, Age range in years where confidence intervals of the predicted pathological models do not overlap with the predicted control models. The prediction bounds are estimated with a confidence level at 95%, Three model comparisons are presented CN (N=2944) vs. AD/MCI (N=3262), CN (N=2944) vs. AD (N=2303) and CN (N=2944) vs. MCI (N=2836)

C. Vs, . Ad-/-mci-cn-vs, . Ad-cn-vs, . Mci-white, and . Matter,

G. Matter, , pp.0-85

N. /. Putamen and . Thalamus,

G. Pallidus, N. /. Hippocampus, and >. ,

>. Amygdala,

3. References, Vascular factors and risk of dementia: design of the Three-City Study and baseline characteristics of the study population, Neuroepidemiology, vol.22, issue.6, pp.316-325, 2003.

M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Transactions on Medical Imaging, vol.21, issue.3, pp.193-199, 2002.
DOI : 10.1109/42.996338

H. J. Aizenstein, R. D. Nebes, J. A. Saxton, J. C. Price, C. A. Mathis et al., Frequent Amyloid Deposition Without Significant Cognitive Impairment Among the Elderly, Archives of Neurology, vol.65, issue.11, pp.1509-1517, 2008.
DOI : 10.1001/archneur.65.11.1509

URL : https://jamanetwork.com/journals/jamaneurology/articlepdf/1107509/noc80049_1509_1517.pdf

Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions, Journal of Digital Imaging, vol.35, issue.5, pp.1-11, 2017.
DOI : 10.1109/ISBI.2015.7163869

P. Aljabar, R. A. Heckemann, A. Hammers, J. V. Hajnal, and D. Rueckert, Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy, NeuroImage, vol.46, issue.3, pp.726-738, 2009.
DOI : 10.1016/j.neuroimage.2009.02.018

L. G. Apostolova, R. A. Dutton, I. D. Dinov, K. M. Hayashi, A. W. Toga et al., Conversion of Mild Cognitive Impairment to Alzheimer Disease Predicted by Hippocampal Atrophy Maps, Archives of Neurology, vol.63, issue.5, pp.693-699, 2006.
DOI : 10.1001/archneur.63.5.693

L. G. Apostolova, A. E. Green, S. Babakchanian, K. S. Hwang, Y. Chou et al., Hippocampal Atrophy and Ventricular Enlargement in Normal Aging, Mild Cognitive Impairment (MCI), and Alzheimer Disease, Alzheimer Disease & Associated Disorders, vol.26, issue.1, p.17, 2012.
DOI : 10.1097/WAD.0b013e3182163b62

URL : http://europepmc.org/articles/pmc3286134?pdf=render

J. Ashburner, SPM: A history, NeuroImage, vol.62, issue.2, pp.791-800, 2012.
DOI : 10.1016/j.neuroimage.2011.10.025

URL : https://doi.org/10.1016/j.neuroimage.2011.10.025

J. Ashburner and K. J. Friston, Voxel-Based Morphometry???The Methods, NeuroImage, vol.11, issue.6, pp.805-821, 2000.
DOI : 10.1006/nimg.2000.0582

URL : http://www.stat.wisc.edu/~mchung/teaching/MIA/reading/VBM.ashburner.2000.pdf

A. J. Asman and B. A. Landman, Non-local statistical label fusion for multi-atlas segmentation, Medical Image Analysis, vol.17, issue.2, pp.194-208, 2013.
DOI : 10.1016/j.media.2012.10.002

URL : http://europepmc.org/articles/pmc3648421?pdf=render

B. Aubert-broche, V. S. Fonov, D. Garcia-lorenzo, A. Mouiha, N. Guizard et al.,

C. , A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood, Neuroimage, vol.82, pp.393-402, 2013.

B. B. Avants, N. J. Tustison, G. Song, P. A. Cook, A. Klein et al., A reproducible evaluation of ANTs similarity metric performance in brain image registration, NeuroImage, vol.54, issue.3, pp.2033-2044, 2011.
DOI : 10.1016/j.neuroimage.2010.09.025

W. Bai, W. Shi, C. Ledig, and D. Rueckert, Multi-atlas segmentation with augmented features for cardiac MR images, Medical Image Analysis, vol.19, issue.1, pp.98-109, 2015.
DOI : 10.1016/j.media.2014.09.005

W. Bai, W. Shi, D. P. O-'regan, T. Tong, H. Wang et al., A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images, IEEE transactions on medical imaging, vol.32, issue.7, pp.1302-1315, 2013.

M. J. Ball, M. Fisman, V. Hachinski, and W. Blume, , 1985.

, A new definition of Alzheimer's disease: a hippocampal dementia, Lancet, vol.1, issue.8419, pp.14-16

C. Ballard, Z. Khan, H. Clack, and A. Corbett, Nonpharmacological Treatment of Alzheimer Disease, The Canadian Journal of Psychiatry, vol.105, issue.3, pp.589-595, 2011.
DOI : 10.1080/713755596

C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman, PatchMatch: A randomized correspondence algorithm for structural image editing, ACM Transactions on Graphics-TOG, vol.28, issue.3, p.24, 2009.
DOI : 10.1145/2018396.2018421

URL : http://www.connellybarnes.com/work/publications/2011_patchmatch_cacm.pdf

C. Barnes, E. Shechtman, D. Goldman, and A. Finkelstein, The Generalized PatchMatch Correspondence Algorithm, Computer Vision?ECCV, vol.2010, pp.29-43, 2010.
DOI : 10.1007/978-3-642-15558-1_3

J. Barnes, J. Foster, R. G. Boyes, T. Pepple, E. K. Moore et al., , 2008.

, A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus, NeuroImage, vol.40, issue.4, pp.1655-1671

C. Bernard, C. Helmer, B. Dilharreguy, H. Amieva, S. Auriacombe et al., Time course of brain volume changes in the preclinical phase of Alzheimer's disease, Alzheimer's & Dementia, vol.10, issue.2, pp.143-151, 2014.
DOI : 10.1016/j.jalz.2013.08.279

N. Bernasconi, A. Bernasconi, Z. Caramanos, S. B. Antel, F. Andermann et al., Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region, Brain, vol.126, issue.2, pp.462-469, 2003.
DOI : 10.1093/brain/awg034

E. Braak and H. Braak, Alzheimer's disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon's horn, Acta Neuropathologica, vol.93, issue.4, pp.323-325, 1997.
DOI : 10.1007/s004010050622

H. Braak, I. Alafuzoff, T. Arzberger, H. Kretzschmar, and K. D. Tredici, Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry, Acta Neuropathologica, vol.12, issue.Suppl 4, pp.389-404, 2006.
DOI : 10.1212/WNL.42.2.329

URL : http://europepmc.org/articles/pmc3906709?pdf=render

H. Braak and E. Braak, Neuropathological stageing of Alzheimer-related changes, Acta Neuropathologica, vol.80, issue.4, pp.239-259, 1991.
DOI : 10.1007/978-3-642-70644-8_2

B. Development-cooperative and G. , Total and Regional Brain Volumes in a Population-Based Normative Sample from 4 to 18 Years: The NIH MRI Study of Normal Brain Development, Cerebral Cortex, vol.21, issue.Pt 5, pp.1-12, 2012.
DOI : 10.1109/TMI.2002.806283

M. N. Braskie and P. M. Thompson, A Focus on Structural Brain Imaging in the Alzheimer???s Disease Neuroimaging Initiative, Biological Psychiatry, vol.75, issue.7, pp.527-533, 2014.
DOI : 10.1016/j.biopsych.2013.11.020

J. D. Bremner, M. Narayan, E. R. Anderson, L. H. Staib, H. L. Miller et al., Hippocampal Volume Reduction in Major Depression, American Journal of Psychiatry, vol.157, issue.1, pp.115-118, 2000.
DOI : 10.1176/ajp.157.1.115

J. D. Bremner, P. Randall, T. M. Scott, R. A. Bronen, J. P. Seibyl et al., MRI-based measurement of hippocampal volume in patients with combatrelated posttraumatic stress disorder, Am J Psychiatry, vol.152, issue.7, pp.973-981, 1995.

E. E. Bron, M. Smits, W. M. Van-der-flier, H. Vrenken, F. Barkhof et al.,

N. Ronneberger, R. Amoroso, D. Bellotti, A. M. Cardenas-pena, C. V. Alvarez-meza et al.,

J. Moradi, A. Tohka, S. Routier, A. Durrleman, G. Sarica et al.,

L. Stoyanov, M. Sorensen, S. Nielsen, P. Tangaro, C. Inglese et al.,

S. Niessen and I. Klein, Alzheimer's Disease NeuroimagingStandardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge, Neuroimage, vol.111, pp.562-579, 2015.

T. Brosch, L. Y. Tang, Y. Yoo, D. K. Li, A. Traboulsee et al., Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation, IEEE Transactions on Medical Imaging, vol.35, issue.5, pp.1229-1239, 2016.
DOI : 10.1109/TMI.2016.2528821

A. Buades, B. Coll, and J. M. , A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

A. Buades, B. Coll, and J. M. , Image Denoising Methods. A New Nonlocal Principle, SIAM Review, vol.52, issue.1, pp.113-147, 2010.
DOI : 10.1137/090773908

C. Buss, C. Lord, M. Wadiwalla, D. H. Hellhammer, S. J. Lupien et al., , 2007.

, Maternal care modulates the relationship between prenatal risk and hippocampal volume in women but not in men, J Neurosci, vol.27, issue.10, pp.2592-2595

B. Caldairou, B. C. Bernhardt, J. Kulaga-yoskovitz, H. Kim, N. Bernasconi et al., A Surface Patch-Based Segmentation Method for Hippocampal Subfields, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.379-387, 2016.
DOI : 10.1093/brain/awg034

E. Callaway, Alzheimer???s drugs take a new tack, Nature, vol.489, issue.7414, pp.13-14, 2012.
DOI : 10.1038/489013a

A. Carass, J. L. Cuzzocreo, S. Han, C. R. Hernandez-castillo, P. E. Rasser et al.,

A. Cardenas, G. Fein, J. Dolz, I. B. Ayed, C. Desrosiers et al.,

D. L. Fonov, S. H. Collins, D. Ying, B. A. Crocetti, S. H. Landman et al.,

, Comparing fully automated state-of-the-art cerebellum parcellation from Magnetic Resonance Imaging, Prince, 2018.

G. A. Carlesimo, F. Piras, M. D. Orfei, M. Iorio, C. Caltagirone et al., Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer's disease, Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, vol.1, issue.1, pp.24-32, 2015.
DOI : 10.1016/j.dadm.2014.12.001

M. M. Chakravarty, P. Steadman, M. C. Eede, R. D. Calcott, V. Gu et al.,

P. Lerch, Performing label-fusion-based segmentation using multiple automatically generated templates, Human brain mapping, vol.34, issue.10, pp.2635-2654, 2013.

G. Chetelat, V. L. Villemagne, P. Bourgeat, K. E. Pike, G. Jones et al., Relationship between atrophy and beta-amyloid deposition in Alzheimer disease, Annals of Neurology, vol.67, issue.3, pp.317-324, 2010.

M. Chupin, E. Gerardin, R. Cuingnet, C. Boutet, L. Lemieux et al., Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI, Hippocampus, vol.54, issue.6, pp.579-587, 2009.
DOI : 10.1212/WNL.54.9.1760

URL : http://europepmc.org/articles/pmc2837195?pdf=render

M. Chupin, A. R. Mukuna-bantumbakulu, D. Hasboun, E. Bardinet, S. Baillet et al., Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer???s disease, NeuroImage, vol.34, issue.3, pp.996-1019, 2007.
DOI : 10.1016/j.neuroimage.2006.10.035

L. Clerx, I. A. Van-rossum, L. Burns, D. L. Knol, P. Scheltens et al.,

L. Wahlund, L. Minthon, H. Frolich, H. Hampel, P. J. Soininen et al., Measurements of medial temporal lobe atrophy for prediction of Alzheimer's disease in subjects with mild cognitive impairment, Neurobiol Aging, vol.34, issue.8, pp.2003-2013, 2013.

D. L. Collins, C. J. Holmes, T. M. Peters, and A. C. Evans, Automatic 3-D model-based neuroanatomical segmentation, Human Brain Mapping, vol.16, issue.2, pp.190-208, 1995.
DOI : 10.3109/14639239109012126

D. L. Collins and J. C. Pruessner, Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion, NeuroImage, vol.52, issue.4, pp.1355-1366, 2010.
DOI : 10.1016/j.neuroimage.2010.04.193

N. Cordier, H. Delingette, and N. Ayache, A Patch-Based Approach for the Segmentation of Pathologies: Application to Glioma Labelling, IEEE Transactions on Medical Imaging, vol.35, issue.4, pp.1066-1076, 2016.
DOI : 10.1109/TMI.2015.2508150

URL : https://hal.archives-ouvertes.fr/hal-01241480

N. Cordier, H. Delingette, M. Lê, and N. Ayache, Extended Modality Propagation: Image Synthesis of Pathological Cases, IEEE Transactions on Medical Imaging, vol.35, issue.12, pp.2598-2608, 2016.
DOI : 10.1109/TMI.2016.2589760

URL : https://hal.archives-ouvertes.fr/hal-01343233

P. Coupe, G. Catheline, E. Lanuza, and J. , Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis, Human Brain Mapping, vol.33, issue.11, pp.5501-5518
DOI : 10.1002/hbm.21374

URL : https://hal.archives-ouvertes.fr/hal-01563131

P. Coupe, S. F. Eskildsen, J. V. Manjon, V. S. Fonov, and D. L. , Simultaneous segmentation and grading of anatomical structures for patient's classification: Application to Alzheimer's disease, NeuroImage, vol.59, issue.4, pp.3736-3747
DOI : 10.1016/j.neuroimage.2011.10.080

P. Coupe, S. F. Eskildsen, J. V. Manjon, V. S. Fonov, J. C. Pruessner et al., Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease, NeuroImage: Clinical, vol.1, issue.1, pp.141-152
DOI : 10.1016/j.nicl.2012.10.002

P. Coupé, V. S. Fonov, C. Bernard, A. Zandifar, S. F. Eskildsen et al., Detection of Alzheimer's disease signature in MR images seven years before conversion to dementia: Toward an early individual prognosis, Human Brain Mapping, vol.7, issue.12, pp.4758-4770, 2015.
DOI : 10.1371/journal.pone.0033182

P. Coupe, P. Hellier, C. Kervrann, and C. Barillot, Nonlocal means-based speckle filtering for ultrasound images, IEEE Transactions on Image Processing, vol.18, issue.10, pp.2221-2229, 2009.
DOI : 10.1109/TIP.2009.2024064

URL : https://hal.archives-ouvertes.fr/inserm-00428524

P. Coupe, P. Hellier, S. Prima, C. Kervrann, and C. Barillot, 3D Wavelet Subbands Mixing for Image Denoising, International Journal of Biomedical Imaging, vol.6, p.590183, 2008.
DOI : 10.1109/42.712135

URL : https://hal.archives-ouvertes.fr/inria-00332001

P. Coupe, J. V. Manjon, M. Chamberland, M. Descoteaux, and B. Hiba, Collaborative patch-based super-resolution for diffusion-weighted images, NeuroImage, vol.83, pp.245-261, 2013.
DOI : 10.1016/j.neuroimage.2013.06.030

URL : https://hal.archives-ouvertes.fr/hal-00842213

P. Coupe, J. V. Manjon, V. Fonov, J. Pruessner, M. Robles et al., Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation, Med Image Comput Comput Assist Interv, vol.13, pp.129-136, 2010.
DOI : 10.1007/978-3-642-15711-0_17

URL : https://hal.archives-ouvertes.fr/inserm-00524011

P. Coupe, J. V. Manjon, V. Fonov, J. Pruessner, M. Robles et al., Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation, NeuroImage, vol.54, issue.2, pp.940-954, 2011.
DOI : 10.1016/j.neuroimage.2010.09.018

URL : https://hal.archives-ouvertes.fr/inserm-00541534

P. Coupe, J. V. Manjon, E. Gedamu, D. Arnold, M. Robles et al., An Object-Based Method for Rician Noise Estimation in MR Images, Med Image Comput Comput Assist Interv, vol.12, issue.2, pp.601-608, 2009.
DOI : 10.1007/978-3-642-04271-3_73

URL : https://hal.archives-ouvertes.fr/inserm-00515408

P. Coupe, J. V. Manjon, E. Gedamu, D. Arnold, M. Robles et al., Robust Rician noise estimation for MR images, Medical Image Analysis, vol.14, issue.4, pp.483-493, 2010.
DOI : 10.1016/j.media.2010.03.001

URL : https://hal.archives-ouvertes.fr/inserm-00486495

P. Coupé, J. V. Manjón, E. Lanuza, G. Catheline, O. Brain et al., PNAS: under review, 2018.

P. Coupe, M. Munz, J. V. Manjon, E. S. Ruthazer, and D. L. Collins, A CANDLE for a deeper in vivo insight, Medical Image Analysis, vol.16, issue.4, pp.849-864, 2012.
DOI : 10.1016/j.media.2012.01.002

URL : https://hal.archives-ouvertes.fr/hal-00676241

P. Coupe, P. Yger, and C. Barillot, Fast Non Local Means Denoising for 3D MR Images, Med Image Comput Comput Assist Interv, vol.9, issue.2, pp.33-40, 2006.
DOI : 10.1007/11866763_5

URL : https://hal.archives-ouvertes.fr/inria-00131287

P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

URL : https://hal.archives-ouvertes.fr/inserm-00169658

A. Criminisi, P. Perez, and K. Toyama, Region Filling and Object Removal by Exemplar-Based Image Inpainting, IEEE Transactions on Image Processing, vol.13, issue.9, pp.1200-1212, 2004.
DOI : 10.1109/TIP.2004.833105

R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehericy et al., Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database, NeuroImage, vol.56, issue.2, pp.766-781, 2011.
DOI : 10.1016/j.neuroimage.2010.06.013

J. L. Cummings, G. T. Grossberg, P. Green, M. Tocco, E. M. Resnick et al., A review of the safety and tolerability of treatments for moderate to severe Alzheimer's disease, European journal of neurology, vol.14, pp.52-52, 2007.

C. Davatzikos, P. Bhatt, L. M. Shaw, K. N. Batmanghelich, and J. Q. Trojanowski, Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification, Neurobiology of Aging, vol.32, issue.12, pp.2322-2319, 2011.
DOI : 10.1016/j.neurobiolaging.2010.05.023

L. W. De-jong, K. Van-der-hiele, I. M. Veer, J. J. Houwing, R. G. Westendorp et al.,

A. Middelkoop, M. A. Van-buchem, and J. Van-der-grond, Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study, Brain : a journal of neurology, vol.131, pp.3277-3285, 2008.

D. Leon, M. , A. George, L. Stylopoulos, G. Smith et al., EARLY MARKER FOR ALZHEIMER'S DISEASE: THE ATROPHIC HIPPOCAMPUS, The Lancet, vol.334, issue.8664, pp.672-673, 1989.
DOI : 10.1016/S0140-6736(89)90911-2

J. S. De-olmos, Amygdala. The Human Nervous System, pp.739-868, 2004.

S. Debette, S. Seshadri, A. Beiser, R. Au, J. Himali et al., Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline, Neurology, vol.77, issue.5, pp.461-468, 2011.
DOI : 10.1212/WNL.0b013e318227b227

T. Den-heijer, F. Van-der-lijn, P. J. Koudstaal, A. Hofman, A. Van-der-lugt et al., J. Niessen and M

M. Breteler, A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline, Brain, vol.133, issue.4, pp.1163-1172, 2010.

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., ImageNet: A large-scale hierarchical image database, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.248-255, 2009.
DOI : 10.1109/CVPR.2009.5206848

D. P. Devanand, R. Bansal, J. Liu, X. Hao, G. Pradhaban et al., MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer's disease, NeuroImage, vol.60, issue.3, pp.1622-1629, 2012.
DOI : 10.1016/j.neuroimage.2012.01.075

J. Diedrichsen, A spatially unbiased atlas template of the human cerebellum, NeuroImage, vol.33, issue.1, pp.127-138, 2006.
DOI : 10.1016/j.neuroimage.2006.05.056

J. Djordjevic, M. Jones-gotman, K. D. Sousa, and H. Chertkow, Olfaction in patients with mild cognitive impairment and Alzheimer's disease, Neurobiology of Aging, vol.29, issue.5, pp.693-706, 2008.
DOI : 10.1016/j.neurobiolaging.2006.11.014

J. Dolz, C. Desrosiers, and I. B. Ayed, Comparing fully automated state-of-the-art cerebellum parcellation from Magnetic Resonance Imaging: Cerebellum parcellation from a deep learning perspective, 2018.

I. Driscoll, D. A. Hamilton, H. Petropoulos, R. A. Yeo, W. M. Brooks et al., The Aging Hippocampus: Cognitive, Biochemical and Structural Findings, Cerebral Cortex, vol.13, issue.12, pp.1344-1351, 2003.
DOI : 10.1093/cercor/bhg081

URL : https://academic.oup.com/cercor/article-pdf/13/12/1344/1088912/bhg081.pdf

A. T. Du, N. Schuff, D. Amend, M. P. Laakso, Y. Y. Hsu et al.,

H. C. Norman, M. W. Chui, and . Weiner, Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease, J Neurol Neurosurg Psychiatry, vol.71, issue.4, pp.441-447, 2001.

B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen et al., Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria, Alzheimer's & Dementia, vol.12, issue.3, pp.292-323, 2016.
DOI : 10.1016/j.jalz.2016.02.002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417794

S. Ducharme, M. D. Albaugh, T. V. Nguyen, J. J. Hudziak, J. M. Mateos-perez et al., Trajectories of cortical thickness maturation in normal brain development ??? The importance of quality control procedures, NeuroImage, vol.125, pp.267-279, 2016.
DOI : 10.1016/j.neuroimage.2015.10.010

S. Duchesne, J. Pruessner, and D. L. Collins, Appearance-Based Segmentation of Medial Temporal Lobe Structures, NeuroImage, vol.17, issue.2, pp.515-531, 2002.
DOI : 10.1006/nimg.2002.1188

M. Dyrba, F. Barkhof, A. Fellgiebel, M. Filippi, L. Hausner et al., Predicting Prodromal Alzheimer's Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data, Journal of Neuroimaging, vol.39, issue.Suppl 3, pp.738-747, 2015.
DOI : 10.1016/j.neuroimage.2007.09.066

A. A. Efros and W. T. Freeman, Image quilting for texture synthesis and transfer, Proceedings of the 28th annual conference on Computer graphics and interactive techniques , SIGGRAPH '01, pp.341-346, 2001.
DOI : 10.1145/383259.383296

P. S. Eriksson, E. Perfilieva, T. Björk-eriksson, A. Alborn, C. Nordborg et al., Neurogenesis in the adult human hippocampus, Nature Medicine, vol.383, issue.11, pp.1313-1317, 1998.
DOI : 10.1038/383624a0

S. F. Eskildsen, P. Coupe, V. Fonov, J. V. Manjon, K. K. Leung et al.,

L. Collins and I. , Alzheimer's Disease Neuroimaging (2012)BEaST: brain extraction based on nonlocal segmentation technique, Neuroimage, vol.59, issue.3, pp.2362-2373

S. F. Eskildsen, P. Coupe, D. Garcia-lorenzo, V. Fonov, J. C. Pruessner et al., Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning, NeuroImage, vol.65, pp.511-521
DOI : 10.1016/j.neuroimage.2012.09.058

S. F. Eskildsen, P. Coupe, D. Garcia-lorenzo, V. Fonov, J. C. Pruessner et al., Structural imaging biomarkers of Alzheimer's disease: predicting disease progression, Neurobiology of Aging, vol.36, pp.23-31
DOI : 10.1016/j.neurobiolaging.2014.04.034

URL : https://hal.archives-ouvertes.fr/hal-01060331/file/EskildsenNBA2014-HAL-version.pdf

A. C. Evans and B. D. Group, The NIH MRI study of normal brain development, NeuroImage, vol.30, issue.1, pp.184-202, 2006.
DOI : 10.1016/j.neuroimage.2005.09.068

M. Ewers, C. Walsh, J. Q. Trojanowski, L. M. Shaw, R. C. Petersen et al., Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance, Neurobiology of Aging, vol.33, issue.7, pp.1203-1214, 2012.
DOI : 10.1016/j.neurobiolaging.2010.10.019

A. Fellgiebel, P. R. Dellani, D. Greverus, A. Scheurich, P. Stoeter et al., Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus, Psychiatry Research: Neuroimaging, vol.146, issue.3, pp.283-287, 2006.
DOI : 10.1016/j.pscychresns.2006.01.006

A. Fellgiebel and I. Yakushev, Diffusion Tensor Imaging of the Hippocampus in MCI and Early Alzheimer's Disease, Journal of Alzheimer's Disease, vol.26, issue.s3, pp.257-262, 2011.
DOI : 10.3233/JAD-2011-0001

B. Fischl, FreeSurfer, NeuroImage, vol.62, issue.2, pp.774-781, 2012.
DOI : 10.1016/j.neuroimage.2012.01.021

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich et al.,

S. Kennedy, A. Klaveness, N. Montillo, B. Makris, A. M. Rosen et al., Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain, Neuron, vol.33, issue.3, pp.341-355, 2002.

A. M. Fjell, L. T. Westlye, H. Grydeland, I. Amlien, T. Espeseth et al., Critical ages in the life course of the adult brain: nonlinear subcortical aging, Neurobiology of Aging, vol.34, issue.10, pp.2239-2247
DOI : 10.1016/j.neurobiolaging.2013.04.006

M. F. Folstein, S. E. Folstein, and P. R. Mchugh, ???Mini-mental state???, Journal of Psychiatric Research, vol.12, issue.3, pp.189-198, 1975.
DOI : 10.1016/0022-3956(75)90026-6

V. Fonov, P. Coupé, S. Eskildsen, J. Manjon, and L. Collins, Multi-atlas labeling with population-specific template and non-local patch-based label fusion, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739285

V. S. Fonov and D. L. Collins, Comparing fully automated state-of-the-art cerebellum parcellation from Magnetic Resonance Imaging: U-Net Parcellation of the Cerebellum, 2018.

N. Fox, E. Warrington, P. Freeborough, P. Hartikainen, A. Kennedy et al., , 1996.

, Presymptomatic hippocampal atrophy in Alzheimer's disease, Brain, vol.119, issue.6, pp.2001-2007

K. Franke, E. Luders, A. May, M. Wilke, and C. Gaser, Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI, NeuroImage, vol.63, issue.3, pp.1305-1312, 2012.
DOI : 10.1016/j.neuroimage.2012.08.001

Y. Freund and R. E. Schapire, A desicion-theoretic generalization of on-line learning and an application to boosting, European conference on computational learning theory, 1995.
DOI : 10.1007/3-540-59119-2_166

G. B. Frisoni, N. C. Fox, C. R. Jack, P. Scheltens, and P. M. Thompson, The clinical use of structural MRI in Alzheimer disease, Nature Reviews Neurology, vol.15, issue.2, pp.67-77, 2010.
DOI : 10.1212/WNL.51.6.1546

G. B. Frisoni, C. R. Jack, M. Bocchetta, C. Bauer, K. S. Frederiksen et al., The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity, Alzheimer's & Dementia, vol.11, issue.2, pp.111-125, 2015.
DOI : 10.1016/j.jalz.2014.05.1756

G. Gainotti, A. Acciarri, A. Bizzarro, C. Marra, C. Masullo et al.,

, The role of brain infarcts and hippocampal atrophy in subcortical ischaemic vascular dementia, Colosimo Neurol Sci, vol.25, issue.4, pp.192-197, 2004.

E. Geremia, O. Clatz, B. H. Menze, E. Konukoglu, A. Criminisi et al., Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images, NeuroImage, vol.57, issue.2, pp.378-390, 2011.
DOI : 10.1016/j.neuroimage.2011.03.080

URL : https://hal.archives-ouvertes.fr/inria-00616194

M. Ghafoorian, N. Karssemeijer, T. Heskes, I. W. Uden, C. I. Sanchez et al., Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities, Scientific Reports, vol.35, issue.1, p.5110, 2017.
DOI : 10.1016/j.media.2016.07.007

URL : https://www.nature.com/articles/s41598-017-05300-5.pdf

A. Ghanei, H. Soltanian-zadeh, and J. P. Windham, Segmentation of the hippocampus from brain MRI using deformable contours, Computerized Medical Imaging and Graphics, vol.22, issue.3, pp.203-216, 1998.
DOI : 10.1016/S0895-6111(98)00026-3

J. N. Giedd, J. Blumenthal, N. O. Jeffries, F. X. Castellanos, H. Liu et al., Brain development during childhood and adolescence: a longitudinal MRI study, Nature Neuroscience, vol.86, issue.10, pp.861-863, 1999.
DOI : 10.1073/pnas.86.11.4297

J. N. Giedd and J. L. Rapoport, Structural MRI of Pediatric Brain Development: What Have We Learned and Where Are We Going?, Neuron, vol.67, issue.5, pp.728-734, 2010.
DOI : 10.1016/j.neuron.2010.08.040

URL : https://doi.org/10.1016/j.neuron.2010.08.040

R. Giraud, V. T. Ta, N. Papadakis, J. V. Manjon, D. L. Collins et al., An Optimized PatchMatch for multi-scale and multi-feature label fusion, NeuroImage, vol.124, pp.770-782, 2016.
DOI : 10.1016/j.neuroimage.2015.07.076

URL : https://hal.archives-ouvertes.fr/hal-01198703

T. Glatard, C. Lartizien, B. Gibaud, R. Ferreira-da-silva, G. Forestier et al., A Virtual Imaging Platform for Multi-Modality Medical Image Simulation, IEEE Transactions on Medical Imaging, vol.32, issue.1, pp.110-118, 2013.
DOI : 10.1109/TMI.2012.2220154

URL : https://hal.archives-ouvertes.fr/inserm-00762497

C. D. Good, I. S. Johnsrude, J. Ashburner, R. N. Henson, K. Fristen et al., A voxel-based morphometric study of ageing in 465 normal adult human brains, Biomedical Imaging, 2002.

I. S. Gousias, D. Rueckert, R. A. Heckemann, L. E. Dyet, and J. , , 2008.

, Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest, NeuroImage, vol.40, issue.2, pp.672-684

S. Groeschel, B. Vollmer, M. King, and A. Connelly, Developmental changes in cerebral grey and white matter volume from infancy to adulthood, International Journal of Developmental Neuroscience, vol.28, issue.6, pp.481-489, 2010.
DOI : 10.1016/j.ijdevneu.2010.06.004

R. Guerrero, C. Qin, O. Oktay, C. Bowles, L. Chen et al., White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks, NeuroImage: Clinical, vol.17, pp.918-934, 2018.
DOI : 10.1016/j.nicl.2017.12.022

N. Guizard, P. Coupe, V. S. Fonov, J. V. Manjon, D. L. Arnold et al., Rotation-invariant multi-contrast non-local means for MS lesion segmentation, NeuroImage: Clinical, vol.8, pp.376-389, 2015.
DOI : 10.1016/j.nicl.2015.05.001

URL : https://hal.archives-ouvertes.fr/hal-01178544

N. Guizard, K. Nakamura, P. Coupe, V. S. Fonov, D. L. Arnold et al., Non-Local Means Inpainting of MS Lesions in Longitudinal Image Processing, Frontiers in Neuroscience, vol.20, issue.2, p.456, 2015.
DOI : 10.1007/BFb0056229

URL : https://hal.archives-ouvertes.fr/hal-01344413

C. Haegelen, P. Coupe, V. Fonov, N. Guizard, P. Jannin et al., Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson???s disease, International Journal of Computer Assisted Radiology and Surgery, vol.26, issue.4, pp.99-110, 2013.
DOI : 10.1002/mds.23524

A. Hammers, R. Allom, M. J. Koepp, S. L. Free, R. Myers et al.,

. Duncan, Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe, Human brain mapping, vol.19, issue.4, pp.224-247, 2003.

A. Hammers, R. Heckemann, M. J. Koepp, J. S. Duncan, and J. , , 2007.

, Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: a proof-ofprinciple study, NeuroImage, vol.36, issue.1, pp.38-47

A. Hammers, M. J. Koepp, S. L. Free, M. Brett, M. P. Richardson et al., Implementation and application of a brain template for multiple volumes of interest, Human Brain Mapping, vol.17, issue.3, pp.165-174, 2002.
DOI : 10.1097/00004728-199307000-00004

R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers, Automatic anatomical brain MRI segmentation combining label propagation and decision fusion, NeuroImage, vol.33, issue.1, pp.115-126, 2006.
DOI : 10.1016/j.neuroimage.2006.05.061

R. A. Heckemann, S. Keihaninejad, P. Aljabar, D. Rueckert, J. V. Hajnal et al., Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation, NeuroImage, vol.51, issue.1, pp.221-227, 2010.
DOI : 10.1016/j.neuroimage.2010.01.072

K. Hett, V. Ta, G. Catheline, T. Tourdias, J. V. Manjón et al., Multimodal Hippocampal Subfields Biomarkers For Alzheimer's Disease Tracking, 2018.

K. Hett, V. Ta, R. Giraud, M. Mondino, J. V. Manjón et al., Patch-Based DTI Grading: Application to Alzheimer???s Disease Classification, International Workshop on Patch-based Techniques in Medical Imaging, pp.76-83, 2016.
DOI : 10.1371/journal.pone.0022193

K. Hett, V. Ta, J. V. Manjón, and P. Coupé, Adaptive Fusion of Texture-Based Grading: Application to Alzheimer???s Disease Detection, International Workshop on Patch-based Techniques in Medical Imaging, pp.82-89, 2017.
DOI : 10.1016/j.media.2017.01.008

D. Holland, L. Chang, T. M. Ernst, M. Curran, S. D. Buchthal et al., Structural Growth Trajectories and Rates of Change in the First 3 Months of Infant Brain Development, JAMA Neurology, vol.71, issue.10, pp.71-1266, 2014.
DOI : 10.1001/jamaneurol.2014.1638

S. Hu and D. L. Collins, Joint level-set shape modeling and appearance modeling for brain structure segmentation, NeuroImage, vol.36, issue.3, pp.672-683, 2007.
DOI : 10.1016/j.neuroimage.2006.12.048

S. Hu, P. Coupe, J. C. Pruessner, and D. L. Collins, Nonlocal regularization for active appearance model: Application to medial temporal lobe segmentation, Human Brain Mapping, vol.54, issue.2, pp.377-395, 2014.
DOI : 10.1212/WNL.54.9.1760

URL : https://hal.archives-ouvertes.fr/hal-00736864

S. Huhtaniska, E. Jääskeläinen, T. Heikka, J. S. Moilanen, H. Lehtiniemi et al., Long-term antipsychotic and benzodiazepine use and brain volume changes in schizophrenia: The Northern Finland Birth Cohort 1966 study, Psychiatry Research, 2017.
DOI : 10.1016/j.pscychresns.2017.05.009

URL : https://erepo.uef.fi/bitstream/123456789/2625/2/huhtaniska2017_preprint.pdf

P. R. Huttenlocher and A. S. Dabholkar, Regional differences in synaptogenesis in human cerebral cortex, The Journal of Comparative Neurology, vol.28, issue.2, pp.167-178, 1997.
DOI : 10.1016/0042-6989(88)90111-3

C. R. Jack, R. C. Jr, Y. Petersen, P. C. Xu, G. E. O-'brien et al., Rates of hippocampal atrophy correlate with change in clinical status in aging and AD, Neurology, vol.55, issue.4, pp.484-489, 2000.
DOI : 10.1212/WNL.55.4.484

C. R. Jack, D. S. Knopman, W. J. Jagust, R. C. Petersen, M. W. Weiner et al.,

J. Wiste and S. D. Weigand, Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers, The Lancet Neurology, vol.12, issue.2, pp.207-216, 2013.

C. R. Jack, R. C. Petersen, Y. C. Xu, S. C. Waring, P. C. O-'brien et al., Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease, Neurology, vol.49, issue.3, pp.786-794, 1997.
DOI : 10.1212/WNL.49.3.786

M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, FSL, NeuroImage, vol.62, issue.2, pp.782-790, 2012.
DOI : 10.1016/j.neuroimage.2011.09.015

URL : https://hal.archives-ouvertes.fr/inserm-01149484

Y. Jung, J. L. Whitwell, J. R. Duffy, E. A. Strand, M. M. Machulda et al.,

A. Josephs, Regional ?-amyloid burden does not correlate with cognitive or language deficits in Alzheimer's disease presenting as aphasia, European journal of neurology, vol.23, issue.2, pp.313-319, 2016.

K. Kantarci, C. Yang, J. A. Schneider, M. L. Senjem, D. A. Reyes et al.,

A. Bennett, G. E. Smith, R. C. Petersen, C. R. Jack, J. et al., Ante mortem amyloid imaging and beta-amyloid pathology in a case with dementia with Lewy bodies, Neurobiology of Aging, vol.33, issue.5, pp.878-885, 2012.

E. Karran and J. Hardy, Antiamyloid Therapy for Alzheimer's Disease ??? Are We on the Right Road?, New England Journal of Medicine, vol.370, issue.4, pp.377-378, 2014.
DOI : 10.1056/NEJMe1313943

G. Kerchner, C. Hess, K. Hammond-rosenbluth, D. Xu, G. Rabinovici et al., Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI, Neurology, vol.75, issue.15, pp.1381-1387, 2010.
DOI : 10.1212/WNL.0b013e3181f736a1

G. A. Kerchner, G. K. Deutsch, M. Zeineh, R. F. Dougherty, M. Saranathan et al., Hippocampal CA1 apical neuropil atrophy and memory performance in Alzheimer's disease, NeuroImage, vol.63, issue.1, pp.194-202, 2012.
DOI : 10.1016/j.neuroimage.2012.06.048

J. Koikkalainen, J. Lotjonen, L. Thurfjell, D. Rueckert, G. Waldemar et al., Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease, NeuroImage, vol.56, issue.3, pp.1134-1144, 2011.
DOI : 10.1016/j.neuroimage.2011.03.029

J. Koikkalainen, H. Rhodius-meester, A. Tolonen, F. Barkhof, B. Tijms et al., Differential diagnosis of neurodegenerative diseases using structural MRI data, NeuroImage: Clinical, vol.11, pp.435-449, 2016.
DOI : 10.1016/j.nicl.2016.02.019

M. Komlagan, V. Ta, X. Pan, J. Domenger, D. L. Collins et al., Anatomically Constrained Weak Classifier Fusion for Early Detection of Alzheimer???s Disease, International Workshop on Machine Learning in Medical Imaging, pp.141-148, 2014.
DOI : 10.1007/978-3-319-10581-9_18

J. Kulaga-yoskovitz, B. C. Bernhardt, S. Hong, T. Mansi, K. E. Liang et al., Multi-contrast submillimetric 3???Tesla hippocampal subfield segmentation protocol and dataset, Scientific Data, vol.28, 2015.
DOI : 10.1109/42.363096

F. Kumfor, L. Sapey-triomphe, C. E. Leyton, J. R. Burrell, J. R. Hodges et al., Degradation of emotion processing ability in corticobasal syndrome and Alzheimer???s disease, Brain, vol.75, issue.11, pp.3061-3072, 2014.
DOI : 10.1212/WNL.0b013e3181feb2e8

L. Joie, R. , A. Perrotin, V. De-la-sayette, S. Egret et al.,

, Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia, Chételat NeuroImage: Clinical, vol.3, pp.155-162, 2013.

C. Lebel, M. Gee, R. Camicioli, M. Wieler, W. Martin et al., Diffusion tensor imaging of white matter tract evolution over the lifespan, NeuroImage, vol.60, issue.1, pp.340-352, 2012.
DOI : 10.1016/j.neuroimage.2011.11.094

M. Lehmann, P. M. Ghosh, C. Madison, R. Laforce-jr, C. Corbetta-rastelli et al.,

W. Seeley, M. L. Gorno-tempini, and H. J. Rosen, Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer's disease, Brain, vol.136, issue.3, pp.844-858, 2013.

R. K. Lenroot and J. N. Giedd, Sex differences in the adolescent brain, Brain and Cognition, vol.72, issue.1, pp.46-55, 2010.
DOI : 10.1016/j.bandc.2009.10.008

R. K. Lenroot, N. Gogtay, D. K. Greenstein, E. M. Wells, G. L. Wallace et al., Sexual dimorphism of brain developmental trajectories during childhood and adolescence, NeuroImage, vol.36, issue.4, pp.1065-1073, 2007.
DOI : 10.1016/j.neuroimage.2007.03.053

J. P. Lerch and A. C. Evans, Cortical thickness analysis examined through power analysis and a population simulation, NeuroImage, vol.24, issue.1, pp.163-173, 2005.
DOI : 10.1016/j.neuroimage.2004.07.045

K. K. Leung, J. Barnes, M. Modat, G. R. Ridgway, J. W. Bartlett et al., Brain MAPS: An automated, accurate and robust brain extraction technique using a template library, NeuroImage, vol.55, issue.3, pp.1091-1108, 2011.
DOI : 10.1016/j.neuroimage.2010.12.067

H. Li, G. Jiang, R. Wang, J. Zhang, Z. Wang et al., Fully Convolutional Network Ensembles for White Matter Hyperintensities Segmentation in MR Images, 2018.

S. Liao, Y. Gao, J. Lian, and D. Shen, Sparse Patch-Based Label Propagation for Accurate Prostate Localization in CT Images, IEEE Transactions on Medical Imaging, vol.32, issue.2, pp.419-434, 2013.
DOI : 10.1109/TMI.2012.2230018

T. Lin, Y. Liu, Y. Shih, and S. Chen,

. Kuo, Neurodegeneration in amygdala precedes hippocampus in the APPswe/PS1dE9 mouse model of Alzheimer's disease, Current Alzheimer Research, vol.12, issue.10, pp.951-963, 2015.

G. Litjens, T. Kooi, B. E. Bejnordi, A. A. Setio, F. Ciompi et al., A survey on deep learning in medical image analysis, Medical Image Analysis, vol.42, 2017.
DOI : 10.1016/j.media.2017.07.005

M. Liu, A. Kitsch, S. Miller, V. Chau, K. Poskitt et al., Patch-based augmentation of Expectation???Maximization for brain MRI tissue segmentation at arbitrary age after premature birth, NeuroImage, vol.127, pp.387-408, 2016.
DOI : 10.1016/j.neuroimage.2015.12.009

URL : https://hal.archives-ouvertes.fr/hal-01293455

M. Liu, D. Zhang, D. Shen, and A. S. Initiative, Ensemble sparse classification of Alzheimer's disease, NeuroImage, vol.60, issue.2, pp.1106-1116, 2012.
DOI : 10.1016/j.neuroimage.2012.01.055

Y. Liu, G. Spulber, K. K. Lehtimäki, M. Könönen, I. Hallikainen et al., Diffusion tensor imaging and Tract-Based Spatial Statistics in Alzheimer's disease and mild cognitive impairment, Neurobiology of Aging, vol.32, issue.9, pp.1558-1571, 2011.
DOI : 10.1016/j.neurobiolaging.2009.10.006

R. Lorente-de-nó, Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system, Journal für Psychologie und Neurologie, 1934.

J. Lotjonen, R. Wolz, J. Koikkalainen, V. Julkunen, L. Thurfjell et al.,

, Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease, Rueckert Neuroimage, vol.56, issue.1, pp.185-196, 2011.

J. M. Lotjonen, R. Wolz, J. R. Koikkalainen, L. Thurfjell, and G. Waldemar, , 2010.

R. A. Morey, E. S. Selgrade, H. R. Wagner, S. A. Huettel, L. Wang et al., Scan-rescan reliability of subcortical brain volumes derived from automated segmentation, Human Brain Mapping, vol.44, issue.11, pp.31-1751, 2010.
DOI : 10.1212/01.WNL.0000154530.72969.11

URL : http://europepmc.org/articles/pmc3782252?pdf=render

A. Moroso, A. Ruet, D. Lamargue-hamel, F. Munsch, M. Deloire et al.,

V. Ouallet and . Planche, Microstructural analyses of the posterior cerebellar lobules in relapsing-onset multiple sclerosis and their implication in cognitive impairment, PloS one, vol.12, issue.8, p.182479, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01576497

J. Morra, Z. Tu, A. Toga, and P. Thompson, Automatic segmentation of MS lesions using a contextual model for the MICCAI grand challenge, Multiple Sclerosis Lesion Segmentation, vol.Challenge, pp.1-7, 2008.

S. G. Mueller, M. W. Weiner, L. J. Thal, R. C. Petersen, C. Jack et al., The Alzheimer's Disease Neuroimaging Initiative, Neuroimaging Clinics of North America, vol.15, issue.4, pp.869-877, 2005.
DOI : 10.1016/j.nic.2005.09.008

M. J. Müller, D. Greverus, P. R. Dellani, C. Weibrich, P. R. Wille et al., Functional implications of hippocampal volume and diffusivity in mild cognitive impairment, NeuroImage, vol.28, issue.4, pp.1033-1042, 2005.
DOI : 10.1016/j.neuroimage.2005.06.029

E. Naess-schmidt, A. Tietze, J. U. Blicher, M. Petersen, I. K. Mikkelsen et al.,

. Eskildsen, Automatic thalamus and hippocampus segmentation from MP2RAGE: comparison of publicly available methods and implications for DTI quantification, International journal of computer assisted radiology and surgery, vol.11, issue.11, pp.1979-1991, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01344412

S. M. Nestor, R. Rupsingh, M. Borrie, M. Smith, J. L. Accomazzi et al.,

, Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database, Initiative Brain, vol.131, issue.9, pp.2443-2454, 2008.

T. M. Nir, N. Jahanshad, J. E. Villalon-reina, A. W. Toga, C. R. Jack et al.,

D. N. Initiative, Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging, NeuroImage: clinical, vol.3, pp.180-195, 2013.

O. Dwyer, L. , F. Lamberton, A. L. Bokde, M. Ewers et al., Using Support Vector Machines with Multiple Indices of Diffusion for Automated Classification of Mild Cognitive Impairment, PLoS ONE, vol.92, issue.2, p.32441, 2012.
DOI : 10.1371/journal.pone.0032441.t001

URL : https://hal.archives-ouvertes.fr/hal-01164652

T. Ohm and H. Braak, Olfactory bulb changes in Alzheimer's disease, Acta Neuropathologica, vol.56, issue.4, pp.365-369, 1987.
DOI : 10.1007/BF00688261

Y. Ostby, C. K. Tamnes, A. M. Fjell, L. T. Westlye, P. Due-tonnessen et al., Heterogeneity in Subcortical Brain Development: A Structural Magnetic Resonance Imaging Study of Brain Maturation from 8 to 30 Years, Journal of Neuroscience, vol.29, issue.38, pp.11772-11782, 2009.
DOI : 10.1523/JNEUROSCI.1242-09.2009

M. T. Park, J. Pipitone, L. H. Baer, J. L. Winterburn, Y. Shah et al., Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates, NeuroImage, vol.95, pp.217-231, 2014.
DOI : 10.1016/j.neuroimage.2014.03.037

B. Patenaude, S. M. Smith, D. N. Kennedy, and M. Jenkinson, A Bayesian model of shape and appearance for subcortical brain segmentation, NeuroImage, vol.56, issue.3, pp.907-922, 2011.
DOI : 10.1016/j.neuroimage.2011.02.046

G. Paxinos and J. K. Mai, The human nervous system, 2004.

A. Pfefferbaum, T. Rohlfing, M. J. Rosenbloom, W. Chu, I. M. Colrain et al., Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85years) measured with atlas-based parcellation of MRI, NeuroImage, vol.65, pp.176-193, 2013.
DOI : 10.1016/j.neuroimage.2012.10.008

E. A. Phelps, Human emotion and memory: interactions of the amygdala and hippocampal complex, Current Opinion in Neurobiology, vol.14, issue.2, pp.198-202, 2004.
DOI : 10.1016/j.conb.2004.03.015

E. A. Phelps and J. E. Ledoux, Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior, Neuron, vol.48, issue.2, pp.175-187, 2005.
DOI : 10.1016/j.neuron.2005.09.025

J. Pipitone, M. T. Park, J. Winterburn, T. A. Lett, J. P. Lerch et al., Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates, NeuroImage, vol.101, pp.494-512, 2014.
DOI : 10.1016/j.neuroimage.2014.04.054

V. Planche, A. Ruet, P. Coupe, D. Lamargue-hamel, M. Deloire et al.,

D. S. Moscufo, C. R. Meier, V. Guttmann, B. Dousset, T. Brochet et al., Hippocampal microstructural damage correlates with memory impairment in clinically isolated syndrome suggestive of multiple sclerosis, Multiple Sclerosis Journal, p.1352458516675750, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01456230

R. A. Poldrack and K. J. Gorgolewski, Making big data open: data sharing in neuroimaging, Nature Neuroscience, vol.6, issue.11, pp.1510-1517, 2014.
DOI : 10.3389/fninf.2012.00007

O. Potvin, A. Mouiha, L. Dieumegarde, and S. , Duchesne and I. Alzheimer's Disease Neuroimaging, 2016.

, Normative data for subcortical regional volumes over the lifetime of the adult human brain, Neuroimage, vol.137, pp.9-20

S. P. Poulin, R. Dautoff, J. C. Morris, L. F. Barrett, B. C. Dickerson et al., Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity, Psychiatry Research: Neuroimaging, vol.194, issue.1, pp.7-13, 2011.
DOI : 10.1016/j.pscychresns.2011.06.014

URL : http://europepmc.org/articles/pmc3185127?pdf=render

G. Prasad, S. H. Joshi, T. M. Nir, A. W. Toga, P. M. Thompson et al., Brain connectivity and novel network measures for Alzheimer's disease classification, Neurobiology of Aging, vol.36, pp.121-131, 2015.
DOI : 10.1016/j.neurobiolaging.2014.04.037

URL : http://europepmc.org/articles/pmc4276322?pdf=render

S. Prima, S. Ourselin, and N. Ayache, Computation of the mid-sagittal plane in 3-D brain images, IEEE Transactions on Medical Imaging, vol.21, issue.2, pp.122-138, 2002.
DOI : 10.1109/42.993131

URL : https://hal.archives-ouvertes.fr/inria-00615857

M. Prince, R. Bryce, and C. Ferri, World Alzheimer Report 2011: The benefits of early diagnosis and intervention, Alzheimer's Disease International, 2011.

M. Protter, M. Elad, H. Takeda, and P. Milanfar, Generalizing the Nonlocal-Means to Super-Resolution Reconstruction, IEEE Transactions on Image Processing, vol.18, issue.1, pp.36-51, 2009.
DOI : 10.1109/TIP.2008.2008067

J. C. Pruessner, L. M. Li, W. Serles, M. Pruessner, and D. L. , , 2000.

, Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories, Cereb Cortex, vol.10, issue.4, pp.433-442

A. Qiu, C. Fennema-notestine, A. M. Dale, and M. I. , Miller and I. Alzheimer's Disease Neuroimaging, 2009.

, Regional shape abnormalities in mild cognitive impairment and Alzheimer's disease, Neuroimage, vol.45, issue.3, pp.656-661

A. Raznahan, P. Shaw, F. Lalonde, M. Stockman, G. L. Wallace et al.,

. Giedd, How does your cortex grow?, Journal of Neuroscience, vol.31, pp.7174-7177, 2011.

T. Rohlfing, R. Brandt, R. Menzel, C. R. Maurer, and J. , Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains, NeuroImage, vol.21, issue.4, pp.1428-1442, 2004.
DOI : 10.1016/j.neuroimage.2003.11.010

J. E. Romero, P. Coupe, R. Giraud, V. T. Ta, V. Fonov et al.,

, CERES: A new cerebellum lobule segmentation method, Manjon Neuroimage, vol.147, pp.916-924, 2017.

J. E. Romero, P. Coupe, and J. V. Manjón, High Resolution Hippocampus Subfield Segmentation Using Multispectral Multiatlas Patch-Based Label Fusion, International Workshop on Patch-based Techniques in Medical Imaging, pp.117-124, 2016.
DOI : 10.1109/TMI.2010.2046908

URL : https://hal.archives-ouvertes.fr/hal-01398769

J. E. Romero, P. Coupé, and J. V. Manjón, HIPS: A new hippocampus subfield segmentation method, NeuroImage, vol.163, pp.286-295, 2017.
DOI : 10.1016/j.neuroimage.2017.09.049

URL : https://hal.archives-ouvertes.fr/hal-01643644

J. E. Romero, J. V. Manjon, J. Tohka, P. Coupe, and M. Robles, NABS: non-local automatic brain hemisphere segmentation, Magnetic Resonance Imaging, vol.33, issue.4, pp.474-484, 2015.
DOI : 10.1016/j.mri.2015.02.005

URL : https://hal.archives-ouvertes.fr/hal-01116696

O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.234-241, 2015.
DOI : 10.1007/978-3-319-24574-4_28

S. E. Rose, L. Andrew, and J. B. Chalk, Gray and white matter changes in Alzheimer's disease: A diffusion tensor imaging study, Journal of Magnetic Resonance Imaging, vol.161, issue.1, pp.20-26, 2008.
DOI : 10.1148/radiology.199.2.8668784

G. Sanroma, V. Andrea, O. M. Benkarim, J. V. Manjón, P. Coupé et al., Early Prediction of Alzheimer???s Disease with Non-local Patch-Based Longitudinal Descriptors, Patch-Based Techniques in Medical Imaging, pp.74-81, 2017.
DOI : 10.1007/978-3-319-46720-7_31

B. Scherrer, F. Forbes, C. Garbay, and M. Dojat, Distributed Local MRF Models for Tissue and Structure Brain Segmentation, IEEE Transactions on Medical Imaging, vol.28, issue.8, pp.1278-1295, 2009.
DOI : 10.1109/TMI.2009.2014459

URL : https://hal.archives-ouvertes.fr/inserm-00402265

L. Shan, C. Zach, C. Charles, and M. Niethammer, Automatic atlas-based three-label cartilage segmentation from MR knee images, Medical Image Analysis, vol.18, issue.7, pp.1233-1246, 2014.
DOI : 10.1016/j.media.2014.05.008

P. Shaw, N. J. Kabani, J. P. Lerch, K. Eckstrand, R. Lenroot et al., Neurodevelopmental Trajectories of the Human Cerebral Cortex, Journal of Neuroscience, vol.28, issue.14, pp.3586-3594, 2008.
DOI : 10.1523/JNEUROSCI.5309-07.2008

D. Shen, S. Moffat, S. M. Resnick, and C. Davatzikos, Measuring Size and Shape of the Hippocampus in MR Images Using a Deformable Shape Model, NeuroImage, vol.15, issue.2, pp.422-434, 2002.
DOI : 10.1006/nimg.2001.0987

D. Shen, G. Wu, and H. Suk, Deep Learning in Medical Image Analysis, Annual Review of Biomedical Engineering, vol.19, issue.1, 2017.
DOI : 10.1146/annurev-bioeng-071516-044442

T. Sherif, P. Rioux, M. Rousseau, N. Kassis, N. Beck et al., , 2015.

, CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research Recent Advances and the Future Generation of Neuroinformatics Infrastructure, p.102

N. Shiee, P. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi et al., A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions, NeuroImage, vol.49, issue.2, pp.1524-1535, 2010.
DOI : 10.1016/j.neuroimage.2009.09.005

M. R. Siadat, H. Soltanian-zadeh, and K. V. Elisevich, Knowledge-based localization of hippocampus in human brain MRI, Computers in Biology and Medicine, vol.37, issue.9, pp.1342-1360, 2007.
DOI : 10.1016/j.compbiomed.2006.12.010

S. M. Smith, Fast robust automated brain extraction, Human Brain Mapping, vol.20, issue.3, pp.143-155, 2002.
DOI : 10.1109/42.906424

L. Sørensen, C. Igel, A. Pai, and I. Balas, , 2017.

, Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry, NeuroImage: Clinical, vol.13, pp.470-482

J. Souplet, C. Lebrun, N. Ayache, and G. Malandain, An automatic segmentation of T2-FLAIR multiple sclerosis lesions, The MIDAS Journal-MS Lesion Segmentation, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00616119

E. R. Sowell, B. S. Peterson, P. M. Thompson, S. E. Welcome, A. L. Henkenius et al., Mapping cortical change across the human life span, Nature Neuroscience, vol.17, issue.3, pp.309-315, 2003.
DOI : 10.1006/nimg.2002.1153

K. L. Spalding, O. Bergmann, K. Alkass, S. Bernard, M. Salehpour et al.,

B. A. Vial, G. Buchholz, D. C. Possnert, H. Mash, J. Druid et al., Dynamics of hippocampal neurogenesis in adult humans, Cell, vol.153, issue.6, pp.1219-1227, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839513

S. St-jean, P. Coupe, and M. Descoteaux, Non Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising, Medical Image Analysis, vol.32, pp.115-130, 2016.
DOI : 10.1016/j.media.2016.02.010

URL : https://hal.archives-ouvertes.fr/hal-01294850

J. Stiles and T. L. Jernigan, The Basics of Brain Development, Neuropsychology Review, vol.2, issue.1, pp.327-348, 2010.
DOI : 10.1001/archneur.1994.00540210046012

C. M. Stonnington, C. Chu, S. Klöppel, C. R. Jack, J. Ashburner et al., Predicting clinical scores from magnetic resonance scans in Alzheimer's disease, NeuroImage, vol.51, issue.4, pp.1405-1413, 2010.
DOI : 10.1016/j.neuroimage.2010.03.051

M. Styner, J. Lee, B. Chin, M. Chin, O. Commowick et al., 3D segmentation in the clinic: A grand challenge II: MS lesion segmentation, Midas Journal, pp.1-6, 2008.

H. Suk, S. Lee, D. Shen, and A. S. Initiative, Deep ensemble learning of sparse regression models for brain disease diagnosis, Medical Image Analysis, vol.37, pp.101-113, 2017.
DOI : 10.1016/j.media.2017.01.008

C. Sutour, C. Deledalle, and J. Aujol, Adaptive Regularization of the NL-Means: Application to Image and Video Denoising, IEEE Transactions on Image Processing, vol.23, issue.8, pp.3506-3521, 2014.
DOI : 10.1109/TIP.2014.2329448

URL : https://hal.archives-ouvertes.fr/hal-00988752

V. T. Ta, R. Giraud, D. L. Collins, and P. Coupe, Optimized PatchMatch for Near Real Time and Accurate Label Fusion, Med Image Comput Comput Assist Interv, vol.17, pp.105-112, 2014.
DOI : 10.1007/978-3-319-10443-0_14

URL : https://hal.archives-ouvertes.fr/hal-01006329

M. H. Tabert, X. Liu, R. L. Doty, M. Serby, D. Zamora et al.,

. Devanand, A 10-item smell identification scale related to risk for Alzheimer's disease, Annals of neurology, vol.58, issue.1, pp.155-160, 2005.

P. Tanskanen, J. M. Veijola, U. K. Piippo, M. Haapea, J. A. Miettunen et al., Hippocampus and amygdala volumes in schizophrenia and other psychoses in the Northern Finland 1966 birth cohort, Schizophrenia Research, vol.75, issue.2-3, pp.283-294, 2005.
DOI : 10.1016/j.schres.2004.09.022

L. Tellouck, M. Durieux, P. Coupe, A. Cougnard-gregoire, J. Tellouck et al., Optic Radiations Microstructural Changes in Glaucoma and Association With Severity: A Study Using 3Tesla-Magnetic Resonance Diffusion Tensor Imaging, Investigative Opthalmology & Visual Science, vol.57, issue.15, pp.6539-6547, 2016.
DOI : 10.1167/iovs.16-19838

URL : https://hal.archives-ouvertes.fr/hal-01456234

X. Tomas-fernandez and S. K. Warfield, A new classifier feature space for an improved multiple sclerosis lesion segmentation Biomedical Imaging: From Nano to Macro, IEEE International Symposium on, pp.1492-1495, 2011.

T. Tong, Q. Gao, R. Guerrero, C. Ledig, L. Chen et al., A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease, IEEE Transactions on Biomedical Engineering, vol.64, issue.1, pp.155-165, 2017.
DOI : 10.1109/TBME.2016.2549363

T. Tong, C. Ledig, R. Guerrero, A. Schuh, J. Koikkalainen et al.,

W. Lemstra, Five-class Differential Diagnostics of Neurodegenerative Diseases using Random Undersampling Boosting, NeuroImage: Clinical, vol.15, pp.613-624, 2017.

T. Tong, R. Wolz, P. Coupe, J. V. Hajnal, and D. , Rueckert and I. Alzheimer's Disease Neuroimaging, 2013.

, Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling, Neuroimage, vol.76, pp.11-23

T. Tong, R. Wolz, Q. Gao, R. Guerrero, J. V. Hajnal et al., Multiple instance learning for classification of dementia in brain MRI, Medical Image Analysis, vol.18, issue.5, pp.808-818, 2014.
DOI : 10.1016/j.media.2014.04.006

T. Tong, R. Wolz, Z. Wang, Q. Gao, K. Misawa et al., , 2015.

, Discriminative dictionary learning for abdominal multi-organ segmentation, Medical image analysis, vol.23, issue.1, pp.92-104

N. Tottenham and M. A. Sheridan, A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing, Frontiers in Human Neuroscience, vol.3, p.68, 2009.
DOI : 10.3389/neuro.09.068.2009

L. Trujillo-estrada, J. C. Dávila, E. Sánchez-mejias, R. Sánchez-varo, A. Gomez-arboledas et al., Early Neuronal Loss and Axonal/Presynaptic Damage is Associated with Accelerated Amyloid-?? Accumulation in A??PP/PS1 Alzheimer's Disease Mice Subiculum, Journal of Alzheimer's Disease, vol.42, issue.2, pp.521-541, 2014.
DOI : 10.3233/JAD-140495

N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan et al., N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, issue.6, pp.1310-1320, 2010.
DOI : 10.1109/TMI.2010.2046908

N. Tzourio-mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, and O. Etard, N. Delcroix, B. Mazoyer and M

, Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, Joliot Neuroimage, vol.15, issue.1, pp.273-289, 2002.

S. Valverde, M. Cabezas, E. Roura, S. González-villà, D. Pareto et al., Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach, NeuroImage, vol.155, pp.159-168, 2017.
DOI : 10.1016/j.neuroimage.2017.04.034

J. D. Van-horn and A. W. Toga, Human neuroimaging as a ???Big Data??? science, Brain Imaging and Behavior, vol.49, issue.2, pp.323-331, 2014.
DOI : 10.1016/j.neuroimage.2009.09.057

H. Van-praag, A. F. Schinder, B. R. Christie, N. Toni, T. D. Palmer et al., Functional neurogenesis in the adult hippocampus, Nature, vol.415, issue.6875, pp.1030-1034, 2002.
DOI : 10.1038/4151030a

N. Vijayakumar, N. B. Allen, G. Youssef, M. Dennison, M. Yucel et al., Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume, Human Brain Mapping, vol.48, issue.6, pp.2027-2038, 2016.
DOI : 10.1016/j.neuroimage.2009.06.039

V. L. Villemagne, K. E. Pike, G. Chetelat, K. A. Ellis, R. S. Mulligan et al.,

O. Szoeke, R. Salvado, G. Martins, C. A. O-'keefe, W. E. Mathis et al., Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease, Annals of Neurology, vol.69, issue.1, pp.181-192, 2011.

C. Wachinger, M. Brennan, G. C. Sharp, and P. Golland, Efficient Descriptor-Based Segmentation of Parotid Glands With Nonlocal Means, IEEE Transactions on Biomedical Engineering, vol.64, issue.7, pp.1492-1502, 2017.
DOI : 10.1109/TBME.2016.2603119

C. Wachinger, M. Reuter, and T. Klein, DeepNAT: Deep convolutional neural network for segmenting neuroanatomy, NeuroImage, vol.170, 2017.
DOI : 10.1016/j.neuroimage.2017.02.035

K. B. Walhovd, A. M. Fjell, J. Giedd, A. M. Dale, and T. T. Brown, Through Thick and Thin: a Need to Reconcile Contradictory Results on Trajectories in Human Cortical Development, Cerebral Cortex, vol.23, issue.1, p.301, 2016.
DOI : 10.1093/brain/awu083

K. B. Walhovd, L. T. Westlye, I. Amlien, T. Espeseth, I. Reinvang et al., Consistent neuroanatomical age-related volume differences across multiple samples, Neurobiology of Aging, vol.32, issue.5, pp.916-932, 2011.
DOI : 10.1016/j.neurobiolaging.2009.05.013

H. Wang, B. Avants, and P. Yushkevich, A combined joint label fusion and corrective learning approach, 2012.

H. Wang, S. R. Das, J. W. Suh, M. Altinay, J. Pluta et al., A learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain segmentation, NeuroImage, vol.55, issue.3, pp.968-985, 2011.
DOI : 10.1016/j.neuroimage.2011.01.006

H. Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige et al., Groupwise Segmentation with Multi-atlas Joint Label Fusion, IEEE transactions on pattern analysis and machine intelligence, vol.35, issue.3, pp.611-623, 2013.
DOI : 10.1007/978-3-642-40811-3_89

URL : http://europepmc.org/articles/pmc3918678?pdf=render

H. Wang and P. A. Yushkevich, Multi-atlas segmentation with joint label fusion and corrective learning???an open source implementation, Frontiers in Neuroinformatics, vol.7, 2013.
DOI : 10.3389/fninf.2013.00027

URL : http://journal.frontiersin.org/article/10.3389/fninf.2013.00027/pdf

L. Wang, K. C. Chen, Y. Gao, F. Shi, S. Liao et al., , 2014.

, Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization, Medical physics, vol.41, issue.4

L. Wang, F. Shi, G. Li, Y. Gao, W. Lin et al., Segmentation of neonatal brain MR images using patch-driven level sets, NeuroImage, vol.84, pp.141-158, 2014.
DOI : 10.1016/j.neuroimage.2013.08.008

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/TIP.2003.819861

Z. Wang, C. Donoghue, and D. Rueckert, Patch-Based Segmentation without Registration: Application to Knee MRI, International Workshop on Machine Learning in Medical, vol.Imaging, pp.98-105, 2013.
DOI : 10.1007/978-3-319-02267-3_13

Z. Wang, J. Wang, H. Zhang, R. Mchugh, X. Sun et al., Interhemispheric Functional and Structural Disconnection in Alzheimer???s Disease: A Combined Resting-State fMRI and DTI Study, PLOS ONE, vol.20, issue.5, p.126310, 2015.
DOI : 10.1371/journal.pone.0126310.t003

C. Wee, D. Yap, K. Zhang, J. N. Denny, G. G. Browndyke et al., Identification of MCI individuals using structural and functional connectivity networks, NeuroImage, vol.59, issue.3, pp.2045-2056, 2012.
DOI : 10.1016/j.neuroimage.2011.10.015

K. Weier, V. Fonov, K. Lavoie, J. Doyon, and D. L. Collins, Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)-Implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum, Human Brain Mapping, vol.31, issue.Part 1, pp.5026-5039, 2014.
DOI : 10.1016/j.neuroimage.2006.01.015

W. M. Wells, W. E. Grimson, R. Kikinis, and F. A. Jolesz, Adaptive segmentation of MRI data, IEEE Transactions on Medical Imaging, vol.15, issue.4, pp.429-442, 1996.
DOI : 10.1109/42.511747

N. Wiest-daessle, S. Prima, P. Coupe, S. P. Morrissey, and C. Barillot, Non-Local Means Variants for Denoising of Diffusion-Weighted and Diffusion Tensor MRI, Med Image Comput Comput Assist Interv, vol.10, issue.2, pp.344-351, 2007.
DOI : 10.1007/978-3-540-75759-7_42

URL : https://hal.archives-ouvertes.fr/inserm-00193788

N. Wiest-daessle, S. Prima, P. Coupe, S. P. Morrissey, and C. Barillot, Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI, Med Image Comput Comput Assist Interv, vol.20, issue.2, pp.171-179, 2008.
DOI : 10.1007/978-3-540-85990-1_15

URL : https://hal.archives-ouvertes.fr/inserm-00332388

J. L. Winterburn, J. C. Pruessner, S. Chavez, M. M. Schira, N. J. Lobaugh et al.,

, A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging, Chakravarty Neuroimage, vol.74, pp.254-265, 2013.

R. Wolz, P. Aljabar, J. V. Hajnal, A. Hammers, D. Rueckert et al., LEAP: Learning embeddings for atlas propagation, NeuroImage, vol.49, issue.2, pp.1316-1325, 2010.
DOI : 10.1016/j.neuroimage.2009.09.069

R. Wolz, P. Aljabar, J. V. Hajnal, J. Lotjonen, and D. Rueckert, Manifold learning combining imaging with non-imaging information, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1637-1640, 2011.
DOI : 10.1109/ISBI.2011.5872717

R. Wolz, C. Chu, K. Misawa, M. Fujiwara, K. Mori et al., Automated Abdominal Multi-Organ Segmentation With Subject-Specific Atlas Generation, IEEE Transactions on Medical Imaging, vol.32, issue.9, pp.1723-1730, 2013.
DOI : 10.1109/TMI.2013.2265805

R. Wolz, V. Julkunen, J. Koikkalainen, E. Niskanen, D. P. Zhang et al., Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease, PLoS ONE, vol.54, issue.3, p.25446, 2011.
DOI : 10.1371/journal.pone.0025446.s002

D. Wu, C. Ceritoglu, M. I. Miller, and S. Mori, Direct estimation of patient attributes from anatomical MRI based on multi-atlas voting, NeuroImage: Clinical, vol.12, pp.570-581, 2016.
DOI : 10.1016/j.nicl.2016.09.008

G. Wu, P. Coupé, Y. Zhan, B. Munsell, and D. Rueckert, Patch-Based Techniques in Medical Imaging: First International Workshop, Patch-MI 2015, Held in Conjunction with MICCAI 2015, 2015.

G. Wu, P. Coupé, Y. Zhan, B. C. Munsell, and D. Rueckert, Patch-Based Techniques in Medical Imaging: Second International Workshop, Patch-MI 2016, Held in Conjunction with MICCAI 2016, Proceedings, 2016.

G. Wu, M. Kim, G. Sanroma, Q. Wang, B. C. Munsell et al., Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition, NeuroImage, vol.106, pp.34-46, 2015.
DOI : 10.1016/j.neuroimage.2014.11.025

URL : http://europepmc.org/articles/pmc4285661?pdf=render

G. Wu, B. C. Munsell, Y. Zhan, W. Bai, G. Sanroma et al., Patch-Based Techniques in Medical Imaging: Third International Workshop, Patch-MI 2017, Held in Conjunction with MICCAI 2017, Proceedings, 2017.

G. Wu, Q. Wang, D. Zhang, F. Nie, H. Huang et al., A generative probability model of joint label fusion for multi-atlas based brain segmentation, Medical Image Analysis, vol.18, issue.6, pp.881-890, 2014.
DOI : 10.1016/j.media.2013.10.013

URL : http://europepmc.org/articles/pmc4024092?pdf=render

Y. Xu, T. Géraud, É. Puybareau, I. Bloch, and J. Chazalon, White Matter Hyperintensities Segmentation in a Few Seconds Using Fully Convolutional Network and Transfer Learning, pp.501-514, 2017.
DOI : 10.1016/S1474-4422(13)70124-8

X. Yang, P. Rossi, A. Jani, T. Ogunleye, W. Curran et al., WE-EF-210-08: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in Ultrasound Images Using Patch-Based Anatomical Feature, Medical Physics, vol.42, issue.6Part39, pp.3685-3685, 2015.
DOI : 10.1118/1.4926032

P. A. Yushkevich, R. S. Amaral, J. C. Augustinack, A. R. Bender, J. D. Bernstein et al.,

V. A. Burggren, M. M. Carr, and . Chakravarty, Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol, Neuroimage, vol.111, pp.526-541, 2015.

P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, J. C. Ho et al., User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability, NeuroImage, vol.31, issue.3, pp.1116-1128, 2006.
DOI : 10.1016/j.neuroimage.2006.01.015

P. A. Yushkevich, J. B. Pluta, H. Wang, L. Xie, S. L. Ding et al.,

A. Wolk, Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment, Human brain mapping, vol.36, issue.1, pp.258-287, 2015.

A. Zandifar, V. Fonov, P. Coupe, J. Pruessner, and D. L. , Collins and I. Alzheimer's Disease Neuroimaging, 2017.

, A comparison of accurate automatic hippocampal segmentation methods, Neuroimage, vol.155, pp.383-393

D. Zhang, D. Shen, and I. , Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers, PLoS ONE, vol.63, issue.3, p.33182
DOI : 10.1371/journal.pone.0033182.t003

L. Zhao, U. Ruotsalainen, J. Hirvonen, J. Hietala, and J. Tohka, Automatic cerebral and cerebellar hemisphere segmentation in 3D MRI: Adaptive disconnection algorithm, Medical Image Analysis, vol.14, issue.3, pp.360-372, 2010.
DOI : 10.1016/j.media.2010.02.001

J. Zhou and J. C. Rajapakse, Segmentation of subcortical brain structures using fuzzy templates, NeuroImage, vol.28, issue.4, pp.915-924, 2005.
DOI : 10.1016/j.neuroimage.2005.06.037

X. Zhuang and J. Shen, Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI, Medical Image Analysis, vol.31, pp.77-87, 2016.
DOI : 10.1016/j.media.2016.02.006

G. Ziegler, R. Dahnke, L. Jancke, R. A. Yotter, A. May et al., Brain structural trajectories over the adult lifespan, Human Brain Mapping, vol.41, issue.10, pp.2377-2389, 2012.
DOI : 10.1016/j.neuroimage.2008.02.056

A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, and A. C. Palmer, Morphometric analysis of white matter lesions in MR images: method and validation, IEEE Transactions on Medical Imaging, vol.13, issue.4, pp.716-724, 1994.
DOI : 10.1109/42.363096