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Abstract

This thesis was dedicated to evaluate via dosimetric tools and statistical methods

the global exposure of a population to Radio Frequency ElectroMagnetic Fields

(EMFs) by taking into account different technologies, usages, environment etc. We

analyzed for the first time the average population exposure to third generation

network (3G) induced EMFs, from both uplink and downlink radio emissions

in different countries, geographical areas, and for different wireless device usages.

Results, derived from device usage statistics, show a strong heterogeneity of exposure,

both in time and space. Among those results, we show that, contrary to popular

belief, exposure to 3G EMFs is dominated by uplink radio emissions, resulting

from voice and data traffic, and average population EMF exposure differs from one

geographical area to another, as well as from one country to another, due to the

different cellular network architectures and variability of mobile usage. Thus the

variability and uncertainties linked to these influencing factors were characterized.

And a variance-based sensitivity analysis of the global exposure was performed

for the purpose of simplifying its evaluation. Finally, a simplified methodology

based on advanced statistical tools was proposed to evaluate the day-to-day global

LTE induced EMFs exposure of a population taking into account the variability

and uncertainties linked to propagation environment, usage, as well as EMFs

from personal wireless devices and base stations. Results have highlighted the

importance of received power density from base stations to the issue of global

exposure induced by a macro LTE network.





Résumé

De nos jours, les équipements de communication sans fil utilisant les radiofréquences

(RF) sont utilisés partout et par tous. Comme le montre les études de TNS

Sofres [TNS, 2010] la population française utilise de manière massive les moyens de

communication sans fils. Plus de 80% des français ont et utilisent un mobile. Des

segments tels que celui de plus des 12 ans sont équipés à 100 %. Paradoxalement,

si l’utilisation des équipements de communication sans fil est aujourd’hui massive,

l’inquiétude du public vis-à-vis des hypothétiques effets sanitaires des ondes RF

ne s’est pas atténuée.

Dans la plupart des études caractérisant l’exposition de la population aux champs

électromagnétiques (EM) RF, une approche pire cas est souvent adoptée. D’un

côté, il existe une grande confusion autour de ces questions et notamment autour

de celle liée à la maitrise de l’exposition. L’exposition est souvent perçue comme

étant majoritairement induites par les antennes relais. Aujourd’hui de nombreux

travaux relatifs à l’exposition ont été menés en «statique» et considèrent séparément

l’exposition induite par les mobiles et les stations de bases. On quantifie les niveaux

d’exposition en termes de débit d’absorption spécifique maximal aux équipements

personnels de communication sans fil et de l’autre les niveaux de champs maximum

induits par les stations de base. Cette approche ne permet cependant pas de

caractériser l’exposition réelle de la population aux ondes RF.

L’exposition induite par les champs émis par les antennes relais et les mobiles

dépend de l’usage (localisation du mobile et type usage – data, voix...), de la

«distance» aux points d’accès, de la technologie, des réseaux (e.g., macro cellulaire)

et de la gestion de puissance associée (e.g., gestion des handovers en 2G et 3G). La

mobilité, la diversité des usages et des technologies font que, pour une personne,

l’exposition globale est le résultat de nombreuses configurations qui dépendent des

habitudes de cette personne et des capacités offertes par le réseau. L’exposition d’une

personne passant du temps dans les transports en commun, travaillant dans une zone

dense et habitant en banlieue va recouvrir des configurations différentes de celles

rencontrées par une personne habitant une grande ville et ayant la possibilité

d’aller travailler à pied.

L’étude de l’exposition d’une population passe donc d’abord par la segmentation

des différentes configurations possibles et l’évaluation de l’exposition induite par les

réseaux dans ces configurations. De gros efforts ont été menés depuis 20 ans dans les

domaines des méthodes numériques pour évaluer l’exposition associée aux ondes EM.

Aujourd’hui les progrès des calculateurs, des méthodes numériques, de déformation

de structure et les méthodes statistiques permettent d’évaluer l’exposition associée



à ce type de configurations même si des travaux complémentaires sont nécessaires

pour bien maitriser les incertitudes associées. L’analyse de l’exposition globale de la

population passe ensuite par la pondération de ces différents résultats en fonction

des réseaux, des technologies, de la densité de population, de l’urbanisme...

Les travaux réalisés dans cette thèse ont donc été consacrés à construire et

valider une nouvelle méthode d’évaluation de l’exposition globale d’une population

aux ondes EMF-RF. Cette nouvelle méthode se propose d’explorer les activités

journalières des gens dans le but de caractériser l’exposition d’une population,

dans une zone géographique donnée, induite par un réseau dans son ensemble, des

stations de base aux équipements de communication sans fil, prenant en compte les

différentes technologies et les différents usages. Finalement, analyser les paramètres

influant pouvant être utilisés pour optimiser l’évaluation de l’exposition globale.

Ces travaux sont complémentaires et en synergie avec le projet FP7 Low

Electromagnetic Fields Exposure Network (http://www.lexnet.fr/) dédié à la

réduction de l’exposition d’une population induite par les nouveaux réseaux.
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LARS . . . . . Least Angle Regression Selection.

LOOCV . . . . Leave-One-Out Cross Validation.

LHS . . . . . . Latin Hypercube Sampling.

MRI . . . . . . Magnetic Resonance Imaging.

PC . . . . . . . Polynomial Chaos.

PLE . . . . . . Path Loss Exponent.

PDF . . . . . . Probability Density Function.

QoS . . . . . . Quality of Services.

RF . . . . . . . Radio Frequency.

RNC . . . . . . Radio Network Controller.

SAR . . . . . . Specific Absorption Rate.

SAM . . . . . . Specific Anthropomorphic Mannequin.

3G . . . . . . . third generation of mobile telecommunications technology

UMTS . . . . . Universal Mobile Telecommunication System.

UE . . . . . . . User Equipment.
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20 1. General introduction

Wireless communication technologies, since their introduction, have evolved very
quickly and people have been brought in 30 years into a much closer world. Indeed
radio signals on the Global System for Mobile Communication (GSM)), Universal
Mobile Telecommunication System (UMTS) or Long Term Evolution (LTE) networks
are covering our homes, offices, or means of transport. In parallel people are more
and more exposed to radiofrequency (RF) electromagnetic fields (EMF). As a
consequence, people’s attentions around health risks of exposure to RF EMFs
have grown just as much as their usages of wireless communication technologies.

Exposure characterization to RF EMFs is not a new research domain. Great
efforts have been carried out to find the evidence of adverse health effects from
the exposure to RF EMFs in recent decades. While according to the World Health
Organization, there was no convincing evidence that exposure to RF EMFs shortens
the life span of humans. The International Agency for Research on Cancer concluded
in 2011 that RF EMFs are possibly carcinogenic to humans [WHO, 2011].

Among the public, there still exists great confusion around the issue of RF
EMF exposure. An in-depth survey about the perceived sources of daily RF EMFs
exposure has been conducted from April to June 2013 in France, Germany, Portugal,
Spain, Romania, Montenegro and Serbia [Freudenstein et al., 2014]. Results
indicated that the public is more concerned about Base station (BTS)
than other RF EMF sources (e.g., wireless devices) as one can see the BTS
are high-powered RF transceivers that transmit all day long. In contrast, mobile
handsets are low-powered RF transmitters, e.g., in busy mode, a GSM mobile phone
emits about 20-50 % of its maximum transmission power (2 W) [Wiart et al., 2000]
and a UMTS mobile phone emits a few percent of its maximum transmission power
(0.25 W) [Gati et al., 2009]. But as a matter of fact, the value of peak power
density radiated by BTS (or access points) is highly dependent on the distance
[Kamo et al., 2011]. The study of Thuróczy et al. [Thuróczy et al., 2010] gives an
overview of measurement performed in European sites. They have shown that
more than 60 % of measured total EMF exposure values were below 0.003 W/m2,
less than 1 % above 0.095 W/m2 and only less than 0.1 % were above 1 W/m2

which are all below the recommended exposure limit range (4 – 10 W/m2) for
the public. On the contrary the exposure due to mobile phones should not be
underestimated since personal wireless devices are used very close to the human
body. In Joseph et al. [Joseph et al., 2010] they have thus shown that the highest
RF-EMF exposure might be measured in transport vehicles (i.e. train, car or
bus), due to radiation from mobile phones.

The issue of exposure to RF EMFs induced by BTS (downlink) or by mobile
devices (uplink) is not a new problematic but attention should be paid here
when dealing with real exposure assessment issue. The uplink and downlink
exposures should not be considered separately. A strong link between the power
transmitted by wireless devices and the power received from BTS was observed on
the operating wireless network [Gati et al., 2010]. Furthermore, the assessment of
real EMF exposure of a population is the result of many exposure configurations
due to the diversity of technologies, usages, mobility, people’s habits as well as other
influencing factors. It was therefore a challenge to assess the RF-EMF exposure of
a population by considering all the different parameters that may influence it.

In fact, influencing parameters taken into account in the assessment
of the day-to-day EMF exposure are highly variable over time and space.
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Thus communication traffics generated by wireless devices are unbalanced among
users. Emitted and received powers as well as data rates depend on the load of
wireless networks, cellular network architectures as well as usages of devices for voice
or data services and plenty of other parameters. Hence, by solving the challenge of
how to manage and characterize the uncertainties associated with these influencing
parameters, the variability linked to the global EMF exposure could be for the first
time assessed. Furthermore, through the approach of uncertainty propagation and
sensitivity analysis, the influence of random influencing parameters on the model’s
output which is the global EMF exposure could be also assessed.

The work carried out in this thesis was therefore dedicated to evaluate via
dosimetric tools and statistical methods the global exposure of a population to
RF-EMF by taking into account different technologies, usages, environments, etc.,
considering both uplink and downlink radio emissions. The thesis also involved
setting up a new exposure metric that would explore the daily activities and usages
of people in order to assess their average EMF exposure induced by a wireless
communication network as a whole.

The study performed in the framework of this thesis has partially contributed
to the European Seventh Framework Program (FP7) Low Electromagnetic Fields
Exposure Network (LEXNET) project (http://www.lexnet.fr/). In 2013, the
European Union has specifically expressed the need for low-EMF technologies in
FP7, by designating low-EMF system designs as a target outcome. This target
was specifying the need for new network topologies and management that would
reduce the EMF levels without compromising the user’s Quality of Services (QoS).
To respond to this need, the LEXNET project has been launched in November
2013. It involved 17 partners from 9 European countries: France, United Kingdom,
Spain, Belgium, Germany, Portugal, Romania, Republic of Serbia, and Republic
of Montenegro. The main objective was to reduce the exposure of a population
induced by the new networks and integrating the issue of exposure to RF-EMF into
the heart of the design of wireless networks. The thesis results were specifically
used in the work package dedicated to the development of a new RF-EMF exposure
metric assessing the global exposure of a population to a network as a whole.

The thesis manuscript is organized as follows:
Chapter 2 introduces the state of the art on existing RF-EMF exposure metrics

as well as assessing methods currently used to quantify the human exposure induced
by RF EMFs, that is to say, three frequently used exposure metrics dedicated to
different exposure conditions and one newly developed metric.

Chapter 3 presents the first thorough study of average population exposure to
third generation of mobile telecommunications technology (3G)-induced EMFs, from
both uplink and downlink radio emissions in different countries, geographical areas,
and for different wireless device usages. First the collected sets of mobile usage
data in France and Serbia are introduced and the results of a statistical analysis
performed for each set of data to characterize and quantify the differences among
mobile device usages are presented. Then different scenarios of macro 3G networks
are implemented finally leading to the RF-EMF exposure to 3G networks assessment
using device usage statistical data and through the LEXNET approach and metric.

Chapter 4 is dedicated to the variance-based sensitivity analysis of the complex
exposure metric, called Exposure Index (EI), developed within the European project
LEXNET. To this end, the variability and uncertainties linked to the response
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of the system (EI in our case) with multiple random variables (influencing input
parameters on EI) were determined, the variability of input parameters being
characterized through statistical methods. These statistical methods dedicated to
uncertainty propagation and sensitivity analysis are presented in the first place
and the main findings and conclusion are given at the end.

Chapter 5 presents finally a simplified methodology based on advanced statistical
tools to evaluate the day-to-day global EM field exposure of a population taking
into account the variability and uncertainties linked to the propagation environment,
information and communication technology usage data, as well as EM fields from
personal wireless devices and base stations. A sensitivity analysis was carried out
in order to assess the influence of these parameters on EM field exposure.
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24 2.1. Context

2.1 Context

RF electromagnetic environment has significantly changed over the last decade.
New wireless technologies are exposing us to new RF electromagnetic radiations
(Fig. 2.1). Wireless communications play a significant role in people’s everyday
lives and the extremely rapid technological evolution results in phenomenal changes
in the usage of wireless devices.

Figure 2.1: Commercially exploited bands of the RF spectrum.

On one hand, new devices and new generations of wireless networks have
made many new applications popular. These applications (mainly supported by
smartphones) are consuming more and more data as illustrated in Figure 2.2. On
the other hand, the number of mobile subscribers increased significantly during
the last years. According to a survey carried out in France [TNS, 2010], 82% of
those over 12 years old reported using a mobile phone (Fig. 2.3). But paradoxically,
along with expansions both in terms of mobile technologies and subscribers, the
public concern around EMF health risk has grown just as much.

Figure 2.2: Global mobile data per month traffic forecast by type of device. Source:
Cisco VPN Mobile Forecast 2014
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Figure 2.3: Mobile owners (personal or professional)

Facing public’s risk perception about possible health effects of RF EMFs, it has
become necessary to characterize the human exposure to RF EMFs. To assess RF
EMF exposure different approaches are available. Compliance testing and safety stan-
dards such as International Commission on Non-Ionizing Radiation Protection (IC-
NIRP) 1998 [Guideline, 1998], IEEE C95.1 1991 [IEEE Standards Coordinating Committee 28, 1992
and Federal Communications Commission 2001 [FCC, 2001] are based on worst-
case exposure assessment while epidemiological studies will emphasize the realistic
exposure assessment. The human RF EMF exposure can be characterized
using different quantities. As a matter of fact, the nature of the field and
the characteristics of the source (e.g., frequency, intensity, duration of exposure,
etc.) differ considerably resulting in a wide variety of quantities which might be
used as exposure metrics, for instance:

• Electric field (E) is a vector quantity defined as the electric force per unit
charge expressed by volts per meter (V/m).

• Magnetic field (H) is a vector quantity, which, together with the magnetic flux
density, specifies a magnetic field at any point in space expressed by amperes
per meter (A/m).

• Power density (S) is the appropriate quantity used for very high frequencies,
where the depth of penetration in the body is low. It is the radiant incident
power perpendicular to a surface, divided by the area of the surface (W/m2).

• Specific energy Absorption (SA) is the energy absorbed per unit mass of
biological tissue expressed in joules per kilogram (J/kg). It is accepted to
measure non-thermal effects from pulsed microwave radiation.

• Specific Absorption Rate (SAR) is the rate at which energy is absorbed per
unit mass of body tissue and is expressed in watts per kilogram (W/kg).
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Among these quantities, electric, magnetic fields, power density and

SAR have been commonly adopted as exposure metrics. However, different
exposure conditions can be present, such as individual- or multiple sources, near-
or far-field and short- or long-term exposure. Thus the existing exposure metrics
can be classified as follows:

• Incident field metrics in terms of power density, electric and magnetic
fields.

• Absorption metrics, assessing the rate of RF energy absorption in the
human body in terms of SAR.

• Dose metrics which are the combination of the field or absorption metric
and the exposure duration.

In the following sections, these three exposure metrics are respectively presented.

2.2 Incident field metrics

As an electromagnetic wave travels through space, its energy is transferred from
the source to receivers. The rate of energy transfer per unit area is expressed as the
product of the electric field strength and the magnetic field strength (Equation 2.1).

S = E × H (2.1)

where S is the Poynting vector, E is the electric field vector and H is the magnetic
field vector. As a result, the exposure induced by radiation originating from incident
EMFs can be determined through power density, electric and magnetic fields.

Specifically, when considering far-field [Rappaport et al., 1996], EMFs can be
expressed as follows:

S =
E2

Z0

= Z0 × H2 (2.2)

with S the power density in watts per meters square (W/m2), E the root-mean-
square (RMS) electric field strength in V/m, H the RMS magnetic field strength
in A/m and Z0 the impedance of free space, equal to 377 ohms. Thus in the far
field of an antenna, it is sufficient to assess exposure to incident EMFs by the
incident electric fields or the power density.

In practice, incident electric fields or the power density can be as-

sessed through numerical investigations or by in-situ measurements.
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2.2.1 Numerical simulation assessment

Exposure assessment via the approach of numerical simulations allows extracting
detailed information about the field strengths distribution. In this case, three-
dimensional ray-based tools are often used to predict the field strength distribu-
tion in a given area, e.g., indoors [Chaigneaud et al., 2001, Lostanlen and Gougeon, 2007,
Lai et al., 2011], urban area [Allegretti et al., 2005, Corre and Lostanlen, 2007, Lai et al., 2012]
etc.

Ray-based methods are based on geometrical optics that is widely used in high
frequency propagation modeling. When accurate building data base is available,
they allow calculating the possible rays between a given transmitter and receivers.
Depending on the ways of ray construction techniques, ray-based methods involve
ray tracing and ray launching approaches [COST Action, 1999].

• Ray tracing produces (Fig. 2.4) precise rays between a transmitter and a
receiver. Therefore, when large receiving locations are considered, the ray
tracing approach suffers an exhaustive ray path-finding process which leads
to large computation time and processing power.

• Ray launching (Fig. 2.5) involves a number of rays launched from the source
in all relevant directions. Each ray is traced until it arrives to the receiving
location. Finally field strength is summed up at each of the receiving locations.
Therefore its computation time is independent of the number of prediction
locations. To improve the prediction accuracy, a large set of rays has to be
launched, whereas the computation time will increase. This approach was
adopted in the thesis for the purpose of modeling the RF waves propagation.

Figure 2.4: Ray tracing approach Figure 2.5: Ray launching approach

2.2.2 In-situ measurement assessment

In-situ measurements can be carried out with the help of various field measure-
ment equipments (Fig. 2.6). Wireless communication technologies typically cover
the RF range from 700 MHz to 6 GHz and each of them operates in its allocated
frequency band. Consequently, when measuring the exposure, we do separate the
measurements into two categories, respectively, broadband and frequency-selective
(also known as narrow-band).
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Figure 2.6: Commercial field measurement equipments: NBM-550 broadband field
meter, SRM-3006 selective radiation meter, EME SPY exposimeters (from left to right)

Broadband measurements are performed using a field meter [Website Narda.us, 2016]
equipped with a broadband probe, which is a device sensing any signal spanning
several GHz at once. Finally, a single exposure value (e.g., a value in V/m,
or in W/m2) is obtained for a whole frequency range. In Alanko et al. study
[Alanko et al., 2008], one broadband meter was used to map the field strengths
around the antenna at different distances and heights in order to determine the
safety zones for workers. Furthermore, many exposure studies [Paniagua et al., 2014,
Abdelati, 2015, Gallastegi et al., 2016] carried out in the framework of risk assess-
ment were based on the broadband measurements.

In the meantime, frequency-selective measurements for which the mea-
surement system consists of a field antenna and a spectrum analyzer (or a fre-
quency selective receiver) allow monitoring the frequency range of interest. By
providing each frequency band with one exposure value, one can identify the
importance of a communication technology in the total exposure. In previous
studies [Joseph et al., 2006a, Joseph et al., 2012, Gajšek et al., 2015], by perform-
ing narrow-band spectrum analyzer measurements, compliance of exposure due to
signals from GSM, UMTS, LTE, WiMAX, etc. with safety limits was tested:
procedures for measurements in the vicinity of BTS have been developed in
[Joseph et al., 2002, Joseph et al., 2006b, CENELEC, 2008]. Moreover, in epidemi-
ological studies [Knafl et al., 2008, Frei et al., 2009, Joseph et al., 2010, Ibrani et al., 2016],
another narrow-band device was used: personal exposure meters (PEM) also
known as exposimeters (e.g., ESM 140 [Website Maschek.de, 2016], EME Spy
[Website Satimo.com, 2016]). Exposimeters are worn by a person and easy to handle
in using measurement protocol [Mann, 2010, Röösli et al., 2010], however not suit-
able for accurate field assessment (e.g., the presence of the human body at the vicinity
of the exposimeter compromises its measurement accuracy [Kwate et al., 2016]).
Bolte et al. study [Bolte et al., 2011] concluded that measurements performed by
exposimeters tend to underestimate the actual exposure. Therefore, it has been
proven that a maximum frequency-dependent correction factor of 1.1–1.6 should
be applied to the electric field [Bolte et al., 2011]. Furthermore, exposimeters
have the drawback of the limitation in detection range (e.g., EME SPY 140 with
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measurement range from 0.005 - 10 V/m) which may lead to a part of non-detected
through field measurements. However in reality, the probability of measurement
below the detection level can be ignored.

It is important to note that exposure to RF varies across individuals,
time and space. Bornkessel et al. study [Bornkessel et al., 2007] found that a
measurement at a certain time or at a fixed location may not be representative for the
time or spatially averaged exposure, or for the maximum possible exposure to a base
station (BT). In fact, some standards have already defined the measurement
procedures spatially and temporally. E.g., IEC 62232:2011 [IEC, 2011] defines
measurement grids for spatial-averaging measurements. ICNIRP [Guideline, 1998]
specifies a 6 minutes time-averaging period for measuring the level of squared RMS
field and the power density. Nonetheless, longer periods measurements (i.e., more
than 6 minutes) are in practice difficult to execute, and are time-consuming and
expensive. In Joseph et al. [Joseph et al., 2009] they investigated how short-period
measurements can be related to the actual maximal and average exposure extracted
from longer measurement runs, for example performed over a week. Anyhow, in
general, compliance is tested by performing measurements during a short
time-period (i.e., less than 6 minutes) and by extrapolating a worst-
case measurement (e.g., maximum emitted power) to determine the
maximum possible exposure. Overall, different approaches exist in assessing
human exposure via field metric. One has to be selected depending on the objective
of exposure assessment.

2.3 Absorption metrics

Another frequently used exposure metrics are absorption metrics in terms of
SAR. As we know, RF fields can penetrate tissues in the wide range of 1 MHz to
10 GHz. The lower the frequency is, the deeper the penetration. Meanwhile it
also produces heating due to power absorption. The power absorbed by the tissue
can be characterized by SAR. SAR is the measure of the rate at which power is
absorbed by the human body when there is exposure to a RF EMF and is usually
averaged over the whole body (so called whole-body exposure) or a small volume
like 1 g or 10 g of contiguous tissue (so called localized SAR) and over a certain
time period (e.g., 6 minutes according to ICNIRP guidelines). The unit of SAR is
expressed in watt per kilogram. In the mathematical formulation as presented below
(Equation 2.3), SAR is linked to the electric field (magnetic losses are negligible),
to the conductivity as well as the density of the tissue.

SAR =
σE2

2ρ
(2.3)

where σ is the electrical conductivity is S/m, E the peak amplitude of electric field
in the tissue, in V/m and ρ the density of the tissue in Kg/m3.

In addition, studies [Governmental Industrial Hygienists, 1995] have shown that
a rise of 1°C in body temperature caused by energy absorption is considered
as a dominant factor inducing adverse health effects such as heat exhaustion
and stroke. Moreover, if the whole-body exposure is about 4 W/kg during 30



30 2.3. Absorption metrics

minutes, the body core temperature can increase of 1°C [Shellock and Crues, 1987,
Magin et al., 1992, Hirata et al., 2007]. And in the case of localized exposure,
cataracts can be induced in rabbits ‘eyes when localized SAR is around 100 W/kg

for 2-3 hours exposure duration [Guy et al., 1975].
Taking into account these acute established effects, SAR was adopted as

an exposure limit indicator. The ICNIRP 1998 guidelines considered 4 W/kg

(whole-body SAR) and 100 W/kg (localized SAR) as threshold values. Then a
safety factor of 50 (resp. 10) was applied to the threshold in order to define the
basic restrictions1 of exposure for the public (resp. occupational). Some basic
restrictions for time varying electric and magnetic fields for frequencies from 10
MHz to 10 GHz for individuals defined by ICNIRP [Guideline, 1998] are shown in
Table 2.1. ICNIRP distinguished between the head and trunk region and the limbs,
since most vital organs are located in the head and trunk of the body.

Table 2.1: Basic restrictions for time varying electric and magnetic fields for frequencies
from 10MHz up to 10 GHz

General Public Occupational

——————– W/kg——————
Whole body average SAR 0.08 0.04
Localized SAR (limbs) 4 20
Localized SAR (head and trunk) 2 10

Averaging time of 6 minutes. Local SAR (Specific Absorption Rate) is determined over
the mass of 10 g.

To date, for long-term exposure to low level of EMFs, no adverse health effects
were established. But since factors of 50 and 10 were used in order to define
the basic restrictions for general public and occupational, we may consider that
ICNIRP recommendations cover long-term effects in the frequency range from
10 MHz to 10 GHz as well.

At the same time, as SAR is difficult to measure, reference levels2 were defined
related to the basic restrictions for practical exposure assessment purposes. These
reference levels were defined in function of frequencies to limit the incident strength
fields to levels inducing a whole-body exposure equal to basic restrictions. Figure
2.7 shows the reference levels for EMF strength relative to the frequency.

One should note that measurements of SAR inside the human body are im-
possible. Therefore, studies to evaluate SAR values in a human were

carried out either by using computational methods or by experimental

measurements in phantoms.

1 Basic restriction: restrictions on exposure to time-varying electric, magnetic and electromag-
netic fields which are based directly on established health effects and biological considerations.

2 Reference levels: these levels are established in order to limit the exposure below the basic
restrictions for practical exposure assessments. The reference levels can be derived from relevant
basic restrictions using measurements/ computational techniques.
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Figure 2.7: Reference levels of EMF strength for general public and occupational

Note: reference values in V/m can be conversed to W/m2 through Equation 2.2

2.3.1 Computational method assessment

Computational methods, such as the Finite-Difference Time-Domain (FDTD)

method [Hagness and Taflove, 2000], have been largely used over the

last decade to assess numerically the EMFs absorbed by the biological

tissues. Such computational method relies on realistic heterogeneous body

models and EM sources.

2.3.1.1 Numerical human body models

Existing heterogeneous body models have been built using large data sets
obtained from Magnetic Resonance Imaging (MRI), computer tomography or
anatomical images. These heterogeneous body models are represented by voxel
images of thin slices of the body, and each voxel corresponds to a particular type
of body tissue. Several human models have already been developed. E.g., the
widely used Virtual Family (VF) [Christ et al., 2009], which is a family of MRI
based models (Fig. 2.8). In the thesis, we used the SAR values calculated for
near-field and far-field exposure (near and far-field sources are presented in next
section) for two anatomical human body models in the VF, Duke, a 34-year-old
male and Eartha, an 8-year-old girl.

Furthermore, dielectric properties (i.e., permittivity and conductivity expressed
in Siemens per meter (S/m)) of body tissues for each frequency band [Gabriel et al., 1996]
are also required to use computational methods. Peyman et al. study [Peyman and Gabriel, 2010]
has shown that some of the dielectric properties of the tissues vary significantly with
age. For this reason, the dielectric properties of the tissues were experimentally
calculated using different mammals at different ages (e.g., adult sheep, rats aged
30-days, pigs of 10 kg).
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Figure 2.8: The Virtual Family: Duke, Ella, Billie, Thelonious (from left to right)

2.3.1.2 EM sources

The modeling of radiations from EM sources and wave propagations in het-
erogeneous environments take an important place in computational evaluation of
exposure. To complete the exposure configurations, radiations of EM sources
should be defined when they are near or far from the human body.

Near-field sources (used close to the human body) such as mobile phones,
tablets, computers, etc. were modeled on a basis of commercial devices using
software simulations (e.g., Matlab). The voxel digital models take into account
the characteristics of real devices like the dimensions, the battery, the screen, the
Printed Circuit Board and the antenna. One digital model of mobile handset
[Pinto et al., 2011] is presented in Figure 2.9. This mobile handset is a Personal
Digital Assistant model of dimensions 5.4 × 1.6 × 1.5 cm (with a 2 mm resolution)
with a dipole type antenna mounted at the bottom of the mobile phone, operating
at 1940 MHz. The localized SAR (i.e., 1 g or 10 g of contiguous tissue, organ-
specific3) in numerical human body models can be characterized using these near-
field sources under different exposure conditions. In previous studies dedicated
to exposure induced by a handset phone, the averaged SAR over 10g in the
head, over 1g in the brain or in different anatomical brain structures, etc. were
estimated, considering age-dependent changes of the anatomy and dielectric tissue
properties [Christ et al., 2010], considering different handset phone’s positions
[Ghanmi et al., 2014] and their usages (e.g., short message service, multimedia
messaging service, video, etc.) [Hadjem et al., 2010], even considering the variability
of the delivered input power of a handset phone for given propagation conditions
[Krayni et al., 2016].

Far-field sources are located at a great distance (varies from meters to
kilometers) from the human body. Base stations or access points are, for example,
far-field sources. Thus, the EM radiations from BTS can be considered as plane
waves, with a specific incidence direction, having a propagation vector

−→
K and

an amplitude A (V/m). To numerically simulate these radiations in FDTD, the
technique known as the Huygens box is used through the principle of equivalence

3The organ-specific SAR can only be assessed by computational methods
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Figure 2.9: Example of digital model of mobile phone

[Merewether et al., 1980, Holland and Williams, 1983, Benkler et al., 2009]. The
numerically simulation adapted to FDTD is done by inserting a numerical human
model in a virtual box (so called Huygens box) whose dimensions are slightly larger
than the human body. And taking into account the description of a plane wave’s
radiation, the equivalent currents corresponding to the plane wave around Huygens
box are computed with a certain resolution (this resolution should be equal to the
one used for the human model). Through the approach of equivalence principle,
the excitation of equivalent currents allows to evaluate the field induced by such
radiations in the entire Huygens box. In this way, whole body or localized SAR
of the numerical human model induced by the plane wave can be assessed, for
instance, the study presented in [Conil et al., 2008].

2.3.2 Experimental measurement assessment

Using experimental measurement assessment the electric field at various points
inside simple phantoms is usually experimentally measured with a dosimetric
setup (Fig. 2.10). This dosimetric setup consists of a robotically positioned probe
(calibrated for measuring electric fields in tissue-equivalent simulating liquid) and of a
SAR phantom filled with tissue-equivalent simulating liquid. The robot is controlled
by a computer to move the probe in space (inside the SAR phantom) according
to 3 axes. Indeed, the majority of experimental measurements are performed
with a SAR phantom, which is an international reference phantom named Specific
Anthropomorphic Mannequin (SAM) used in the European Committee for Electrical
Standardization [CENELEC, 2001], the International Electrotechnical Commission
[IEC, 2001] and IEEE [IEEE, 2003] standards. The head of SAM (Fig. 2.11) looks
like a head of male adult and has been internationally standardized to help the
definition of regulation on exposure levels.

Finally, the obtained data are then used to determinate the exposure at any
points and the peak-spatial average SAR can be calculated. This method is used
to evaluate the compliance of wireless mobile devices. It should be noted that
during compliance testing, the wireless mobile devices are driven in a test mode
and set to a maximum power radiation.
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Figure 2.10: Dosimetric measurement setup for SAR measurement

Figure 2.11: International reference phantom:Specific Anthropomorphic Mannequin
(SAM)
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2.4 Dose metric

We should note here again that the exposure metrics presented above are
assessed during a short time-period (e.g., 6 minutes) or under a worst
case assumptions (e.g., maximum level of emitted power). However, the
trend in assessing real exposure has motivated the need for a comparative metric
combining the exposure duration and the level of exposure (SAR value or
field strength). Indeed, maximum possible exposure is relevant to the compliance
assessment, keeping in mind that maximum emitted power is always adopted in
this case. However, when assessing the real exposure, e.g., the radiation power
from mobile phone is not always at maximal level but related to the connected
BTS, usage... Thus the dose metric is more appropriate.

The fundamental dose metric is the absorbed dose (noted as D), which represents
the mean energy dε imparted to unite mass dm (D = dε

dm
). Thus the radiation

absorbed in tissue T during a time period τ is expressed as:

DT =
∫ τ

0
DT (t)dt (2.4)

where DT (t) is the mean absorbed dose in tissue T at time t. Two types of dose
metric respectively based on absorbed SAR value and electric field strength will
be presented in the following subsections.

2.4.1 Assessment of dose based on SAR value

In [Lauer et al., 2013, Aerts et al., 2014, Plets et al., 2015] studies, the dose
metric has been defined as the combination of SAR and exposure dura-
tion. By multiplying the local- or whole body SAR due to real exposure conditions
by the exposure duration, one can get an actual absorbed dose expressed in joules
per kilogram (J/kg). However, the dose can be split in two contributions: the dose
due to uplink and the one due to downlink exposure. Generally, uplink exposure
is induced by EM radiation emitted by mobile devices, while downlink exposure
is induced by EM radiation received from BTS or access points.

More specifically, the whole-body SAR due to uplink exposure (SARUL
wb ) can

be calculated as follows:

SARUL
wb (W/kg) =

Tx power (W )

1 (W )
× SARUL

wb,norm (W/kg) (2.5)

where Tx power is the real power emitted by the mobile device, and SARUL
wb,norm

is the normalized whole-body SAR due to exposure induced by uplink signal (i.e.,
power transmitted by the mobile) with a power of 1 W . Finally, the uplink dose
(DUL) can be obtained with the following equation:

DUL
wb (J/kg) = SARUL

wba × Tuse (2.6)

with Tuse the duration of use of the mobile device in uplink activity.
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Meanwhile, the whole-body SAR due to downlink exposure (SARDL
wb ) can be

evaluated as follows:

SARDL
wb (W/kg) =

Sinc (W/m2)

1 (W/m2)
× SARDL

wb,norm (W/kg) (2.7)

where Sinc is the incident spectral power density in real conditions exposure and
SARDL

wb,norm is an estimation of the whole-body SAR induced by the specific downlink
signal (i.e., a frontal plane wave) with a power density of 1 W/m2. The downlink
dose (DDL) is then:

DDL
wb (J/kg) = SARDL

wb × Texp (2.8)

with Texp the exposure duration to the downlink signal. Finally, the whole-body-
averaged dose (Dwb) is:

Dwb = DUL
wb + DDL

wb (2.9)

In the same way, the local body dose can also be obtained by applying local SAR
in real conditions of use. E.g., the dose due to uplink radiation of mobile device
(DUL

loc ) can be calculated as follows:

DUL
loc (J/kg) =

Tx power (W )

P UL
max (W )

× SARUL
loc × Tuse (2.10)

Where, to assess local SAR in real conditions of use, the local-body-averaged
SAR due to uplink exposure (SARUL

loc ) is weighted by the ratio between the power
transmitted by the mobile device (Tx power) in real use conditions and the maximum
allowed power emitted by the mobile device (P UL

max).

2.4.2 Assessment of dose based on E field

Dose metric can be based on E field as well. By multiplying the E-field value by
the exposure duration, the dose can be expressed in V/m · h. This approach was
implemented in previous studies for assessing exposure induced by, e.g., medium-
frequency broadcast stations [Bortkiewicz et al., 1996], RF with frequencies around
27 MHz [Wilen et al., 2004] or high-frequency antennas [Baste et al., 2010].

2.5 The Exposure Index (EI) from LEXNET project

The existing metrics are well suited to evaluate compliance with some standards
under the worst-case condition which presents limit in evaluating the EMF exposure
for real life quantification. The actual EMF exposure according to real exposure
conditions was characterized through experimental or computational measurements,
but in most cases, dealing separately with the uplink and downlink exposures.

To the end of covering day-to-day exposure of a population in a given area
incurred by a wireless network as a whole from BTS to personal devices, a global
exposure metric called EI was developed under the banner of LEXNET project
(Fig. 2.12). The project LEXNET was established to respond to the need of the
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European Union for designing low-EMF networks in its Seventh Framework Program
(FP7). The FP7 LEXNET project has been launched in 2013 (2013 – 2015) by
17 leading telecommunications operators, vendors, research centers and academic
institutions. The object aimed to investigate and propose new network topologies
and management that reduce the EMF levels without compromising the user’s
QoS. To meet this objective, the project has focused early work on determining
the actual levels of exposure by proposing the EI metric.

Through approach of EI metric, when dealing with exposure issues, uplink
and downlink exposures are treated all together. The concept of EI is structured
around the dose metric. Different from a single dose, EI aims at filling the hole
of evaluating the real day-to-day EMF exposure of an entire population rather
than those of an individual, considering both the uplink and downlink exposure
contributions. EI is an everyday everywhere metric which quantifies a global
exposure averaged over time by considering a given time frame and averaged over
space in a given geographical area.

In the definition of EI [Varsier et al., 2015a, Varsier et al., 2015b], many factors
influencing this exposure should be taken into account, e.g., technology, environment,
usage, posture, mobility, etc (Fig. 2.13). Different technologies like GSM, UMTS,
etc. can generate different levels of exposure [Wiart et al., 2000, Gati et al., 2010].
Indoor environments can lead up to about 10 dB increase of the emitted (Tx) power
by the devices compared to outdoor environments [Gati et al., 2010]. Wireless
device usages (e.g. voice-calling, data sending) as well as their usage positions
are also significant parameters to take into account for RF exposure assessment
[Hadjem et al., 2010, Ghanmi et al., 2014]. The duration of usages, distance to
access point, etc. can have as well a great impact on the exposure. Thus the EI
is expressed by summing all the scenarios according to these different influencing
parameters. And the general expression of EI transforms a highly complex set
of data from all these scenarios and averaging over time, into a simple value
expressed in W/kg which can be easily understood, accepted and used by all the
stakeholders (Equation 2.11).

EISAR =
1

T

NT∑

t

NP∑

p

NE∑

e

NR∑

r

NC∑

c

NL∑

l

Npos∑

pos

ft,p,e,r,c,l,pos

[ NU∑

u

(dUL × P̄T x) + dDL × S̄Rx

]
(
W

kg
)

(2.11)
where:
· NT is the number of considered periods within the considered time frame T (e.g.,
a single day).
· NP is the number of considered Population categories.
· NE is the number of considered Environments.
· NR is the number of considered Radio Access Technologies (RAT).
· NC is the number of considered Cell types.
· NL is the number of considered user Load profiles.
· Npos is the number of considered Postures.
· NU is the number of considered Usages with devices.
· P̄T X is the mean Tx power transmitted by the users’ devices during the period t,
in usage mode u, connected to RAT r, in environment e. A map of Tx power values
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Figure 2.12: Low EMF Exposure Future Networks

Figure 2.13: Influencing parameters in exposure evaluation
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is given for the whole considered geographical area and the average value is taken
into account for the EI evaluation.
· S̄Rx is the mean incident power density on the human body during the period t,
induced by RAT r, in environment e. A distribution of the incident power density
for the whole considered geographical area is considered and the average value over
this area is taken into account for the EI evaluation.
· dULanddUL are the normalized raw dose values for the uplink from the mobile
devices, and downlink from BTS and access points, respectively, all multiplied by
the time spent in the configuration.
· ft,p,e,r,c,l,pos is the fraction of the total population that corresponds to population
category p, the user load profile l, in posture pos, connected to RAT r, for a cell
type c, in environment e, during the time period t.

2.6 Conclusion

This chapter presents a current state of existing metrics to evaluate the exposure
induced by RF-EMF sources. However, most of these existing metrics are well
suited to evaluate compliance with some standards under worst-case conditions
or to assess real-life exposure for individuals and in most cases, dealing with the
uplink and downlink exposures separately, no metric before the EI was available
to represent the day-to-day global exposure of a population.

The EI was proposed in the framework of LEXNET project for the assessment of
real day-to-day population exposure. In the concept of EI, many factors influencing
this exposure are taken into account, e.g., technology, environment, usage, posture,
etc. The global population exposure is the results of many configurations which
depend on people’s habits and capabilities offered by the network. The exposure
of a person spending time in public transport, working in a very dense
area and living in the suburbs will cover different configurations from
those living in a dense city, going to work by foot. It is therefore the
challenges to assess the population exposure. The segmentation of various
possible configurations according to the influencing exposure parameters
and the evaluation of the exposure induced by wireless networks and
wireless devices in these configurations are imperative.

One should note that the number of influencing exposure parameters considered
in the EI function increases the difficulty, since the challenge was not to define the EI
concept but how to transform this concept to something which is calculable
in order to assess a global average exposure value for an entire population. That
is why the first part of the thesis was dedicated to identify and characterize
all the parameters influencing the EMF exposure.
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3.1 Context

To assess the global exposure generated by both the uplink and downlink
transmissions, a new exposure metric EI was developed in the framework of the
LEXNET project. The EI quantifies the whole or partial body (a localized area
of the body, e.g., specific organs/tissue) global exposure, averaged over time and
an entire population in a given geographical area. The concept of EI metric is
based on dose, aggregating the exposure duration as well as the exposure induced
by both the near-field and the far-field.

Varsier et al. [Varsier et al., 2015b] study has analyzed an EI for a scenario
involving an urban LTE network, or for a specific configuration (indoor, train)
of GSM and UMTS networks. However, environments and cellular networks
have a strong influence on the power emitted and received by wireless
devices, which will directly impact the EI. Moreover, the proximity of the
device to the head in case of voice services is significant for RF expo-
sure assessments [Sadetzki et al., 2014, Ghanmi et al., 2014]. Today the 3G is
intensively used for voice and data services in many countries. Therefore in
this chapter we aimed at evaluating the EI induced by such networks
for both voice and data usages of mobiles and comparing the population
EMF exposure in different geographical areas and different countries.
To achieve this objective, 3G cellular network architectures and statistics about
information and Information and Communication Technology (ICT) usages were
derived from mobile network operator data.

Briefly, we focused, using device usage statistics from analysis of data collected
from operational mobile 3G networks in France and Serbia and through the LEXNET
approach and metric, on assessing the level of human exposure to EMF in view
of existing 3G networks.

To achieve this objective, two sets of ICT usage data were anonymously collected
in two European countries, France and Serbia, partners in the European LEXNET
project. A statistical analysis was then performed, detailed in Section 3.2, in order
to get valuable information for analyzing EMF exposure. Section 3.3 illustrates
the implementation of the EI in order to evaluate the average global exposure
of the considered population to a 3G macro network. Discussion and conclusion
are presented in the last section.

3.2 Statistical analysis of a population ICT us-

ages

3.2.1 Collected ICT usage data

ICT usage data sets in France were collected by Orange (one of the four
telecommunication operators in France). These ICT usage data were obtained
through measurement probes installed at the Radio Network Controller (RNC) level
in 3G Orange network (Fig. 3.1). Three areas were monitored: one urban area
in the district of Paris, one suburban area in the region of Clermont-Ferrand and
one rural area in the region of Nancy. Hourly mobile phone usage (e.g., voice call
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Figure 3.1: Illustration of traffic measurement probe

duration, uplink and downlink traffic volumes) were recorded from these monitored
geographical areas for 1 week (including weekend) in November 2013. Each user
was distinguished by his/her International Mobile Subscriber Identity number.

In Serbia, similar data were collected by Telekom Srbija from their customer
analysis system and were based on users’ billing data which were used to discover
users in the monitored cells. These ICT usage data were based on the monitored
macro cells (2G and 3G) in urban, suburban and rural areas. Data reflected
hourly mobile phone usage (voice outgoing calls duration, total data traffic volume
etc...) during the whole month of January 2014 for all subscribers generating
any traffic in that period.

3.2.2 Comparison of 3G Mobile Usage Between France and
Serbia

Based on collected data, differences of 3G ICT usage among the two countries
were analyzed statistically. Figure 3.2 depicts mean voice call duration and the
mean volume of data exchanged per hour and per user, in 3G network in different
areas in the two considered countries by averaging over all the users who made
any traffic during that hour. It was clearly observed that users usually made
fewer calls but long duration calls during the night from 6 p.m. to 8 a.m.
(Fig. 3.2a). The average day-to-night user ratio, equal to 2, was calculated by
dividing the total phone call number during day period by the total phone call
number during night period. In addition, data volumes generated per hour, per
user in the two countries (Fig. 3.2b) follow the same trend despite some minor
differences. E.g., a peak appears around 11:00 a.m. only in the urban area of Serbia.
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Figure 3.2: (a):Mean voice call duration per hour per user and (b) mean volume of data
exchanged per hour per user in 3G network in urban, suburban, and rural areas in France
and Serbia.

Hourly traffic distributions were derived in order to see the repartition of voice

communications and data traffic per user in France and Serbia, as well as in different

geographical areas over 24 h. Figure 3.3a and b give results extracted respectively

from voice and data traffic in 3G network in Orange France. It was observed that

60% of mobile phone voice calls (respectively 51% of data traffic) occurred during

daytime from 8 a.m. to 6 p.m. Suburban users generated more traffic for

both voice and data services than urban and rural users. In Serbia, the

trend of traffic repartition was similar to the trend in France (Fig. 2c and d).

The analysis shows that 63% of mobile phone voice calls and 48% of data traffic

occurred during daytime. As the traffic distribution in Serbia is based on data

recorded on both 2G and 3G networks, the average daily traffic generation per

user was higher than the one observed in France. Meanwhile, in Serbia, when

considering voice service (Fig. 3.3c), it was observed that urban users generated

the highest traffic among Serbian users. Concerning data service, generated traffic

was found equivalent for urban and suburban users while higher than the traffic

generated by rural users (Fig. 3.3d).
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Figure 3.3: (a): Time variations of mean voice usage and (b) data usage per user over
24 h in macro 3G network of Orange France; (c) variation of mean voice usage and (d)
data usage per user over a day in macro 2G and 3G network of Telekom Srbija.

Daily average voice communication durations and volumes of data traffic
exchanged for all the voice and data traffic users in different area types in the
three different countries were calculated. By modeling the Probability Density
Function (PDF) of these users’ traffic usages, the uncertainty was quantified. The
Probability Density Function of daily voice calls duration (the step of histogram is
1 minute) for users in urban, suburban and rural areas of France is illustrated in
Figure 3.4 and of Serbia in Figure 3.5. As shown in Figure 3.4, it was found that
the PDF of daily voice call duration for French users in urban and rural areas were
very similar. The probabilities of short voice calls duration (less than 1 minute) for
urban and rural users were about 0.4 which was much larger compared to the one for
suburban users (about 0.25). However, in case of Serbian users, the density curve
was quite flat for all areas (Fig. 3.5). In addition, the probabilities of short voice
calls duration were smaller than those for French users represented in Figure 3.4.

Figure 3.6 illustrates the PDF of daily data traffic exchanged for users in different
areas of France (the step of histogram is 1 MB). The figure was truncated at 20
MB. It was observed that the probability of daily data traffic after 20 MB was
very small. Daily data traffic consumptions for majority of users were less than 1
MB. Same conclusion can be drawn from the PDF of daily data traffic exchanged
for Serbian users (see Figure 3.7). In addition, the PDF of daily data volumes for
Serbian users in urban and suburban areas are very similar.



46 3.2. Statistical analysis of a population ICT usages

Figure 3.4: Probability density function of daily voice duration (truncated at 60 minutes)
for users in urban (left), suburban (middle) and rural (right) areas (France)

Figure 3.5: Probability density function of daily voice duration (truncated at 60 minutes)
for users in urban (left), suburban (middle) and rural (right) areas (Serbia))

Figure 3.6: Probability density function of daily data traffic exchanged (truncated at
20000 KB) for users in urban (left), suburban (middle) and rural (right) areas (France)

Figure 3.7: Probability density function of daily data traffic exchanged (truncated at
20 MB) for users in urban (left), suburban (middle) and rural (right) areas (Serbia)
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3.2.3 User profile

In-depth statistical analysis enabled to identify different profiles of users de-

pending on the type of geographical area. As shown in Figure 3.8, a small part

of users generated a large part of traffic and, as a consequence, usage is

completely unbalanced among all users. Considering this unbalanced usage,

users were classified into three different ICT user profiles: heavy, moderate, and

light. Figure 3.8 corresponds to the classification for French users. Heavy users

are those consuming 80% of the total amount of data traffic (for both voice and

data traffic). As Figure 3 shows, whereas they just accounted for only a small

percentage of the total voice or data users, they generated most of the total traffic.

Moderate users and light users are those generating, respectively, 15% and 5% of

the total amount of data traffic. Volumes of data traffic and duration of voice

communications per user profile recorded on the 3G Orange network were analyzed.

As shown in Table 3.1, there are no large differences among user profiles in urban,

suburban, and rural areas in France.

Figure 3.9 presents the classification carried out for Serbian users by applying

the same rules as for French users. As stated previously, usage data obtained

from Telekom Srbija were extracted for both 2G and 3G networks. Therefore,

cell statistics data were gathered from RNC and BTS controller network elements

within collection periods for the purpose of deriving 2G versus 3G traffic ratios, as

well as uplink versus downlink data traffic ratios. The carried-out analysis shows

that 72% of voice communications occurred through Telekom Srbija’s 2G network

while 28% occurred through Telekom Srbija’s 3G network, and 91% of the data

traffic was assigned to 3G while 9% to 2G. Therefore, average voice call durations

supported by 3G network were shorter in Serbia than in France (Tables 3.1 and 3.2).

Concerning data traffic, large differences between 3G heavy users of Orange France

and those of Telekom Srbija were observed (Tables 3.1 and 3.2). Average daily

volumes of data generated by heavy Telekom Srbija 3G users were approximately

40 MB, while they were between 70 and 100MB for heavy users of Orange France.

However, the trend is the opposite for moderate and light users.
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Figure 3.8: (a): Percentages of total communication time and (b) total volume of data
traffic versus percentages of users defining three user profiles in urban, suburban, and
rural areas in France.

Figure 3.9: (a): Percentages of total communication time and (b) total volume of data
traffic versus percentages of users defining three user profiles in urban, suburban, and
rural areas in Serbia.

3.3 Global exposure of population to EMF in-

duced by a macro 3G network

To achieve the evaluation of average population exposure to 3G-induced EMFs
through approach of EI metric from both uplink and downlink radio emissions
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Table 3.1: User Profiles Defined in Urban, Suburban, and Urban Areas in France for 3G Network

Orange France 3G network

Urban Suburban Rural

Voicea Datab (MBg) Voice Data (MB) Voice Data (MB)

User profiles Dc Nd D N D N D N D N D N
Heavy 14 mine 11 min 30 38 18 min 12 min 36 35 15 min 12 min 44 60

Moderate 2.5 min 1.4 min 2.9 2.4 4 min 2 min 4.7 3.2 2.7 min 1.4 min 4.5 4.8
Light 26 sf 16 s 0.2 0.2 49 s 22 s 0.5 0.3 28 s 14 s 0.3 0.2

aVoice, daily communication time.
bData, daily volumes of data traffic.
cD, during day time from 8 a.m. to 6 p.m.
dN, during night time from 6 p.m. to 8 a.m.
emin, minutes.
f s, seconds.
gMB, megabyte.
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Table 3.2: User Profiles Defined in Urban, Suburban, and Urban Areas in Serbia for 3G Network

Telekom Srbija 3G network

Urban Suburban Rural

Voicea Datab (MBg) Voice Data (MB) Voice Data (MB)

User profiles Dc Nd D N D N D N D N D N
Heavy 4 mine 2.4 min 2.1 × 104 22 3.6 min 2 min 20 22 3.5 min 2 min 17 19

Moderate 33 sf 20 s 5 5.4 21 s 13 s 4.9 5.3 19 s 11 s 2.1 2.3
Light 5 s 3 s 0.5 0.6 3 s 2 s 0.5 0.6 2 s 1 s 0.3 0.4

aVoice, daily communication time.
bData, daily volumes of data traffic.
cD, during day time from 8 a.m. to 6 p.m.
dN, during night time from 6 p.m. to 8 a.m.
emin, minutes.
f s, seconds.
gMB, megabyte.
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in different countries, geographical areas, and for different wireless device usages,
many parameters (e.g., age, usage, technology, environment) influencing the EI
should be taken into account. The global exposure of a population is the results
of many scenarios which depend on people’s habits and capabilities offered by
the network. Therefore, various possible scenarios have to be built according to
influencing exposure parameters (Table 3.3). These parameters can be divided
into 4 groups (Fig. 3.10): life segmentation values, reference SAR values,
ICT usage data and averaged emitted power, average received power
density. Finally, the average population EMF exposure can be assessed by cross-
matching these four data groups aggregated over time by using the EI metric.
The EI was evaluated over 24 h for macro 3G scenarios in dense urban
and suburban areas in order to assess and compare the average global
exposure of a population in France and Serbia, with respect to their
different usage of wireless devices.

Table 3.3: Segmentation of influencing exposure parameters

RAT Cell type Time Environment
3G Macro Day Indoors

Night Outdoors
Population User profile Posture Usage

Children Heavy Standing Data, mobile
Young people Moderate Sitting Voice, mobile

Adults Light
Seniors Non-user

Figure 3.10: Cross-match of four data groups to build the EI
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3.3.1 Description of macro 3G urban and suburban net-
work scenarios

3.3.1.1 Propagation model

In order to assess a global EMF exposure from both uplink and downlink radio

emissions, it is essential to accurately predict radio-propagation behavior through

an adopted propagation model. Briefly, existing propagation models can be divided

mainly in the following two types:

• Statistical models also known as empirical models (e.g., Okumura model, Hata

model, COST-231 model) which are based on measurement data.

• Deterministic models also known as site-specific models (e.g., Ray-tracing,

Ray-launching) which are very accurate radio-propagation prediction models.

Okumura model [Okumura et al., 1968] was designed from the data measured

in the city of Tokyo and is widely used for propagation in urban areas. Hata model

[Hata, 1980] is a developed version of Okumura model. It incorporates the graphical

data from Okumura model, but covers the range of frequencies from 150 to 1500

MHz. Further, COST-231 model extends the frequency range in the 1500-2000

MHz. It should be noted that all these statistical models are easy to implement

by providing few parameters (e.g., the operating frequency, effective heights of the

BTS and the mobile, etc.), while they are less sensitive to environment geometries

and limited to certain frequency bands.

The deterministic model is a mathematical simulation of a physical phenomenon

between two points and strongly dependent on detailed building and terrain data

base. AIRCOM’s MYRIAD model was adopted in our study for its ability of

automatically adapt itself to all engineering (i.e. micro, mini, small and macro cells),

to all environments (i.e. dense urban, urban, suburban, mountainous, maritime,

open), and to all systems (i.e. GSM, GPRS, UMTS, WIFI, WIMAX) in a frequency

range starting from 400MHz to 5GHz. MYRIAD relies on very realistic modeling

of the channel, 2 phenomena are considered in calculation of the propagation loss:

the free-space loss LOS and Non LOS (the diffraction, reflection (e.g., walls, water),

penetration (e.g., inside a building)) (Figure 3.11).
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Figure 3.11: Reflection + diffraction + guided propagation = the MYRIAD Model
trilogy

3.3.1.2 Macro 3G network environment

In order to evaluate the EMF exposure of a population in different geographical
areas (respectively urban and suburban), the corresponding macro 3G network
environments have to be defined. The dense urban and suburban environments
defined in this study are located respectively in a typical European urban area
(10369 hab/km2, 14 km2) in the center of Lyon in France, and in a typical European
suburban area (5404 hab/km2, 80 km2), Cergy, which is in the northwestern suburb
of Paris. In the context of macro 3G networks, two network models representative
of dense urban and suburban macro cell deployments were conceived based on data
collected from Orange in Lyon and Cergy (Fig. 3.12). The network configuration
data (i.e., site locations, antenna specifications, power settings of BTS, etc.) were
extracted from 53 Orange 3G network sites (154 macro cells) in the urban area
and 31 sites (90 macro cells) in the suburban area. All the parameters such
as antenna information and user equipment transmit powers etc. are detailed
in Table 3.4. Moreover, meshed geographical data (25 × 25 m) describing the
altitude above ground, height above surface, and topology (e.g., buildings, forests,
rivers) were used as inputs to calculate the attenuation of EM waves propagation.
A through-the-wall signal penetration loss of 10 dB and an inside-building loss
of 0.66 dB/m were taken into consideration. Traffic distribution data with a
resolution of 25 m were built on the studied area (except for forest and river zones)
according to a uniform distribution.

3.3.2 Evaluation of EI

3.3.2.1 Life segmentation data

Two time periods, respectively daytime from 8 a.m. to 6 p.m. and nighttime
from 6 p.m. to 8 a.m. were considered for all scenarios.
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Figure 3.12: Network models of macro cell deployments: macro 3G network in urban
(a) and suburban (b) area

Table 3.4: Network parameters for the 3G network in urban and suburban areas

Environment Typical European dense urban/ suburban environment

System

Radio access technology 3G
Cell type Macro
Carrier FDD10
Central frequency 2100 MHz
Max Antenna EIRP 60 dBm
Antenna Gain 17.4 dBi, 6° Elec. Downtilt

2 or 3 antennas/sector.
Power limits Min/Max DL power per connec-

tion: -60 dBm/ 43 dBm
Noise figure 5 dB

User equipment

Max/Min transmit power 24 (data), 21 (voice) dBm / -39
dBm

Antenna Omni-directional with 0 dBi gain
2 antennas/user device Antenna
height: 1.7 m above ground

Body loss 8 dB
Through-the-wall signal
penetration loss for in-
door users

10 dB (outside←→inside), 0.66
dB/m (inside−→inside)

User traffic
Average active user den-
sity

Depends on periods, environments
and user profiles

Distribution Uniform spatial distribution
within the simulation area. Single
floor (at 1.7 m height). No user
mobility.
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To represent differences in mobile phone usage over age, the population was
segmented into four categories: children (below 15 years), young (between 15 and
29 years), adults (between 30 and 59 years) and seniors (over 60 years).

The distributions of categories into the population depending on area types and
countries (Table 3.5). The categories repartitions in Lyon (urban, France) as well
as in Cergy (suburban, France) were derived from [Website Cartesfrance.fr, 2015a].
And the categories repartitions for the urban area (respectively suburban area)
in Serbia were evaluated by averaging over all the urban (respectively suburban)
municipalities in Belgrade according to Statistical Office of the Republic of Serbia
[Vukmirovic, 2012]. All the municipalities can be found in [Website Beograd.rs, 2015].

Time spent indoor or outdoor for each category of population was derived from
several European time use surveys [Aliaga, 2006, INSEE, 2011], averaging over 1
year on a daily basis (Table 3.6). The hypothesis that 70% of mobile phone usage
occurs indoor and 30% outdoor was taken.

3.3.2.2 Reference SAR data

Two types of network usage were considered: voice and data traffic usage,
considering two different postures, sitting posture in indoor environment and
standing posture in outdoor environment (as illustrated in Figure 3.13). Normalized
whole-body SAR induced by 3G mobiles and by macro 3G BTS for adult and child,
for different usage (voice and data), and different postures (sitting and standing)
were derived from numerical dosimetric simulations, as part of LEXNET project.
It is important to note that the entire population is exposed to downlink EM
radiation from BTS everywhere and all day long. While the mobile users receive
uplink EM radiation from their devices only during voice communication time
or uplink data traffic emissions.

Table 3.5: Repartition of the population in urban and suburban areas of France and
Serbia

France Serbia
Population type Urban Suburban Urban Suburban
Children 13.9% 22.2% 13.5% 14.7%
Young 32.8% 31.4% 18.4% 18.6%
Adults 38.2% 39.1% 43.6% 42%
Seniors 15.1% 7.3% 24.5% 24.7%

Table 3.6: Daily life time segmentation

Day Night
Population type Indoor Outdoor Indoor Outdoor
Children 8 h 15 min 1 h 45 min 13 h 45 min 15 min
Young 8 h 20 min 1 h 40 min 13 h 10 min 50 min
Adults 8 h 15 min 1 h 45 min 13 h 05 min 55 min
Seniors 7 h 35 min 2 h 25 min 13 h 05 min 55 min
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Figure 3.13: Illustration of mobiles’ usages: voice and data usage of mobiles in sitting
or standing posture

3.3.2.3 ICT usage data

Three user profiles depending on the considered geographical area type and
considered country were defined (Table 3.1 and 3.2). Furthermore, in both countries,
some hypotheses on repartitions of user profiles among each population category
were taken (Table 3.7).

Table 3.7: Repartition of user profiles for Orange and Telekom Srbija 3G usages for
each population category

% Heavya % Moderateb % Lightc

Orange Srbija Orange Srbija Orange Srbija
Population type Voice communication
Children 20% 25% 30% 50% 50% 25%
Young 50% 47% 30% 25% 20% 28%
Adult 20% 47% 30% 25% 50% 28%
Seniors 20% 47% 30% 25% 50% 28%

Data traffic
Children 50% 60% 40% 20% 10% 20%
Young 50% 60% 40% 20% 10% 20%
Adult 10% 24% 40% 18% 70% 58%
Seniors 5% 5% 40% 25% 70% 70%

a% Heavy, percentage of repartition of heavy user profile.
b% Moderate, percentage of repartition of moderate user profile.
c% Light, percentage of repartition of light user profile.

For each population category, proportions of users and non-users of mobile
phones were derived from [Bigot et al., 2013] (Table 3.8).

There are four telecom operators in France (respectively three telecom op-
erators in Serbia), and 35% of the population in France (respectively 44.8% of
the population in Serbia) use the Orange (respectively Telekom Srbija) network
[Website Journaldunet.com, 2015, Website Worldlibrary.org, 2015]. As presented
in Cisco [Cisco, 2016], in 2015 3G connections represented nearly 40% of total
connections. Then, the percentage of 3G Orange or Telekom Srbija voice or data
users was calculated as market penetration% × 3G connections% × user/non-user%.
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Table 3.8: Proportions of users and non-users of mobile phones per population category

Mobile phone user Children Young Adults Seniros
Voice communication

Non-user 10% 4% 5% 30%
User 90% 96% 95% 70%

Data traffic
Non-user 45% 33% 59% 90%
User 55% 67% 41% 10%

3.3.2.4 Average transmitted power, average received power density

Network traffic planning tool Several wireless network planning tools are
available, for example Volcano Suite by Siradel, WHIPP tool by IMinds, etc. A
3G radio network planning tool, described in [Nouir et al., 2006, Nouir et al., 2007,
Nouir et al., 2008] was used to predict received and transmitted powers. This tool
is usually used by network providers to predict Radio Access Network performance
and to guide operators during deployment and optimization of a mobile network.
The main inputs of this tool are the network configuration data, path loss calculation
performed by MYRIAD based on network and terrain database, and predetermined
traffic configurations (Figure 3.14 3.16). The MYRIAD propagation model
was installed in ASSET (Figure 3.17) (ASSET AirCom International) in order to
calculate the loss of propagation. Outputs of this tool consist of uplink transmitted
power for voice and data usage as well as downlink received power over all the
covered geographical area.

Three user profiles were considered in the traffic configuration with different
repartitions depending on usage (voice, data), area types (urban, suburban), and
countries (France, Serbia). For each user profile, the average communication time
and data volume during day and night times were obtained through statistical
analyses of ICT usage data. The traffic was uniformly distributed within the
simulation area without considering users’ mobility. The mobile terminal Antenna
effective area (Aeff) equals to Aeff = G×(c/f)2

4π
, where G = 1, c = 3 × 108m/s,

f = 2100MHz. The Aeff value leads to quantify the corresponding received
power density.

Figure 3.18 illustrates the average emitted power by the Orange data users
calculated over the urban area during the day time. Figure 3.19 illustrates the
corresponding average received power. Simulation results (Table 3.9) showed a
difference of 8–11 dB between received power densities in indoor and outdoor areas
and an average difference of 3 dB between received power densities in urban and
suburban areas. Furthermore, it revealed a maximum of 7 dB difference between
emitted power by mobiles in data and voice services. Indeed, the emitted power
highly depends on mobile usage and network architecture.

Finally, the average population EMF exposure could be assessed by cross-
matching all the described above input parameters (which means life segmentation
values, reference whole-body SAR values, ICT usage data, average transmitted
power, and average received power density) aggregated over 24 h by using the EI
metric. The average global exposure of the population in a typical dense urban
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Figure 3.14: 3G network environment

Figure 3.15: High resolution map data Figure 3.16: Traffic raster data with reso-
lution 25 meters
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Figure 3.17: Overview of ASSET

Figure 3.18: Emitted power (Tx) in dBm
by the Orange 3G mobile data users calcu-
lated over the dense urban area during the
day time

Figure 3.19: Received power (Rx) in dBm
calculated over the dense urban area during
the day time
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Table 3.9: Average received power densities and emitted powers for different traffic
configurations

Day Night
Indoor Outdoor Indoor Outdoor

France
Urban Mean DLa power

density (µW/m2)
1.6453 12.133 0.85417 6.2342

Mean ULb transmit-
ted power (W)
Voice 0.0207 0.0013 0.0170 6.5164×10−4

Data 0.1078 0.0050 0.0853 0.0025
Mean UL through-
put (kbps)

94 126 98 128

Suburban Mean DL power
density (µW/m2)

0.49581 7.1564 0.38524 5.6415

Mean UL transmit-
ted power (W)
Voice 0.0264 0.0012 0.0194 5.4574×10−4

Data 0.1095 0.0029 0.0675 0.0013
Mean UL through-
put (kbps)

93 128 95 127

Serbia
Urban Mean DL power

density (µW/m2)
1.5553 10.732 0.47493 3.8228

Mean UL transmit-
ted power (W)
Voice 0.0203 0.0013 0.0209 0.0015
Data 0.1065 0.0049 0.1129 0.0059
Mean UL through-
put (kbps)

72 107 81 116

Suburban Mean DL power
density (µW/m2)

0.43354 6.3844 0.21013 3.1255

Mean UL transmit-
ted power (W)
Voice 0.0202 5.6677×10−4 0.0260 0.0012
Data 0.0809 0.0014 0.1121 0.0029
Mean UL through-
put (kbps)

83 127 84 127

aDL, downlink.
bUL, uplink.
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area induced by a macro 3G network was estimated to 1.92 ×10−7 W/kg in France
and 1.28×10−7 W/kg in Serbia. And the average global exposure of the population
induced by a macro 3G network in a typical suburban area was found to be equal
to 2.17×10−7 W/kg in France and 1.22×10−7 W/kg in Serbia.

3.4 Discussion and conclusion

The results presented in this chapter allow assessing EMF exposure using
EI metric. The EI metric was introduced by the LEXNET European project
[Tesanovic et al., 2014, Varsier et al., 2015b] with the objective to develop a realistic
and global Key Performance Indicator (KPI) allowing optimization of operating
networks in terms of EMF exposure. This approach differs from the usual approaches
dedicated to compliance testing. Indeed, previous approaches dealing with EMF
exposure generally focused on devices or BTS individual exposure, while the EI
gives a global view of an entire population’s EMF exposure covering both the
uplink and the downlink. This section presents results of the first comprehensive
analysis in which both uplink and downlink exposures are considered, and where
parameters for network configurations, traffic, and ICT usage statistics as well as
user profiles are obtained from live mobile network.

The results have shown that, in France, population exposure to EMFs
induced by a 3G network in a suburban area was 1.1 times higher than
what was calculated in a dense urban area. On the contrary, in Serbia,
population exposure was found slightly higher in the urban than in
suburban area. In the studied network environment, the density of urban BTS
was 1.7 times higher than the density of suburban BTS. As a consequence, average
downlink exposure in a dense urban area was found almost twice as much as what
was calculated in a suburban area. However, downlink exposure was found
to have a limited influence on global EMF exposure to 3G networks.
The global exposure in France for suburban population was dominated by uplink
exposure due to the great amount of data generated by 3G users.

Investigating differences between the average exposure of a population located
indoor and outdoor, it was observed that the ratio of indoor to outdoor
exposure is greater than 20. This is due to the hypothesis of 70% of the
total traffic generated indoor, as well as higher emitted power by mobile phones
indoor compared to outdoor.

We also investigated differences between exposure induced by data traffic
and what was induced by voice traffic. In France, uplink exposure induced
by mobiles in data traffic was found to be almost twice the exposure induced by
mobiles in voice traffic, while in Serbia, uplink exposure from data traffic was found
to be about 7 times higher than exposure due to voice traffic because of users’ low
voice communication duration through 3G network of Telekom Srbija.

As a matter of fact, the global exposure assessment carried out in this section
is associated with only one operator. Therefore, to perform a fair comparison
between global exposures in the two countries, it was important to normalize
the obtained results by percentage of mobile operators’ market penetra-
tion and number of operators. To achieve this objective, the uplink exposure
was divided by the percentage of operators’ market penetration, and the downlink
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exposure was multiplied by the number of operators in a given country. As a
result, the EI to 3G networks in France were found to be roughly 2 times
higher than in Serbia (Table 3). Results also highlighted the importance
of uplink exposure to global exposure. Uplink exposure (noted as UL%)
accounts for more than 90% of global exposure as shown in Table 3.10. The UL%
highly depends on uplink usage, keeping in mind that the higher the uplink
usage, the higher the uplink exposure. Finally, it is important to note that
obtained EI values are far below international standard limits for human exposure,
even if our purpose was not to test any compliance to the limits. We are aware that
presented results are highly dependent on collected data used to identify network
architecture and mobile usage, which is why exposure values should always be linked
to the time period when data were collected and are likely to evolve in coming years.

Table 3.10: Average Global Exposure in France and in Serbia to 3G Macro Networks

France Serbia
Urban Suburban Urban Suburban

EIa, W/kg 5.61×10−7 6.28×10−7 2.93×10−7 2.77×10−7

UL%b 95% 97% 93% 96%

aEI, global exposure index.
bUL%, proportion of uplink exposure to the global exposure.

In conclusion, results derived from device usage statistics collected in France and
Serbia, have shown a strong heterogeneity of exposure, both in time and
space. In fact, average EMF exposure can significantly differ from one geographical
area to another as well as from one country to another due to the impact of network
architecture and ICT usage differences. Furthermore, as can be seen the LEXNET
EI is complex to evaluate, many input parameters should be taken into account. We
considered, in this chapter, the average values of input parameters to evaluate the EI.
However, input parameters on EI (e.g., emitted and received powers and
ICT usage data) are not constant but highly varied among mobile users.
Therefore, in the next chapter, the variability of these influencing parameters
are characterized in order to manage the uncertainties linked to the EI. After
investigating how the EI varies due to the input random variables, a sensitivity
analysis can thus be carried out for the purpose of simplifying the EI metric.
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4.1 Context

To respond to public risk perception about possible health effects of RF EMFs,
it has become necessary to characterize the real human exposure to such fields.
In most studies [De Marco and Maggi, 2006, Schmid et al., 2007] dedicated to the
risk assessment of EMF exposure, a worst-case approach is often adopted.
Furthermore, EMF exposure levels are quantified in terms of SAR expressed in
W/kg and of incident field (e.g., electric field expressed in V/m), respectively,
induced by maximum EMF radiations originating from personal wireless devices
and from BTS (downlink). However none of these approaches alone allows assessing
the real global population exposure to RF EMFs.

Therefore, the aim of the study detailed in this chapter was to develop a
simplified exposure index that would characterize the average exposure of a
population taking into account both the exposure induced by EM radiation emitted
by wireless devices and received from BTS or access points. This simplified exposure
index was developed based on the new exposure metric named EI implemented in
the LEXNET project. In its raw definition, EI is a complex index to evaluate
and calculate as presented in Section 3. It was thus important to analyze
the influence of each input parameter on the EI for the purpose of
simplification.

To achieve this goal, an approach evaluating the variability and uncertainties
linked to the response of a physical system with multiple random inputs was used.
Uncertainty propagation methods well suited to solve a Finite Element system
were used. As a matter of fact, the issue of uncertainty analysis has attracted increas-
ing attention in the last decades [Sudret, 2007, Silly-Carette, 2008, Blatman, 2009].
The simplest method is a purely statistical sampling based method named
Monte Carlo. This, however, can require more than ten-thousands sample data
in order to give a good estimation of the statistical distribution of the output,
sometimes resulting in a great amount of computational processing time. In this
case, the approach of meta-modeling, e.g., Kriging and Polynomial Chaos (PC)
expansion , etc. is considered. In general, the Kriging method is accurate for
non-liner issues, while difficult to build and use due to a global optimization process
applied to identify the maximum likelihood estimators [Matheron, 1969]. However,
PC is used to approximate statistically the system’s output through a simple
and fast-to-evaluate meta-model. This meta-model is less time consuming after
evaluating a limited number of simulations provided by the computational model.
When a substituted model is established, various stochastic quantities of output
(e.g., mean, variance, PDF etc.) can be assessed through the approach of Monte
Carlo. Furthermore, another advantage of using the expansion of PC is that a
sensitivity analysis can be directly performed.

Furthermore, complex systems usually depend on a large number of input
parameters which unfortunately increase the difficulty in probabilistic model con-
struction. In fact, only a limited number of inputs influence the randomness of
system’s response [Sudret, 2007]. In this case, the sensitivity analysis describes
how much model’s output is impacted by changes of input values, by
providing a set of sensitivity indices. To date, various sensitivity analysis
techniques are available in the literature [Saltelli et al., 2000, Xu and Gertner, 2008].
Among them variance-based sensitivity measures (a form of global sensitivity



4. Variability and sensitivity analysis of global population exposure to EMF 65

analysis also named as Analysis of Variance (ANOVA) techniques) are attractive
since they decompose the variance of the model’s output as a sum of contributions
of single input variables or sets of input variables. As a result, they can deal with
the nonlinear response and measure the effect of input interactions.

This chapter is organized as follows. Statistical methods dedicated to the

uncertainty propagation and global sensitivity analysis are introduced in
the first section. These methods are further used in Section 4.3 to assess the global
population exposure through EI approach taking into account the variability

and uncertainties linked to input variables. Section 4.4 details the simplified
exposure metric which is obtained by a sensitivity analysis of EI to input

parameters. We conclude in the last section.

4.2 Uncertainty propagation and sensitivity anal-

ysis

4.2.1 Probabilistic model building

4.2.1.1 Classical Monte Carlo method

Numerous techniques can be employed to estimate the variability and uncertain-
ties linked to the output. A traditional approach for estimating the statistical
properties of a system’s output while considering inputs’ uncertainties is the
Monte Carlo method. Theoretically, Monte Carlo is a purely stochastic based
computational method. As shown in Equation 4.1, an empirical average hN can
be obtained through a finite number (N) of data sample set (x1, ..., xN) generated
from the density function fX .

hN =
1

N

N∑

i=1

h(xi) (4.1)

According to the strong law of large number, with sufficiently large N, hN converges
surely to the expected value of function h(X) (noted as E[h(X)] =

∫
X h(x)fX(x)dx).

Briefly, Monte Carlo approach gives good statistical estimation of the output
parameter under the condition of a sufficiently large N (typically the sample
number is 103−4). Since the evaluation of EI is not time consuming, the variability

of EI can thus be assessed using the Monte Carlo method.

However, this approach is not suitable when only a small number

of simulations is affordable or available. E.g., as shown in Section 3.3.2.4,
enormous time were needed by one 3G radio network traffic simulation in order to
obtain the network data . In this case, the purely computational model may be
replaced by the approach of meta-modeling using a simple and fast-to-evaluate
meta-model. This meta-model can be developed using a limited number of points
in the input space. Detailed information about this method is presented below.
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4.2.1.2 Polynomial Chaos Expansions

General principle The advanced statistical method of PC is well known and
frequently used to model the random system response Y according to the random
input parameters X. Specially as described in [Blatman and Sudret, 2010], if the
M input random variables in vector X = {X1, . . . , XM} are independent, the
random model response Y may be expanded onto the finite-dimensional
PC basis Ψ(X). In practice, PC basis is truncated after P terms to facilitate
the computation of coefficients:

Y = M(X) ≈
P −1∑

j=0

ajψj(X) (4.2)

In this equation (4.2), aj are unknown deterministic coefficients for multi-
indices α = {α1, . . . , αM}. ψj (noted as the predictor) are multivariate polynomials
of the basis Ψ(X) which are orthogonal with respect to the joint PDF of the input
random vector X. For instance, if the input random vector X follows a uniform
distribution over (-1, 1), the orthogonal polynomials constituting the basis of
the probabilistic space are of Legendre polynomials [Xiu and Karniadakis, 2002].
Table 4.1 shows the suitable orthogonal polynomials for different kinds of input
random variables. P corresponds to the size of the polynomial basis. Generally,
the PC basis is commonly truncated by limiting the total degree of polynomials
(|α| =

∑M
i=1 αi) with an upper bound i.e., |α| ≤ p. Only the suited combinations of

the αi are used to build the Ψα. As a consequence, the size P of the polynomial
basis of M variables with maximum accepted degree p equals to (M+p)!

M !p!
.

Table 4.1: Classical orthogonal polynomials and corresponding random variables

Distribution Orthogonal polynomial π
Uniform U(−1, 1) Legendre
Gaussian N (0, 1) Hermite
Gamma E(1) Laguerre

Estimation of the coefficients by regression Unknown deterministic coef-
ficients of the truncated expansion need to be assessed (Equation 4.2). Let us
consider a set of N executions X = {x(i), i = 1, . . . , N} of the input random
vector X (so-called experimental design). The corresponding observations of the
system response are y = {M(x(1)), . . . , M(x(N))}. The coefficients can thus be
estimated by least-square regression to optimize the approximation of Y with
respect to a set of observations:

â = (ΨT Ψ)−1ΨT y (4.3)

where Ψ is the data matrix defined by Ψij = ψαj
(x(i)) with i=1,...N and j=0,...,P-1.

Nonetheless, P can still grow rapidly with the size M and the accepted degree
p, which leads to a large number of observations (N) that have to be defined in
the experimental design. In this case, a sparse PC expansion named Least
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Angle Regression Selection (LARS) [Blatman and Sudret, 2011] seems
particularly appropriate since it is well suited to the case in which the
number of PC coefficients is significantly larger than the number of
observations. Briefly, only the polynomials among possible candidates Ψ(X)
that have the greatest impact on the model response Y will be selected. LARS
provides a collection of PC representations in a way that the first meta-
model includes a single predictor, the second one includes two predictors and
so on. The best one among these meta-models needs to be evaluated
through a meta-model validation.

Meta-model validation First of all, it is important to stress out that the
model prediction accuracy is a concept differing from the model fitness one.
The latter estimates the response for objects that do not participate to the
calculated model. The model fitness capability can be evaluated, for instance,
by the coefficient determination (noted as R2). The assessment of the model
prediction accuracy can be performed with the Leave-One-Out Cross Validation
(LOOCV) [Blatman and Sudret, 2011, Kersaudy et al., 2014]. LOOCV demands
to take one point out (e.g., removing the i-th observation) from the experimental
design X . According to the left points one meta-model M̂(−i) is built. As indicated
in Equation 4.4, the predicted residual (noted as ∆(i)) is the difference between the
model’s output value at x(i) and its model prediction according to M̂(−i):

∆(i) = M(x(i)) − M̂(−i)(x(i)) (4.4)

The leave-one-out error (ErrLoo) is evaluated by repeating moving each point out
of the experimental design (Equation 4.5), from which one determination indicator
Q2 can be derived (Equation 4.6). Thus among the collection of PC expansions
provided by LARS, one selects the best model with the highest Q2.

ErrLoo =
1

N

N∑

i=1

∆(i)2

(4.5)

Q2 = 1 −
ErrLoo

V ar(y)
(4.6)

4.2.1.3 Experimental design

Sampling method The sampling of input random variables in an exper-
imental design is crucial for an accurate representation of one compu-
tational model. Various sampling methods exist, e.g., Monte Carlo sampling,
Quasi random sequences, etc. Latin Hypercube Sampling (LHS) [Park, 1994] was
implemented in many studies for spreading the sample points evenly across all
possible values for all input variables. It partitions every axis in the M-dimensional
sample space into N intervals of equal probability, and selects one sample from each
interval. An illustration of a 3-dimensional sample space for a design of 10 samples
in each dimension is given in Figure 4.1. As shown in Figure 4.1, each colored
line crosses the sample space once, leaving a sampling value for each dimension
(presented by colored points). It was observed that samples from each dimension
are uniformly distributed between 0 and 1.
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Figure 4.1: Latin Hypercube sampling of 10 samples in the 3-dimensional space

Observation set Sample values provided by LHS are uniformly distributed
probabilities between 0 and 1 (Figure 4.1). Thus, for an input variable, it necessitates
to associate each probability value (U) with one realization (xi) by using its inverse
Cumulative Density Function (CDF) (F −1

xi
(· )) (Equation 4.7). Finally, obtained

variables will be used as inputs to a computational model.

xi = F −1
xi

(U) (4.7)

One should note that a linear transformation has to be applied in the process of
meta-modeling to transform U(0, 1) into a standard uniform variable U(−1, 1),
which is adapted to the Legendre polynomial basis as shown in Table 4.1. An
illustration sketch is given in Figure 4.2

Figure 4.2: Illustration sketch of experimental design
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Dependence Modeling using copulas In fact, the input random variables
may be statistically dependent. Under the condition that two variables are highly
correlated, one should take into account the dependent structure of these
variables to construct the joint distribution. In this case, copula is introduced
to decouple the marginal properties of the random variables and the dependence
structures. A M-dimensional copula is defined by a multivariate distribution C, with
uniformly distributed marginal U(0,1) on [0,1] (e.g., C(u1, ..., uM )). For the sake of
simplicity, we let M=2 in the following content. Copulas are important because of
Sklar’s theorem, which [Sklar, 1959] proves that a joint distribution (e.g., F (x1, x2))
can be expressed according to a copula function (e.g., C(·)) and the marginal
distributions (e.g., Fi(x) = P (Xi ≤ x), i = 1, 2) for x1, x2 over [−∞, +∞]2 as follows:

F (x1, x2) = C(F1(x1), F2(x2)) (4.8)

In other words, Sklar’s Theorem allows separating the marginal distributions from
the dependent structure, which is expressed by C. In addition, C is unique only if
marginal distributions are continuous. Conversely, C can thus be read as:

C(u1, u2) = F (F −1
1 (u1), F −1

2 (u2)) (4.9)

In addition, the dependent structure can be measure by Spearman’s rank
correlation coefficient (denoted as ρS). The advantage of using ρS to measure the
dependence between two variables is, on one hand, that it suits to the case of
non-linear dependence, and on the other hand, that it is independent from the
marginal distribution. The closer ρS is to 1 or -1, the stronger two variables being
compared are monotonically related1. Furthermore, Spearman’s ρS can be expressed
in terms of the copulas according to the proofs in [Nelsen, 1999]. Spearman’s ρS

of two variables X1 and X2 is given by:

ρS(X1, X2) = 12
∫ ∫

[0,1]2
C(u, v)dudv − 3 (4.10)

In fact, several families of copulas adapted to different cases exist. E.g., using
Sklar’s theorem, Normal copula (or Gaussian copula), which is also called Nataf
model [Nataf, 1962], C can be obtained as:

C(u1, u2; Σ) = ΦΣ(N−1(u1), N−1(u2))

=
1

2πdet(
∑

)
exp

[
[N−1(u1) N−1(u2)] Σ−1 [N−1(u1) N−1(u2)]

T

−2

] (4.11)

Σ =

[
1 2sin(π

6
ρS)

2sin(π
6
ρS) 1

]
(4.12)

where N is the univariate standard normal distribution, ΦΣ is the standard
multivariate (bivariate in this case) normal distribution with correlation matrix Σ
(expressed in terms of Spearman coefficient by solving Equation 4.10) and det(Σ)
denotes the determination of matrix Σ.

1 Monotonically related: A monotonically related function is the one that either never increases
or decreases when its variable increases.
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According to Equation 4.11, a sample of the joint cumulative function with a
Normal copula from uniform variables can be generated as follows:
a) generate uniform sample of two uniform iid variables u1 and u2;
b) transform every element of obtained uniform sample into a standard normal
vector with zero mean and unit variance by N = (Φ−1(u1), Φ−1(u2))

T ;
c) find Cholesky decomposition of correlation matrix Σ: AAT = Σ ;
d) get vector X which follows 2-dimension normal distribution : X = A × N

e) an additional step is required in order to get an uniformly distributed random
vector: U = Φ(X)
In our study, the copula of Gaussian type was used to model the depen-
dence between input variables through the above procedures.

4.2.2 Global sensitivity analysis

To achieve the goal of simplifying the EI, it is necessary to determine
the impact of each input parameters on EI through a variance-based
sensitivity analysis. Different methods exist according to the dependence of
input variables.

4.2.2.1 Sobol’ indices for models with independent input variables

In the framework of ANOVA, if the input variables X1, ..., XM are independent,
the variance of a deterministic model’s output can be decomposed as follows
[Efron and Stein, 1981]:

V ar(Y ) =
M∑

i=1

Di(Y ) +
M∑

i<j

Dij(Y ) + · · · + D12...M(Y ) (4.13)

with Di(Y ) = V ar[E(Y | Xi)], Dij(Y ) = V ar[E(Y | Xi, Xj)] − Di(Y ) − Dj(Y )
and so on. E(Y | Xi) is the expectation of Y conditionally to a fixed variable
of Xi. Based on that, sensitivity indices introduced by Sobol [Sobol, 2001], for
the purpose of evaluating the relative influence of individual variables or sets of
variables on the model output are defined as:

Si =
Di(Y )

V ar(Y )
, Sij =

Dij(Y )

V ar(Y )
, . . . (4.14)

Si is the first order index of Sobol defined to express the contribution of main
effect of Xi to the output variance, while the second order index takes into account
the effect of varying Xi and Xj simultaneously, additional to the effect of their
individual variations. Total index was introduced latter by Homma and Saltelli
[Homma and Saltelli, 1996] as follows:

STi
= Si +

∑

i<j

Sij +
∑

j Ó=i,k Ó=i,j<k

Sijk + · · · (4.15)

In practice, Sobol’ first order and total indices are usually adopted in the
sensitivity analysis. To estimate them, Monte Carlo simulation based methods
as described in [Sobol, 2001, Saltelli, 2002] have been developed. Furthermore,
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analytic expressions for Sobol’ indices based on a PC expansion have been derived
from [Sudret, 2008]:

Si =

∑P −1
j=1 γ(0,1)a

2
jE(ψ2

j )

DP C

(4.16)

where Si is the first index for variable Xi, DP C is the total variance of the meta-
model, γ(0,1) equals to 1 when ψj(· ) encompass the attribute of Xi and only Xi (if
not γ(0,1)=0). As for the total Sobol’ index for variable Xi (noted as STi

), it can
be calculated in the same way as illustrated in Equation 4.16, with γ(0,1) equals to
1 when ψj(· ) encompass not only the attribute of Xi but also the combinations
of Xi with other input variables.

Sensitivity analysis of Sobol’ indices assume the independence between model’s
inputs, keeping in mind that the ANOVA decomposition (Equation 4.13) is unique
only if the inputs are independent. However, in many fields, model’s inputs can
be strongly correlated. As a consequence, the dependence can restrict the space of
inputs and thus modify the decomposition formula 4.13. Therefore, a generalization
of the variance-based sensitivity analysis for the dependent case is introduced below.

4.2.2.2 Kucherenko indices for models with dependent input variables

An approach of variance-based sensitivity analysis for models with dependent
variables was introduced by Kucherenko [Kucherenko et al., 2012]. Both the first
order and total indices were derived as generations of Sobol’ indices based on
the classical decomposition of total variance. Theoretical formulas as well as
their estimations by Monte Carlo method can be found in Kucherenko et al.
[Kucherenko et al., 2012].

As presented in the study of Kucherenko, a M dimensional multivariate set
x = {x1, ...xM} was divided into a subset v = {xi1

, ..., xis
} and a complementary

one w = {xiM−s
, ..., xiM

}. The total variance of the model f(x) (noted as D)
can be decomposed according to:

D = Vv[Ew(f(v, w))] + Ev[Vw(f(v, w))] (4.17)

where,

Ew(f(v, w)) =
∫

RM−s
f(v, w)p(v, w | v)dw (4.18)

Vv[Ew(f(v, w))] =
∫

Rs
[Ew(f(v, w))]2p(v)dv − f 2

0 (4.19)

Vw(f(v, w)) =
∫

RM−s
[f(v, w)]2p(v, w | v)dw − f 2

0 (4.20)

Ev[Vw(f(v, w))] =
∫

Rs
[Vw(f(v, w))]2p(v)dv (4.21)

Kucherenko normalized the Equation 4.17 by the total variance D. Hence, this
equation becomes the sum of the first order index of the subset v (noted as Sv)
and the total index of the subset w (noted as STw

) expressed as:

1 =
Vv[Ew(f(v, w))]

D︸ ︷︷ ︸
Sv

+
Ev[Vw(f(v, w))]

D︸ ︷︷ ︸
STw

(4.22)
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Consistently, the total index of the subset v (noted as STv
) can be obtained through:

STv
=

Ew[Vv(f(v, w))]

D
(4.23)

In addition, the estimations of Sv and STv
can be assessed through the following

crude Monte Carlo formula [Kucherenko et al., 2012]:

Sv =
1
N

∑N
i=1[f(v(i), w(i))f(v(i), w(i))] − ( 1

N

∑N
i=1 f(v(i), w(i)))2

D
(4.24)

STv
=

1
N

∑N
i=1(f(v(i), w(i)) − f(v(i), w(i)))2

2D
(4.25)

where

D =
1

N

N∑

i=1

f(v(i), w(i))2 − f 2
0 (4.26)

In order to generate the sample sets presented in Equation 4.24 and 4.25,
authors of the study [Kucherenko et al., 2012] propose to use a Gaussian copula
which allows reducing the problem of evaluation of first order and total indices
to the case of the correlated normal distribution. In this case, sample vectors,
such as {v, w} can be generalized from the joint PDF p(v, w) by using the Nataf
transformation as shown previously (see Section 4.2.1.3). To obtain the conditional
sample vector, e.g., w, let us first consider a M dimensional multivariate Gaussian
distribution with mean µ and covariance matrix Σ:

ΦM(x) =
1

(2π)
M
2 det(Σ)

exp
[
(x − µ)T Σ−1(x − µ)

−2

]
(4.27)

Furthermore, it should be note that the components v and w , such that x = {v, w},
are also normally distributed. The mean vector µ and covariance matrix Σ can
be partitioned as shown in Equation 4.28.

µ =

[
µv

µw

]
Σ =

[
Σv Σvw

Σwv Σw

]
(4.28)

Consistently, the conditional distribution of ΦM−s(v, w | v) is also a normal
distribution with mean µwc and covariance matrix Σwc, which can be cast as:

ΦM−s(v, w | v) =
1

(2π)
M−s

2 det(Σwc)
exp

[
(w − µwc)

T Σ−1

wc (w − µwc)

−2

]
(4.29)

where
µwc = µw + ΣvwΣ−1

v (v − µv) (4.30)

Σwc = Σw − ΣwvΣ−1

v Σvw (4.31)

Thus the conditional sample vector w which follows the (M-s)-dimensional condition
distribution (Equation 4.29) can be computed through the Nataf transformation.
Furthermore, the conditional sample vector of v can be constructed following the
same manner. Briefly, the procedures of generating the sets of (v,w) and (v,w)
of normal random variables required respectively in Equation 4.24 and 4.25 are
explained step by step in the study of Kucherenko et al. [Kucherenko et al., 2012].
Finally, the first as well as the total indices of the subset v can be assessed.
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4.3 EI variability and uncertainty

In Section 3, we analyzed the level of human EMF exposure in view of existing 3G
networks using the LEXNET EI. However, in its raw definition, EI is a complex index
to evaluate. To achieve evaluating the average exposure and integrating the EI in
different scenarios, many parameters influencing the exposure are taken into account,
i.e., life segmentation data, reference SAR data, ICT usage data and network data.

In fact, studies analyzing the day-to-day exposure to EMF are facing the char-
acterization and quantification of ICT usage data. Such information is fundamental
to analyze the differences among mobile device usages. In addition, traffic load has
a strong influence on emitted and received powers and network performances (e.g.,
mobile’ throughput), all of them directly impacting the EI. Making things more
complicated these influencing parameters (ICT usage data, emitted and received
powers, mobile’ throughput) should not be regarded as constant values but highly
variable. As a consequence, how to manage uncertainties linked to these influencing
parameters and how the EI varies due to these random parameters are the main
issues. And finally, in order to simplify the EI, it is necessary to determine the
impact of each input parameter on EI through a sensitivity analysis.

As presented in Section 3.3.2.4, emitted and received powers and mobile’s
throughputs have been simulated through a 3G radio network planning tool. This
tool is based on a vast amount of data extracted from geographical area, building
locations, network deployments, etc. It offers an accurate estimation of the network
quality, the throughput, etc., while at the same time it requires a large amount of
preparing and computing time. Hence, the approach of meta-modeling was used
to model the emitted and received powers as well as mobile’s throughput. The
variability and uncertainties linked to these variables can thus be characterized
and further used as inputs to evaluate the EI.

4.3.1 Meta-modeling of network data varying ICT usage
data

4.3.1.1 Definition of input random variables and system outputs

The method of PC expansion has been applied in this part to predict
outputs of a 3G radio network planning tool taking into account the
variability of ICT usage data (information about this tool can be found
in 3.3.2.4). These ICT usage data were obtained in one urban area through
measurement probes installed in 3G Orange network as explained in 3.2.1. Usage
data have been identified by 9 independent variables so as to represent differences
among mobile phone usages in a comprehensive way. The input random vector
involves:
– 3 variables for voice call durations, respectively for heavy, moderate and light
users.
– 3 variables for data volumes per downlink session, respectively for heavy, moderate
and light users.
– 3 variables for data volumes per uplink session, respectively for heavy, moderate
and light users.
The classification of different user profiles, respectively heavy, moderate and light,
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has been presented in section 3.2.3. Considering the effect of traffic variations over
time, one day was segmented into 2 periods: day from 8 a.m. to 6 p.m. and night
from 6 p.m. to 8 a.m. Usage statistics were gathered from live urban 3G networks
in France for these 9 parameters in terms of day and night periods.

The outputs consist of the emitted power by mobiles (for both voice and data
services), the received power from BTS and the mobiles’ throughput in different
environments (i.e., indoor and outdoor) during different periods (i.e., day and night).

4.3.1.2 Statistical characterization of input random variables

A first step before establishing an experimental design is to characterize
every input random variable through a probabilistic distribution. Akaike
Information Criterion (AIC) was implemented to characterize one variable by a
distribution for its ability in encouraging the goodness of fit (by maximizing the
likelihood value) while avoiding overfitting (by minimizing the number of estimated
parameters). As shown in Figure 4.3a-1, the best fitted distribution for heavy users’
voice call durations in daytime was found to be the Generalized Extreme Value (GEV)
among some given statistical models (e.g., Normal, Lognormal, Weibull, Gamma,
etc.). Finally, to judge the fitting quality, several statistical tests are available, e.g.,
Kolmogorov–Smirnov test, Quantile-Quantile (QQ) plot, etc. However, apart from
that, the visual judgment (checking the fitting quality by the visual representation
of law) is also valid. E.g., QQ plot offers a comparison between two probability
distributions by establishing a graph of variable values of these two distributions
with respect to different quantiles. As Figure 4.3a-2 depicts, the distribution of
voice call duration during day time for heavy users and the GEV distribution
provided by AIC are similar since the graph approximately lies on the line of y=x
except at the end of graph. Nonetheless, this heterogeneity should be ignored
when taking into account the probability of voice call durations close to 1000 s.
In the same way, distributions followed by 9 variables in terms of day and night
periods were characterized (Table 4.2).

4.3.1.3 Meta-modeling of system outputs

3G urban network scenarios as introduced in section 3.3.1 were implemented
in the simulations. In view of enormous time consumed by one simulation run
and output data processing, 50 simulations were executed respectively in case
of day and night through LHS method (100 simulations in total). The system
outputs for day time case (respectively night time case) is shown in Figure 4.4(a)
(respectively in Figure 4.4(b)). Simulation results have shown a 20 dB difference
between received power in the environment of indoor and outdoor. While for
mobiles’ emitted power, a maximal 15 dB difference was found between indoor and
outdoor locations. It was also observed a difference of 4-7 dB between emitted
powers by mobiles in data and voice services.

Consequently, these network data are more or less dependent on each
other. The correlation among them can be expressed by Spearman correlation
coefficient as introduced before. An example of Spearman correlation matrix of all
output variables for day time case is given in Appendix A.1 (Figure A.1). It was
observed that some variables are strongly correlated. Emitted and received powers



4. Variability and sensitivity analysis of global population exposure to EMF 75

Figure 4.3: Probability Density Function and best fitted statistical model for the
data set of heavy users’ voice call durations during day time (a-1) and corresponding
Quantile-Quantile plot test for its statistical model (a-2)

Table 4.2: Distributions of 9 input variables in terms of day and night periods

Daya

User
profiles

Voice (s)c Data (kB)d

ULe DLf Criterion

Heavy

gevg(116, 106, 0.5)
on [1, 3 × 104]

lnN j(5.02, 1.522)
on [2, 2 × 105]

lnN (6.79,1.572)
on [13, 5 × 105] QQ plot

Moderate

gamh(1.75, 63)
on [1, 499]

lnN (4.25, 1.252)
on [2, 104]

lnN (6, 1.32)
on [10, 1.7×104] QQ plot

Light

wbli(32, 1.17)
on [1, 118]

gev(8.66, 7.67, 0.86)
on [1, 3 × 103]

gev(48, 39, 0.84)
on [10, 2 × 103] QQ plot

Nightb

User
profiles

Voice (s) Data (kB)
UL DL Criterion

Heavy

wbl(343, 0.88)
on [1, 4 × 104]

lnN (5.08, 1.562)
on [2, 2.4 × 105]

lnN (6.87, 1.62)
on [12, 3 × 105] QQ plot

Moderate

wbl(120, 1.21)
on [1, 498]

lnN (4.17, 1.322)
on [2, 104]

lnN (5.91, 1.382)
on [11, 2 × 104] QQ plot

Light

wbl(31, 1.13)
on [1, 118]

gev(8.71, 7.78, 0.87)
on [2, 3 × 103]

gev(48, 39, 0.85)
on [10, 2 × 103] QQ plot

aDay, during day time from 8 a.m. to 6 p.m.
bNight, during night time from 6 p.m. to 8 a.m.
cVoice (s), voice call durations in seconds.
dData (kB), data volumes per session in kilobyte.
eUL, uplink; f DL, downlink.
ggev(µ, σ, ξ), Generalized Extreme Value; hgam(k, θ), Gamma; iwbl(λ,k), Weibull;

j lnN (µ, σ2), Lognormal.
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(a) Observations from 50 simulations in day
time case

(b) Observations from 50 simulations in
night time case

Figure 4.4: Received power from base stations, emitted power by mobiles in voice and
data services and mobiles’ throughput (uplink) in indoor and outdoor areas during day
time (a) and night time (b)

and uplink throughput indoor were highly correlated to the ones outdoor (Spearman

correlation coefficient was found to be more than 0.8). A strong correlation between

emitted powers resulting from voice and data traffic, approximately equal to 0.99, was

also measured. Similar results can be drawn for output variables for night time case.

Based on these observations, the meta-model was built for each one of

the outputs with a maximum accepted degree of Legendre polynomials

(p ≤ 15). The choice of p is arbitrary depending on the desired accuracy of the PC

expansion indicated by factor Q2. A comparison between the empirical distribution

obtained from network traffic simulations and the approximate one by the meta-

model is illustrated in Figure 4.5. It was observed that the approximate distribution

provided by the meta-model appears consistent with the one provided by simulations.

One should also notice that the determination indicator Q2 was estimated around

90%. Given the fact of the large number of input variables and the considered

simulation runs, the quality of the meta-model is acceptable.
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(a) Day time case (b) Night time case

Figure 4.5: Comparison between the empirical distribution obtained from simulations
and approximate distribution obtained from meta-model

4.3.1.4 Usage of Meta-models

The network output data obtained by varying ICT usage data have been modeled
through the approach of meta-modeling. We were interested in distributions
of different output variables representing network performances and
further used in analyzing the variability of EI.

104 executions were selected randomly for each output variable based on its
corresponding meta-model. A comparison of statistical characteristics between
observations from simulations and executions generated by meta-modeling for each
variable was performed. Results have shown that diversities of traffic consumptions
can impact the network performance. Coefficients of variation (CV) of received power
were up to 50%. CV of emitted power by mobiles located outdoor were found to be
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about 4 times higher than those evaluated indoor. Mobiles’ throughput was found

to be quite stable. Detailed information can be found in Appendix A.2 (Table A.1).

In addition, a statistical model was selected for each variable based on the

104 executions. As shown in Table 4.3, e.g., the power emitted by mobile devices

located indoor in voice usage during day time can be characterized by the normal

distribution with R2 equals to 0.95. R2, ranging from 0 to 1, is used to determine

the degree of correlation between the empirical data distribution and a law of

statistics. The higher is the value, the better is the fit. All statistical distributions

are presented in Appendix A.2 (Table A.1).

4.3.2 EI Variability

To assess the variability of EI with respect to ICT usage data and network

data, the Monte Carlo method was adopted. It is important to note that the

dependence exists between some network data (Figure A.1). Therefore, the

dependence among these variables was modeled using Normal copulas as presented

in Section 4.2.1.3. ICT usage data considered in the EI evaluation include only

the total uplink traffic usage (for both voice and data) during day and night

periods. The results of adjustments of different statistical laws for ICT usage

variables are presented in Table 4.4.

Table 4.3: Statistical characteristics of power emitted by devices located indoor in voice
usage during day time

During day time from 8 a.m. to 6 p.m.
50

observations
104

executions
Statistical

model selection
Txa power voice Indoor N (µ, σ)

Mean (W ) 0.0206 0.0207 µ(10−2) σ(10−3)
Standard deviation 0.0021 0.0015 2.07 1.45
CVa 10% 7% R2 = 95%

aTx, emitted
bCV, Coefficients of variation
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Table 4.4: Distributions of ICT usage variables considered in EI evaluation

Daya

Voice (s)c Data (kB)d

User profiles ULe Criterion

Heavy

gevf (512, 453, 0.36)
on [1, 4 × 104]

wblg(3.79 × 103, 0.64)
on [2, 2 × 106] QQ plot

Moderate

gev(157,89, -1.56)
on [1, 499]

wbl(590, 0.97)
on [2, 2 × 104] QQ plot

Light

wbl(41, 1.21)
on [1, 118]

lnN h(3.13, 1.32)
on [1, 3 × 103] QQ plot

Nightb

Voice (s) Data (KB)
User profiles UL Criterion

Heavy

wbl(904, 0.88)
on [1, 4 × 104]

wbl(4.5 × 103, 0.63)
on [2, 2 × 106] QQ plot

Moderate

wbl(192, 1.55)
on [1, 498]

wbl(541, 0.92)
on [2, 2 × 104] QQ plot

Light

wbl(38, 1.16)
on [1, 118]

lnN (3.13,1.312)
on [2, 3 × 103] QQ plot

aDay, during day time from 8 a.m. to 6 p.m.
bNight, during night time from 6 p.m. to 8 a.m.
cVoice (s), voice call durations in seconds.
dData (kB), data volumes per session in kilobyte.
eUL, uplink.
f gev(µ, σ, ξ), Generalized Extreme Value; gwbl(λ,k), Weibull; hlnN (µ, σ2), Lognormal.

106 sample sets were taken into account to guaranty the large amount of
simulations required by Monte Carlo method. To this end, a Quasi-random sampling
of Sobol sequence was carried out for all input variables (28 variables in total).
Executions of input variables were thus obtained based on their inverse CDF by
using the sampling data (probability distributions can be found in Tables A.1
and 4.4). Finally, aggregating all executions of input variables by using the EI
equation, we were able to evaluate the global exposure of a population in an urban
area considering a macro 3G network.

The mean estimated central tendency and 95% confidence interval as a function
of simulation iterations is given in Figure 4.6. It was observed that the results
were convergent after 4 × 105 simulations. The average global exposure was finally
convergent to 2.42 × 10−7 W/kg. The median value of global exposure was about
1.92 × 10−7 W/kg, while the 0.9 quantile was found to be 4.48 × 10−7 W/kg. One
can notice that all these values are far below international standard limits for human
exposure. The PDF and CDF of global exposure obtained from 106 runs are shown
in Figure 4.7. The distribution of global exposure follows the statistical law of GEV.
Moreover, the CV, equal to 73%, was calculated by dividing the standard deviation
by the corresponding average value. The important variation shows that the global
exposure is very sensitive to the variability of ICT usage and network data.
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Figure 4.6: Mean estimated central trend of EI (2.42 × 10−7 W/kg) and 95% confidence
interval as a function of simulation iterations

Figure 4.7: Distribution and Cumulative Density Function of EI values provided by 106

simulations. The distribution of EI follows the statistical law of GEV

4.4 Global sensitivity analysis

A sensitivity analysis was carried out to assess the influence of input parameters
on EI considering the dependence among network data. Variance based sensitivity
indices of Kucherenko (see Section 4.2.2.2) were used. Indices of Kucherenko were
evaluated based on 106 Monte Carlo simulations.

Figure 4.8 shows sensitivity indices of first order for all inputs for both day and
night periods. It was clearly observed that the uplink data traffic generated by
heavy users influences significantly the 3G global exposure (Figure 4.8a).
The corresponding first order index of heavy uplink data traffic equals to 35% for
the day period, and 49% for the night period. The influence of uplink data traffic
on the global exposure is due to the limited uplink throughput provided by
3G network. The great amount of data traffic generated by heavy users with the
slow uplink throughput leads to long durations of emissions, which are important
in the evaluation of global exposure. In addition, it was found that the global
exposure is also affected by heavy users’ voice usage durations. As shown in
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Figure 4.8a, the first order index of voice usage durations for heavy users during day
time was found to be 6% while 4% during night time, which make them respectively
third and fourth. Indeed, the first index for heavy uplink data traffic is almost
10 times the index calculated for heavy voice traffic.

Furthermore, mobile usage traffic (for both voice and data modes) generated by
moderate and light users influence slightly the global exposure compared to traffic
generated by heavy users. As a consequence, it is not essential to classify

mobile users into three profiles, which adds complexity to EI metric.
We were also aware from these results that downlink EM radiations from

BTS less influence the global exposure than uplink EM radiations from

mobile devices (Figure 4.8b). The powers emitted by mobiles respectively in voice
and data usages have almost the same influence on overall exposure. Figure 4.8b
illustrates that indices of first order for network data were around 1%, which is
far below the ones for ICT usage data for heavy users.

Figure 4.8: Kucherenko first order indices of input parameters (a: 12 ICT usage
parameters and b: 16 network parameters) to quantify uncertainties linked to EI obtained
from 1000000 simulations

To quantify the contribution of interactions among input parameters on the
variance of global exposure, total indices of Kucherenko were evaluated (Figure 4.9).
As depicted in Figure 4.9a, it was clearly shown that total indices of uplink data
traffic for heavy users (for both day and night periods) were higher than total indices
of other parameters. In addition, compared to Figure 4.8a, only a small difference
exists between first and total indices of uplink data traffic for heavy users. Hence a
small interaction exits between heavy uplink data traffic and other parameters. As
for total indices of network data, it was observed that their total indices (Figure 4.9b)
were very small. This can be explained by the effect of correlation between input
variables. As proven by Kucherenko [Kucherenko et al., 2012], the relationship
between the first order and total indices changes with the correlation coefficient.
Total indices get close to zero as correlation coefficient gets close to 1 (or -1).
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Figure 4.9: Kucherenko total indices of input parameters (a: 12 ICT usage parameters
and b: 16 network parameters) to quantify uncertainties linked to EI obtained from
1000000 simulations

4.5 Discussion and conclusion

This chapter presents an assessment of global population exposure to RF-EMF
from dense 3G networks through the EI approach and taking into account the
variability linked to ICT usage data, emitted and received powers respectively
by mobiles devices and from BTS, and uplink throughput. To do so, statistical
methods dedicated to the uncertainty propagation were used.

First, surrogate models were built in order to predict exposure parameters
dedicated to EMFs and network performances, such as emitted and received powers
and uplink throughput, using the method of PC expansion. Then, by varying these
exposure parameters as well as the ICT usage data, the uncertainties of global
EMF exposure of a population in urban area have been characterized through
the approach of Monte Carlo. Results have shown that the global EMF exposure
distribution follows the GEV distribution. The global EMF average exposure was
finally convergent to 2.42 × 10−7W/kg. Its 0.9 quantile value was estimated to
4.48 × 10−7W/kg. It is important to note that these values are far below the
international standard limits. In addition, the global EMF exposure was found
very sensitive with a CV of 73%.

A sensitivity analysis was carried out to determine the effect of input parameters
to the issue of global EMF exposure of a population induced by a macro 3G
network. It was found that the heavy usage traffic, especially, the uplink data
traffic has a dominant impact on the global EMF exposure. Uplink data traffic’s
first order indices for respectively day and night periods were evaluated to 35%
and 49%. And these values were found to be almost 10 times the first order
indices calculated for heavy voice traffic. This can be explained by the effect of
the limited upload speed provided by 3G network. As a result, the LEXNET EI
can be simplified by considering only two different ICT user profiles: heavy and
non-heavy. Moreover, results have also shown that downlink EM radiations from
BTS less influence the global exposure than uplink EM radiations from mobile
devices in the context of 3G network.
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However, as presented in this chapter, emitted and received powers as well as
uplink throughput have been assessed only taking into account the variability of ICT
usage data. As a matter of fact, propagation environment also plays a significant role
in assessing these data. The impact of propagation environment, in other words, the
impact of building and field data in RF waves propagation should also
be considered in charactering the variability of network data. Moreover,
we have seen that, due to limited 3G upload speeds, heavy uplink data traffic have
a major influence on the global exposure to a 3G network. Nowadays, to meet high
QoS and high traffic capacity, LTE networks have been deployed worldwide. As
a result, uplink peak rates provided by LTE can reach up to 75 Mbit/s. We
therefore propose in the next chapter to apply the advanced statistical methods to
a simplified assessment of population exposure induced by a LTE Network.
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5.1 Context

So far the EI had been evaluated using a deterministic approach, whether for a
scenario involving an LTE network [Varsier et al., 2015b], or to explore the level of
human EMF exposure in view of existing 3G networks (Section 3) In these studies, for
specific geographical areas (e.g., Paris seventh district, Lyon city) precise attenuation
maps were considered using a complex deterministic propagation model (e.g., Siradel
Volcano model, MYRIAD model). Such deterministic model can be time consuming
in terms of calculation and strongly dependent on detailed building and field data. As
a matter of fact, RF wave propagation in a geographical area plays a very important
role in assessing received and emitted powers, respectively, from BTS (or E-UTRAN
Node B, also known as Evolved Node B (eNB)) and by wireless devices. Meanwhile,
geographical data differ from one city to another. Thus, one of the main

issues of assessing an EM attenuation map lies in the integration of the

variability of a geographical area topology into the propagation model.

In addition, received and emitted powers and network performances

also depend on the traffic load [Huang et al., 2014]. As shown in the previous
chapter, ICT usage data are fundamental in the evaluation of a global EMF
exposure to a wireless network.

As reported by Cisco [Cisco, 2016], in 2015, the 4G traffic exceeded for the
first time the 3G traffic. Although 4G connections represented only 14% of mobile
connections in 2015, whereas, they accounted for 47% of mobile data traffic. A 4G
connection generates more than 6 times the traffic generated by a non 4G connection.
It was therefore important to analyze the EMF exposure induced by such a network
and to do so to collect and characterize ICT usage data generated by a 4G network.

Hence, this chapter aimed at introducing a simplified way via a sur-

rogate modeling to evaluate the EI generated by a 4G network in order

to characterize the day-to-day EMF exposure of a population taking

into account the variability and uncertainties linked to geographical en-

vironment specificities, ICT usage data and EMF radiations originating

from personal wireless devices and eNB. To this end, advanced statistical
methods were applied to a simplified assessment of a population EMF exposure
induced by LTE networks.

The EI for LTE macro scenarios is described at the beginning of Section 5.2.
Then Section 5.3 focuses on a statistical approach to explore the distribution of the
Path Loss Exponent (PLE) due to the influence of propagation environment using
stochastic city models. This distribution is further used as one of the inputs to a
simplified LTE network traffic simulator. Based on this simulator, network data such
as emitted and received powers and uplink throughput are obtained and statistically
analyzed by varying PLE and ICT usage data. Then, in Section 5.5, the variability
of EI is characterized in terms of ICT usage data and network data using Monte
Carlo simulations. In addition, the importance of each input parameter on the EI
is assessed by a variance-based sensitivity analysis. We conclude in the last section.
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5.2 EI for an LTE macro scenario

An EI evaluated over 24 h for an entire population exposed to a LTE macro
network in a dense urban area was considered. As illustrated in Figure 5.1, complex
sets of data is aggregated in the chain of exposure and averaged over time period T
(24 h). All categories of population and two user profiles (heavy and non-heavy)
were taken into account considering a mobile phone usage in data service (Figure
5.1). The formalization of the EI metric passed through the characterization of
variability and uncertainties linked to input parameters, which are life segmentation
data, ICT usage data, network data and a set of EMF exposure values for typical
postures and usages of mobile devices.

Figure 5.1: The LEXNET chain of exposure for a LTE macro scenario

Up-to-date life segmentation data collected from surveys performed in different
European countries were used to identify the time spent in different environments
and for different categories of population (Table 3.6).

An urban area in the North of Paris was monitored to collect the real-life mobile
usage data in a LTE Orange network. Total data traffic volumes generated by
all the users connected to the monitored eNB (258 eNB in total) were recorded
during one busy hour of a day for the whole month of June in 2014. Since the
traffic generated during one busy hour represent only a part of the daily traffic,
in order to get the daily traffic, we multiplied this hourly traffic by a factor 3
(this factor was derived from the measurements presented in [Korowajcznk, 2014]).
Based on these collected data, two user profiles, respectively, heavy and non-heavy
were defined. Figure 5.2 corresponds to the classification of users. Heavy users
are those consuming 80% of the total amount of data traffic. The rest of users,
consuming 20% of the total data, are regarded as the non-heavy users. The results
of adjustments of statistical laws for the heavy (Figure 5.3) and non-heavy (Figure
5.4) data traffic are shown in Table 5.1. Furthermore, a downlink/uplink traffic
ratio of 90/10% was evaluated, and a day/night ratio of 43/57%. 14% of mobile
users were reported using LTE network [Cisco, 2016].
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Figure 5.2: Percentages of total volume of data traffic versus percentages of users
defining two user profiles based on the data collected from monitored LTE networks in
the North of Paris

Figure 5.3: PDF of data traffic (kB) gen-
erated by heavy users during a busy hour
following the distribution of Generalized Ex-
treme Value (GEV)

Figure 5.4: PDF of data traffic (kB) gen-
erated by non-heavy users during a busy
hour following the distribution of Generalized
Extreme Value (GEV)
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Table 5.1: Distributions of ICT usage variables for an LTE macro scenario

User profiles Data (kB)a Criterion
Heavy gevb(1.35×105, 3.72×104, 0.53) QQ plot
Non-heavy gev(6.66×104, 2.32×104, -0.69) QQ plot

aData (kB), total data volumes during busy hour in kilobyte.
bgev(µ, σ, ξ), Generalized Extreme Value.

Table 5.2 presents the proportions of users (respectively heavy and non-heavy
users) and non-users of mobile phones in data service per population category
[Bigot et al., 2013]. The repartition of the population is given in Table 5.3 [Website Cartesfrance.fr, 2015b

Table 5.2: Proportions of users of mobile phones in data service per population category

Mobile phone user Children Young Adults Seniros
Non-user 45% 33% 59% 90%
Heavy user 27.5% 33.5% 4% 0.5%
Non-heavy user 27.5% 33.5% 37% 9.5%

Table 5.3: Repartition of the population

Population category Percentage
Children 15.4%
Young 34.7%
Adults 36.3%
Seniors 13.6%

In addition, whole-body SAR values induced by LTE mobiles and eNB for adult
and child for a data usage were extracted from values calculated in the framework
of LEXNET [Varsier et al., 2015a]. Network data were simulated through a LTE
network traffic simulator varying path loss exponent and ICT usage data.

It is important to note that the parameters e.g., ICT usage data, network
data have a strong variability, which is why we proposed to go through a
sensitivity analysis assessing the impact of these parameters on EI. In order to
characterize the variability of network data, the uncertainties linked to the PLE had
to be first assessed. In the next section, we focus on a statistical approach
to explore the distribution of PLE in urban environments.

5.3 Statistical analysis of path loss exponent in

urban environments

Propagation model is one of the significant issues in assessing received and
emitted powers. One of the major challenges in propagation modeling is the
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integration of influences of building and field data into RF waves propagation.
Theoretically, the propagation modeling can be approximated by signal attenuation
as a function of the geographical distance between the transmitter and the receiver.
In practice, the signal strength can be modeled as a function of 1

dα , where d is
the geographical distance between two nodes and α is the PLE. Based on that,
the path loss model can be characterized as follows:

P (d) = β − 10αlog10(d) + χ (5.1)

where P is the received power in dB, χ is assumed to be a Normal random
variable with zero mean and σ2 variance. According to the Equation 5.1, let
P denotes a vector of received powers based on the corresponding vector d of
distances. With the help of the least square solution of the linear system, the
two parameters α and β verify:

[α β]T = (AT A)−1AT P (5.2)

with A = [−10log10(d) ✶ℓ], ✶ℓ ∈ R the first column vector.
The PLE value is an indicator of how fast the energy is attenuated between

the transmitter and the receiver (e.g., α equals to 2 in free space). A summary
of PLE values for diffrent propagation environments derived from [Gibson, 2012]
is given in Table 5.4. As can be seen from the table, the PLE value varies
widely across propagation environments. Therefore, the variability linked to
the propagation environment should be characterized.

Table 5.4: Path loss exponent (PLE) values for different propagation environments

Propagation environments PLE values
Urban area cellular network 2.7 - 4
Shadowed urban area cellular network 5 - 6
Line-of-sight propagation in building 1.6 - 1.8
Obstructed in building 4 - 6
Obstructed in factories 2 - 3

5.3.1 Stochastic city models

To cover the variability of topologies that would be observed among
urban cities, stochastic geometry was used in modeling field topology
and building distribution. As presented in the study of Courtat [Courtat et al., 2016],
the building deployments in cities can be modeled by using crack STIT tessellations
parameters. Three dimensional (3D) models were built randomly based on main
features of a typical urban city. Parameters used to build stochastic city models,
e.g., anisotropy ratio, mean building block area, mean street width, mean building
height and other parameters can be found in Table 5.5. Figure 5.5 illustrates an
example selected from 3D urban-based city samples.

Thus, in the next section, instead of determining the precise EM propaga-
tion attenuation for a particular city, a statistical approach was proposed
to explore the PLE due to the influence of propagation environment
using stochastic city models. EM attenuation map related to each urban-based
city sample was obtained through a 3D ray tracing simulator.
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Table 5.5: Mean values for morphological features of a typical urban city

Parameters Mean values Reference

Street width 14 m
values of 2 way roads with sidewalks derived from

[Long et al., 2003] and [Website Accomplir.asso.fr, 2011]
Building height 15 m [Website Wikipedia.org, 2016]
Building facade 50 m
Anisotropy 0.7 manathan=1

Figure 5.5: Example of a 3D stochastic city model

5.3.2 3D ray tracing simulator

A ray tracing technique was used to obtain the signal attenuation map for

each stochastic city model. Ray tracing is often used to propagate EMF in urban

area [Wiart, 1996, Courtat et al., 2016]. A new approach has been developed using

stochastic city model [Frederic et al., 2016]. In a given stochastic city model, an

antenna of total incident power P0 has been placed in the center of the city, i.e., on

top of the nearest roof to the central coordinate (0,0). N rays were launched from the

source in the sphere portion Ω parametrized by [θ0 −dθ, θ0 +dθ]× [ϕ0 −dϕ, ϕ0 +dϕ]

(Figure 5.6). The directions of rays were sampled by LHS. An illustration is shown

in Figure 5.7 for launching 10 rays.
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Figure 5.6: Illustration of angular parameters of the source. The grey surface Ω
represents a portion of the source as a unit sphere captured by the spherical coordinates
(θ0 ± dθ, ϕ0 ± dϕ)

Figure 5.7: LHS sampling of 10 rays (red lines) crossing the sphere portion Ω defined
by the angular parameters of the source
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When hitting a surface, rays produce reflection and diffraction, and a portion
of their power is absorbed by the surface. By summing up all the rays that
hit the measurement plane (1.5 m above the ground), the signal attenuation
map can thus be obtained.

Briefly, with the help of the ray tracing simulator presented above, instead of
determining the precise EM propagation attenuation for a particular city, a statistical
approach was proposed to explore the PLE due to the influence of the propagation
environment using stochastic city models. According to the morphological features
of a typical urban city defined in Table 5.5, 500 city models were built randomly.
An EM power map related to each urban-based city sample was thus obtained
through the algorithm developed in the ray tracing simulator. Finally, via Equation
5.2, the typical urban PLE was obtained using the EM power map. Antenna and
simulation parameters used in the simulations can be found in Table 5.6.

Table 5.6: Summary of antenna and simultion parameters used in the simulations

Parameters values
Simulation window 1000 m
Total incident power of the antenna P0 40 W
Horizontal aperture 120°

Vertical aperture 30°

Frequency (LTE) 2600 MHz
Number of rays used in a simulation 2×106

Number of maximal reflections per ray 100
Power gain after a refection -3 dB

Results from 500 simulations show that the average value of urban-based PLE
was found to be equal to 4.2. Figure 5.8 corresponds to its distribution. It was
observed that PLE of a typical urban city follows the Gamma distribution(k = 12.5,
θ = 0.34) with R2 equals to 0.99. This distribution was further used as input
to a simplified LTE network traffic simulator.

Figure 5.8: Distribution of urban-based path loss exponents
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5.4 Influence of path loss exponent and ICT us-

age on network data

5.4.1 Simplified LTE network traffic simulator

To assess the network data taking into account the influence of PLE and

ICT usage, a simplified LTE network traffic simulator was developed in Matlab

based on the study of Sidi et al. [Sidi et al., 2014]. In this simplified network

traffic planning tool, the general Log-distance propagation model with correlated

shadowing was implemented:

PL =
Kχ

dα
(5.3)

where K is a correction parameter to further adapt the pathloss model, α denotes

the PLE, d is the distance between the emitter and receiver, χ is due to the slow

fading effects following the log-normal distribution (standard deviation = 4 dB).

The actual emitted power over a time interval by an eNB was configured by

taking a load factor [Saker et al., 2012]:

PeNB(∆T ) = L(∆T ) · P max
eNB (5.4)

where L(∆T ) is the downlink load in the considered cellular averaged over ∆T and

P max
eNB is the maximum emitted power by a eNB equal to 46 dBm.

When considering uplink transmissions, a power control loop was used to

set the transmitted power by the User Equipment (UE) (Equation 5.5). In

general, the uplink power control loop consists of an open-loop correction term

[Castellanos et al., 2008] based on the signal strength received by the UE as well as a

closed-loop term based on the measurements done by eNB [Simonsson and Furuskar, 2008].

PUE = min{P max
UE ,

open−loop correction factors︷ ︸︸ ︷
P0 + 10log10(M) + a · 10log10(PL) + ∆mcs + f(∆r)︸ ︷︷ ︸

closed−loop correction factors

}

(5.5)

However, as explained in [Sidi et al., 2014], only the open-loop factors were consid-

ered since they have the dominant effect to the emitted power. In the Equation 5.5,

P max
UE is maximum emitted power by mobiles (24 dBm), M is the number of assigned

Physical Resource Blocks to a certain users, PL denotes the estimated pathloss, P0

is a cell specific parameter related to target received power at eNB and a is the cell

specific pathloss compensation factor. (P0, a) will significantly impact the inter-cell

interference [Góra et al., 2010]. The choice of (-80 dBm, 0.8) was derived from the

study of Góra [Góra et al., 2010] according to the performance of the network.
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5.4.2 Simulation scenario description

The main inputs of this network traffic simulator are the PLE value and the
traffic configuration. Outputs consist of uplink transmitted power and throughput
by mobiles in data usage as well as downlink received power over all the covered
geographical area. Two different user profiles, respectively heavy and non-heavy,
were considered in the traffic configuration with different repartitions. For each
user profile, the data volumes were obtained through statistical analyses of mobile
usage data. The traffic was uniformly distributed within the simulation area
without considering users’ mobility. Macro eNB (each with 3 sectors) are deployed
hexagonally with an inter-site distance of 500 m. 57 sectors were simulated in
the simulation, while statistics were derived only from the three sectors of the
central macro-site (Figure 5.10).

Figure 5.9: Allocation map of the deployment of macro LTE network with 500 m
inter-site distance (path loss exponent equals to 4.2 was considered)

Results such as downlink received and uplink emitted powers and uplink
throughput were obtained by varying PLE values and data traffic consumed for each
user profile (respectively, heavy and on-heavy). The Aeff equals to Aeff = G×(c/f)2

4π
,

where G = 1, c = 3×108 m/s, f = 2600 MHz is considered. The Aeff value leads to
quantify the corresponding received power density. 1000 runs were simulated based
on an experimental design of the input random variables generated through a LHS.

Figure 5.10 shows the results. For the sake of clarity, the emitted and received
powers have been expressed in dBm. Simulation results show a 10 dB difference
between received power in indoor (5.10a) and outdoor (5.10b) environments while for
mobiles’ emitted power, a maximum of 9 dB difference (3 dB in average) is observed
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between indoor (5.10c) and outdoor (5.10d) locations. It was clearly observed from
Figure (5.10c-d) that the emitted power by devices in data service is important.
The average emitted power was approximated to its maximum power. However,
from the results, it was found that a strong relationship exists between some output
parameters. E.g., emitted and received powers and uplink throughputs indoor were
highly related to the ones outdoor (Spearman correlation coefficient was found to be
more than 0.98). Furthermore, a strong correlation was observed between the emitted
power and received power (Spearman correlation coefficient was around 0.97).

Figure 5.10: Received power from eNB, emitted power by mobiles in data service and
mobiles’ uplink throughput in indoor and outdoor environments

5.4.3 Statistical prediction of network data using Polyno-
mial Chaos expansion

In addition, we were interested in the distributions of network data that are
further used in analyzing the variability of EI. To achieve this objective, an advanced
statistical method of PC expansion based on LARS, as introduced in Section 4.2.1.2,
was used to predict the random system response (network data), according to the
random input variables, such as PLE and ICT usage data. 1000 simulation results
were used to build the meta-models for network data. A comparison between the
empirical distribution of network data from traffic simulations and the approximated
distribution obtained by meta-model is illustrated in Figure 5.11. It was observed
that the approximate distribution by meta-model appears consistent with the one
provided by simulations. The determination indicator Q2 was estimated around
0.99. 104 executions were thus randomly generated for each output according to
the corresponding meta-model. The results of adjustments of statistical laws for
network data are shown in Figure 5.11. One should note that, according to the
statistical test, the distribution for the uplink throughput may be approximated
by a combination of three Gaussians (Figure 5.11). Table 5.7 corresponds to the
detailed information about the statistical laws followed by network data.
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Figure 5.11: Comparison between the empirical distributions obtained from simulations
and distributions obtained from meta-models and corresponding statistical distributions

Table 5.7: Distributions of ICT usage variables considered in EI evaluation

Network Data Distribution Criterion
Rxa Indoor (mW) lnN c(-12.2, 1.42) R2 = 90%
Rx Outdoor (mW) lnN (-9.9, 1.42) R2 = 91%
Txb Indoor (mW) gevd(198,57.7, -6.2) R2 = 88%
Tx Outdoor (mW) gev(137,88.5, -4.9) R2 = 90%

Uplink throughput
Indoor (bps)

lnN1(7.6×106, 2.2×105) with weight 25.86%
lnN2(9.3×106, 8.6×105) with weight 47.65%
lnN3(10.8×106, 2.4×105) with weight 26.49%

R2 = 60%

Uplink throughput
Outdoor (bps)

lnN1(7.6×106, 3.6×105) with weight 22.77%
lnN2(11.9×106, 2.3×106) with weight 45%
lnN3(16.1×106, 6.4×105) with weight 32.23.49%

R2 = 60%

aRx, received power.
bTx, emitted power.
clnN (µ, σ2), Lognormal.
dgev(µ, σ, ξ), Generalized Extreme Value.

5.4.4 Sensitivity analysis

The advantage of using the PC method is that a sensitivity analysis can be
performed directly as presented in Section 4.2.2.1. In this section, a sensitivity
analysis was carried out to determine the most influencing input parameters on the
output network data. As shown in Table 5.8, both the first order and total Sobol’s
sensitivity indices of input parameters (i.e., PLE, heavy data traffic, non-heavy data
traffic) were calculated in order to quantify uncertainty linked to received power in
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indoor environment. It was clearly observed that the PLE has a dominate
effect on the received indoor power. The Sobol’ first order index was found
to be equal to 0.9763. Its corresponding total index was 0.9903. Hence a small
interaction exits between PLE and data traffic parameters. In addition,
similar results were obtained for other network parameters. Results indicated that
the PLE is the most impacting parameter.

Table 5.8: First and total Sobol’s indices of input parameters to quantify uncertainties
linked to received power in indoor environments

Input parameters Indices of first order Total indices
Path Loss Exponent 0.9763 0.9903
Heavy data traffic 0.0039 0.0179

Non-heavy data traffic 0.0028 0.018

5.5 Variability of EI

In order to characterize the variability of EI with respect to ICT usage data
and network data, Monte Carlo simulations were performed. 106 simulations were
performed to guaranty a good quality of estimation. Executions of input variables
were obtained based on their inverse CDF (probability distributions can be found
in Table 5.1 and 5.7) by using the Quasi-random sampling data. It is important to
note that the dependence exists between some input network variables as presented
above. Therefore the copula of Gaussian type was used to model the dependence
between input variables. Finally, aggregating the executions of input variables via
the EI equation, the global exposure of a population in an urban area considering
a macro LTE network could be assessed.

Based on the 106 simulation results, the mean estimated central tendency of
EI for a whole population in an urban city considering a macro LTE network and
95% confidence interval as a function of simulation iterations are illustrated in
Figure 5.12. We can observe that the Monte Carlo average is converging after
8 × 105 simulations. The average global EI was finally convergent to 1.19×10−7

W/kg, of which 25% was caused by uplink exposure coming from mobiles in data
service. One should note that only 10% of the total data traffic was assigned to
uplink, while 90% to downlink. Furthermore, the entire population is exposed to
downlink EM radiation from eNB everywhere and all day long when mobile users
received uplink EM radiation from their devices only during uplink data traffic
emissions. Despite the fact that the emitted power by devices in data service is
important, the duration of data traffic emissions is limited by the small amount of
uplink data traffic and high speed of uplink throughput provided by LTE
network. As a consequence, on the contrary to what have been observed
in the 3G-induced global exposure (uplink exposure accounts for more
than 90% of global exposure), the uplink exposure is less important in
the issue of LTE-induced global exposure.

Furthermore, it was observed that the LTE-induced global exposure follows the
statistical law of GEV (Figure 5.13). From Figure 5.13, we can also see that the
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Figure 5.12: Mean estimated central trend of EI (1.19 × 10−7) and 95% confidence
interval as a function of simulation iterations

median value of LTE-induced exposure was found to be 5.19 ×10−8 W/kg, while
the 0.9 quantile was about 2.56 ×10−7 W/kg. These values were less than the ones
calculated in view of 3G networks, bearing in mind that the median (respectively,
0.9 quantile) value of 3G-induced global exposure was found to be 1.92 ×10−7

W/kg (respectively, 4.48 ×10−7 W/kg). The main reason of that is high speed
of uplink throughput provided by LTE network leading to the short durations of
uplink data traffic emissions. However, it should also be noted that only the mobile
devices in data usage was considered in LTE scenarios.

Figure 5.13: Cumulative Density Function of EI values provided by 106 simulations and
its best fitted statistical law of Generalized Extreme Value
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5.6 Global sensitivity analysis

In addition, a sensitivity analysis was carried out in this section. Variance
based sensitivity indices suited to the case where input parameters are not inde-
pendent as presented in Section 4.2.2.2 were implemented. Indices of Kucherenko
[Kucherenko et al., 2012] were evaluated based on Monte Carlo simulations (106

runs in total) and dedicated to describe the influence of each input parameter
on the variance of the output, which represents the EMF exposure in the issue
of LTE scenarios.

Both first order and total Kucherenko sensitivity indices were evaluated to the
quantify uncertainties of output. As shown in Figure 5.14, it was clearly observed
that the most influencing parameter in the issue of global exposure
considering a macro LTE network is the received power density (both
in indoor and outdoor environments) from eNB. The corresponding first
order index of received power density in indoor environment equals to 36.46%, and
was evaluated to 39.54% for the received power density in outdoor environment.
This can be explained by the considered macro LTE network: mobile phones in
data usage. On one hand, short durations of uplink data traffic emissions
are due to the high uplink throughputs. On the other hand, this study focused
on the whole-body exposure. Exposure values for mobile devices in data usage
used in front of the chest were considered. Therefore, results are not applicable for
the local exposure (e.g., exposure values in specific organs/tissue) or for a mobile
phone close to the head usage (e.g., voice over IP).

Figure 5.14: Kucherenko first order indices of input parameters (a: 2 ICT usage
parameters and b: 6 network parameters) to quantify uncertainties linked to EI obtained
from 1000000 simulations

Furthermore, as illustrated in Figure 5.15b, it was observed that a total index
of received power density was found to be 50.65% indoor, while 61.69% outdoor.
We noticed that a large difference exists between first and total indices of received
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power density. As a consequence, the interaction between received power
density and other parameters is in fact very high.

Concerning emitted power by mobiles, we were aware that the global
exposure is also impacted by them. According to Figure 5.14b, the first order
index of emitted powers by mobiles located outdoor and indoor was respectively
34.45% and 34.89%, which make them respectively at the third and fourth ranks.
Furthermore, from the same figure, we observed that the uplink throughputs
indoor and outdoor less affected the EI compared to other parameters
(their first order indices were respectively 15.66 % indoor and 12.27% outdoor).

Compared to network data, the influence of ICT usage data (respec-
tively, uplink volumes of data traffic for heavy and non-heavy users) on
the global exposure can be ignored (Figure 5.14a). The first order index
of heavy uplink data traffic was found to be 0.14% and 0.07% for non-heavy
uplink data traffic.

Figure 5.15: Kucherenko total indices of input parameters (a: 2 ICT usage parameters
and b: 6 network parameters) to quantify uncertainties linked to EI obtained from 1000000
simulations

5.7 Conclusion

This chapter presented a surrogate model to assess the variability of global EMF
exposure of a population induced by a macro LTE network in a dense urban area.
The influence linked to propagation environment, ICT usage data, EMF radiations
originating from mobiles and eNB, etc. was considered in the evaluation of EMF
exposure. To this end, a statistical approach was proposed to explore the variability
of PLE due to the geographical environment specificities. And ICT usage data
generated by LTE networks were collected and characterized. Then, a simplified
LTE network traffic simulator was used to simulate network data by varying PLE
and ICT usage data. Results have shown that the PLE has a dominate effect on
the network data(emitted and received powers and uplink throughput).
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Furthermore, the variability of EI was characterized in terms of ICT usage data
and network data using Monte Carlo simulations. Results have shown that the
LTE-induced global exposure follows a GEV distribution with an average value
of 1.19 ×10−7 W/kg. Its 0.9 quantile value was about 2.56 ×10−7 W/kg which
is less than the one observed from the 3G-induced global exposure. This can be
explained by the effect of the less important uplink exposure in the issue of LTE
networks. The uplink exposure induced by LTE network accounts for only 25% of
global exposure since the duration of data traffic emissions is limited by the high
speed of uplink throughput. At last, it is important to note that all the values
of global exposure are far below the exposure limits.

In addition, a variance-based sensitivity analysis was conducted in order to
assess the influence of each parameter on EI. The results have highlighted the
importance of received power density from eNB. However, since the whole-body
exposure induced by EM radiation emitted by mobile phones in data usage was
considered, results are not applicable for the local exposure or for a mobile phone
used close to the head. Furthermore, it was also observed that the global exposure
is also impacted by the emitted power followed by the uplink throughput, while
the influence of ICT usage data on the global exposure can be ignored.
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6.1 Conclusion

This thesis work is dedicated to a new methodology developed to characterize
the real day-to-day EMF exposure to a wireless network as a whole, exploring
the people’s daily life and including both downlink and uplink exposures. The
principal objectives were the evaluation via dosimetric tools and statistical methods
of the global exposure of a population to RF-EMF by taking into account different
influencing parameters (technologies, usages, environments, etc.) and the analysis
of the most influencing parameters that could serve as levers to optimize the
population levels of EMF exposure.

Towards these objectives, the first part of the thesis has been devoted to
the analysis of the average population exposure to 3G-induced EMFs using a
deterministic approach, from both uplink and downlink radio emissions in different
countries, geographical areas, and for different wireless device usages. For the first
time we got insight of the real level of human exposure to EMF in view of existing 3G
networks through the statistical analysis of mobile network operator data collected
in France and Serbia and the use of the LEXNET approach and EI metric. It
was observed that mobile usage is very variable over time and unbalanced among
users. By aggregating the data collected from surveys, statistical measurements and
simulations in the EI equation, the global EMF exposure could be assessed. Results,
derived from device usage statistics collected in France and Serbia, have shown a
strong heterogeneity of exposure, both in time (the traffic distribution over 24 h was
found highly variable), and space (the exposure to 3G networks in France was found
to be roughly two times higher than the one in Serbia). Among the results, we have
also shown that, contrary to popular belief, exposure to 3G EMFs is dominated by
uplink radio emissions, resulting from voice and data traffic. The average population
EMF exposure was shown to differ from one geographical area to another, as well
as from one country to another, due to the different cellular network architectures
and variability of mobile usage. Finally, it should be noted that all the calculated
EI values were found far below (105 less) the international standard limits.

One of the challenges in this thesis laid in identifying how the EI varies with the
parameters characterizing the network performances, the usages, the population, etc.
Therefore, in the second part of the thesis, the variability of EI input parameters
were characterized in order to manage the uncertainties linked to the EI evaluation.
However, some input variables, i.e., network data provided by a radio network
planning tool were difficult to assess because of the great amount of computational
processing time. Hence, there was a need to develop an analytical transfer function
to predict the network data without executing large numbers of simulations. To do
so, the approach of meta-modeling using polynomials was adopted to approximate
statistically the output of a network planning tool from the inputs (i.e., ICT usage
data). Thereafter, 3G-induced exposure was statistically assessed via Monte Carlo
simulations by varying the ICT usage data and network data. Results have revealed
that the global EMF exposure distribution follows the GEV law. In addition, the
global EMF exposure was found very sensitive to the variability of ICT usage
and network data. After investigating how the EI varies due to the input random
variables, a variance-based sensitivity analysis was carried out for the purpose of
simplifying the EI metric. It was found that the EMF exposure to a 3G network is
significantly impacted by the heavy usage traffic, and especially, the uplink data
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traffic due to the limited upload speed in 3G networks. As a consequence, the
EI metric could be simplified by considering only two different ICT user profiles.
Furthermore, results have also shown that downlink EM radiations from BTS less
affect the EMF exposure than uplink EM radiations from mobiles in 3G networks.

One of the main findings was thus that uplink data traffic has a dominating
impact on the 3G-induced EMF exposure due to the limited upload throughputs.
However, nowadays, LTE networks can provide high quality services and high
traffic capacity. Furthermore, signal attenuation map for a specific geographical
area (e.g., Lyon city) was used through a deterministic propagation model in
previous. As a matter of fact, propagation environments also play a important role
in assessing signal attenuation, i.e., the impact of building and field data in RF waves
propagation should also be taken into account. We therefore proposed a simplified
methodology based on advanced statistical tools to evaluate the day-to-day global
EMFs exposure of a population induced by such a network (LTE) taking into
account the variability and uncertainties linked to propagation environment, usage,
as well as EMFs from personal wireless devices and base stations. To this end, the
uncertainties linked to PLE due to the influence of propagation environment were
quantified and characterized using stochastic city models and a newly developed 3D
ray tracing simulator. Furthermore, the distributions of PLE as well as ICT usage
data were used as inputs of a simplified LTE network traffic simulator (developed
in Matlab) in order to assess the network data. One of the main results was that
the network data are mainly affected by the PLE (total Sobol’s index was about
99%). Finally, the variability of EI was characterized in terms of ICT usage and
network data using Monte Carlo simulations. A sensitivity analysis was carried
out to assess the importance of each input parameters on the EI. In contrary to
what we observed for 3G networks, results have highlighted the importance of
received power density (both in indoor and outdoor environments) from eNB on
the global average exposure induced by a macro LTE network. Moreover, emitted
powers outdoor and indoor were ranked respectively third and fourth among all
the influencing input parameters on the EI.

Finally we must stress out that the results achieved in the framework of this
thesis have contributed to the European project LEXNET, aiming to develop a new
RF-EMF exposure metric assessing the global exposure of a population to a network
as a whole to be used as a KPI to test and optimize wireless telecommunication
networks in terms of EMF exposure.

6.2 Perspectives

Taking advantage of progress in high performance calculation, simulators are
nowadays becoming more able to handle complex problems and are used in the
system design, KPI assessment (e.g., EMF exposure), etc. On the other hand, to
explore the design space, quantify the uncertainty of KPI or to optimize the design,
simulations have to be performed many times. However, despite such a progress in
high performance calculation, performing thousands of simulations is not always
affordable in limited time. As the study carried out in this thesis, the surrogate
models, e.g., PC expansion method, was applied to avoid the computational burden.
As a matter of fact, our studies are mainly dedicated to build a surrogate model for a
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deterministic simulator, e.g., 3G radio network planning tool. However, the simulator
can also be stochastic. E.g., the stochastic geometry simulator used in Chapter 5 to
build the random city models. In contrast to the deterministic one, which generate
a unique output for each set of input parameters, the stochastic simulator contains
the sources which are randomness, that is to say, the same input parameters create
different outputs. In this case, at a given input (e.g., building height), the output
of the stochastic geometry simulator, is not one value but a probability density
function that need to be characterized. As a consequence, it is not feasible to
execute thousands of simulations by this stochastic simulator. To overcome this
limitation, surrogating an stochastic simulator is an emerging question to be solved.

Another perceptive lies in the assessment of RF-EMF exposure induced by the
emerging systems and networks. As shown in this thesis, the technology, usage,
proximity to the antenna, etc. have a strong influence to the exposure. Nowadays,
the usages have evolved. 3G and 4G networks have been massively deployed
to enable and improve data transmissions and QoS. Network infrastructures are
evolving towards closer access points with variable densities, self-organized or
movable capacity. The upcoming 5th generation mobile networks (5G) will change
the usage: wireless communications of connected objects including machine to
machine communications. In this case, the RF emissions will become massive
and more sporadic (both in time and space) at the same time. There is therefore
the need to characterize the day-to-day exposure by such a network through the
approach of the LEXNET EI metric. The EI should thus be further extended
to the emerging systems and networks.
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A.1 Spearman correlation matrix for system’s out-

put

Figure A.1: A exelpme of Spearman correlation matrix for system’s output variables in
day time case

A.2 Statistical characteristic comparison between

system’s output observations and surrogate

model’s executions

Table A.1: Statistical characteristic comparison between 50 observations (obtained by
simulations) and 104 executions (generated by meta-model) for each variable and its
corresponding statistical model

During day time from 8 a.m. to 6 p.m.

50
observations

104

executions
Statistical

model selection
Rx power Indoor GEV(µ, σ, ξ)

Mean (W ) 3.6449×10−11 3.4990×10−11 µ(10−11)σ(10−11)ξ(10−2)
Standard deviation 2.2742×10−11 1.4602×10−11 2.88 1.26 −5.21
Variation coefficient 62% 42% R2 = 96%
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Rx power Outdoor GEV(µ, σ, ξ)
Mean (W ) 1.6491 × 10−8 1.4145 × 10−8 µ(10−8) σ(10−9) ξ(10−2)
Standard deviation 1.1853 × 10−8 0.7378 × 10−8 1.09 6.03 −3.85
Variation coefficient 72% 52% R2 = 97%

Tx power voice Indoor N (µ, σ)
Mean (W ) 0.0206 0.0207 µ(10−2) σ(10−3)
Standard deviation 0.0021 0.0015 2.07 1.45
Variation coefficient 10% 7% R2 = 95%

Tx power voice Outdoor GEV(µ, σ, ξ)
Mean (W ) 0.0014 0.0014 µ(10−3) σ(10−4) ξ(10−2)
Standard deviation 7.1585 × 10−4 5.1792 × 10−4 1.16 4.57 -4.41
Variation coefficient 51% 38% R2 = 93%

Tx power data Indoor N (µ, σ)
Mean (W ) 0.0944 0.0942 µ(10−2) σ(10−2)
Standard deviation 0.0169 0.0112 9.42 1.12
Variation coefficient 18% 12% R2 = 93%

Tx power data Outdoor GEV(µ, σ, ξ)
Mean (W ) 0.0036 0.0034 µ(10−3) σ(10−3) ξ(10−2)
Standard deviation 0.0018 0.0014 2.83 1.17 -4.09
Variation coefficient 50% 42% R2 = 93%

Throughput Indoor N (µ, σ)
Mean (kbps) 81.9536 83.0227 µ σ
Standard deviation 12.6753 9.1778 83.02 9.18
Variation coefficient 15% 11% R2 = 93%

Throughput Outdoor N (µ, σ)
Mean (kbps) 119.6785 120.2268 µ σ
Standard deviation 8.7212 8.5949 120.23 8.59
Variation coefficient 7% 7% R2 = 89%

During night time from 6 p.m. to 8 a.m.

50
observations

104

executions
Statistical

model selection
Rx power Indoor GEV(µ, σ, ξ)

Mean (W ) 3.7230×10−11 3.8535×10−11 µ(10−11)σ(10−11)ξ(10−2)
Standard deviation 2.0790×10−11 1.6856×10−11 3.14 1.40 −4.04
Variation coefficient 56% 44% R2 = 95%

Rx power Outdoor GEV(µ, σ, ξ)
Mean (W ) 1.6443 × 10−8 1.6519 × 10−8 µ(10−8) σ(10−9) ξ(10−2)
Standard deviation 8.9903 × 10−9 7.1533 × 10−9 1.35 5.82 −2.37
Variation coefficient 55% 43% R2 = 92%

Tx power voice Indoor N (µ, σ)
Mean (W ) 0.0203 0.0204 µ(10−2) σ(10−3)
Standard deviation 0.0022 0.0023 2.04 2.27
Variation coefficient 11% 11% R2 = 94%

Tx power voice Outdoor GEV(µ, σ, ξ)
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A.2. Statistical characteristic comparison between system’s output observations and

surrogate model’s executions

Mean (W ) 0.0013 0.0013 µ(10−3) σ(10−4) ξ(10−2)
Standard deviation 6.5137 × 10−4 4.6319 × 10−4 1.05 4.21 -4.29
Variation coefficient 50% 37% R2 = 95%

Tx power data Indoor N (µ, σ)
Mean (W ) 0.0928 0.0931 µ(10−2) σ(10−2)
Standard deviation 0.0173 0.0170 9.31 1.70
Variation coefficient 19% 18% R2 = 93%

Tx power data Outdoor GEV(µ, σ, ξ)
Mean (W ) 0.0034 0.0035 µ(10−3) σ(10−3) ξ(10−2)
Standard deviation 0.0017 0.0014 2.89 1.25 -6.04
Variation coefficient 51% 41% R2 = 97%

Throughput Indoor N (µ, σ)
Mean (kbps) 84.6185 87.2121 µ σ
Standard deviation 10.8570 10.1933 87.21 10.19
Variation coefficient 13% 12% R2 = 95%

Throughput Outdoor N (µ, σ)
Mean (kbps) 121.8796 123.2316 µ σ
Standard deviation 6.2121 5.6544 123.23 5.65
Variation coefficient 6% 6% R2 = 87%
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Résumé 

Cette thèse propose une nouvelle méthode, via les outils de dosimétrie 
et de statistiques, pour l’évaluation de l’exposition globale d’une 
population aux champs électromagnétiques (EMFs) radiofréquences 
en prenant en compte les différentes technologies, usages et 
environnements... Nous avons analysé pour la première fois 
l’exposition moyenne d’une  population induite par un réseau 3G, tout 
en considérant à la fois les émissions EMFs montantes et 
descendantes dans des différents pays, dans des différentes  zones 
géographiques et pour les différents usages des mobiles. Les résultats 
montrent une forte hétérogénéité de l'exposition dans le temps et dans 
l'espace. Contrairement à la croyance populaire, l'exposition aux ondes 
EMFs 3G est dominée par les émissions montantes, résultant de 
l’usage voix et data. 

En outre, l'exposition moyenne de la population diffère d'une zone 
géographique à une autre, ainsi que d'un pays à un autre, en raison 
des différentes architectures de réseau cellulaire et de la variabilité de 
l’usage des mobiles. 

Ensuite, la variabilité et les incertitudes liées à ces facteurs  ont été 
caractérisées. Une analyse de sensibilité basée sur la variance de 
l'exposition globale a été effectuée dans le but de simplifier son 
évaluation. 

Enfin, une méthodologie simplifiée basée sur des outils statistiques 
avancés a été proposée pour évaluer l'exposition réelle de la 
population en tenant compte de la variabilité liée à l’environnement  de 
propagation, à l'usage, ainsi qu'aux émissions EMFs provenant des 
mobiles et des stations de base (BTS). Les résultats ont souligné 
l’importance de la densité de puissance reçue depuis les BTS pour 
l'exposition globale induite par un réseau macro LTE. 

Mots clés : Analyse des données d’usage; profils d’utilisateurs;  
puissance émise et reçue; exposition aux EMF; exposition humaine; 
modèle de substitution; analyse de sensibilité 

 

 

 

 

 

 

 

 

 

 

Abstract 

Wireless communication technologies, since their introduction, have 
evolved very quickly and people have been brought in 30 years into a 
much closer world. In parallel radiofrequency (RF) electromagnetic 
fields (EMF) are more and more used. As a consequence, people’s 
attentions around health risks of exposure to RF EMFs have grown just 
as much as their usages of wireless communication technologies.  

Exposure to RF EMFs can be characterized using different exposure 
metrics (e.g., incident field metrics, absorption metrics…). However, 
the existing methodologies are well suited to the maximum exposure 
assessment for the individual under the worst-case condition. Moreover 
in most cases, when dealing with exposure issues, exposures linked to 
RF EMF emitted from base stations (BTS) and by wireless devices 
(e.g, mobile phones and tablets) are generally treated separately. This 
thesis has been dedicated to construct and validate a new method for 
assessing the real day-to-day RF EMF exposure to a wireless network 
as a whole, exploring the people’s daily life, including both downlink 
and uplink exposures and taking into account different technologies, 
usages, environments, etc.  

Towards these objectives, we analyzed for the first time the average 
population exposure linked to third generation network (3G) induced 
EMFs, from both uplink and downlink radio emissions in different 
countries, geographical areas, and for different wireless device usages. 
Results, derived from device usage statistics, show a strong 
heterogeneity of exposure, both in time and space. We show that, 
contrary to popular belief, exposure to 3G EMFs is dominated by uplink 
radio emissions, resulting from voice and data traffic, and average 
population EMF exposure differs from one geographical area to 
another, as well as from one country to another, due to the different 
cellular network architectures and variability of mobile usage. Thus the 
variability and uncertainties linked to these influencing factors were 
characterized. And a variance-based sensitivity analysis of the global 
exposure was performed for the purpose of simplifying its evaluation.  

Finally, a substitution model was built to evaluate the day-to-day global 
LTE induced EMFs exposure of a population taking into account the 
variability linked to propagation environment, usage, as well as EMFs 
from personal wireless devices and BTS. Results have highlighted the 
importance of received power density from BTS to the issue of global 
exposure induced by a macro LTE network. This substitution model 
can be further used to analyze the evolution of the wireless network in 
terms of EMF exposure.  

Keywords: analysis of ICT usage data; user profiles; emitted and 
received power; EMF exposure; human exposure; surrogate model; 
sensitivity analysis


