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Abstract 

The importance of measuring forest biophysical parameters for ecosystem health 

monitoring and forest management encourages researchers to find precise, yet low-cost 

methods especially in mountainous and large areas. In the present study Geoscience Laser 

Altimeter System (GLAS) on board ICESat (Ice Cloud and land Elevation Satellite) was 

used to estimate three biophysical characteristics of forests located in the north of Iran: 1) 

maximum canopy height (Hmax), 2) Lorey’s height (HLorey), and 3) Forest volume (V). A 

large number of Multiple Linear Regressions (MLR), Random Forest (RF) and also 

Artificial Neural Network regressions were developed using two different sets of variables 

including waveform metrics and Principal Components (PCs) produced from Principal 

Component Analysis (PCA). To validate and compare models, statistical criteria were 

calculated based on a five-fold cross validation. Best model concerning the maximum 

height was an MLR (RMSE=5.0m) which combined two metrics extracted from 

waveforms (waveform extent "Wext" and height at 50% of waveform energy "H50"), and 

one from Digital Elevation Model (Terrain Index: TI). The mean absolute percentage error 

(MAPE) of maximum height estimates was 16.4%. For Lorey’s height, an ANN model 

using PCs and waveform extent “Wext” outperformed other models (RMSE=3.4m, 

MAPE=12.3%). In order to estimate forest volume, two approaches was employed: First, 

estimating volume using volume-height relationship while height is GLAS estimated 

height; Second, estimation of forest volume directly from GLAS data by developing 

regressions between in situ volume and GLAS metrics. The result from first approach 

(116.3 m
3
/ha) was slightly better than the result obtained by the second approach that is a 

PCs-based ANN model (119.9 m
3
/ha). But the ANN model performed better in very low ( 

<10 m
3
/ha) and very high ( > 800 m

3
/ha) volume stands. In total, the relative error of 

estimated forest volume was about 26%. Generally, MLR and ANN models had better 

performance when compared to the RF models. In addition, the accuracy of height 

estimations using waveform metrics was better than those based on PCs.  

Given the suitable results of GLAS height models (maximum and Lorey’s heights), 

production of wall to wall height maps from synergy of remote sensing (GLAS, PALSAR, 

SPOT5 and Landsat-TM) and environmental data (slope, aspect, classified elevation map 

and also geological map) was taken under consideration. Thus, MLR and RF regressions 



were built between all GLAS derived heights, inside of the study area, and indices 

extracted from mentioned remotely sensed and environmental data. The best resulted 

models for Hmax (RMSE=7.4m and R!"=0.52) and HLorey (RMSE=5.5m and R!"=0.59) were 

used to produce a wall to wall maximum canopy height and Lorey’ height maps. 

Comparison of Hmax extracted from the resulted Hmax map with true height values at the 

location of 32 in situ plots produced an RMSE and R
2
 of 5.3m and 0.71, respectively. Such 

a comparison for HLorey led to an RMSE and R
2
 of 4.3m and 0.50, respectively. Regression-

kriging method was also used to produce canopy height map with considering spatial 

correlation between canopy heights. This approach, with the aim of improving the 

precision of canopy height map provided from non-spatial method, was unsuccessful 

which could be due to the heterogeneity of the study area in case of forest structure and 

topography. 

Key words: Lidar, ICESat GLAS, Alos PALSAR, Optical images, Maximum canopy 

height, Lorey’s height, Forest volume, Iran 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Résumé 

L'importance de mesurer les paramètres biophysiques de la forêt pour la surveillance de la 

santé des écosystèmes et la gestion forestière encourage les chercheurs à trouver des 

méthodes précises et à faible coût en particulier sur les zones étendues et montagneuses. 

Dans la présente étude, Le lidar satellitaire GLAS (Geoscience Laser Altimeter System) 

embarqué à bord du satellite ICESat (Ice Cloud and land Elevation Satellite) a été utilisé 

pour estimer  trois caractéristiques biophysiques des forêts situées dans le nord de l'Iran: 1) 

hauteur maximale de la canopée (Hmax), 2) hauteur de Lorey (HLorey), et 3) le volume du 

bois (V). Des régressions linéaires multiples (RLM), des modèles basés sur les Forêts 

Aléatoires (FA : Random Forest) et aussi des réseaux de neurones (ANN) ont été 

développés à l'aide de deux ensembles différents de variables incluant des métriques 

obtenues à partir des formes d’onde GLAS et des composantes principales (CP) produites à 

partir de l'analyse en composantes principales (ACP) des données GLAS. Pour valider et 

comparer les modèles, des critères statistiques ont été calculées sur la base d'une validation 

croisée. Le meilleur modèle pour l’estimation de la hauteur maximale a été obtenu avec 

une régression RLM (RMSE = 5.0 m) qui combine deux métriques extraites des formes 

d'onde GLAS (étendue et hauteur pour une énergie à 50%, respectivement Wext et H50), et 

un paramètre issu du modèle numérique d'élévation (Indice de relief TI). L'erreur moyenne 

absolue en pourcentage (MAPE) sur les estimations de la hauteur maximale est de 16.4%. 

Pour la hauteur de Lorey, un modèle basé sur les réseaux de neurones et utilisant des CPs 

et  le Wext fournit le meilleur résultat  avec RMSE = 3.4 m et MAPE = 12.3%. Afin 

d'estimer le volume du bois, deux approches ont été utilisées: (1) estimation du volume à 

l'aide d’une relation volume-hauteur avec une hauteur estimée à partir de données GLAS et 

(2) estimation du volume du bois directement à partir des données GLAS en développant 

des régressions entre le volume in situ et les métriques GLAS. Le résultat de la première 

approche (RMSE=116.3 m
3
/ha) était légèrement meilleur que ceux obtenus avec la 

seconde approche. Par exemple, le réseau de neurones basé sur les PCs donnait un RMSE 

de 119.9 m
3
/ha mais avec des meilleurs résultats que l’approche basée sur la relation 

volume-hauteur pour les faibles (<10 m
3
/ha) et les forts (> 800 m

3
/ha) volumes. Au total, 

l'erreur relative sur le volume de bois est estimée à environ 26%. En général, les modèles 

RLM et ANN avaient des meilleures performances par rapport aux modèles de FA. En 

outre, la précision sur l’estimation de la hauteur à l'aide de métriques issues des formes 

d'onde GLAS est meilleure que celles basées sur les CPs.  



Compte tenu des bons résultats obtenus avec les modèles de hauteur GLAS (hauteurs 

maximale et de Lorey), la production de la carte des hauteurs d’étude par une utilisation 

combinée de données de télédétection lidar, radar et optique (GLAS, PALSAR, SPOT-5 et 

Landsat-TM) et de données environnementales (pente, aspect, et altitude du terrain ainsi 

que la carte géologique) a été effectuée à l’intérieur de notre zone. Ainsi, des régressions 

RLM et FA ont été construites entre toutes les hauteurs dérivées des données GLAS, à 

l'intérieur de la zone d'étude, et les indices extraits des données de télédétection et des 

paramètres environnementaux. Les meilleurs modèles entrainés pour estimer Hmax (RMSE 

= 7.4 m et R!"=0.52) et HLorey (RMSE = 5.5 m et R!"=0.59) ont été utilisées pour produire 

les cartes de hauteurs. La comparaison des Hmax de la carte obtenue avec les valeurs de 

Hmax in situ à l'endroit de 32 parcelles produit un RMSE de 5.3 m et un R
2
 de 0.71. Une 

telle comparaison pour HLorey conduit à un RMSE de 4.3m et un R
2
 de 0.50. Une méthode 

de régression-krigeage a également été utilisée pour produire une carte des hauteurs en 

considérant la corrélation spatiale entre les hauteurs. Cette approche, testée dans le but 

d'améliorer la précision de la carte de la hauteur du couvert fournie par la méthode non-

spatiale, a échouée due à l'hétérogénéité de la zone d'étude en termes de la structure 

forestière et de la topographie. 

Mots Clés: Lidar, ICESat GLAS, ALOS PALSAR, images optiques, hauteur maximale de 

la canopée, hauteur de Lorey, Volume de bois, Iran. 

 



 

 

Table of contents 

Chapter 1: 

1. Introduction  ............................................................................................................. 1 

Chapter 2:  

2. Materials and data processing .................................................................................. 11 

2.1. Study area  ..................................................................................................................... 11 

2.2. Description of data  ...................................................................................................... 12 

2.2.1. Field measurements  ................................................................................................ 12 

2.2.2. Digital elevation model  ........................................................................................... 16 

2.2.3. Geological map  ....................................................................................................... 16 

2.2.4. GLAS/ICESat .......................................................................................................... 17 

2.2.5. ALOS/PALSAR  ...................................................................................................... 21 

2.2.6. Passive optical remote sensing data   ....................................................................... 23 

2.3. Data processing and information extraction  .............................................................. 25 

2.3.1. Analysis of in situ data ............................................................................................ 25 

2.3.2. Extraction of terrain index, slope, aspect and elevation class maps from DEM  .... 32 

2.3.3. ICESat GLAS data processing and extraction of metrics  .................................... 34 

2.3.3.1. Processing GLAS waveforms  ..................................................................... 34 

2.3.3.2. Waveform metrics extraction ...................................................................... 35 

2.3.4. PALSAR data processing and extraction of metrics  ........................................... 40 

2.3.5. Optical data (Landsat-TM, SPOT5) and extraction of vegetation and 

texture indices  .............................................................................................................. 45 

Chapter 3:  

3. Research methodology  ................................................................................................ 47 

3.1. Estimation of maximum (Hmax) and Lorey’s heights (HLorey) using 

ICESat GLAS  ...................................................................................................................... 48 

3.1.1. Direct method for estimating Hmax  .......................................................................... 48 

3.1.2. Parametric and non-parametric methods for prediction Hmax and HLorey  ................. 49 

3.2. Forest volume estimation using ICESat GLAS  ......................................................... 53 

3.3. Model Validation  ......................................................................................................... 54 



3.4. Production of canopy height map and its validation  ..................................................... 55 

3.4.1. Canopy height map using regression model  ............................................................... 56 

3.4.2. Canopy height map using regression-kriging method  ............................................ 56 

Chapter 4: 

4. Results and discussion  ............................................................................................. 59 

4.1. Estimation of maximum canopy height (Hmax) using ICESat GLAS  ....................... 59 

4.1.1. Direct method for estimation of Hmax  ................................................................ 59 

4.1.2. Estimation of Hmax using regression models (MLR, RF and ANN)  ....................... 59 

4.1.2.1. Estimation of Hmax using MLR  ......................................................................... 59 

4.1.2.2. Estimation of Hmax using RF  ............................................................................. 64 

4.1.2.3. Estimation of Hmax using ANN  ......................................................................... 67 

4.1.2.4. Discussion on Hmax estimated using GLAS data  ....................................... 69 

4.2. Estimation of Mean Lorey’s height (HLorey) using ICESat GLAS  ........................... 71 

4.2.1. Estimation of HLorey using MLR  .............................................................................. 71 

4.2.2. Estimation of HLorey using RF .................................................................................. 73 

4.2.3. Estimation of HLorey using ANN  .............................................................................. 76 

4.2.4. Discussion on HLorey estimated using GLAS data  ................................................ 78 

4.3. Estimation of forest volume using ICESat GLAS  ..................................................... 79 

4.3.1. Discussion on volume estimated using GLAS data  ............................................ 82 

4.4. Production of canopy height map  ........................................................................ 85 

4.4.1. Canopy height map using regression model ....................................................... 85 

4.4.2. Canopy height map using regression-kriging  ..................................................... 91 

4.4.3. Discussion on production of canopy height map  ................................................ 95 

Chapter 5: 

5. Conclusion and perspectives  ................................................................................... 97 

5.1. Conclusion  .......................................................................................................... 97 

5.1.1. Prediction of maximum height (Hmax) using GLAS  ............................................ 97 

5.1.2. Prediction of Lorey’s height (HLorey) using GLAS  .............................................. 98 

5.1.3. Effect of terrain index on estimation of height using GLAS  ............................... 99 

5.1.4. Prediction of forest volume (V) using GLAS  .................................................... 99 

5.1.5. Uncertainties in prediction of height and volume using GLAS  ........................... 100 

5.1.6. Production of Canopy height map ..................................................................... 102 



5.1.7. General conclusion ........................................................................................... 104 

5.2. Perspectives  ........................................................................................................ 106 

Chapter 6: 

6. References  ............................................................................................................... 109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

List of figures 

Fig. 1.1. Major carbon pools and fluxes of the global carbon balance (FAO, 2007)  ............. 1 

Fig. 2.1. Location of study area in Iran (top right map) and over Landsat image ................... 11 

Fig. 2.2. Schematic illustration of location of trees for height measurement in a field plot .............. 13 

Fig. 2.3. a) Schematic illustration of height measurement based on trigonometry; b) 

Calculation of horizontal distance from tree over sloped terrain............................................. 13 

Fig. 2.4. illustration of three phases of field work including navigating and locating the 

plot center, DBH and height measurement .................................................................................. 15 

Fig. 2.5. Schematic of the relationship between geoidal heights and ellipsoidal heights  .............. 16 

Fig. 2.6. Geological map provided by geological survey and mineral exploitation of Iran  .......... 17 

Fig. 2.7. Schematic illustration of GLAS instrument operating from ICESat while orbiting 

the Earth  .................................................................................................................................. 18 

Fig. 2.8. Color composite of SPOT-5 images over study area  .................................................. 25 

Fig. 2.9. Tree’s Height vs. DBH and the best fitted line  ......................................................... 29 

Fig. 2.10. a) Distribution of number of trees per hectare (n/ha), b) forest volume (m
3
/ha) in 60 

reference plots  ........................................................................................................................... 31 

Fig. 2.11. Histogram of forest volume (m
3
/ha) for 60 reference plots  ...................................... 31 

Fig. 2.12. Digital elevation model (DEM10) and four extracted maps  .................................... 33 

Fig. 2.13. Schematic of laser altimeter pulse spreading over a vegetated area, and a 

returned waveform  ....................................................................................................................... 37 

Fig. 2.14. GLAS waveform and some metrics over a terrain of 25% slope in the study 

area. 1ns corresponds to 15cm sampling distance in waveform  ............................................. 37 

Fig. 2.15. a) A schematic illustration of lidar derived vegetation height (H), H100, and 

waveform extent (Wext) for one waveform over flat terrain (solid line) and another over 

sloped terrain (dash line) (Lee et al., 2011). b) Impact of slope on lidar height retrieval 

(Lee et al., 2011). c,d) A schematic of footprint located over flat (left) and sloped (right) 

vegetated terrain, respectively ................................................................................................. 39 

Fig. 2.16. Information explained by ten first PCs and other PCs  ........................................... 40 

Fig. 2.17. Gamma naught (γ˚=γdB) before (a) and after (b) LEE and multitemporal 

filters, and the histogram of backscatters over a forested area (green rectangle) (c) 

before (blue) and after (red) noise reduction. The standard deviation of γ˚ decreases 

from 1.42 to 0.44 db  ................................................................................................................ 42 

Fig. 2.18. Eight GLCM texture features extracted from PALSAR-HH  .................................. 44 

Fig. 2.19. NDVI and eight GLCM texture features extracted from it ..................................... 46 

Fig. 3.1. Overview of forest canopy height and volume estimation using GLAS data ........... 47 

 



Fig. 3.2. Overview of forest canopy height map using combination of GLAS, PALSAR, 

optical images and environmental data  ............................................................................................... 48 

Fig. 3.3. A schematic of random forest regression  ................................................................. 50 

Fig. 3.4. A schematic of MLP neural network  ........................................................................ 51 

Fig. 3.5. Schematic diagram of a 5-fold cross validation  .......................................................... 55 

Fig. 3.6. Illustration of nugget, range and sill components of a semivariogram  ...................... 58 

Fig. 4.1. Estimated Hmax from GLAS data using direct method versus in situ Hmax  ............... 59 

Fig. 4.2. Estimated Hmax using MLR based on waveform metrics (model 1, table 4.1) 

versus in situ Hmax  .................................................................................................................... 61 

Fig. 4.3. Estimated Hmax using MLR based on waveform metrics (model 2, table 4.1) 

versus in situ Hmax  .................................................................................................................... 61 

Fig. 4.4. Estimated Hmax using a) model 4.1, b) model 4.2 versus in situ Hmax  ....................... 62 

Fig. 4.5. Estimated Hmax using stepwise regression of waveform metrics (Eq. 4.3) versus 

in situ Hmax  ............................................................................................................................... 63 

Fig. 4.6. Estimated Hmax using MLR based on PCs (model 3, table 3.5) versus in situ 

Hmax  ......................................................................................................................................... 64 

Fig. 4.7. Estimated Hmax using RF regression based on waveform metrics (model 1, 

table 4.3) versus in situ Hmax  ................................................................................................... 65 

Fig. 4.8. Estimated Hmax using RF regression based on PCs (model 3, table 4.4) versus 

in situ Hmax  ................................................................................................................................................. 66 

Fig. 4.9. Estimated Hmax using ANN based on waveform metrics (model 1, table 4.5) 

versus in situ Hmax  ................................................................................................................... 67 

Fig. 4.10. Estimated Hmax using ANN based on waveform metrics (model 2, table 4.5) 

versus in situ Hmax  ............................................................................................................................... 68 

Fig. 4.11. Estimated Hmax using ANN based on PCs (model 3, table 4.6) versus in situ Hmax ............... 69 

Fig. 4.12. Comparison of residual errors produced by MLR, RF and ANN for estimation 

of Hmax based on waveform metrics  ........................................................................................ 70 

Fig. 4.13. Estimated HLorey using MLR based on waveform metrics (model 1, Table 4.7) 

versus in situ HLorey  .................................................................................................................. 72 

Fig. 4.14. Estimated HLorey using MLR based on PCs; a) model 1, b) model 5 from table 4.9 

versus in situ HLorey  ................................................................................................................... 74 

Fig. 4.15. Estimated HLorey using RF based on PCs versus in situ HLorey (a, b, c: model 1 

to 3, table 4.10)  ....................................................................................................................... 75 

Fig. 4.16. Estimated HLorey using ANN based on waveform metrics (model 1, table 4.11) 

versus in situ HLorey  .................................................................................................................. 76 

Fig. 4.17. Estimated HLorey using ANN based on waveform metrics (model 1, Table 

4.12) versus in situ HLorey  ........................................................................................................ 77 

Fig. 4.18. Comparison of residual errors produced by MLR, RF and ANN for estimation 

of HLorey based on PCs  ............................................................................................................. 78 

Fig. 4.19. Correlation between volume and a) Hmax, b) HLorey  ................................................. 79 



Fig. 4.20. Estimated volume using # = 2.6507$%&'()*+.,-/- where HLorey was estimated 

from GLAS data versus in situ volume  ................................................................................... 80 

Fig. 4.21. Estimated volume using MLR based on waveform metrics versus in situ 

volume  ..................................................................................................................................... 81 

Fig. 4.22. Estimated volume using RF based on PCs versus in situ volume  .............................. 81 

Fig. 4.23. Estimated volume using ANN based on PCs versus in situ volume  ....................... 82 

Fig. 4.24. Trend of forest volume bias (observed value-estimated value) by a) in situ 

forest volume, and b) terrain slope  ......................................................................................... 84 

Fig. 4.25. Estimated Hmax using MLR based on extracted indices from optical images 

versus reference Hmax ............................................................................................................... 85 

Fig. 4.26. Estimated Hmax using RF regression based on TI and extracted indices from 

optical and radar data versus reference Hmax  ........................................................................... 86 

Fig. 4.27. Maximum height map produced using RF model  ................................................... 87 

Fig. 4.28. Comparison of Hmax map produced from RF model with in situ Hmax measures 

at the location of 32 plots  ........................................................................................................ 88 

Fig. 4.29. Estimated HLorey using RF regression based on extracted indices from optical 

images and environmental data versus reference HLorey  .......................................................... 89 

Fig. 4.30. Lorey’s height map produced using RF model  ....................................................... 90 

Fig. 4.31. Comparison of HLorey map produced from RF model with in situ HLorey 

measures at the location of 32 plots  ........................................................................................ 91 

Fig. 4.32. Examples of fitted semivariograms of a) maximum height and b) Lorey’s height 

residuals  ................................................................................................................................... 92 

Fig. 4.33. Maximum height map produced using regression-kriging  ..................................... 93 

Fig. 4.34. Comparison of Hmax map produced from regression-kriging with in situ Hmax 

measures at the location of 32 plots  ........................................................................................ 94 

Fig. 4.35. Lorey’s height map produced using regression-kriging  ......................................... 94 

Fig. 4.36. Comparison of HLorey map produced from regression-kriging with in situ 

HLorey measures at the location of 32 plots  .............................................................................. 95 

 

 

 

 

 

 

 

 

 



 

 

List of tables 

Table 2.1. Inventory form for DBH measurement  .................................................................. 14 

Table 2.2. Inventory form for height measurement  ................................................................ 14 

Table 2.3. ICESat operational periods  .................................................................................... 19 

Table 2.4. GLAS data products  ............................................................................................... 20 

Table 2.5. Main characteristics of ALOS-1 PALSAR (Japan Space Center, 2012)  ............... 23 

Table 2.6. Landsat-TM and SPOT 5-HRG spectral bands and their resolutions  .................... 24 

Table 2.7. Distribution of in situ plots in elevation and slope classes  .................................... 26 

Table 2.8. Non-linear height-diameter functions  .................................................................... 27 

Table 2.9. Six selected non-linear height-DBH models and their statistical performance  ............ 28 

Table 2.10. Six volume models and their parameters (produced by FRWO)  ......................... 30 

Table 2.11. Statistical summary of maximum height (Hmax), Lorey height (HLorey) and forest 

volume (V) for 60 in situ plots  ................................................................................................... 30 

Table 2.12. The main information derived from GLA01 and GLA14 ......................................... 34 

Table 2.13. Definition of metrics extracted from GLAS waveforms  ..................................... 38 

Table 3.1. Some MLR models fitted based on waveform metrics  .......................................... 53 

Table 4.1. Statistics for five MLR to estimate Hmax based on waveform metrics  ................... 60 

Table 4.2. Statistics for three MLR models to estimate Hmax based on PCs  ........................... 64 

Table 4.3. Statistics of five RF models for estimation of Hmax based on waveform 

metrics  ..................................................................................................................................... 65 

Table 4.4. Statistics of three RF models for estimation of Hmax based on PCs  ........................ 66 

Table 4.5. Properties of two ANN models for estimation of Hmax based on waveform 

metrics and the resulted statistics  ................................................................................................ 67 

Table 4.6. Properties of ANN models for estimation of Hmax based on PCs and the resulted 

statistics  ................................................................................................................................... 68 

Table 4.7. Statistics for five MLR for estimation of HLorey based on waveform metrics  .................. 71 

Table 4.8. Statistics of three MLR models for estimation of HLorey based on PCs  .................... 72 

Table 4.9. Statistics of five RF models for estimation of HLorey based on waveform metrics ............ 73 

Table 4.10. Statistics of three RF models for estimation of HLorey based on PCs  ........................ 75 

Table 4.11. Statistics of three ANN models for estimation of HLorey based on waveform 

metrics  ..................................................................................................................................... 76 

Table 4.12. Statistics of three ANN models for estimation of HLorey based on PCs  .................... 77 

Table 4.13. Comparison of Lorey's height, number of trees and volume in three couple 

of plots ..................................................................................................................................... 83 



 

 

 

 

 



Chapter 1: Introduction                                                                                                                                     1 

 

1. Introduction 

Forests are of extreme importance to humans in many ways. They are watersheds, and 

have economic, environmental and climate control benefits. Forests and natural areas play 

a very important role in maintaining natural processes. Forests are one of the biggest 

reservoirs of carbon. They contain up to 80 percent of the aboveground carbon in the 

terrestrial communities and around 33 percent of the belowground carbon. So they help to 

keep the carbon cycle and other natural processes working and help reduce climate change. 

The relationship between forests and climate change is complex. On one hand forests can 

mitigate climate change by absorbing carbon, while on the other they can contribute to 

climate change if they are degraded or destroyed. In turn climatic changes may lead to 

forest degradation or loss – which intensifies climate change further. Figure 1.1 presents 

the different carbon pools and fluxes of the global carbon balance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1. Major carbon pools and fluxes of the global carbon balance (FAO, 2007) 
 

The concentration of carbon dioxide (CO2) in the atmosphere increased from 285 ppm at 

the end of the nineteenth century, before the industrial revolution, to about 366 ppm in 

1998 as a consequence of anthropogenic emissions of about 405 gigatonnes of carbon (C) 

(± 60 gigatonnes C) into the atmosphere (IPCC, 2001).  
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Land-use change and soil degradation are major processes for the release of CO2 to the 

atmosphere. The increase in greenhouse gases (GHGs) in the atmosphere is now 

recognized to contribute to climate change (IPCC, 2001). Although uncertainties remain 

regarding the causes, consequences and extent of climate change, it is believed that human 

activities are having an impact on the energy balance of the earth. Its influence on the 

climate is a major concern in the twenty-first century. This concern has led to the 1997 

international agreement in Kyoto (the so-called Kyoto Protocol) made by the UNFCCC 

(United Nations Framework Convention on Climate Change), whereby most countries are 

committed to reducing their GHG emissions to the atmosphere. 

Furthermore, at the Paris climate conference (COP21) in December 2015, 195 countries 

adopted the first-ever universal, legally binding global climate deal. The agreement sets out 

a global action plan to put the world on track to avoid dangerous climate change by 

limiting global warming to well below 2°C. Forests’ role in combating climate change was 

formally recognized in this agreement. This recognition includes formal mention of the 

Reducing Emissions from Deforestation and Forest Degradation (REDD+) in the 

agreement text as well as new commitments to increase forest financing (Metzel, 2016). 

Issues mentioned above highlight the increasing importance of sustainable forest 

management. Measuring biophysical parameters of forest is of primary steps for forest 

ecosystem management. Tree’s height has a primary and fundamental importance among 

all other parameters. In fact the information about vertical structure of forest specifically 

height is important for ecosystem health assessment, site fertility, volume, biomass and 

carbon cycle measurement and monitoring (Namiranian, 2007; Cairns et al., 1995).  

Different heights are defined and measured for a tree including total height, commercial 

height, trunk height, crown height etc. In forestry, total height is defined as vertical 

distance between base of tree and top of it (Husch et al., 2003; Namiranian, 2007). 

Generally, indirect methods are used to measure forest height in the field. The most 

common way is a tangent method which tree’s height (h) is computed through measuring 

angles of top (α) and base (β) of the tree by a clinometer, and horizontal distance of 

measurer to the tree (a): h = a[tan α – tan β]. 

It is not practical to measure the height of all trees in a forest stand. But the height of some 

trees are measured and then based on relationship between height and diameter at breast 

height (at 1.3 m above ground) (DBH), the height of all stand trees is estimated (Knowing 

that, measuring diameter is much easier and cheaper.). Depending on the subject and the 

objective, the maximum canopy height, mean height, mean Lorey’s height or dominant 

height is measured or computed. The maximum canopy height in a stand is important for 
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assessing the site quality and trees growth rate. The mean Lorey’s height as representative 

of mean height in uneven-aged stands is also a valuable parameter for forest ecosystem 

management. 

Forest volume, measured in cubic meters per hectare, is considered for forest quantification. 

Stand volume at a nominated age is related to the site quality. Volume can also be used to 

estimate biomass quantities (dry weight of forest) and levels of carbon sequestered in the 

forest. In other words, the data for the forest biomass quantities depend importantly on the 

ability to measure forest volumes and conversion factors. Scientific researchers study 

relationship between forest biomass and biodiversity (Vance-Chalcraft et al., 2010; Lasky 

et al., 2014). Forest carbon estimates are of scientific importance to understand the 

quantitative role of forest carbon sequestration in earth’s climate system (Hamburg et al., 

1997; Ding et al., 2011). Changes in forest volume can be a good proxy for changes in 

forest carbon (Cheng et al., 2013). Hence, volume may ultimately provide the most reliable 

estimates of deforestation and forest carbon changes (Macauley et al., 2009). 

The most accurate method of measuring standing forest volume is to measure the DBH and 

the height of each tree (Namiranian, 2007; Macauley et al., 2009). For a large area of 

forest, sampling methods are used along with complex equations derived from regression 

models to estimate the forest volumes (Schreuder et al., 1993; Namiranian, 2007).  

For very large heterogeneous forests, measuring forest on the ground, quantitatively and 

qualitatively, would be prohibitively expensive, time consuming and laborious. This 

highlights the importance of remotely sensed data in global estimation of forest biophysical 

parameters. Digital large-scale remote sensing data provide a less expensive option for 

estimation of forest biophysical parameters over a large area, while potentially also 

providing accurate and unbiased estimates. Developed remote sensing techniques including 

photogrammetry (e.g. Miller et al., 2000; Gobakken et al., 2015), Synthetic Aperture Radar 

(SAR) interferometry (InSAR) and polarimetric interferometry (PolInSAR) (e.g. Balzter et al., 

2007; Garestier et al., 2008), and lidar (light detection and ranging) (e.g. Lefsky et al., 2007; 

Andersen et al., 2006; Chen, 2010; Chen & hay, 2011; Duncanson et al., 2009) make us able 

to measure three-dimension objects. For instance, Garestier et al. (2008) estimated forest 

canopy height over pine forest stands using P-band PolInSAR data with an RMSE of 2m. 

Balzter et al. (2007) provided a map of canopy height in Monks wood national nature 

reserve with special heterogeneity of vegetation type and density using dual-wavelength 

InSAR at X- and L-band. They evaluate the result using airborne imaging lidar data. The 

RMSE of the lidar canopy height estimates compared to theodolite data was 2.15 m 

(relative error 17.6%). The RMSE of the dual-wavelength InSAR-derived canopy height 

model compared to lidar (light detection and ranging) was 3.49 m (relative error 28.5%). 
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Concerning volume/biomass estimation, methods using radar and optical data are 

successful in forests with low to medium levels of biomass. Passive optical sensing have 

shown limited sensitivity to biomass using medium to high resolution imagery when the 

biomass reaches intermediate levels (150-200 Mg/ha) (Ploton et al., 2011; Lu et al., 2012). 

This is due to inability of optical data to detect variation in biomass density after complete 

closure of the canopy top, which can occur from low or intermediate biomass values 

(depending on forest characteristics). In SAR system, the saturation threshold of radar 

backscatters increases by the radar wavelength. For instance, L-band SAR systems 

(wavelength about 25 cm) are limited to low and intermediate biomass levels, with 

maximum values reaching 150t/ha (e.g. Sandberg et al., 2011; Baghdadi et al., 2014; 

Attarchi & Gloaguen, 2014). It also depends on the forest characteristics. Improvements in 

altimetry technology especially lidar led to the most direct measurements of forest 

structure including height of canopy and forest volume/biomass. To this date, canopy 

height estimation over large areas is best achieved using lidar data.  

lidar is an active remote sensing system not limited to the canopy height, basal area, leaf 

area index, and canopy cover. It produces and transmits short laser pulses to the surface 

and objects. The returned pulses are captured by a telescope. Time delay between laser 

transmission and reception (t) is converted to distance (D) considering the speed of light 

(c= 3×10
8 

m/s) (D = c × t/2). Since this ability is used for detecting height of objects, the 

lidar system is also called laser Altimeter. Scanning laser systems may be mounted on 

different platform; on tripod (terrestrial lidar system), on airplane (airborne lidar system) or 

on satellite (spaceborne lidar system). lidar was first developed as fixed-position terrestrial 

instrument for investigating atmospheric composition, clouds and aerosols. These systems 

produce dense point data with centimeter accuracy and are often used for localized terrain-

mapping applications that require frequent surveys. Another type of terrestrial lidar 

systems uses mobile platforms (water-based and land-based). Data collected from these 

platforms are highly accurate and are used extensively to map railroads, roadways, 

airports, buildings, harbors, and shorelines. Airplanes are the most common and cost-

effective platforms for acquiring lidar data over vast areas. Most airborne platforms can 

cover about 50 km
2
 per hour and collect a large amount of detailed information for 

applications that require high-accuracy data (NOAA Coastal Services Center, 2012). 

Airborne lidar systems are able to produce centimeter accuracy high resolution digital 

elevation model (DEM) in a relatively small area (Hodgson et al., 2003; Mount et al., 

2008). In spaceborne lidar systems, the lidar instrument is mounted on satellite operating in 

orbits of 700-800 km altitude and collect data over large area. An advantage of spaceborne 

lidar over airborne is providing global coverage of earth.  



Chapter 1: Introduction                                                                                                                                     5 

 

Many studies have been performed using airborne lidar to estimate different forest 

parameters like tree and forest height (Andersen et al., 2006; Chen & hay, 2011; Khorrami 

et al., 2014), volume (Tonolli et al., 2011; Mohammadi, 2013), basal area (Drake et al., 

2002; Mohammadi, 2013), Leaf area index (Zhao & Popescu, 2009; Sabol et al., 2014), 

and biomass (Gleason & Im, 2012; Takagia et al., 2015). 

Generally, there are many researches employing airborne lidar for studying different forest 

sciences which commonly achieved suitable results but they are site, instrument and 

species specific (Iqbal, 2010). In Iran, which is subject of the current study, only two 

studies were performed using airborne lidar in broadleaf mountainous forests: Mohammadi 

(2013) combined airborne lidar and UltraCam-D digital images to estimate standing 

volume, basal area and number of trees per hectare. He predicted standing volume and 

number of trees per hectare using non-parametric statistic method of support vector 

machine (SVM) with a relative RMSE of 31.4 and 35.5, respectively, and basal area using 

non-parametric method of random forest (RF) with a relative RMSE of 27.2. Khorrami et 

al. (2014) estimated individual tree’s height using airborne lidar with sampling density of 

4.5 points/m
2
. They obtained R

2
 of 0.96 and 0.95 and RMSE of 1.05 m and 1.48 m for 

Acer velutinum (with height range of 6.8-36 m) and Carpinus betulus (with height range of 

11-36 m), respectively.  

The critical point about airborne lidar is that it is expensive and also the capacity to collect 

annual data over whole countries does not currently exist. There are some governmental 

restrictions that prevent access to airspace of sensitive areas or of foreign countries and 

also physical restrictions in employing aircraft over the remote ice caps and polar regions. 

While satellite orbits are not subject to these restrictions. Employing spaceborne lidar for 

estimation of forest biophysical parameters over large extent area was investigated since 

ICESat (Ice, Clouds, and Land Elevation Satellite) was launched into the space in 2003. 

The Geoscience Laser Altimeter System (GLAS) onboard ICESat operated for a total of 18 

missions during its operational years (2003-2009). GLAS illuminated surface or footprint 

has a diameter of 70 m in diameter on average, and waveforms were acquired every 170 m 

along the track. GLAS has been used to retrieve forest canopy height and biomass since 

2005 over planted (e.g. Rosette et al., 2008a; Baghdadi et al., 2014) or natural forests 

including coniferous (e.g. Lefsky et al., 2005; Lefsky et al., 2007; Chen, 2010; Duncanson 

et al., 2010; Saatchi et al., 2011), deciduous broadleaf (e.g. Lefsky et al., 2007; Mitchard 

et al., 2012; Los et al., 2012; Khalefa et al., 2013) and mixed coniferous-broadleaf forests 

(e.g. Sun et al., 2008; Xing et al., 2010; Los et al., 2012). The most concerning point about 

GLAS data is waveform extent broadening over sloped area (mainly because of the large 

footprint size, about 70 m), and difficulties of canopy top and ground peak identification 
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due to mixed vegetation and ground returns (Lefsky et al., 2005; Lefsky et al., 2007; Chen, 

2010). Chen (2010) has illustrated terrain slope effects and also plant size and distribution 

on canopy height estimation. It may occur that the base of tallest tree over a sloped terrain 

locates above or below the ground elevation peak that is recorded by lidar as representative 

of the tree base. On the other hand, top of the tallest tree over a sloped terrain may be 

below the maximum elevation (canopy top peak) recorded by lidar because of the presence 

of a shorter tree over higher slope. Another possibility is that maximum elevation recorded 

by lidar which is supposed to be the canopy top, is greater than the tree top. The later 

condition happens when very short sparse stands are located over sloped terrain. Even if 

the terrain is simple with approximately constant slope, a non-flat terrain might cause 

canopy height to be overestimated or underestimated, depending on the spatial distribution 

of plants within footprints. This is very challenging in our study since Hyrcanian forests in 

the north of Iran are mostly mountainous with considerable slopes. 

The terrain information can be derived from ancillary DEMs (Lefsky et al., 2005; Rosette 

et al., 2008; Chen, 2010; Xing et al., 2010) or from the waveform itself (Lefsky et al., 

2007; Pang et al., 2008). Lefsky et al. (2007) proposed multiple transformations of three 

waveform metrics and then used stepwise regression to develop correction factors for 

broadened waveform extent (distance between two signals assigned to signal start and 

signal end) to estimate mean canopy height. Their algorithm estimated forest canopy 

height with an RMSE of 5 m (R
2 

= 0.83).  

Duncanson et al. (2009) improved estimation of canopy height by modeling topography 

directly from GLAS waveforms and consequently, inclusion of terrain relief in canopy 

height estimation. They developed a model to estimate maximum relief (R
2 

= 0.76) and 

used it for classification of the maximum relief of the area sensed by GLAS. Forest canopy 

height model was also developed from waveform metrics for three separate relief classes: 

0-7 m (R
2 

= 0.83), 7-15 m (R
2 

= 0.88) and >15 m (R
2 

= 0.75). The moderate relief class 

model resulted better predictions of forest height than the low (increasing in waveform 

metrics variability by terrain relief) and high (mixing of vegetation and terrain signals in 

waveforms) relief classes.  

Chen (2010) adopted Lefsky et al.’s (2005; 2007) methods to retrieved maximum canopy 

height over mountainous areas (average slope=20˚) including two conifers sites of tall and 

closed canopy and one broadleaf woodland site of shorter and sparse canopy. Three 

regressions (edge-extent linear and non-linear models and DEM-linear model) were used 

to remove slope effect on GLAS waveforms. The results showed a better performance for 

DEM-linear model (the best result was for the broadleaf woodland site with an RMSE of 

4.88 m) rather than two edge-extent models. The author stated this result is reasonable 
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because DEM index (difference between maximum and minimum elevation of airborne 

lidar DEM within each GLAS footprint) was derived from airborne lidar data, which 

provides the most direct and precise information about terrain variability. 

Lee et al. (2011) calculated height difference between real ground elevation and last GLAS 

waveform return based on size of footprint and terrain slope, and corrected canopy height 

retrieved from ICESat/GLAS data over slope terrains. They compared GLAS with airborne 

LVIS (Laser Vegetation Imaging Sensor) lidar heights. LVIS height was calculated as the 

mean of three tallest LVIS heights (slope-corrected with the same approach of GLAS) 

within each GLAS footprint. Slope-corrected GLAS vegetation heights matched well with 

top three LVIS (Laser Vegetation Imaging Sensor) mean (slope-corrected) heights (R
2
 = 

0.64, RMSE = 3.7 m). They found vegetation height can be overestimated by 3 m over a 

15° slope without slope correction. 

Concerning forest volume/biomass estimation, researchers attempted to estimate height 

from lidar data and then predicting volume and biomass using volume/biomass-height 

relationships in large extent areas (e.g. Lefsky et al., 2005; Saatchi et al., 2011; Mitchard et 

al., 2012; Healey et al., 2012; Baghdadi et al., 2014; Asner & Mascaro, 2014). It was also 

considered to retrieve forest volume/biomass directly from waveform metrics. Boudreau et 

al. (2008), Duncanson (2009) and ZhiFeng et al. (2010) estimated above ground biomass 

(AGB) using Multiple Linear Regression (MLR) between AGB and metrics extracted from 

GLAS waveforms. Fu et al. (2009) and Nelson et al. (2009) practiced the same approach in 

their research where non-parametric technique of neural network was employed.  

Although lidar is a promising technique for forest structure measurement, it does not 

provide wall-to-wall coverage except for small footprint lidar for a small area. Synergistic 

use of multiple sensors has been used for mapping forest volume/biomass accurately with 

remote sensing data (e.g. Lefsky et al., 2010; Peterson & Nelson, 2014; Mitchard et al., 

2012; ZhiFeng et al., 2010; Quiñones et al., 2011). Peterson & Nelson (2014) produced a 

forest height map using a combination of spaceborne lidar (ICESat GLAS), airborne lidar, 

Landsat ETM+ images and field data for Alaska. To do this, forest height was estimated 

using a multiple linear regression based on waveform metrics extracted from GLAS 

waveforms and airborne lidar data. The estimated heights were evaluated using field 

measurement data. The resulting model was applied to all waveforms covering the study 

area. To spatially extrapolate the GLAS-based canopy height estimates and generate a 

continuous forest layer, a regression tree (RT) approach was used. GLAS-derived canopy 

height values were used as dependent variables while extracted values from Landsat 

composite bands, national elevation dataset DEM and derived slope and aspect, as well as 

existing vegetation type map were used as independent variables to build the RT models. 
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These models were then applied to the input geospatial layers to generate spatially 

continuous maps (30 m resolution) of forest height for allover Alaska. 

Mitchard et al. (2012) produced AGB map for Gabon’s Lope National Park (5000 km
2
) 

using a combination of terrain-corrected L-band radar (ALOS PALSAR), spaceborne lidar 

(ICESat GLAS) and ground based data. They estimated Lorey’s height based on GLAS 

waveform features, and predict AGB from AGB-Lorey’s height equation developed based 

on in situ data. An unsupervised classification was performed on original and synthetic 

bands extracted from PALSAR data to provide a map of vegetation structures (40 classes) 

for the study area. Then the AGB values derived from GLAS footprints were averaged 

within each class to produce a 100 m resolution AGB map. 

Complex structure of forests in the north of Iran, vertically and horizontally, even and 

uneven aged stands, presence of diverse broadleaf species, severe topography, etc., brought 

into question the capability of GLAS data to estimate the forest canopy height and volume 

in such complexity. However a few literatures evaluated capability of optical images, 

airborne lidar and radar data for estimating forest volume/biomass in Iran (Khorrami et al., 

2008; Kalbi et al., 2013; Mohammadi, 2013) and two studies employed the synergy of 

optical and radar data to provide biomass map (Attarchi & Gloaguen, 2014; Amini & 

Tetuko Sri Sumantyo, 2011), there was no investigation using spaceborne lidar or 

combination of that with other sources of remote sensing data up to now. This study aimed 

first to investigate capability of GLAS data for estimation of forest canopy height and 

volume in part of mountainous forests of Iran. To overcome slope effects, numerous 

parametric and non-parametric regressions were developed based on metrics derived from 

GLAS waveforms (user defined metrics and metrics derived using statistical method of 

principal component analysis (PCA)), and also terrain index extracted from 10 and 90 m 

DEM. Consequently, providing a wall to wall map of forest height was on the agenda. 

Hence, the best GLAS height models (maximum and Lorey’s heights) were applied to all 

GLAS shots over study area. GLAS estimated heights were then used as reference heights 

to develop new height models based on indices extracted from radar and optical images 

and also environmental data. Canopy height maps (maximum and Lorey’s heights) were 

produced using new height models and also regression-kriging method. 
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In summary, this research pursues following objectives: 

- Estimation of maximum canopy height and Lorey’s height using ICESat/GLAS data by 

developing parametric and non-parametric statistical methods between forest height and 

metrics extracted from GLAS waveforms and DEM. 

- Estimation of forest volume using ICESat/GLAS data by developing: 1) volume-height 

relationship, and 2) parametric and non-parametric statistical methods between forest 

volume and metrics extracted from GLAS waveforms and DEM 

- Producing forest height/volume map using a combination of ICESat/GLAS, 

ALOS/PALSAR, optical images and environmental data (aspect, slope and geology maps). 

To address above objectives following questions were raised: 

- Does GLAS estimate forest height/volume in mountainous forests of Iran with a suitable 

accuracy? 

- What is preferable statistical method (multiple linear regression, artificial neural network, 

random; forest) for forest height/volume estimation using GLAS in our study area? 

- Whether terrain index will reduce topography effects on GLAS waveform and improve 

the predictions? Does the resolution of DEM affect performance of the developed model? 

- Is there possibility of providing forest height or volume map with a suitable accuracy in 

such high heterogeneity of horizontal and vertical structure? 

- Does regression-kriging improves maps provided from regression models? 
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2. Materials and data processing 

2.1. Study area 

This research was performed in Nowshahr forests, a part of Hyrcanian forests in the north 

of Iran (Fig. 2.1), located between 36.26 to 36.68 degrees N latitudes and 51.32 to 

51.94 degrees E longitudes. It contains temperate deciduous broadleaved forests extended 

from 100 to 2200 meters altitude above sea level with slopes ranging from flat to greater 

than 80%. Covering even and uneven aged stands with various species led to a diverse 

structure across the study site. Depending on the site, the dominant species are oriental 

beech (Fagus orientalis), European hornbeam (Carpinus betulus), chestnut-leaved oak 

(Quercus castanifolia), Persian ironwood (Parotia persica), oriental hornbeam (Carpinus 

orientalis), and Persian oak (Quercus macranthera). Annual mean precipitation is 1200 

mm, and average maximum and minimum temperature are 6˚C and 25˚C, respectively. We 

focused on part of Nowshahr forest that is covered by lidar footprints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. Location of study area in Iran (top right map) and over Landsat image (bottom right map: 

the pink polygon shows the border of Nowshahr and the blue frame is the border of study area. The 

left map shows lidar footprints over hillshade of the study area. 
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2.2. Description of data 

2.2.1. Field measurements 

In order to estimate forest biophysical parameters (heights and volume) using GLAS, field 

data were collected during leaf-on seasons as lidar data acquisition dates. In total, 60 

GLAS footprints were located on the ground using global positioning system (GPS; 

Garmin Colorado 300), 33 plots in September 2013 and 27 plots in May 2014. Since the 

study area includes climax community comprised of low growth deciduous species, trees 

have almost no or very small growth in height and DBH (diameter at breast height). On the 

other hand, spaceborne lidar is less sensitive to little changes in forest volume in 

comparison with very high spatial resolution data like airborne lidar. Therefore, 5-6 year 

interval between in situ measurement and lidar acquisition was not considered as an 

important factor influencing the analysis.  

As the first step, point layer of GLAS footprints and also roads were added to topographic 

and slope map of the study area in ArcGIS to consider conditions and accessibility of each 

plot before going on the field mission. Then geographic coordinates of the plots (location 

of center of GLAS footprints) were entered in GPS and were next navigated on the ground. 

DBH of all trees (DBH > 7.5 cm) within a 70 m diameter circle (as large as lidar 

footprints) were measured using caliper or tape measure in case of large diameter trees. As 

laser energy decreases towards the margins of the footprint and, consequently, the returned 

waveform is most representative of the features closest to the footprint center (Harding & 

Carabajal, 2005; Rosette et al., 2008a; Duong, 2010), this was taken into account through 

field measurements. So totally 10 dominant heights, 5 within a 36 m diameter circle and 5 

in a co-center 70 m diameter circle (outer margin of smaller circle), were measured using a 

clinometer. The height of the nearest tree to the plot center (or tree with lowest DBH if the 

nearest is a measured dominant tree), was measured in order to have sufficient trees with 

different DBH for building height-DBH relationships which will be discussed later in 

subsection 2.3.1. Figure 2.2 shows a schematic of height measurement plan in a plot. 

Obtaining tree height requires the use of basic trigonometry: h = a[tg α – (tg β)] where h is 

the tree height, d is the horizontal distance from tree, α is the angle to the top of tree and β 

is the angle to the base of tree (Fig. 2.3a). On steep terrain it is almost impossible to 

accurately determine the horizontal distance from the tree. In situations where the ground 

is sloped, it is needed to measure slope distance. Once measure slope angle and slope 

distance was measured, horizontal distance can be calculated (Fig. 2.3b). All required 

information including environmental parameters such as slope, aspect and elevation level 

and also biophysical parameters were recorded in inventory forms as presented in table 2.1 

and 2.2. 
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Fig. 2.2. Schematic illustration of location of trees for height measurement in a field plot; 5 trees 

within a 35 m diameter plot and 5 in a co-center 70 m diameter plot (outer margin of smaller circle) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.3. a) Schematic illustration of height measurement based on trigonometry; b) Calculation of 

horizontal distance from tree over sloped terrain 

 

Third mission of field measurement was performed in August 2016 to validate canopy 

height maps produced using combination of GLAS, PALSAR, optical images (Landsat-

TM and SPOT5) and environmental data. Thus, 32 circle plots (each 0.1 hectare) dispread 

over part of the study area, were measured in case of DBH of all trees and height of three 

dominant trees as explained above. Simple random sampling method was used to select 

and determine plots locations. Figure 2.4 illustrates three phases of field work including 

navigating and locating plot center, DBH measurement and height measurement. 

35 m 

18 m 

(a) 

(b) 
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Table 2.1. Inventory form for DBH measurement 

Plot Number: 75      Slope: 60%      Aspect:  North      Elevation: 1950m       Date: 12/09/2013 

Tree 
number 

Plot 
Species 

DBH 
(cm) 

Considerations Small 
(r = 18m) 

Large 
(r = 35m) 

1 ü  Carpinus betulus 24.5  

2 ü  Fagus orientalis 50 It is one of ten top trees in the plot. 

3 ü  Fraxinus excelsior 34  

4  ü Fagus orientalis 35  

5  ü Fagus orientalis 33  

6  ü Fagus orientalis 32  

. 

. 

. 
 

184  ü Acer campestre  16 The last measured tree in this plot 

 

Table 2.2. Inventory form for height measurement 

Plot Number: 75      Slope: 60%      Aspect:  North      Elevation: 1950m       Date: 12/09/2013 

Tree 
number 

Species 
DBH 
(cm) 

Tan of 
top of tree 
angle (%)  

Tan of base 
of tree 

angle (%)   

Slope 
angle 

(degree) 

Distance 
to the tree 

(m) 

Plot 

Small 
(r = 18m) 

Large 
(r = 35m) 

١ Fagus orientalis 42 +8 -62 29 27.90 ü  

٢ Fraxinus excelsior 32 +36 -22 10 29.10 ü  

٣ Quercus castanifolia 57 +6 -58 27 24.90 ü  

٤ Fagus orientalis 34 +105 +44 26 38.80 ü  

٥ Fagus orientalis 50 +19 -45 23 26.70 ü  

٦ Fagus orientalis 54 +7 -60 29 34.40  ü 

٧ Quercus castanifolia 65 +23 -34 16 28  ü 

٨ Quercus castanifolia 83 +12 -50 24 28.90  ü 

٩ Fagus orientalis 44 +32 -26 11 32.80  ü 

١٠ Fagus orientalis 42 +25 -556 27 31.60  ü 

١١ Fagus orientalis 31 +105 +53 26 37 ü  

Considerations: Tree number 11 is the closest tree to the center of plot 
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Fig. 2.4. illustration of three phases of field work including navigating and locating the plot center, 

DBH and height measurement 

Measuring diameter at breast height (DBH) by caliper 

Measuring height by clinometer 

Navigation and locating center of plot by GPS 
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2.2.2. Digital elevation model 

Digital elevation model was provided using two sources of data. The first one, Shuttle 

Radar Topography Mission (SRTM) data sampled at 3 arc-second (about 90 meters). 

Elevations were measured in meters referenced to the WGS84/EGM96 geoid. As all data 

used in a research project should have the same coordinate system, including both 

horizontal and vertical aspects, geoidal heights were transferred to ellipsoidal heights by 

adding the geoid undulations to geoidal heights (DEM90) (Equation 2.1). Figure 2.5 

illustrates the relationship between geoidal heights and ellipsoidal heights. The second 

source of data was digital 1:25000 topographic maps with counter interval of 10 meters 

and used to produce DEM with 10 meter resolution (DEM10). 

                       h = H + N                  (2.1) 

Where h, N and H stands for ellipsoidal height, geoid undulation and geoidal height, 

respectively. 

 

 

 

 

 

 

 

 

 

Fig. 2.5. Schematic of the relationship between geoidal heights and ellipsoidal heights 

 

2.2.3. Geological map 

Rock largely controls the physico-chemical properties of resulting soils which affects tree 

growth and forest parameters. A geological map produced by geological survey and 

mineral exploitation of Iran, at the scale of 1:100000, was therefore used in this study. Two 

sheets of geological map inside the study area were merged and converted to raster layer 

with different resolutions to match other sources of data. As it is seen in figure 2.6, all 

classes except one belong to major category of the sedimentary rocks.   
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Fig. 2.6. Geological map provided by geological survey and mineral exploitation of Iran 

(The white color corresponds to urban and non-forest area) 

 

2.2.4. GLAS/ICESat 

Lidar is an active remote sensing system that produces and transmits short laser pulses to 

the surface and objects. The returned pulses are captured by a telescope. Time delay 

between laser transmission and reception (t) is converted to distance (D) considering the 

speed of light (c = 3×108m/s) (Equation 2.2). Since this ability is used for detecting height 

of objects, the LiDar system is also called laser Altimeter. 

                    D = c × t/2                      (2.2) 

Scanning laser systems may be mounted on different platform; on tripod (terrestrial lidar 

system), on airplane (airborne lidar system) or on satellite (spaceborne lidar system). In 

spaceborne lidar systems, the lidar instrument is mounted on satellite operating in orbits of 

700-800 km altitude and providing global coverage of earth. 

ICESat is an experimental scientific satellite launched by NASA in 2003 to measure 

mainly ice sheet elevations and its changes over the time and also to provide measurements 

of cloud and aerosol height profiles, land elevation, and vegetation cover. ICESat moves 
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26,000 km per hour on orbits at 600 km altitude and 94 degrees inclination to the equator. 

The Geoscience Laser Altimeter System (GLAS) onboard ICESat consists of three lasers 

that operate exclusively to measure distance, a Global Positioning System (GPS) receiver, 

and a star-tracker attitude determination system. The laser transmits short pulses (4 ns) of 

infrared light (1064 nm) for measuring the elevation of surfaces and dense clouds and 

visible green light (532 nm) for measuring the vertical distribution of clouds and aerosols 

(Aronoff, 2005; Pflugmacher, 2008). Laser pulses at 40 times per second illuminate 70 

meter diameter footprints on average, spaced at 170-meter intervals along Earth's surface. 

Separation of the tracks is 15 km at the equator and 2.5 km at 80 degrees latitude (Abshire 

et al., 2005; NSIDC, 2012). The mean horizontal geolocation accuracy of the ground 

footprints is less than 5 m for all ICESat missions (NSIDC, 2014). Mean vertical 

geolocation accuracy was also reported by NSIDC between 0 and 3.2 cm over flat surfaces 

(NSIDC, 2014). GLAS operated for a total of 18 missions during its operational years 

(2003-2009). Figure 2.7 illustrates operation of GLAS from ICESat orbiting the Earth. A 

list of ICESat missions and their operational period is seen in table 2.3 (NSIDC, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. Schematic illustration of GLAS instrument operating from ICESat while orbiting the Earth 
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Table 2.3. ICESat operational periods 

Laser Identifier Start Date End Date Days in 
Operation 

Duration of repeat 
orbit cycle (days) 

L1A 2003-02-20 2003-03-21 29 8 

L1B 2003-03-21 2003-03-29 9 8 

L2A 2003-09-25 2003-10-04 10 8 

L2A 2003-10-04 2003-11-19 45 91 

L2B 2004-02-17 2004-03-21 34 91 

L2C 2004-05-18 2004-06-21 35 91 

L3A 2004-10-03 2004-11-08 37 91 

L3B 2005-02-17 2005-03-24 36 91 

L3C 2005-05-20 2005-06-23 35 91 

L3D 2005-10-21 2005-11-24 35 91 

L3E 2006-02-22 2006-03-28 34 91 

L3F 2006-05-24 2006-06-26 33 91 

L3G 2006-10-25 2006-11-27 34 91 

L3H 2007-03-12 2007-04-14 34 91 

L3I 2007-10-02 2007-11-05 37 91 

L3J 2008-02-17 2008-03-21 34 91 

L3K 2008-10-04 2008-10-19 16 91 

L2D 2008-11-25 2008-12-17 23 91 

L2E 2009-03-09 2009-04-11 34 91 

L2F 2009-09-30 2009-10-11 12 91 

 

It should be noted footprint shape is not fully circular. Laser 3 footprints are moderately 

elliptical, Laser 2 very elliptical and Laser 1 very elliptical with side-lobe (NSIDC, 2012). 

The different footprint size and shape make it difficult to describe the surface covered by 

footprints when all missions’ data are employed in a project. This may causes uncertainty 

in estimations. Within each footprint, laser reflected energy by all intercepting objects and 

surfaces are collected by a telescope of 1 meter diameter and results a waveform that 

represents a vertical profile of laser-illuminated surfaces. In the early GLAS missions, 

energy of each returned pulse was telemetered in 544 bins over ice sheet and land, 

corresponding to a height of 81.6 m (each bin corresponds to one nanosecond) (Brenner 

et al., 2003). In highly sloped area or area where feature heights exceed 81.6 m, GLAS 

waveform would truncate, making it impossible to derive range information. So, in later 

operations height extent was increased to 150 m (1000 bins) over land, using a “waveform 

compression scheme” (Harding & Carabajal, 2005). 
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GLAS collected data were processed by National Snow and Ice Data Center (NSIDC), and 

15 products at three levels of corrections; L1A, L1B and L2 were provided (Table 2.4). 

 

Table 2.4. GLAS data products 

Long name Short name 

GLAS/ICESat L1A Global Altimetry Data GLA01 

GLAS/ICESat L1A Global Atmosphere Data GLA02 

GLAS/ICESat L1A Global Engineering Data GLA03 

GLAS/ICESat L1A Global Laser Pointing Data GLA04 

GLAS/ICESat L1B Global Waveform-based Range Corrections Data GLA05 

GLAS/ICESat L1B Global Elevation Data GLA06 

GLAS/ICESat L1B Global Backscatter Data GLA07 

GLAS/ICESat L2 Global Planetary Boundary Layer and Elevated Aerosol GLA08 

GLAS/ICESat L2 Global Cloud Heights for Multi-layer Clouds GLA09 

GLAS/ICESat L2 Global Aerosol Vertical Structure Data GLA10 

GLAS/ICESat L2 Global Thin Cloud/Aerosol Optical Depths Data GLA11 

GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data GLA12 

GLAS/ICESat L2 Sea Ice Sheet Altimetry Data GLA13 

GLAS/ICESat L2 Global  Land Surface Altimetry Data GLA14 

GLAS/ICESat L2 Ocean Altimetry Data GLA15 

 

Since this research has two main parts (Estimation of forest biophysical parameters using 

GLAS data and providing height/volume map using synergy of GLAS, PALSAR, optical 

images and environmental data), GLAS data acquired on October 2007 and October 2008, 

corresponding to L3I and L3K missions respectively, were used for the first part of this 

research (estimation of forest biophysical parameters using ICESat GLAS data). All GLAS 

missions over the study area were also used for the second part of thesis to provide height 

map using combination of remote sensing data (lidar, radar and optical images) and 

environmental data. GLA01 and GLA14 among 15 products produced by NSIDC, release 

33
1
, were employed to drive forest height and volume. 

GLA01 contains intensities of transmitted and received waveforms. GLAS digitizes these 

intensities as counts (0-255) which were converted to volts using calibration table. It is 

worth to mention the ordering of the transmitted pulse is in time order. The value of the 

first sample (bin) is for the sample closest to the spacecraft in time, and the value of the 

last sample is for the sample farthest from the spacecraft in time. In reverse, the received 

echo is in time-reversed order. So the value of the first sample is for the sample farthest 

from the spacecraft in time, and vice versa (NSIDC, 2012). 

                                                      
1- At the moment, there are release 34 data. A new release is created when changes occur in the input data or 

when improvements are made to the processing algorithms.  
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GLA14 is a level-2 elevation product derived from level-1 products GLA05 and GLA06. 

This product provides information about surface elevations. It also includes the laser 

footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric 

correction flags to filter out bad data (more explanation in subsection 2.3.3.1) for range 

measurements (NSIDC, 2012; Wang et al., 2011). As the transmitted and received pulses 

are assumed to have a Gaussian shape (Brenner et al., 2003), up to 6 Gaussian peaks were 

fitted to the waveforms. Hence, the GLA14 contains parameters for these peaks including 

amplitude, area and standard deviation. 

 

2.2.5. ALOS/PALSAR 

The word radar stands for radio detection and ranging. In general, radar systems use 

modulated waveforms and directive antennas to transmit electromagnetic energy into a 

specific volume in space to search for targets. Objects (targets) within a search volume will 

reflect portions of this energy (radar returns or echoes) back to the radar. These echoes are 

then processed by the radar receiver to extract target information such as range, velocity, 

angular position, and other target identifying characteristics. In this research spaceborne 

radar data acquired by ALOS-1 (Advanced Land Observing Satellite) was used along with 

other source of remotely sensed data.   

ALOS-1 (Advanced Land Observing Satellite) was launched on January 24, 2006 from the 

Tanegashima Space Center and completed its operation on 12 May 2011 (Japan Space 

Systems, 2012). ALOS satellite has three remote-sensing instruments: the Panchromatic 

Remote-sensing Instrument for Stereo Mapping (PRISM) and for digital elevation models. 

The Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) for precise land 

coverage observation, and the Phased Array type L-band Synthetic Aperture Radar 

(PALSAR). PALSAR is an active microwave sensor using L-band frequency (center 

frequency is 1270 MHz) to achieve cloud-free and day-and-night land observation. It was 

improved based on Synthetic Aperature Radar (SAR) onboard the first observation 

satellite, JERS-1. Four operation modes are defined for PALSAR; fine resolution mode, 

direct downlink mode, scanSAR mode, and polarimetric mode. FB (Fine resolution Beam) 

mode comprises 18 selections in the off-nadir angle range between 9.9º and 50.8º, each 

with 4 alternative polarizations: single polarization HH or VV, and dual polarization 

HH+HV or VV+VH. Out of the 72 possible FB modes, two have been selected for 

operational use. The direct transmission (or downlink) mode is a contingency backup mode 

which allows the downlink of the FB mode data to local ground stations in case the high-

speed DRTS (Data Relay and Test Satellite) becomes unavailable. ScanSAR is available at 

a single polarization only (HH or VV) and can be operated with 3, 4, or 5 sub-beams 
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transmitted in short (14 MHz) or long bursts (28 MHz). Out of the 12 ScanSAR modes 

available, the sort-burst, HH polarization, 5-beam mode has been selected for operational 

support. It features a 350 km swath width with an incidence angle range of 18-43º. The 14 

MHz polarimetric mode provides the full quad-polarization (HH+HV+VH+VV) scattering 

matrix with 12 alternative off-nadir angles between 9.7º and 26.2º. Polarization is changed 

in every pulse of transmission signal, and dual polarization signals are simultaneously 

received. The operation is limited in lower incident angle in order to achieve higher 

performances. At the nominal off-nadir angle (21.5º), the swath width is 30 km with 30 m 

spatial resolution under the maximum data rate condition (240 Mbit/s) (Ito et al., 2001) 

Full polarimetry (multi-polarization), off nadir pointing function and other functions of 

PALSAR improved the accuracy of analyzing geological structure, distribution of rocks 

and so on, and acquired a lot of effective data for resource exploration and other purposes. 

At the same time, multi-polarization was effective in acquiring vegetation information, 

which encouraged the data use in fields such as global and regional observation of 

vegetation, distinguishing feature on the ground, classification of land use and other 

purposes (Polychronaki et al., 2013; Attarchi & Gloaguen, 2014; Mermoz et al., 2014). 

Main characteristics of PALSAR were presented in table 2.5. 

PALSAR mosaic data, supplied by JAXA
1
, with 25 m resolution from dates 2007, 2008, 

2009 and 2010 were used in this research. It included four layers “HH” and “HV” 

polarization, “Local incidence angle” and “date” layer from the date of satellite launch 

(January 24, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
1- Japan Aerospace Exploration Agency (JAXA) 
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Table 2.5. Main characteristics of ALOS-1 PALSAR (Japan Space Center, 2012) 

Observation Mode Fine Resolution 
Direct 

Downlink 
ScanSAR Polarimetric Remarks 

Polarization 

L band  

HH or VV 
HH + HV 

or 

VV + VH 

HH or VV HH or VV 
HH + HV+ 

VV + VH 
 

Incidence Angle 8˚ - 60˚ 8˚ - 60˚ 8˚ - 60˚ 

18˚ - 36˚ (3 scan) 

18˚ - 40˚ (4 scan) 

18˚ - 43˚ (5 scan) 

8˚ - 30˚ 
Off-nadir Angle: 

9.7˚ –50.8˚ 

Resolution 

Range 10 m* 20 m* 20 m* 100 m* 30 m* Number of looks of 
the ScanSAR mode 
is 8or moreby both 
range and azimuth. 

Azimuth 
10 m (2looks) 

20 m (4looks) 

10 m (2looks) 

20 m (4looks) 

10 m (2looks) 

20 m (4looks) 
100 m 

10 m (2looks) 

20 m (4looks) 

Swath width 70 km* 70 km* 70 km* 

70 km (3 scan) 

300 km (4 scan) 

350 km (5 scan) 

30 km*  

Data Rate 240 Mbps 120 Mbps 120/240 Mbps 240 Mbps  

Radiometric Accuracy 
Relative accuracy within 1 scene: < 1dB 

Relative accuracy within 1 orbiting: < 1.5dB(TBR) 
 

* Meets under the following off-nadir angle. For under other angle, it is requested to keep similar specification as far as possible. 

High Resolution Mode: Off-nadir angle 34.3 deg. (TBR) 

Direct Downlink Mode: Off-nadir angle 34.3 deg. (TBR) 
ScanSAR Mode: 4th scan (off-nadir 34.1 deg. (TBR)) 

Polarimetric Mode: Off-nadir angle 21.5 deg. (TBR) 
 
Note: Above descriptions are specifications over the equator. 

 

2.2.6. Passive optical remote sensing data 

Optical remote sensing makes use of visible, near infrared and short-wave infrared sensors 

to form images of the earth's surface by detecting the solar radiation reflected from targets 

on the ground. Different materials reflect and absorb differently at different wavelengths. 

Thus, the targets can be differentiated by their spectral reflectance signatures in the 

remotely sensed images. Vegetation has a unique spectral signature which enables it to be 

distinguished readily from other types of land cover in an optical/near-infrared image. The 

reflectance is low in both the blue and red regions of the spectrum, due to absorption by 

chlorophyll for photosynthesis. It has a peak at the green region which gives rise to the 

green color of vegetation. In the near infrared (NIR) region, the reflectance is much higher 

than that in the visible band due to the cellular structure in the leaves. Hence, vegetation 

can be identified by the high NIR but generally low visible reflectance.  

In this research, available cloud free images of two multispectral remote sensing systems 

of Landsat-TM and spot5, from 2003 onwards (since GLAS data belongs to different 

mission periods and do not reflect a static moment in time), were selected and analyzed. 

The Landsat Thematic Mapper (TM) sensor was carried onboard Landsats 4 and 5 from 

July 1982 to May 2012 with a 16-day repeat cycle. It possesses seven spectral bands with a 
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spatial resolution of 30 meters for bands 1 to 5 and 7. Spatial resolution for Band 6 

(thermal infrared) is 120 meters, but is resampled to 30-meter pixels. For this study, four 

dates of cloud free orthorectified images of Landsat5-TM (Table 2.6), held in the USGS 

archives, were downloaded from EarthExplorer: http://earthexplorer.usgs.gov. 

SPOT-5 is the fifth satellite in the SPOT series of CNES (Space Agency of France) which 

was launched on May 2002 and its commercial mission was ended on 27 March 2015. On 

2 April 2015, an experimental phase for the mission, SPOT-5 (Take 5), involved the 

satellite being tasked in a new orbit (lowered by 3 km with 5 day repeat cycle). From that 

date, and for 5 months until the 15th of September, SPOT5 (Take 5) observed 150 sites 

every five days with constant observation angles. The data were processed and distributed 

at CNES. Cloud free orthorectified multispectral bands of SPOT 5-HRG acquired on April 

and June 2015 were downloaded from the website of Centre d'Etudes Spatiales de la 

BIOsphère (CESBIO) (http://www.cesbio.ups-tlse.fr) and employed in this research (Table 

2.6). Figure 2.8 shows a color composite of SPOT data over study area. 

 

Table 2.6. Landsat-TM and SPOT 5-HRG spectral bands and their resolutions 

Sensor Spectral bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Acquisition 

dates 

Landsat 5-TM 

Band 1 (Blue) 0.45-0.52 30 

04/10/2008 

08/11/2009 

04/06/2010 

29/12/2010 

Band 2 (Green) 0.52-0.60 30 

Band 3 (Red) 0.63-0.69 30 

Band 4 (Near-Infrared) 0.76-0.90 30 

Band 5 (Near-Infrared) 1.55-1.75 30 

Band 6 (Thermal) 10.40-12.50 120* (30) 

Band 7 (Mid-Infrared) 2.08-2.35 30 

SPOT-5 (take 5) 

HRG 

Band 1 (Green) 0.50-0.59 10 
15/04/2015 

20/04/2015 

19/06/2015 

24/06/2015 

Band 2 (Red) 0.61-0.68 10 

Band 3 (Near-Infrared) 0.78-0.89 10 

Band (Shortwave Infrared) 1.58-1.75 10 

* TM Band 6 was acquired at 120-meter resolution, but products are resampled to 30-meter 

pixels. 
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Fig. 2.8. Color composite of SPOT-5 images over study area. 

 

2.3. Data processing and information extraction 

2.3.1. Analysis of in situ data 

In situ measurements were carried out in two phases. Phase one includes 60 plots for 

developing GLAS height and volume models and their validation. It was intended to 

collect data in all elevation and slope classes, but it was not practical as a reason of lack of 

GLAS data or lack of forest cover in some elevation range, and also inaccessibility to some 

area. Phase two includes 32 plots to validate height maps produced from combination of 

remotely sensed and environmental data. Table 2.7 shows their conditions in terms of 

elevation and slope. 
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Table 2.7. Distribution of in situ plots in elevation and slope classes 

 Elevation (m) Slope (%) 

 < 200 1000-1500 1500-2000 <10 10-20 20-40 40-50 > 50 

Plots (phase 1) 3 19 38 6 11 19 12 12 

Plots (phase 2) 0 18 14 3 5 16 3 5 

 

Maximum canopy height was computed using equation: h= a[tan α–tan β]. As it was described 

in section 2.2.1, five top tall trees were measured in a small circle plot of 36 m diameter and 

five top tall trees in a co-center 70 m diameter circle plot but outer margin of small plot. So 

the tallest tree inside and outside of the small plot was called Hmax-in and Hmax-out, 

respectively. The tallest one among ten top trees was also selected and called Hmax-total. 

To calculate the height of all trees in each plot (in addition to 11 trees that were measured), 

a variety of non-linear models relating DBH to height, recommended in different studies 

were selected and tested (Table 2.8). These relationships were considered for four species 

as 1) Fagus orientalis, 2) Carpinus betulus, 3) Quercus castanifolia, 4) Alnus subcordata, 

and two groups of species (similar in shape and height) as Group1 included Tilia 

begonifolia, Acer velutinum, Acer cappadocicum, Sorbus torminalis and Fraxinus 

excelsior, and Group2 included Quercus macranthera, Carpinus orientalis, Parotia 

persica and Diospyros lotus. These six categories have been chosen based on six forest 

volume tables produced by Forests, Range & Watershed Management Organization 

(FRWO) for northern forests of Iran. To select the best regression model among a number 

of models, several most commonly used criteria such as adjusted coefficient of 

determination (R
2

a), Root Mean Square Error (RMSE) and Akaike Information Criterion 

(AIC) were evaluated (Burnham & Anderson, 2002). Besides statistical criteria, biological 

behavior of models was considered to select the best model. 
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Table 2.8. Non-linear height-diameter functions 

Model Reference 

% = 1.3 4 891 : ;<>.?@ABC Yang et al., 1978; Zhang, 1997; Peng et al., 2001 

% = 1.3 4 891 : ;<>.?@ACD Batista et al., 2001; Zhang, 1997 

% = 1.3 4 8$. ;E >?@AFDG Huang et al., 1992; Peng, 1999; Ahmadi et al., 2013 

% = 1.3 4 891 4 H<+IJ%9<DCC Ratkowsky & Reedy, 1986;  Huang et al., 1992 

% = 1.3 4 8. ;9<>.?@ABC Zhang, 1997; Ahmadi et al., 2013 

% = 1.3 4 8. IJ%>  Huang et al., 1992 ; Silva Scaranello et al., 2012; Osman et al., 2013 

% = 1.3 4 ; KF>?@AF+ Peng, 1999; Silva Scaranello et al., 2012 

% = 1.3 4 8. IJ% H 4 IJ%L  Fang & Bailey, 1998; Ahmadi et al., 2013 

% = 1.3 4 891 : ;<>.?@AC Huang et al., 1992 

% = 1.3 4 IJ%"
98 4 H. IJ%C" Huang et al., 1992; Silva Scaranello et al., 2012 

% = 1.3 4 8$. ; >?@A Peng, 1999; Petráš et al., 2014 

% = 1.3 4 10KIJ%>  Huang et al., 1992; Peng, 1999 

% = 1.3 4 8. IJ%9IJ% 4 1C 4 H. IJ% Huang et al., 1992; Peng, 1999 

% = 1.3 4 8 M IJ%9IJ% 4 1CN
>
 Huang et al., 1992 

% = 1.3 4 ;<KF>.?@AB Larsen & Hann, 1987; Wang & Hann, 1988; Colbert et al., 2002 

% = 1.3 4 891 : H. ;<D.?@AC Fang & Bailey, 1998; Batista et al., 2001 

% = 1.3 4 IJ%"
98 4 H. IJ% 4 O.IJ%"C Fang & Bailey, 1998; Peng, 1999 

% = 1.3 4 8. IJ%>.?@APB Huang et al., 1992; Fang & Bailey, 1998 

% = 1.3 4 891 : H. ;<D.?@ACQ Huang et al., 1992; Peng, 1999 
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Table 2.9 presents six best non-linear height-DBH models and their statistical 

performances developed for six groups of species mentioned above. Figure 2.9 shows the 

height curve depicted for the six height growth models. 

 

Table 2.9. Six selected non-linear height-DBH models and their statistical performance. Hmax and 

DBH stand for maximum height and diameter at breast height, respectively. 

Species Model 
Parameters RMSE 

(m) 
R

2
a 

a b 

Fagus orientalis %SKT = 1.3 4 891 : ;<>.?@AC 41.794 0.025 5.38 0.65 

Carpinus betulus %SKT = 1.3 4 8. IJ% H 4 IJ%L  33.039 14.772 3.90 0.48 

Quercus castanifolia %SKT = 1.3 4 891 : ;<>.?@AC 39.574 0.035 5.74 0.30 

Alnus subcordata %SKT = 1.3 4 891 : ;<>.?@AC 39.698 0.038 3.05 0.47 

Group1 %SKT = 1.3 4 IJ%" 98 4 H. IJ%C"L  2.053 0.143 5.24 0.63 

Group2 %SKT = 1.3 4 891 : ;<>.?@AC 13.263 0.025 2.79 0.44 

Group1: Tilia begonifolia, Acer velutinum, Acer cappadocicum, Sorbus torminalis and Fraxinus excelsior 

Group2: Quercus macranthera, Carpinus orientalis, Parotia persica and Diospyros lotus 
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Fig. 2.9. Tree’s Height vs. DBH and the best fitted line given in table 4-2; a) Fagus orientalis, b) 

Carpinus betulus, c) Quercus castanifolia, d) Alnus subcordata, e) Group1, and f) Group2 
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Next, the Lorey’s height was calculated using equation 2.3. Lorey’s height as a mean 

height of a stand weights the contribution of trees to the stand height by their basal area. 

Therefore, it is more stable than arithmetic height specifically in uneven-aged stands. 

UVWXYZ = [ \]^×_^`̂ab[ \]^`̂ab = [ c\_^d×_^`̂ab[ c\_^d`̂ab     (2.3) 

Where UVWXYZ, efg, heUg and Hi are Lorey’s height (m), basal area (cm
2
), diameter at 

breast height (cm), and height (m) of tree i, respectively, and n is total number of trees in 

each plot. 

Volume is usually expressed quantitatively as a function of DBH and height (Macauley et 

al., 2009; Namiranian, 2007). So the selected height-DBH relationships were next used to 

estimate the height of all trees. Local species level volume equations based on DBH and 

height developed by FRWO (Table 2.10) were also used to calculate per tree stem volume. 

 

Table 2.10. Six volume models and their parameters (produced by FRWO) 

Species Model 
Parameters 

A b c 

Fagus orientalis # = 98. IJ%" × %C 4 9H. IJ%"C 4 O 0.000026364 0.000342059 0.0405 

Carpinus betulus # = 89IJ%" × %C> 0.000023 1.0432  

Quercus castanifolia # = 89IJ%" × %C> 0.000058 0.9544  

Alnus subcordata # = 89IJ%" × %C> 0.000051 0.9595  

Group1 # = 89IJ%" × %C> 0.000056 0.9539  

Group2 # = 89IJ%" × %C> 0.000035 1.0058  

 

Table 2.11 summarizes statistics for 60 measured plots that were used for developing and 

validating the GLAS height and volume models. Moreover, distribution of number of trees 

(n/ha) and basal area (m
2
/ha) is seen in figure 2.10. The frequency distribution of the forest 

volume for 60 GLAS footprints is shown in figure 2.11. 

 

Table 2.11. Statistical summary of maximum height (Hmax), Lorey height (HLorey) and forest volume (V) 

for 60 in situ plots; Min., Max. and Avg. stands for minimum, maximum and average value, respectively. 

Number 

of plots 

Hmax (m) HLorey (m) V (m
3
/ha) 

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. 

60 5.3 52.3 36 5.1 36.2 27.4 0.69 996.56 457.44 
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Fig. 2.10. a) Distribution of number of trees per hectare (n/ha), b) forest volume (m
3
/ha) in 60 reference plots 

 

 

 

 

 

 

 

 

 

Fig. 2.11. Histogram of forest volume (m
3
/ha) for 60 reference plots 
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2.3.2. Extraction of terrain index, slope, aspect and elevation class maps from DEM 

Terrain Index (TI) was calculated at the location of lidar footprints using: 1) a fine 

resolution DEM10 produced based on 1:25000 topographic maps (called TI10), and 2) 

SRTM DEM with 90 meter resolution (called TI90). The elevation range within a 7×7 

neighborhood of 10m-DEM (Rosette et al., 2008a; Chen, 2010b) and 3×3 neighborhood of 

90m SRTM DEM (Baghdadi et al., 2014) at location of each GLAS footprint was 

considered as TI. The effect of using higher resolution DEM on model performance was 

also investigated. 

Terrain index, slope in degrees, aspect in nine classes (flat, north, north-east, east, south-

east, south, south-west, west and north-west) and elevation classification map in six classes 

( < 100, 100-300, 300-700, 700-1200, 1200-1600 and 1600 < ) were also produced using 

DEM10 for the entire study area. Figure 2.12 shows DEM10 and four extracted maps from it. 
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Fig. 2.12. Digital elevation model (DEM10) and four extracted maps 

(elevation and aspect are classified maps) 
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2.3.3. ICESat GLAS data processing and extraction of metrics 

2.3.3.1. Processing GLAS waveforms 

The GLA01 (Global Altimetry data) and GLA14 (Global Land Surface Altimetry data) 

data products were converted from binary to the ASCII format using IDLreadGLAS 

provided by NSIDC. Required information such as latitude, longitude, elevation, centroid 

elevation, and fitted Gaussian peaks were extracted from GLA14 data, and row waveforms 

were extracted from GLA01 data. The most important information derived from these 

products was summarized in table 2.12.  

ICESat/GLAS elevations are referenced to the TOPEX/Poseidon ellipsoid which is 70 cm 

smaller than WGS84 ellipsoid. For comparison between ICESat, SRTM DEM and in situ 

data, datasets needed to be available in the same coordinate system. So, GLAS elevations 

were transformed to the WGS84 ellipsoid by adding 70 cm. 

 

Table 2.12. The main information derived from GLA01 and GLA14 

# Flag product Description 

1 i_rec_ndx 
GLA01 

GLA14 

GLAS Record Index: GLAS is recording 40 waveforms per 

second; each 40-waveform bunch has a record index 

2 i_shot_ctr GLA01 Shot Counter 

3 i_rng_wf GLA01 The 1064 nm echo waveform digitizer sample output (0-255) 

4 i_lat GLA14 
The geodetic latitude of the forty laser spots in the 1 second time 

frame in  micro degree  

5 i_lon GLA14 
The longitude of the forty laser spots in the 1 second time frame 

in  micro degree 

6 i_elev GLA14 
Surface elevation with respect to the ellipsoid at the spot 

location determined in mm 

7 i_campaign GLA14 The campaign. i.e.: for campaign L3K, it will be “3K”. 

8 i_Gamp GLA14 Amplitude of each Gaussian solved for (up to six) in 0.01 volts 

9 i_Garea GLA14 
Area under each of the Gaussians solved for (up to six) in 0.01 

volts × ns 

10 i_Gsigma GLA14 Width (sigma) of each Gaussian solved for (up to six) in 0.001ns 

11 i_satNdx GLA14 
The count of the number of gates in a waveform which have an 

amplitude greater than or equal to saturation index threshold 

12 i_FRir_qaFlag GLA14 
Indicates the presence of clouds (0-15); 15 = no cloud, 14=likely 

presence of low clouds, etc. 

13 i_4nsBgMean GLA01 Background Noise Mean Value in 0.01 counts 

14 i_4nsBgSDEV GLA01 The standard deviation of the background noise in 0.01 counts 

15 i_maxRecAmp GLA14 Maximum Amplitude of the Received Echo 
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Some pre-processes were applied to remove inappropriate and useless waveforms (Chen, 

2010b; Hilbert & Schmullius, 2012; Baghdadi et al., 2014): 

1- Eliminating waveforms affected by cloud; Flag i_FRir_qaFlag in GLA14 data indicates 

the estimated atmospheric conditions over each GLAS footprint using a cloud detection 

algorithm. To do this, waveforms with i_FRir_qaFlag=15 were kept and the rest were 

removed (Chen, 2010b; Duncanson, 2010). 

2- Eliminating saturated waveforms; i_satNdx in GLA14 presents the count of the number 

of gates in a waveform which have an amplitude greater than or equal to saturation index 

threshold (i_satNdxTh). So only waveforms with i_satNdx=0 were used for analysis in this 

study (Chen, 2010b; Hilbert & Schmullius, 2012).  

3- Removing noisy waveforms with a signal to noise ratio (SNR) lower than 15 

(Baghdadi et al., 2014); To calculate SNR, maximum energy of samples from GLA01 

(i_maxRecAmp) was divided to standard deviation of the background 

noise (i_4nsBgSDEV) recorded in GLA14 data.  

4- Removing waveforms in which difference between centroid elevation (i_elev from 

GLA14) and corresponding SRTM DEM is greater than 100 meters (׀ICESat – SRTM100<׀) 

(Baghdadi et al., 2014). 

 

2.3.3.2. Waveform metrics extraction 

GLAS provides a full waveform of illuminated objects on the surface. Each waveform is a 

function of vertical structure of illuminated surface and their reflection properties within 

the footprint. Figure 2.13 illustrates a schematic of transmitted pulses over a vegetated area 

and a returned waveform. As mentioned before, 544 or 1000 bins (1 bin= 1 ns=15 cm) is 

recorded for each received waveform. Signal start and end are defined as first and last bins 

in the waveform where the waveform intensity exceeds background noise threshold, nσ+μ, 

where σ and μ recorded in GLA01 product are standard deviation and mean background 

noise respectively, and n=0.5,1,…,5. Different thresholds including 3σ+μ (Sun et al., 

2008), 4σ+μ (Lefsky et al., 2005), 4.5σ+μ (Baghdadi et al., 2014; Lefsky et al., 2007; Lee 

et al., 2011) were applied in previous studies. Chen (2010b) tested different thresholds for 

signal start and end for each three sites from 2.5σ+μ to 5σ+μ. He found that the value of n 

for optimal threshold is 3.5 for signal start and 5 for signal end. Therefore, an average 

value of 4.5 was used in this study. Hilbert & Schmullius (2012) stated that the optimal 

thresholds might differ according to the waveform types, laser periods or footprint 

structure. In this research the threshold was set to 4.5σ+μ, the optimum threshold used in 

the most studies.  

The vertical distance between signal start and signal end of a waveform was computed as 



 36                                                    Investigating the possibility of forest height/volume estimation using … 

 

waveform extent (Wext) which could be affected by terrain slope, canopy height and 

canopy density (Yang et al., 2011).  

To identify ground peak as an important feature of waveforms to extract maximum height 

over flat area (defined as vertical difference between signal start and ground peak) or 

derive some metrics in waveforms, Gaussian components (up to 6 peaks) are fitted to the 

row waveform (Brenner et al., 2003). Duong et al. (2009), Sun et al. (2008) and Xing et al. 

(2010) have considered the last peak as ground peak. But in dense vegetated area, ground 

peak may have lower amplitude than adjacent peaks. In this case, it was suggested to 

consider the peak with highest amplitude as the ground peak even if it is not the last peak 

(Boudreau et al., 2008). Rosette el al. (2008b) considered the centroid of the Gaussian 

peak with greatest amplitude out of the last two peaks as ground surface. Hilbert & 

Schmullius (2012) applied two approaches to find the ground return; the first was the 

maximum of the last two Gaussian peaks of a waveform, and the second approach was 

identifying ground return based on local maxima within the GLA01 waveform. They found 

both approaches represented the terrain accurately and could be used as basis to calculate 

the tree height. However the usage of the original waveform (GLA01) is more flexible and 

meets the ground return more precisely. Chen (2010b) found the stronger peak of the two 

last one is a better representative of the ground elevation in the studied coniferous site, 

whereas for the studied woodland site the strongest peak of the five last peaks matched 

well with the ground elevation. Iqbal (2010) detected the peak with maximum amplitude 

between signal start and end of a waveform. Then by moving from this point to the signal 

end, the peak with amplitude one-fifth the maximum amplitude was considered as ground 

return. If this condition was not met, the peak with maximum amplitude was assigned as 

ground return. In the current research, we followed last achievements (Baghdadi et al., 

2014; Fayad et al., 2014; Rosette et al., 2008a; Chen, 2010b) and we chose the stronger 

one among two last Gaussian peaks as ground peak. The first Gaussian peak was selected 

as canopy top. The distance between ground peak and signal start has been defined as 

maximum canopy height in flat area. The vertical distance from ground peak to signal end 

and from canopy top to signal start was considered as trail edge and lead edge extents, 

respectively (Baghdadi et al., 2014; Yang et al., 2011). H25, H50, H75 and H100 as quartile 

heights have been extracted from waveforms by calculating the vertical distance between 

ground peak and position of waveform at which respectively 25%, 50%, 75% and 100% of 

the returned energy between signal start and end occurs (Nelson et al., 2009; Sun et al., 

2008). So the total waveform energy was calculated by summing all the return energies 

from signal start to end. Starting from the signal end, the position of the 25%, 50%, and 

75% of energy were located by comparing the accumulated energy with total energy. H100 
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is the maximum canopy height as defined above. Figure 2.14 illustrates a GLAS waveform 

from study area with Gaussian peaks and some extracted metrics. The metrics extracted 

from GLAS waveforms and their derivatives, used in this research, are listed in table 2.13. 

 

 

 

 

 

 

   

 

 

 

Fig. 2.13. Schematic of laser altimeter pulse spreading over a vegetated area, and a returned 

waveform (NASA, 2015) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14. GLAS waveform and some metrics over a terrain of 25% slope in the study area. 1ns 

corresponds to 15cm sampling distance in waveform. 
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Table 2.13. Definition of metrics extracted from GLAS waveforms 

Metrics Definition 

Wext
n
 , ln(Wext), exp (Wext) 

Hlead
n
, ln(Hlead), exp (Hlead) 

Htrail
n
, ln(Htrail), exp (Htrail) 

H25
n
, ln(H25), exp (H25) 

H50
n
, ln(H50), exp (H50) 

H75
n
, ln(H75), exp (H75) 

H100
n
, ln(H100), exp (H100) 

Waveform extent 

Height of lead edge extent 

Height of trail edge extent 

Height at which 25% of the returned energy occurs 

Height at which 50% of the returned energy occurs 

Height at which 75% of the returned energy occurs 

Height at which 100% of the returned energy occurs 

ln: natural logarithm (the logarithm to the base e=2.718), power n=0, 0.5, …, 3 

 

Over mountainous areas with large relief and complex terrain, the peaks from ground and 

surface objects can be broadened and signals returned from ground and vegetation be 

mixed. It makes that difficult to identify the ground elevation, and subsequently calculation 

of metrics which are dependent on the ground location (Chen, 2010b; Lefsky et al., 2005; 

Zwally et al., 2002; Lee et al., 2011). To clarify, the two most commonly used height 

metrics to infer vegetation height from lidar are waveform extent (vertical distance 

between signal start and end) and H100 (vertical distance between signal start and ground 

peak) (Fig. 2.15a). These metrics would be influenced by different factors such as surface 

topography, footprint size, forest density and laser pulse energy. 

Over flat area H100 equals to the canopy height (H), but over sloped terrain it may increase 

to “H + d×tanθ” (Lee et al., 2011) where d is lidar footprint diameter and θ is the slope 

angle (Fig. 2.15b). Broadening effect of terrain slope on waveform extent and also 

Gaussian peaks have been illustrated also in figure 2.15 (b,c,d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Materials and Data Processing                                                                                                       39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15. a) A schematic illustration of lidar derived vegetation height (H), H100, and waveform 

extent (Wext) for one waveform over flat terrain (solid line) and another over sloped terrain (dash 

line) (Lee et al., 2011). b) Impact of slope on lidar height retrieval (Lee et al., 2011). c,d) A 

schematic of footprint located over flat (left) and sloped (right) vegetated terrain, respectively. 

 

In addition to deterministic heuristics (user defined metrics), a non-parametric statistical 

technique named principal component analysis (PCA) was used to remove noises and 

reduce dimensionality of waveform signals. 

In short, PCA finds a set of synthetic variables (the principal components) that summarizes 

the original set. It rotates the axis of variation to give a new set of ordered orthogonal axis 

that summarizes describing proportions of the variations. In fact, the principal components 

(PCs) are uncorrelated and ordered such that the k
th

 PC has the k
th

 largest variance among 

all PCs (Ulfarsson, 2007). The traditional approach is to use the first few PCs in data 

analysis since they have most of the variation in the original data set.  

In this study, lidar signal intensities were used for the PCA analysis. In order to apply 

PCA, it is necessary to have equal number of samples in all waveforms. So, the length of 

largest waveform extent was considered as basis (400 samples) and other waveforms were 

apart from signal start toward signal end till the number of samples reach the base Wext 
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samples. Since the number of observations (60) is less than the number of samples in the 

useful part of waveforms (400 samples), it was aimed to reduce the number of samples by 

selecting one among each ten samples. So PCA was performed using 41 samples as 

variables using package “FactoMineR” in R (Husson, et al., 2015) to find the main factors 

(waveform signals) determining most effects on forest canopy height. This procedure of 

data reduction was also used by Fayad et al. (2014) to estimate canopy height using ICESat 

GLAS data. As it is seen in figure 2.16, three first components had the most information, 

and explained 77.5% of variance in the data.  

 

 

 

 

 

 

 

 

Fig. 2.16. Information explained by ten first PCs and other PCs 

 

 

In overall, two sets of metrics were extracted from waveform; one, deterministic heuristics 

representing vertical distance between different positions of waveform and ground peak 

(represented in Table 2.13), and one non-parametric metrics including principal 

components produced from PCA. In this dissertation, these metrics are addressed as 

“waveform metrics” and “PCs”, respectively, however PCs are also metrics derived from 

waveforms. 

2.3.4. PALSAR data processing and extraction of metrics 

PALSAR mosaic data which were used in this study have been processed by JAXA using a 

long mosaicking algorithm described by Shimada & Ohtaki (2010). It includes 

orthorectification, slope correction and intensity tuning between neighboring strips. 

Absolute radiometric calibration were performed to drive sigma naught and gamma naught 

(backscatter coefficient) from each polarization of PALSAR mosaic data (HH and HV), 

using equations 2.4 and 2.5 (Shimada & Ohtaki, 2010; Mermoz et al., 2014). Equations 2.6 

and 2.7 were also used to convert them to the linear scale. 
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iQ@ = $10$ × jkl+m9In"C 4 $op!
       !

(2.4) 

qQ@ =$iQ@ 4 10$ × jkl+m9rstuC 
                     

(2.5) 

iv =$109wxy +mL C                                       (2.6) 

qv =$iv × rst u 

                                         

(2.7) 

Where iQ@ and qQ@ stands for gamma and sigma naught in dB, respectively. ij and qv 
stands for gamma and sigma in linear scale, respectively. The θ is local incidence angle, 

DN stands for digital number which is pixel intensity value and CF is constant calibration 

factor equal to -83 dB. 

Speckle noise as defined by Gagnon & Jouan (1997), is a common phenomenon in all 

coherent imaging systems like laser and SAR imagery. The source of this noise is 

attributed to random interference between the coherent returns issued from the numerous 

scatters present on a surface, on the scale of a cell resolution. Speckle noise is often an 

undesirable effect, and so, speckle filtering turns out to be a critical pre-processing step for 

detection/classification optimization. There are many speckle reduction techniques. In this 

study “LEE” as a widely used filter and then “multitemporal” filter (four dates, 2007 to 

2010, at HH and HV polarizations) were applied on the data to reduce speckle effects 

(Attarchi & Gloaguen, 2014; Mermoz et al., 2014). A 5 by 5 window was used for 

performing LEE filter on qv and ij in “nest” software. Then multitemporal filter was 

performed on four images from 2007-2010. Quantitatively the distribution of the 

backscatter of a homogenous area is reduced significantly after these filters. An illustration 

of speckle reduction is shown in figure 2.17a,b. The histogram of a forested area before 

and after filter is seen in figure 2.17c. The standard deviation of the backscatter coefficient 

(here gamma naught which is shown by “γ˚” hereinafter) is decreased from 1.42 to 0.44 

decibel.  
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Fig. 2.17. Gamma naught (γ˚=γdB) before (a) and after (b) LEE and multitemporal filters, and the 

histogram of backscatters over a forested area (green rectangle) (c) before (blue) and after (red) 

noise reduction. The standard deviation of γ˚ decreases from 1.42 to 0.44 db. 

 

Image texture which is defined as variation of image tones that are related to the spatial 

distribution of forest vegetation (Roberts et al., 2007) has proved to be capable of 

identifying different aspects of forest stand structure. Kayitakire et al. (2006) showed that 

textural indices derived from a Grey-level co-occurrence matrices (GLCM) of an 

IKONOS-2 image are well correlated to the forest structural variables such as age, crown 

circumference, tree height, stand density and basal area. Nichol & Sarker (2011) and 

Attarchi & Gloaguen (2014) resulted in heterogeneous forests, texture measures are more 

sensitive to the canopy structure than spectral reflectance, and are more correlated to forest 

AGB. Trinder et al. (2013) also indicated that the textural-based models are significantly 

more efficient than spectral-based models for predicting lidar metrics. The texture 

measures are able to identify significant differences in image texture independently of 

image contrast (i.e. backscatter). It also increases the saturation threshold and the biomass 

range that can be measured (Kuplich et al., 2005; Sarker et al., 2012, Cutler et al., 2012).  
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Hence, in this study GLCM measures were derived from both HH and HV polarization. 

The GLCM characterizes the texture of an image by calculating how often pairs of pixel 

with specific values and in a specified spatial relationship occur in an image and then 

statistical measures are extracted from this matrix. Eight GLCM indices such as mean, 

variance, homogeneity, contrast, dissimilarity, second moment, entropy and correlation 

were calculated from this matrix. A window size of 3×3, 5×5, 7×7, 9×9 and 11×11 pixels 

with horizontal and vertical offset of one was used for extraction of texture indices. 

However texture characterization is influenced by window size, it is not easy to select a 

superior window because an optimal window depends on different characteristics of forest 

and GLCM attributes are affected by the window size in different ways (Ouma & Tateishi, 

2006; Trinder et al., 2013). Consequently, the mean value of each feature from 

multitemporal data (from 2007 to 2010) was calculated and used. In order to match 

PALSAR data, optical images and DEM spatially, the produced maps or indices were 

resampled to 10 m resolution. Figure 2.18 shows mean values of multitemporal data for 

eight statistical texture features extracted from HH band using GLCM algorithm. As it is 

seen, variation of “contrast” and “variance” over study area is low. There is no or very low 

correlation between canopy height/volume and most extracted features at the location of in 

situ plots. The “mean” and “correlation” showed highest correlation with canopy 

height/volume. Despite of low correlation of these features with considered parameters, 

individually, combination of these measures with other variables (extracted from other 

sources of data) will be considered in the height estimation. 
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2.3.5. Optical data (Landsat-TM, SPOT-5) and extraction of vegetation and texture indices  

Several studies have shown relationship between forest structure and vegetation indices. 

Freitas et al. (2005) evaluated relationships between forest structure (frequency of 

multiple-stemmed trees, density of trees, mean and range of tree diameter, mean and range 

of tree height and average of basal area) and vegetation indices including NDVI 

(normalized difference vegetation index) and MVI (moisture vegetation index) extracted 

from Landsat7-ETM+ images in Atlantic rainforest fragments, in southeastern Brazil. They 

resulted that MVI outperformed in dense humid forests, whereas NDVI is a good indicator 

of green biomass in deciduous and dry forests. They observed a weaker saturation effect 

and a higher sensitivity to MVI rather than NDVI over dense canopies in the Atlantic 

rainforest. Pascual et al. (2010) have reported high correlation between NDVI and MVI 

extracted from Landsat-ETM+ and mean and median lidar derived heights (R > 0.6) in 

pine forests of the Fuenfria Valley in central Spain. Nichol & Sarker (2011) estimated 

forest biomass based on simple ratio vegetation index (RVI) derived from AVNIR-2 and 

SPOT-5 with R
2
 of 0.59 and 0.39, respectively. They observed a significant improvement 

in biomass estimation with an R
2
 of 0.739 obtained from the combined use of RVI of both 

sensors. 

In this study three vegetation indices including NDVI, MVI and RVI were extracted from 

Landsat-TM and SPOT5 multispectral bands (Equations 2.8 to 2.10).  

zh{| = $ 9z|R : RC 9z|R 4 RCL  (2.8) 

}{| = $ 9z|R : }|RC 9z|R 4 }|RCL  (2.9) 

R{| = $z|R R~�L  (2.10) 

Several other maps were also produced using multitemporal data of vegetation indices after 

resampling TM derived indices to 10 m resolution: 1) minimum, maximum and mean 

values of NDVIs, MVIs and RVIs (So-called min-ndvi, max-ndvi, mean-ndvi, etc.), and 

also mean-summer and mean-winter values of each index; 2) eight statistical features 

including “mean”, “variance”, “homogeneity”, “contrast”, “dissimilarity”, “second 

moment”, “entropy” and “correlation” derived from GLCM texture analysis on mean 

NDVI map using 3×3, 5×5, 7×7, 9×9 and 11×11 window size. Figures 2.16 shows mean 

NDVI and eight texture features derived from it using GLCM algorithm, respectively. In 

contrast to the texture features extracted from PALSAR data, almost all texture features 

from NDVI have moderate to good correlation with forest canopy height/volume. 

Correlation between “mean” and Lorey’s height, for instance, was 0.68. The “correlation” 

is the only feature not correlated with Hmax and HLorey. As it is seen in the figure 2.19, the 

variation of “correlation” values over forested area is very low. 
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3. Research methodology 

According to the objectives of this research, the entire process was illustrated in two 

flowcharts. The flowchart of forest canopy height and volume estimation using GLAS is 

displayed in figure 3.1 Gray boxes show origin input data, simple white boxes present data 

preparation processes and dot boxes indicate outputs. Solid lines and arrows indicate 

intermediate phases of data processing, dot arrows represent forest biophysical parameters 

(Hmax, HLorey and Volume) and predictor variables entered in the regressions and finally 

dashed arrows address final outputs. In the presented flowchart, two general parts are 

observed; collection of in situ measurement and the related calculations, and GLAS data 

processing and analysis.  

Figure 3.2 shows the process of producing forest canopy height map using combination of 

GLAS, PALSAR, optical images and environmental data. In this flowchart also, gray 

boxes show input data, simple white boxes present data preparation processes and dot 

boxes indicate outputs. More details are described in the following sections of this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Overview of forest canopy height and volume estimation using GLAS data 
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Fig. 3.2. Overview of forest canopy height map using combination of GLAS, PALSAR, optical 

images and environmental data 

 

3.1. Estimation of maximum (Hmax) and Lorey’s heights (HLorey) using ICESat GLAS 

3.1.1. Direct method for estimating Hmax 

Over flat area, estimation of maximum canopy height (Hmax) is based on vertical difference 

between the waveform signal start (Ss) and the ground peak (Gp) (Neuenschwander et al., 

2008; Chen, 2010b), and it is calculated using equation 3.1. Vertical resolution of 

waveforms is 15 cm for GLAS data (Harding & Carabajal, 2005).  

U�!�9��$�C = $ 9��$ : $�tC × 0.15  (3.1) 

As it was described in section 2.3.3.2, over non-flat terrain the width of waveform and 

Gaussian peaks increases by effect of surface roughness. So the distance between signal 

start and ground peak will not represent the canopy height. 
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3.1.2. Parametric and non-parametric methods for prediction Hmax and HLorey 

Over sloped terrain, peaks from ground and surface objects can be broadened and mixed, 

making identification of ground peak difficult (Lefsky et al., 2005; Pang et al., 2008; 

Chen, 2010b). Hence it is necessary to find a way to decrease slope impact on waveform. 

Lefsky et al. (2005) and Chen (2010b) used DEM to include topography effects on height 

estimations. Some researchers derived terrain information from the waveform itself based on 

metrics such as leading and trailing edge extent (Hlead and Htrail, respectively). Lefsky et al., 

2007 and Pang et al., 2008 used multiple transforms of the leading and trailing edge extents 

to model the Hlead and Htrail correction factor. In the next step, height correction factor (cf), 

defined as difference between waveform extent (Wext) and mean tree height (Hmean), was 

regressed against Hlead and Htrail correction factor. Then it was used to estimate mean tree 

height (Hmean = Wext - cf). In present research, Terrain Index (TI) extracted from two sources 

of DEM (section 2.3.2) was entered as a predictor to consider the topography condition in 

the models. The effect of using finer resolution DEM (DEM10 in replace of DEM90) on 

performance of models was also investigated. 

A large number of multiple linear regression (MLR), Random Forest (RF) and Artificial 

Neural Network (ANN) models were developed in R, employing different combination of 

metrics extracted from waveforms (“waveform metrics” and “PCs”) and also TI. 

Random forests, as an ensemble learning method developed by Breiman in 2001, operate 

by constructing a multitude of regression trees (Breiman, 1994). Each tree in the forest is 

made of a random subset of observations with replacement and also a random of 

explanatory variables. So, two important parameters in random forest are the number of 

trees in the forest and the number of variables in the random subset at each node of tree. 

Prediction of new set of data for regression application would be the average prediction of 

all trees (Breiman, 2001; Liaw & Wiener, 2002). Therefore, the random forests algorithm 

(for both classification and regression) contains following steps:  

1. Draw ntree bootstrap samples from the original data. 

2. For each of the bootstrap samples, grow an unpruned classification or regression tree. So 

that at each node, the best split is chosen among randomly selected variables. 

3. Predict new data by aggregating the predictions of the ntree trees (i.e., majority votes for 

classification, average for regression). 

Figure 3.3 illustrates a schematic figure explaining how random forest works. 
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Fig. 3.3. A schematic of random forest regression 

 

Through random sampling of observations, about one-third of them are not used for any 

individual tree that is called out of the bag, “OOB”, for that tree. The accuracy of a random 

forest’s prediction can be estimated from these OOB data (Breiman, 2001, Grömping, 

2009). It would be possible to calculate variable importance by determining how much 

worse would be the OOB predictions, if the data for that variable are randomly permuted 

(Liaw & Wiener, 2002; Wei et al., 2010). In fact, it would be possible to find out what 

would happen with or without the help of that variable. Variable importance measures 

produced by RF can also sometimes be useful to build simpler model. One warning about 

RF is that they are dependent on the training set. If the training set is not actually 

representing the population, it is supposed to obtain inaccurate predictions for values out of 

training set (Horning, 2010). RF regressions were developed using different combination 

of predictors (“waveform metrics” and “PCs”) utilizing “randomForest” package by Liaw 

& Wiener, 2014 in R.  
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Artificial neural networks are able to perform nonlinear modeling without a prior 

knowledge about the relationships between input and output variables. It is also a non-

parametric and black-box model. Thus they are a more general and flexible modeling tool 

for forecasting.  

A variety of neural network structures have been developed. In this research a Multilayer 

perceptron (MLP) as the most popular type of neural networks belong to a general class of 

structures called “feedforward” have been used. An MLP is composed of several layers of 

neurons (nodes); the first layer “input layer” for distributing the data into network, the last 

one “output layer” for extraction the result of the network, and remaining layers between 

input and output are called hidden layers. There are complete connections between neurons 

in successive layers. Each neuron, except input layer neurons, is obtained by computing 

weighted sum of previous layer neurons and applying an activation function. Figure 3.4 

shows a MLP neural network consisting one hidden layer. 

It utilizes a learning technique called backpropagation for training the network. This kind 

of ANN is based on supervised learning. The idea of backpropagation algorithm is that 

output of neural network is evaluated against desired output. If results are not satisfactory, 

weights between layers are modified and process is repeated until error is small enough. 

The answer that emerges from a neural network’s weights can be difficult to understand 

and the network’s training can take longer than certain other methods of machine learning 

such as random forests. 

 

 

 

 

 

 

 

Fig. 3.4. A schematic of MLP neural network 

 

Generally, an MLP is characterized by the number of hidden layers, hidden neurons, output 

neurons and transfer functions. An MLP combined of one input layer, one output layer and 

one or more hidden layers. In theory a hidden layer with sufficient number of hidden 

neurons is capable of approximating any continuous function (Kaastra & Boyd, 1996; 
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Zhang et al., 1998). The number of neurons in input layer equals to the number of variables, 

and in output layer depends on the application (usually one output neuron for regressions). 

There is no formula for setting an optimum number of hidden neurons. Katz (1992) indicated 

that optimum number of hidden neurons is between one-third and two or three times the 

number of input neurons. Bailey & Thompson (1990) suggested that the number of hidden 

neurons for a three layer ANN should be 75% of the number of input neurons.  

The relationship between input and output of a neuron or network is determined by an 

activation function. There are a number of common activation functions in use with ANN 

including “Linear”, “Gaussian”, “Sigmoid”, “Hyperbolic tangent” etc. Selection of 

activation function is arbitrary and is usually determined by response variable (Günther & 

Fritsch, 2010). In this research the hyperbolic tangent and linear function were used as 

activation function, respectively in hidden and output layers. A numerous ANN models 

were developed using different combination of input variables (“waveform metrics” and 

“PCs”), and different number of hidden layers and neurons. The models were developed in 

R using “monmlp” package (Cannon, 2012). 

As mentioned, the idea of using terrain index and edge extents came to remove the 

broadening effects of sloped terrain. It was questioned if other waveform metrics could 

improve the result. The selection of predictors (metrics) was initially based on the 

experience and knowledge about impact of extracted metrics on the forest height 

(regarding to the literatures). A stepwise regression was also used to select the best 

combination of predictors. It combines backward elimination and forward selection to 

reach the best combination of metrics based on AIC criteria. The selected metrics were 

employed in MLR, RF and ANN models. However numerous models were built using 

waveform metrics and PCS, a few MLR models developed using waveform metrics were 

presented in table 3.1 as instance. 
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Table 3.1. Some MLR models fitted based on waveform metrics   

# model reference 

1 HE = aWext – bTI Lefsky et al., 2005 

2 HE = aWext – bTI – c  

3 HE = aLn(Wext) – bTI – c Xing et al., 2010 

4 HE = aWext – b(Hlead + Htrail) Chen, 2010b 

5 HE = aWext – bHlead – cHtrail – d Baghdadi et al., 2014 

6 HE = aWext – bHtrail Baghdadi et al., 2014 

7 HE = aWext – bHtrail – c Baghdadi et al., 2014 

8 HE = aWext – bHlead  

9 HE = aWext – bHlead – c  

10 HE = aWext – bTI + cHlead – d  

11 HE = aWext –  bTI – cHtrail – d  

12 HE = aWext – bTI – cHtrail Baghdadi et al., 2014 

13 HE = aWext – bTI + cHlead – dHtrail  

14 HE = aWext – bTI + cHlead – dHtrail – e  

15 HE = aWext – bTI + cHlead – dHtrail + eH50 + f  

16 HE = aWext + bTI + cH50   

17 HE = aWext + bTI + cH50 + d   

18 HE = aWext – bTI + cH50 – dH75 + eH100 + f  

19 HE = a.Wext
(2.5)

 + b.Wext
(1.5)

 + cTI
(1.5)

 + d.Ln(H50) + e  

20 
HE = b.Wext

(2)
+b.Wext

(1.5)
 + cTI + dHtrail + eH50 + fH75 + gH100 

+ h.H75
(1.5)

 + i.H75
(2.5)

+ j 

 

HE: Estimated height (maximum or Lorey’s height); a,b,c,d,e,f,g,h and i are coefficients; TI: 
terrain index. Other metrics were presented in table 2,8. 

 

3.2. Forest volume estimation using ICESat GLAS 

Two methods were applied to estimate forest volume. The first method consists of three 

steps: 1) developing volume-Hmax and volume-HLorey relationships. The stronger one was 

chosen to estimate volume next. The common volume-height relationship (Equation 3.2) 

used in different literatures (Baghdadi et al., 2014; Lefsky et al., 2005; Saatchi et al., 2011; 

Mitchard et al., 2012; Healey et al., 2012), was calibrated based on collected in situ data; 

2) estimating height from GLAS data using best model resulted from subsection 3.1.2. It 

should be mentioned that if volume-HLorey relationship is chosen at the first step, Lorey’s 

height would be estimated form lidar data; and 3) estimating forest volume (V) using 

chosen volume-height relationship. This method has been used in several studies 

(Baghdadi et al., 2014; Lefsky et al., 2005; Mitchard et al., 2012; Healey et al., 2012):  
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           { = �. U�                               (3.2) 

Where V is volume in m
3
/ha and H is Hmax or HLorey in m. 

The second method estimates forest volume directly from GLAS waveforms (Duncanson, 

2009; Zhifeng et al., 2010; Nelson et al., 2009; Hayashi et al., 2015). In fact, a large 

number of MLR, RF and ANN regressions were developed based on waveform metrics, 

and PCs to predict forest volume. 

 

3.3. Model Validation 

A Cross validation allows models to be tested using the full training set by means of 

repeated resampling; thus, maximizing the total number of points used for testing and 

potentially, helping to protect against overfitting (Rao et al., 2008). In a k-fold cross 

validation, the dataset is randomly split into k subsets, and each fold uses one of the k 

subsets as test and the remaining data for training. This process is then repeated k times 

(the folds), with each of the k subsamples used exactly once as the validation data. 

The k results from the folds can then be averaged (or otherwise combined) to produce a 

single estimation (Fig. 3.5). In this study, based on a 5-fold cross validation, 80 percent of 

observations were iteratively used for building the models and the remained 20 percent 

were used for validation. It is worth to note that in RF, as OOB estimate of the error rate is 

an unbiased estimate of the generalization error, it is not necessary to test the predictive 

ability of the model using a cross validation procedure (Breiman, 2001). However, in 

accordance with MLR and ANN and for a more reliable comparison, a 5-fold cross 

validation was performed. A number of statistics was calculated between predicted 

parameter from GLAS data (maximum height, Lorey’s height or volume) and 

correspondent in situ measurements. Adjusted coefficient of determination (R
2

a) as an 

indicator of the fit quality (Cameron & Windmeijer, 1995), Root Mean Square Error 

(RMSE) as a measure of accuracy (Lee et al., 2011), Mean Absolute Error (MAE) as a 

measure of dispersion (Chai & Draxler, 2014; Willmott & Matsuura, 2005), Mean 

Absolute Percentage Error (MAPE) as an expression of accuracy in percentage 

(Makridakis & Hibon, 1995; Hyndman & Koehler, 2005), and Akaike Information 

Criterion (AIC) as a means for model selection by trading-off between the goodness of fit 

of the model and the complexity of the model (Burnham & Anderson, 2002) were used to 

evaluate the result of predictions. The significance of all models was also tested 

statistically. All above mentioned statistics were presented in equations 3.3 to 3.7. 
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Fig. 3.5. Schematic diagram of a 5-fold cross validation 

 

 

(3.3) ���� = �[ �%� :%���"���+ �  

(3.4) �K" = �" : �� × 91 : �"C� : � : 1 �$$$$$$$$$$�" = 1 : [ �%� :%���"���+[ 9%� :%�C"���+  

(3.5) ��� = [ �%� :%������+ �  

(3.6) ���� = 1����%� :%���%� ��
��+

× 100 

(3.7) ��o = 2  4 �¡¢�$9���£�C¤ 
 

Where �": determination coefficient, n: number of observations, %�: in situ height for the 

plot i, %��: estimated height for the plot i, %�: mean in situ height,  : number of predictors in 

the model, ���: residual sum of squares for the fitted model. 

 

3.4. Production of canopy height map and its validation 

Since GLAS data does not provide continues coverage of the study area, other sources of 

remotely sensed data were employed to produce a wall to wall height map. Two strategies 

were used to produce canopy height map. The first one provides a height map based on 

regression model regardless spatial correlation between the canopy heights. The second 

one is regression-kriging, a spatial prediction technique that combines a regression of the 

dependent variable on some predictors with kriging of the regression residuals. The 

resulted maps were validated using 32 in situ plots dispread over part of study area, 

accidently. 
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3.4.1. Canopy height map using regression model 

Following steps describe the procedure of canopy height map production using regression 

model: 

1) Applying GLAS height model on all GLAS data: 

Since canopy height models were built and validated using 60 GLAS waveforms (called 

GLAS height models hereinafter), the best maximum height and Lorey’s height models 

were employed to estimate these heights at the location of all GLAS footprints over the 

study area (450 footprints). 

2) Developing height model using GLAS heights as reference data and indices extracted 

from other remote sensing (radar and optical images) and environmental data: 

As it was mentioned before, to match all indices extracted from PALSAR and optical 

images (TM and SPOT) and also DEM-extracted variables spatially, they were resampled 

to 10 m resolution. Since the average size of GLAS footprints is 70 meter in diameter, 

mean value of all indices in a 7 by 7 window at the center of GLAS footprints were 

calculated (mode value for categorical variables). Multiple linear regression (MLR) and 

Random Forest regression (RF) was used to develop canopy height models which is called 

second height model hereinafter). For developing MLR models, the most correlated indices 

were entered in a stepwise regression. Selection of indices for RF models was based on 

both stepwise regression and importance degree of indices. The main advantage of random 

forest is its incorporation of continuous or qualitative predictors without making 

assumptions about their statistical distribution or covariance structure (Breiman, 2001). 

3) Selection of best second height model based on statistical criteria through cross 

validation described in section 3.3. 

4) Applying the best second height model (For both Hmax and HLorey) on the study area and 

producing maximum and Lorey’s height map. 

 

3.4.2. Canopy height map using regression-kriging method 

Kriging is an advanced geostatistical procedure of interpolation that generates an estimated 

surface from a scattered set of points with z-values. Kriging assumes that the distance or 

direction between sample points reflects a spatial correlation that can be used to explain 

variation in the surface. It is a multistep process which includes exploratory statistical 

analysis of the data, variogram modeling, creating the surface, and (optionally) exploring a 

variance surface (Goovaerts, 1997). 

Kriging weights the surrounding measured values to derive a prediction for an unmeasured 
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location. The general formula is formed as a weighted sum of the data (Equation 3.8): 

            

            ¥9�mC = $[ ¦�§9��C���+                                   (3.8) 

 

z(Si): the measured value at the i
th

 location, z(S0): predicted value at prediction location S0, 

n: the number of measured values and λi: an unknown weight for the measured value at the 

i
th

 location. In ordinary kriging which is used in this study, λi depends on a fitted model to 

the measured points (the fitted semivariogram function), the distance between the 

measured points and the prediction location and also the overall spatial arrangement of the 

measured points. 

Regression-kriging involves spatially interpolating the residuals from a non-spatial model 

using kriging, and adding the results to the prediction obtained from the non-spatial model 

(Goovaerts, 1997). As described in section 3.4.1, second height model was built to predict 

canopy height from remotely sensed and environmental data, and a wall to wall canopy 

height map was produced by applying this model on the entire study area. But it does not 

take into account the spatial correlation between the canopy heights. The main objective of 

this section is to consider spatial correlation between the canopy heights in order to 

improve height map. To do so, semivariogram analysis was applied to the regression 

residuals (the difference between the predicted and actual values) to quantify the spatial 

structure of canopy height. This method has been widely used to analyze spatial structures 

in ecology (Robertson, 1987; Ge et al, 2011; Eldeiry & Garcia, 2010). The semivariogram 

plots the semivariance as a function of the distance between samples using equation 3.9: 

        

  i9¨C = $ +"©9ªC[ ¡§9��C : §9�� 4 ¨C¤"©9ªC��+                                (3.9) 

 

Where$«9¬C is semivariance as a function of distance h, z(Si) and z(Si+h) are the estimated 

residuals from the regression models at locations Si and Si+h, a location separated by 

distance h, N(h) is the total number of pairs of samples separated by distance h. The 

empirical variogram, which is a plot of the values of «9¬C as a function of h, gives 

information on the spatial dependency of the variable. Once each pair of locations is 

plotted, a model is fit through them. The coefficients “nugget”, “range” and “sill” are 

commonly used to describe the model. The nugget is the semivariance at a lag distance of 

zero. The distance where the model first flattens is known as the range. Sample locations 

separated by distances closer than the range are spatially autocorrelated, whereas locations 

farther apart than the range are not. The value at which the semivariogram model attains 
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the range (the value on the y-axis) is called the sill. A partial sill is the sill minus the 

nugget. Figure 3.6 shows a schematic of nugget, range and sill components of a 

semivariogram. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6. Illustration of nugget, range and sill components of a semivariogram 

 

 

The Exponential model (Equation 3.10) which fitted the empirical semivariogram was used 

to define the regression-kriging model. 

  i9¨C = �" 4 q" ­1 : ;®¯ E<ªK G°                                     (3.10) 

 

Where S
2
 is the nugget, σ

2
 the sill, and a the range of the semivariogram, g(h).  

Next, the fitted semivariograms were used in the kriging of the canopy height residuals for 

maximum and Lorey’s height using equation 3.8 and then defining the regression-kriging 

model. As its name indicates, regression-kriging is consisted of a regression part (±²9�mC) 
and a kriging part (¥9�mC) as shown in the equation 3.11.  

 

 ³9tmC = $�²9�mC 4 $¥9�mC = $�²9�mC 4$[ ¦´§9�´C�́=1  (3.11) 

Where ³9tmC is canopy height value using regression-kriging method, ±²9�mC is the fitted 

trend, ¥9�mC$is the kriged residual, λi are the kriging weights determined by the spatial 

dependence structure of the residual and z(Si) is the residual at location Si.
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4. Results and discussion 

4.1. Estimation of maximum canopy height (Hmax) using ICESat GLAS 

4.1.1. Direct method for estimation of Hmax 

Maximum canopy height calculated using direct method (vertical difference between 

signals start and ground peak of GLAS waveform) was compared with in situ Hmax. The 

correlation between estimated Hmax and Hmax-total was higher rather than the correlation 

between estimated Hmax and Hmax-in or Hmax-out (refer to section 2.3.1). Figure 4.1 shows 

estimated Hmax versus Hmax-total. The adjusted coefficient of determination (�K") and root 

mean square error (RMSE) are 0.48 and 9.9, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1. Estimated Hmax from GLAS data using direct method versus in situ Hmax 

 

4.1.2. Estimation of Hmax using regression models (MLR, RF and ANN) 

In order to reduce the impact of slope on estimation of canopy height, three statistical 

methods such as multiple linear regressions (MLR), random forest (RF) and artificial 

neural network (ANN) were used. 

 

4.1.2.1. Estimation of Hmax using MLR 

Concerning maximum height, the result of regression models using in situ Hmax-total was 

better than Hmax-in and Hmax-out. Thus hereinafter to the end of GLAS height models 

result, Hmax refers to Hmax-out. Table 4.1 represents five models developed based on 
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waveform metrics (Wext) and Terrain index calculated from DEM10 (TI10). AIC (Akaike 

Information Criterion) was calculated as a way of selecting the best regression model. The 

model with lowest AIC score represents the best model. An MLR model combined Wext
2.5

, 

Wext
1.5

, ln(H50) and TI10
1.5 

(model 1) produced the lowest AIC (296.3) and highest accuracy 

(5.0 m). Based on the MAPE (Mean Absolute Percentage Error), 16.4% of predictions of 

this model were off (Fig. 4.2). The t-statistics of regression coefficients shows the relative 

importance of each metric in the model. Based on this statistics, TI10
1.5 

and Wext
1.5

 

contributed most to the model for this set of independent variables. 

As it is seen in table 4.1, the accuracy of the simplest model (RMSE = 6.3 m) based on two 

metrics (Wext and TI10), was about one meter lower than the accuracy of model 1 (RMSE = 

5.0 m). But it should be noticed that the predictor H50 in model 1 is dependent on ground 

peak identification. So there is uncertainty in extraction of this metric. 

However models containing Htrail and Hlead produced good result somewhat, but t-statistic 

showed these predictors are not significant.  

As it is observed in figures 4.2 and 4.3, overestimation and underestimation were 

decreased largely using regression models 1 and 2 in comparison with direct method (refer 

to Figure 4.1). 

 

Table 4.1. Statistics for five MLR to estimate Hmax based on waveform metrics 

# Model Coefficients 
RMSE 

(m) 
RMSE 

(%) R2
a MAE 

MAPE 
(%) AIC P-value 

1 
Hmax = a.Wext

2.5 + b.Wext
1.5 

+ c.ln(H50) + d.TI10
1.5 + e 

a= -0.0042 
b= 0.386 
c= 3.549 
d= -0.052 
e= 21.22 

5.0 13.8 0.85 4.0 16.4 296.3 3.61e-26 

2 Hmax = a.Wext + b.TI10 
a= 1.1041 
b= -0.4910 

6.3 17.5 0.76 5.2 23.0 314.2 2.08e-20 

3 Hmax = a.Wext + b.H50 + c.

TI10  

a= 0.93538 
b= 0.36011 
c= -0.42024 

5.8 16.1 0.79 4.7 20.3 307.6 2.10e-22 

4 
Hmax = a.Wext + b.TI10 + c.

H50 + d.H75 + e.H100 + f 

a= 1.0845 
b= -0.3822 
c= 0.6642 
d= -0.1114 
e= -0.2605 
f= -0.992 

6.1 16.9 0.77 8.3 35.3 312.3 4.00e-21 

5 
Hmax = a.Wext + b.TI10 + c.
Hlead + d.Htrail 

a= 1.1092 
b= -0.4948 
c= 0.1067 
d= -0.1319 

6.4 17.8 0.75 5.3 22.7 316.9 5.67e-20 
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Fig. 4.2. Estimated Hmax using MLR based on waveform metrics (model 1, table 4.1) versus in situ Hmax 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3. Estimated Hmax using MLR based on waveform metrics (model 2, table 4.1) versus in situ Hmax 

 

 

The use of TI90 instead of TI10 in models 1 and 2 led to an R
2

a of 0.83 and 0.72, and RMSE 

of 5.3 m and 6.9 m, respectively (Equation 4.1 and 4.2). Figure 4.4 shows the estimated 

Hmax using equations 4.1 and 4.2 versus in situ Hmax. As it is seen, using TI90 instead of 

TI10 did not have significant effect on the result of model. Similar outputs were obtained 
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from TI10 (DEM10) and TI90 (DEM90) throughout this study. Therefore, only results of 

models containing TI10 are discussed hereinafter. 

 

Hmax = - 0.00426 Wext
2.5

 + 0.38712 Wext
1.5

 - 0.010638 TI90
1.5

 + 4.1842 Ln(H50) - 0.52975          (4.1) 

 

Hmax = 1.10657 Wext - 0.16308 TI90                                     (4.2)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4. Estimated Hmax using a) model 4.1, b) model 4.2 versus in situ Hmax 
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The model offered by stepwise regression (Equation 4.3) produced an R
2
a and RMSE of 

0.82 and 5.1 m, respectively (Fig. 4.5). As it is seen, the result of stepwise regression is 

similar to model 1 from table 4.1. But based on principle of parsimony which tends to 

prevent overfitting and reduction in prediction ability of the model, a model should be 

simple as much as possible (Vandekerckhove et al., 2014). So however the model resulted 

from stepwise regression produced good result, it is not preferable because of its 

complexity.  

 
Hmax = -0.04336 Wext

2 
+ 0.41997 Wext

1.5
 - 0.48393 TI90 + 1.06764 H50 + 10.8052 H75 + 0.6756 H100 

+ 0.02297 H75
1.5

 - 2.5984 H75
1.5

 + 0.4155 Htrail - 53.3838                                      (4.3)  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. Estimated Hmax using stepwise regression of waveform metrics (Eq. 4.3) versus in situ Hmax 

 

MLR regressions using all PCs or PCs from stepwise regression (26 PCs) did not produce 

good result. Three first PCs, explaining 77.5% of data variance, had the highest 

performance in our models. The statistical result of developing MLR models using three 

first PCs were presented in table 4.2. The model consisting only three first PCs did not 

performed well. Adding Wext and TI10 improved the result considerably. The smallest AIC 

(301.1) belongs to model combining three first PCs, Wext and TI10. It produced an R
2

a and 

RMSE of 0.77 and 6.0 m, respectively, the MAE between predicted and observed height 

was about 4.7 m, and the prediction error was about 22.1% (Fig. 4.6). Based on the 

t-statistics of regression coefficients, TI10
1.5 

and Wext
1.5

 contributed most to the model. 
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Table 4.2. Statistics for three MLR models to estimate Hmax based on PCs 

# Model coefficient 
RMSE 

(m) 
RMSE 

(%) 
R2

a 
MAE 
 (m) 

MAPE 
(%) AIC P-value 

1 
Hmax= aPC1 + bPC2 + 

cPC3+ d 

a= - 5.257 

b= 16.065 

c= 23.479 

d= 35.928 

10.8 30 0.29 9.0 46.4 369.0 3.32e-5 

2 
Hmax = aPC1 + bPC2 + 

cPC3+ dWext + e 

a= 8.1492 

b= 7.7948 

c= -2.0450 

d= 1.3427 

e= -21.5505 

7.7 21.4 0.63 6.4 28.6 337.3 5.57e-11 

3 
Hmax = aPC1 + bPC2 + 

cPC3+ dWext + eTI10 + f 

a= 4.8863 

b= 5.6782 

c= -7.1939 

d= 1.3460 

e= -0.4791 

f= -10.5722 

6.0 16.6 0.77 4.7 22.1 301.1 2.2e-16 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6. Estimated Hmax using MLR based on PCs (model 3, table 3.5) versus in situ Hmax 

 

4.1.2.2. Estimation of Hmax using RF 

The five best RF models developed based on waveform metrics were presented in table 4.3. 

Model 1 containing Wext
2.5

, Wext
1.5

, ln(H50) and TI10
1.5 

outperformed other models with an 

R
2

a and RMSE of 0.72 and 6.8 m, respectively. 28.0% of predictions by this model are off 

from true values (Fig. 4.7).Wext
2.5

 and TI10 have the highest and lowest importance in this 

model. Models 4 and 5 containing edge extent metrics (Hlead, Htrail) did not performed as 

well as other presented models. 
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Table 4.3. Statistics of five RF models for estimation of Hmax based on waveform metrics 

# 

Importance degree 

RMSE 
(m) 

RMSE 
(%) 
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Fig. 4.7. Estimated Hmax using RF regression based on waveform metrics (model 1, table 4.3) 

versus in situ Hmax 
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Table 4.4 shows statistics of three RF models based on PCs. The best result concerning RF 

regressions based on PCs was generated using the same metrics as MLR (three first PCs, 

Wext and TI10) with an R
2

a and RMSE of 0.66 and 8.0 m, respectively (Fig. 4.8). As it is 

seen, however PC1 consists the largest variance of data among all PCs, it has less 

importance degree rather than PC2 and PC3 in the model. This confirms that the 

informative part of waveform is not always in the first PC. 

 

Table 4.4. Statistics of three RF models for estimation of Hmax based on PCs 

# 

Importance degree 

RMSE 
(m) 

RMSE 
(%) 

R
2
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Fig. 4.8. Estimated Hmax using RF regression based on PCs (model 3, table 4.4) versus in situ Hmax 
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4.1.2.3. Estimation of Hmax using ANN 

In order to access the optimal structure of ANN, numerous networks with different hidden 

layers and neurons and also various iteration rates were assessed. As it is seen in table 4.5, 

three-layer networks (one hidden layer) performed well in predicting forest height. Based 

on the results, a three layers network with only two metrics “Wext” and “TI10” is able to 

predict maximum height with an RMSE and R!" of 5.7 m and 0.80, respectively (Fig. 4.9). 

Adding other metrics did not improve the result considerably. As it is seen, an ANN with 

three metrics “Wext”, “TI10” and “H50” produced an RMSE and R!" of 5.4 m and 0.82, 

respectively (Fig. 4.10). 

Table 4.5. Properties of two ANN models for estimation of Hmax based on waveform metrics and 

the resulted statistics 

# Input 

Properties of network 

RMSE 

(m) 

RMSE 

(%) 
R

2
a 

MAE 

(m) 

MAPE 

(%) 

Number 

of 

hidden 

layers 

Number 

of 

hidden 

neurons 

Iteration 

rate 

1 Wext , TI10 1 2 30 5.7 15.8 0.80 4.6 20.1 

2 
Wext , TI10 , 

H50 
1 2 20 5.4 15 0.82 4.3 17.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9. Estimated Hmax using ANN based on waveform metrics (model 1, table 4.5) versus 

in situ Hmax 
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Fig. 4.10. Estimated Hmax using ANN based on waveform metrics (model 2, table 4.5) versus 

in situ Hmax 

 

Designing neural networks using all PCs or selected PCs through stepwise regression (26 

PCs) led to undesirable results. An ANN model based on three first PCs of PCA produced 

an RMSE and R!" of 8.8 m and 0.53, respectively. Adding variables Wext and TI10 improved 

the result of predictions (Table 4.6). Figure 4.11 shows estimated Hmax using model 3 

versus in situ height. 

 

Table 4.6. Properties of ANN models for estimation of Hmax based on PCs and the resulted statistics 

# Input 

Properties of network 

RMSE 

(m) 

RMSE 

(%) 
R

2
a 

MAE 

(m) 

MAPE 

(%) 
Number 

of hidden 

layers 

Number 

of 

hidden 

neurons 

Iteration 

rate 

1 PC1 , PC2 , PC3 1 3 20 8.8 24.4 0.53 6.6 31.3 

2 
PC1 , PC2 , PC3 , 

Wext 
1 4 15 6.6 18.3 0.73 5.0 20.3 

3 
PC1 , PC2 , PC3 , 

Wext , TI10 
1 4 15 5.6 15.5 0.81 4.3 17.4 
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Fig. 4.11. Estimated Hmax using ANN based on PCs (model 3, table 4.6) versus in situ Hmax 

 

4.1.2.4. Discussion on Hmax estimated using GLAS data 

Maximum canopy height retrieved from direct method did not show a good result. Canopy 

height has been overestimated where there are short trees and mostly under-estimated in 

tall trees locations (Fig. 4.1). Overestimation is expected especially where short trees are 

located over a sloped terrain. In these conditions, the elevation of the highest object within 

a footprint is not necessarily at the top of the tallest tree, and could be a shorter tree located 

in higher elevation or even terrain instead of any vegetation which could occur for sparse 

canopy over steep terrain (Chen, 2010b). Deep investigation in our field data confirms 

footprints possessing short trees are located over a sloped terrain (the range of terrain slope 

for these footprints except one (20%) is between 40-55%) with low forest volume as a 

proxy of forest density (plots 22-28 and 30 in figure 2.10b). As it was demonstrated in 

figure 2.10a, number of trees (by ha) is approximately like most plots (except for one plot), 

but correspondent basal area are very low rather than other plots. The slope problem has 

been solved greatly using an MLR model combining terrain information with GLAS’s 

waveform metrics (Wext
2.5

, Wext
1.5

, TI10
1.5

, Ln(H50) (Fig. 4.2) and also an ANN model 

employing three waveform metrics (Wext, TI10, H50) (Fig. 4.10). The over and 

underestimation of height has been also decreased considerable. Generally, based on our 

outcomes, predicting height of short trees using GLAS data is difficult. This was also 

reported by Nelson (2010). He showed lack of efficiency of GLAS data to accurately 

measure forest structure in short-tree sparse forests. 
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In total, all three regression methods (MLR, RF, ANN) based on waveform metrics 

produced greater accuracy in comparison with models based on PCs. The performance of 

the best MLR, RF and ANN models based on waveform metrics was compared in figure 

4.12. As it is observed, RF had the weakest performance specially where there are short 

trees (plots 22-28 and 30). 

 

 

 

 

 

 

 

 

 

Fig. 4.12. Comparison of residual errors produced by MLR, RF and ANN for estimation of Hmax 

based on waveform metrics 

 

In terms of using TI90 instead of TI10, models with TI10 produced just slightly better results. 

This is contrary to our expectations for producing much more accurate result using local 

DEM generated from topographic map rather than SRTM DEM. One reason could be that 

conventional DEMs produced from photogrammetric techniques might not adequately 

characterize topography over forest areas (NOAA Coastal Services Center, 2012). 

Conclusively, the SRTM DEM could be an acceptable source of information about terrain 

variability especially in large extent areas with presence of forest cover. Recent availability 

to the SRTM DEM30 for whole world (with more details rather than SRTM DEM90) 

strengthens this deduction. 
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4.2. Estimation of Mean Lorey’s height (HLorey) using ICESat GLAS 

4.2.1. Estimation of HLorey using MLR 

Table 4.7 represents some regression models predicting HLorey. The first model including 

ln(Wext) and TI10 produced the lowest AIC (288.3) with a prediction error of about 24.0% 

and RMSE of 5.1 m (Fig. 4.13). As mentioned before, significance of coefficients was 

considered by calculation of t-statistics. However models containing H50, Htrail and Hlead 

(models 4 and 5) produced good result somewhat. But based on t-statistic criterion, 

coefficients of these metrics are not significant. 

 

Table 4.7. Statistics for five MLR for estimation of HLorey based on waveform metrics 

# Model Coefficients 
RMSE 

(m) 
RMSE 

(%) 
R

2
a MAE 

MAPE 
(%) 

AIC p-value 

1 
HLorey = a.ln(Wext) + 

b.TI10 +c 

a= 27.6671 

b= -0.3454 

c= -67.8802 
5.1 18.6 0.71 3.9 24.0 288.3 8.18e-18 

2 HLorey = a.Wext + b.TI10 
a= 0.8079 

b= -0.3252 
5.4 19.7 0.70 4.1 23.0 293.1 2.19e-16 

3 
HLorey=a.Wext

2.5 + 

b.Ln(Wext) + c.TI10 

a= 0.0007 

b= 7.1533 

c= -0.3651 
5.7 20.8 0.67 4.4 28.7 300.8 2.2e-16 

4 
HLorey = a.Wext + b.H50 + 

c.TI10  

a= 0.7671 

b= 0.0876 

c= -0.305 
5.4 19.7 0.67 4.3 23.5 294.4 1.85e-16 

5 
HLorey = a.Wext + b.TI10 + 

c.Hlead + d.Htrail + f 

a= 0.7475 

b= -0.3408 

c= -0.0503 

d= 0.0369 

f= 3.3432 

5.6 20.4 0.63 4.5 25.9 297.7 2.61e-15 
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Fig. 4.13. Estimated HLorey using MLR based on waveform metrics (model 1, Table 4.7) versus in 

situ HLorey 

 

To estimate Lorey’s height based on PCs, like Hmax, all PCs or PCs from stepwise 

regression (20 PCs) were used for prediction. The resulted models produced high error (the 

RMSE greater than 25 m). MLR models based on only three first PCs, containing 75% of 

data variance, produced better result (Table 4.8). However based on t-statistics, some 

coefficients in the model 2 and 3 were not significant. 

 

Table 4.8. Statistics of three MLR models for estimation of HLorey based on PCs 

# Model Coefficient 
RMSE 

(m) 
RMSE 

(%) 
R

2
a 

MAE 
(m) 

MAPE 
(%) AIC P-value 

1 
HLorey= aPC1 + bPC2 

+ cPC3+ d 

a= 3.856 

b= 12.192 

c= 20.590 

d= 26.939 

7.8 28.4 0.30 6.4 43.9 340.3 1.68e-5 

2 
HLorey = aPC1 + bPC2 

+ cPC3+ dWext + e 

a= -7.7682 

b= 2.2925 

c= 7.6185 

d= 0.8996 

e= -11.5824 

6.6 24.1 0.51 5.2 31.6 320.0 4.19e-9 

3 
HLorey = aPC1 + bPC2 

+ cPC3+ dWext + 

eTI10 + f 

a= -4.5647 

b= -0.2831 

c= 1.5421 

d= 0.9006 

e= -0.3080 

f= -4.4943 

5.4 19.7 0.66 4.0 24.1 304.9 1.42e-11 
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4.2.2. Estimation of HLorey using RF 

The five best RF models developed based on waveform metrics for estimation of HLorey 

were presented in table 4.9. Generally, the four first models produced approximately the 

same result. Model 1 with four variables (metrics) including Ln(H50), TI10
1.5

, Wext
2.5 

and 

Ln(Wext) produced an RMSE of 5.4 m. Statistic of mean absolute percentage error (MAPE) 

shows 26.9% of predictions of this model were off. As it is seen, all models presented in 

this table includes TI10 or TI10
1.5

, which indicate the importance of this variable in 

estimation of Lorey’s height over sloped area. The prediction error of model 5 built using 

metrics Wext, TI, Htrail and Hlead is greater than the first four models. In fact models 

containing Htrail or Hlead showed less performance in comparison with the others. It could 

be because of uncertainties in extraction of Htrail and Hlead form waveforms broadened by 

terrain slope (Lefsky et al., 2007). Figure 4.14 shows estimated HLorey using model 1 and 

model 5 versus in situ HLorey. As it is seen overestimation and underestimation in model 1 

is lower than model 5. 

 

Table 4.9. Statistics of five RF models for estimation of HLorey based on waveform metrics 
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Fig. 4.14. Estimated HLorey using MLR based on PCs; a) model 1, b) model 5 from table 4.9 versus in 

situ HLorey 

 

The RMSE of RF model based on PCs selected by stepwise regression (20 PCs) was high 

(RMSE= 8.5 m, R
2

a = 0.15). Table 4.10 shows statistics of three RF models based on three 

first PCs and figure 4.15 demonstrates their result versus in situ measurement. The best 

result was obtained using model 3 which employed metrics Wext, TI10 and PCs (Fig. 4.15c) 

which is similar to the result of RF models based on waveform metrics (Table 4.9). In 

these models, PC3 has more contribution to the model than PC2 and PC1, however it 

contains less variance of the data. 

0

10

20

30

40

0 10 20 30 40

E
st

im
at

ed
 H

L
o
re

y
 (

m
) 

In situ HLorey (m) 

R
2
= 0.59 

RMSE= 6.6 m 
1:1 

b 

0

10

20

30

40

0 10 20 30 40

E
st

im
at

ed
 H

L
o
re

y
 (

m
) 

In situ HLorey (m) 

R
2
= 0.70 

RMSE= 5.4 m 
1:1 

a 



Chapter 4: Results and Discussions                                                                                                                 75 

 

 

Table 4.10. Statistics of three RF models for estimation of HLorey based on PCs 

# 

Importance degree 
RMSE 

(m) 
RMSE 

(%) 
2

aR  
MAE 
(m) 

MAPE 
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Fig. 4.15. Estimated HLorey using RF based on PCs versus in situ HLorey (a, b, c: model 1 to 3, table 4.10) 
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4.2.3. Estimation of HLorey using ANN 

The optimal structure of ANN was obtained by trial and error. The results showed a three 

layer network produces suitable outcome in this research. Generally, HLorey was predicted 

with an accuracy of about 5 meters using many types of ANN. Three simple ANN models 

were presented in table 4.11. HLorey resulted from model 1 with two metrics (Wext and TI10) 

was compared with in situ height in figure 4.16. Based on MAPE statistic, 23.2 percentage 

of this model predictions are off. 

Table 4.11. Statistics of three ANN models for estimation of HLorey based on waveform metrics 

# Input 

Properties of network 

RMSE 
(m) 

RMSE 
(%) 

2

aR  
MAE 
(m) 

MAPE 
(%) 

Number 
of hidden 

layers 

Number 
of hidden 
neurons 

Iteration 
rate 

1 Wext, TI10 1 2 10 5.1 18.6 0.72 3.7 23.2 

2 Wext
2.5

, Ln(Wext), TI10 1 3 10 5.0 18.2 0.72 3.5 20.9 

3 Wext, TI, H50 1 3 10 5.2 18.9 0.69 4.0 23.5 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

Fig. 4.16. Estimated HLorey using ANN based on waveform metrics (model 1, table 4.11) versus in 

situ HLorey 
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ANNs developed based on PCs performed slightly better than those based on waveform 

metrics. A simple neural network employing only three first PCs of PCA produced an 

RMSE and 
2

aR of 4.7 m and 0.76, respectively (model 1, Table 4.12). Adding Wext as input 

variable improved the result significantly. In other word, an ANN with four inputs 

including three first PCs and Wext (model 2, Table 4.12) estimated HLorey with higher 

accuracy (RMSE = 3.4 m and 
2

aR = 0.87) (Fig. 4.17). 12.3% of predictions by this model 

are off from true measurements. Adding TI10 did not improve the result comparatively to 

the model 2. 

 

Table 4.12. Statistics of three ANN models for estimation of HLorey based on PCs 

# Input 

Properties of network 

RMSE 
(m) 

RMSE 
(%) 

2

aR  
MAE 
(m) 

MAPE 
(%) 

Number 
of hidden 

layers 

Number 
of hidden 
neurons 

Iteration 
rate 

1 PC1, PC2, PC3 1 3 35 4.7 17 0.76 3.5 17.4 

2 
PC1, PC2, PC3, 

Wext 
1 4 50 3.4 12.4 0.87 2.5 12.3 

3 
PC1, PC2, PC3, 

Wext, TI10 
1 4 30 3.6 13 0.85 2.6 15.5 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.17. Estimated HLorey using ANN based on waveform metrics (model 1, Table 4.12) versus in 

situ HLorey 
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4.2.4. Discussion on HLorey estimated using GLAS data 

MLR, RF and ANN had approximately similar performance in terms of employing 

waveform metrics as predictors. In other words, all three methods based on waveform 

metrics are able to predict Lorey’s height with an accuracy of about 5 meters. ANN 

outperformed two other methods when PCs were used as predictors. The superiority of 

ANN is considerable in case of using PCs as input variables. An ANN model with four input 

neurons including three first PCs of PCA and West predicted HLorey with an accuracy of 3.4 

m. The interesting points concerning this model are: firstly, using PCs as input variables 

which are lack of uncertainties unlike some waveform metrics, especially over sloped 

terrain; secondly, achieving higher accuracy rather than other models without entering any 

ancillary data (DEM). In other words, all best models resulted from three statistical methods 

based on waveform metrics and PCs except ANN based on PCs contained TI extracted from 

DEM as representative of topography status. Thirdly, in contrast to other models, this model 

was able to estimate HLorey properly even in short sparse and tall dense stands. Figure 4.18 

demonstrates performance of the best MLR, RF and ANN models based on PCs. 

Fayad et al. (2014) estimated canopy height in forest sites of French Guiana that terrain 

topography is mostly flat. They obtained approximately the same accuracies using MLR 

and RF models based on waveform metrics and PCs. 

 

 

 

 

 

 

 

 

 

Fig. 4.18. Comparison of residual errors produced by MLR, RF and ANN for estimation of HLorey 

based on PCs 
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4.3. Estimation of forest volume using ICESat GLAS 

As it was explained in section 3.2, two methods were applied to estimate forest volume 

(V).The first method consists of three steps: 1) developing volume-Hmax and volume-HLorey 

relationships ({ = �. U�); 2) estimating height from GLAS data using best model resulted 

from statistical methods explained in section 3.1.2.; and 3) estimating forest volume (V) 

using chosen volume-height relationship. The second method was estimation of forest 

volume directly from GLAS waveforms. 

Regards to the first method, it was necessary to find out correlation between forest volume 

and height. Since two heights; maximum height (Hmax) and mean Lorey’s height (HLorey), 

were measured in this research, volume-Hmax and volume-HLorey relationships were 

developed based on in situ measurements. As it is observed in figure 4.19, there is stronger 

correlation between volume and HLorey rather than Hmax. And the accuracy resulted from 

volume-HLorey (# = 2.6507$%&'()*+.,-/-) is higher than volume-Hmax (# = 2.65µ$%SKT+.-"¶). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.19. Correlation between volume and a) Hmax, b) HLorey 
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To estimate forest volume, estimated Lorey’s heights from GLAS data were replaced in 

volume-HLorey equation. Since the best result regards Lorey’s height was obtained using an 

ANN model based on PCs (RMSE = 3.4 m,
2

aR = 0.87), predicted heights using this model 

were contributed in the # = 2.6507$%&'()*+.,-/-. Comparison of estimated volume with in 

situ volume showed an RMSE and R
2

a of 116.3 m
3
/ha and 0.77, respectively (Fig. 4.20). 

The mean absolute error (MAE) of predictions is 83.6 m
3
/ha. This method of volume 

estimation is called volume-HLorey hereinafter. 

 

 

 

 

 

 

 

 

 

Fig. 4.20. Estimated volume using # = 2.6507$%&'()*+.,-/- where HLorey was estimated from GLAS 

data versus in situ volume. 

 

It was under question whether we obtain better result if volume is extracted directly from 

GLAS data instead of using volume-HLorey relationship. So, in the second method, a large 

number of MLR, RF and ANN were developed to estimate forest volume from GLAS 

waveform.  

Concerning MLR models, the best result was obtained based on waveform metrics 

(V= 7.723Wext - 4.406TI10 + 1.475Hlead + 18.920Htrail + 19.482H50 - 286.360). It produced 

an RMSE and R
2

a of 128.8 m
3
/ha and 0.68, respectively (Fig. 4.21). Moreover an MLR 

model based on PCs (V= -158.252PC1 + 37.088PC2 - 252.133PC3 + 26.421Wext - 

5.875TI10 - 546.437) produced approximately the same result (RMSE= 131.5 m
3
/ha, 

R
2

a= 0.67). Regards to RF models, a model employing three first PCs and Wext 

outperformed other models with an RMSE and R
2

a of 135.7 m
3
/ha and 0.70 (Fig. 4.22). In 

terms of ANN models, best result was also obtained using an ANN based on PCs. A three 
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layer network with five hidden neurons, fifteen iteration rate, and four input variables (Wext 

and three first PCs), estimated forest volume with an MAE, RMSE and R!" of 95.5 m
3
/ha, 

119.9 m
3
/ha and 0.73, respectively (Fig. 4.23). Totally it was possible to estimate volume 

with an accuracy of 120-135 m
3
/ha with all three statistical methods (MLR, RF and ANN). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.21. Estimated volume using MLR based on waveform metrics versus in situ volume 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.22. Estimated volume using RF based on PCs versus in situ volume 
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Fig. 4.23. Estimated volume using ANN based on PCs versus in situ volume 

 

4.3.1. Discussion on volume estimated using GLAS data 

As observed, forest volume was estimated with an accuracy of 116.3 m
3
/ha (RMSE%= 25.4) 

based on volume-HLorey relationship, and 119.9 m
3
/ha (RMSE%= 26.2) using a neural 

network model. 

Concerning volume-HLorey method, there were several sources of error that resulted 

propagation of error and low accuracy of volume estimation. Two main sources were: 

1) Height-DBH relationships. As known, Lorey’s height is not a directly measured 

parameter on the ground, but is a weighted mean of height. So, to calculate this parameter, 

height of all trees in each plot were estimated using developed height-DBH relationships. 

2) It is known that forest volume is a function of both height and diameter as two essential 

quantitative factors. But in this research, only third dimension of objects is retrievable from 

GLAS data. So we built # = 2.6507$%&'()*+.,-/- with an RMSE and R
2

a of 106.6 m
3
/ha and 

0.80, respectively. In other words, even with precise estimation of HLorey from GLAS data, 

we would expect error about ±100 m
3
/ha in prediction of volume. 

Deep investigation in field inventory data shows the possibility of having same Lorey’s 

height for completely different forest structure which leads to a different forest volume. To 

better understanding, three couple of plots were compared in terms of Lorey’s height (m), 

number of trees (n/ha) and volume (m
3
/ha) (Table 4.13). As shown, plots with 

approximately the same Lorey’s height have different volumes. It confirms that estimating 

forest volume only relying on an average height could cause a high discrepancy with 

reality especially in uneven aged forests. 
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Table 4.13. Comparison of Lorey's height, number of trees and volume in three couple of plots 

Plot 
Lorey’s height 

(m) 
Number of trees 

(n/ha) 
Volume 
(m

3
/ha) 

1 16.7 39 5.2 

3 17.7 697 160.5 

13 32.9 484 996.6 

17 32.8 322 499.2 

23 6.5 8 0.7 

25 7.5 237 20.7 

 

Concerning statistical methods, the result of an ANN based on PCs is approximately the 

same as result obtained by MLR model based on waveform metrics. But positive points 

about ANN model are: 1) It does not need an ancillary data (DEM); 2) It relies on PCs and 

Wext which are not prone to uncertainties in contrast with some waveform metrics which 

have been used in MLR model.  

Generally, almost the same accuracy as volume-HLorey method was obtained using the 

ANN model. ANN performed slightly better where there exist very low ( <10 m
3
/ha) and 

very high ( > 800 m
3
/ha) volume. In most other points ANN produced more error rather 

than volume-HLorey method, but points are better dispersed around regression line 1:1 (refer 

to figure 4.20 and figure 4.23). Residual errors produced by these two methods were sorted 

based on the lowest to highest values of forest volume (as a proxy of forest density) and 

terrain slope in figure 4.24. In other words, plot 1 and 58 correspond to the lowest and 

highest volume in chart a (0.69 and 996.56 m
3
/ha, respectively), flat and sloped terrain 

(83%) in chart b. As it is observed, there is no obvious trend in volume estimation by 

increasing in forest density or terrain slope. This confirms that the heterogeneity of forest 

reduces the ability of lidar data to estimate forest volume. A collection of forest properties 

including forest type, horizontal and vertical structure of forest, and topographical 

properties may impress predictions. Consideration of reference plots conditions 

demonstrated dependency of volume on diverse factors. For instance, it happened to have 

high number of trees per hectare but low volume and reverse, and also equal number of 

trees per hectare or equal mean height but different volume (Table 4.13). It is expected to 

have higher accuracies in homogenous forests. 
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Fig. 4.24. Trend of forest volume bias (observed value-estimated value) by a) in situ forest volume, 

and b) terrain slope (The lowest to highest value on both volume and slope was coded by 1 to 58, 

respectively. In other words, plot 1 in graph a, as an example, is not necessarily the same plot 1 in graph b.) 
 

 

 

 

 

 

 

 

 

 

 

-400

-300

-200

-100

0

100

200

300

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

re
si

d
u
al

 e
rr

o
r 

(m
3
/h

a)
 

Plots (ordered by in situ volume: low to high) 

ANN_residuals

V-HLorey_residuals

ANN 

Volume-HLorey 

a 

-400

-300

-200

-100

0

100

200

300

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

re
si

d
u
al

 e
rr

o
r 

(m
3
/h

a)
 

Plots (ordered by terrain slope: low to high) 

ANN_residuals

V-HLorey_residuals

ANN 

Volume-HLorey 

b 



Chapter 4: Results and Discussions                                                                                                                 85 

 

 

4.4. Production of canopy height map 

Given the suitable results of GLAS height models regarding to maximum and Lorey’s 

heights (not forest volume), production of wall to wall canopy height maps from synergy 

of remote sensing (lidar, radar, optical data) and environmental data was taken under 

consideration. Following sections present relevant results: 

 

4.4.1. Canopy height map using regression model 

In order to produce a wall to wall height map, MLR and RF regressions were built between 

all GLAS derived heights, inside of the study area, and indices extracted from other remote 

sensing (radar and optical images) and environmental data. Concerning MLR, the most 

contributed variables were vegetation indices extracted from Landsat-TM and SPOT5 data 

including min-rvi, max-ndvi, mean-summer-ndvi and MVI related to October2009, 

June2010 and April2015 and also mean index from texture analysis (GLCM-mean) on 

optical images. The resulted MLR model showed an RMSE and R!" of 7.7 m and 0.46, 

respectively (Fig. 4.25). None of environmental variables had contribution in estimation of 

maximum height using this model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.25. Estimated Hmax using MLR based on extracted indices from optical images versus 

reference Hmax (GLAS Hmax) 
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Concerning RF, the most important variables describing maximum canopy height with 

lowest error were terrain index (TI), vegetation indices extracted from Landsat-TM and 

SPOT5 data (min-rvi, mean-summer-ndvi, max-mvi, mvi from dates October2009, 

June2010 and April2015), mean index from texture analysis of optical images and also 

texture indices from HH and HV polarization of PALSAR data including mean, correlation 

and variance (hh-variance, hv-correlation, hv-mean). The RMSE and R!" were 7.4 m and 

0.50, respectively. Figure 4.26 shows estimated maximum height using the best random 

forest regression based on above variables versus reference maximum height derived from 

GLAS (GLAS Hmax). This model overestimated maximum heights less than 25 m that 

could be as result of several limitations in height estimation. It should be noticed that he 

GLAS-based heights were obtained using local GLAS height models developed for a small 

part of the study site which will lead to height discrepancy especially in heterogeneous 

forests. The attempt of slope correction in this study was parameterized using only 60 field 

plots that do not represent all slopes conditions properly, and it could cause the broadening 

effect of slope on the GLAS waveforms unsolved which will lead to final estimation of 

height incorrectly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.26. Estimated Hmax using RF regression based on TI and extracted indices from optical and 

radar data versus reference Hmax (GLAS Hmax) 
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The fitted RF model was used to produce a wall to wall maximum canopy height map. In 

order to produce canopy height map with different resolutions, this process were done 

using variables in different resolutions. The produced maximum canopy height map with 

50 meter resolution is seen in figure 4.27. Comparison of Hmax extracted from this map 

with in situ Hmax at the location of 32 plots, shown in the figure 4.27, produced an RMSE 

and R
2
 of 5.3 m and 0.71, respectively (Fig. 4.28). The overestimation observed in the 

presented diagram is expected because of firstly, the error involved in the second height 

model used for preparing the height map (refer to figure 4.26). Secondly, validation of 

height map is incomplete and is limited by a lack of field observations for many of the 

forested lands which may have the same height range but different topographical, 

environmental and structural conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.27. Maximum height map produced using RF model 
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Fig. 4.28. Comparison of Hmax map produced from RF model with in situ Hmax measures at the 

location of 32 plots 

 

Like maximum height, numerous MLR and RF regressions were built between Lorey’s 

height extracted from GLAS data as reference height and indices extracted from PALSAR, 

Landsat-TM and SPOT5, and also environmental data. The best result was obtained using 

an RF model combining terrain index (TI), vegetation indices including min-ndvi, min-

summer-ndvi, min-rvi, and RVI related to dates June2010 and April2015, and also texture 

indices including mean and homogeneity extracted from optical images (TM and SPOT5). 

Texture indices derived from PALSAR data did not have high importance degree on 

Lorey’s height. This model produced an RMSE and R!" of 5.5 m and 0.59, respectively 

(Fig. 4.29).  
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Fig. 4.29. Estimated HLorey using RF regression based on extracted indices from optical images and 

environmental data versus reference HLorey (GLAS HLorey) 
 

The fitted RF model was used to produce a wall to wall Lorey’s height map which is 

observed in figure 4.30. Comparison of HLorey extracted from Lorey’s height map with true 

HLorey values at the location of 32 in situ plots, shown in the figure 4.30, produced an 

RMSE and R
2
 of 4.3 m and 0.50, respectively. Figure 4.31 shows estimated HLorey 

extracted from Lorey’s height map versus in situ HLorey. 
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Fig. 4.30. Lorey’s height map produced using RF model 
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Fig. 4.31. Comparison of HLorey map produced from RF model with in situ HLorey measures at the 

location of 32 plots  

 

4.4.2. Canopy height map using regression-kriging 

Regression-kriging method was also used to produce canopy height map with considering 

spatial correlation between canopy heights. The semivariogram of height residuals 

(maximum height and Lorey’s height) and exponential model fitted on them is observed in 

figure 4.32. The Nugget, Psill and range obtained from semivariogram of Hmax residuals 

were 38.35641m
2
, 14.84780m

2
 and 2424.932m, respectively. These coefficients for HLorey 

were 17.107786m
2
, 6.350782m

2
 and 1664.844m. As known, the nugget effect can be 

attributed to measurement errors or spatial sources of variation at microscales smaller than 

the sampling interval (or both). In the presented variograms, the nugget effects look too 

high that could be as a consequence of sparse data. 
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Fig. 4.32. Examples of fitted semivariograms of a) maximum height and b) Lorey’s height residuals 

 

However the residuals of RF models did not exhibit a strong correlation structure (refer to 

the figure 4.32), regression-kriging method was under consideration to investigate the 

probability of improving height maps produced using RF models. Thus, kriging of height 

residuals was performed using kriging weights calculated based on information derived 

from height residual’s semivariogram. This layer was added to the height map produced 

using RF regression. The resulted height maps were validated using in situ heights on 32 

plots in part of study area. The RMSE and R
2
 were 5.9 m and 0.72, respectively, for kriged 

Hmax and 4.3 m and 0.54, respectively, for kriged HLorey, Figures 4.33 and 4.34 show, 

respectively, maximum canopy height map using regression-kriging method and scatter 

diagram of Hmax for the validation plots. Figures 4.35 and 4.36 represent the resulted map 

and validation diagram for the HLorey. As it is seen in the figures, this method did not 

improve heights. It has been shown earlier that nugget coefficient of the semivariogarms 
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are too high that led to kriging estimates become overly smoothed and consequently 

incorrect height estimations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.33. Maximum height map produced using regression-kriging 
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Fig. 4.34. Comparison of Hmax map produced from regression-kriging with in situ Hmax measures at 

the location of 32 plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.35. Lorey’s height map produced using regression-kriging 
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Fig. 4.36. Comparison of HLorey map produced from regression-kriging with in situ HLorey measures 

at the location of 32 plots 

 

4.4.3. Discussion on production of canopy height map 

As explained in above sections, developing regression models between GLAS estimated 

heights (as reference) and other remotely sensed and environmental data was considered as 

the first step of providing canopy height map. For maximum height, all three vegetation 

indices (NDVI, RVI and MVI) derived from optical data were important. The “mean” 

feature from GLCM analysis on mean-summer-NDVI that was highly correlated with forest 

height individually, showed also high importance degree in the maximum height RF model. 

Among PALSAR texture features, “mean”, “correlation” and “variance” contributed in the 

height regression model. However the “variance” was not correlated with forest height 

individually but it was important for maximum height estimation in combination with other 

variables. Among environmental data, only TI (terrain index) as a proxy of topography 

condition was contributed into the model. Other variables including aspect, elevation and 

geological units did not affect the efficiency of the model noticeably. It is likely to achieve 

better result if the above environmental data is used in the GLAS-height model (first part 

of this study). For mean Lorey’s height, PALSAR extracted texture features did not show 

contribution in the best RF model. Among vegetation indices derived from optical data, 

only NDVI and RVI, and among texture features derived from mean-summer-NDVI, 

“mean” and “homogeneity” showed high importance degree. Generally TI and indices 

extracted from optical images had most contribution in the estimation of forest mean and 

maximum heights. 
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However the RMSE in estimation of HLorey (5.5 m) is less than Hmax (7.4 m), both HLorey 

and Hmax are predictable with similar relative error in the range of 22.8 to 23.5% using 

random forest regression. These models were used to produce a wall to wall height map 

and estimate Hmax and HLorey at locations with no GLAS coverage. In total, based on 

general knowledge about our forest site and visual interpretation, the resulted maps seem 

logical and reliable at least for large scale studies. Comparison of predicted heights 

extracted from Hmax and HLorey maps with in situ measurements in small part of study area 

showed improvement in RMSE for about 2.1 m and 1.2 m for Hmax and HLorey, 

respectively. 

In order to improve Hmax and HLorey maps, spatial correlation of heights were considered 

using depiction of height residual semivariogram. Refer to figure 4.32, there was no strong 

spatial correlation between height residuals. The model fitted on the semivariogram was 

quite flat that could be a consequence of high nugget effect which itself would be resulted 

from error in observation data (here GLAS-based heights) or low density of data. So, the 

height maps resulted from regression-kriging did not improve height accuracy. 
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5. Conclusion and perspectives 

5.1. Conclusion 

Measuring biophysical parameters of forest and providing accurate information and 

knowledge in different scales are vital for forestry plans and ecosystem management. 

Remote sensing techniques can provide a less expensive and relatively precise outputs in 

comparison with field measurements especially for large heterogeneous forests and 

inaccessible area. 

This research includes two main parts and aimed to: 1) investigate the capability of GLAS 

data in estimating forest biophysical parameters including maximum canopy height (Hmax), 

Lorey’s height (HLorey) and forest volume (V), 2) producing forest height/volume map 

using integration of ICESat/GLAS, ALOS/PALSAR and optical images and environmental 

data. 

Concerning the first part, numerous MLR, RF and ANN regressions were developed using 

different sets of metrics including waveform metrics and PCs to estimate each parameter. 

In situ measurements were carried out to build and validate regression models.  In order to 

overcome slope effect on GLAS waveforms, terrain index (TI) was derived from digital 

elevation models provided from topographic maps (DEM10) and SRTM (DEM90) and used 

as a predictive in regression models.  

Regards to the second part, GLAS height models were used to derive Hmax and HLorey at the 

location of all GLAS data in the study area. Then several MLR and RF regression models 

were developed between GLAS-based heights as reference and indices extracted from 

PALSAR, Landsat-TM, SPOT5 and DEM to provide second height models. The resulted 

models were employed for production of height maps. Consequently regression-kriging 

procedure was implemented to consider the possibility of height values improvement. 

 

5.1.1. Prediction of maximum height (Hmax) using GLAS  

As expected, Hmax estimated from direct method (vertical distance between the signal start 

and the ground peak) did not match highly the real heights (RMSE=9.9m, RMSE% =27.5). 

It could be a cause of sloped terrain and misidentification of ground peak witch has been 

also stated by several researches (Lefsky et al., 2005; Pang et al., 2008; Chen, 2010b; 

Xing et al., 2010). 

In order to decrease effects of terrain slope on estimation of canopy height, different 

regression methods were employed. An MLR model combining terrain information with 

GLAS’s waveform metrics (Wext
2.5

, Wext
1.5

, TI10
1.5

, Ln(H50) produced Hmax with an 



 98                                                    Investigating the possibility of forest height/volume estimation using … 

 

accuracy of 5.0 m (RMSE% = 13.8). An ANN model employing three metrics (Wext, TI10, 

H50) estimated Hmax with an accuracy of 5.4 m (RMSE% = 15). The point regards to these 

two models is employing H50 witch is more exposed to uncertainty rather than two other 

metrics. It is because the extraction of this metric depends on recognition of ground peak 

witch is difficult on steep area and could contain error. An ANN model using only Wext 

and TI10 led to an accuracy of 5.7 m (RMSE% = 16). As observed, these models 

outperformed direct method (with 13 percent reduction in error of estimation), and 

over/underestimation of height has been decreased considerably. Although overestimation 

is still observed in short-trees sparse forest stands ( < 10 m). Nelson (2010) has also 

showed lack of efficiency of GLAS data to accurately measure forest structure in such 

forests.   

Generally models contained TI showed better performance in estimation of forest canopy 

height. It indicates that TI derived from DEM neutralizes greatly the negative effect of 

terrain slope on waveform’s characteristics. In a study by Chen (2010a) which has been 

done in three different sites with terrain slope of 20 degrees on average, a simple linear 

model contains predictors Wext and TI10 outperformed two other linear and non-linear 

models containing Wext, Hlead and Htrail.  

PCs-based models (MLR, RF and ANN) did not perform as well as models based on 

waveform metrics. In overall, they produced better result when models include Wext and TI 

in addition to PCs. 

Comparison of three statistical methods in estimation of maximum canopy height based on 

waveform metrics indicated that MLR and RF represented respectively, the best and the 

worst performance. When the regressions were developed based on PCs, the ANN 

produced, slightly, better result rather than MLR, and RF did net show good result. These 

results were in contrast with Fayad et al. (2014) that observed approximately the same 

accuracies in predicting canopy height using MLR or RF models, also waveform metrics or 

PCs based models. This confirms the local applicability of fitted regressions. It is worth to 

notice that terrain topography in this research (Planted eucalyptus forests in French 

Guiana) is mostly flat. 

 

5.1.2. Prediction of Lorey’s height (HLorey) using GLAS  

A simple three layer ANN model using three first PCs of PCA and West predicted HLorey 

with an accuracy of 3.4 m (RMSE% = 12.4). While TI was an important variable in most 

GLAS height models, this model was able to estimate HLorey with high accuracy without 

necessity of participation the terrain information. Generally, ANN showed better 
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performance in comparison with MLR and RF when PCs were used as input variables and 

RF produced less accurate result comparing MLR. All three methods (MLR, RF and ANN) 

had approximately similar performance in terms of employing waveform metrics as 

predictors (RMSE about 5 m). 

 

5.1.3. Effect of terrain index on estimation of height using GLAS 

As discussed before, terrain index (TI) was extracted from two sources of DEM: DEM 

provided from 10m-topographic maps (TI10), and SRTM90 DEM (TI90). Generally models 

containing TI produced higher accuracy. This metric showed highest correlation with 

canopy height after Wext, and was important in reduction of broadening effect of terrain 

slope on waveform metrics. 

The result of regression models showed that models containing TI10 performed slightly 

better than those including TI90. This is contrary to our expectations for producing much 

more accurate result using local DEM generated from topographic map rather than SRTM 

DEM. One reason could be that conventional DEMs produced from photogrammetric 

techniques might not adequately characterize topography over forest areas (NOAA, 2012). 

Conclusively, the SRTM DEM may be an acceptable source of information about terrain 

variability especially in large extent areas with presence of forest cover. Recent availability 

to the SRTM DEM30 for whole world (with more details rather than SRTM DEM90) 

strengthens this deduction. However, it is expected to reach higher accuracy using DEM 

derived from airborne lidar data which has been confirmed by Chen (2010). 

 

5.1.4. Prediction of forest volume (V) using GLAS  

Concerning volume predictions, two approaches was employed. The first, estimation of 

volume using volume-height relationship and the second, volume estimation using 

regressions developed between in situ volume and lidar based metrics. The result of 

volume-HLorey (116.3 m
3
/ha) was slightly better than PCs-based ANN model (119.9 m

3
/ha) 

but ANN model performed better in very low ( <10 m
3
/ha) and very high ( > 800 m

3
/ha) 

volume stands. In total, the relative error of forest volume estimated using GLAS data was 

about 26%.  

The result of this part is better than findings of Nelson et al. (2009), the only study on 

estimating forest volume using GLAS data. They predicted timber volume in central 

Siberia dominated by coniferous with an R
2

a of 0.75 and RMSE of 87 m
3
/ha using a neural 

network model employing six metrics extracted from GLAS waveform (n=51): h̄med: a 

median height which below that cumulative canopy height profile (CHP) is 50% at 
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maximum; h2-sun: a corrected maximum height; hg1-sun: height of waveform peak with the 

maximum amplitude above ground peak, f: the slope of the line formed by connecting the 

signal start point with the peak of the uppermost Gaussian return, rg3: the waveform area 

under the 3
rd

 Gaussian peak, and ng: the number of Gaussian peaks in the waveform. 

Volume average calculated using GLAS/MODIS considering GLAS shots on all slopes 

(n=66119) was about 172 m
3
/ha which is about 2.5 times less than mean volume in our 

study site (mean of 450 m
3
/ha in 60 plots). This led to higher relative error, “percentage of 

RMSE divided by mean volume”, in comparison with our result. 

In total, however the developed ANN model improved the accuracy of volume estimations 

in the extreme low and high volume stands, the residual error is still high in such area. It is 

worth to notice that our findings are based on only 60 plots mostly (about 75%) over stands 

with volume ranging from 100 to700 m
3
/ha (figure 2.11, Section 2.3.1). Thus, because of 

low number of plots in very low and high density stands, the network may not be well 

trained to learn to differentiate. It is needed to investigate scrupulously while increasing the 

number of observations, applying other statistical methods or participating ancillary data to 

enhance the accuracy of forest volume estimation in the future studies. 

Following section discusses on possible sources of uncertainties in estimation of forest 

height and volume. 

 

5.1.5. Uncertainties in prediction of height and volume using GLAS 

Two main sources of uncertainties in estimation of forest height and volume using 

ICESat/GLAS were identified. The first one is related to the field data collection, and the 

other one concerning errors in extraction of waveform metrics. 

The general sources of uncertainty in field data could be:  

- Time interval between lidar data acquisition and field measurements which has been 

ignored in the present study because of having deciduous species with low growth rate in 

their climax age.  

- In situ measurement uncertainty which mainly concerns the uncertainty on trees height 

due to different factors such as measuring tool, measurement procedure, skill of operator 

and site geography. Aside from the obvious errors associated with wrong measurements of 

distances or misreading the angles of top and base of trees with the clinometer, there are 

several less apparent sources of error that can compromise the accuracy of the tree height 

calculations. An error occurs where 1) the treetop is offset from the base of the tree, or 2) 

the top of the tree has been misidentified. Larjavaara & Muller-Landau (2013) compared 

tree height measured using tangent method (clinometer) with actual heights using towers 
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adjacent to the trees in a moist tropical forest. They measured trees with five technicians 

and obtained an RMSE on the tree heights of minimum 2.88 m. They concluded that these 

methods produced unbiased height estimates but also high level of random error. In our 

research, we minimized these sources of errors by walking around the tree and viewing it 

from different angles to distinguish the actual top from other branches. For some trees, 

measurements were done from different angles by two measurers to compare and justify 

the measurements. After all, it is expected to have an RMSE of about 2 to 3m on in situ 

tree height. The DBH was also measured using a caliper with 0.5cm precision. 

- Concerning Lorey’s height and volume, it was needed to obtain the height of all trees 

located in each plot. As explained in section 2.2.1, all trees were measured in case of DBH, 

but only eleven trees in case of height. So, height-DBH relationships were used to address 

this requirement (Table 2.9, section 2.3.1) which will cause some bias from the true 

heights. Field volume was also calculated using local volume allometric models provided 

by FRWO (Table 2.10, section 2.3.1) which may contain uncertainties. Following 

paragraphs give an overview on the uncertainties associated to the field volume 

calculation: 

As shown in Table 2.9, the accuracy of estimating tree height from DBH is between 3 and 

5.7 m. Since the RMSE of volume allometric models has not been reported by FRWO, the 

precision on the estimation of tree volume (V) using allometric model of Carpinus betulus, 

for instance, is calculated: 

(# = 89IJ%" × %C>)                   (refer to equation 2, table 2.10) 

Where, V is in m
3
, H, and DBH are in m and cm, respectively. The relationship between 

the precision on the estimation of volume and the precision on height and DBH can be 

written as equation 5.1: 

·¸̧ = 2H ·?@A?@A 4$>·AA                      (5.1) 

 

Where ∆V/V is the relative precision on the estimation of volume, ∆DBH/DBH and ∆H/H 

are the relative error on DBH and height, respectively. The coefficient b is equal to 1.0432 

(Table 2.10). For a DBH of 7.5 and 124cm, as minimum and maximum DBH of Carpinus 

betulus, respectively, the estimated height would be 12.4m and 30.8m (refer to height 

relationship for Carpinus betulus, table 2.9). According to a DBH accuracy (ΔDBH) of 

0.5cm and height accuracy (ΔH) of 3.9m (Table. 2.9), the maximum and minimum relative 

error on estimation volume would be 46.7% (for low H and DBH) and 14% (for high H 

and DBH), respectively. 
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5.1.6. Production of canopy height map 

As explained, second height regressions were developed using GLAS-based heights as 

reference and other remotely sensed and environmental data. In total, RF models 

outperformed the MLR models in predicting maximum (RMSE = 7.4 m, �K"$= 0.52) and 

mean Lorey’s height (RMSE = 5.5 m, �K" = 0.60) in this stage. Concerning Hmax map 

produced from RF model, however the accuracy is relatively suitable (RMSE = 5.3 m), 

comparison of heights extracted from the map with field measurements showed 

overestimation in samples with maximum height ranging from 23 to 35 m. It is worth to 

note that the total number of plots included in the assessment is 32 with Hmax ranging from 

23 to 48 m (except one plot = 15 m) and lack of samples especially in short sparse stands. 

Furthermore, the total area represented by the in situ plots is very small as compared to the 

total area mapped. In total only 3.2 ha of the 15000 ha of forested lands were sampled. 

Regards to mean Lorey’s height, because of lower range of values, the resulted HLorey map 

showed higher accuracy equal to 4.3 m rather than Hmax. But the relative error for Hmax and 

HLorey is similar equal to 14.8% and 14.4%, respectively. An advantage of production of 

HLorey map rather Hmax map is inclusion of less data sources. As observed before, the best 

regression model describing maximum canopy height includes indices extracted from 

DEM, PALAR and optical images (Landsat-TM and SPOT5). It is in accordance with 

research done in east part of Hyrcanian forests of Iran by Attarchi & Gloaguen (2014). 

They found that the joint use of optical and SAR data increases the reliability of the biomass 

model, significantly. But for Lorey’s height, PALSAR extracted indices did not have 

contribution in the best regression.  

The attempt for improving the precision of canopy height map using regression-kriging 

was unsuccessful in contrast with the result achieved by Fayad et al. (2016) that reported 

an improvement of about two meters in terms of RMSE for forest canopy height map. In 

our study, the exponential model fitted on the height residual semivariogram did not show 

strong spatial correlation which could be as a result of the heterogeneity of the study area 

in case of forest structure and topography. While Fayad et al. (2016) worked on relatively 

homogeneous flat forests.  

In total, there are several limitations to production of height map for the study area. The 

slope correction attempted here was parameterized using only 60 field plots that do not 

represent all slopes conditions properly, especially in case of steepest slopes (greeter than 

60%). The GLAS-based heights were obtained using local GLAS height models developed 

for a small part of study site which will lead to height discrepancy especially in 

heterogeneous forests. To ensure that as many GLAS footprints as possible were included 

in the analysis, the data from all GLAS laser campaigns from September 2003 on were 
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included and processed using the same algorithms. These data were collected over a more 

than 5-year period, and therefore do not reflect a static moment in time. Lastly, the 

validation of the height maps is incomplete and is limited by a lack of field observations 

for many of the forested lands within study site. 

Several other studies have used GLAS data to derive canopy height over large regions, but 

have typically combined them with 250 m resolution MODIS data rather than 10 to 30 m 

resolution spot5 and Landsat-TM data.  These studies typically developed products that are 

global assessments of canopy height at a coarse scale (Lefsky, 2010; Simard et al., 2011; 

Fayad et al., 2016). In this study, we demonstrated GLAS data are also useful in mapping 

at finer resolution, although subject to the limitations identified herein. However further 

work needs to be done to thoroughly understand and quantify the various sources of error 

underlying the lack of correspondence between the field observations and the mapped 

canopy height values, this map provides a good understanding of the distribution of forest 

canopy height across the study area in a short time and at the lowest cost. 
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5.1.7. General conclusion 

In this research, capability of ICESat GLAS was investigated for estimation of forest 

maximum canopy height, mean Lorey’s height and forest volume in part of Hyrcanian 

forests of Iran. It was also subjected to provide forest canopy height and volume map if it 

is possible.  

Based on the result, GLAS was able to estimate maximum canopy height and Lorey’s 

height with an accuracy of about 5m and 3.4m, respectively. In contrary to the suitable 

results related to forest heights (maximum and mean), GLAS data did not meet the 

desirable achievements in estimation of forest volume. These results address the first main 

question of this study about ability of GLAS data in estimation of forest biophysical 

parameters in mountainous heterogeneous forests of north of Iran.
 

As it was observed in the result, two metrics of waveform extent (Wext) and terrain index 

(TI) had key role in estimation of GLAS-based heights. Wext as vertical distance between 

signal start and end of a waveform is directly related to the canopy height over flat area, 

but it is extended by increasing of the terrain slope. It challenges the height derivation over 

severe topography. In this research, using regression models and digital elevation model 

helped to overcome the impact of terrain slope on waveform characteristics. Generally, all 

regression models containing TI extracted from DEM outperformed models not-including 

TI. It confirms the importance of this metric in estimation of height using GLAS data 

which was under question in our study area. Although, further research needs to be done to 

address the impacts of slope on height recovery in Hyrcanian forests of Iran using GLAS 

data. 

Parametric and non-parametric statistical methods of multiple linear regression, random 

forest and artificial neural network were employed for GLAS-based height/volume 

estimation. Concerning the Hmax, the best result was obtained using MLR based on 

waveform metrics. An ANN model based on waveform metrics produced also relatively 

similar result. Regards to HLorey, PCs based neural network models outperformed two other 

statistical methods. A neural network model based on PCs performed also better than MLR 

and RF regressions in estimation of forest volume. Thus random forest showed the weakest 

performance in GLAS based forest parameter derivation in our study area. 

As a consequence of desirable results concerning height estimation (both Hmax and HLorey), 

production of height maps was under consideration using regression models and 

regression-kriging method. Thus a synergy of GLAS, PALSAR, Landsat-TM, SPOT5 and 

environmental data were used in the analysis. Comparison of resulted maps from 

regression models with field observations (in a small part of the study area near to GLAS 
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footprints locations) showed promising outcomes. However, further work needs to be done 

to thoroughly understand and quantify the various sources of error underlying the lack of 

correspondence between the field observations and the mapped canopy height values. The 

regression-kriging method did not improve the former height maps that could be as a 

consequence of heterogeneity of the study area. By this end, the second important question 

of this research related to the possibility of forest height/volume map production using 

combination of GLAS and other remotely sensed data was answered. 

However terrain slope is very important in estimation of forest parameters using GLAS 

data, consideration of forest characteristics such as forest type and horizontal and vertical 

structure of forest may influence the quality of estimations. For instance, it is expected to 

achieve better results in pure even-aged forest that have simpler vertical structure rather 

than mixed uneven-aged forest. 

With the end of the GLAS data collection in 2009 no new spaceborne lidar data are 

currently available for updating results. The ICESat-2 mission, which will provide new 

spaceborne lidar data using the Advanced Topographic Laser Altimeter System, is 

scheduled for launch in 2017. 
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5.2. Perspectives 
 

- The Hyrcanian forest is a unique natural heritage of global importance. The Caspian 

region harbors the world's last remaining primary forests of the temperate deciduous forest 

formation. This research was done on a small area with about 15000 ha forest cover of 1.8 

million hectare of Hyrcanian forest. Given the complexity of this forest in terms of vertical 

and horizontal structures, forest types, forest density, topography etc., it is suggested to do 

supplementary researches using spaceborn lidar in other parts of mixed broadleaved 

Hyrcanian forests. 

- This research took into account the terrain slope in the estimation of canopy height using 

GLAS data. Since many other forest characteristics (i.e. forest type, mixture percent and 

forest age) may affect the quality of estimations, it is interesting to consider these factors in 

the future studies. However, based on the attained experiences, such a detailed research 

needs denser coverage of lidar data which is addressed in the upcoming ICESat-2 

technology. 

- GLAS height models were developed only using leaf-on season lidar data and was 

applied to all time lidar data.  This was a limitation of our research because of low density 

of GLAS data over study area. As stated by Pang et al. (2008), the summer period GLAS 

waveforms capture the returns from forest canopy. The data from early stage of autumn 

period still contain enough returns from forest canopy, even with lower intensity. The 

spring period and late autumn period data contain less signals from forest canopy and 

difficult to estimate forest height. Therefore, it is expected to improve estimations by 

performing the analysis separately using leaf-on and leaf-off season data in the deciduous 

broadleaved forests.  

- For the second part of this research (providing forest height map from synergy of GLAS, 

PALSAR, optical and environmental data) some environmental data such as geological 

units, aspect and elevation maps were used in addition to TI and slope as predictors in 

building second height models. Among these variables, only TI showed good contribution 

in the models. This predictor was also used in the first part of this study which was 

detecting capability of GLAS data for retrieving mean and maximum height. It is probable 

that considering other environmental data rather than TI in the first step (GLAS height 

models), lead to good contribution of them in the second step (second height model and 

finally height map). However as mentioned before, such investigations require dense 

coverage of lidar data so that there be enough lidar samples representing different 

conditions or classes of an environmental data. 
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- In order to provide forest canopy height map using regression model (non-spatial method), 

MLR and RF models were developed between GLAS-based heights and pre-mentioned 

remotely sensed data. The selected models and consequently the resulted maps showed 

overestimation especially for maximum height. It could be as a result of inability of GLAS 

in estimating short trees height ( <10m) which leads to error in reference heights (less than 

10m) estimated from GLAS and consequently the fitted RF model based on optical, radar 

and environmental data overestimates also tree’s height shorter than 20 m. But it is also 

suggested to test other statistical regression methods. 

- A limitation of this research was lack of field observations describing all conditions of 

the study area. Indeed, a larger database (ranges of slopes, height, etc.) would be very 

useful to better understand the limitations of the proposed methods. Rather than laborious, 

cost and time consuming field work, some points in a mountainous forest are inaccessible. 

Therefore, it would be interesting to employ airborne lidar to collect information in such 

condition. By the way, a comprehensive database of field observations needs also a denser 

coverage of lidar data which is addressed in the upcoming ICESat-2 technology. 
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