Skip to Main content Skip to Navigation
New interface

Biocompatible nanostructured multilayer systems

Abstract : Thin films have been the subject of intense study in materials because they offer multiple applications of great interest. Various surfaces have been modified with thin films or coatings to study how to improve their bioactivity and biocompatibility properties to form a biomaterial. Thin films of Ta, TaN and Ta/TaN were deposited on glass substrates, metallic substrates, SS316LVM and Ti, by RF Sputtering technique. By High angle XRD and GIXRD it was found that the nature of the substrate has a strong influence on the Ta phase formed. Formation of ordered α-Ta phase was obtained on SS316LVM, but the disordered metastable β-Ta phase was formed on Ti and on TaN substrates. While TaN crystallizes in the cubic phase (Fm3m) NaCl type on metallic substrates but shows a preferential orientation in the (200) plane on the glass substrate. The chemical analysis of the surfaces by XPS reveals that in the surfaces of the deposited layers are several oxidized chemical species such as Ta2O5, TaOxNy TaxOy due to Ta is a very reactive metal and is readily oxidized even at low partial pressures as for our synthesis conditions. Characterization by Scanning Electron Microscopy reveals that the microstructure of the films was homogeneous with small clusters size and a cauliflower type, also the films exhibit the typical columnar growth for films deposited by PVD techniques, following the growth of zone I described by the model developed by Movchan and Demchisin and Thornton. Biomimetic method was used to evaluate the bioactivity in all surfaces which involves immersing the thin films in simulated body fluid (SBF) to promote the deposition of calcium phosphates, two concentrations were used to assess qualitatively which could deposit the stoichiometric calcium phosphate hydroxyapatite and make it more efficiently. The SBF 1.5 enriched in Ca2 + and PO43- ions was chosen. A new layer was deposited upon the surfaces and it was determined by XRD, FTIR and XPS that crystalline Hydroxyapatite phase was formed, so that all our surfaces have the ability to form apatite spontaneously after an immersion period of three weeks. The mechanism of deposition of HAp involves the formation of small amounts of Ta-OH groups by a hydration of the tantalum oxide passive layer on its surface. To study biocompatibility properties, films were placed in cell culture containing osteoblasts, all surfaces exhibit cell adhesion and formation of filipodia. Whereas one of the main problems of bone implants is biofilm formation caused by bacterial colonization, tests were made with the bacterium Pseudomonas Aeruginosa, which is a major human opportunistic pathogens in surgical procedures, causing infections in soft tissue, bones, among others. This assay allowed us to know how the different surfaces react when exposed to this bacteria, Titanium had greater growth of P. aeruginosa and biofilm formation in all periods of study, while Ta surfaces showed the lowest activity of biofilm formation. Mesoporous silica thin films where used as bactericidal agents, and it was found by MEB that no microbial colonization or biofilm formation occur on these surfaces.
Document type :
Complete list of metadata

Cited literature [208 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Wednesday, June 6, 2018 - 12:42:28 PM
Last modification on : Friday, August 5, 2022 - 10:59:01 AM
Long-term archiving on: : Friday, September 7, 2018 - 1:22:08 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01809024, version 1



Angelica Yuliana Jara Olivares. Biocompatible nanostructured multilayer systems. Material chemistry. Université Montpellier; Universidad central de Venezuela, 2016. Español. ⟨NNT : 2016MONTT222⟩. ⟨tel-01809024⟩



Record views


Files downloads