V. Bibliography-ren, C. B. Lai, T. T. Kouemou, and E. Rijeka, Wideband Antennas for Modern Radar Systems Application des Cyclo-Oléfine Polymère et Copolymère (COP/COC) pour la mise en oeuvre de microsystèmes communicants autonomes et des capteurs associés 1 to 220 GHz complex permittivity behavior of flexible polydimethylsiloxane substrate, Ch. 17. [2] Zeon corporation ZEONEX® -Cyclo Olefin Polymer (COP), " Tokyo, 2016. [3] A. Glise Sylgard ® 184 Silicone Elastomer Medical, A. G. Fahrenheitstra, and G. Telephon, " Safety Data Sheet acc, pp.278-280, 2004.

T. Liu, P. Sen, C. Kim, R. Zhang, M. Hodes et al., Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices High heat flux, single-phase microchannel cooling A Wireless Passive RCS-based Temperature Sensor using Liquid Metal and Microfluidics Technologies, Eur. Microw. Conf., no. October, pp.443-450, 2011.

T. Alboussiere, P. Cardin, F. Debray, P. La-rizza, J. Masson et al., Experimental evidence of Alfv??n wave propagation in a Gallium alloy, Physics of Fluids, vol.23, issue.9, p.19, 2011.
DOI : 10.1146/annurev.fluid.34.081701.171829

S. K. Ravindran, M. Roulet, T. Huesgen, M. Kroener, and P. Woias, Performance improvement of a micro thermomechanical generator by incorporating Galinstan?? micro droplet arrays, Journal of Micromechanics and Microengineering, vol.22, issue.9, p.94002, 2012.
DOI : 10.1088/0960-1317/22/9/094002

S. Cheng, Z. Wu, P. Hallbjörner, K. Hjort, and A. Rydberg, Foldable and Stretchable Liquid Metal Planar Inverted Cone Antenna, IEEE Transactions on Antennas and Propagation, vol.57, issue.12, pp.3765-3771, 2009.
DOI : 10.1109/TAP.2009.2024560

C. H. Chen and D. Peroulis, Liquid RF MEMS Wideband Reflective and Absorptive Switches, IEEE Transactions on Microwave Theory and Techniques, vol.55, issue.12, pp.2919-2929, 2007.
DOI : 10.1109/TMTT.2007.910011

M. R. Khan, Engineering the Yield Properties of the Oxide Skin on a Liquid Metal Alloy, 2011.

M. R. Khan, C. B. Eaker, E. F. Bowden, and M. D. Dickey, Giant and switchable surface activity of liquid metal via surface oxidation, Proceedings of the National Academy of Sciences, vol.95, issue.39, pp.14047-51, 2014.
DOI : 10.1063/1.4764020

URL : http://www.pnas.org/content/111/39/14047.full.pdf

M. D. Dickey, Emerging Applications of Liquid Metals Featuring Surface Oxides, ACS Applied Materials & Interfaces, vol.6, issue.21, pp.18369-18379, 2014.
DOI : 10.1021/am5043017

URL : https://doi.org/10.1021/am5043017

R. C. Gough, A. M. Morishita, J. H. Dang, M. R. Moorefield, W. A. Shiroma et al., Rapid electrocapillary deformation of liquid metal with reversible shape retention, Micro and Nano Systems Letters, vol.2, issue.1, pp.1-9, 2015.
DOI : 10.1109/ACCESS.2014.2350531

URL : https://mnsl-journal.springeropen.com/track/pdf/10.1186/s40486-015-0017-z

M. Wang, C. Trlica, M. R. Khan, M. D. Dickey, and J. J. Adams, A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity, Journal of Applied Physics, vol.117, issue.19, 2015.
DOI : 10.1007/BF00974030

C. Kitamura and A. Morishita, A liquid-metal reconfigurable Yagi-Uda monopole array, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), pp.65-67, 2013.
DOI : 10.1109/MWSYM.2013.6697779

D. R. López, Reconfigurable pixel antennas for communications, p.2013

A. M. Morishita, R. C. Gough, J. H. Dang, A. T. Ohta, and W. Shiroma, A liquid-metal reconfigurable log-periodic balun, 2014 IEEE MTT-S International Microwave Symposium (IMS2014), pp.1-3, 2014.
DOI : 10.1109/MWSYM.2014.6848662

A. Morishita, C. Kitamura, A. Ohta, and W. Shiroma, A Liquid-Metal Monopole Array With Tunable Frequency, Gain, and Beam Steering, IEEE Antennas and Wireless Propagation Letters, vol.12, pp.1388-1391, 2013.
DOI : 10.1109/LAWP.2013.2286544

D. Rodrigo, S. Member, L. Jofre, and B. A. Cetiner, Circular Beam-Steering Reconfigurable Antenna With Liquid Metal Parasitics, IEEE Transactions on Antennas and Propagation, vol.60, issue.4, pp.1796-1802, 2012.
DOI : 10.1109/TAP.2012.2186235

G. Bartels-mikrotechnik, Bartels Micropumps, 2016.

S. Tang, K. Khoshmanesh, V. Sivan, P. Petersen, A. P. O-'mullane et al., Liquid metal enabled pump, Proceedings of the National Academy of Sciences, vol.111, issue.9, pp.3304-3313, 2014.
DOI : 10.1021/cr60130a002

URL : http://www.pnas.org/content/111/9/3304.full.pdf

O. O. Osman, H. Shintaku, and S. Kawano, Development of micro-vibrating flow pumps using MEMS technologies, Microfluidics and Nanofluidics, vol.135, issue.2, pp.703-713, 2012.
DOI : 10.1016/j.sna.2006.08.017

URL : https://link.springer.com/content/pdf/10.1007%2Fs10404-012-0988-5.pdf

M. Du, X. Ye, K. Wu, and Z. Zhou, A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls, Sensors, vol.135, issue.124, pp.2611-2631, 2009.
DOI : 10.1016/j.sna.2006.09.012

URL : http://www.mdpi.com/1424-8220/9/4/2611/pdf

W. Irshad and D. Peroulis, A silicon-based galinstan magnetohydrodynamic pump, 9th Int. Work. ?, pp.127-129, 2009.

E. Gedik, H. Kurt, and Z. Recebli, CFD Simulation of Magnetohydrodynamic Flow of a Liquid-Metal Galinstan Fluid in Circular Pipes, FDMP Fluid Dyn. Mater. ?, vol.9, issue.1, pp.23-33, 2013.

R. Wilcoxon, N. Lower, and D. Dlouhy, A compliant thermal spreader with internal liquid metal cooling channels, 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), pp.210-216, 2010.
DOI : 10.1109/STHERM.2010.5444288

O. Faitas and O. Matviykiv, Simulation of liquid thermal expansion effect for wireless passive microfluidic temperature sensor, 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), 2014.
DOI : 10.1109/MIKON.2014.6899911

S. Pottigari and J. Kwon, An Ultra Wide Range Mems Variable Capacitor with a Liquid Metal, 2008 Device Research Conference, pp.153-154, 2008.
DOI : 10.1109/DRC.2008.4800780

M. Hodes, R. Zhang, L. S. Lam, R. Wilcoxon, and N. Lower, On the Potential of Galinstan-Based Minichannel and Minigap Cooling, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.4, issue.1, pp.46-56, 2014.
DOI : 10.1109/TCPMT.2013.2274699

H. Lee and C. Kim, Surface-tension-driven microactuation based on continuous electrowetting, Microelectromechanical Syst. J, vol.9, issue.2, pp.171-180, 2000.

R. Gough, A. Morishita, J. Dang, and W. Hu, Continuous Electrowetting of Non-toxic Liquid Metal for RF Applications, IEEE Access, vol.2, pp.874-882, 2014.
DOI : 10.1109/ACCESS.2014.2350531

URL : https://doi.org/10.1109/access.2014.2350531

R. C. Gough, J. H. Dang, A. M. Morishita, A. T. Ohta, and W. Shiroma, Frequencytunable slot antenna using continuous electrowetting of liquid metal, IEEE MTT-S Int. Microw. Symp, pp.1-4, 2014.
DOI : 10.1109/mwsym.2014.6848565

S. C. Yee, A Frequency Reconfigurable Circularly Polarized Microstrip Patch Antenna Using Liquid Metal Microswitches, United States Naval Academy, 2011.
DOI : 10.1109/wamicon.2015.7120370

Y. Damgaci and B. Cetiner, A frequency reconfigurable antenna based on digital microfluidics, Lab on a Chip, vol.54, issue.4, pp.2883-2890, 2013.
DOI : 10.1109/TAP.2005.863373

E. Cagatay, Design, fabrication and characterizartion of liquid solid microelectromechanical switches, 2012.

C. V. Sternling and L. E. Scriven, Interfacial turbulence: Hydrodynamic instability and the marangoni effect, AIChE Journal, vol.5, issue.4, pp.514-523, 1959.
DOI : 10.1002/aic.690050421

S. Tang, Y. Lin, I. Joshipura, K. Khoshmanesh, and M. Dickey, Steering liquid metal flow in microchannels using low voltages, Lab on a Chip, vol.3, issue.19, pp.3905-3911, 2015.
DOI : 10.1186/s40486-015-0017-z

D. Juncker, Capillary Microfluidic Systems for Bio / Chemistry, Scientist, p.97, 2002.

B. Zhmud, F. Tiberg, and K. Hallstensson, Dynamics of Capillary Rise, Journal of Colloid and Interface Science, vol.228, issue.2, pp.263-269, 2000.
DOI : 10.1006/jcis.2000.6951

K. S. Birdi and D. T. Vu, Capillary rise of liquids in rectangular tubings, Colloid & Polymer Science, vol.33, issue.5, pp.470-474, 1988.
DOI : 10.1007/BF01457265

M. A. Khondoker and D. Sameoto, Fabrication methods and applications of microstructured gallium based liquid metal alloys, Smart Materials and Structures, vol.25, issue.9, p.93001, 2016.
DOI : 10.1088/0964-1726/25/9/093001

URL : http://doi.org/10.1088/0964-1726/25/9/093001

B. Zhang, Q. Dong, C. E. Korman, Z. Li, and M. E. , Flexible packaging of solidstate integrated circuit chips with elastomeric microfluidics, Sci. Rep, vol.3, pp.1-8, 2013.
DOI : 10.1038/srep01098

URL : http://www.nature.com/articles/srep01098.pdf

A. Zavabeti, T. Daeneke, A. F. Chrimes, A. P. O-'mullane, J. Z. Ou et al., Ionic imbalance induced self-propulsion of liquid metals, Nature Communications, vol.74, 2016.
DOI : 10.1021/ja01125a021

URL : http://www.nature.com/articles/ncomms12402.pdf

S. Tang, V. Sivan, K. Khoshmanesh, A. P. O-'mullane, X. Tang et al., Electrochemically induced actuation of liquid metal marbles, Nanoscale, vol.36, issue.5, pp.5949-5957, 2013.
DOI : 10.1016/j.ijhydene.2010.11.052

W. Hong and K. Sarabandi, Low-Profile, Multi-Element, Miniaturized Monopole Antenna, IEEE Transactions on Antennas and Propagation, vol.57, issue.1, pp.72-80, 2009.
DOI : 10.1109/TAP.2008.2009731

L. Yang, Z. Zhang, G. Fu, Y. Zhang, and Y. Li, A NOVEL LOW-PROFILE QUADRIPOD KETTLE ANTENNA WITH ENHANCED BANDWIDTH, Progress In Electromagnetics Research, vol.144, pp.241-247, 2014.
DOI : 10.2528/PIER13122801

URL : http://www.jpier.org/pier/pier144/22.13122801.pdf

W. W. Li and K. W. Leung, Omnidirectional Circularly Polarized Dielectric Resonator Antenna With Top-Loaded Alford Loop for Pattern Diversity Design, IEEE Transactions on Antennas and Propagation, vol.61, issue.8, pp.4246-4256, 2013.
DOI : 10.1109/TAP.2013.2262072

B. Q. Wu and K. Luk, A Wideband, Low-Profile, Conical-Beam Antenna With Horizontal Polarization for Indoor Wireless Communications, IEEE Antennas Wirel. Propag. Lett, vol.8, pp.634-636, 2009.

K. Lertsakwimarn, C. Phongcharoenpanich, and T. Fukusako, A Low-Profile and Compact Split-Ring Antenna with Horizontally Polarized Omnidirectional Radiation, International Journal of Antennas and Propagation, vol.2015, 2014.
DOI : 10.1109/TAP.2012.2223450

URL : http://doi.org/10.1155/2015/954562

R. Gough, A. Morishita, J. Dang, and W. Hu, Continuous Electrowetting of Non-toxic Liquid Metal for RF Applications, IEEE Access, vol.2, pp.874-882, 2014.
DOI : 10.1109/ACCESS.2014.2350531

URL : https://doi.org/10.1109/access.2014.2350531

H. Lee and C. Kim, Surface-tension-driven microactuation based on continuous electrowetting, Microelectromechanical Syst. J, vol.9, issue.2, pp.171-180, 2000.

M. R. Khan, C. B. Eaker, E. F. Bowden, and M. D. Dickey, Giant and switchable surface activity of liquid metal via surface oxidation, Proceedings of the National Academy of Sciences, vol.95, issue.39, pp.14047-51, 2014.
DOI : 10.1063/1.4764020

URL : http://www.pnas.org/content/111/39/14047.full.pdf

S. Tang, Y. Lin, I. Joshipura, K. Khoshmanesh, and M. Dickey, Steering liquid metal flow in microchannels using low voltages, Lab on a Chip, vol.3, issue.19, pp.3905-3911, 2015.
DOI : 10.1186/s40486-015-0017-z

S. K. Cho, H. Moon, and C. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. Microelectromechanical Syst, vol.12, issue.1, pp.70-80, 2003.

M. Wang, C. Trlica, M. R. Khan, M. D. Dickey, and J. J. Adams, A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity, Journal of Applied Physics, vol.117, issue.19, 2015.
DOI : 10.1007/BF00974030

J. L. Volakis, Antenna engineering handbook, 2010.

H. Brock, The open sleeve broadband antenna United States Naval Postgraduate School, 1955.

B. Yuan, J. Xiong, Y. Fu, P. Liang, L. Yao et al., A Novel Design Method for Improving Sleeve Antenna Performance, pp.2-4, 2016.

Z. Bin, L. Qizhong, and J. Yicai, Research on a novel sleeve antenna and its applications, p.330, 2005.

K. G. Thomas, N. Lenin, and M. Sreenivasan, Wide-Band Dual Sleeve Antenna, IEEE Transactions on Antennas and Propagation, vol.54, issue.3, pp.1034-1037, 2006.
DOI : 10.1109/TAP.2006.869942

S. Wang, S. Gong, and P. Zhang, A NOVEL DUAL-SLEEVE ANTENNA, pp.205-208, 2010.

M. Taguchi and S. Egashira, Sleeve antenna with ground wires, IEEE Transactions on Antennas and Propagation, vol.39, issue.1, pp.1-7, 1991.
DOI : 10.1109/8.64427

T. Oki, T. Hung, M. Sakuma, and H. Morishita, Basic characteristics of wideband sleeve antenna, 2014 International Symposium on Antennas and Propagation Conference Proceedings, pp.231-232, 2014.
DOI : 10.1109/ISANP.2014.7026615

T. Liu, P. Sen, and C. Kim, Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices, Journal of Microelectromechanical Systems, vol.21, issue.2, pp.443-450, 2012.
DOI : 10.1109/JMEMS.2011.2174421

URL : http://cjmems.seas.ucla.edu/papers/2012%20JMEMS%20Liu%20Galistan%20%281%29.pdf

A. Glise, ]. B. Yuan, J. Xiong, Y. Fu, P. Liang et al., Application des Cyclo-Oléfine Polymère et Copolymère (COP/COC) pour la mise en oeuvre de microsystèmes communicants autonomes et des capteurs associés Univ. Bretagne Occident. Brest, 2015. [1] C. Balanis, Antenna theory: analysis and design A Novel Design Method for Improving Sleeve Antenna Performance, pp.2-4, 2012.

D. Rodrigo, S. Member, L. Jofre, B. A. Cetiner, and D. R. López, Circular Beam-Steering Reconfigurable Antenna With Liquid Metal parasitic Reconfigurable pixel antennas for communications, IEEE Trans. Antennas Propag, vol.605, issue.4, pp.1796-1802, 2012.
DOI : 10.1109/tap.2012.2186235

Y. Arbaoui, V. Laur, A. Maalouf, P. Queffelec, D. Passerieux et al., Full 3-D Printed Microwave Termination: A Simple and Low-Cost Solution, Tokyo, 2016. [7] P. Vanysek, Ionic conductivity and diffusion at infinite dilution, pp.271-278, 2015.
DOI : 10.1109/TMTT.2015.2504477

URL : https://hal.archives-ouvertes.fr/hal-01276106

V. Bibliography, N. Tiercelin, P. Coquet, R. Sauleau, V. Senez et al., Sylgard ® 184 Silicone Elastomer Polydimethylsiloxane membranes for millimeter-wave planar ultra flexible antennas Inkjet-printed elastomeric millimeter-wave devices, Millimeter-Wave Microstrip Antenna Array on, pp.2389-2395, 2004.

O. Illa, D. Ordeig, A. Snakenborg, R. G. Romano-rodríguez, J. P. Compton et al., A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous and non-aqueous electrochemistry The fabrication of microfluidic structures by means of full-wafer adhesive bonding using a poly(dimethylsiloxane) catalyst A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity Rapid electrocapillary deformation of liquid metal with reversible shape retention, Micro Nano Syst, pp.1254-1261, 2007.

R. Gough, A. Morishita, J. Dang, and W. Hu, Continuous Electrowetting of Non-toxic Liquid Metal for RF Applications, IEEE Access, vol.2, pp.874-882, 2014.
DOI : 10.1109/ACCESS.2014.2350531

URL : https://doi.org/10.1109/access.2014.2350531

A. Zavabeti, T. Daeneke, A. F. Chrimes, A. P. O-'mullane, J. Z. Ou et al., Ionic imbalance induced self-propulsion of liquid metals, Nature Communications, vol.74, 2016.
DOI : 10.1021/ja01125a021

URL : http://www.nature.com/articles/ncomms12402.pdf

C. B. Eaker and M. D. Dickey, Liquid metal actuation by electrical control of interfacial tension, Applied Physics Reviews, vol.49, issue.3, 2016.
DOI : 10.1063/1.4919605

URL : https://aip.scitation.org/doi/10.1063/1.4959898

T. Corporation, TENERGY 9V 250mAh NiMH Battery, pp.1-10, 2009.

C. Solar and L. , KS-M8080P -5V 160mA Mini Photovoltaic Panel, p.1

R. C. Gough, J. H. Dang, A. M. Morishita, A. T. Ohta, and W. Shiroma, Frequencytunable slot antenna using continuous electrowetting of liquid metal, IEEE MTT-S Int. Microw. Symp, pp.1-4, 2014.
DOI : 10.1109/mwsym.2014.6848565