?. Principes-généraux, A. Terminologie, A. Obaton, G. Bernard, J. Taillandier et al., Standard Terminology for Additive Manufacturing Technologies Fabrication additive : état de l'art et besoins métrologiques engendrés Dispositif pour réaliser un modèle de pièce industrielle Apparatus for production of three-dimensional objects by stereolithography Fabrication additive ? Principes généraux ? Partie 2 : Vue d'ensemble des catégories de procédés et des matières premières, Rev. française métrologie NF EN ISO 17296-2, 2014. [7] " www.3dhubs.com. " . [8] I. Wohlers Associates, Wohlers report 2017 : 3D printing and additive manufacturing state of the industry : annual worldwide progress report. . [9] J. Coykendall, M. Cotteleer, L. Holdowsky, and M. Mahto, " 3D opportunity in Aerospace and Defense, pp.2792-2804, 1986.

M. Hedges and N. Calder, Near Net Shape Rapid Manufacture & Repair by LENS, Cost Eff. Manuf. via Net Shape Process. Meet. Proc, pp.1-14, 2006.

R. Dehoff, C. Duty, W. Peter, Y. Yamamoto, W. Chen et al., Case Study: Additive Manufacturing of Aerospace Brackets, 2013.

N. Hopkinson and P. Dickens, Rapid prototyping for direct manufacture, Rapid Prototyping Journal, vol.7, issue.4, pp.197-202
DOI : 10.1108/EUM0000000005753

URL : https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/3509/1/RP%20for%20direct%20Manufacture%20paper_final.pdf

N. Hopkinson and P. Dickens, Analysis of rapid manufacturingusing layer manufacturing processes for production Analysis of rapid manufacturing?using layer manufacturing processes for production

M. Ruffo, C. Tuck, and R. Hague, Cost estimation for rapid manufacturing -laser sintering production for low to medium volumes Cost estimation for rapid manufacturing ? laser sintering production for low to medium volumes, Part B, vol.220, issue.9, pp.1417-1427
DOI : 10.1243/09544054jem517

URL : https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/4680/1/ruffo.pdf

P. Reeves, C. Tuck, and R. Hague, Additive Manufacturing for Mass Customization, pp.275-289, 2011.
DOI : 10.1007/978-1-84996-489-0_13

D. R. Lambert, P. Calderoni, and . Kharmandayan, Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing, J. Craniomaxillofac. Surg, vol.42, issue.8, pp.1877-84, 2014.

P. Stoor, A. Suomalainen, C. Lindqvist, K. Mesim, D. Aki et al., Rapid prototyped patient specific implants for reconstruction of orbital wall defects, Technology Research | Gartner Inc. " [Online]. Available: www.gartner.com, pp.1644-1649, 2014.
DOI : 10.1016/j.jcms.2014.05.006

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing, Materials & Design, vol.95, 2016.
DOI : 10.1016/j.matdes.2016.01.099

W. E. King, H. D. Barth, V. M. Castillo, G. F. Gallegos, J. W. Gibbs et al., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, Journal of Materials Processing Technology, vol.214, issue.12, pp.2915-2925, 2014.
DOI : 10.1016/j.jmatprotec.2014.06.005

H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, Analysis of defect generation in Ti???6Al???4V parts made using powder bed fusion additive manufacturing processes, Additive Manufacturing, vol.1, issue.4, pp.87-98, 2014.
DOI : 10.1016/j.addma.2014.08.002

H. Gong, H. Gu, K. Zeng, J. J. Dilip, D. Pal et al., Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Prealloyed Powder

S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Materialia, vol.108, pp.36-45, 2016.
DOI : 10.1016/j.actamat.2016.02.014

URL : https://manuscript.elsevier.com/S135964541630088X/pdf/S135964541630088X.pdf

D. Gu, Y. Hagedorn, W. Meiners, G. Meng, R. J. Batista et al., Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium, Acta Materialia, vol.60, issue.9, pp.3849-3860, 2012.
DOI : 10.1016/j.actamat.2012.04.006

J. P. Kruth, L. Froyen, J. Van-vaerenbergh, P. Mercelis, M. Rombouts et al., Selective laser melting of iron-based powder, J. Mater. Process. Technol, vol.149, pp.1-3, 2004.

F. Cristofari, B. Piotrowski, and R. Pesci, Mechanical properties of a nanoporous membrane used in implantable medical devices. Correlation between experimental characterization and 2D numerical simulation, Journal of the Mechanical Behavior of Biomedical Materials, vol.74, pp.43-53, 2017.
DOI : 10.1016/j.jmbbm.2017.05.021

URL : https://hal.archives-ouvertes.fr/hal-01530445

M. Gepreel and M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation, Journal of the Mechanical Behavior of Biomedical Materials, vol.20, pp.407-422, 2013.
DOI : 10.1016/j.jmbbm.2012.11.014

D. F. Williams, The Williams Dictionary of Biomaterials, 1999.

D. F. Williams, On the mechanisms of biocompatibility, Biomaterials, vol.29, issue.20, pp.2941-2953, 2008.
DOI : 10.1016/j.biomaterials.2008.04.023

R. E. Mcmahon, J. Ma, S. Verkhoturov, D. Munoz-pinto, I. Karaman et al., A comparative study of the cytotoxicity and corrosion resistance of nickel???titanium and titanium???niobium shape memory alloys, Acta Biomaterialia, vol.8, issue.7, pp.2863-70, 2012.
DOI : 10.1016/j.actbio.2012.03.034

A. Cremasco, A. D. Messias, A. R. Esposito, E. A. De, R. Duek et al., Effects of alloying elements on the cytotoxic response of titanium alloys, Materials Science and Engineering: C, vol.31, issue.5, pp.833-839, 2011.
DOI : 10.1016/j.msec.2010.12.013

S. G. Steinemann, Metal implants and surface reactions, Injury, vol.27, 1996.
DOI : 10.1016/0020-1383(96)89027-9

S. G. Steinemann, Corrosion of surgical implants -in vivo and in vitro tests, Evaluation of biomaterials (Adances in biomaterials), pp.1-34, 1980.

N. S. Manam, W. S. Harun, D. N. Shri, S. A. Ghani, T. Kurniawan et al., Study of corrosion in biocompatible metals for implants: A review, Journal of Alloys and Compounds, vol.701, pp.698-715, 2017.
DOI : 10.1016/j.jallcom.2017.01.196

Y. Gao, B. Gao, R. Wang, J. Wu, L. J. Zhang et al., Improved biological performance of low modulus Ti???24Nb???4Zr???7.9Sn implants due to surface modification by anodic oxidation, Applied Surface Science, vol.255, issue.9, pp.5009-5015, 2009.
DOI : 10.1016/j.apsusc.2008.12.054

S. Yu, Z. Yu, G. Wang, J. Han, X. Ma et al., Biocompatibility and osteoconduction of active porous calcium???phosphate films on a novel Ti???3Zr???2Sn???3Mo???25Nb biomedical alloy, Colloids and Surfaces B: Biointerfaces, vol.85, issue.2, pp.103-118, 2011.
DOI : 10.1016/j.colsurfb.2011.02.025

T. Iwamoto, Y. Hieda, and Y. Kogai, Effect of hydroxyapatite surface morphology on cell adhesion, Materials Science and Engineering: C, vol.69, pp.1263-1267, 2016.
DOI : 10.1016/j.msec.2016.07.056

D. J. Hadjidakis and I. I. Androulakis, Bone Remodeling, Annals of the New York Academy of Sciences, vol.1445, issue.3, pp.385-396, 2006.
DOI : 10.1172/JCI24918

N. Rucci, Molecular biology of bone remodelling., " Clin. Cases Miner, Bone Metab, vol.5, issue.1, pp.49-56, 2008.

L. J. Raggatt and N. C. Partridge, Cellular and Molecular Mechanisms of Bone Remodeling, Journal of Biological Chemistry, vol.164, issue.33, pp.25103-25111, 2010.
DOI : 10.1016/S0002-9440(10)63208-7

URL : http://www.jbc.org/content/285/33/25103.full.pdf

J. C. Crockett, M. J. Rogers, F. P. Coxon, L. J. Hocking, and M. H. Helfrich, Bone remodelling at a glance, Journal of Cell Science, vol.124, issue.7, 2011.
DOI : 10.1242/jcs.063032

URL : http://jcs.biologists.org/content/joces/124/7/991.full.pdf

D. .. Ledoux-un-ingénieur-serre-la-main-d-'un-chirurgien, Optimisation d'une prothèse trapézo-métacarpienne, pp.1-6

J. Wolff, The Law of Bone Remodelling, 1987.
DOI : 10.1007/978-3-642-71031-5

T. Nishino, H. Mishima, H. Kawamura, Y. Shimizu, S. Miyakawa et al., Follow-Up Results of 10???12 Years After Total Hip Arthroplasty Using Cementless Tapered Stem ??? Frequency of Severe Stress Shielding With Synergy Stem in Japanese Patients, The Journal of Arthroplasty, vol.28, issue.10, pp.1736-1740, 2013.
DOI : 10.1016/j.arth.2013.02.027

R. Huiskes, H. Weinans, B. Van-rietbergen, and B. Van-rietbergen, The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials, Clinical Orthopaedics and Related Research, vol.&NA;, issue.274, pp.124-134, 1992.
DOI : 10.1097/00003086-199201000-00014

P. Didier, B. Piotrowski, M. Fischer, and P. Laheurte, Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy, Materials Science and Engineering: C, vol.74, pp.399-409, 2017.
DOI : 10.1016/j.msec.2016.12.031

M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants ??? A review, Progress in Materials Science, vol.54, issue.3, pp.397-425, 2009.
DOI : 10.1016/j.pmatsci.2008.06.004

H. Beaupied, E. Lespessailles, and C. Benhamou, Analyse des??propri??t??s biom??caniques de??l'os ????l'??chelle macroscopique, Revue du Rhumatisme, vol.74, issue.5, pp.447-454, 2007.
DOI : 10.1016/j.rhum.2007.02.001

A. Í. Antonialli and C. Bolfarini, Numerical evaluation of reduction of stress shielding in laser coated hip prostheses, Materials Research, vol.94, issue.4, pp.331-334, 2011.
DOI : 10.1520/JAI12818

S. Rao, T. Ushida, T. Tateishi, Y. Okazaki, S. Asao et al., Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells Second generation (low modulus) titanium alloys in total hip arthroplasty, Biomed. Mater. Eng. Materwiss. Werksttech, vol.6, issue.38 12, pp.79-86, 1996.

Y. Park, Y. Song, J. An, H. Song, and K. J. Anusavice, Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials, Journal of Dentistry, vol.41, issue.12, pp.1251-1259, 2013.
DOI : 10.1016/j.jdent.2013.09.003

T. Iordachescu and . Gloriant, Osteoblast cell behavior on the new beta-type Ti?25Ta?25Nb alloy, Mater. Sci. Eng. C, vol.32, pp.1554-1563, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00763124

R. Ion, D. Gordin, V. Mitran, P. Osiceanu, S. Dinescu et al., In vitro bio-functional performances of the novel superelastic beta-type Ti, Mater. Sci. Eng. C, vol.35, pp.23-23, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00919011

M. Fischer, P. Laheurte, P. Acquier, D. Joguet, L. Peltier et al., Synthesis and characterization of Ti-27.5Nb alloy made by CLAD?? additive manufacturing process for biomedical applications, Materials Science and Engineering: C, vol.75, pp.341-348, 2017.
DOI : 10.1016/j.msec.2017.02.060

D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Design and mechanical properties of new ?? type titanium alloys for implant materials, Materials Science and Engineering: A, vol.243, issue.1-2, pp.244-249, 1998.
DOI : 10.1016/S0921-5093(97)00808-3

X. Tang, T. Ahmed, and H. J. Rack, Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys, Journal of Materials Science, vol.35, issue.7, pp.1805-1811, 2000.
DOI : 10.1023/A:1004792922155

Y. L. Hao, R. Yang, M. Niinomi, D. Kuroda, Y. L. Zhou et al., Young???s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to ????? martensite, Metallurgical and Materials Transactions A, vol.22, issue.10, pp.3137-3144, 2002.
DOI : 10.1007/BF02670293

Y. L. Hao, R. Yang, M. Niinomi, D. Kuroda, Y. L. Zhou et al., Aging response of the young???s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications, Metallurgical and Materials Transactions A, vol.17, issue.4, pp.1007-1012, 2003.
DOI : 10.1007/BF02645919

N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, and H. Toda, Relationships between tensile deformation behavior and microstructure in Ti???Nb???Ta???Zr system alloys, Materials Science and Engineering: C, vol.25, issue.3, pp.363-369, 2005.
DOI : 10.1016/j.msec.2004.12.014

M. Niinomi, T. Akahori, S. Katsura, K. Yamauchi, and M. Ogawa, Mechanical characteristics and microstructure of drawn wire of Ti???29Nb???13Ta???4.6Zr for biomedical applications, Materials Science and Engineering: C, vol.27, issue.1, pp.154-161, 2007.
DOI : 10.1016/j.msec.2006.04.008

M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi et al., Peculiar elastic behavior of Ti???Nb???Ta???Zr single crystals, Acta Materialia, vol.56, issue.12, pp.2856-2863, 2008.
DOI : 10.1016/j.actamat.2008.02.017

S. Ozan, J. Lin, Y. Li, and C. Wen, New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications, Journal of the Mechanical Behavior of Biomedical Materials, vol.75, pp.119-127, 2017.
DOI : 10.1016/j.jmbbm.2017.07.011

P. Stenlund, O. Omar, U. Brohede, S. Norgren, B. Norlindh et al., Bone response to a novel Ti???Ta???Nb???Zr alloy, Acta Biomaterialia, vol.20, 2015.
DOI : 10.1016/j.actbio.2015.03.038

D. P. De-andrade, L. M. De-vasconcellos, I. C. Carvalho, L. F. De, B. P. Forte et al., Titanium???35niobium alloy as a potential material for biomedical implants: In vitro study, Materials Science and Engineering: C, vol.56, pp.538-544, 2015.
DOI : 10.1016/j.msec.2015.07.026

W. Elmay, P. Laheurte, A. Eberhardt, B. Bolle, T. Gloriant et al., Stability and elastic properties of Ti-alloys for biomedical application designed with electronic parameters, EPJ Web of Conferences, vol.6, 2010.
DOI : 10.1051/epjconf/20100629002

H. Y. Kim, S. Hashimoto, J. Kim, H. Hosoda, and S. Miyazaki, Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys, MATERIALS TRANSACTIONS, vol.45, issue.7, pp.2443-2448, 2004.
DOI : 10.2320/matertrans.45.2443

URL : https://www.jstage.jst.go.jp/article/matertrans/45/7/45_7_2443/_pdf

H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, and S. Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti???Nb binary alloys, Acta Materialia, vol.54, issue.9, pp.2419-2429, 2006.
DOI : 10.1016/j.actamat.2006.01.019

M. Tane, K. Hagihara, M. Ueda, T. Nakano, and Y. Okuda, Elastic-modulus enhancement during room-temperature aging and its??suppression in metastable Ti???Nb-Based alloys with low body-centered cubic phase stability, Acta Materialia, vol.102, pp.373-384, 2016.
DOI : 10.1016/j.actamat.2015.09.030

S. Guo, J. Zhang, X. Cheng, and X. Zhao, A metastable ??-type Ti???Nb binary alloy with low modulus and high strength, Journal of Alloys and Compounds, vol.644, pp.411-415, 2015.
DOI : 10.1016/j.jallcom.2015.05.071

S. Miyazaki, H. Y. Kim, and H. Hosoda, Development and characterization of Ni-free Ti-base shape memory and superelastic alloys, Materials Science and Engineering: A, vol.438, issue.440, pp.438-440, 2006.
DOI : 10.1016/j.msea.2006.02.054

Y. B. Wang and Y. F. Zheng, The microstructure and shape memory effect of Ti???16??at.%Nb alloy, Materials Letters, vol.62, issue.2, pp.269-272, 2008.
DOI : 10.1016/j.matlet.2007.05.038

W. Elmay, F. Prima, T. Gloriant, B. Bolle, Y. Zhong et al., Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy, Journal of the Mechanical Behavior of Biomedical Materials, vol.18, pp.47-56, 2013.
DOI : 10.1016/j.jmbbm.2012.10.018

URL : https://hal.archives-ouvertes.fr/hal-00919290

R. Arockiakumar and J. K. Park, Effect of ??-precipitation on the superelastic behavior of Ti???40wt.%Nb???0.3wt.%O alloy processed by equal channel angular extrusion, Materials Science and Engineering: A, vol.527, issue.10-11, pp.10-11, 2010.
DOI : 10.1016/j.msea.2010.01.019

S. M. Kim, R. Arockiakumar, and J. K. Park, Effect of ECAE-processing on the thermo-mechanical behavior of Ti34wt.%Nb0.14wt.%O shape memory alloy, Materials Science and Engineering: A, vol.546, pp.53-58, 2012.
DOI : 10.1016/j.msea.2012.03.023

D. Kent, G. Wang, Z. Yu, X. Ma, and M. Dargusch, Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique, Journal of the Mechanical Behavior of Biomedical Materials, vol.4, issue.3, pp.405-421, 2011.
DOI : 10.1016/j.jmbbm.2010.11.013

H. Y. Kim, J. I. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Effect of thermomechanical treatment on mechanical properties and shape memory behavior of Ti-(26-28) at.% Nb alloys, Mater. Sci. Eng. A, vol.438440, pp.839-843, 2006.

W. Elmay, E. Patoor, T. Gloriant, F. Prima, and P. Laheurte, Improvement of Superelastic Performance of Ti-Nb Binary Alloys for Biomedical Applications, Journal of Materials Engineering and Performance, vol.527, issue.440, pp.2471-2476, 2014.
DOI : 10.1016/j.msea.2009.11.059

URL : https://hal.archives-ouvertes.fr/hal-01501650

F. Sun, S. Nowak, T. Gloriant, P. Laheurte, A. Eberhardt et al., Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy, Scripta Materialia, vol.63, issue.11, pp.1053-1056, 2010.
DOI : 10.1016/j.scriptamat.2010.07.042

URL : https://hal.archives-ouvertes.fr/hal-00762154

E. S. Lopes, A. Cremasco, C. R. Afonso, and R. Caram, Effects of double aging heat treatment on the microstructure, Vickers hardness and elastic modulus of Ti???Nb alloys, Materials Characterization, vol.62, issue.7, pp.673-680, 2011.
DOI : 10.1016/j.matchar.2011.04.015

J. Kim, H. Y. Kim, H. Hosoda, and S. Miyazaki, Shape Memory Behavior of Ti–22Nb–(0.5–2.0)O(at%) Biomedical Alloys, MATERIALS TRANSACTIONS, vol.46, issue.4, pp.852-857, 2005.
DOI : 10.2320/matertrans.46.852

URL : https://www.jstage.jst.go.jp/article/matertrans/46/4/46_4_852/_pdf

A. Ramarolahy, P. Castany, F. Prima, P. Laheurte, I. Péron et al., Microstructure and mechanical behavior of superelastic Ti???24Nb???0.5O and Ti???24Nb???0.5N biomedical alloys, Journal of the Mechanical Behavior of Biomedical Materials, vol.9, pp.83-90, 2012.
DOI : 10.1016/j.jmbbm.2012.01.017

URL : https://hal.archives-ouvertes.fr/hal-00926952

M. Simonelli, Y. Y. Tse, and C. Tuck, On the Texture Formation of Selective Laser Melted Ti-6Al-4V, Metallurgical and Materials Transactions A, vol.43, issue.1, pp.2863-2872, 2014.
DOI : 10.1007/s11661-012-1245-y

B. Vrancken, L. Thijs, J. Kruth, and J. Van-humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, Journal of Alloys and Compounds, vol.541, pp.177-185, 2012.
DOI : 10.1016/j.jallcom.2012.07.022

L. Thijs, F. Verhaeghe, T. Craeghs, J. Van-humbeeck, and J. Kruth, A study of the microstructural evolution during selective laser melting of Ti???6Al???4V, Acta Materialia, vol.58, issue.9, pp.6-10, 2010.
DOI : 10.1016/j.actamat.2010.02.004

S. Bontha, N. W. Klingbeil, P. A. Kobryn, and H. L. Fraser, Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures, Materials Science and Engineering: A, vol.513, issue.514, pp.311-318, 2009.
DOI : 10.1016/j.msea.2009.02.019

J. Gockel and J. Beuth, Understanding Ti-6Al-4V Microstructure Control in Additive Manufacturing via Process Maps, " Solid Free, Fabr. Proc, pp.666-674, 2013.

W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu et al., Additive manufacturing of strong and ductile Ti???6Al???4V by selective laser melting via in situ martensite decomposition, Acta Materialia, vol.85, pp.74-84, 2015.
DOI : 10.1016/j.actamat.2014.11.028

M. Simonelli, Y. Tse, and C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti???6Al???4V, Materials Science and Engineering: A, vol.616, pp.1-11, 2014.
DOI : 10.1016/j.msea.2014.07.086

L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges et al., Ductility of a Ti???6Al???4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyping Journal, vol.16, issue.6, pp.450-459, 2010.
DOI : 10.1016/S0921-5093(03)00341-1

L. C. Zhang, D. Klemm, J. Eckert, Y. L. Hao, and T. B. Sercombe, Manufacture by selective laser melting and mechanical behavior of a biomedical Ti?, Scr. Mater, vol.65, issue.1, pp.24-28, 2011.
DOI : 10.1016/j.scriptamat.2011.03.024

H. Schwab, K. Prashanth, L. Löber, U. Kühn, and J. Eckert, Selective Laser Melting of Ti-45Nb Alloy, Metals, vol.588, issue.2, pp.686-694, 2015.
DOI : 10.2320/matertrans.44.2384

URL : http://www.mdpi.com/2075-4701/5/2/686/pdf

S. Dadbakhsh, M. Speirs, G. Yablokova, J. Kruth, J. Schrooten et al., Microstructural analysis and mechanical evaluation of Ti-45Nb produced by selective laser melting towards biomedical applications.pdf, TMS2015 Annu. Meet. Suppl. Proc, 2015.
DOI : 10.1002/9781119093466.ch53

B. Zhang, J. Chen, and C. Coddet, Microstructure and Transformation Behavior of in-situ Shape Memory Alloys by Selective Laser Melting Ti???Ni Mixed Powder, Journal of Materials Science & Technology, vol.29, issue.9, pp.863-867, 2013.
DOI : 10.1016/j.jmst.2013.05.006

URL : https://hal.archives-ouvertes.fr/hal-00869350

E. Chlebus, B. Ku?nicka, R. Dziedzic, and T. Kurzynowski, Titanium alloyed with rhenium by selective laser melting, Materials Science and Engineering: A, vol.620, pp.155-163, 2014.
DOI : 10.1016/j.msea.2014.10.021

B. Vrancken, L. Thijs, J. Kruth, and J. Van-humbeeck, Microstructure and mechanical properties of a novel ?? titanium metallic composite by selective laser melting, Acta Materialia, vol.68, pp.150-158, 2014.
DOI : 10.1016/j.actamat.2014.01.018

S. L. Sing, W. Y. Yeong, and F. E. Wiria, Selective laser melting of titanium alloy with 50??wt% tantalum: Microstructure and mechanical properties, Journal of Alloys and Compounds, vol.660, pp.461-470, 2016.
DOI : 10.1016/j.jallcom.2015.11.141

Q. Wang, C. Han, T. Choma, Q. Wei, C. Yan et al., Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting, Materials & Design, vol.126, pp.268-277, 2017.
DOI : 10.1016/j.matdes.2017.04.026

L. J. Gibson and M. F. Ashby, Cellular solids : structure and properties, 1999.
DOI : 10.1017/CBO9781139878326

X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary et al., Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, vol.83, pp.127-141, 2016.
DOI : 10.1016/j.biomaterials.2016.01.012

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, vol.26, issue.27, pp.5474-91, 2005.
DOI : 10.1016/j.biomaterials.2005.02.002

N. Taniguchi, S. Fujibayashi, M. Takemoto, K. Sasaki, B. Otsuki et al., Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment, Materials Science and Engineering: C, vol.59, pp.690-701, 2016.
DOI : 10.1016/j.msec.2015.10.069

L. E. Murr, Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting, Journal of the Mechanical Behavior of Biomedical Materials, vol.76, 2017.
DOI : 10.1016/j.jmbbm.2017.02.019

R. Wauthle, S. M. Ahmadi, S. Amin-yavari, M. Mulier, A. A. Zadpoor et al., Revival of pure titanium for dynamically loaded porous implants using additive manufacturing, Materials Science and Engineering: C, vol.54, pp.94-100, 2015.
DOI : 10.1016/j.msec.2015.05.001

S. A. Yavari, R. Wauthle, J. Van-der-stok, A. C. Riemslag, M. Janssen et al., Fatigue behavior of porous biomaterials manufactured using selective laser melting, Materials Science and Engineering: C, vol.33, issue.8, pp.4849-58, 2013.
DOI : 10.1016/j.msec.2013.08.006

R. Wauthle, J. Van-der-stok, A. S. Yavari, J. Van-humbeeck, J. Kruth et al., Additively manufactured porous tantalum implants, Acta Biomaterialia, vol.14, pp.217-225, 2014.
DOI : 10.1016/j.actbio.2014.12.003

S. M. Ahmadi, S. A. Yavari, R. Wauthle, B. Pouran, J. Schrooten et al., Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties, Materials, vol.9, issue.4, pp.1871-1896, 2015.
DOI : 10.1117/1.1753270

URL : http://www.mdpi.com/1996-1944/8/4/1871/pdf

S. Arabnejad, R. Burnett-johnston, J. A. Pura, B. Singh, M. Tanzer et al., High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints, Acta Biomaterialia, vol.30, pp.345-56, 2016.
DOI : 10.1016/j.actbio.2015.10.048

N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam et al., Scaffold Library for Tissue Engineering: A Geometric Evaluation, Computational and Mathematical Methods in Medicine, vol.70, issue.3, pp.1-14, 2012.
DOI : 10.1016/j.actbio.2010.09.024

L. E. Murr, S. M. Gaytan, F. Medina, H. Lopez, E. Martinez et al., Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.76, issue.4, 2010.
DOI : 10.1023/A:1011210101895

URL : http://rsta.royalsocietypublishing.org/content/roypta/368/1917/1999.full.pdf

B. S. Bucklen, W. A. Wettergreen, E. Yuksel, and M. A. Liebschner, Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering, irtual Phys. Prototyping, pp.13-23, 2008.
DOI : 10.1089/107632701753213183

S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, Current trends in the design of scaffolds for computer-aided tissue engineering, Acta Biomaterialia, vol.10, issue.2, 2014.
DOI : 10.1016/j.actbio.2013.10.024

A. Radman, X. Huang, and Y. M. Xie, Topological optimization for the design of microstructures of isotropic cellular materials, Engineering Optimization, vol.45, issue.11, pp.1331-1348, 2013.
DOI : 10.1364/OE.18.006693

M. Fousová, D. Vojt?ch, J. Kubásek, E. Jablonská, and J. Fojt, Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process, Journal of the Mechanical Behavior of Biomedical Materials, vol.69, pp.368-376, 2017.
DOI : 10.1016/j.jmbbm.2017.01.043

X. Li, C. Wang, W. Zhang, and Y. Li, Fabrication and compressive properties of Ti6Al4V implant with honeycomb???like structure for biomedical applications, Rapid Prototyping Journal, vol.16, issue.1, pp.44-49, 2010.
DOI : 10.1016/j.actbio.2007.05.009

A. J. Morris, The Qualification of Safety Critical Structures by Finite Element Analytical Methods, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol.210, issue.2
DOI : 10.1016/0045-7825(89)90131-X

G. Yamako, D. Janssen, S. Hanada, T. Anijs, K. Ochiai et al., Improving stress shielding following total hip arthroplasty by using a femoral stem made of ?? type Ti-33.6Nb-4Sn with a Young???s modulus gradation, Journal of Biomechanics, vol.63, 2017.
DOI : 10.1016/j.jbiomech.2017.08.017

H. Sofuoglu and M. E. Cetin, Abstract, Biomedical Engineering / Biomedizinische Technik, vol.30, issue.6, pp.1-14, 2015.
DOI : 160000

G. Yamako, E. Chosa, X. Zhao, K. Totoribe, S. Watanabe et al., Load-transfer analysis after insertion of cementless anatomical femoral stem using pre- and post-operative CT images based patient-specific finite element analysis, Medical Engineering & Physics, vol.36, issue.6, pp.694-700, 2014.
DOI : 10.1016/j.medengphy.2014.02.018

A. L. Sabatini and T. Goswami, Hip implants VII: Finite element analysis and optimization of cross-sections, Materials & Design, vol.29, issue.7, pp.1438-1446, 2008.
DOI : 10.1016/j.matdes.2007.09.002

A. Z. Senalp, O. Kayabasi, and H. Kurtaran, Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis, Materials & Design, vol.28, issue.5, pp.1577-1583, 2007.
DOI : 10.1016/j.matdes.2006.02.015

H. F. El-sheikh, B. J. Macdonald, and M. S. Hashmi, Material selection in the design of the femoral component of cemented total hip replacement, Journal of Materials Processing Technology, vol.122, issue.2-3, pp.309-317, 2002.
DOI : 10.1016/S0924-0136(01)01128-1

B. Piotrowski, A. A. Baptista, E. Patoor, P. Bravetti, A. Eberhardt et al., Interaction of bone???dental implant with new ultra low modulus alloy using a numerical approach, Materials Science and Engineering: C, vol.38, pp.151-60, 2014.
DOI : 10.1016/j.msec.2014.01.048

URL : https://hal.archives-ouvertes.fr/hal-01203048

G. Zhang, H. Yuan, X. Chen, W. Wang, J. Chen et al., A Three-Dimensional Finite Element Study on the Biomechanical Simulation of Various Structured Dental Implants and Their Surrounding Bone Tissues, International Journal of Dentistry, vol.14, issue.2, 2016.
DOI : 10.1111/j.1600-0501.2007.01398.x

A. Guan, V. Staden, H. Guan, R. Van-staden, Y. Loo et al., Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study, J. Title Int. J. Oral Maxillofac. Implant, vol.24, issue.5, 2009.

S. , A. Khanoki, and D. Pasini, Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem, J. Mech. Behav. Biomed. Mater, vol.22, pp.65-83, 2013.

K. B. Hazlehurst, C. J. Wang, and M. Stanford, A numerical investigation into the influence of the properties of cobalt chrome cellular structures on the load transfer to the periprosthetic femur following total hip arthroplasty, Medical Engineering & Physics, vol.36, issue.4, pp.458-466, 2014.
DOI : 10.1016/j.medengphy.2014.02.008

Z. Yosibash, N. Trabelsi, and C. Milgrom, Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations, Journal of Biomechanics, vol.40, issue.16, pp.3688-3699, 2007.
DOI : 10.1016/j.jbiomech.2007.06.017

A. S. Bonnet, M. Postaire, and P. Lipinski, Biomechanical study of mandible bone supporting a four-implant retained bridge Finite element analysis of the influence of bone anisotropy and foodstuff position, Med. Eng. Phys, vol.31, 2009.

G. Dubois, M. Daas, A. S. Bonnet, and P. Lipinski, Biomechanical study of a prosthetic solution based on an angled abutment: Case of upper lateral incisor, Medical Engineering & Physics, vol.29, issue.9, pp.989-998, 2007.
DOI : 10.1016/j.medengphy.2006.10.017

M. Tarala, D. Janssen, and N. Verdonschot, Balancing incompatible endoprosthetic design goals: A combined ingrowth and bone remodeling simulation, Medical Engineering & Physics, vol.33, issue.3, pp.374-380, 2011.
DOI : 10.1016/j.medengphy.2010.11.005

URL : https://doi.org/10.1016/j.medengphy.2010.11.005

L. Wang, J. Kang, C. Sun, D. Li, Y. Cao et al., Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants, Materials & Design, vol.133, 2017.
DOI : 10.1016/j.matdes.2017.07.021

C. Mayer-laigle, C. Gatumel, and H. Berthiaux, Mixing dynamics for easy flowing powders in a lab scale Turbula ?? mixer, Chemical Engineering Research and Design, vol.95, pp.248-261, 2015.
DOI : 10.1016/j.cherd.2014.11.003

D. Wang, S. Mai, D. Xiao, and Y. Yang, Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM, The International Journal of Advanced Manufacturing Technology, vol.17, issue.3, 2015.
DOI : 10.1108/13552541111124770

B. Vandenbroucke and J. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts, Rapid Prototyping Journal, vol.13, issue.4, pp.196-203, 2007.
DOI : 10.1016/S0142-9612(98)00065-9

F. Calignano, Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting, Materials & Design, vol.64, pp.203-213, 2014.
DOI : 10.1016/j.matdes.2014.07.043

P. Majumdar, S. B. Singh, and M. Chakraborty, Elastic modulus of biomedical titanium alloys by nano-indentation and ultrasonic techniques???A comparative study, Materials Science and Engineering: A, vol.489, issue.1-2, pp.419-425, 2008.
DOI : 10.1016/j.msea.2007.12.029

V. Fallah, S. F. Corbin, and A. Khajepour, Process optimization of Ti???Nb alloy coatings on a Ti???6Al???4V plate using a fiber laser and blended elemental powders, Journal of Materials Processing Technology, vol.210, issue.14, pp.2081-2087, 2010.
DOI : 10.1016/j.jmatprotec.2010.07.030

J. J. Kruth, P. Mercelis, J. Van-vaerenbergh, L. Froyen, and M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal, vol.11, issue.1, pp.26-36, 2005.
DOI : 10.1126/science.1086989

URL : http://utwired.engr.utexas.edu/lff/symposium/proceedingsArchive/pubs/Manuscripts/2004/2004-06-Kruth.pdf

I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric analysis of the selective laser melting process, Applied Surface Science, vol.253, issue.19, pp.8064-8069, 2007.
DOI : 10.1016/j.apsusc.2007.02.088

C. Qiu, C. Panwisawas, M. Ward, H. C. Basoalto, J. W. Brooks et al., On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Materialia, vol.96, pp.72-79, 2015.
DOI : 10.1016/j.actamat.2015.06.004

G. Kasperovich, J. Haubrich, J. Gussone, and G. Requena, Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting, Materials & Design, vol.105, 2016.
DOI : 10.1016/j.matdes.2016.05.070

M. Tahara, Y. K. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti???Nb alloy, Journal of Alloys and Compounds, vol.577, 2013.
DOI : 10.1016/j.jallcom.2011.12.113

Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu et al., Influence of oxygen content on microstructure and mechanical properties of Ti???Nb???Ta???Zr alloy, Materials & Design, vol.32, issue.5, pp.2934-2939, 2011.
DOI : 10.1016/j.matdes.2010.11.049

Y. Nii, T. Arima, H. Y. Kim, and S. Miyazaki, Effect of randomness on ferroelastic transitions: Disorder-induced hysteresis loop rounding in Ti-Nb-O martensitic alloy, Physical Review B, vol.34, issue.21, 2010.
DOI : 10.1016/0001-6160(74)90069-8

URL : https://tsukuba.repo.nii.ac.jp/?action=repository_action_common_download&item_id=25173&item_no=1&attribute_id=17&file_no=1

H. Schwab, F. Palm, U. Kühn, and J. Eckert, Microstructure and mechanical properties of the near-beta titanium alloy Ti-5553 processed by selective laser melting, Materials & Design, vol.105, pp.75-80, 2016.
DOI : 10.1016/j.matdes.2016.04.103

J. Nejezchlebová, M. Janovská, H. Seiner, P. Sedlák, M. Landa et al., The effect of athermal and isothermal ?? phase particles on elasticity of ?? -Ti single crystals, Acta Materialia, vol.110, pp.185-191, 2016.
DOI : 10.1016/j.actamat.2016.03.033

J. A. Fife and R. A. Hard, Contrôle de la teneur en oxygène dans un matériau de tantale, pp.652-288, 1990.

W. Elmay, Développement de nouveaux alliages de titane biocompatibles instables mécaniquement à bas module d'Young, 2013.

G. Mussot-hoinard, W. Elmay, L. Peltier, and P. Laheurte, Fatigue performance evaluation of a Nickel-free titanium-based alloy for biomedical application - Effect of thermomechanical treatments, Journal of the Mechanical Behavior of Biomedical Materials, vol.71, pp.32-42, 2017.
DOI : 10.1016/j.jmbbm.2017.02.024

URL : https://hal.archives-ouvertes.fr/hal-01558144

M. F. Ashby, Materials selection in mechanical design, Le Journal de Physique IV, vol.03, issue.C7, 2011.
DOI : 10.1051/jp4:1993701

URL : https://hal.archives-ouvertes.fr/jpa-00251707

Y. Brechet and J. D. Embury, Architectured materials: Expanding materials space, Scripta Materialia, vol.68, issue.1, pp.1-3, 2013.
DOI : 10.1016/j.scriptamat.2012.07.038

URL : https://hal.archives-ouvertes.fr/hal-00933923

M. Ashby, Designing architectured materials, Scripta Materialia, vol.68, issue.1, pp.4-7, 2013.
DOI : 10.1016/j.scriptamat.2012.04.033

V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, Static behavior of lattice structures produced via direct metal laser sintering technology Static behaviour of lattice structures produced via direct metal laser sintering technology, 2017.
DOI : 10.1016/j.matdes.2017.09.003

S. Y. Choy, C. Sun, K. F. Leong, and J. Wei, Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density, Additive Manufacturing, vol.16, pp.213-224, 2017.
DOI : 10.1016/j.addma.2017.06.012

W. P. Syam, W. Jianwei, B. Zhao, I. Maskery, W. Elmadih et al., Design and analysis of strut-based lattice structures for vibration isolation, Precision Engineering, vol.52, 2017.
DOI : 10.1016/j.precisioneng.2017.09.010

URL : https://doi.org/10.1016/j.precisioneng.2017.09.010

A. Yánez, A. Herrera, O. Martel, D. Monopoli, and H. Afonso, Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications, Materials Science and Engineering: C, vol.68, 2016.
DOI : 10.1016/j.msec.2016.06.016

I. Maskery, N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, and I. A. Ashcroft, Compressive failure modes and energy absorption in additively manufactured double gyroid lattices, Additive Manufacturing, vol.16, pp.24-29, 2017.
DOI : 10.1016/j.addma.2017.04.003

URL : https://doi.org/10.1016/j.addma.2017.04.003

V. S. Deshpande, N. A. Fleck, and M. F. Ashby, Effective properties of the octet-truss lattice material, Journal of the Mechanics and Physics of Solids, vol.49, issue.8, pp.1747-1769, 2001.
DOI : 10.1016/S0022-5096(01)00010-2

URL : http://www-mech.eng.cam.ac.uk/profiles/fleck/papers/136.pdf

L. Dong, V. Deshpande, and H. Wadley, Mechanical response of Ti???6Al???4V octet-truss lattice structures, International Journal of Solids and Structures, vol.60, issue.61, pp.60-61, 2015.
DOI : 10.1016/j.ijsolstr.2015.02.020

URL : https://doi.org/10.1016/j.ijsolstr.2015.02.020

M. R. O-'masta, L. Dong, L. St-pierre, H. N. Wadley, and V. S. Deshpande, The fracture toughness of octet-truss lattices, J. Mech. Phys. Solids, vol.98, pp.271-289, 2017.

Z. He, F. Wang, Y. Zhu, H. Wu, and H. S. Park, Mechanical properties of copper octet-truss nanolattices, Journal of the Mechanics and Physics of Solids, vol.101, pp.133-149, 2017.
DOI : 10.1016/j.jmps.2017.01.019

S. R. Johnston, M. Reed, H. Wang, and D. W. Rosen, Analysis of Mesostructure Unit Cells Comprised of Octet-truss Structures

T. Tancogne-dejean, A. B. Spierings, and D. Mohr, Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading, Acta Materialia, vol.116, pp.14-28, 2016.
DOI : 10.1016/j.actamat.2016.05.054

M. Suard, Caractérisation et Optimisation de structures treillis fabriquées par EBM, 2015.

M. L. Wolford, K. Palso, and A. Bercovitz, Hospitalization for Total Hip Replacement Among Inpatients Aged 45 and Over: United States, 2000.

C. M. Linter, Neuropsychiatric aspects of trace elements, Br. J. Hosp. Med, vol.34, issue.6, pp.361-366, 1985.

D. Zaffe, C. Bertoldi, and U. Consolo, Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti???6Al???4V screws, hydroxyapatite granules, Biomaterials, vol.25, issue.17, pp.3837-3844, 2004.
DOI : 10.1016/j.biomaterials.2003.10.020

M. J. Ciarelli, S. A. Goldstein, J. L. Kuhn, D. D. Cody, and M. B. Brown, Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography, Journal of Orthopaedic Research, vol.17, issue.5, pp.674-682, 1991.
DOI : 10.1098/rspa.1982.0088

J. Y. Rho, M. C. Hobatho, and R. B. A&ma&, Relations of mechanical properties to density and CT numbers in human bone, Medical Engineering & Physics, vol.17, issue.5, pp.347-355, 1995.
DOI : 10.1016/1350-4533(95)97314-F

J. C. Lotz, T. N. Gerhart, W. C. Hayes, P. Of, . Bone et al., Mechanical properties of metaphyseal bone in the proximal femur, Journal of Biomechanics, vol.24, issue.5, pp.317-329, 1991.
DOI : 10.1016/0021-9290(91)90350-V

G. Bergmann, A. Bender, J. Dymke, G. Duda, and P. Damm, Standardized Loads Acting in Hip Implants, PLOS ONE, vol.96, issue.19, p.155612, 2016.
DOI : 10.1371/journal.pone.0155612.t007

URL : https://doi.org/10.1371/journal.pone.0155612

M. O. Heller, G. Bergmann, G. Deuretzbacher, L. D. Urselen, M. Pohl et al., Musculo-skeletal loading conditions at the hip during walking and stair climbing, Journal of Biomechanics, vol.34, issue.7, pp.883-893, 2001.
DOI : 10.1016/S0021-9290(01)00039-2

A. Bender and G. Bergmann, Determination of typical patterns from strongly varying signals, Computer Methods in Biomechanics and Biomedical Engineering, vol.15, issue.7, pp.761-769, 2012.
DOI : 10.1016/j.medengphy.2008.07.011

A. D. Speirs, M. O. Heller, G. N. Duda, and W. R. Taylor, Physiologically based boundary conditions in finite element modelling, Journal of Biomechanics, vol.40, issue.10, pp.2318-2323, 2007.
DOI : 10.1016/j.jbiomech.2006.10.038

M. Heyland, A. Trepczynski, G. N. Duda, M. Zehn, K. Schaser et al., Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load, Medical Engineering & Physics, vol.37, issue.12, pp.1180-1185, 2015.
DOI : 10.1016/j.medengphy.2015.10.002

J. Stolk, N. Verdonschot, and R. Huiskes, Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction, Journal of Biomechanics, vol.34, issue.7, pp.917-926, 2001.
DOI : 10.1016/S0021-9290(00)00225-6

G. N. Duda, E. Schneider, and E. Y. Chao, Internal forces and moments in the femur during walking, Journal of Biomechanics, vol.30, issue.9, pp.933-941, 1997.
DOI : 10.1016/S0021-9290(97)00057-2

A. A. Shetty, R. Slack, A. Tindall, K. D. James, and C. Rand, Results of a hydroxyapatitecoated (Furlong) total hip replacement, J Bone Jt. Surg [Br], vol.87, pp.1050-1054, 2005.
DOI : 10.1302/0301-620x.87b8.16011

URL : http://bjj.boneandjoint.org.uk/content/jbjsbr/87-B/8/1050.full.pdf

M. Fischer, D. Joguet, G. Robin, L. Peltier, and P. Laheurte, In situ elaboration of a binary Ti???26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders, Materials Science and Engineering: C, vol.62, pp.852-859, 2016.
DOI : 10.1016/j.msec.2016.02.033

URL : https://hal.archives-ouvertes.fr/hal-01515203

M. Fischer, P. Laheurte, P. Acquier, D. Joguet, L. Peltier et al., Synthesis and characterization of Ti-27.5Nb alloy made by CLAD?? additive manufacturing process for biomedical applications, Materials Science and Engineering: C, vol.75, pp.341-348, 2017.
DOI : 10.1016/j.msec.2017.02.060

P. Didier, B. Piotrowski, M. Fischer, and P. Laheurte, Mechanical stability of custom-made implants: Numerical study of anatomical device and low elastic Young's modulus alloy, Communications à des congrès : ? Communications avec actes dans un congrès international (ACTI), pp.399-409, 2017.
DOI : 10.1016/j.msec.2016.12.031

M. Fischer, D. Joguet, L. Peltier, and P. Laheurte, In situ titanium alloy elaborated by selective laser melting of Ti and Nb mixed powder. Ti-2015: The 13th World Conference on Titanium, Proceedings of the 13th World Conference on Titanium, pp.1735-1739, 2015.
DOI : 10.1002/9781119296126.ch292

L. Coz, M. Fischer, R. Piquard, A. D-'acunto, P. Laheurte et al., Micro cutting of Ti-6Al- 4V parts produced by SLM process. 16th CIRP Conference on modeling of machining operations, pp.228-232, 2017.

M. Fischer, P. Laheurte, L. Peltier, and G. Robin, Investigation of the in-situ elaboration of alloys by selective laser melting of mixed elemental powders, EUROMAT European Congress and Exhibition on Advanced Materials and Processes, 2017.

M. Fischer, D. Joguet, P. Acquier, and P. Laheurte, Material properties comparison of beta titanium alloy Ti-27.5Nb processed by two different (powder blown and powder bed) additive manufacturing technologies, ICWAM International conference on welding and additive manufacturing, 2017.

S. Journées-annuelles, Matériaux pour le domaine aérospatial : de l'innovation dans l'air - Structure des matériaux en fabrication additive, 2016.

P. Laheurte, M. Fischer, D. Joguet, and L. Peltier, Réalisation in situ par SLM d'alliages de titane à partir de poudres mixtes : exemple sur un alliage TiNb pour applications biomédicales. Colloque SF2M : La métallurgie en fabrication additive, 2015.

M. Fischer, P. Acquier, L. Peltier, D. Boisselier, P. Mille et al., Characterization of direct laser deposited low modulus Ti-26Nb alloy on Ti-6Al-4V for biomedical applications, ICALEO International Congress on Applications of Lasers & Electro-Optics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01513095

M. Fischer, P. Mille, J. Krier, H. Pelletier, and P. Laheurte, Finite Element Analysis and Characterization of a New Low Modulus Titanium Alloy Used in Two THA Designs, 21st Congress of the European Society of Biomechanics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01513408

M. Fischer, P. Acquier, L. Peltier, D. Boisselier, P. Mille et al., Caractérisation d'un alliage de Ti-26Nb déposé par déposition laser directe sur un substrat de Ti-6Al-4V pour des applications biomédicales. Journées technologiques de l'association française du titane, ? Communications par affiche dans un congrès national ou international, 2015.

M. Fischer, D. Joguet, L. Peltier, and E. P. Laheurte, Fabrication in situ d'un alliage de Ti-Nb par procédé de fusion laser sur lit de poudre (SLM) à partir de poudres élémentaires de Ti et de Nb Journée matériaux pour la santé, 2015.