots. In Proceedings 2006 IEEE International Conference

on Robotics and Automation, ICRA 2006., pages 1462–1468. IEEE.

[Derakhshandeh, 2017] Derakhshandeh, Z. (2017). Algorithmic Foundations of Self-

Organizing Programmable Matter. PhD thesis, Arizona State University.

[Derakhshandeh et al., 2014] Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A. W.,

Scheideler, C., and Strothmann, T. (2014). Brief announcement: amoebot–a new

model for programmable matter. In Proceedings of the 26th ACM symposium on

Parallelism in algorithms and architectures, pages 220–222. ACM.

[Dhoutaut et al., 2013] Dhoutaut, D., Piranda, B., and Bourgeois, J. (2013). Efficient sim-

ulation of distributed sensing and control environments. In Green Computing and

Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom),

IEEE International Conference on and IEEE Cyber, Physical and Social Computing,

pages 452–459. IEEE.

154 BIBLIOGRAPHY

[Dissler et al., 2016] Dissler, B., Holzer, S., and Wattenhofer, R. (2016). Distributed local

multi-aggregation and centrality approximation. arXiv preprint arXiv:1605.06882.

[Dutot et al., 2011] Dutot, A., Olivier, D., and Savin, G. (2011). Centroids : a decen-

tralized approach. In ECCS - European Conference on Complex Systems, Vienna,

Austria.

[Eicken et al., 1992] Eicken, T., Culler, D. E., Goldstein, S. C., and Schauser, K. E. (1992).

Active messages: a mechanism for integrated communication and computation.

In Computer Architecture, 1992. Proceedings of the 19th Annual International Sympo-

sium on, pages 256–266. IEEE.

[Ellis et al., 2004] Ellis, R. B., Martin, J. L., and Yan, C. (2004). Random geometric

graph diameter in the unit disk with ℓ p metric. In International Symposium on

Graph Drawing, pages 167–172. Springer.

[Elson et al., 2002] Elson, J., Girod, L., and Estrin, D. (2002). Fine-grained network time

synchronization using reference broadcasts. ACM SIGOPS Operating Systems

Review, 36(SI):147–163.

[Eppstein et al., 2001] Eppstein, D., and Wang, J. (2001). Fast approximation of cen-

trality. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algo-

rithms, pages 228–229. Society for Industrial and Applied Mathematics.

[Etzlinger et al., 2014] Etzlinger, B., Wymeersch, H., and Springer, A. (2014). Coopera-

tive synchronization in wireless networks. IEEE Transactions on Signal Processing,

62(11):2837–2849.

[Fekete et al., 2016] Fekete, S., Richa, A. W., Römer, K., and Scheideler, C. (2016). Algo-

rithmic Foundations of Programmable Matter (Dagstuhl Seminar 16271). Dagstuhl

Reports, 6(7):1–14.

[Ferrari et al., 2011] Ferrari, F., Zimmerling, M., Thiele, L., and Saukh, O. (2011). Efficient

network flooding and time synchronization with Glossy. In Information Process-

ing in Sensor Networks (IPSN), 2011 10th International Conference on, pages 73–84.

IEEE.

[Fitch et al., 2007] Fitch, R., and Butler, Z. (2007). Scalable locomotion for large self-

reconfiguring robots. In Robotics and Automation, 2007 IEEE International Confer-

ence on, pages 2248–2253. IEEE.

[Flajolet et al., 2007] Flajolet, P., Fusy, É., Gandouet, O., and Meunier, F. (2007). Hyper-

loglog: the analysis of a near-optimal cardinality estimation algorithm. In AofA:

Analysis of Algorithms, pages 137–156. Discrete Mathematics and Theoretical Com-

puter Science.

[Flajolet et al., 1985] Flajolet, P., and Nigel Martin, G. (1985). Probabilistic counting

algorithms for data base applications. Journal of computer and system sciences,

31(2):182–209.

BIBLIOGRAPHY 155

[Flury et al., 2010] Flury, R., and Wattenhofer, R. (2010). Slotted programming for sen-

sor networks. In Proceedings of the 9th ACM/IEEE International Conference on Infor-

mation Processing in Sensor Networks, pages 24–34. ACM.

[Fowler et al., 1991] Fowler, G., Noll, L. C., Vo, K.-P., and Eastlake, D. (1991). The

FNV non-cryptographic hash algorithm. http://www.isthe.com/chongo/tech/comp/

fnv/index.html.

[Freeman et al., 1979] Freeman, L. C., Roeder, D., and Mulholland, R. R. (1979). Cen-

trality in social networks: ii. experimental results. Social networks, 2(2):119–141.

[Funiak et al., 2009] Funiak, S., Pillai, P., Ashley-Rollman, M. P., Campbell, J. D., and

Goldstein, S. C. (2009). Distributed localization of modular robot ensembles. In-

ternational Journal of Robotics Research, 28(8):946–961.

[Gallager, 1982] Gallager, R. G. (1982). Distributed minimum hop algorithms. Techni-

cal Report, MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR INFORMA-

TION AND DECISION SYSTEMS.

[Ganeriwal et al., 2003] Ganeriwal, S., Kumar, R., and Srivastava, M. B. (2003). Timing-

sync protocol for sensor networks. In Proceedings of the 1st international confer-

ence on Embedded networked sensor systems, pages 138–149. ACM.

[Garcia et al., 2009] Garcia, R. F. M., Schultz, U. P., and Stoy, K. (2009). On the effi-

ciency of local and global communication in modular robots. In Intelligent Robots

and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 1502–

1508. IEEE.

[Garin et al., 2012] Garin, F., Varagnolo, D., and Johansson, K. H. (2012). Distributed

estimation of diameter, radius and eccentricities in anonymous networks. IFAC

Proceedings Volumes, 45(26):13–18.

[Gibbons, 2016] Gibbons, P. B. (2016). Distinct-values estimation over data streams.

In Data Stream Management, pages 121–147. Springer.

[Gilpin et al., 2010] Gilpin, K., Knaian, A., and Rus, D. (2010). Robot pebbles: One

centimeter modules for programmable matter through self-disassembly. In IEEE

International Conference on Robotics and Automation (ICRA), pages 2485–2492.

[Gilpin et al., 2008] Gilpin, K., Kotay, K., Rus, D., and Vasilescu, I. (2008). Miche: Mod-

ular shape formation by self-disassembly. The International Journal of Robotics

Research, 27(3-4):345–372.

[Goldstein et al., 2004] Goldstein, S. C., and Mowry, T. C. (2004). Claytronics: An in-

stance of programmable matter. In Wild and Crazy Ideas Session of ASPLOS,

Boston, MA.

[Gusella et al., 1989] Gusella, R., and Zatt, S. (1989). The accuracy of the clock syn-

chronization achieved by tempo in berkeley unix 4.3 bsd. Software Engineering,

IEEE Transactions on, 15(7):847–853.

http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html

156 BIBLIOGRAPHY

[Handler, 1973] Handler, G. Y. (1973). Minimax location of a facility in an undirected

tree graph. Transportation Science, 7(3):287–293.

[Hanneman et al., 2005] Hanneman, R. A., and Riddle, M. (2005). Introduction to social

network methods.

[Hawkes et al., 2010] Hawkes, E., An, B., Benbernou, N. M., Tanaka, H., Kim, S., De-

maine, E. D., Rus, D., and Wood, R. J. (2010). Programmable matter by folding.

Proceedings of the National Academy of Sciences, 107(28):12441–12445.

[Hayes, 2000] Hayes, B. (2000). Graph theory in practice: Part ii. American Scientist,

88(2):104–109.

[He et al., 2014a] He, J., Cheng, P., Shi, L., Chen, J., and Sun, Y. (2014a). Time synchro-

nization in wsns: A maximum-value-based consensus approach. IEEE Transac-

tions on Automatic Control, 59(3):660–675.

[He et al., 2014b] He, J., Li, H., Chen, J., and Cheng, P. (2014b). Study of consensus-

based time synchronization in wireless sensor networks. ISA transactions,

53(2):347–357.

[Holzer et al., 2012] Holzer, S., and Wattenhofer, R. (2012). Optimal distributed all pairs

shortest paths and applications. In Proceedings of the 2012 ACM symposium on

Principles of distributed computing, pages 355–364. ACM.

[Hou et al., 2014] Hou, F., and Shen, W.-M. (2014). Graph-based optimal reconfigura-

tion planning for self-reconfigurable robots. Robotics and Autonomous Systems,

62(7):1047 – 1059.

[Hurtado et al., 2013] Hurtado, F., Molina, E., Ramaswami, S., and Sacristán, V. (2013).

Distributed universal reconfiguration of 2D lattice-based modular robots. In Proc.

29th European Workshop, Computational Geometry, volume 139, page 142.

[IEEE, 2008] IEEE (2008). IEEE 1588-2008: Standard for a precision clock synchro-

nization protocol for networked measurement and control systems. Technical

Report, IEEE.

[Jennings et al., 2002] Jennings, E. H., and Okino, C. M. (2002). On the diameter of

sensor networks. In Aerospace Conference Proceedings, 2002. IEEE, volume 3,

pages 3–1211. IEEE.

[Jin et al., 2006] Jin, S., and Bestavros, A. (2006). Small-world characteristics of in-

ternet topologies and implications on multicast scaling. Computer Networks,

50(5):648–666.

[Kang et al., 2011a] Kang, U., Papadimitriou, S., Sun, J., and Tong, H. (2011a). Centrali-

ties in large networks: Algorithms and observations. In SDM, volume 2011, pages

119–130. SIAM.

BIBLIOGRAPHY 157

[Kang et al., 2011b] Kang, U., Tsourakakis, C. E., Appel, A. P., Faloutsos, C., and

Leskovec, J. (2011b). Hadi: Mining radii of large graphs. ACM Transactions on

Knowledge Discovery from Data (TKDD), 5(2):8.

[Karagozler, 2012] Karagozler, M. E. (2012). Design, Fabrication and Characterization

of an Autonomous, Sub-millimeter Scale Modular Robot. PhD thesis, Carnegie

Mellon University.

[Karagozler et al., 2009] Karagozler, M. E., Goldstein, S. C., and Reid, J. R. (2009).

Stress-driven mems assembly + electrostatic forces = 1mm diameter robot. In

Proceedings of the IEEE International Conference on Intelligent Robots and Systems

(IROS ’09).

[Ke et al., 2012] Ke, Y., Ong, L. L., Shih, W. M., and Yin, P. (2012). Three-dimensional

structures self-assembled from dna bricks. science, 338(6111):1177–1183.

[Kermarrec et al., 2011] Kermarrec, A.-M., Le Merrer, E., Sericola, B., and Trédan, G.

(2011). Second order centrality: Distributed assessment of nodes criticity in

complex networks. Computer Communications, 34(5):619–628.

[Kim et al., 2013] Kim, C., and Wu, M. (2013). Leader election on tree-based centrality

in ad hoc networks. Telecommunication Systems, 52(2):661–670.

[Kim et al., 2012] Kim, H., Ma, X., and Hamilton, B. R. (2012). Tracking low-precision

clocks with time-varying drifts using kalman filtering. IEEE/ACM Transactions on

Networking (TON), 20(1):257–270.

[Kim et al., 2011] Kim, J.-W., Kim, J.-H., and Deaton, R. (2011). Dna-linked nanopar-

ticle building blocks for programmable matter. Angewandte Chemie International

Edition, 50(39):9185–9190.

[Kim et al., 2007] Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S.,

and Turon, M. (2007). Health monitoring of civil infrastructures using wireless

sensor networks. In Proceedings of the 6th international conference on Information

processing in sensor networks, pages 254–263. ACM.

[Kirby et al., 2011] Kirby, B. T., Ashley-Rollman, M., and Goldstein, S. C. (2011). Blinky

blocks: a physical ensemble programming platform. In CHI ’11 Extended Abstracts

on Human Factors in Computing Systems, CHI EA ’11, pages 1111–1116, New York,

NY, USA. ACM.

[Knuth, 1998] Knuth, D. E. (1998). The art of computer programming: sorting and

searching, volume 3. Pearson Education.

[Kokaji et al., 1996] Kokaji, S., Murata, S., Kurokawa, H., and Tomita, K. (1996). Clock

synchronization mechanisms for a distributed autonomous system. J. Robotics

and Mechatronics, 8(5):427–434.

[Korach et al., 1984] Korach, E., Rotem, D., and Santoro, N. (1984). Distributed algo-

rithms for finding centers and medians in networks. ACM Trans. Program. Lang.

Syst., 6(3):380–401.

158 BIBLIOGRAPHY

[Kusy, 2007] Kusy, B. (2007). Spatiotemporal coordination in wireless sensor net-

works. PhD thesis, Vanderbilt University, Nashville, TN, USA.

[Lakhlef et al., 2015a] Lakhlef, H., and Bourgeois, J. (2015a). Fast and robust self-

organization for micro-electro-mechanical robotic systems. Computer Networks,

93:141–152.

[Lakhlef et al., 2015b] Lakhlef, H., Bourgeois, J., Mabed, H., and Goldstein, S. C. (2015b).

Energy-aware parallel self-reconfiguration for chains microrobot networks. Jour-

nal of Parallel and Distributed Computing, 75:67–80.

[Lakhlef et al., 2013] Lakhlef, H., Mabed, H., and Bourgeois, J. (2013). Distributed and

efficient algorithm for self-reconfiguration of MEMS microrobots. In SAC 2013,

28th ACM Symposium On Applied Computing, pages 1–6, Coimbra, Portugal.

[Lakhlef et al., 2014] Lakhlef, H., Mabed, H., and Bourgeois, J. (2014). Optimization of

the logical topology for mobile mems networks. Journal of Network and Computer

Applications, 42:163–177.

[Lan et al., 1999] Lan, Y.-F., Wang, Y.-L., and Suzuki, H. (1999). A linear-time algorithm

for solving the center problem on weighted cactus graphs. Information Processing

Letters, 71(5-6):205–212.

[Lasagni et al., 2016] Lasagni, M., and Romer, K. (2016). Dynamic model of tendon-

driven robotic chains forming a shape-shifting surface. In ASME 2016 Conference

on Smart Materials, Adaptive Structures and Intelligent Systems, page V002T03A024.

American Society of Mechanical Engineers.

[Latapy et al., 2006] Latapy, M., and Magnien, C. (2006). Measuring fundamental prop-

erties of real-world complex networks. arXiv preprint cs/0609115.

[Leguay et al., 2005] Leguay, J., Latapy, M., Friedman, T., and Salamatian, K. (2005). De-

scribing and simulating internet routes. In International Conference on Research in

Networking, pages 659–670. Springer.

[Lehmann et al., 2003] Lehmann, K. A., and Kaufmann, M. (2003). Decentralized algo-

rithms for evaluating centrality in complex networks.

[Leng et al., 2010] Leng, M., and Wu, Y.-C. (2010). On clock synchronization algo-

rithms for wireless sensor networks under unknown delay. IEEE Transactions on

Vehicular Technology, 59(1):182–190.

[Lenzen et al., 2009] Lenzen, C., Sommer, P., and Wattenhofer, R. (2009). Optimal clock

synchronization in networks. In Proceedings of the 7th ACM Conference on Embed-

ded Networked Sensor Systems, pages 225–238. ACM.

[Lenzen et al., 2015] Lenzen, C., Sommer, P., and Wattenhofer, R. (2015). Pulsesync:

An efficient and scalable clock synchronization protocol. IEEE/ACM Transactions

on Networking (TON), 23(3):717–727.

BIBLIOGRAPHY 159

[Li et al., 2006] Li, Q., and Rus, D. (2006). Global clock synchronization in sensor

networks. Computers, IEEE Transactions on, 55(2):214–226.

[Lynch, 1996] Lynch, N. A. (1996). Distributed algorithms. Morgan Kaufmann.

[Ma et al., 2015] Ma, J., Ning, H., Huang, R., Liu, H., Yang, L. T., Chen, J., and Min, G.

(2015). Cybermatics: A holistic field for systematic study of cyber-enabled new

worlds. IEEE Access, 3:2270–2280.

[Magnien et al., 2009] Magnien, C., Latapy, M., and Habib, M. (2009). Fast computa-

tion of empirically tight bounds for the diameter of massive graphs. Journal of

Experimental Algorithmics (JEA), 13:10.

[Malpani et al., 2000] Malpani, N., Welch, J. L., and Vaidya, N. (2000). Leader election

algorithms for mobile ad hoc networks. In Proceedings of the 4th international work-

shop on Discrete algorithms and methods for mobile computing and communications,

pages 96–103. ACM.

[Mamei et al., 2005] Mamei, M., Vasirani, M., and Zambonelli, F. (2005). Self-organizing

spatial shapes in mobile particles: The TOTA approach. In Engineering Self-

Organising Systems, pages 138–153. Springer.

[Maróti et al., 2004] Maróti, M., Kusy, B., Simon, G., and Lédeczi, Á. (2004). The flooding

time synchronization protocol. In Proceedings of the 2nd international conference

on Embedded networked sensor systems, pages 39–49. ACM.

[McCarthy, 2000] McCarthy, W. (2000). Programmable matter. Nature, 407(6804):569–

569.

[McEvoy et al., 2015] McEvoy, M. A., and Correll, N. (2015). Materials that couple sens-

ing, actuation, computation, and communication. Science, 347(6228):1261689.

[Mills, 1991] Mills, D. L. (1991). Internet time synchronization: the network time pro-

tocol. Communications, IEEE Transactions on, 39(10):1482–1493.

[Moffo et al., 2016] Moffo, D., Canalda, P., and Spies, F. (2016). First evaluation of a

system of positioning of microrobots with ultra-dense distribution. In 7th Interna-

tional conference on Indoor Positioning and indoor Navigation 2016, Madrid, Espagne.

[Nanda et al., 2008] Nanda, S., and Kotz, D. (2008). Localized bridging centrality for

distributed network analysis. In Computer Communications and Networks, 2008.

ICCCN’08. Proceedings of 17th International Conference on, pages 1–6. IEEE.

[Naz et al., 2016] Naz, A., Piranda, B., Goldstein, S. C., and Bourgeois, J. (2016).

Approximate-centroid election in large-scale distributed embedded systems. In

AINA 2016, 30th IEEE Int. Conf. on Advanced Information Networking and Applica-

tions, pages 548–556, Crans-Montana, Switzerland. IEEE.

[Noh et al., 2007] Noh, K.-L., Chaudhari, Q. M., Serpedin, E., and Suter, B. W. (2007).

Novel clock phase offset and skew estimation using two-way timing message

160 BIBLIOGRAPHY

exchanges for wireless sensor networks. IEEE transactions on communications,

55(4):766–777.

[Oung et al., 2011] Oung, R., and D’Andrea, R. (2011). The distributed flight array.

Mechatronics, 21(6):908–917.

[Park et al., 2008] Park, M., Chitta, S., Teichman, A., and Yim, M. (2008). Automatic con-

figuration methods in modular robots. International Journal for Robotics Research,

27(3-4):403–421.

[Patterson, 2014] Patterson, S. (2014). In-network leader selection for acyclic graphs.

arXiv preprint arXiv:1410.6533.

[Piranda et al., 2016a] Piranda, B., and Bourgeois, J. (2016a). A distributed algorithm

for reconfiguration of lattice-based modular self-reconfigurable robots. In PDP

2016, 24th Euromicro Int. Conf. on Parallel, Distributed, and Network-Based Process-

ing, pages 1–9, Heraklion Crete, Greece. IEEE.

[Piranda et al., 2016b] Piranda, B., and Bourgeois, J. (2016b). Geometrical study of a

quasi-spherical module for building programmable matter. In DARS 2016, 13th

Int. Symposium on Distributed Autonomous Robotic Systems. Springer.

[Piranda et al., 2013] Piranda, B., Laurent, G. J., Bourgeois, J., Clévy, C., Möbes, S., and

Le Fort-Piat, N. (2013). A new concept of planar self-reconfigurable modular robot

for conveying microparts. Mechatronics, 23(7):906–915.

[Raynal, 2013] Raynal, M. (2013). Distributed algorithms for message-passing sys-

tems, volume 500. Springer.

[Reynolds et al., 1994] Reynolds, J. K., and Postel, J. (1994). Assigned Numbers. RFC

1700, RFC Editor.

[Roditty et al., 2013] Roditty, L., and Vassilevska Williams, V. (2013). Fast approximation

algorithms for the diameter and radius of sparse graphs. In Proceedings of the

forty-fifth annual ACM symposium on Theory of computing, pages 515–524. ACM.

[Römer et al., 2005] Römer, K., Blum, P., and Meier, L. (2005). Time synchronization

and calibration in wireless sensor networks. Handbook of sensor networks: Algo-

rithms and architectures, 49:199.

[Rubenstein et al., 2014] Rubenstein, M., Cornejo, A., and Nagpal, R. (2014). Pro-

grammable self-assembly in a thousand-robot swarm. Science, 345(6198):795–

799.

[Şahin, 2004] Şahin, E. (2004). Swarm robotics: From sources of inspiration to do-

mains of application. In International workshop on swarm robotics, pages 10–20.

Springer.

[Schenato et al., 2011] Schenato, L., and Fiorentin, F. (2011). Average timesynch: A

consensus-based protocol for clock synchronization in wireless sensor net-

works. Automatica, 47(9):1878–1886.

BIBLIOGRAPHY 161

[Shimbel, 1953] Shimbel, A. (1953). Structural parameters of communication net-

works. The bulletin of mathematical biophysics, 15(4):501–507.

[Sommer et al., 2009] Sommer, P., and Wattenhofer, R. (2009). Gradient clock synchro-

nization in wireless sensor networks. In Proceedings of the 2009 International Con-

ference on Information Processing in Sensor Networks, pages 37–48. IEEE Computer

Society.

[Stoy, 2003] Stoy, K. (2003). Emergent Control of Self-Reconfigurable Robots. PhD

thesis, University of Southern Denmark.

[Stoy et al., 2011] Stoy, K., and Kurokawa, H. (2011). Current topics in classic self-

reconfigurable robot research. In Proceedings of the IROS Workshop on Reconfig-

urable Modular Robotics: Challenges of Mechatronic and Bio-Chemo-Hybrid Systems.

[Stoy et al., 2002a] Stoy, K., Shen, W.-M., and Will, P. (2002a). Global locomotion from

local interaction in self-reconfigurable robots. In Proc. of the 7th Intl. Conf. on

Intelligent Autonomous Systems (IAS-7), pages 309–316.

[Stoy et al., 2002b] Stoy, K., Shen, W.-M., and Will, P. (2002b). How to make a self-

reconfigurable robot run. In Proceedings of the first international joint conference on

Autonomous agents and multiagent systems: part 2, pages 813–820. ACM.

[Su et al., 2005] Su, W., and Akyildiz, I. F. (2005). Time-diffusion synchronization

protocol for wireless sensor networks. Networking, IEEE/ACM Transactions on,

13(2):384–397.

[Suh et al., 2002] Suh, J. W., Homans, S. B., and Yim, M. (2002). Telecubes: Mechani-

cal design of a module for self-reconfigurable robotics. In Robotics and Automa-

tion, 2002. Proceedings. ICRA’02. IEEE International Conference on, volume 4, pages

4095–4101. IEEE.

[Syed et al., 2006] Syed, A. A., and Heidemann, John S, e. a. (2006). Time synchroniza-

tion for high latency acoustic networks. In Infocom, volume 6, pages 1–12.

[Takes et al., 2013] Takes, F. W., and Kosters, W. A. (2013). Computing the eccentricity

distribution of large graphs. Algorithms, 6(1):100–118.

[The Internet Assigned Numbers Authority (IANA), 2016] The Internet Assigned Numbers

Authority (IANA) (2016). Internet protocol version 4 (IPv4) parameters. http://www.

iana.org/assignments/ip-parameters/ip-parameters.xhtml.

[Tibbits et al., 2014] Tibbits, S., McKnelly, C., Olguin, C., Dikovsky, D., and Hirsch, S.

(2014). 4d printing and universal transformation. In 34th Annual Conference of the

Association for Computer Aided Design in Architecture (ACADIA), pages 539–548, Los

Angeles, CA, USA.

[Tizghadam et al., 2010] Tizghadam, A., and Leon-Garcia, A. (2010). Betweenness

centrality and resistance distance in communication networks. Network, IEEE,

24(6):10–16.

http://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml
http://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml

162 BIBLIOGRAPHY

[Toueg, 1980] Toueg, S. (1980). An all-pairs shortest paths distributed algorithm.

Technical Report, IBM.

[Tucci et al., 2017] Tucci, T., Piranda, B., and Bourgeois, J. (2017). Efficient scene en-

coding for programmable matter self-reconfiguration algorithms. In Proceedings

of the Symposium on Applied Computing, pages 256–261. ACM.

[Varagnolo et al., 2010] Varagnolo, D., Pillonetto, G., and Schenato, L. (2010). Dis-

tributed statistical estimation of the number of nodes in sensor networks. In

Decision and Control (CDC), 2010 49th IEEE Conference on, pages 1498–1503. IEEE.

[Vasudevan et al., 2004] Vasudevan, S., Kurose, J., and Towsley, D. (2004). Design and

analysis of a leader election algorithm for mobile ad hoc networks. In Network

Protocols, 2004. ICNP 2004. Proceedings of the 12th IEEE International Conference

on, pages 350–360. IEEE.

[Vermesan et al., 2017] Vermesan, O., Bröring, A., Tragos, E., Serrano, M., Bacciu, D.,

Chessa, S., Gallicchio, C., Micheli, A., Dragone, M., Saffiotti, A., and others (2017).

Internet of robotic things: converging sensing/actuating, hypoconnectivity, arti-

ficial intelligence and iot platforms. In Cognitive hyperconnected digital transforma-

tion: internet of things intelligence evolution, pages 1–35. River Publishers.

[Vermesan et al., 2013] Vermesan, O., and Friess, P. (2013). Internet of things: con-

verging technologies for smart environments and integrated ecosystems. River

Publishers.

[Walter et al., 2005] Walter, J. E., Tsai, E. M., and Amato, N. M. (2005). Algorithms for

fast concurrent reconfiguration of hexagonal metamorphic robots. IEEE transac-

tions on Robotics, 21(4):621–631.

[Walter et al., 2000] Walter, J. E., Welch, J. L., and Amato, N. M. (2000). Distributed

reconfiguration of metamorphic robot chains. In Proceedings of the nineteenth

annual ACM symposium on Principles of distributed computing, pages 171–180. ACM.

[Wang et al., 2015] Wang, W., and Tang, C. Y. (2015). Distributed estimation of close-

ness centrality. In Decision and Control (CDC), 2015 IEEE 54th Annual Conference

on, pages 4860–4865. IEEE.

[Wasserman, 1994] Wasserman, S. (1994). Social network analysis: Methods and

applications, volume 8. Cambridge university press.

[Watts et al., 1998] Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of

‘small-world’networks. Nature, 393(6684):440–442.

[Wehmuth et al., 2011] Wehmuth, K., and Ziviani, A. (2011). Distributed assessment of

network centrality. CoRR, abs/1108.1067.

[Wehmuth et al., 2013] Wehmuth, K., and Ziviani, A. (2013). Daccer: Distributed as-

sessment of the closeness centrality ranking in complex networks. Computer

Networks, 57(13):2536–2548.

BIBLIOGRAPHY 163

[Wong et al., 2013] Wong, S., and Walter, J. (2013). Deterministic distributed algorithm

for self-reconfiguration of modular robots from arbitrary to straight chain config-

urations. In Robotics and Automation (ICRA), 2013 IEEE International Conference on,

pages 537–543. IEEE.

[Wong et al., 2015] Wong, S., Zhu, S., and Walter, J. (2015). Unpacking a cluster of

modular robots. In Proceedings of the International Conference on Parallel and Dis-

tributed Processing Techniques and Applications (PDPTA), page 103. The Steering

Committee of The World Congress in Computer Science, Computer Engineering and

Applied Computing (WorldComp).

[Wuchty et al., 2003] Wuchty, S., and Stadler, P. F. (2003). Centers of complex net-

works. Journal of Theoretical Biology, 223(1):45–53.

[Yim et al., 2007] Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins,

E., and Chirikjian, G. S. (2007). Modular self-reconfigurable robot systems [grand

challenges of robotics]. Robotics & Automation Magazine, IEEE, 14(1):43–52.

[Yim et al., 2009] Yim, M., White, P., Park, M., and Sastra, J. (2009). Modular self-

reconfigurable robots. In Encyclopedia of complexity and systems science, pages

5618–5631. Springer.

[You et al., 2017] You, K., Tempo, R., and Qiu, L. (2017). Distributed algorithms for

computation of centrality measures in complex networks. IEEE Transactions on

Automatic Control, 62(5):2080–2094.

[Zhao et al., 2007] Zhao, Y., Chen, Y., Li, B., and Zhang, Q. (2007). Hop id: A virtual

coordinate based routing for sparse mobile ad hoc networks. Mobile Computing,

IEEE Transactions on, 6(9):1075–1089.

APPENDICES

165

A

DEMONSTRATIONS OF LMR NETWORK

PROPERTIES

Contents

A.1 Introduction . 168

A.2 Related Work . 168

A.3 System Model and Definitions . 169

A.4 Network Density . 170

A.5 Network Radius and Diameter . 170

A.5.1 Preliminary Materials . 171

A.5.2 Radius and Diameter Bounds . 172

167

168 APPENDIX A. DEMONSTRATIONS OF LMR NETWORK PROPERTIES

A.1/ INTRODUCTION

In this appendix, we demonstrate that LMRs form sparse and large-diameter networks.

Moreover, we provide exact bounds on the radius and the diameter of these networks

based on their lattice type and the number of modules in the system.

We illustrate our demonstrations using the modular robots designed in the Smart Blocks

and the Claytronics projects, namely the Smart Blocks, the millimeter-scale 2D Catoms,

the Blinky Blocks and the 3D Catoms [Piranda et al., 2016b] (see Figure 2.3). These

modular robots are arranged in the square, the hexagonal, the simple cubic, and the

face-centered cubic lattices, respectively.

The analysis of the 3D-Catom system radius presented in this appendix was realized in

cooperation with Thadeu Tucci, my office mate and PhD student.

The rest of this appendix is organized as follows. Section A.2 presents the related work.

Then, section A.3 defines the system model and some terms. Afterwards, Section A.4

characterizes the network density for our class of modular robots. Section A.5 provides

tight bounds of the radius and the diameter of the networks for our class of modular

robots.

A.2/ RELATED WORK

To the best of our knowledge, little attraction has been paid to network characterization

in the modular robotic community. In [Garcia et al., 2009], the authors compare the ef-

ficiency of neighbor-to-neighbor communication and global communication. Based on

experimentally validated models, the authors compare the information transmission time

in different scenarios for systems composed of 10 to 1000 modules. As mentioned in

Section 2.2.4, global communication through a shared medium is less scalable with sys-

tem size. Since we envision systems composed of millions of units, global communication

is not an option.

As characterizing network properties is crucial for choosing appropriate algorithms and

designing efficient new ones, graphs and networks have been extensively studied. Stud-

ies have been conducted on various graphs and networks, e.g., the Internet [Latapy et al.,

2006, Cardozo et al., 2012, Jin et al., 2006], the World Wide Web [Albert et al., 1999],

sensor networks [Jennings et al., 2002], small-world networks [Watts et al., 1998, Hayes,

2000], unit disk graphs [Ellis et al., 2004], and lattice-based networks [Hayes, 2000, Bar-

renetxea et al., 2006, Barthélemy, 2011]. These studies are network-specific. They are

either measurement-based (e.g., [Latapy et al., 2006, Cardozo et al., 2012, Albert et al.,

1999]), or purely theoretical using the intrinsic characteristics of the network (e.g., [Jen-

nings et al., 2002, Ellis et al., 2004, Barrenetxea et al., 2006, Barthélemy, 2011]).

Due to the regular tiling of the space in lattices, lattice-based networks obey certain ge-

ometric rules that can be used to analyze these networks. In [Hayes, 2000, Barrenetxea

et al., 2006], the authors study some lattice-based networks, but they only consider net-

A.3. SYSTEM MODEL AND DEFINITIONS 169

works embedded in the square lattice and restrict their analysis to specific network topolo-

gies, e.g., the square, the ring, etc. Their results are not generalizable to other lattices

and arbitrary network topologies. In [Barthélemy, 2011], the author states that the av-

erage distance between nodes in lattice networks is on the order of n
1

DL , where n is the

number of nodes and DL is the dimension of the considered lattice.

In this appendix, we consider lattice-based networks embedded in any of the square,

hexagonal, simple-cubic and face-centered lattices. We show that these networks are

sparse and have a large diameter. Moreover, we provide tight lower and upper bounds

for the radius and the diameter of these networks.

A.3/ SYSTEM MODEL AND DEFINITIONS

In LMRs, modules are arranged in some regular 2-dimensional or 3-dimensional lattice

L. Here, we consider the Square (S), the Hexagonal (H), the Simple Cubic (SC) and the

Face-Centered Cubic (FCC) lattices. Modules can only occupy a set of discrete positions

defined by L. Note that modular robots may contain holes, i.e., some positions of L may

be unoccupied. As we assume neighbor-to-neighbor communications, L also defines

the module connectivity: Modules can directly communicate only with their immediate

neighbors in L. DL denotes the dimension of L and ∆L represents its coordination number,

i.e, the maximum number of modules to which a module can be connected.

Arbitrarily arranged modular robotic systems form lattice-based networks that can be

modeled by connected, undirected, unweighted and lattice-based graphs G = (V, E),

where V is the set of vertices (representing the modules), E the set of edges (repre-

senting the connections), |V | = n, the number of vertices and |E| = m, the number of

edges. δ(vi) denotes vi’s degree, i.e., the number of vertices to which vi is connected.

d(vi, v j) refers to the distance between the vertices vi and v j, i.e., the number of edges on

a shortest path between vi and v j. The radius, r, and the diameter, d, of G are respectively

defined as r = min
vi∈V

max
v j∈V

d(vi, v j) and d = max
vi∈V

max
v j∈V

d(vi, v j).

Notice that we assume a perfect alignment of the modules in the lattice. However, defects

in the lattice, which may cause unreliable and intermittent connections, will only make the

network sparser and increase both its radius and its diameter.

We now define some specific graphs used in this chapter. Let VL be the infinite set of

vertices representing the infinite set of positions in L. The L-S phere(vc, r) is a sphere

embedded in L, where the vertex vc is the center of the sphere and r ∈ N its radius. It

contains the set of vertices in VL whose distance from vc is equal to r:

L-S phere(vc, r) = {vi ∈ VL | d(vi, vc) = r} (A.1)

L-Ball(vc, r) is a ball embedded in L, where vc is the center of the ball and r ∈ N is its

radius. It contains the set of vertices in VL whose distance from vc is less than or equal

170 APPENDIX A. DEMONSTRATIONS OF LMR NETWORK PROPERTIES

to r:

L-Ball(vc, r) = {vi ∈ VL | d(vi, vc) ≤ r} (A.2)

=

r⋃

i=0

L-S phere(vc, i) (A.3)

By an abuse of notation, L-S phere and L-Ball can respectively refer to sphere and ball

graphs embedded in L where the connectivity between vertices is induced by the lattice

structure of L. L-S phere(r) and L-Ball(r) respectively refer to a sphere and a ball of radius

r in the lattice L. In all the illustrations of this chapter, L-S phere(r) is gradually colored

from red to blue according to the value of r.

A.4/ NETWORK DENSITY

In this section, we show that the networks formed by our class of modular robots are all

sparse.

Corollary A.4.1: Let G = (V, E) be the network graph of an arbitrarily arranged modular

robotic system that fits the model described in section A.3. The vertex degree, δ(vi), of

any vertex vi ∈ V is bounded by:

0 ≤ δ(vi) ≤ ∆L (A.4)

Lemma A.4.1: Let G = (V, E) be the network graph of an arbitrarily arranged modular

robotic system that fits the model described in section A.3. The number of edges of G,

m, is bounded as follows:

n − 1 ≤ m ≤ n∆L (A.5)

Proof. Lower Bound. A connected graph must have at least n-1 edges [Hayes, 2000].

Upper Bound. Because of Corollary A.4.1, every module cannot be connected to more

than ∆L others. Thus, the number of edges of G is upper-bounded by n∆L. Note that a

tighter upper bound can be established by considering the lattice structure of L.

Theorem A.4.1: Let G = (V, E) be the network graph of an arbitrarily arranged modular

robotic system that fits the model described in section A.3. If |V | = n is large, then G is a

sparse graph, i.e., m ≪ n2.

Proof. If n is large, then ∆L ≪ n. Thus, we have n∆L ≪ n2. Then, because of

Lemma A.4.1, we obtain m ≪ n2.

A.5/ NETWORK RADIUS AND DIAMETER

In this section, we establish tight lower and upper bounds of the radius and the diameter

of the networks of our class of modular robots.

A.5. NETWORK RADIUS AND DIAMETER 171

A.5.1/ PRELIMINARY MATERIALS

This section presents some preliminary results used in the computations and the demon-

strations of the radius and the diameter bounds of modular robot networks. We recall that

VL is the infinite set of vertices representing the set of positions in the lattice L.

Corollary A.5.1: ∀vc ∈ VL, ∀r ∈ N, L-Ball(vc, r) is centrally symmetric: The reflection v j

of every vertex vi at distance d(vi, vc) = k through vc is also at distance k from vc and

d(vi, v j) = 2k.

Proof. Let L-Ball(vc, 1) be the ball of radius 1 and vc its center. All the vertices except vc

are at distance 1 from vc. Along every axis of the lattice L, two vertices, v1 and v2 are

connected to vc, one in each direction. These two vertices are symmetric through vc, at

distance 1 from vc and at distance 2 from each other.

Let L-Ball(vc, r) be the ball of radius r and vc its center. We assume that L-Ball(vc, r) is

centrally symmetric. Let L-Ball(vc, r + 1) be the ball of radius r + 1 with vc being its center.

By construction, L-Ball(vc, r + 1) is obtained from L-Ball(vc, r) by adding all the vertices at

distance r + 1 from vc. Let us consider v3 and v4 in L-Ball(vc, r) such that v3 and v4 are

symmetric through vc and d(v3, v4) = 2r. In order to construct L-Ball(vc, r + 1), we add to

v3 and v4 two vertices v5 and v6 on the same axis but in the opposite direction such that

d(v5, vc) = d(v6, vc) = r + 1. v5 and v6 are symmetric through vc. Moreover, there is no

shortcut between v5 and v6, thus, d(v5, v6) = 1 + d(v3, v4) + 1 = 2 + 2r = 2(r + 1). Thus,

L-Ball(vc, r + 1) is centrally symmetric.

By induction, ∀vc ∈ VL, ∀r ∈ N, L-Ball(vc, r) is centrally symmetric.

Lemma A.5.1: ∀vc ∈ VL, ∀r ∈ N, the diameter, d, of L-Ball(vc, r) is equal to 2r.

Proof. As stated in Corollary A.5.1, L-Ball(vc, r) is centrally symmetric. Thus, ∀vi ∈
L-Ball(vc, r) such that d(vi, vc) = r, ∃v j ∈ L-Ball(vc, r) with d(vi, v j) = 2r. By construc-

tion, ∄vi ∈ L-Ball(vc, r), d(vi, vc) > r. As a consequence, the diameter of L-Ball(vc, r), i.e.,

the largest distance between any two vertices, is equal to d = 2r.

Corollary A.5.2: ∀vc ∈ VL, ∀r ∈ N, L-Ball(vc, r) is the minimum-radius and minimum-

diameter existing graph composed of nL-Ball(vc, r) = | L-Ball(vc, r)| vertices in L.

Proof. By construction, in L-Ball(vc, r) all the positions of the lattice L at a distance less

than or equal to r from vc are occupied. Thus, if we remove a vertex v1 and add it to an

empty place adjacent to a full one (the system should remain connected) occupied by the

vertex v2, the new location of v1 must be at distance r + 1 from vc. Moreover, every vertex

would be at distance r + 1 or more from at least one other vertex. Thus, the radius of

the graph would be equal to r + 1. Moreover, because L-Ball(vc, r) is centrally symmetric

(See Corollary A.5.1), ∃v3 ∈ L-Ball(vc, r), d(v2, v3) = 2r. Because of Lemma A.5.1, d(v2, v3)

is the diameter of L-Ball(vc, r). Since there is no shortcut between v1 and v3 in its new

location, d(v1, v3) = d(v2, v3) + 1 = 2r + 1. Thus, the diameter of the graph would be equal

to 2r + 1.

172 APPENDIX A. DEMONSTRATIONS OF LMR NETWORK PROPERTIES

A.5.2/ RADIUS AND DIAMETER BOUNDS

Theorem A.5.1: Let G = (V, E) be the network graph of an arbitrarily arranged modular

robotic system that fits the model described in section A.3. Let L-Ball(rb) and L-Ball(rb+1)

be two ball graphs embedded in L, such that the number of vertices of G, n, is between

the number of vertices of these two balls, i.e., nL-Ball(rb) ≤ n < nL-Ball(rb + 1). The radius, r,

and the diameter, d, of G are tightly bounded as follows:

rb ≤ r ≤ ⌊n − 1

2
⌋ (A.6)

2rb ≤ d ≤ n − 1 (A.7)

Proof. Upper Bound. In a connected graph, any two vertices are at most separated by

all the others. In such a graph, the n vertices form a line of n − 1 edges. Thus, the largest

distance between any two vertices, i.e., the diameter of G, is at most equal to n−1 edges.

The radius of G is at most equal to the half of that line, i.e, r ≤ ⌊n−1
2
⌋.

Lower Bound. Because of Corollary A.5.2, L-Ball(rb) is the minimum-radius and

minimum-diameter graph composed of nL-Ball(rb) vertices. Thus, with n vertices, G has

a radius at least equal to rb and a diameter at least equal to the diameter of L-Ball(rb),

which is, because of Lemma A.5.1, equal to 2rb.

In the rest of this section, we establish the formula to compute the exact radius of an

L-Ball according to its number of vertices in the different lattices considered.

Systems in Two Dimensions: The Square and Hexagonal Lattices In this section,

we compute the exact radius of an L-Ball, given the number of vertices it has, for the case

of two-dimensional systems embedded in the Square (S) and Hexagonal (H) lattices.

Figure A.1 depicts an S -Ball and an H-Ball of radius 4, composed of Smart Blocks and

2D Catoms, respectively.

Figure A.1: An S -Ball(4) and an H-Ball(4) with color gradient from the

center of the ball.

Lemma A.5.2: In the square and the hexagonal lattices, the number of vertices in a

A.5. NETWORK RADIUS AND DIAMETER 173

sphere of radius r ≥ 1, nL-S phere(r,∆L), can be computed by:

nL-S phere(r,∆L) = r∆L (A.8)

Proof. As illustrated in Figure A.1, in the square and the hexagonal lattices, a sphere of

radius r ≥ 1 is composed of ∆L segments of length r modules. Consequently, the number

of vertices is equal to r∆L.

Theorem A.5.2: In the square and the hexagonal lattices, the radius of a ball composed

of n ≥ 1 vertices, rL-Ball(n,∆L), can be computed by:

rL-Ball(n,∆L) =
1

2


√

1 +
8(n − 1)

∆L

− 1

 (A.9)

Proof. By definition, L-Ball(r) is the union of all the L-S phere(i) for i ranging from 0 to r.

Thus, in the square and the hexagonal lattices, for r ≥ 1, the number of vertices in an

L-Ball(r), nL-Ball(r,∆L), can be computed as follows:

nL-Ball(r,∆L) =

r∑

i=0

nL-S phere(i,∆L) (A.10)

= 1 +

r∑

i=1

i∆L (A.11)

=
1

2
r2
∆L +

1

2
r∆L + 1 (A.12)

To obtain Equation A.9, we solve Equation (A.12) for r and keep only the positive root.

Systems in Three Dimensions: The Simple Cubic and Face-Centered Cubic Lat-

tices In this section, we compute the exact radius of an L-Ball, given the number of

vertices it contains, for the case of three-dimensional systems embedded in the Simple

Cubic (SC) and Face-Centered Cubic (FCC) lattices. Figures A.2 and A.3 depict the

S C-Ball and the FCC-Ball of radius 2, composed of Blinky Blocks and 3D Catoms, re-

spectively. Both systems can be decomposed into horizontal layers.

The Simple Cubic Lattice

Lemma A.5.3: In the simple cubic lattice, the number of vertices in a sphere of radius

r ≥ 1, nS C-S phere(r), can be computed by:

nS C-S phere(r) = nS -S phere(r) + 2

r−1∑

i=0

nS -S phere(i) (A.13)

= 2(2r2
+ 1) (A.14)

Proof. As illustrated in Figure A.2, a sphere of radius r in the simple cubic lattice can be

decomposed into 2r+1 horizontal S -S phere s of different radii. Equation (A.13) is obtained

by summing up all the sizes of the S -S phere s.

174 APPENDIX A. DEMONSTRATIONS OF LMR NETWORK PROPERTIES

Figure A.2: An S C-Ball(2) of Blinky Blocks and its decomposition into

horizontal layers with color gradient from the center of the ball.

Theorem A.5.3: In the simple-cubic lattice, the radius of a ball composed of n ≥ 1 ver-

tices, rS C-Ball(n), can be computed by:

rS C-Ball(n) =
1

2


(
√

3
√

243n2 + 125 + 27n)
1
3

3
2
3

− 5

3
1
3 (
√

3
√

243n2 + 125 + 27n)
1
3

− 1

 (A.15)

Proof. By definition, L-Ball(r) is the union of all the L-S phere(i) for i ranging from 0 to r.

Thus, for r ≥ 1, the number of vertices in an S C-Ball(r), nS C-Ball(r), can be computed as

follows:

nS C-Ball(r) =

r∑

i=0

nS C-S phere(i) (A.16)

= 1 +

r∑

i=1

2(2i2 + 1) (A.17)

=
4

3
r3
+ 2r2

+
8

3
r + 1 (A.18)

To obtain Equation A.15, we solve Equation (A.18) for r and keep only the real root.

The Face-Centered Cubic Lattice

Lemma A.5.4: In the face-centered cubic lattice, the number of vertices in a sphere of

radius r ≥ 1, nFCC-S phere(r), can be computed by:

nFCC-S phere(r) = 4r + 2(r + 1)2
+ 2(r − 1)4r (A.19)

= 2(5r2
+ 1) (A.20)

A.5. NETWORK RADIUS AND DIAMETER 175

Figure A.3: An FCC-Ball(2) of 3D Catoms and its decomposition into

horizontal layers with color gradient from the center of the ball.

Proof. As shown in Figure A.3, a sphere of radius r in the face-centered cubic lattice

can be decomposed into 2r + 1 horizontal layers. The base layer is an S -S phere(r) and

contains 4r vertices. The bottom and the top layers both contain (r + 1)2 vertices. The

2(r − 1) other layers contain 4r vertices each. Equation (A.19) is obtained by summing up

the number or vertices of each layer.

Theorem A.5.4: In the face-centered cubic lattice, the radius of a ball of n ≥ 1 vertices,

rFCC-Ball(n), can be computed by:

rFCC-Ball(n) =
1

2


(
√

15
√

4860n2 + 343 + 270n)
1
3

15
2
3

− 7

15
1
3 (
√

15
√

4860n2 + 343 + 270n)
1
3

− 1



(A.21)

Proof. By definition, L-Ball(r) is the union of all the L-S phere(i) for i ranging from 0 to r.

Thus, for r ≥ 1, the number of vertices in an FCC-Ball(r), nFCC-Ball(r), can be computed

as follows:

nFCC-Ball(r) =

r∑

i=0

nFCC-S phere(i) (A.22)

= 1 +

r∑

i=1

2(5i2 + 1) (A.23)

=
10

3
r3
+ 5r2

+
11

3
r + 1 (A.24)

To obtain Equation A.21, we solve Equation (A.24) for r and keep only the real root.

Document generated with LATEX and:

the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

école doctorale sciences pour l’ingénieur et microtechniques

Université Bourgogne Franche-Comté

32, avenue de l’Observatoire

25000 Besanon, France

Title: Distributed Algorithms for Large-Scale Robotic Ensembles: Centrality, Synchronization and Self-Reconfiguration

Keywords: Distributed algorithms, Modular robotics, Centrality-based leader election, Time synchronization, Self-

reconfiguration.

Abstract:

Technological advances, especially in the miniaturization

of robotic devices foreshadow the emergence of large-

scale ensembles of small-size resource-constrained

robots that distributively cooperate to achieve complex

tasks (e.g., modular self-reconfigurable robots, swarm

robotic systems, distributed microelectromechanical

systems, etc.). These ensembles are formed by

independent, intelligent and communicating units which

act as a whole ensemble. These units cooperatively self-

organize themselves to achieve common goals. These

systems are thought to be more versatile and more robust

than conventional robotic systems while having at the

same time a lower cost. These ensembles form complex

asynchronous distributed systems in which every unit is

an embedded system with its own but limited capabilities.

Coordination of such large-scale distributed embedded

systems poses significant algorithmic issues and open

new opportunities in distributed algorithms. In my thesis,

I defend the idea that distributed algorithmic primitives

suitable for the coordination of these ensembles should be

both identified and designed. In this work, we focus on a

specific class of modular robotic systems, namely large-

scale distributed modular robotic ensembles composed

of resource-constrained modules that are organized in a

lattice structure and which can only communicate with

neighboring modules. We identified and implemented

three building blocks, namely centrality-based leader

election, time synchronization and self-reconfiguration.

We propose a collection of distributed algorithms to realize

these primitives. We evaluate them using both hardware

experiments and simulations on systems ranging from a

dozen modules to more than ten thousand modules. We

show that our algorithms scale well and are suitable for

large-scale embedded distributed systems with scarce

memory and computing resources.

Titre : Algorithmes distribués pour grands ensembles de robots : centralité, synchronization et auto-reconfiguration

Mots-clés : algorithmique distribuée, robots modulaires, élection de leader basée sur la centralité, synchronisation

temporelle, auto-reconfiguration.

Résumé :

Les récentes avancées technologiques, en particulier

dans le domaine de la miniaturisation de dispositifs

robotiques, laissent présager l’émergence de grands

ensembles distribués de petits robots qui coopéreront

en vue d’accomplir des tâches complexes (e.g.,

robotique modulaire, robots en essaims, microsystèmes

électromécaniques distribués). Ces grands ensembles

seront composés d’entités indépendantes, intelligentes

et communicantes qui agiront comme un ensemble à

part entière. Pour cela, elles s’auto-organiseront et

collaboreront en vue d’accomplir des tâches complexes.

Ces systèmes présenteront les avantages d’être plus

polyvalents et plus robustes que les systèmes robotiques

conventionnels tout en affichant un prix réduit. Ces

ensembles formeront des systèmes distribués complexes

dans lesquels chaque entité sera un système embarqué

à part entière avec ses propres capacités et ressources

toutefois limitées. Coordonner de tels systèmes pose des

défis majeurs et ouvre de nouvelles opportunités dans

l’algorithmique distribuée. Je défends la thèse qu’il faut

d’ores et déjà identifier et implémenter des algorithmes

distribués servant de primitives de base à la coordination

de ces ensembles. Dans ce travail, nous nous focalisons

sur une classe particulière de robots, à savoir les robots

modulaires distribués formant de grands ensembles de

modules fortement contraints en ressources (mémoire,

calculs, etc.), placés dans une grille régulière et capables

de communiquer entre voisins connexes uniquement.

J’ai identifié et implémenté trois primitives servant à la

coordination de ces systèmes, à savoir l’élection d’un

nœud central au réseau, la synchronisation temporelle

ainsi que l’auto-reconfiguration. Dans ce manuscrit, je

propose un ensemble d’algorithmes distribués réalisant

ces primitives. Les algorithmes développés dans le cadre

de ce travail ont été évalués sur des modules matériels et

par simulation avec des systèmes composés de quelques

dizaines à plus d’une dizaine de milliers de modules.

Ces expériences montrent que nos algorithmes passent à

l’échelle et sont adaptés aux grands ensembles distribués

de systèmes embarqués avec des ressources fortement

limitées à la fois en mémoire et en calcul.

	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.3 Outline

	2 Context
	2.1 Introduction
	2.2 Modular Robotics
	2.2.1 Definition
	2.2.2 Advantages over Traditional Robotics
	2.2.3 Examples of Potential Applications
	2.2.4 Existing Systems and Classification
	2.2.5 Network Properties of Large-Scale LMRs

	2.3 Research Environment: Evaluation Hardware and Simulation Tools
	2.3.1 Blinky Blocks
	2.3.2 2D Catoms
	2.3.3 VisibleSim

	2.4 Conclusion

	3 Centrality-Based Leader Election
	3.1 Introduction
	3.2 System Model and Assumptions
	3.3 Network Centrality Metrics and Definitions
	3.3.1 Definitions
	3.3.2 Properties and Applications

	3.4 State of the Art
	3.4.1 Exhaustive Methods
	3.4.2 Methods for Specific Classes of Graphs
	3.4.3 Sampling-based Methods
	3.4.4 Probabilistic-Counter-based Methods
	3.4.5 Other Approaches
	3.4.6 Summary

	3.5 Preliminary Materials on Network Traversal and Tree Algorithms
	3.5.1 Breadth-First Network Traversal and Spanning-Tree Construction
	3.5.2 Leader Election based on Network Traversal Algorithms
	3.5.3 Broadcast and Convergecast on a Spanning Tree
	3.5.4 Global Data Diffusion and Global-Aggregate Computation
	3.5.5 Robustness to Module Mobility and Faults
	3.5.6 Summary of the Primitives and Notation

	3.6 k-BFS SumSweep Framework
	3.6.1 Description at a Glance
	3.6.2 Distributed Implementation
	3.6.3 Termination Proof and Complexity Analysis

	3.7 ABC-Center
	3.7.1 Description at a Glance
	3.7.2 ABC-CenterV1: Distributed Implementation
	3.7.3 ABC-CenterV2: Distributed Implementation

	3.8 Probabilistic-Counter-based Central-Leader Election Framework
	3.8.1 Probabilistic Counters
	3.8.2 Description at a Glance
	3.8.3 Distributed Implementation
	3.8.4 Termination Proof and Complexity Analysis

	3.9 Evaluation
	3.9.1 Evaluation of ABC-CenterV1 on Hardware
	3.9.2 Simulation Model and Fidelity
	3.9.3 Large-scale Evaluation and Comparison to Existing Algorithms

	3.10 Discussion
	3.11 Conclusion

	4 Time Synchronization
	4.1 Introduction
	4.2 Example of Application: The Distributed Bitmap Scroller
	4.2.1 Our Implementation
	4.2.2 Need for Global Time Synchronization

	4.3 State of the Art
	4.3.1 Architecture : from Master/Slave to fully Distributed Protocols
	4.3.2 Infrastructure of Master/Slave Protocols
	4.3.3 Communication Delay Compensation Methods
	4.3.4 Clock Model: from Clock Offset Adjustment only to Clock Skew Compensation
	4.3.5 Time Master Election
	4.3.6 Summary

	4.4 System Model and Assumptions
	4.4.1 Clocks: Notation and Assumptions
	4.4.2 Sources of Network Delays
	4.4.3 Predictive Method to Compensate for Communication Delays

	4.5 The Modular Robot Time Protocol
	4.5.1 Method to Compensate for Communication Delays
	4.5.2 Step 1: Initialization
	4.5.3 Step 2: Periodic Synchronization

	4.6 The Target System: the Blinky Blocks
	4.6.1 Local Clock Properties
	4.6.2 Communication Properties

	4.7 Experimental Evaluation
	4.7.1 Evaluation on Hardware and Validation of VisibleSim
	4.7.2 Large-Scale Evaluation and Comparison to Existing Protocols through Simulations

	4.8 Discussion
	4.9 Conclusion

	5 Modular Robot Self-Reconfiguration
	5.1 Introduction
	5.2 System Model and Assumptions
	5.3 State of the Art
	5.4 C2SR Algorithm at a Glance
	5.5 C2SR Implementation
	5.6 Experimental Evaluation
	5.6.1 Effectiveness Evaluation
	5.6.2 Communication Evaluation
	5.6.3 Motion Efficiency
	5.6.4 Execution Time Efficiency

	5.7 Conclusion

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography
	Appendices
	A Demonstrations of LMR Network Properties
	A.1 Introduction
	A.2 Related Work
	A.3 System Model and Definitions
	A.4 Network Density
	A.5 Network Radius and Diameter
	A.5.1 Preliminary Materials
	A.5.2 Radius and Diameter Bounds

