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Titre : ANALYSE FONCTIONNELLE DE LA DEMETHYLATION D'ADN ACTIF EN 
TOMATE 

Résumé  
La méthylation de l'ADN génomique est l'un des principaux mécanismes épigénétiques 

qui conduisent à des changements stables et héréditaires de l'expression des gènes sans que cela 

�V�¶�D�F�F�R�P�S�D�J�Q�H�� �G�H�� �O�D�� �P�R�G�L�I�L�F�D�W�L�R�Q de la séquence d'ADN sous-jacente. Elle fait référence à 

l'addition d'un groupement méthyl sur le carbone 5 des cytosines (5meC). Ces dernières années, 

�O�¶�p�W�X�G�H���G�H�V���P�p�F�D�Q�L�V�P�H�V���U�p�J�X�O�D�Q�W���O�D���P�L�V�H���H�Q���S�O�D�F�H���H�W���O�H���P�D�L�Q�W�L�H�Q���G�H���G�H���F�H�W�W�H���P�p�W�K�\�O�D�W�L�R�Q����est 

devenu un thème de recherche importante, en raison de son rôle essentiel dans la régulation du 

fonctionnement du génome des plantes et des mammifères. La distribution des 5meC sur 

�O�¶�H�Q�V�H�P�E�O�H�� �G�X�� �J�p�Q�R�P�H�� �G�¶�X�Q�� �R�U�J�D�Q�L�V�P�H���� �H�Q�F�R�U�H�� �D�S�S�H�O�p�� �P�p�W�K�\�O�R�P�H����peut être déterminée par 

�G�L�I�I�p�U�H�Q�W�H�V���P�p�W�K�R�G�H�V���G�R�Q�W���O�H���V�p�T�X�H�Q�o�D�J�H���G�H���O�¶�$�'�1���J�p�Q�R�P�L�T�X�H���D�S�U�q�V���W�U�Ditement au bisulfite de 

sodium (WGBS ou méthyl C séq).    

�&�K�H�]���O�H�V���Y�p�J�p�W�D�X�[�����O�D���P�p�W�K�\�O�D�W�L�R�Q���G�H���O�¶�$�'�1���S�H�X�W���V�H���S�U�R�G�X�L�U�H���G�D�Q�V���W�R�X�V���O�H�V���F�R�Q�W�H�[�W�H�V���G�H��

séquence incluant  les motifs symétriques CG et  CHG et le contexte dissymétrique  CHH (H 

pouvant être A, T ou C). En fonction du contexte de séquence, la méthylation des cytosines est 

mise en place et maintenue par trois types différents d'ADN méthyltransférase. Le maintien de 

la méthylation aux sites CG et CHG est  assurée par �O�¶�$�'�1��Méthyltransférase 1 (MET1) 

et par la Chromomométhylase,  CMT3, respectivement.  La chromomométhylase 2 (CMT2) 

est-elle impliquée dans le maintien des méthylation de type CHH, de même que les Domain 

Rearanged Methyltransferases (DRM). Ces dernières sont sont responsables de la mise en place 

de la méthylation de novo �H�W�� �V�R�Q�W�� �J�X�L�G�p�H�V�� �M�X�V�T�X�¶�j�� �O�H�X�U�� �F�L�E�O�H�� �S�D�U�� �G�H�V�� �S�H�W�L�W�V�� �$�5�1�V�� �V�H�O�R�Q�� �O�H��

mécanisme de «RNA directed DNA Methylation » (RdDM).   Enfin la méthylation de l'ADN 

peut également être éliminée par les ADN glycosylase-lyases bifonctionnelle, également 

appelée les DEMETER-like DNA demethylases (DML). Chez la plante-modèle Arabidopsis, 

la déméthylation active de l'ADN joue un rôle essentiel dans l'empreinte maternelle et la 

déméthylation �O�¶�$�'�1���J�p�Q�R�P�L�T�X�H���O�R�U�V���G�X���G�p�Y�H�O�R�S�S�H�P�H�Q�W���G�H���O�¶�D�O�E�X�P�H�Q, mais elles ne semblent 

pas jouer de rôle essentiel pendant le développement de la plante chez cette espèce. La 

�P�p�W�K�\�O�D�W�L�R�Q���G�H���O�¶�$�'�1���J�p�Q�R�P�L�T�X�H���S�H�X�W���D�X�V�V�L���r�W�U�H���S�H�U�G�X�H���D�S�U�q�V���O�D���U�p�S�O�L�F�D�W�L�R�Q���G�H���O�¶�$�'�1�����O�R�U�V�T�X�H��

les mécanismes devant assurer son maintien ne sont pas actifs. On parle alors de déméthylation 

�S�D�V�V�L�Y�H���G�H���O�¶�$�'�1���J�p�Q�R�P�L�T�X�H���� 

 



La tomate (Solanum lycopersicum) est une plante ayant une forte importance agronomique. 

Elle est aussi utilisée comme principal modèle pour �O�¶�p�W�X�G�H�� �G�X développement et du 

murissement des fruits charnus climatériques. Des études récentes ont maintenant montré que 

le développement et la maturation de ces fruits reposent sur la mise en place et le maintien de 

patrons de transcription différentielle, dont la régulation est assurée par un ensemble de 

processus  complexes impliquant à la fois des contrôles génétiques et des régulations 

hormonales. Cependant, il semble que la régulation du développement et de la maturation des 

fruits charnus ne reposent  pas basant uniquement sur les modèles génétiques, mais impliquent 

aussi es régulations épigénétiques. En effet, des travaux récents suggèrent que la méthylation 

de l'ADN pourrait également être impliquée En particulier, une diminution importante de 

�O�¶�D�E�R�Q�G�D�Q�Fe des 5 meC à l'échelle du génome entier et la déméthylation à certains promoteurs 

observés lors de la maturation des fruits de tomate.  

A fin d'analyser les mécanismes moléculaires responsables de la perte de méthylation 

survenant lors de la maturation des fruits de tomate, le projet présenté se concentre sur l'analyse 

fonctionnelle des enzymes de tomate impliquées dans la déméthylation active de l'ADN 

génomique. Nous avons identifié 4 ADN déméthylases putatives (SlDML 1 à 4) qui contiennent 

toutes trois domaines hautement conservés comprenant le domaine Glycosylases qui est porteur 

�G�H���O�¶�D�F�W�L�Y�L�W�p���H�Q�]�\�P�D�W�L�T�X�H���H�W��deux domaines supplémentaires A et B nécessaires à la liaison de 

ces enzymes à l'ADN. Dans une tentative d'étude de l'activité des protéines SlDML, les ADNcs 

complets codant pour  les enzymes SlDML1 et 2 et ainsi que fragments de ces ADNcs codant 

pour des versions tronquées de la portéine SlDML2 tronquées a été clonés. La production des 

protéines recombinantes correspondantes dans la bactérie E Coli, �Q�¶�D���S�D�V���S�H�U�P�L�V���G�H���G�p�P�R�Q�W�U�H�U��

leur activité biochimique.  

Pour analyser les fonctions biologiques des ADN déméthylases de Tomate, des plants de 

tomates transgéniques altérés dans l'expression des gènes SlDML ont été générés. Ces plantes 

présentent de nombreuses altérations du développement, parmi lesquelles des modifications de 

�O�¶�R�U�J�D�Q�L�V�D�W�L�R�Q���I�O�R�U�D�O�H des fruits et de la forme des feuilles �D�L�Q�V�L���T�X�¶�X�Q�H inhibition marquée de la 

maturation des fruits. En utilisant ces plantes, nous avons démontré que la déméthylation active 

de l'ADN est une exigence absolue pour que la maturation des fruits de tomate puisse avoir lieu. 

En particulier nous avons mis en évidence un lien de cause à effet direct entre la déméthylation 

active de l'ADN principalement médiée par une des quatres DML de tomate, SlDML 2 et la 

maturation des fruits. �/�H�V���S�O�D�Q�W�H�V���G�R�Q�W���O�¶�H�[�S�U�H�V�V�L�R�Q���G�X���J�q�Q�H��SlDML2 est réduite présente une 

inhibition de la maturation consécutive �j���O�¶hyperméthylation et la répression de l'expression des 

gènes codant pour les facteurs de transcription contrôlant la maturation des fruits (Ripening 



Inhibitor, RIN ; Non Ripening NOR ; Colourless Non Ripening, CNR) et pour des enzymes 

impliquées dans des processus biochimiques clefs se produisant lors du murissement tels que 

�O�¶�Dccumulation des caroténoïdes (Phytoène Synthase 1, PSY1). 

A fin de  déterminer si les phénotypes des plantes transgéniques (développement affectant 

les fruits, les fleurs ainsi que le développement des feuilles) sont  héréditaires après la perte du 

transgène par ségrégation, leur stabilité a été étudiée sur plusieurs générations. Dans tous les 

cas, les phénotypes sont perdus et les plantes après perte du transgène semblent en tout point 

identique à des plants de tomate sauvage, ce qui suggère une absence d'héritabilité des 

modifications induites par �O�D���U�p�G�X�F�W�L�R�Q���G�¶�H�[�S�U�H�V�V�L�R�Q���G�H�V���J�q�Q�H�V��SlDML1 et 2. Cependant, nous 

ne pouvons exclure que certains patrons anormaux de méthylation, liés ou non aux phénotypes 

observés, sont néanmoins hérités. Il  est possible que la perte des phénotypes ne soit pas due à 

une non-héritabilité �G�¶�H�P�S�U�H�L�Q�W�H�V de méthylation inappropriées à certains loci spécifiques. Cela 

pourrait plutôt refléter que la combinaison des états de méthylation �j�� �O�¶�H�Q�V�H�P�E�O�H les loci 

nécessaire au phénotype  n'est pas obtenue dans les plantes obtenues après croisement. 

�/�¶�D�Q�D�O�\�V�H���G�¶�X�Q���S�O�X�V���J�U�D�Q�G���Q�R�P�E�U�H���G�H���S�O�D�Q�����V�X�U���S�O�X�V�L�H�X�U�V���J�p�Q�p�U�D�W�L�R�Q�V et �D�V�V�R�F�L�p���j���O�¶�D�Q�D�O�\�V�H���G�H��

la distribution des cytosines méthylées sera nécessaire pour répondre à cette question.   

Pour déterminer, les processus contrôlés par SlDML2 dans les fruits de tomate, nous avons 

effectué une analyse comparative du transcriptome et du métabolome des fruits des plantes 

sauvages et des plantes transgéniques RNAi DML à huit ét apes de développement du fruit. Ces 

analyses ont ensuite été corrélées  aux données du méthylome de tomate déterminé à partir de 

fruits de tomate de la variété Ailsa craig. Ces analyses révèlent qu'en plus des gènes RIN, NOR, 

CNR, PSY1 un nombre important de métabolites primaires et secondaires, et de nombreux gènes 

présentent une accumulation différentielle et des patrons d'expression distincts respectivement 

chez les fruits transgéniques DML RNAi et chez les fruits sauvages. Par exemple, 

l'accumulation de caroténoïdes, la biosynthèse et la signalisation de l'éthylène, la synthèse puis 

la dégradation de la paroi cellulaire, mais aussi �O�¶�H�[�S�U�H�V�V�L�R�Q�� �G�H�V gènes codant pour divers 

facteurs de transcription, et pour certains régulateurs épigénétiques, incluant une DRM, des 

histones dé-acétylases et différents histones déméthylases sont extrêmement affectés dans les 

fruits transgéniques. Ces résultats suggèrent que de nombreux gènes, y parmi lesquels ceux qui 

jouent des rôles essentiels pour le développement et la maturation des fruits, nécessite�Q�W���G�¶�r�W�U�H��

déméthylés  pour leur expression. En conséquence, ces travaux apportent la démonstration, pour 

la première fois, que la déméthylation active d'ADN a des effets très globaux sur le 

développement et la maturation des fruits. Il est maintenant nécessaire de valider ce travail en 



déterminant le méthylome des lignées transgéniques altérées dans la déméthylation  active de 

l'ADN. 

En conclusion, les observations présentées dans ce travail fournissent un cadre de travail 

�S�H�U�P�H�W�W�D�Q�W���G�¶�D�Q�D�O�\�V�H�U���O�H�V���P�p�F�D�Q�L�V�P�H�V���P�R�O�p�F�X�O�D�L�U�H���U�H�V�S�R�Q�V�D�E�O�H���G�H���O�D���G�p�P�p�W�K�\�O�D�W�L�R�Q���G�H���O�
�$�'�1��

se produisant pendant la maturation des fruits de tomate. Ici, nous présentons une analyse 

complète des con�V�p�T�X�H�Q�F�H�V�� �G�¶�X�Q�H�� �U�p�G�X�F�W�L�R�Q�� �G�H�� �O�¶�H�[�S�U�H�V�V�L�R�Q�� �G�X�� �J�q�Q�H�� �G�H�� �6�O�'�0�/���� �V�X�U�� �O�H��

trancriptome et le métabolome des fruits, tout au long de leur développement. La corrélation 

�H�Q�W�U�H�� �O�H�V�� �S�U�R�I�L�O�V�� �G�¶�H�[�S�U�H�V�V�L�R�Q�� �G�H�� �J�q�Q�H�V�� �U�p�D�O�L�V�p�H�V�� �O�R�U�V�� �G�H�� �F�H�� �W�U�D�Y�D�L�O�� ���� �Y�D�U�L�p�W�p�� �:�9�$���������� �H�W�� �O�H�V��

ch�D�Q�J�H�P�H�Q�W�V���G�H���O�D���G�L�V�W�U�L�E�X�W�L�R�Q���G�H���O�D���P�p�W�K�\�O�D�W�L�R�Q���G�H���O�¶�$�'�1���W�H�O�O�H�V���T�X�H���G�p�F�U�L�W�H�V���F�K�H�]���O�D���Y�D�U�L�p�W�p��

�$�L�O�V�D�� �F�U�D�L�J�� �P�R�Q�W�U�H�� �T�X�¶�H�Q�� �S�O�X�V�� �G�
�X�Q�� �U�{�O�H�� �J�p�Q�p�U�D�O�� �G�D�Q�V�� �O�D�� �U�p�J�X�O�D�W�L�R�Q�� �G�H�V�� �J�q�Q�H�V�� �G�L�U�H�F�W�H�P�H�Q�W��

impliqués dans plusieurs voies métaboliques, plusieurs gènes codant pour des facteurs de 

transcription ainsi que des régulateurs épigénétiques sont également susceptibles d'être 

directement contrôlés par la méthylation de leur région promotrice. Cependant, nous ne 

pouvions pas établir une relation stricte entre la diminution de la méthylation de l'ADN et 

l'induction de l'expression des gènes, car de nombreux gènes présentant une diminution du 

niveau de méthylation de l'ADN dans leur région promotrice pendant la maturation des fruits 

sauvages correspondent à des gènes normalement réprimés. Ceci suggère que la méthylation 

active de l'ADN serait nécessaire àleur répression pendant le processus de maturation. Ainsi la 

relation entre la déméthylation de l'ADN et l'expression des gènes pourrait être plus complexe  

et ne se limiterait pas à la simple hypothèse de départ de ce travail: la déméthylation de l'ADN 

est nécessaire à l'expression de gènes induits au cours de la maturation. La déméthylation de 

active de l'ADN pourrait également être nécessaire à la répression de gènes exrimés uniquement 

lors des phases précoces du développement des fruits et réprimés lors du murissement. 

Mots clés :  

Tomate ; Déméthylation d'ADN; Mûrissement des fruits; Régions différentiellement 

méthylées; l'expression du gène  

 

 

 



Title  : FUNCTIONAL ANALYSIS OF ACTIVE DNA 

DEMETHYLATION IN TOMATO  

Abstract  

DNA methylation is one of the epigenetic mechanisms that lead to stable and heritable 

changes in gene expression without alteration on DNA sequence. DNA methylation refers to 

the addition of a methyl group to the fifth position of the cytosine ring. In recent years, DNA 

methylation is becoming more and more widely studied, because of its importance in mammals 

and plants. Methylated cytosines distribution can be determined across the genome at single-

nucleotide resolution, that is methylome, using whole genome bisulfite-sequencing (BS-seq) 

approaches. The methylomes of an increasing number of plant species has been well described, 

revealing that these large-scale patterns of methylation first described for Arabidopsis are 

shared among flowering plants, although differences exist between plant species. In plants, 

cytosine methylation which occurs in all sequence context (CG, CHG, CHH, H being A, T or 

C) is set up and maintained by three different types of DNA methyltransferase. Methylation of 

symmetric CG and CHG sites can be maintained by METHYLTRANSFERASE1 (MET1) and 

CHROMOMETHYLASE2 (CMT2/CMT3), respectively. While maintenance of asymmetric 

CHH methylation relies on RNA directed DNA methylation (RdDM) or CMT2. DNA 

methylation can also be removed by the bifunctional DNA glycosylase-lyases, also called the 

DEMETER-like DNA demethylases. In the model plant Arabidopsis, active DNA 

demethylation plays a critical role in maternal imprinting and endosperm demethylation, but 

none of these functions appear to be essential for the development in this species.  

Solanum lycopersicum (tomato) is an important agronomic crop and the main model to 

study the development and ripening process of climacteric fleshy fruit. Recent studies have now 

shown that the development and ripening of fleshy fruits relies on the establishment and 

maintenance of differential transcription patterns and complex regulatory pathways that involve 

both genetic and hormonal controls are operating at these developmental phases. However, it 

appears that a full understanding of fruit development and ripening will not be achieved based 

only on genetic models as suggested by recent studies, which showing an important decrease 

in global methylation level and demethylation at specific promoters during fruit ripening. 

In order to analyze the molecular mechanisms responsible for the loss of methylation 

observed during tomato fruit ripening, the present project focuses on the functional analysis the 

tomato enzymes involved in the active demethylation of genomic DNA. As it was suggested 



that DNA demethylases is DNA glycosylase-lyases, which is normally associated with removal 

of methylated cytosine, nicking the DNA backbone and leaving a single nucleotide gap and 

filled with an unmethylated cytosine through base excision pathway. As in Arabidopsis, three 

highly conserved domains were observed including a glycosylases domain as well as two 

additional domains A and B. These three domains is necessary for DNA binding and catalysis. 

In an attempt to study the SlDML protein activity, the tomato full length DNA glycosylase-

lyases as well as different truncated recombinant proteins have been produced. Unfournatelly, 

none of the protein show activity in this study, a further expressional condition should be 

optimized. In addition, to investigate whether hypermethylated epialleles generated in the 

transgenic plants can be inherited after the transgene has been lost by segregation, the stability 

across generations of the developmental alterations affecting flower as well as leaf development 

was studied. As a result, T4 plants show us that the phenotypes reversed to WT phenotype once 

the transgene was out segregated, suggesting an absence of heritability of the modifications 

induced by SlDML2 knock down.  However, we cannot rule out that some abnormal 

methylation patterns linked or not to these apparent phenotypes have been inherited. In addition, 

it is not known how many loci are involved in generating the flower and leaf abnormalities. 

Hence, it is possible that lack of phenotypes is not due to the non-heritability of the improper 

methylation state at specific loci. It may reflect that the correct combination of homozygous 

methylation state at all required loci was not obtained. Further generation and screening of more 

important plant population will be necessary to answer this point.   

After characterizing the gene family encoding the tomato DNA demethylases, transgenic 

tomato plants impaired in the expression of SlDML genes have been generated. These plants 

present several developmental alterations, including inhibition of fruit ripening, modifications 

of flower, fruit and leaf shape. Using these plants, we have demonstrated that active DNA 

demethylation is an absolute requirement for tomato fruit ripening to occur. We show a direct 

cause and effect relationship between active DNA demethylation mainly mediated by one 

tomato DML, SlDML2, and fruit ripening. RNAi SlDML2 knockdown results in ripening 

inhibition via hypermethylation and repression of the expression of genes encoding ripening 

transcription factors (RIN, NOR, CNR) and rate-limiting enzymes of key biochemical processes 

(PSY1).  

In recent years, the coordinated changes during tomato development and ripening was 

analyzed using combined transcriptome, metabolism and proteome characterization. However, 

it appears that a full understanding of tomato fruit development and ripening will not be 

achieved based only on genetic models. In addition epigenetic regulation, mainly genomic 



DNA methylation may play a key role in this process. Indeed, several evidence point out the 

importance of DNA methylation and chromatin regulation on fleshy fruit development and 

ripening ripening. The fruit ripening defect of Cnr mutant is caused by hypermethylation of an 

upstream region of the CNR promoter. Zhong et al (2013) also detected that, the promoter 

region of several genes are demethylated during tomato fruit ripening, suggesting that DNA 

demethylation may play critical role during this phase of development. However, the pathways 

under the regulation of SlDML2 have not been comprehensively identified. With the aim to 

obtain a more comprehensive view of the roles of active DNA demethylation on tomato fruit 

development and ripening, we have performed a comparative analysis of the transcriptome and 

metabolome of WT and DML RNAi fruits at eight fruit development and ripening stages. These 

analyses was integrated with tomato epigenome determined in WT Ailsa craig plants. These 

analyses reveal that in addition to the four genes (RIN, NOR, CNR, PSY1) previously 

characterized a large number of metabolites and genes present differential accumulation and 

expression patterns respectively in DML RNAi transgenic fruits. Such as carotenoid, ethylene 

biosynthesis and signaling, cell wall synthesis and dissembling, transcription factors, and many 

others are extremely affected in transgenic fruits. These finding suggests that plenty of genes, 

including those playing essential roles for fruit development and ripening might require 

demethylation for their expression. Here, we present evidence for the first time that active DNA 

demethylation has very global effects on fruit development and ripening. Validation of this 

analysis will now require determining the fruit methylome of the plants impaired in active DNA 

demethylation.  

In conclusion, the observations presented in this work provide a framework for analysis of 

the molecular mechanism of DNA demethylation during fruit ripening of tomato. Here, we 

provide a comprehensive analysis of the knock down SlDML2 on the trancriptome, metaoblom 

and DNA methylation in the promoter analysis. The large transcriptional reprogramming that 

occured in mutant during fruit ripeing was correlated alterations in DNA methylation. Here we 

highlight the central role of active DNA demethylation during tomato fruit ripening. In addition 

to a general role in the regulation of genes directly involved in several metabolic pathways, we 

also found that several transcription factors as well as epigenetic regulators are also likely under 

direct methylation control. However, we could not establish a district relationship between 

DNA reduction of DNA methylation and induction of gene expression, as not all DEGs 

containing a type-a DMRs (decreased DNA methylation during fruit ripening) do not 

correspond to genes normally induced in WT and repressed in transgenic plants. Some were 

corresponding to an opposite situation and in a few cases more complex methylation pattern 



(several DMRs) were also found. Indeed these conclusions are based on methylation analysis 

obtained in another variety. They might however reflect the situation of WVA106 fruits, 

although some variations are expectable when the methylome of DML RNAi fruits will be 

analyzed. Hence the relationship between DNA demethylation and gene expression might be 

more complex than expected, and not limited to the starting hypothesis of this work: DNA 

demethylation is an absolute requirement for the expression of critical ripening induced genes. 

This is indeed clearly in this study, but the analysis presented here also suggest that DNA 

demethylation might also be necessary for the repression of several genes as well.   

In addition, from the rencent study in Arabidopsis, ROS1 were found preferentially targets 

transposable elements (TEs) which are closer to protein coding genes and intergenic regions, 

which suggesting that ROS1 may prevent DNA methylation spreading from TEs to nearby 

genes. While in tomato, as our analysis, we found the methylation level of promoter of a number 

of genes was altered during fruit ripening, therefore, through methylome analysis, we will also 

get the preference of DNA methylation on TE, this analysis will give us idea that demethylation 

in fleshy fruit may has other distinct function as it is in Arabidopsis. 
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Summary 

DNA methylation is one of the epigenetic mechanisms that lead to stable and heritable 
changes in gene expression without alteration on DNA sequence. DNA methylation refers to the 
addition of a methyl group to the fifth position of the cytosine ring. In recent years, DNA 
methylation is becoming more and more widely studied, because of its importance in mammals 
and plants. Methylated cytosines distribution can be determined across the genome at single-
nucleotide resolution, the so-called methylome, using whole genome bisulfite-sequencing (BS-
seq) approaches. The methylomes of an increasing number of plant species has been well 
described, revealing that these large-scale patterns of methylation first described for Arabidopsis 
are shared among flowering plants, although differences exist between plant species. In plants, 
cytosine methylation which occurs in all sequence context (CG, CHG, CHH, H being A, T or C) 
is set up and maintained by three different types of DNA methyltransferase. It can also be 
removed by the bifunctional DNA glycosylase-lyases, also called the DEMETER-like DNA 
demethylases. In Arabidopsis, active DNA demethylation plays a critical role in maternal 
imprinting and endosperm demethylation, but none of these functions appear to be essential for 
the development in this species.  

Tomato is the main model to study the development and ripening process of climacteric 
fleshy fruit. Recent studies have now shown that the development and ripening of fleshy fruits 
relies on the establishment and maintenance of differential transcription patterns and complex 
regulatory pathways that involve both genetic and hormonal controls are operating at these 
developmental phases. However, it appears that a full understanding of fruit development and 
ripening will not be achieved based only on genetic models as suggested by recent studies, 
showing an important decrease in global methylation level and demethylation at specific 
pormoters during fruit ripening. 

In order to analyze the molecular mechanisms responsible for the loss of methylation 
observed during tomato fruit ripening, the present project focuses on the functional analysis the 
tomato enzymes involved in the active demethylation of genomic DNA. To achieve this goal, 
after characterizing the gene family encoding the tomato DNA demethylases, transgenic tomato 
plants impaired in the expression of SlDML genes have been generated. These plants present 
several developmental alterations, including inhibition of fruit ripening, modifications of flower, 
fruit and leaf shape. Using these plants, we have demonstrated that active DNA demethylation is 
an absolute requirement for tomato fruit ripening to occur. We show a direct cause and effect 
relationship between active DNA demethylation mainly mediated by one tomato DML, SlDML2, 
and fruit ripening. RNAi SlDML2 knockdown results in ripening inhibition via hypermethylation 
and repression of the expression of genes encoding ripening transcription factors and rate-
limiting enzymes of key biochemical processes. In an attempt to study the SlDML protein 
activity a recombinant tomato DNA glycosylase-lyases have been produced. In addition, to 
investigate whether hypermethylated epialleles generated in the transgenic plants can be inherited 
after the transgene has been lost by segregation, the stability across generations of the 
developmental alterations affecting flower as well as leaf development was studied.  

To identify the global effect of active DNA demethylation on fruit ripening, we have 
compared the transcriptome and metabolome of RNAi DML plants and WT controls. This 
demonstrated that multiple aspects of the fruit ripening processes are affected when DNA 
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demethylation was impaired. Furthermore, we combined differentially methylation regions 
determined in Ailsa Craig which allow us identify a number of potential targets for active DNA 
demethylation. Validation of this analysis will now require determining the fruit methylome of 
the plants impaired in active DNA demethylation.  
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Introduction  

The introduction part of this manuscript is a review of the current state of the art concerning 
epigenetic in plant. All epigenetic mechanisms are not detailed, and the following text mainly 
focuses on DNA methylation and demethylation. Histone post-translational modifications (HPTMs) 
are also briefly considered, because cross-talks have been described between DNA methylation 
and HPMTs, leading to specific combinations of epigenetic marks along the genome, as revealed 
by genome-wide studies (Roudier et al., 2011). The introduction part is organized into six sections. 
Part I of chapter I presents general notions about epigenetic marks and how they are distributed 
along plant genomes. Part II and III ofchapter I focus on DNA methylation and demethylation, 
including the description of the various components controlling these epigenetic modifications, as 
well as their biological functions; (II: Mechanism of DNA methylation; III: DNA demethylation 
in plants); PartIV of chapter I is a brief summary of the importance of epialleles in plants; Part V 
of Chapter I introduces tomato fruit development nd ripening and related  physiological changes; 
Part  VI summarizes the current knowledge of the role of DNA methylation / demethylation during 
fruit development and ripening when the work presented here was started. 

I. Background: Definition of epigenetics 

The definition of the term "epigenetics" has evolved over time. In the early 1940s, epigenetics 
�Z�D�V�� �I�L�U�V�W�� �G�H�I�L�Q�H�G�� �E�\�� �&�R�Q�D�U�G�� �:�D�G�G�L�Q�J�W�R�Q�� �D�V�� �³�W�K�H�� �E�U�D�Q�F�K�� �R�I�� �E�L�R�O�R�J�\�� �Z�K�L�F�K�� �V�W�X�G�L�H�V�� �W�K�H�� �F�D�X�V�D�O��
interactions between genes and their products which bring the phenotyp�H���L�Q�W�R���E�H�L�Q�J�´�����:�D�G�G�L�Q�W�W�R�Q����
������������ �������������� �,�Q�� �R�W�K�H�U�� �Z�R�U�G�V���� �K�H�U�H�� �H�S�L�J�H�Q�H�W�L�F�V�� �G�H�V�L�J�Q�V�� �D�O�O�� �P�R�O�H�F�X�O�D�U�� �S�U�R�F�H�V�V�H�V�� �F�R�Q�W�U�R�O�O�L�Q�J�� �³�W�K�H��
�H�[�S�U�H�V�V�L�R�Q�� �R�I�� �D�� �J�H�Q�R�W�\�S�H�� �L�Q�W�R�� �D�� �S�D�U�W�L�F�X�O�D�U�� �S�K�H�Q�R�W�\�S�H�´��(Dupont et al., 2009). Obviously, this 
definition is broad and not precise. It includes many different mechanisms that can modulate 
phenotype such as post transcriptional regulation, non-coding RNA regulation, (Holoch and 
Moazed 2015). Since that time, epigenetics has been redefined several times, becoming more and 
more specific and precise. By the middle 1990s, it has turned from causal interactions between 
genes and their products to chromosomal modifications that had the potential to modify gene 
�H�[�S�U�H�V�V�L�R�Q���G�X�U�L�Q�J���G�H�Y�H�O�R�S�P�H�Q�W�����%�X�W���W�R�G�D�\���H�S�L�J�H�Q�H�W�L�F�V���L�V���F�R�P�P�R�Q�O�\���X�V�H�G���W�R���S�U�H�F�L�V�H�O�\���P�H�D�Q���³�W�K�H��
study of mitotically and/or meiotically heritable changes in patterns of gene expression that occur 
�Z�L�W�K�R�X�W�� �D�O�W�H�U�D�W�L�R�Q�V�� �L�Q�� �'�1�$�� �V�H�T�X�H�Q�F�H�´��(Iwasaki and Paszkowski 2014). This definition is still 
evolving and was recently suggested to also include stable marks that although not heritable may 
lead to stable alteration of the transcriptional programing of specific cells (Avramova 2015) as 
indicated by the roadmap consortium of epigenomics 
(http://www.roadmapepigenomics.org/overview). 

At present, it is widely accepted that posttranslational histone modifications, DNA 
methylation and certain non-coding RNA-mediated epigenetic regulations (Holoch and Moazed 
2015) constitute epigenetic mechanisms which are critically important in modulating the structure 
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of chromatin. Chromatin, which is only found in eukaryotic cells, designs a complex and organized 
structure made of proteins, DNA and RNA.  The structural unit of chromatin, the nucleosome, 
consists of 146 bp of DNA wrapped around a protein core made of 4 histones dimers. The 
chromatin allows the organization and compaction of the genetic material into the nucleus. Along 
each chromosome, chromatin is organized into transcriptionally active less condensed euchromatin, 
and transcriptionally inactive highly condensed heterochromatin. But chromatin structure is highly 
dynamic, and may undergo changes during development or in response to environmental signals. 
Because epigenetic mechanisms govern these modifications in chromatin structure, they impact 
DNA accessibility for all DNA-template processes including gene transcription (Lauria and Rossi 
2011), DNA recombination (Choi and Henderson 2015) and transposition (Mirouze and Vitte 
2014). In the following text, only the role of epigenetic regulations in gene expression is described, 
the other processes using DNA as a template are not discussed. 

The epigenetic regulation of the genome activity relies on different mechanisms. Some of 
these mechanisms involve chromatin modifiers, which are responsible for covalent modifications 
in chromatin, including DNA methylation, and histone post-translational modifications (HPTMs), 
the so-called epigenetic marks. Other epigenetic mechanisms involve chromatin remodelers, which 
non-covalently modify chromatin structure by changing the nucleosome position, destabilizing 
nucleosomes, or substituting histone variants to the canonical histones. Both chromatin modifiers 
and chromatin remodelers usually function in concert, to modify chromatin structure.  

1.1 Epigenetic marks 

Two types of epigenetic marks have been described, DNA methylation and histone post-
translational modifications corresponding both to covalent modifications, affecting respectively the 
DNA molecules, and the different histone proteins. 

 1.1.1 DNA methylation 

Although DNA covalent modifications have been described since 1948, it was first suggested 
that these modifications may modulate gene expression much later in 1969 (Hotchkiss 
1948;Griffith and Mahler 1969). DNA methylation refers to the addition of a methyl group to the 
fifth position of the cytosine ring. This covalent modification is found in procaryotes (Adhikari and 
Curtis 2016) and initially existed in most of the eukaryotic including plants, fungi, protists and 
animals (Zemach et al., 2013). But it appears that the ability to methylate DNA was lost in some 
organisms. For example, the genomes of the budding yeast Saccharomyces cerevisiae and of the 
nematode worm Caenorhabditis elegans do not contain methylated cytosine (Colot and Rossignol 
1999). DNA methylation is considered as a very stable mark that is maintained by well described 
mechanisms (Law and Jacobsen 2010; Matzke and Mosher 2014;) and which can be removed by a 
variety of mechanisms depending on the organism considered (Piccolo and Fisher ;Chinnusamy 
and Zhu 2009;Kohli and Zhang 2013). Recently, another pattern of DNA modification, DNA 
hydroxymethylation was only found in mammals and was shown to be an intermediate to DNA 
demethylation. In addition, 5-hydroxymethylcytidine (5hmC) is also though to play regulatory 
roles in gene expression (Song and Pfeifer, 2016). More recently, DNA N6-adenine methylation 
(6mA) was also proposed to become a new epigenetic mark in eukaryotes although it is detected 
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at very low amount. The possible regulatory function of 6mA mark was reviewed by Luo et al 
(2015) (Luo et al., 2015).  

In mammals, DNA methylation mainly happens in the symmetrical CpG context, which 
occupies approximate 70-80% of CG throughout the genome (Law and Jacobsen 2010). However, 
recent publications have described that DNA methylation in non CG context (mCH) was also 
observed in embryonic stem cells, and adult mammalian somatic cells, such as mammalian brain 
cells. Genome wide methylomes show that the content of mCH in fetal brain cells is very low, but 
abundant in human adult brain tissue. This increase in mCH is correlated with tissue-specific 
functions (Pinney 2014;Schultz et al., 2015). This suggests that, in addition to mCG that plays 
major roles in mammals development, mCH appears to have important functions during the 
formation of specific tissues.  In plants, the cytosine methylation patterns are distinct: cytosine 
methylation can occur in all sequence contexts, in CG, CHG symmetrical contexts, and in non-
symmetrical CHH context (where H=A, T or C). The distribution of mC between the different 
sequence contexts varies between plants. For example, in Arabidopsis methylation occurs 
predominantly at the CG context (CG:55%; CHG:23%; CHH:22%) (Zhang et al., 2006;Lister et 
al., 2008), whereas Zhong et al (2013) found that in tomato, CHH is the major context for mC 
(CG:28%; CHG:23%; CHH:49%) (Zhong et al., 2013). However in most plants, the methylation 
level in CG context is always higher than in CHG and CHH contexts (calculated as the number of 
methylated sites over the total number of sites in a genome, i.e., mCG/total CG sites). This indicates 
that methylation predominantly occurs in CG context compared with other contexts. For example, 
Niederhuth et al (2016) found that mCG is always the highest among the three cytosine contexts 
by comparing 34 different angiosperm species, although there is a large variation in methylation 
levels in each cytosine context in different species (Fig 1.1) (Niederhuth et al., 2016).  

 

Fig 1. 1 Genome-wide methylation levels for different cytosine contexts (CG, CHG, and CHH) 
in different plant species. Cytosine methylation levels in 34 different plant species. Figure A was 
adapted from Niederhuth et al (2015); Cytosin methylation level and genome size in different 
species. Figure A and Figure B showed CG methylation level is highest in all the species were 
measured. Figure B was adapted from Mirouze et al (2014). 
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1.2 Histone posttranslational modifications 

Histones are basic proteins that are essential for the packaging of DNA into chromatin. The 
nucleosome, which is the structural chromatin unit, consists of 146 bp of DNA wrapped around an 
octameric histone core made of 4 histones dimers. Among the five major families of histones that 
have been described H2A, H2B, H3 and H4 are the core histone proteins, while H1 is known as 
the linker histone (Fig 1.2) (Luger et al., 1997;Georgopoulos 2002). 

 

Fig 1. 2 Structure of a nucleosome.���7�K�H�� �D�V�V�H�P�E�O�\�� �R�I�� �'�1�$�� �L�Q�W�R�� �D�� �F�R�P�S�D�F�W�� �V�W�U�X�F�W�X�U�H�� �W�H�U�P�H�G��
�F�K�U�R�P�D�W�L�Q���L�V���H�V�V�H�Q�W�L�D�O���I�R�U���S�D�F�N�D�J�L�Q�J���W�K�H���J�H�Q�R�P�H���L�Q�W�R���W�K�H���F�H�O�O���Q�X�F�O�H�X�V�����c�����D�Q�J�V�W�U�R�P�V�����)�L�J�X�U�H���Z�D�V��
�D�G�D�S�W�H�G���I�U�R�P���*�H�R�U�J�R�S�R�X�O�R�V������������������ 

 

Histone posttranslational modifications (HPTMs) include acetylation, methylation, 
phosphorylation, sumoylation as well as ubiquitination and occur at amino acid residues (lysines, 
histidine, etc) located mainly in the amino terminal tail of histone that protrudes from the 
nucleosome (Fig 1.���������7�K�H���+�L�V�W�R�Q�H���3�7�0�¶�V���G�L�Y�H�U�V�L�W�\���L�V���Pultiplied by the fact that different amino 
acid residues can be modified in each single histone, and that some modifications occur at various 
levels. For example, the lysine K4 of histone H3 may be mono-, di-, or tri-methylated. Histone 
marks are associated with either activation or repression of gene transcription. For example 
histones H3 and H4 acetylation, and histone H3 methylation of lysine K4 are associated with gene 
activation(for a review, see (Lauria and Rossi 2011)). HPTM can affect chromatin structure in two 
different ways (Bowman and Poirier 2015). First all marks except methylation modify the net 
charge of the histones, and might alter the interactions between nucleosomes or between DNA and 
histones within a single nucleosome. �)�R�U���H�[�D�P�S�O�H���«�� Second, HPTMs constitute signals that are 
read by other proteins, often organized as protein complexes, able to influence chromatin structure, 
or to directly regulate gene expression. Indeed the signal recognized by these regulatory proteins 
may correspond to individual marks, or to a combination of different HPTMs. The information 
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provided by the HPTMs constitutes the so-called histone code whose existence was first postulated 
by Jenuwein and Allis (Jenuwein and Allis 2001). 

 

 

 

Fig 1.3 �1�� �W�H�U�P�L�Q�L�� �D�Q�G�� �&�� �W�H�U�P�L�Q�L�� �R�I�� �W�K�H�� �F�R�U�H�� �K�L�V�W�R�Q�H�V�� �D�Q�G�� �W�K�H�L�U�� �U�H�V�L�G�X�H���V�S�H�F�L�I�L�F�� �H�S�L�J�H�Q�H�W�L�F��
�P�R�G�L�I�L�F�D�W�L�R�Q�V�� �D�W�� �I�R�X�U�� �Q�X�F�O�H�R�V�R�P�H�� �F�R�U�H�� �K�L�V�W�R�Q�H�V�����+���$���� �+���%���� �+���� �D�Q�G�� �+���� �U�H�S�U�H�V�H�Q�W���I�R�X�U��
�Q�X�F�O�H�R�V�R�P�H���K�L�V�W�R�Q�H�V�����'�L�I�I�H�U�H�Q�W���V�K�D�S�H�V���Z�L�W�K���O�H�W�W�H�U�V���U�H�S�U�H�V�H�Q�W���G�L�I�I�H�U�H�Q�W���K�L�V�W�R�Q�H���P�D�U�N�V���D�V���L�Q�G�L�F�D�W�H�G����
�)�L�J�X�U�H���U�H�I�H�U�H�Q�F�H�G���I�U�R�P���*�U�D�I�I���H�W���D�O�������������� 

 

2. Genome-wide distribution of methylcytosines 

Whole genome bisulfite-sequencing (WGBS) approaches enable determination of 
methylcytosines distribution across the genome at single-nucleotide resolution, revealing the so-
called methylomes (Laird PW 2010). 

In mammals, DNA methylation is spread over the entire genome, with the exception of dense 
clusters known as CpG islands often found near gene promoters (Pinney 2014)).  

In plants, a majority of DNA methylation occurs at transposable elements (TE) and repetitive 
sequences that are clustered in heterochromatin in centromeric, and pericentromeric regions, but 
that may also be found in euchromatin (Chan et al., 2005). TEs and other repeats are methylated in 
all possible contexts (CG, CHG and CHH), and this methylation has been shown to be essential for 
the repression of transposons transcription and mobility. The genome wide profiling of the 
Arabidopsis methylome has also shown that the methylation pattern of genes is complex and can 
be located in various part of genes (Zhang et al., 2006). Hence, in Arabidopsis, 61.5% of the genes 
were entirely unmethylated. When present DNA methylation can occur either in the promoter 
region (5.2% of the Arabidopsis genes) and/or gene bodies (33.3% of the genes). Promoter 
methylation was associated with genes presenting differential expression pattern, whereas gene 
body methylation, which is mainly restricted to CGs, is prevalent in constitutively expressed genes 
with moderate to high transcription level. Hence unlike methylation at transposons, CG 
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methylation in gene bodies does not seem to cause silencing (Lister et al., 2008). Furthermore in 
met1 mutants, which lack virtually all CGs methylation (see below), the expression of body-
methylated genes did not appear to be systematically increased when compared to unmethylated 
genes (Zhang et al., 2006; Law and Jacobsen 2010). Indeed the function of body methylation in 
plants remains to be further investigated (For a review, see Bewick et al (2017)).  

The methylomes of an increasing number of plant species are now being described, revealing 
that these large-scale patterns of methylation first described for Arabidopsis are shared among 
flowering plants, but some differences also exist (Springer et al., 2016). For example, whereas in 
Arabidopsis intergenic regions are mostly short and devoid of methylation, this is not true for rice 
or maize where these regions are dominated by transposons and methylated (Fig 1.4 ) (Springer et 
al., 2016). Other differences are related to the repartition of the methylation in the 3 different 
sequence contexts. For example, in Arabidopis CHG and CHH methylation often occur together 
and are mostly located at transposons together with CG methylation, but this is not the case in 
species such as rice, maize or tomato. In maize, where the genome-wide CHH methylation levels 
are quite low, most transposons lack elevated CHH methylation (West 2014). The analysis of the 
maize methylome furthermore revealed limited regions often located close to genes, characterized 
with high CHH methylation and low level of CG and CHG methylation (Gent et al., 2013). Li et 
al (2015) raised the hypothesis that these so-called CHH islands may act as epigenetic insulators, 
preserving the silencing of transposons from activity of nearby genes (Gent et al., 2013;Li  et al., 
2015a). In rice, CHH methylation is mainly located in euchromatic regions where it essentially 
targets small TE such as miniature inverted transposable elements (MITEs), which are located with 
�K�L�J�K���I�U�H�T�X�H�Q�F�\���D�W���W�K�H�����¶���D�Q�G�����¶���H�Q�G���R�I���S�U�R�W�H�L�Q-coding genes (Zemach et al., 2010). The analysis of 
tomato met�K�\�O�R�P�H�V���D�O�V�R���U�H�Y�H�D�O�H�G���V�X�F�K���H�Q�U�L�F�K�P�H�Q�W���L�Q���&�+�+���P�H�W�K�\�O�D�W�L�R�Q���L�Q���W�K�H�����¶���U�H�J�L�R�Q�V���R�I���J�H�Q�H�V����
associated with MITEs (Zhong et al., 2013), although in tomato there is also a substantial level of 
CG and CHG methylation in the same regions (Fig 1.5). Interestingly two recent studies in maize 
have shown the association between the insertion of a MITE in the promoter region of the 
Vegetative to generative transition 1 (Vgt1), a specific regulatory gene and a characteristic trait, 
early flowering time (Castelletti et al., 2014) or drought tolerance (Mao et al., 2015). In both case 
a correlation has been established between the presence of the MITE in the promoter, an increase 
in promoter CHH methylation, and a decrease in gene expression, suggesting that TE insertion can 
influence neighboring genes expression via an effect on the chromatin state of their promoter 
regions. Another difference concerns gene body methylation, whereas rice and Arabidopsis 
correspond only to CG methylation, however, in maize, it also contains CHG methylation . 
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Fig 1. 4  Epigenome organization in Arabidopsis and maize. The organization of genes (green) 
and TEs (pink), the relative abundance of three chromatin modifications, CHG DNA methylation 
(red), CHH DNA methylation (black), and H3K9me2 methylation (blue). Figure is adapted from 
Springer et al (2016). 

 

 

Fig 1. 5 �$�V�V�R�F�L�D�W�L�R�Q���R�I���'�1�$���F�\�W�R�V�L�Q�H���P�H�W�K�\�O�D�W�L�R�Q�����7�(���G�H�Q�V�L�W�\�����V�P�D�O�O���5�1�$���D�Q�G���J�H�Q�H���H�[�S�U�H�V�V�L�R�Q��
�L�Q���W�R�P�D�W�R����Genes were classified into 5 groups based on their expression level in tomato fruit at 
breaker (group 5: highest, group 1: lowest). (A) Distribution of miniature inverted transposable 
elements (MITEs) in the regions 2 kb upstream and downstream of TSS and PAS (bin size = 100 
bp). (B) Distribution of 24nt small RNAs. (C) Distribution of CG methylation. (D) Distribution of 
CWG methylation. (E) Distribution of CCG methylation. (F) Distribution of CHH methylation. 
TSS: transcription start site; PAS: polyadenylation site. Figure is adapted from Zhong et al (2013). 



Chapter 1 

8 

II. Mechanism of DNA methylation  

DNA methylation is catalyzed by enzymes called DNA methyltransferases (DMTs). Different 
DMTs have been characterized in both mammals and plants, which are involved, either in 
maintenance of DNA methylation during cell divisions, or in the establishment of new DNA 
methylation patterns (the so called de novo methylation) 

2.1 Enzymes involved in DNA methylation in mammals. 

Maintenance of DNA methylation in mammals 

In mammals four DNA methyltransferases (DNMTs) have been characterized that are highly 
conserved. DNMT1 maintains DNA methylation at hemi-methylated DNA after DNA replication 
during cell division. It is the most abundant DNMTs in adult cells. DNMT3A and NNMT3B are 
involved in establishing de novo �'�1�$���P�H�W�K�\�O�D�W�L�R�Q�����D�V���W�K�H�\���G�R�Q�¶�W���U�H�T�X�L�U�H���K�H�P�L-methylated DNA 
to bind. DNMT3-like (DNMT3L) is another member of the DNMT3 family, but it has no 
enzymatic activity by itself. This enzyme binds to DNMT3A or DNMT3B and enhances their 
catalytic activity (Pinney 2014). In mammals, DNMT1 is the principal enzyme that can mediate 
the maintenance of CG methylation. This enzyme is required for embryonic development and 
survival of somatic cells in �P�L�F�H�����,�W���K�D�V���E�H�H�Q���Z�H�O�O���V�X�P�P�D�U�L�]�H�G���W�K�D�W���'�1�0�7�����G�R�H�V�Q�¶�W���Z�R�U�N���D�O�R�Q�H����
but work with some accessory proteins. For example, ubiquitin like PHD and RING finger 1 
(UHRF1) were recently shown to be key regulators for maintenance of DNA methylation. The 
uhrf1 mutant is indeed characterized by a severe decrease in DNA methylation. The current model 
for UHFR1 action is as follows: UHRF1 recognizes hemi-methylated DNA via its SET and RING-
associated (SRA) domains and H3K9me3 via its TUDOR and PHD domains; UHFR1 ubiquitylates 
H3K23/H3K18 to facilitate the environment for DNMT1 binding. Then DNMT1 binds 
ubiquitylated H3K23 inducing a conformational change in DNMT1 which promotes its activation 
(Nishiyama et al., 2016). In addition, UHRF1 interacts with DNMT3A and DNMT3B, which 
suggests a role for UHRF1 in de novo methylation. Maintenance of DNA methylation also requires 
the chromatin remodeling factor Lymphoid Specific Helicase1, but the precise role of LSH1 in 
DNA methylation remains unknown (Nishiyama et al., 2016). 

2.2 Enzymes involved in DNA methylation in plants. 

In plants, four DNA methyltransferase classes have been characterized. DNA 
methyltransferase 1 (MET1) which is the homologue of DNMT1 maintains methylation at CG sites. 
CHROMOMETHYLASE3 (CMT3) is a plant specific enzyme that maintains CHG methylation 
and requires histone H3 methylation at the lysine K9 to be recruited at its target sites (Yang et al., 
2016). De novo DNA methylation in the different sequence contexts is mediated by two enzymes, 
one is the homologue of the DNMT3 methyltransferases, DOMAINS REARRANGED 
METHYLTRANSFERASE 2 (DRM2) and another one is CMT2 (Matzke, M. A. and R. A. Mosher, 
2014).   
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2.2.1 Maintenance of DNA methylation in plants 

It has been well documented that, in plants, MET1 is responsible for CG methylation 
maintenance (Kankel, M. W., et al. 2003). The mechanism of maintenance of CG methylation is 
�K�L�J�K�O�\�� �F�R�Q�V�H�U�Y�H�G���E�H�W�Z�H�H�Q���S�O�D�Q�W�V���D�Q�G���P�D�P�P�D�O�V���� �0�(�7���� �F�D�Q�¶�W���Z�R�U�N�� �D�O�R�Q�H but requires additional 
proteins; recruitment of MET1 at target sites requires two different SRA proteins, VARIANT IN 
METHYLATION (VIM) and Decrease in DNA Methylation 1 (DDM1). However, in plants 
whether these proteins behave in a similar way as in mammals, needs further validation (Kankel, 
M. W., et al. 2003).  

CHG methylation is maintained by the plant specific enzyme, CMT3 (chromomethylase 3), 
and requires the H3K9 methyltransferases KRYPTONITE (KYP/SUVH4), SUVH5 and SUVH6 
(Lindroth et al., 2001). Genome-wide profiling of H3K9Me2 and DNA methylation showed that 
these marks are highly correlated (West et al., 2014). CMT3 mutant displayed a dramatic loss of 
DNA methylation as also observed in a suvh4 mutant, SUPPRESSOR OF VARIEGATION 3-9 
HOMOLOGUE 4 a histone methyltransferase that is largely responsible for H3K9 dimethylation 
(Cedar and Bergman 2009;Du et al., 2014). Furthermore, two other H3K9 histone 
methyltransferases, SUVH5 and SUVH6 also contribute to global levels of CHG methylation 
(Ebbs and Bender 2006). Hence, in Arabidopsis CMT3 is recruited to specific sites by binding 
dimethyl K9 histone H3 (H3K9Me2) (Du et al., 2015). Reciprocally, KYP binds CHG methylated 
motives through its SRA domain (Johnson et al., 2007) thereby establishing a self-reinforcement 
loop between CHG methylation and H3K9 dimethylation. 

2.2.2 De novo DNA methylation in plants 

In plants, de novo methylation is mediated by RNA directed DNA methylation, a process also 
called RdDM (Law and Jacobsen 2010), which is also responsible of maintenance of CHH 
methylation. RdDM is mainly dependent on the methyltransferases, DOMAINS REARRANGED 
METHYLTRANSFERASE1 (DRM1) and DRM2, and it is always associated with 24nt siRNA, 
which direct DNA methylation at their homologous regions (For a review, see(Matzke and Mosher 
2014)). Alternatively de novo methylation may rely on the chromatin remodeler DDM1 
(DECREASE IN DNA METHYLATION 1), together with the CHROMOMETHYLASE 2 
(Zemach et al., 2013;Stroud et al., 2014).  

A number of components of the RdDM pathway have been recently identified in Arabidopsis 
leading to the proposal of a model for this complex epigenetic mechanism (Fig 1.6) (Gallusci et al., 
2016). RdDM depends on specialized transcriptional machinery and involves at least two steps: 
24-nt siRNA biogenesis and siRNA-guided de novo methylation (for a review, see (Matzke and 
Mosher 2014;Zhou and Law 2015). 
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Fig 1. 6 �0�H�F�K�D�Q�L�V�P���R�I���5�G�'�0���L�Q���S�O�D�Q�W�V�����5�1�$���W�U�D�Q�V�F�U�L�S�W�V���D�U�H���J�H�Q�H�U�D�W�H�G���I�U�R�P���U�H�S�H�W�L�W�L�Y�H���V�H�T�X�H�Q�F�H�V��
���W�U�D�Q�V�S�R�V�R�Q�V�� �D�Q�G�� �R�W�K�H�U�V�����E�\�� �D�Q�� �5�1�$�� �S�R�O�\�P�H�U�D�V�H�� �N�Q�R�Z�Q�� �D�V�� �3�R�O�,�� �9���� �5�1�$���'�(�3�(�1�'�(�1�7��
�5�1�$�3�2�/�<�0�(�5�$�6�(�� ���5�'�5���� �W�K�H�Q�� �F�R�Q�Y�H�U�W�V�� �W�K�H�� �5�1�$�� �W�R�� �G�R�X�E�O�H�� �V�W�U�D�Q�G�H�G�� �W�U�D�Q�V�F�U�L�S�W�V�����7�K�H�V�H�� �D�U�H��
�S�U�R�F�H�V�V�H�G�� �L�Q�W�R�� �������Q�X�F�O�H�R�W�L�G�H�� �V�P�D�O�O�� �5�1�$�V�� ���V�L�5�1�$�V���� �E�\�� �'�,�&�(�5���/�,�.�(���� ���'�&�/�������� �7�K�H�V�H�� �D�U�H��
�P�H�W�K�\�O�D�W�H�G���D�W���W�K�H�L�U���H�Q�G�V���E�\���+�8�$�(�1�+�$�1�&�(�5�������+�(�1�������D�Q�G���W�K�H���J�X�L�G�H���V�W�U�D�Q�G���F�R�P�S�O�H�P�H�Q�W�D�U�\���W�R��
�W�K�H�� �J�H�Q�R�P�L�F�� �'�1�$���� �W�K�D�W�� �Z�L�O�O�� �E�H�� �W�K�H�� �W�D�U�J�H�W�� �R�I�� �W�K�H�� �5�G�'�0���� �L�V�� �L�Q�F�R�U�S�R�U�D�W�H�G�� �L�Q�W�R�� �$�5�*�2�1�$�8�7�(��
���$�*�2���������$�*�2�����L�V���U�H�F�U�X�L�W�H�G���W�K�U�R�X�J�K���L�Q�W�H�U�D�F�W�L�R�Q�V���Z�L�W�K���3�R�O�9���D�Q�G���.�2�:�'�2�0�$�,�1���&�2�1�7�$�,�1�,�1�*��
�7�5�$�1�6�&�5�,�3�7�,�2�1�� �)�$�&�7�2�5���� ���.�7�)�������� �5�1�$���'�,�5�(�&�7�(�'�'�1�$�� �0�(�7�+�<�/�$�7�,�2�1���� ���5�'�0������
�O�L�Q�N�V�� �$�*�2���� �D�Q�G�� �'�2�0�$�,�1�6�� �5�(�$�5�5�$�1�*�(�'�� �0�(�7�+�<�/�7�5�$�1�6�)�(�5�$�6�(���� ���'�5�0�������� �Z�K�L�F�K��
�F�D�W�D�O�\�]�H�V���G�H���Q�R�Y�R���P�H�W�K�\�O�D�W�L�R�Q���R�I���'�1�$�����)�L�J�X�U�H���L�V���D�G�D�S�W�H�G���I�U�R�P���*�D�O�O�X�V�F�L���H�W���D�O���������������� 

 

The classic RdDM pathway is initiated by recruitment of Polymerase IV (Pol IV), a plant 
specific DNA dependent RNA polymerase to the appropriate regions of the genome, including TEs 
and intergenic regions to transcribe a single strand RNA. The recruitment of Pol IV to target 
sequences is not fully understood. For a large subset of the RdDM targets, Pol IV recruitment 
necessitates a homeodomain protein, SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1) 
which recognizes chromatin enriched with unmethylated H3K4 and H3K9me2 and interacts with 
Pol IV (Law et al., 2013;Zhang et al., 2013b). The long single strand RNAs produced by Pol IV 
are rapidly converted into double strand RNAs (dsRNAs) by RNA DEPENDENT RNA 
POLYMERASE 2 (RDR2). The generation of dsRNAs also involves the putative chromatin 
remodeling protein CLASSY 1 (CLSY1), but the role of this factor remains unknown. The dsRNAs 
are then processed into 24-nt siRNAs by Dicer-like 3 ribonuclease III enzyme (DCL3). The double-
stranded 24-nt siRNAs are transferred to the cytoplasm and loaded into the Argonaute (AGO) 
protein AGO4 to form a silencing complex. The silencing complex is transferred back to the 
nucleus with the help of AGO4, and siRNAs are targeted back to DNA repeats through sequence 
homology.  
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The siRNA-guided de novo methylation requires then another plant-specific DNA-dependent 
RNA polymerase, Pol V, and some associated factors. Pol V generates long intergenic non coding 
RNAs from target loci. The AGO-loaded siRNAs pair with this Pol V scaffold RNAs, and recruit 
the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE 2 
(DRM2) which catalyzes de novo DNA methylation at the target locus. Pol V transcription and 
association with chromatin are facilitated by the DDR complex. This complex comprises the 
putative chromatin remodeler DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 
(DRD1), DEFECTIVE IN MERISTEM SILENCING 3 (DMS3), and RNA-DIRECTED DNA 
METHYLATION 1 (RDM1), which has been shown to interact with both AGO4 and DRM2, and 
to bind to methylated single-stranded DNA. Some other RdDM components may also be needed 
to complete this process, including some histone-modifying enzymes that remove active marks. 

Recently, alternative RdDM pathways have been suggested. For example Yang et al (2016) 
�I�R�X�Q�G���W�K�D�W���W�K�H���P�D�M�R�U�L�W�\���R�I���W�K�H���5�G�'�0���O�R�F�L���G�R�Q�¶�W���Uequire DCL proteins and 24nt siRNA, but rather 
25-50 nt RNAs Pol IV-dependent small RNAs (P4 RNAs,) that may act as  trigger RNAs to initiate 
DNA methylation following the RdDM pathway (Yang et al., 2016). 

RdDM has been shown to be inhibited by heterochromatin, which is enriched in larger 
transposons. Furthermore lack of DRM2 causes a relatively modest decrease in CHH methylation, 
demonstrating that the majority of CHH methylation does not depend on RdDM. Indeed most CHH 
methylation at heterochromatic sequences is mediated by another pathway, requiring the 
chromomethylase CMT2 and DDM1 and depending on linker histone H1 (Zemach et al., 2013).  

In Arabidopsis both the DDM1/CMT2 and the RdDM/DRD1 pathways mediate nearly all 
transposon CHH methylation. Hence both pathways act together to inhibit transposon mobility. 
But this scheme may not be valid in all plant species. For example in rice, the Osdrm2 mutation 
was shown to lead to a near complete loss of CHH methylation (Tan et al., 2016). Hence, in rice, 
almost all CHH methylation seems to be established by OsDRM2. Furthermore OsDDM1 is 
required for the facilitation of OsDRM2-mediated CHH methylation. These results suggest that de 
novo DNA methylation though mediated by similar pathways, can vary between plant species (Tan 
et al., 2016). 

2.3 Functions of DNA methylation in plants 

In eukaryotes, cytosine DNA methylation is a conserved and stable epigenetic mark that plays 
essential roles in the silencing of transposable elements (TEs) and genes (Law and Jacobsen 2010). 
A number of articles have reviewed that cytosine methylation is critical for diverse biological 
process, including the establishment and maintenance of tissue specific gene expression patterns, 
genomic imprinting and X chromosome inactivation (Laird PW, 2003; Duymich et al., 2016).  

2.3.1 Cytosine DNA methylation plays different roles during plant development 

The genome-wide distribution of methylcytosines is subjected to dynamic changes during 
development 

The distribution of methylcytosines has been analyzed at a genome-wide level in different 
plants and developmental contexts, including endosperm development (Hsieh et al., 2009; Zemach 
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et al., 2010; Lu et al., 2015), male gametophyte development (Slotkin et al., 2009; Borg and Berger 
2015), fruit ripening (Zhong et al., 2013), and flower development (Yang et al., 2015) .  

These studies show that DNA methylation patterns are modified during plant development. 
More precisely, the variations in DNA methylation affect specific regions which are referred to as 
differentially methylated regions (DMRs).  

Correlations could be established between some DMRs and changes in gene expression, . 
However, not all gene-associated DMRs were associated with to variations in gene expression. 
This is illustrated for example by the study of Yang et al (2015), who compared different samples 
along flower development (meristems, flowers at early and late development stages). Their results 
show that methylation variations during flower development are correlated with expression 
changes of more than 3000 genes, many of which are important for flower development (Yang et 
al., 2015). But many more gene-related DMRs were identified, which were not associated with 
differentially expressed genes. For example, from the comparison of meristems with early flowers, 
Yang et al (2015) identified 2503 genes associated with changes in promoter methylation. But only 
141 among these 2503 genes were differentially expressed (Fig 1.7), clearly revealing that changes 
in DNA methylation at gene promoters are not systematically associated with changes in gene 
expression (Yang et al., 2015). This analysis also revealed that DMRs were more abundant in gene 
body than in promoter, and it seems that part of the DMR localized in gene-body was associated 
with differential expression, indicating that the role of gene body methylation in transcription 
regulation maybe more important than initially thought. 

These results suggest that specific changes in DNA methylation could be important for the 
regulation of gene expression in relation to developmental phase change. This hypothesis is further 
demonstrated by the analysis of mutants impaired in DNA methylation function. As illustrated in 
the following part, through a few examples. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. 7 �*�H�Q�H�V�� �Z�L�W�K�� �'�1�$�� �P�H�W�K�\�O�D�W�L�R�Q�� �Y�D�U�L�D�W�L�R�Q�V�� �G�X�U�L�Q�J���$�U�D�E�L�G�R�S�V�L�V�� �I�O�R�U�D�O�� �G�H�Y�H�O�R�S�P�H�Q�W����
�&�R�P�S�D�U�L�V�R�Q���R�I���J�H�Q�H�V���G�L�I�I�H�U�H�Q�W�L�D�O�O�\���P�H�W�K�\�O�D�W�H�G���D�W���R�Q�H���R�U���P�R�U�H���V�H�T�X�H�Q�F�H���F�R�Q�W�H�[�W�V���D�Q�G���G�L�I�I�H�U�H�Q�W�L�D�O�O�\��
�H�[�S�U�H�V�V�H�G�� �E�H�W�Z�H�H�Q�� �P�H�U�L�V�W�H�P�� �D�Q�G�� �H�D�U�O�\�� �I�O�R�Z�H�U���� �µ�*�H�Q�H�� �%�R�G�\�¶�� �D�Q�G�� �µ�3�U�R�P�R�W�H�U�¶�� �U�H�S�U�H�V�H�Q�W�� �W�K�H��
�W�U�D�Q�V�F�U�L�E�H�G���U�H�J�L�R�Q���D�Q�G���W�K�H�������N�E���X�S�V�W�U�H�D�P���U�H�J�L�R�Q���R�I���J�H�Q�H�V�����U�H�V�S�H�F�W�L�Y�H�O�\�����µ�7�U�D�Q�V�F�U�L�S�W�L�R�Q�¶���U�H�S�U�H�V�H�Q�W�V��
�J�H�Q�H�V���W�K�D�W���D�U�H���G�L�I�I�H�U�H�Q�W�L�D�O�O�\���H�[�S�U�H�V�V�H�G�����)�L�J�X�U�H���L�V���W�D�N�H�Q���I�U�R�P���<�D�Q�J���H�W���D�O���������������� 
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Some mutants impaired in DNA methylation show defects in their development 
 

a- mutants affected in CG methylation  
In Arabidopsis, mutations affecting maintenance of CG methylation (met1-1, met1-2, and 

met1-3) are recessive (Kankel et al., 2003;Saze et al., 2003). As expected, the plants impaired in 
MET1 function (mutants or antisens plants) are characterized by a decrease in CG methylation. The 
more affected plants show pleiotropic developmental defects including reduced apical dominance, 
smaller plant size, altered leaf size and shape, decreased fertility and altered flowering time 
(Finnegan et al., 1996;Jacobsen et al., 2000). The late-flowering phenotype is present in met1 
heterozygous Arabidopsis plants, and is even more severe in a met1 homozygote background. This 
phenotype is caused by the hypomethylation of the FWA gene, which controls Arabidopsis 
flowering time and contains direct-repeats in its promoter (Kankel et al., 2003;Saze et al., 2003) .  

The knock out of the gene responsible for CG maintenance has a much more severe impact 
on plant development in rice. Mutation affecting the major CG methyltransferase gene, OsMET1-2, 
leads to severe defects in seed development and vegetative growth leading to seedlings swift 
necrotic death  (Hu et al., 2014). This suggests that although DNA methylation in a CG context is 
conserved in plants its role during plant development may vary among different plant species. 

 
b- mutants affected in non CG methylation  

In Arabidopsis drm1 drm2 double mutants show no morphological defects (Cao and Jacobsen 
2002;Kankel et al., 2003), although DRM2 was shown to have an essential function in the 
establishment of DNA methylation at genes such as FWA and SUPERMAN (SUP) (Cao and 
Jacobsen 2002). Cmt3 mutants also display a wild-type morphology, even though it was found that 
CMT3 plays an important role in hypermethylation of the promoter of SUP gene in the CHG 
context, in met1 mutants (Lindroth et al., 2001).   

On the other hand, drm1drm2cmt3 (ddc) triple mutant plants show pleiotropic effects on plant 
development. Interestingly, some of the developmental alterations observed in met1 mutants were 
not seen in ddc mutants, as for example, the late flowering phenotype, suggesting that CG and non 
CG methylation may control different aspects of plant development (Cao and Jacobsen 2002). 

The analysis of rice and maize mutants showed that alteration of DNA methylation in crop 
species may have stronger deleterious effects than in Arabidopsis. For example, in rice, knockdown 
of OsDRM2 (Moritoh et al., 2012), OsDCL3a (Wei et al., 2014), or OsCMT3  (Cheng et al., 2015) 
causes pleiotropic developmental defects, unlike mutation of their respective homologous gene in 
Arabidopsis. This suggests DNA methylation in crop plants with complex genome components 
may play more important role than in Arabidopsis. 

2.3.2 DNA methylation under environmental stress 

Environmental stress such as salt, drought and other biotic and abiotic factors represent serious 
challenges for plant breeding as they may impact plant growth, as well as yield and product quality. 
Recent studies have highlighted the importance of DNA methylation in the regulation of gene 
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expression under biotic and abiotic responses, and also have suggested that DNA methylation may 
play a role in stress memory. 

a- Role of DNA methylation in abiotic stress response 

Several studies have described changes in DNA methylation patterns in responses to abiotic 
stresses. For example, using a methylation-sensitive amplification polymorphism (MSAP) 
approach, Gayacharan and Joel (2013) found that under drought stress, drought-susceptible and 
drought-tolerant rice genotypes were characterized by different evolutions in DNA methylation 
level, which was evaluated as a methylation percentage. Furthermore, they showed that the yield 
and panicle weight were negatively correlated with methylation percentage in rice under drought 
stress, these changes in DNA methylation correspond to the activation of stress-related 
genes(Gayacharan and Joel 2013).  

You have other recent articles showing changes in the methylome in response to stress. Other 
articles show that rice plants that represent different tolerance to stress have different methylome 
consistent with a role of DNA methylation in the adaptation to stress.  

b- Role of DNA methylation in stress memory (abiotic stress) 

Plants that have experienced a stress become more tolerant to future stressful conditions, 
through the acquisition of stress memory. In some cases, this memory is transmitted to the next 
generations. The molecular mechanisms underlying the memory of stress and its transgenerational 
inheritance are not well understood but some reports suggest that epigenetic mechanisms may be 
involved (for reviews, see: (Iwasaki and Paszkowski 2014;Bilichak and Kovalchuk 2016).  

Most of the studies arguing for a role of DNA methylation in stress memory are based on the 
demonstration of a correlation between changes in DNA methylation and stress tolerance.  

In some reports, this correlation was based on the comparison of different generations of 
plants submitted or not to stress. As an illustration two studies using rice could be mentioned: 
nitrogen deficiency and heavy metal stress were shown to induce modifications in DNA 
methylation patterns, which were partly inherited in the following generations. The inheritance of 
the modifications was correlated with an enhanced stress tolerance (Kou et al., 2011) (Ou et al., 
2012). 

As an alternative, the correlation between changes in DNA methylation and stress tolerance 
was demonstrated through the comparison of different genotypes characterized by contrasted levels 
of stress tolerance. For example, using an integrated approach combining BS-SEQ and RNA-SEQ, 
Garg et al (2015) compared the methylomes of different rice cultivars with contrasted sensitivity 
to drought and salinity stress. They identified a high number of differentially methylated regions 
(DMR) among the different cultivars and found that the distribution of many of these DMR was 
associated with differential expression of genes important for abiotic stress response. Moreover, 
smRNA abundance was positively correlated with hypermethylated regions (Garg et al., 2015). 
This analysis suggests that long term adaptation of plant to abiotic stress involves modifications in 
DNA methylation patterns responsible for the regulation of the expression of a specific set of stress-
responsive genes. 

Using a completely different experimental approach, Shen et al (2014) also obtained results 
suggesting a role for DNA methylation in long term adaptation. Using a large collection of 
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Arabidopsis thaliana accessions adapted to a wide range of climactic conditions, they performed a 
genome-wide association analysis, in order to identify loci where the alleles tolerate different 
climate ranges. Their study revealed that the temperature seasonality is correlated with a specific 
allele of the CMT2 gene. The reference WT CMT2 allele is mainly found in species growing in 
areas with less seasonal variability in temperatures, whereas the alternative CMT2 allele exists in 
both stable and variable regions. Shen et al also demonstrated that Arabidopsis cmt2 mutants 
display an increased tolerance to heat-stress. Altogether their results suggest that genetic 
modifications responsible for changes in DNA methylation mechanisms (CMT2-related functions) 
may participate in natural adaptation to variable temperatures (Shen et al., 2014).  

c- Role of DNA methylation in biotic stress response 

The modulation of DNA methylation not only appears to be important for abiotic stress 
response, but also for biotic stress response. For example, Akimoto et al (2007) found that 
experimentally hypomethylated rice was less susceptible to the infection with the pathogen 
Xantomonas oryzae pv. oryzae. This enhanced tolerance was correlated with an increase in the 
expression of Xa21G coding for the Xa21-like protein, known to confer resistance to X. oryzae pv. 
oryzae. The difference in gene expression was associated with a difference in Xa21G promoter 
methylation: whereas Xa21G promoter was heavily methylated in the control plants, it was almost 
devoid of methylcytosine in the hypomethylated plants. Acquisition of disease resistance, and 
promoter hypomethylation were stably inherited, indicating that reprogramming DNA methylation 
at some loci is an important mechanism for plant defense (Akimoto et al., 2007).  

This hypothesis was confirmed by Dowen et al (2012) in Arabidopsis. Mutants globally 
defective in maintenance of CG methylation (met1-3) or non-CG methylation (ddc = drm1-2 drm2-
2 cmt3-11) were exposed to a bacterial pathogen (P. syringae). All mutants showed global DNA 
demethylation and an increased resistance to P. syringae. Methylomes were obtained from non-
infected and infected plants, revealing many different DMRs, corresponding both to increase or 
decrease in DNA methylation mainly in CG and CHH contexts. Many infection-related DMRs 
were associated with differentially expressed genes (DEGs), which were characterized by a strong 
enrichment for genes involved in plant defense. Moreover, the DEGs associated with 
hypomethylated DMR tended to be constitutively mis-expressed in met1-3 and ddc mutants, 
consistent with the increased tolerance of these mutants to  P. syringae (Dowen et al., 2012).  

I II. DNA demethylation in plants 

Cytosine methylation of genomic DNA is reversible through DNA demethylation. In plants, 
DNA demethylation can be achieved passively, when maintenance of methylation after DNA 
replication is not operating, or actively, by replication-independent processes.   

3.1 Passive DNA demethylation in plants 

Passive demethylation occurs for newly synthesized DNA during replication if the new DNA 
is not targeted by DNA methyltransferase (Agius et al., 2006).  
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Is there any situation where this has been described before in animals and plants. If yes you 
should add a couple of sentence to explain that 

3.2 Active DNA demethylation in plants 

3.2.1 Enzymes involved in DNA demethylation in plants 

The first DNA demethylases to be characterized, AtROS1 and DEMETER, were identified in 
2002 in Arabidopsis (Choi et al., 2002;Gong et al., 2002). AtROS1 was isolated during a screening 
for Repressor of Silencing (ROS): ros1 mutants were shown to cause the silencing of a transgene 
and of a homologous endogenous gene that were originally active. This silencing was correlated 
with DNA hypermethylation at the affected loci (Gong et al., 2002). Demeter mutants were isolated 
in the frame of a screen for genes controlling seed viability by their maternal allele (Choi et al., 
2002). DEMETER was shown to be expressed exclusively in the central cell of the female 
gametophyte and in seeds, and to be required for the activation of MEDEA expression in the central 
cell and in the endosperm. Since 2002, two additional DNA demethylases were described in 
Arabidopsis, DEMETER-LIKE 2 (AtDML2), DEMETER-LIKE 3 (AtDML3) (Penterman et al., 
2007b;Ortega-Galisteo et al., 2008), whereas very few functional studies were performed in other 
plant species (La et al., 2011).  

3.2.2 Machinery of active DNA demethylation in plants 

Strong evidence supports that DNA glycosylases-lyases, also called DEMETER-like DNA 
demethylases, can catalyze the removal of methylated cytosine efficiently through a Base Excision 
Repair pathway (BER process) (Gong et al., 2002;Gehring et al., 2005).  DNA demethylases are 
bifunctional enzymes, which possess both DNA glycosylase and apurinic/apyrimidinic (AP) lyase 
activities. Four steps were shown to be involved in the BER process: (I) DNA demethylase with 
DNA glycosylase activity cleaves the phosphodiester backbone at the 5-meC site, generating an 
abasic site. (II) DNA demethylase with AP lyase activity subsequently nicks the DNA to generate 
�D�� �S�U�L�P�D�U�\�� ���0�F�� �H�[�F�L�V�L�R�Q�� �S�U�R�G�X�F�W���� ���¶-PUA, as �L�Q�W�H�U�P�H�G�L�D�W�H�� �E�\�� ��-�H�O�L�P�L�Q�D�W�L�R�Q���� �R�U�� �J�R�� �G�L�U�H�F�W�O�\�� �/-
�H�O�L�P�L�Q�D�W�L�R�Q���W�R���J�H�Q�H�U�D�W�H�����¶-phosphate. (�,�,�,���� �$�Q���$�3���H�Q�G�R�Q�X�F�O�H�D�V�H���F�R�Q�Y�H�U�W�V���W�K�H���L�Q�W�H�U�P�H�G�L�D�W�H���W�R�����¶-
OH to generate a single nucleotide gap. (IV) The gap is repaired by a DNA polymerase and a DNA 
ligase by adding an unmethylated cytosine. (V) Finally, this biochemical process results in a net 
loss of cytosine methylation (Fig 1.8) (Penterman et al., 2007b;Law and Jacobsen 2010;Wu and 
Zhang 2010) . 
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Fig 1. 8  �$�F�W�L�Y�H���'�1�$���G�H�P�H�W�K�\�O�D�W�L�R�Q���W�K�U�R�X�J�K���G�L�U�H�F�W���E�D�V�H�� �H�[�F�L�V�L�R�Q���U�H�S�D�L�U���S�D�W�K�Z�D�\�� �L�Q���S�O�D�Q�W�V��
���:�X���D�Q�G���=�K�D�Q�J�����������������%�D�V�H���H�[�F�L�V�L�R�Q���U�H�S�D�L�U�����%�(�5�����W�K�U�R�X�J�K���G�L�U�H�F�W���H�[�F�L�V�L�R�Q���R�I�������P�H�W�K�\�O�F�\�W�R�V�L�Q�H��
�����P�H�&������ �,�Q�L�W�L�D�W�L�R�Q���R�I���W�K�H���%�(�5���S�D�W�K�Z�D�\�� �F�D�Q���E�H���F�D�U�U�L�H�G���R�X�W���E�\�� �D�� �J�O�\�F�R�V�\�O�D�V�H���W�K�D�W���G�L�U�H�F�W�O�\�� �H�[�F�L�V�H�V��
���P�H�&���W�R���J�H�Q�H�U�D�W�H���D�Q���D�E�D�V�L�F�����D�S�X�U�L�Q�L�F���D�Q�G���D�S�\�U�L�P�L�G�L�Q�L�F�����$�3�������V�L�W�H�����7�K�H���'�1�$���E�D�F�N�E�R�Q�H���L�V���Q�L�F�N�H�G��
�E�\���D�Q���$�3���O�\�D�V�H�����R�U���E�\���W�K�H���J�O�\�F�R�V�\�O�D�V�H���L�W�V�H�O�I���L�I���L�W���L�V���E�L�I�X�Q�F�W�L�R�Q�D�O�������7�K�H�����•���V�X�J�D�U���J�U�R�X�S���L�V���W�K�H�Q���F�O�H�D�Y�H�G��
�E�\���D�Q���$�3���H�Q�G�R�Q�X�F�O�H�D�V�H���D�Q�G���W�K�H���U�H�V�X�O�W�L�Q�J���V�L�Q�J�O�H���Q�X�F�O�H�R�W�L�G�H���J�D�S���L�V���I�L�O�O�H�G���L�Q���Z�L�W�K���D�Q���X�Q�P�H�W�K�\�O�D�W�H�G���&��
�E�\���D�Q���X�Q�N�Q�R�Z�Q���S�R�O�\�P�H�U�D�V�H���D�Q�G���O�L�J�D�V�H�����,�W���K�D�V���E�H�H�Q���Z�H�O�O���H�V�W�D�E�O�L�V�K�H�G���L�Q���S�O�D�Q�W�V���W�K�D�W���W�K�H���G�H�P�H�W�H�U�����'�0�( ����
�D�O�V�R���N�Q�R�Z�Q�� �D�V�� �U�H�S�U�H�V�V�R�U�� �R�I�� �V�L�O�H�Q�F�L�Q�J�� ���� ���5�2�6�������� �I�D�P�L�O�\�� �R�I�� �H�Q�]�\�P�H�V�� �F�D�Q�� �F�D�U�U�\�� �R�X�W�� �W�K�H�� ���P�H�&��
�J�O�\�F�R�V�\�O�D�V�H���U�H�D�F�W�L�R�Q�����)�L�J�X�U�H���L�V���D�G�D�S�W�H�G���I�U�R�P���:�X���D�Q�G���=�K�D�Q�J���������������� 

 
The different components that participate in active DNA demethylation have been well 

defined. At step (III ), Arabidopsis AP endonucleases family members APE1L and ARP are capable 
�R�I���S�U�R�F�H�V�V�L�Q�J���W�K�H�����¶�3�8�$���W�R���J�H�Q�H�U�D�W�H a ���¶-OH or either use ARP or a DNA 3' phosphatase ZDP to 
�F�R�Q�Y�H�U�W���/-�H�O�L�P�L�Q�D�W�L�R�Q���S�U�R�G�X�F�W���W�R�����¶-OH (Lee et al., 2014). DNA ligase LIG1 was also identified as 
the major DNA ligase that complete the BER pathway in active DNA demethylation  (Córdoba-
Cañero et al., 2011). 

All four DNA demethylases from Arabidopsis can target both symmetrical cytosine CG, CHG 
and asymmetrical cytosine CHH. It is worth pointing out that DME and ROS1 can also remove 
thymine, but not uracil, and seems to show a preference for CG context  (Morales-Ruiz et al., 2006). 

How DNA demethylases are guided to their target loci, is so far not known. However recent 
studies suggested that specific combinations of epigenetic marks may contribute to the recruitment 
of DNA demethylases to their targets  (Li  et al., 2015b). This hypothesis is based on the 
characterization of a protein complex involved in the repressor of silencing function through the 
active demethylation pathway, which recognizes and binds to specific epigenetic marks, and is 
responsible for the acetylation of histone H3. This complex has been shown to contain 4 proteins: 
MBD7, IDM1, IDM2 and IDL1. MBD7 is a methyl-CpG-Binding protein which is enriched at 
highly methylated, CG-dense sites throughout the genome. It was shown to prevent aberrant 
spreading of DNA methylation  (Wang et al., 2015). IDM1 is a histone acetyltransferase which 
binds methylated DNA at chromatin sites lacking histone H3K4me2/H3K4me3 and acetylates H3 
(Qian et al., 2012). IDM2 and IDM2-�O�L�N�H�� �S�U�R�W�H�L�Q�� ���,�'�/������ �D�U�H�� �W�Z�R�� �U�H�O�D�W�H�G�� �.-crystalline domain 
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proteins; IDM2 was shown to be required for the full activity of IDM1 in vivo. ROS5 is a small 
heat shock protein (Zhao et al., 2014), which interacts with MBD7 (Wang et al., 2015) and with 
IDM1. According to Li et al (2015), the histone acetyltransferase complex creates a feasible 
chromatin environment to recruit DNA demethylases, which then starts the active DNA 
demethylation process (Fig 1.9). 

In addition to these essential protein factors, a component of the cytosolic iron-sulfur cluster 
assembly (CIA) pathway, MET18, an anti-silencing factor was shown to interact with ROS1. This 
suggests that the CIA pathway may play a role in active demethylation, but how MET18 is linked 
to ROS1 is still unclear  (Duan et al., 2015). Another study also identified that, ROS3, a RNA-
binding protein, may function in a pathway similar to ROS1, but the link between ROS3 and DNA 
demethylation needs to be further verified (Zheng et al., 2008). 

 

 

 
 
 

Fig 1. 9 �:�R�U�N�L�Q�J�� �P�R�G�H�O�� �I�R�U�� �W�K�H�� �,�'�0�����,�'�0�� ���,�'�/�� ���0�%�'���� �F�R�P�S�O�H�[�� �I�X�Q�F�W�L�R�Q�L�Q�J�� �L�Q�� �5�2�6����
�P�H�G�L�D�W�H�G�� �D�F�W�L�Y�H�� �'�1�$�� �G�H�P�H�W�K�\�O�D�W�L�R�Q�� �D�W�� �V�R�P�H�� �O�R�F�X�V�� �L�Q���$�U�D�E�L�G�R�S�V�L�V�����0�%�'���� �I�R�U�P�V�� �D�� �F�R�P�S�O�H�[��
�Z�L�W�K�� �,�'�0������ �,�'�0���� �D�Q�G�� �,�'�/������ �D�Q�G���U�H�F�R�J�Q�L�]�H�V�� �P�H�W�K�\�O�D�W�H�G�� �'�1�$�� �W�K�U�R�X�J�K�� �P�H�W�K�\�O���&�S�*���E�L�Q�G�L�Q�J��
�G�R�P�D�L�Q�V���� �7�K�H�Q�� �,�'�0���� �L�V�� �U�H�F�U�X�L�W�H�G�� �W�R�� �V�S�H�F�L�I�L�F�� �O�R�F�L���D�Q�G�� �D�F�H�W�\�O�D�W�H�V�� �K�L�V�W�R�Q�H�� �+���� �D�W�� �.������ �D�Q�G�� �.��������
�I�D�F�L�O�L�W�D�W�L�Q�J���D�F�W�L�Y�H���'�1�$���G�H�P�H�W�K�\�O�D�W�L�R�Q���E�\���5�2�6�������)�L�J�X�U�H���U�H�I�H�U�H�Q�F�H�G���I�U�R�P���/�L���H�W���D�O���������������� 
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3.3 Function of active DNA demethylation in plants 

3.3.1 Active DNA demethylation is involved in parental imprinting during endosperm 

development 

The first DNA demethylase identified, DEMETER is expressed in a very restricted manner in 
the female gametophyte central cell, and plays a role in gene imprinting. 

Parental imprinting occurs in the endosperm in plants, and is essential for embryo and seed 
development. Parental imprinting at specific loci means that only one allele is expressed, which is 
either of maternal or of paternal origin. Bauer and Fischer (2011) have reviewed imprinted genes 
in Arabidopsis. Recent work indicate that between 75 and 200 genes are imprinted in the 
endosperm depending on the species analyzed and sequencing depth and potential co,ntaminations 
with seed coat or embryo tissues ( For a review, see Ghering et Satyaki 2017) Well characterized 
imprinted genes in Arabidopsis include FWA, MEA, FIS2, and PHERES1, which are specifically 
expressed from the maternal genome in the endosperm while the alleles from the paternal genome 
are silenced. Imprinted genes are regulated on an epigenetic level, involving DNA methylation, 
DNA demethylation and/or histone modification particularly the trimethylation of lysine 27 of 
histone H3 which is mediated by the PRC2 complex (Bauer and Fischer 2011). It was suggested 
that passive DNA demethylation could also have a function in gene imprinting  (Bauer and Fischer 
2011). In most cases the epigenetic mechanisms responsible for gene imprinting are implemented 
during the formation of the gametophytes, leading to different epigenetic status of the parental 
alleles in each gamete. The epigenetic status of each allele persists beyond fertilization, resulting 
in differential expression of the parental alleles in the endosperm.  

In Arabidopsis, DEMETER (DME) has been shown to play an important role for imprinting 
of specific genes as for example MEDEA (MEA). MEA is a maternally expressed gene that controls 
seed development, and is specifically expressed in the female gametophyte central cells and in 
seeds (Xiao et al., 2003). The current model suggests that MEA is constitutively repressed in 
vegetative tissue through MET1-dependent methylation. During the formation of the female 
gametophyte, DEMETER removes the methylation marks at the maternal allele in the central cell, 
which results in its expression (Choi et al., 2002;Xiao et al., 2003). During male gametogenesis 
the repression of the paternal allele is maintained owing to the lack of DME, and to the Polycomb 
complex PRC2  activity which is responsible for the addition of repressive H3K27me3 marks at 
MEA promoter (Gehring et al., 2005). Additional DNA methylation-independent mechanisms may 
also be involved as suggested by the identification of a sequence in MEA promoter which is 
necessary and sufficient to mediate MEA imprinting in a DME and MET1-independent way 
(Wöhrmann et al., 2012). Another imprinted gene, FWA, which is only expressed in the female 
gametophyte and in the endosperm, plays key functions in the control of flowering time. The 
imprinting of this maternally expressed gene is also regulated by DME (Soppe et al., 2000;Choi et 
al., 2002;Gehring et al., 2005;Wöhrmann et al., 2012).  

Comparison of endosperm and embryo methylomes in Arabidopsis, rice and maize have 
revealed that imprinting may affect more than 100 genes in each of these species (for a review, 
(Zhang et al., 2013a). 
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 Genome-wide analyses have also shown that DNA hypomethylation in the endosperm was 
not restricted to loci near imprinted genes, but rather occurred in TE and repeat sequences 
throughout the genome of Arabidopsis (Gehring et al., 2009;Hsieh et al., 2009), rice (Zemach et 
al., 2010), maize (Lu et al., 2015) and Castor Bean (Xu et al., 2016). In Arabidopsis DNA global 
hypomethylation was also shown to occur in the gametophyte central cell and to be DEMETER-
dependent  (Ibarra et al., 2012). Altogether these results suggest that gene imprinting may arise in 
central cell when demethylation events targeting repeats or transposon also affect the expression 
of neighboring genes. 

Two functions were suggested for the decrease in DNA methylation in the central cell and in 
the endosperm: (1) it may play a role in endosperm biogenesis. Indeed Zemach et al (2010) have 
shown that genes coding for major storage proteins and starch synthesizing enzymes are 
hypomethylated in rice endosperm (Zemach et al., 2010). (2) The decrease in DNA methylation 
may favor siRNA biogenesis, which would diffuse to neighboring cells, egg cell in the gametophyte, 
and embryo cells in the seed. There siRNAs would enhance TE and repeat silencing through RdDM, 
providing an efficient protection against the deleterious effects of TE mobilization (review: (Zhang 
et al., 2013a)). 

3.3.2 Other functions of active DNA demethylation in plant  

AtROS1, AtDML2 and AtDML3 function as genome wide DNA demethylases that remove 
���P�&���P�D�U�N�V���D�W���V�L�W�H�V���O�R�F�D�W�H�G���D�W���W�K�H�����¶���D�Q�G�����¶���H�Q�G���R�I���J�H�Q�H�V�����L�Q���R�U�G�H�U���W�R���S�Uotect genes from potentially 
deleterious methylation. Indeed nearby TE or repeat sequences are common features of DML gene 
targets (Penterman et al., 2007a). But ros1, dml2, dml3 single, double or triple mutants showed 
little or no developmental alterations, suggesting that the functions of DNA demethylases are not 
essential for development in this species Yu (Yu et al., 2013).  

Only recently, Yamamuro found that ros1 mutant and ros1 dml2 dml3 (rdd) triple mutant 
show overproduction of stomatal lineage cells leading to a small-cell-cluster phenotype (Fig 1.10) 
(Yamamuro et al., 2014). Yamamuro et al (2014) suggested that ROS1 negatively regulates the 
bHLH protein SPCH to prevent establishing the stomatal lineage cells through a control of EPF2 
expression. EPF2 is known to negatively regulate SPCH function and ros1 phenotype is very 
similar to EPF2 loss-of-function phenotype (Yamamuro et al., 2014). Indeed EPF2 was shown to 
be repressed in ros1 and rdd mutants due to an increase in the methylation status of its promoter. 
The reduction in EPF2 expression was shown to be responsible for the small-cell-cluster phenotype 
in ros1 and rdd mutants. Yamamuro et al (2014) proposed a model where EPF2 expression in the 
WT is regulated through the antagonist actions of RdDM and active demethylation, because of the 
�S�U�H�V�H�Q�F�H�� �R�I�� �D�� �7�(�� �L�Q�� �W�K�H�� �X�S�V�W�U�H�D�P�� �U�H�J�L�R�Q�� �R�I�� �L�W�V�� �S�U�R�P�R�W�H�U���� �D�S�S�U�R�[�L�P�D�W�H�O�\�� �������� �N�E�� ���¶�� �I�U�R�P�� �L�W�V��
transcriptional start site. The TE is targeted by RdDM and thus methylated, this methylation tends 
to spread from the TE into EPF2 promoter but ROS1 ensures EPF2 expression by erasing the 
spreading DNA methylation. It is unknown how the balance between DNA methylation and 
demethylation activities is achieved. 

Interestingly ROS1 is also located in the vicinity of a TE, and was shown to be regulated 
through the double action of DNA methylation and demethylation. But each activity has the 
opposite outcome on ROS1 expression, compared to typical targets of these processes: ROS1 
expression is promoted by DNA methylation and inhibited by DNA demethylation (Williams et 
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al., 2015). Williams et al (2015) propose that owing to this specific regulation, ROS1 may play a 
role in DNA methylation homeostasis at the genome wide scale scale. 

 A                                                                   B 

 
 
 

Fig 1. 10 ���3�K�H�Q�R�W�\�S�L�F�� �D�Q�D�O�\�V�L�V�� �R�I�� �H�S�L�G�H�U�P�D�O�� �S�D�W�W�H�U�Q�L�Q�J�� �L�Q�� �W�K�H���U�R�V�����D�Q�G���U�G�G���P�X�W�D�Q�W�V�� �D�Q�G��
�S�U�R�P�R�W�H�U���'�1�$���P�H�W�K�\�O�D�W�L�R�Q���R�I���(�3�)�����L�Q���$�U�D�E�L�G�R�S�V�L�V�����$�������D�±�G�����0�L�F�U�R�V�F�R�S�L�F���L�P�D�J�H���R�I���F�R�W�\�O�H�G�R�Q��
�D�G�D�[�L�D�O�� �H�S�L�G�H�U�P�D�O�� �F�H�O�O�V�� �I�U�R�P�� �����G�D�\���R�O�G�� �&�R�O�� ���D������ �H�S�I�������� ���E������ �U�R�V�������� ���F���� �D�Q�G�� �U�G�G�� ���G�������6�P�D�O�O���F�H�O�O��
�F�O�X�V�W�H�U�V���D�U�H���L�Q�G�L�F�D�W�H�G���E�\���E�U�D�F�N�H�W�V�����%�����6�Q�D�S�V�K�R�W���L�Q���W�K�H���,�Q�W�H�J�U�D�W�H�G���*�H�Q�R�P�H���%�U�R�Z�V�H�U���V�K�R�Z�L�Q�J���'�1�$��
�P�H�W�K�\�O�D�W�L�R�Q�� �O�H�Y�H�O�V�� �R�I�� �W�K�H�� �(�3�)���� �S�U�R�P�R�W�H�U�� �D�Q�G�� �X�S�V�W�U�H�D�P�� �U�H�J�L�R�Q�� �L�Q�� �&�R�O�����U�R�V���������D�Q�G���U�G�G���� �)�L�J�X�U�H�� �L�V��
�D�G�D�S�W�H�G���I�U�R�P���<�D�P�D�P�X�U�R���H�W���D�O���������������� 

 
Another study suggests that AtROS1 may be involved in stress response. Bharti et al (2015) 

produced transgenic tobacco plants over-expressing AtROS1 and submitted them to salt stress. 
AtROS1 overexpression was correlated to an increase in the expression of genes encoding enzymes 
involved in flavonoid biosynthesis and antioxidant pathways and these upregulations were linked 
to a decrease in the methylation status of their promoters. This suggests that active DNA 
demethylation may participate in the induction of secondary metabolites synthesis in response to 
salt stress. However the gene expression levels were only 5-6 times higher in transgenics compared 
to WT. Furthermore, the secondary metabolites (flavonoids) were not measured, therefore further 
experiments are necessary to confirm this conclusion (Bharti et al., 2015). 

AtROS1 was shown to have a function in plant defense against pathogens, through the 
regulation of some TEs related genes. Yu et al (2013) found that AtROS1 can restrict the 
multiplication and vascular propagation of Pseudomonas syringae in leaves through the induction 
of some immune related genes that have repetitive sequence in their promoters. This process is 
tightly linked with the RdDM pathway (Yu et al., 2013).  
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IV. The importance of epialleles in plants 

Heritable epigenetic variants of genes, termed epialleles, are associated with heritable changes 
in DNA expression without any alteration of the DNA sequence. Epialleles can broaden genetic 
diversity and may provide a new source of beneficial traits for crop breeding. Assessing the 
importance of methylated epialleles in plant population require the following determination: (i) the 
extent of variation in methylation patterns among individuals within a population;  (ii) the extent 
to which natural methylation variants are stably inherited. However, only very few epialleles have 
been identified until now. 

Different epimutants were isolated and characterized in Arabidopsis. The phenotype of the clk 
epimutant (clark kent) is similar to the phenotype of the superman (sup) mutant, characterized by 
an increased number of stamens and abnormal fused carpels. Indeed SUP was shown to be modified 
by an epimutation in the clk epimutant: its promoter is hypermethylated compared to the WT 
(Jacobsen and Meyerowitz 1997). Another well-known epimutant in Arabidopsis is fwa, which 
shows late flowering. This phenotype is due to hypomethylation at two direct repeat elements 
upstream of the FWA locus  (Kinoshita et al., 2004).  

However, the first natural epimutant was found in Linaria vulgaris. The lcyc epimutant shows 
an hypermethylated region in the promoter of lCYC (Linaria cyloidea-like), which encodes a 
transcription factor that controls the floral development process. The lcyc phenotype can 
spontaneously reverse, which corresponds to a change in the methylation status of the promoter  
(Cubas et al., 1999)(Fig 1.11).  

Currently, three natural epialleles were found in rice, Epi-d1, Epi-df and Epi-rav6 (Zhang 
(Miura et al., 2009;Zhang et al., 2012;Zhang et al., 2015). All of them are associated with defects 
in important agronomic trait. Epi-d1 is a natural mutant, which shows a metastable dwarf 
phenotype, although this phenotype is chimeric. This is caused by an hypermethylation in the 
promoter of DWARF1 (Miura et al., 2009). Epi-df mutant shows a dwarf phenotype together with 
various floral defects. In this case, the phenotype is caused by an hypomethylation in the promoter 
of FIE1 (Fertilization-independent endosperm1), coding for one of the component of the Polycomb 
Repressive complex 2. As expected for a plant affected in the expression of a PcG gene, it was 
found that H3K27me3 levels were altered in Epi-df mutant (Zhang et al., 2012).  More recently, 
Zhang et al (2015) isolated a spontaneously occurring epimutant, Epi-rav6, with large leaf angle 
and small seed size. These defects were caused by the ectopic expression of RAV6, coding for a B3 
DNA-binding domain containing protein involved in brassinosteroid homeostasis. The alteration 
in RAV6 expression was furthermore linked to the hypomethylation of its promoter (Zhang et al., 
2015). 

In tomato, an epimutant has also been isolated and studied, the well-known cnr epimutant 
which produces fruits that never ripe (Fig 1.11). This non-ripening phenotype was correlated with 
the hypermethylation of the promoter of CNR, which codes for a major regulator of fruit ripening. 
Interestingly, this epi-phenotype is very strong and stable (Manning et al., 2006) .  

Altogether, these findings show that epialleles may have a substantial effect on plant 
phenotype. Some epialleles may be associated with critically important agricultural traits. So 
epimutants screening represents an interesting and powerful tool for plant breeding. 
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Fig 1. 11 Natural epimutants of Linaria vulgaris fowers and tomato CNR. A. View of a wild-
type Linaria fower compared to a peloric mutant. Floral diagrams of wild-type (top) and peloric 
(bottom) fowers showing the relative positions of different organs, with identities indicated by 
colours: blue (dorsal) brown (lateral) yellow (ventral). The WT fower has an axis of dorsoventral 
asymmetry orientated such that the dorsal (upper or adaxial) part is nearer the stem whereas the 
ventral (lower or abaxial) part is nearer to the subtending leaf. The peloric fower is radially 
symmetrical, with all petals resembling the ventral petal of the wild type. The epigenetic change is 
at the Lcyc locus. B. Revertant sectors occasionally seen on mature CNR fruits. The epigenetic 
change is at the CNR locus. Figures were adapted from Cubas et al (1999) and Manning et al (2006). 

V.  Physiological changes during tomato fruit ripening 

Tomato (Solanum lycopersicum) is an important crop and a model plant for fleshy fruits 
development and ripening. After fertilization, tomato fruit development proceeds in two main 
phases that precede fruit ripening. Early fruit development events correspond to fruit growth 
mediated by an active cell division phase followed by an important increase in cell size associated 
to the endoreduplication process. Fruit growth essentially ends at the so-�F�D�O�O�H�G�� �³�P�D�W�X�U�H-green 
�V�W�D�J�H�´�����Z�K�H�Q���W�K�H���I�U�X�L�W���K�D�V���D�F�T�X�L�U�H�G���L�W�V���I�L�Q�D�O���V�L�]�H�����E�X�W���L�V���V�W�L�O�O���K�D�U�G�����J�U�H�H�Q���D�Q�G���D�F�L�G-tasting. The fruit 
ripening process then takes place. Several dramatic physiological and metabolic changes occur at 
the fruit development to ripening transition and during ripening: (i) transition from a partly 
photosynthetic metabolism to a completely heterotrophic metabolism; (ii) differentiation of 
chloroplasts into chromoplasts; (iii) changes in cell wall composition, and in sugar and organic 
acids accumulation, and the dramatic accumulation of carotenoids mainly lycopene (for a review 
see (Tohge, T., et al. 2014)). Altogether these modifications determines nutrient accumulation in 
the fruits, hence the fruit nutritional quality, motivating intense research efforts to decipher the 
regulation mechanisms underlying ripening. The availability of extensive genetic, molecular and 
genomic resources for tomato has contributed to a better understanding of the ripening control. 
Ripening was shown to be under a strict genetic control in relation with hormonal regulations, 

�&�1�5���P�X�W�D�Q�W �:�7  
�$ �% 
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involving especially ethylene (Giovannoni, 2007). Three transcription factors have been identified 
as central regulators for fruit ripening: RIN (ripening inhibitor), NOR (non-ripening) and CNR 
(colorless non-ripening) (Giovannoni 2004; Manning, et al. 2006; Vrebalov, et al. 2002) (Fig 1.12). 
 

 

Fig 1. 12 ���2�Y�H�U�Y�L�H�Z���R�I���U�L�S�H�Q�L�Q�J���U�H�J�X�O�D�W�L�R�Q���L�Q���W�R�P�D�W�R���I�U�X�L�W�V�����7�U�D�Q�V�F�U�L�S�W�L�R�Q�D�O���U�H�J�X�O�D�W�L�R�Q���L�Q�Y�R�O�Y�H�G��
�G�X�U�L�Q�J���W�K�H���U�L�S�H�Q�L�Q�J���S�U�R�F�H�V�V�����)�L�J�X�U�H���L�V���D�G�D�S�W�H�G���I�U�R�P���2�V�R�U�L�R���H�W���D�O���������������� 

Below, I will describe some of the major physiological events associated with tomato fruit ripening 

5.1 Tomato fruit softening 

Decrease in firmness during ripening involves a coordinated series of modifications of the 
primary cell wall and middle lamella, resulting in a weaken structure. Since fruit softening is the 
major determinant of shelf life, understanding the mechanisms responsible for cell wall 
modifications during ripening is of economic importance. 

In tomato, a number of cell wall structure-related genes are expressed during fruit ripening, 
including more than 50 structural genes encoding cell wall modifying proteins are expressed during 
fruit development and ripening process (Uluisik et al., 2016). A few studies have investigated the 
role of individual cell wall structure-related gene in fruit ripening (Smith et al., 2002;Brummell 
2006;Godoy et al., 2013), many of them have focused on genes related to pectin biosynthesis, such 
as PG (POLYGALACTURONASE), whose expression shows a sharp increase during ripening and 
results in substantial cell wall pectinase activity, during fruit softening (DellaPenna et al., 1989). 
However specific repression or induction of PG in fruit does not alter fruit softening, indicating 
that the polygalacturonase activity is not sufficient for fruit softening. It may associate with some 
other factors to control fruit softening (Giovannoni 2004). The role of another enzyme, the 
galacturonosyltransferase (GAUT) also involved in pectin biosynthesis, was analyzed. GAUT4 
RNAi mutant showed altered pectin composition coincided with an increase in firmness. This 
indicates that GAUT4 plays a role in fruit softening during fruit ripening, although it was also 
shown to interfere with carbon metabolism, partitioning and allocation and globally affect plant 
development (Godoy et al., 2013). More recently, Uluisik et al (2016) found that silencing PI 
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encoding pectate lyase, also increased fruit firmness but without altering other aspects (Uluisik et 
al., 2016)�����,�Q�G�H�H�G�����I�U�X�L�W���U�L�S�H�Q�L�Q�J���L�V���D�O�V�R���F�K�D�U�D�F�W�H�U�L�]�H�G���E�\���V�L�J�Q�L�I�L�F�D�Q�W���F�K�D�Q�J�H�V���L�Q���F�K�D�Q�J�H�V���L�Q���W�K�H����-
galactose �F�R�Q�W�H�Q�W���R�I�� �F�H�O�O�� �Z�D�O�O�V���� �$�W���O�H�D�V�W�� �V�H�Y�H�Q�� �W�R�P�D�W�R�� ��-galactosidases (TBG1-7) are thought to 
play important roles during fruit development and maturation, but only suppression of TBG4 was 
associated with alteration of fruit firmness, which is associated to a reduced galactose loss. 
�'�R�Z�Q�U�H�J�X�O�D�W�L�R�Q���R�I���7�%�*�����������D�Q�G�������G�L�G�Q�¶�W���O�H�D�G���W�R���R�E�Y�L�R�X�V���S�K�H�Q�R�W�\�S�H���R�Q���I�U�X�L�W���U�L�S�H�Q�L�Q�J��(Eda et al., 
2016). The expression of TBG4 was shown to be related with the galactose content (Eda et al., 
2016). Furthermore mutants  impaired for expansion function,  show delayed fruit ripening and 
softening, coincident with a modification of hemicellulose structure (Minoia et al., 2016). However, 
repression of the ripening-related endo-��-1,4-glucanases CEL1 or CEL2 did not change fruit 
softening. Impaired Exp1 show delayed fruit ripening and softening, which caused by the 
modification of hemicellulose structure. 

These studies suggest that several genes encoding cell wall modifying enzymes contribute to 
cell wall changes during fruit development and ripening. Fruit softening would thus be the result 
of the concerted action of numerous cell wall-modifying enzymes. The sum of each enzymatic 
activity could lead to extensive softening and, eventually, tissue disintegration. However, this 
process is still poorly understood, and requires more investigations.   

 

5.2 Ethylene production  

Basically, fruits can be categorized into two families depending on their ability to undergo a 
burst of ethylene production and an associated increase in respiration rate at the onset of ripening. 
�)�O�H�V�K�\���I�U�X�L�W�V���V�X�F�K���D�V�����V�W�U�D�Z�E�H�U�U�\�����J�U�D�S�H���D�Q�G���F�L�W�U�X�V���G�R�Q�¶�W���J�R���W�K�U�R�X�J�K���W�K�L�V���S�U�R�J�U�D�P���I�R�U���U�L�S�H�Q�L�Q�J��  they 
are categorized as non-climacteric fruits. Contrarily, for tomato, which is as a typical example of 
climacteric fruit, the ripening process is linked to a dramatic increase of ethylene production and 
rises in respiration. Some other fruits, such as apple, peach and banana belong to this family, too 
�2�V�R�U�L�R���H�W���D�O��������������.  
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Fig 1. 13  Simplified scheme showing ethylene biosynthesis and response in tomato. Arrow 
heads represent positive regulatory interactions, and bar represent negative regulation. Figure 
comes from Liu et al (2015b). 

 
Adenosyl L-Methionin (SAM) is the starting point of ethylene synthesis. SAM synthesis is 

made by the S-adenosyl-methionine (SAM) synthase which catalyzes the adenosylation of the 
Sulphur atom of methionine. Ethylene synthesis then occurs in two steps initiated by the conversion 
of SAM into 1 aminocyclopropane-1-carboxylic acid (ACC) followed by the transformation of 
ACC into ethylene respectively catalyzed by the ACC synthase (ACS) and the ACC oxidase (ACO). 
In tomato, 14 genes corresponding to putative ACS and 6 to putative ACO have been identified 
within the tomato genome sequence (Tomato Genome Consortium, 2012; Liu et al, 2015b). A 
subset of them are operating in fruits and participate either to the ethylene synthesis System 1, 
operating during early tomato fruit development, either to the system 2 which insures ethylene 
production during fruit ripening.  ACS1A, ACO1, 3, 4 are the main genes participating to system 1 
(Barry and Giovannoni 2007;Cara and Giovannoni 2008), whereas, ASC2, ACS4, ACO1 and ACO4 
are involved in system 2. System 1 allows the synthesis of ethylene in developing fruits. At the 
mature green stage, ACS2 and ACS4 are induced and further stimulated by ethylene production, 
resulting in an auto-catalytic ethylene production. This leads to the repression of ACS1 and ACS6. 
In addition fruit ripening associated factors, including RIN, CNR play key roles in this process and 
are necessary for ethylene production at the onset of fruit ripening  (Giovannoni 2007).  

Ethylene is then perceived by the ethylene receptor, ETR that initiates a signaling cascade that 
release the blocking of Ethylene Insensitive (EIN) by the Constitutive Triple-Response proteins 
(CTR). This starts a transcriptional cascade that is initiated by the stabilization of Insensitive3-
Like1 (EIL1) that in turn activates the genes encoding the Ethylene Response factor, ERF (Solano 
et al., 1998). Finally ERF transcription factors control the expression of ethylene-regulated genes 
by binding to GCC-box type cis-elements (Liu et al., 2015b; Cara and Giovannoni 2008). The 
genes involved in this process during fruit ripening have been identified and include CTR1, EIN2, 
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EIN3/EIL1 and then the ERF family, which in turn control several genes determining various 
ripening-related traits, including color, firmness, aroma, taste and shelf life.  

 

5.3 Color change: chlorophyll degradation and carotenoid synthesis 

Tomato color change from green to red is the visible sign indicating the transition from 
development to ripening. The color change is associated with the degradation of chlorophylls and 
the shift of the carotenoid composition from lutein and neoxanthin to carotenes, mainly to lycopene 
and to a lower extend ��-carotene.  

Chlorophyll is responsible for the green color in the early stages of fruit ripening. The 
chlorophylls biosynthesis and degradation pathways have been well reviewed (Tanaka and Tanaka 
2006). The chlorophyll a biosynthetic pathway starts from glutamate. In this phase, the synthesis 
of 5-aminolevulinic acid (ALA) by glutamyl-tRNA reductase (GluTR) and glutamate 1-
semialdehyde aminotransferase is a key control point. The interconversion of chlorophyll a to 
chlorophyll b, the so-called chlorophyll cycle, is catalyzed by the chlorophyllide a oxygenase 
(CAO). The degradation of chlorophyll a and chlorophyll b is a slow and important process, which 
corresponds to the transition of green fruit to ripening (Tanaka et al., 1998;Tanaka and Tanaka 
2006). It was suggested that chlorophyll degradation is initiated by the reduction of chlorophyll b 
into chlorophyll a. This reduction step is catalyzed by non-yellow coloring 1 (NYC1), a chlorophyll 
b reductase. Mutation on NYC1 or NOL gene (NYC1-like) leads to non-ripening fruit, which always 
stays green (Tanaka et al., 1998;Kusaba et al., 2007;Horie et al., 2009;Sato et al., 2009). Then 
chlorophyll a is degraded by sequential elimination of phytol and magnesium, respectively by a 
chlorophyllase (Chlase), and a Mg dechelatase, producing pheophorbide a (pheide a). Under the 
activity of pheide a oxygenase (PAO) and red chl catabolite (RCC) reductase, pheophorbide a is 
converted to primary fluorescent chl catabolite-1 (pFCC-1), which are finally transformed to non-
fluorescent  chl catabolites (NCCs) (�3�U�X�å�L�Q�V�N�i et al., 2005).  

Carotenoids are terpenoid derivatives that are synthesized in fruit tissue during fruit ripening. 
There are two major classes of carotenoids: (i) xanthophylls, as for example, violaxanthin and 
�Q�H�[�D�Q�W�K�L�Q�����D�Q�G�������L�L�����F�D�U�R�W�H�Q�H�V�����V�X�F�K���D�V���O�\�F�R�S�H�Q�H���D�Q�G����-carotene (See review: Tohge et al., 2014).  
In tomato fruits, there is a substantial accumulation of certain carotenoid pigments during the 
ripening process. Among thosehe dramatic accumulation of lycopene causes the color change from 
green to orange and red. Transcriptional regulation of the genes involved in carotenoid biosynthesis 
pathway has been well characterized and 22 genes were demonstrated to play a role in this process 
in tomato (Fraser et al., 2009; Nogueira et al., 2013). Lycopene biosynthesis from two 
geranylgeranyl diphosphate molecules has been shown to proceed through the production of 
phytoene by the phytoene synthase (PSY1). This enzyme plays a key role in lycopene biosynthesis 
and it is highly induced during fruit ripening at the transcriptional level. Furthermore psy1 mutants 
show serious defects in carotenoid accumulation (Bartley et al., 1992; Fray and Grierson, 1993, 
and Fraser et al 2000). Several genes coding for enzymes acting upstream of lycopene are also 
induced during fruit ripening, concomitantly with the accumulation of lycopene (Bartley et al., 
1992). On the contrary, genes coding for enzymes acting downstream of lycopene are mainly 
turned off during fruit ripening to allow the accumulation of lycopene. Lycopene accumulation in 
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tomato fruits has been shown to be regulated by ethylene signaling and by the developmental 
regulators RIN, NOR and CNR (Klee and Giovannoni 2011;Seymour et al., 2013).  

 

5.4 Primary metabolites changes during tomato fruit ripening 

The combined analysis of tomato fruit transcriptome and metabolome shows that 
transcriptomic changes are less dramatically than variations in metabolites abundance, suggesting 
that posttranslational mechanisms dominate metabolic regulation (Carrari et al 2006). However, 
some strong relationships between ripening-associated transcripts and specific metabolite groups 
were found too, such as TCA-cycle organic acids and sugar phosphates.  

The acid taste of tomato fruits is attributed mainly to organic acids, including citrate and 
malate. The levels of organic acid in TCA cycle tend to decrease along fruit development. These 
changes are largely caused by the changes in activity of TCA-cycle enzymes, most of which decline 
during the chloroplast-chromoplast transition in tomato fruit (Bartley et al., 1992;Schauer et al., 
2005;Carrari et al., 2006). As the precursor of aspartate, malate is an important metabolite for 
ethylene feedback regulation during tomato fruit ripening and is also an important contributor to 
starch accumulation. Earlier work showed that starch degradation is also one of the major changes 
for fruit transition from development to ripening. Starch metabolism has been well demonstrated 
to have a tense relation with AGPase activity, which is also controlled at the transcriptional level 
(Osorio et al., 2013a). Moreover, Centeno et al (2011) found that in tomato, malate is a key 
component in the redox regulation of AGPase. Inhibiting fruit-specific gene of mitochondrial MDH, 
major tomato fumarase, or cytosolic phosphoenolpyruvate carboxykinase (PEPCK), leads to a 
decrease in the content of transitory starch in the transgenic plants with the higher malate content. 
These findings suggested that malate may have an important regulatory function for starch 
biosynthesis (Centeno et al., 2011;Osorio et al., 2013b). 

The balance and content between organic acids and sugars are important for high quality fruit 
(Bastías et al., 2011). Glucose, fructose and sucrose are the major sugars after fruit ripening. The 
levels of fructose and glucose increase during fruit development and ripening, whereas the 
concentration of sucrose decreases during fruit development. The decrease of sucrose is caused by 
the activity of invertases, enzymes that hydrolyze sucrose to hexose and thus play a fundamental 
role in the energy requirements for plant growth and maintenance (Dnfna Mirona  et al., 2002). 
Knock down of a specific gene encoding a sucrose invertase, Line5, induces an increase in the level 
of sucrose and a decrease in hexose content, resulting in smaller fruits  (Klann et al., 1996). 
Transcription factors can also affect key primary metabolites. For example, in SlAREB1 
overexpressors, citrate, malate, glutamate, glucose and fructose show higher accumulation levels 
in red mature fruit pericarp compared with those observed in antisense suppression lines. This 
suggests that an AREB-mediated ABA signal affects the metabolism of these compounds during 
�W�K�H���I�U�X�L�W���G�H�Y�H�O�R�S�P�H�Q�W�D�O���S�U�R�J�U�D�P�����H�Y�H�Q���L�I���W�K�H���I�U�X�L�W���U�L�S�H�Q�L�Q�J���Z�D�V�Q�¶�W���D�I�I�H�F�W�H�G���L�Q���W�K�H�V�H���W�U�D�Q�V�J�H�Q�L�F���S�O�D�Q�W�V��
(Bastías et al., 2011;Tohge et al., 2014).  

The transition from tomato fruit development to ripening involves a huge amount of protein 
degradation. (Carrari et al., 2006;Kahlau and Bock 2008). Therefore, most of the free amino acid 
contents tend to increase during fruit transition, such as glutamate, aspartate, although their 
contents are variable in different species. In particular, free glutamate of ripe tomato fruit occupies 
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a central role in the metabolism of amino acid in plants  (Sorrequieta et al., 2010). However, GABA 
was found to be one of the most abundant free amino acid in the pericarp of mature fruit and to 
show a rapidly decrease during ripening  (Takayama and Ezura 2015).  

 

VI . Role of DNA methylation / demethylation during fruit development 

and ripening 

As mentionned above, DNA methylation participates in the control of plant development. 
Several lines of evidence further suggest that DNA methylation plays a role during fruit 
development and ripening.  

The importance of epigenetic regulations in fruit was first suggested by the identification of 
the tomato epi-mutant Colorless non-ripening (Cnr) (Manning et al. 2006). More recently, several 
reports have described situations where a differential methylation pattern in fruits was associated 
with a change in fruit phenotype. For example, Telias et al (2011) have analyzed apple cultivars, 
�V�X�F�K�� �D�V�� �µ�+�R�Q�H�\�F�U�L�V�S�¶�� �R�U�� �µ�U�R�\�D�O�� �J�D�O�D�¶���� �W�K�D�W���S�U�R�G�X�F�H�� �I�U�X�L�W�V�� �F�K�D�U�D�F�W�H�U�L�]�H�G�� �E�\�� �V�W�U�L�S�H�G���F�R�O�R�U�� �S�D�W�W�H�U�Q�V����
These patterns correspond to the presence of sectors of different colors, green or red, in the peel. 
The molecular analysis of the two types of sectors has revealed that the color difference is 
associated with different anthocyanin contents and with the differential expression of MYB10, 
which codes for a transcription factor that has a key role in anthocyanin accumulation (Telias et al., 
2011). The difference in MYB10 expression was shown to depend on the methylation level in the 
promoter of MYB10, MYB10 promoter is more or less methylated depending on the peel areas 
(Fig 1.14). The origin of this methylation mosaic is not known. Similar results were obtained by 
comparing different pear fruits from the cultivar Max Red Bartlett producing both red- and green-
skin fruits on the same tree (Wang et al., 2013), or by comparing yellow fruits from an apple 
�V�R�P�D�W�L�F���P�X�W�D�Q�W�����µ�%�O�R�Q�G�H�H�¶�����Z�L�W�K���U�H�G-�V�N�L�Q���D�S�S�O�H�V���I�U�R�P���L�W�V���S�D�U�H�Q�W���µ�.�L�G�G�¶�V-�'���¶��(El-Sharkawy et al., 
2015). Working on tomato, Quadrana et al (2014) found that the vitamin E content in fruit is 
correlated with the methylation level in the promoter of VTE3, which encodes a protein involved 
in vitamin E biosynthesis. Accordingly VTE3 expression is linked to its promoter DNA methylation 
status. Interestingly, in some species, as for example, the cultivated species solanum lycopersicum, 
VTE3 ���¶���U�H�J�X�O�D�W�R�U�\���U�H�J�L�R�Q���F�R�Q�W�D�L�Q�V���D���7�(���D�Q�G���L�V���K�L�J�K�O�\���P�H�W�K�\�O�D�W�H�G�����Z�K�H�U�H�D�V���L�Q���V�R�P�H���R�W�K�H�U���V�S�H�F�L�H�V����
as for example the wild species, S. pennellii, the TE is absent and VTE3 promoter is not methylated 
(Quadrana et al., 2014). 

These different findings show that modification of the DNA methylation level at some specific 
loci can impact fruit development and ripening, but they �G�R�Q�¶�W���G�H�P�R�Q�V�W�U�D�W�H���W�K�D�W���W�K�H���U�H�J�X�O�D�W�L�R�Q���R�I��
gene expression through DNA-methylation plays a role during fruit development or ripening. 
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Fig 1. 14 � � � ��'�L�I�I�H�U�H�Q�W�� �W�\�S�H�V�� �R�I�� �I�U�X�L�W�� �S�H�H�O�� �S�L�J�P�H�Q�W�� �S�D�W�W�H�U�Q�V�� �L�Q�� �µ�+�R�Q�H�\�F�U�L�V�S�¶�� �D�S�S�O�H�� �D�Q�G��
�0�H�W�K�\�O�D�W�L�R�Q�� �O�H�Y�H�O�V�� �L�Q�� �µ�+�R�Q�H�\�F�U�L�V�S�¶�� �H�Y�D�O�X�D�W�H�G�� �X�V�L�Q�J�� �E�L�V�X�O�I�L�W�H�� �V�H�T�X�H�Q�F�L�Q�J�����'�L�V�W�U�L�E�X�W�L�R�Q�� �R�I��
�D�Q�W�K�R�F�\�D�Q�L�Q���L�Q���D�S�S�O�H���S�H�H�O�V���R�I���E�O�X�V�K�H�G�����$�����D�Q�G���V�W�U�L�S�H�G�����%�����I�U�X�L�W�V���R�I���µ�+�R�Q�H�\�F�U�L�V�S�¶�����L�Q�G�L�F�D�W�L�Q�J���U�H�J�L�R�Q�V��
�F�O�D�V�V�L�I�L�H�G���D�V���U�H�G���R�U���J�U�H�H�Q���V�W�U�L�S�H�V�������&�������&�R�P�S�D�U�L�V�R�Q���R�I���S�H�U�F�H�Q�W���P�H�W�K�\�O�D�W�L�R�Q���L�Q���W�Z�R���U�H�J�L�R�Q�V�����������������W�R��
�����������D�Q�G�������������W�R���������������R�I���W�K�H���0�<�%�������S�U�R�P�R�W�H�U�����*�H�Q�%�D�Q�N���D�F�F�H�V�V�L�R�Q���(�8�����������������E�H�W�Z�H�H�Q���U�H�G���D�Q�G��
�J�U�H�H�Q���V�W�U�L�S�H�V�����)�L�J�X�U�H�V���U�H�I�H�U�H�Q�F�H�G���I�U�R�P���7�H�O�L�D�V���H�W���D�O�������������������7�H�O�L�D�V���H�W���D�O���������������� 

Messeguer et al (1991) first suggested that DNA methylation undergo changes during tomato 
fruit development and ripening. Teyssier et al (2008) then showed that there is a 30% decrease of 
the global DNA methylation level in pericarp during fruit maturation. The comparison of tomato 
fruit methylomes at 4 developmental stages further demonstrated that there is a widespread 
epigenome reprogramming during fruit ripening (Zhong et al., 2013). Zhong et al (2013) found 
that around 1% of the tomato genome is differentially methylated during tomato fruit ripening, and 
that DNA demethylation occurs at promoters of fruit ripening-related genes such as NOR and CNR. 
The global and locus specific loss of DNA methylation during ripening is unlikely to be due to 
passive DNA demethylation because there is no more cell division and little endoreduplication 
during this process (Teyssier et al., 2008). This suggested that active DNA demethylation might 
play an important role during tomato fruit ripening. Because the treatment of immature fruits with 
a DNA methylation inhibitor induces early ripening before seed maturation, Zhong et al (2013) 
proposed the following model: (i) methylation inhibits ripening before seed maturation, the 
promoter of key ripening genes being hypermethylated. (ii) In maturing fruits, these promoters 
become demethylated, which would induce their expression through the recruitment of specific 
ripening-related transcription factors like RIN. Indeed RIN binding sites are typically adjacent to 
DMR and they become demethylated during ripening. This suggests that the binding of RIN to its 
targets sites occurs in concert with their demethylation  (Chen et al., 2015). 
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VII. Objectives of the work 

       Cytosine methylation (5MeC) of genomic DNA is a crucial reversible epigenetic mark that 
impacts several biological processes. Most notably, DNA methylation is involved in the control of 
gene expression and provides an epigenetic layer to the genetic information. As introduced above, 
DNA methylation is a revisable marker. DNA methylation is set up and maintained by three types 
of DNA methyltransferases, MET1, Chromomethylases (CMT), and small RNA mediated de novel 
methylation companied with Domain Rearranged Methyltransferase (DRM) in three different 
contexts, CG, CNG and CHH (H being C, T or A) and can be actively eased by DNA demethylases 
(DML). DMLs are essential enzymes that protect the genome against extensive methylation, hence 
removing DNA methy�O�D�W�L�R�Q���L�Q���W�K�H�����¶���D�Q�G�����¶���S�D�U�W���R�I���J�H�Q�H�V���D�Q�G���O�L�P�L�W�L�Q�J���W�K�H���I�R�U�P�D�W�L�R�Q���R�I���V�L�O�H�Q�F�H�G��
hyper�Ëmethylated epialleles.  

As introduced above, over the last 10 years, DNA methylation/demethylation has been shown 
to be critically important for plant development in the model plant Arabidopsis. Tomato is a model 
plant of fleshy fruits development and ripening. Indeed, we have shown that tomato plants treated 
with zebularine, an inhibitor of DNA methylation present pleiotropic phenotypes affecting the 
vegetative parts of plants, flowers and fruits, therefore highlighting the important function of DNA 
methylation in this plant as well. Zhong et al (2013) found that more than 4000 genes happens 
DNA demethylation during fruit ripening, which suggest active DNA demethylation works during 
fruit ripening process. Therefore, the objective of this project is to address the question of the 
functions of this class of enzyme during tomato fruit ripening and more generally during tomato 
plant development and quality.  

To achieve this goal, plants modified in their methylation level needs to be generated and 
analyzed. Therefore, RNAi was used to knockdown genes involved in the control of DNA 
demethylation. Selected lines were characterized using combined analyses of fruit metabolic 
composition, transcriptome, small RNA populations and if relevant the genome-wide description 
of DNA methylation pattern (McrBC�ËSeq and /or Bisulfite [BS] sequencing) (The strategy used 
in this project is as following, Fig1.15).  

This aims at determining which genes/loci targeted by DMLs in tomato fruits impact their 
phenotype. Identified loci with differential methylation and expression profile were validated using 
McrBC-PCR or targeted BS sequencing approaches and their expression level from RNA seq data 
were controlled by quantitative RT�ËPCR. 

This project is divided into two parts: 

(I: Chapter-2) focuses on the characterization of the functions of active DNA demethylation 
during tomato fruit ripening and more globally in tomato plants. To achieve this goal, RNAi plants 
with reduced DNA demethylase gene expression have been generated. This part aims at 
demonstrating that specific fruit ripening phenotypes observed in these plants are due to the 
hypermethylation of genes critical for fruit ripening. It also include attempts to characterize the 
biochemical function of tomato DML proteins. An additional question is to analyze to which extend 
phenotypes that are induced when DML genes are knocked down can be stably inherited during 
subsequent generations and therefore questions the stability of demethylation induced changes in 
methylation patterns.   

(II: Chapter-3) presents comprehensive analyses of the impact of active DNA demethylation 
on the transcriptomes and metabolomes of fruits that have a reduced DML2 gene expression. The 
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aim is to determine amongst the numerous physiological disorder affecting these fruits, those that 
are directly controlled by methylation. To answer this question RNA seq was combined with the 
metabolic analysis of fruits. Results were used to determine what genes are both differentially 
expressed and methylated in the transgenic lines as compared to WT fruits.  
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Chapter 2 

Introduction  

In plants, genomic DNA methylation at cytosines is a reversible epigenetic mark regulating 
various aspects of genome functioning, such as transposon mobility and gene expression. 
Methylation of cytosines can be actively removed by bifunctional DNA glycosylase-lyases, the so-
called DEMETER-like DNA demethylases (Choi et al., 2002). In Arabidopsis, active DNA 
demethylation plays a critical role in the maternal imprinting and endosperm demethylation. 
However impairing DNA demethylase activities has no major impact on Arabidopsis plants 
suggesting that these enzymes are not essential for development in this species. However, the 
functions of this class of enzymes are not known in tomato (Yamamuro et al., 2014,).  

It has previously been shown in the laboratory that the genomic DNA of tomato fruit pericarp 
is massively demethylated during ripening, at a time when cell division and DNA replication are 
reduced (Teyssier et al., 2008). This makes unlikely that lost of DNA methylation is due to dilution 
following DNA replication and the inability to maintain DNA. It rather suggests that DNA 
methylation is actively removed. It was also recently demonstrated that demethylation occurs at 
specific gene promoters (Zhong et al., 2013). The objective of my project is to study the role of 
tomato SlDMLs, using transgenic tomato plants impaired in the expression of SlDML genes.  

In the first part in this chapter, I will present the functional analysis of SlDML genes, mainly 
focusing on one of the genes SlDML2, during fruit ripening. Firstly, the four tomato SlDML genes 
were characterized in details and DML RNAi transgenic plants were generated with the aim to 
knock down all SlDML genes at once. T0 plants were phenotyped and many of them presented a 
strong inhibition of fruit ripening.  To investigate the consequences of DNA demethylation on the 
ripening process, we have analyzed the primary metabolites as well as carotenoids and ethylene 
content, and found that many the aspects of fruit ripening were inhibited and limited in DML RNAi 
transgenic fruits. To demonstrate a causal relationship between fruit ripening defects of transgenic 
lines and the impairment of active DNA demethylation, four essential genes (RIPENING 
INHIBITOR (RIN), NON RIPENING (NOR), COLORLESS NON RIPENING (CNR) and 
PHYTOENE SYNTHASE 1 (PSY1)) playing important roles in fruit ripening were analyzed to 
determine their expression level and the methylation level at  their promoter.  

In a second part of this chapter, I will present the strategy used to characterize tomato SlDML 
protein activity. Among the four DEMETER-like DNA demethylase genes, SlDML2 was chosen 
to demonstrate the DNA glycosylase-lyases activity in vitro because it is the most highly expressed 
of the four SlDML genes in ripening fruits. Attempt to produce the recombinant protein and the use 
of an in vitro activity test will be described.  

The third part in this chapter will present the potential role of active DNA demethylation on 
other aspects of tomato plant development, namely, flower formation and early leaf development. 
We found that in some DML RNAi transgenic plants, flower and fruit pericarp were altered, in 
addition to fruit ripening. This is allowed to investigate the heritability of these phenotypes in the 
absence of the transgene. We have therefore developed a strategy to segregate out the transgene in 
order to analyze the eventual transgenerational stability of the flower and fruit phenotypes.  
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In plants, genomic DNA methylation which contributes to develop-
ment and stress responses can be act ively removed by DEMETER-like
DNA demethylases (DMLs). Indeed, in Arabidopsis DMLs are impor-
tant for maternal imprinting and endosperm demethylation, but only
a few studies demonstrate the developmental roles of active DNA
demethylation conclusively in this plant. Here, we show a direct
cause and effect relationship between active DNA demethylation
mainly mediated by the tomato DML, SlDML2, and fruit ripening—
an important developmental process unique to plants. RNAi SlDML2
knockdown results in ripening inhibition via hypermethylation and
repression of the expression of genes encoding ripening transcrip-
tion factors and rate-limiting enzymes of key biochemical processes
such as carotenoid synthesis. Our data demonstrate that active DNA
demethylation is central to the control of ripening in tomato.

active DNA demethylation | DNA glycosylase lyase | epigenetic | tomato |
fruit ripening

Genomic DNA methylation is a major epigenetic mark that is
instrumental to many aspects of chromatin function, including

gene expression, transposon silencing, or DNA recombination (1–4).
In plants, DNA methylation can occur at cytosine both in sym-
metrical (CG or CHG) and nonsymmetrical (CHH) contexts and is
controlled by three classes of DNA methyltransferases, namely, the
DNA Methyltransferase 1, Chromomethylases, and the Domain
Rearranged Methyltransferases (5–7). Indeed, in all organisms, cy-
tosine methylation can be passively lost after DNA replication in
the absence of methyltransferase activity (1). However, plants can
also actively demethylate DNA via the action of DNA Glycosylase-
Lyases, the so-called DEMETER-Like DNA demethylases (DMLs),
that remove methylated cytosine, which is then replaced by a non-
methylated cytosine (8–11). Initially identified as enzymes nec-
essary for maternal imprinting inArabidopsis thaliana(12), the role
of DMLs has since been established in various processes such as
limiting extensive DNA methylation at gene promoters (13), de-
termining the global demethylation of seed endosperm (8, 14) and
promoting plant responses to pathogens (15). Of note,Arabidopsis
ros1, dml2, and dml3single, double, or triple mutants showed little or
no developmental alterations (9, 16, 17), suggesting that active DNA
demethylation is not critical for development in this species. How-
ever, as mentioned above, genomic DNA methylation is an impor-
tant mechanism that influences gene expression, and methylation at
promoters is known to inhibit gene transcription (5, 18). Hence, it is
likely that the active removal of methylation marks is an important
mechanism during plant development and plant cell fate reprog-
ramming, leading to the hypomethylation of sites important for

DNA –protein interaction and gene expression, as already observed
in human cells (19).

Indeed, accumulating evidence suggests that active DNA deme-
thylation might play a greater role in controlling gene expression in
tomato. In support of this idea, recent work describing the meth-
ylome dynamics in tomato fruit pericarp revealed substantial
changes in the distribution of DNA methylation over the tomato
genome during fruit development, and demethylation during rip-
ening at specific promoters such as theNON RIPENING (NOR)
and COLORLESS NON RIPENING (CNR) promoters (20, 21).
This observation is consistent with previous studies indicating that
genome cytosine methylation levels decrease by 30% in pericarp of
fruits during ripening, although DNA replication is very limited at
this stage (22).

Significance

This work shows that active DNA demethylation governs ripen-
ing, an important plant developmental process. Our work defines
a molecular mechanism, which has until now been missing, to
explain the correlation between genomic DNA demethylation
and fruit ripening. It demonstrates a direct cause-and-effect re-
lationship between active DNA demethylation and induction of
gene expression in fruits. The importance of these findings goes
far beyond understanding the developmental biology of ripening
and provides an innovative strategy for its fine control through
fine modulation of epimarks in the promoters of ripening related
genes. Our results have significant application for plant breeding
especially in species with limited available genetic variation.
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Here, we investigated active DNA demethylation as a possible
mechanism governing the reprogramming of gene expression in
fruit pericarp cells at the onset of fruit ripening.

Results
The Tomato Genome Contains Four DNA Glycosylase Genes with
Specific Expression Patterns.The tomato genome contains four
putative DML genes encoding proteins with characteristic do-
mains of functional DNA glycosylase-lyases (23) (SI Appendix,
Fig. S1A and C and Table S1). SlDML1 and -2 are orthologous
to the Arabidopsis AtROS1(Repressor of Silencing 1) gene and
SlDML3 to AtDME (DEMETER), whereas SlDML4 has no
closely relatedArabidopsisortholog (SI Appendix, Fig. S1B). All
four SlDML genes are ubiquitously expressed in tomato plants,
although SlDML4 is expressed at a very low level in all organs
analyzed. In leaves, flowers, and young developing fruits, the
four genes present coordinated expression patterns character-
ized by high expression levelsin young organs that decrease
when organs develop. However, unlikeSlDML1, SlDML3, and
SlDML4, which are barely expressed during fruit ripening,
SlDML2 mRNA abundance increases dramatically in ripening
fruits, suggesting an important function at this developmental
phase (Fig. 1).

Transgenic Plants with ReducedDMLGene Expression Present Various
Fruit and Plant Phenotypes. The physiological significance of to-
mato DMLs was addressed through RNAi-mediated gene re-
pression using the highly conserved Helix–hairpin–Helix-Gly/Pro
rich domain (HhH-GPD) specific to DML proteins as a target
sequence (SI Appendix, Fig. S2A). Our goal was to repress si-
multaneously all tomato SlDML genes, anticipating potential
functional redundancy among these four genes; 23 independent
T0 transgenic lines were generated and 22 showed alterations of
fruit development, including delayed ripening, modified fruit
shape, altered color, shiny appearance, parthenocarpy, or com-
binations of these phenotypes (Fig. 2A).

Lines 2 and 8, which showed delayed and inhibited ripening
phenotypes, were chosen to investigate the possible link between
ripening and DNA demethylation. In both cases, 10–25 T1 and
T2 plants were grown that showed maintenance and strength-
ening of the nonripening phenotypes in subsequent generations
coincident with the presence of the transgene. The loss of the
RNAi transgene in segregating lines led to reversion to a wild-

type (WT) phenotype, indicating a lack of memory effect across
generations when fruit ripening is considered (Fig. 2A and B and
SI Appendix, Fig. S3A). In plants of both RNAi lines, analysis of
SlDML gene residual expression in 20 days postanthesis (dpa)
fruits indicates that onlySlDML1 and SlDML2 are repressed to
40–60% of the WT level, whereasSlDML3 and SlDML4 are
either unaffected or induced compared with WT (Fig. 3A). This
is most likely attributable to the lower homology level of these
two genes, withSlDML1 in the part of the gene used for the
RNAi construct (SI Appendix, Fig. S2A). During ripening,
SlDML2 expression is reduced to 10% of WT at the Breaker (Br)
stage and remains low at 55 dpa (Br+ 16) but increases slightly
at 70 dpa (Br + 31) (Fig. 3B and SI Appendix, Fig. S2B), co-
incident with the partial ripening observed in transgenic RNAi
fruits (Fig. 2C and SI Appendix, Fig. S3B). Whether the increase
in SlDML2 expression at late ripening stages is attributable to a
weaker effect of the RNAi remains unclear. None of the three
remaining genes,SlDML1, SlDML3, and SlDML4, which are
weakly expressed during ripening, displayed significantly reduced

Fig. 1. Differential expression of SlDML genes in tomato organs. Absolute
quantification of SlDML1, SlDML2, SlDML3, and SlDML4 mRNA; SlDML4 gene
expression is presented in a separate diagram because of its very low ex-
pression level. Fruit pericarp is at 5, 10, 20 dpa and at Breaker (BR, 39 dpa),
orange (O), and red ripe (RR). Asterisks indicate significant difference [Stu-
dent ’s t test (n = 3)] between SlDML2 and all other SlDML genes: *P < 0.05;
** P < 0.01; *** P < 0.001. Error bars indicate means ± SD. Ap, stem apex; CF,
closed flowers; L, leaves at positions 3, 4, 5, 8, 10, 16, and 20 from apex; OP,
open flowers 5, 10, and 20; R, roots; S, stem from whole seedlings.

WT            1               2                3             4            5            6           7          8

WT                    2A               2B                 8A                   8B                  Az
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35              39                55               70             85 dpa                   30  dpa
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Fig. 2. Phenotypes of tomato DML RNAi fruits. ( A) Fruits (70 dpa) (upper
lane) or fruit sections (lower lane) from eight independent representative T0
RNAi plants. (B) Fruits (85 dpa) from T2 plants (left to right); WT plants, line 2
plants (DML2A and DML2B), line 8 plants (DML8A and DML8B), and an
azygous plant (AZ). ( C) Ripening kinetics of WT ( Top), DML8A (Middle ), and
DML2A (Bottom ). (D) WT bicarpel ( Upper ) DML2B multicarpel fruits ( Lower ).
(E) VIGS experiment on 47-dpa (Br + 5) fruits injected with PVX/SlDML2
[fruits (1) and (3)] or PVX [fruits (2) and (4)] at 12 dpa [fruits (3) and (4)] inside
of fruits (1) and (2), respectively. (Scale bars: 1 cm.)
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expression compared with WT fruits of the same age, indicating
that observed ripening phenotypes are likely attributable to
SlDML2 gene repression. This hypothesis was further confirmed
using virus induced gene silencing (VIGS) to specifically repress
the SlDML2 gene; 17.5% of the fruits injected with a PVX/
SlDML2 vector presented non ripening sectors contrary to those
injected with a control PVX virus that all ripened normally (Fig.
2E and SI Appendix, Fig. S4B). Indeed, SlDML2 was down-reg-
ulated in nonripening sectors of fruits injected with the PVX/
SlDML2 vector, whereas none of the three otherSlDML genes
was repressed (SI Appendix, Fig. S4C), demonstrating that the
specific knock down ofSlDML2 is sufficient to inhibit ripening.

It was noteworthy that some plants from line 2 developed ad-
ditional phenotypes affecting plant growth, leaf shape, flower
development, and fruit carpel number that were not observed in
T0 and T1 generations (Fig. 2D andSI Appendix, Fig. S3B andC).
The screening of additional lines revealed other independent
transgenic lines that presented flower, fruit, and plant phenotypes
similar to line 2 (SI Appendix, Fig. S3D). These observations in-
dicate that the severity of the phenotypes increases over genera-
tions and suggest that DMLs may also be involved in other aspects
of tomato plant development beyond fruit ripening.

All Aspects of Fruit Ripening Are Delayed and Limited in RNAi
Transgenic Lines.Fruits of transgenic lines 2 and 8 were further
analyzed to investigate the consequences of DNA demethylation
on the ripening process. Indeed, in fruits of both transgenic lines,
the onset of fruit ripening was delayed from 10 to 20 d compared
with WT or Azygous revertant fruits, and ripening of transgenic
fruits was never completed even after 45 d or longer maturation
times (Fig. 2 B and C and SI Appendix, Fig. S3B). The ripening
defect is further demonstrated by the late and extremely reduced
total carotenoids and lycopene accumulation and the delayed

chlorophyll degradation (Fig. 4A). Primary metabolite compo-
sition was also modified, as visualized by principal component
analysis (PCA) using the absolute concentration of 31 primary
metabolites issued from1H-NMR analysis (Fig. 4B and SI Ap-
pendix, Fig. S5A). The first two principal components (PCs),
explain more than 54% of total variability. During early devel-
opment (20, 35, and 39 dpa), WT and transgenic samples follow
parallel trajectories as highlighted by the PCA in which the0
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Fig. 3. Residual expression of SlDML genes in fruits of transgenic DML RNAi
plants. Normalized expression of the SlDML genes (A) in 20-dpa transgenic
fruits of plants from line 2 (DML2A and -2B), line 8 (DML8A and -8B), an
azygous plant (AZ), and the respective WT1 and WT2 controls ( B) in WT2 and
DML8A fruits at seven developmental stages. Expression of the SlDML genes
was normalized to EF1 � and to the corresponding WT fruits at 20 dpa.
For each SlDML gene, asterisks indicate significant difference [Student ’s
t test (n = 3)] between transgenic plants and WT controls, respectively, at
20 dpa (A) or at the same age during fruit development ( B). * P < 0.05; ** P <
0.01; *** P < 0.001). Error bars indicate mean ± SD.
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Fig. 4. Metabolic profiling of carotenoids and primary metabolites in
transgenic DML RNAi fruits. ( A) Chlorophylls ( Top), total carotenoids ( Mid-
dle), and lycopene ( Bottom ) content. Asterisks indicate significant difference
[Student ’s t test (n = 3)] between DML2A and -2B, DML8A and -8B, and WT1
and WT2, respectively, at the same age: * P < 0.05; ** P < 0.01; *** P < 0.001.
Error bars indicate means ± SD. (B) PCA using primary metabolites in WT2
(� ) and DML8A ( � ) fruits at seven developmental stages. Color indicates the
fruit developmental stages: white is 20 dpa and from light gray to black are
35, 39 (Br), 55, 70, 85, and 110 dpa.
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second PC (PC2) explains 21% of the total variability. However,
at 55-dpa and later ripening stages, PC1, which accounts for
33.67% of the global variability, separates WT fruits from all
other samples. Hence, WT fruit samples harvested at 55-dpa and
older stages are clearly distinct from transgenic fruit samples of
the same age. Metabolic differences between ripening WT and
transgenic fruits are mainly attributable to overaccumulation of
malate and reduction or delayed accumulation of compounds
typical of ripening fruits, including glucose, fructose, glutamate,
rhamnose, and galactose (SI Appendix, Fig. S5B–D). Climacteric
rise of ethylene production was also dramatically reduced in
fruits of both DML RNAi lines, although low ethylene accu-
mulation occurred to a degree and timing consistent with the
late and limited ripening process of RNAi fruits (SI Appendix,
Fig. S6).

Fruit-Ripening Defects Are Correlated with the Repression and
Hypermethylation of Genes Necessary for This Developmental Process.
To demonstrate a causal relationship between fruit ripening defects
of transgenic lines and the impairment of active DNA demethyla-
tion, the expression ofCNR (21), RIPENING INHIBITOR (RIN )
(24), NOR (25), and PHYTOENE SYNTHASE 1(PSY1) (26, 27)
genes was assessed in RNAi transgenic plants. These genes were

selected among others because they are necessary for the overall
ripening process (CNR, RIN, NOR), or specifically govern carot-
enoid accumulation (PSY1), an important quality trait of mature
tomato fruit. Moreover, the promoter regions of these genes
showed reduced methylation levels during fruit ripening in WT
tomato (20, 21). It is noteworthy that CNR gene induction was
delayed 15 d in transgenic fruits, and all three other genes showed a
dramatic reduction in expression level consistent with the ripening
defect of the transgenic lines (Fig. 5A and SI Appendix, Fig. S7). To
assess whether repression ofCNR, RIN, NOR, and PSY1gene ex-
pression in ripening fruits results from the maintenance of a high
cytosine methylation status of their promoter upon down-regulation
of SlDML2, methylsensitive-PCR (McrBC-PCR) analysis of the
corresponding promoters was performed. This approach revealed a
ripening-associateddemethylation of the RIN, NOR, and PSY1
promoters in WT and Azygous revertant fruits but not inSlDML
RNAi fruits (Fig. 5 B). No detectable variations of methylation in
the CNR promoter during ripening of WT fruits were revealed with
this method. The putative differentially methylated regions (DMRs)
in the NOR andPSY1promoter regions were subsequently analyzed
by gene specific bisulfite pyrosequencing (28). Methylation analysis
of the CNR promoter was targeted to a region known to be
methylated at all stages (CNR1) (SI Appendix, Fig. S9C), used here
as a control for methylation and to a previously identified DMR
(CNR2) (SI Appendix, Fig. S9C) (20, 21). For all three promoters,
cytosines that became demethylated in ripening WT fruits but not in
transgenic fruits of the same age were identified (Fig. 6A and SI
Appendix, Fig. S9). Two distinct situations were observed: (i) se-
quences corresponding to putative RIN binding sites (RIN BS) in
the CNR and NOR promoters (20), where methylation is high at 20
and 35 dpa in all plants analyzed and drops to very low levels during
ripening of WT fruits but is maintained to high levels in RNAi fruits
of the same age; and (ii ) sequences that are hypermethylated in
transgenic fruits at all stages analyzed compared with WT fruits.
These latter sequences include a newly identified DMR in thePSY1
promoter and cytosines upstream and downstream to the RIN BS in
the NOR and CNR promoters. These data demonstrate the ab-
solute requirement of promoter demethylation in critical genes
for ripening to occur. The data also suggest multiple patterns of
cytosine demethylation occurring either specifically during rip-
ening or at earlier stages.

Discussion
Previously reported analysis of DNA cytosine methylation and
RIN binding during fruit development in WT and in the rin and
Cnr tomato-ripening mutants suggested a significant role for
DNA methylation during ripening and a feedback loop between
methylation and ripening transcription factors (20, 21, 29). Here,
we demonstrate for the first time to our knowledge that active
DNA demethylation is an absolute requirement for fruit ripening
to occur and show a direct cause and effect relationship between
hypermethylation at specific promoters and repression of gene
expression. In this context,SlDML2 appears to be the main
regulator of the ripening associated DNA demethylation pro-
cess. (i ) SlDML2 is the onlySlDML gene induced concomitantly
to the demethylation and induction of genes that control fruit
ripening; (ii ) the specific knockdown of SlDML2 in VIGS-
treated fruits leads to inhibition of fruit ripening similar to DML-
RNAi fruits; and ( iii ) the hypermethylated phenotype described
in the Cnr and rin mutants (20) is associated with the specific
repression ofSlDML2, with none of the otherSlDML genes being
down-regulated (Fig. 6B and Dataset S1).

Indeed, we cannot formally rule out thatSlDML1, which is
repressed in the transgenic RNAi lines, also participates in the
genomic DNA demethylation in fruits. However, SlDML1 is
mainly expressed at early stages of fruit development and only at
very low levels during fruit ripening. Hence, this protein may also
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Fig. 5. Expression and demethylation at key genes controlling ripening are
inhibited in DML RNAi plants. ( A) Expression of the RIN, NOR, CNR, andPSY1
genes in transgenic DML8A and WT fruits normalized to EF1 � and to WT
fruits at 20 dpa. Asterisks indicate significant difference [Student ’s t test (n =
3)] between WT and DML8A samples at a given stage: * P < 0.05; ** P < 0.01;
*** P < 0.001. Error bars indicate means ± SD. (B) McrBC-PCR analysis of se-
lected promoter fragments in fruits of WT, azygous (Azy), and DML8A
plants; 1 �g of genomic DNA was digested with McrBC (NEB) during 5h ( +);
(–) indicates negative control for the digestion reaction that was performed
without GTP. In the WT and azygous plants, the part of NOR, RIN, and PSY1
promoter regions analyzed are methylated at 35 dpa (no amplification) but
are demethylated at 55 dpa (amplification). In DML8A plants, the three
promoter regions behave similarly to WT at 35 dpa but remained methyl-
ated at 55 dpa (no amplification in both cases). The pectin-methyl esterase
(PME) promoter is used as an unmethylated control, and the CNRpromoter
fragment used here was found to be sufficiently methylated at all stages for
complete digestion by McrBC.
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be involved in demethylation events but mainly those occurring
at the early stages of fruit development.

In addition to genes encoding major fruit ripening regulators,
those encoding enzymes involved in various aspects of fruit rip-
ening are also likely to be demethylated, as suggested by the ob-
servation thatPSY1gene expression also requires demethylation.
Combined transcriptomic, methylomic, and metabolomic analysis
of the transgenic lines described here will now be required to
determine the network of genes and metabolic processes primarily
targeted by demethylation in tomato fruit.

SlDML2 is the likely focal point of a feedback regulation
on ripening-associated DNA demethylation, because this gene is

clearly down-regulated in fruits of therin, nor, and Cnr mutants,
contrary to the other SlDML genes that are normally expressed
(Fig. 6 B and C and Dataset S1). It is plausible that timing and
extent of demethylation may represent an important source of
variation in the diversity of kinetics and intensity of ripening
found among tomato varieties, thus presenting a frontier for
further investigation. Controlling the timing and kinetics of ac-
tive DNA demethylation in fruits may therefore provide new
strategies to enhance fruit shelf life. In addition, engineering
DNA demethylation in tomato fruits would be an innovative and
novel strategy for the improvement of traits of agronomical
relevance in a species with little genetic diversity (30). Finally,

A
B

C

Fig. 6. Bisulfite-sequencing analysis at the NOR, CNR, and PSY1promoter fragments in WT and transgenic DML RNAi plants. ( A) Heat-map representation of
DNA methylation at selected NOR, CNR, and PSY1promoter regions ( SI Appendix , Fig. S8) in fruits of control (WT1 and WT2) and transgenic (DML2A, -2B, -8A,
and -8B) plants at five (WT and line 8) or four (line 2) developmental stages. For each promoter, two fragments have been analyzed (fragment 1, gray box;
fragment 2, black box), the positions of which are shown in SI Appendix , Fig. S8 and Fig. S9. The position of the Cs within each promoter fragment is also
shown (number in the columns on the right side), as defined in SI Appendix, Fig. S8. For each promoter, Cs have been clustered considering the two PCR
fragments analyzed together. ( B) Changes in expression of SlDML genes in fruits of Ailsa Craig (WT) and near-isogenic mutant lines rin , Cnr, and nor, as
determined by microarrays analysis. For fruit development, days postanthesis are shown. Mature green is 40 dpa in Ailsa Craig and then Br is 49 dpa. For
nonripening mutants, Br onward are 49 dpa + 1–7 d. Asterisks indicate significant difference (variance ratio, F tests) between WT and mutant lines for the
SlDML2 gene only to avoid overloading the figure: * P < 0.05; ** P < 0.01; *** P < 0.001). Details of expression results and statistical analyses for all four genes
are provided in Dataset S1. Error bars indicate means ± SD. (C) Proposed function of DNA demethylation in the control of fruit ripening; SlDML2 is necessary for
the active demethylation of the NOR, CNR, RIN, and PSY1promoter region, thereby allowing these gene expressions. SlDML2 gene expression is reduced in the
rin , nor , and Cnr background, suggesting a regulatory loop. There is at this time no evidence of direct regulation of the SlDML2 gene by the RIN, NOR, or CNR
protein. SlDML2 may control the expression of additional ripening induced gene, as shown in this study for the PSY1gene and suggested by the demethylation of
several promoters during fruit ripening (20). Arrows indicate activation. Lines indicate repression: black, direct effects; gray, direct or indir ect effects.
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the recent demonstration that hypermethylation of aMyb pro-
moter blocks anthocyanin accumulation during pear and apple
ripening (31, 32) supports the notion of a more general role for
demethylation in fruits. However, whether this mechanism oc-
curs similarly during the ripening of all fleshy fruit species now
requires further investigation.

Materials Methods
Plant Material and Experimental Plan. All experiments were performed using a
cherry tomato variety ( Solanum lycopsersicum, cv WVA106) that was grown
in greenhouse conditions, except for VIGS experiments, which were per-
formed on Solanum lycopsersicum, cv Ailsa Craig grown in growth chambers
as described (21). For the array experiments, fruit pericarp of Ailsa Craig and
near-isogenic mutants rin , nor , and Cnr were collected at 13 stages of fruit
development and ripening with three independent biological replicates per
line and immediately frozen in liquid nitrogen for RNA extraction and array
analysis. Details of tomato transformation, selection of line 2 and 8 used in
this study, and of VIGS experiments are provided in SI Appendix , Materials
and Methods .

For all analysis, two independent transgenic T2 plants (DML2A and -B and
DML8A and -B for lines 2 and 8, respectively) and an azygous plant obtained
from line 8 were used. Additional T2 plants were eventually used as controls
for the phenotypes of these four plants. T2 plants from line 2 presented
dramatic alterations of flower development, not visible in previous gener-
ations, and were backcrossed to allow fruit development. This resulted in a
limited number of fruits (see below). For this reason, not all developmental
stages could be analyzed for this line.

The experimental plan was designed to span tomato fruit development
and ripening in cv West Virginia 106 (WVA106) and transgenic DML RNAi
plants over a period of 85 d from fruit set to account for the strongly delayed
ripening phenotype of the transgenic fruits. At stages following mature
green, the DML RNAi fruits diverge from the WT, because they are signifi-
cantly delayed in ripening induction and almost completely ripening
inhibited. Because it was not possible to select stages equivalent to the Br (39
dpa) or red ripe stages in the transgenic lines, we have chosen to analyze
fruits identically staged, which allows comparing changes in the context of a
developmental parameter (days postanthesis) that can be precisely mea-

sured. Two independent cultures were performed. ( i ) Plants from line 2 and
the relevant WT control (WT1), fruits were harvested at 20, 35, 55 (Br + 16),
70 (Br + 31), and 85 (Br + 46) dpa. Because the fruit yield was reduced in line
2, a sufficient number of fruits at the Br stage could not be harvested and
older fruits were preferentially selected to allow the analysis of late effects
of demethylation inhibition. ( ii ) Line 8 was grown together with its own
WT control (WT2) and an azygous plant. Because there were more fruits
available for this line, the Br stage (39 dpa) was harvested in addition of the
stages used for line 2.

For all fruit samples, two individual T2 plants were used, and for each
sample, a minimum of six fruits separated in three biological replicates were
processed and stored at � 80 °C until used.

Molecular and Metabolite Analysis. Details of molecular (gene expression,
microarrays, McrBC-PCR analysis of gene DNA methylation, and gene-targeted
bisulfite sequencing) and metabolite (Carotenoid, ethylene, and 1H-NMR)
analysis are provided in SI Appendix, Materials and Methods .
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SI Appendix 

SI Materials and methods 

Tomato transformation 

Tomato transformation 
For tomato transformation, a 223bp fragment (Fig. S2A) corresponding to part of the 
highly conserved HhH-GPD domain of DNA glycosylase Lyase was amplified from the 
SlDML1 cDNA and cloned in sense and antisense orientation in pK7GWIWG2 (I) 
plasmid to form a hairpin structure necessary for to RNA silencing. The recombinant 
plasmid named pK7GWSlDML was introduced in the A. tumefaciens strain GV3101.  
Subsequently, tomato cotyledon transformation was done as described in Gonzalez et 
al. (S1). Twenty five regenerated shoots were selected from independent calli and 
cultured as described in How Kit et al. (S2). Twenty five kanamycin resistant T0 plants 
were transferred to the greenhouse and grown to obtain T1 seeds. 
Among the 25 independent T0 transgenic plants obtained, 8 including plants 2 and 8, 
presented delayed and limited ripening phenotypes. Plants 2 and 8 were selected for 
further studies and self-pollinated and backcrossed, respectively, to generate lines 2 and 
8. Backcrossing of the T0 plant 8 was necessary due to flower abnormality. Twenty five 
T1 plants were grown in each case and were classified based on the level of SlDML 
expression as determined by semi quantitative RT�±PCR on 20 dpa fruits and used for 
preliminary phenotype characterization. No flower abnormality was observed on T1 
plants that were therefore self-pollinated. Complete phenotypic and molecular analyses 
were performed on T2 plant population obtained after selfing of a single homozygote 
(line 2) or hemizygote (line 8) T1 plant. 
VIGS experiments 
�)�R�U���9�,�*�6���H�[�S�H�U�L�P�H�Q�W�V���D�����������E�S���3�&�5���D�P�S�O�L�I�L�H�G���I�U�D�J�P�H�Q�W���F�R�U�U�H�V�S�R�Q�G�L�Q�J���W�R���W�K�H�����¶���F�R�G�L�Q�J��
sequence of SlDML2 was inserted into the PVX vector (21). This part of the gene has no 
significant homology with any of the other tomato SlDML genes. VIGS and analysis of 
VIGS experiments were as described (21), using 80 independent fruits injected at 12 
days post anthesis. 
 

Molecular Analysis 

Gene expression analysis 

Absolute quantification of transcript was performed as described (S3). For each gene, 
PCR fragments were cloned and controlled by sequencing and a calibration curve was 
done. For comparative RT-QPCR, experiments were performed as described (S2). 
Normalization of data was done according to Pfaffl et al. (S4) using EF1 alpha as a 
reference gene and a reference sample. An ANOVA two ways was performed and 
difference in gene expression levels between Wild Type and transgenic plants were 
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assessed using a student t test (n=3; *: p<0.05; **: p<0.01; ***p<0.001). All primers 
used for RT PCR analysis are listed in Table S2. 

For microarrays analysis, total RNA was isolated from rin, nor Cnr and wild type Ailsa 
Craig pericarp samples according to methods as described in (21). The concentration of 
RNA was determined using an Agilent Bioanalyser 2100 (Agilent Technologies). Total 
RNA was treated with DNA-�I�U�H�H�����$�P�E�L�R�Q�����D�V���S�H�U���W�K�H���P�D�Q�X�I�D�F�W�X�U�H�U�¶�V���L�Q�V�W�U�X�F�W�L�R�Q�V�����5�1�$��
was then hybridized to the Syngenta Tomato Affymetri�[���*�H�Q�H�&�K�L�S���Œ���7�K�H���P�L�F�U�R�D�U�U�D�\�V��
were normalized using the Robust Multichip Average (RMA) method with the 
Bioconductor Affymetrix package (S5), which both accounts for the background 
correction using the perfect match (PM) features for quantile normalization of all the 
arrays (S6) and for condensing probes into probe regions (hereafter referred to as genes) 
(S7). The expression values are arbitrary units of fluorescence intensity.  

A linear mixed model was fitted to the logarithm of the DML data with genotype, 
developmental stage and gene considered as fixed effects and plant and fruit-within-
plant as random terms in the model. The significance of the fixed effects and their 
interactions were tested using the Variance ratio F- tests output by the mixed model 
fi tting routines within the Genstat 17 statistical package 
 

McrBC-PCR Analysis 

For methylation analysis, genomic DNA were purified from fruit pericarp using the 
illustra DNA extraction kit Phytopure (GE Healthcare, UK), quantified at 260nm and 
quality control was performed after electrophoresis on a 1% agarose gel. For McrBC-
PCR methylation analysis, 1µg of genomic DNA was digested with McrBC (NEB) for 
5h according to manufacturer instructions with or without GTP as a negative control. 
PCR amplification was performed with 50 ng of genomic DNA with the relevant 
primers shown in Table S2.  

 

Bisulfite sequencing 

Gene specific BS sequencing was performed essentially as described in (28). Briefly, 
PCR primers for bisulfite treated DNA amplification were designed with Primer3 
(http://bioinfo.ut.ee/primer3-0.4.0/) using the unconverted genomic DNA sequence as 
input sequence. As every C nucleotide can be potentially methylated in plants and in 
�R�U�G�H�U�� �W�R�� �D�Y�R�L�G�� �D�Q�\�� �V�H�T�X�H�Q�F�H�� �V�H�O�H�F�W�L�R�Q�� �E�L�D�V�� �G�X�U�L�Q�J�� �3�&�5�� �D�P�S�O�L�I�L�F�D�W�L�R�Q���� �³�&�´�� �D�Q�G�� �³�*�´��
�Q�X�F�O�H�R�W�L�G�H�V�� �Z�H�U�H�� �U�H�S�O�D�F�H�G�� �E�\�� �³�<�´�� �D�Q�G�� �³�5�´�� �Qucleotides in forward and reverse primers 
respectively. All primers are listed in Table S2. 

One microgram of genomic DNA was used for bisulfite treatment conversion using the 
�(�S�L�7�H�F�W�� ������ �%�L�V�X�O�I�L�W�H�� �.�L�W�� ���4�L�D�J�H�Q���� �&�R�X�U�W�D�E�R�H�X�I���)�U�D�Q�F�H���� �D�F�F�R�U�G�L�Q�J�� �W�R�� �P�D�Q�X�I�D�F�W�X�U�H�U�¶�V��
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instructions. The absence of unconverted genomic DNA was assessed processing a 
whole-genome amplified sample (Whole Genome Amplification (WGA) kit, Sigma-
Aldrich) simultaneously with the bisulfite conversion of all samples, which presented a 
DNA methylation value of 0% for every C position of each amplicon after 
pyrosequencing. PCR amplification of the selected promoter fragments, purification of 
PCR products and pyrosequencing experiments were performed as described (S8). DNA 
methylation patterns were analyzed with the PyroMArk CpG software (Qiagen) and by 
an in-house developed Microsoft Excel Visual Basic Application for Cytosines outside 
CpG sites. For each sample, average DNA methylation value of each cytosine or 
cytosine group (CC, CCC) obtained by pyrosequencing of the three regions of interest 
(CNR, NOR and PSY1) were pooled to generate a matrix. Heatmap representation of 
the data was then �S�H�U�I�R�U�P�H�G�� �X�V�L�Q�J�� �³�K�H�D�W�P�D�S���´�� �I�X�Q�F�W�L�R�Q�� �R�I�� �³�J�S�O�R�W�V�´�� �S�D�F�N�D�J�H�� �R�I�� �W�K�H�� �5��
software. Hierarchical unsupervised clustering between columns and rows were 
computed using Euclidean distance and complete linkage method as agglomerative 
method.  

 

 

Metabolite analysis 

Ethylene production analysis 

Ethylene production was assayed on individual fruit after 2 h by withdrawing 1-ml gas 
samples from sealed jars. Gas samples were analyzed via gas chromatography (7820A 
GC system Agilent Technologies, Santa Clara, CA, USA, http:// 
www.chem.agilent.com/en-US/products-services/Instruments-Systems/Gas-
Chromatography/7820A-GC/Pages/default.aspx). Ethylene was identified via co-
migration with an ethylene standard and quantified with reference to a standard curve 
for ethylene concentration. 

 
Carotenoid analysis 
 
Carotenoid analysis was done as described (S3). Samples from transgenic plants 
DML2A, B and DML8A, B were compared to those of WT1 and WT2 respectively. 
Differences between samples were evaluated using an �$�1�2�9�$���D�Q�G���7�X�N�H�\�¶�V���W�H�V�W ( n=3, 
*: p<0.05; **: p<0.01; ***p<0.001). 
 
1H-NMR Metabolite analysis 

For 1H-NMR analysis, polar metabolites were extracted from ground Solanum 
lycopersicum L., cv WVA106 pericarp fruit. Briefly, the frozen powdered samples were 
lyophilised and polar metabolites were extracted from 15 to 30 mg of lyophilised 
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powder samples with an ethanol�±water series at 80°C. The supernatants were combined, 
dried under vacuum and lyophilized. Each lyophilized extract was solubilized in 500 µL 
of 300 mM potassium phosphate buffer pH 6.0, in D2O. Ethylene diamine tetraacetic 
acid disodium salt (EDTA) was added at a final concentration of 3 mM. Each extract 
was titrated with KOD solution to pH 6 and lyophilized again. The lyophilized titrated 
extracts were stored in darkness under vacuum at room temperature, before 1H-NMR 
analysis was completed within one week. 

1H-NMR analysis was performed using 500 µL of D2O with sodium trimethylsilyl 
[2,2,3,3-2H4] propionate (TSP, 0.01% final concentration for chemical shift calibration) 
added to the lyophilized titrated extracts. The mixture was centrifuged at 17,700 g for 5 
min at room temperature. The supernatant was then transferred into a 5 mm NMR tube 
for acquisition. Quantitative 1H-NMR spectra were recorded at 500.162 MHz and 300 K 
on a Bruker Avance III spectrometer (Wissembourg, FR) using a 5-mm broadband 
inverse probe, a 90° pulse angle and an electronic reference for quantification The 
assignments of metabolites in the NMR spectra were made by comparing the proton 
chemical shifts with literature or database values (S9), by comparison with spectra of 
authentic compounds and by spiking the samples. For assignment purposes, 1H-1H 
COSY, spectra were acquired for selected samples. For absolute quantification three 
calibration curves (glucose and fructose: 2.5 to 100 mM, glutamate and glutamine: 0 to 
30 mM) were prepared and analysed under the same conditions. The glucose calibration 
was used for the quantification of all amino-acids, as a function of the number of 
protons of selected resonances except fructose, glutamate and glutamine that were 
quantified using their own calibration curve. The metabolite concentrations were 
calculated using AMIX (version 3.9.10, Bruker) and Excel (Microsoft, Redmond, WA, 
USA) softwares. 

To explore the metabolite multidimensional data set, one unsupervised multivariate 
statistical method was used on mean-centered data scaled to unit variance: Principal 
Component Analysis (PCA). PCA was used to visualize the grouping of the different 
samples without any knowledge of their group. PCA was performed of absolute 
concentration of 31 metabolites issued from 1H-NMR analysis of transgenic and 
corresponding WT controls tomato pericarp fruit harvested at 20, 35, 40, 55, 70, 85 and 
110 days post pollination (dpa), using SAS software version 8.01 (SAS Institute 1990). 

For individual metabolites, means ± standard deviations (sd) were calculated from three 
biological replicates. For all biochemical analyses two extractions were completed to 
measure the concentration of each biological replicate, then the mean of three biological 
replicates was calculated. Mean comparisons were conducted using an ANOVA 
followed by Tukey�¶�V��t �±test.  
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�)�L�J�X�U�H�� �6������ �&�R�P�S�D�U�L�V�R�Q�� �R�I��DNA Glycosylase Lyase sequences from tomato and from Arabidopsis 
thaliana. (A) Schematic diagram of domain structures of tomato and Arabidopsis thaliana DNA 
Glycosylase Lyase proteins. Numbers on the right indicate the number of amino acids in each protein. The 
positions of the domains are indicated �L�Q���7�D�E�O�H���6��. (B) Phylogenetic analysis. An unrooted dendogram was 
generated using the Maximum Likelihood method in MEGA v.6 based on the JTT model (S 10). Sequences 
of DNA glycosylase proteins were aligned using Muscle. The numbers at the branching points indicate the 
percentage of times that each branch topology was found during bootstrap analysis (n=1000). (C)���7�K�H��Helix-
hairpin-helix -Gly/Pro rich domain (HhH-GPD) �G�R�P�D�L�Q�� �R�I�� �W�R�P�D�W�R�� �'�1�$���'�H�P�H�W�K�\�O�D�V�H���Z�D�V�� �D�O�L�J�Q�H�G�� �Z�L�W�K��
�W�K�R�V�H���R�I���$�U�D�E�L�G�R�S�V�L�V�����5�H�G���G�R�W���L�Q�G�L�F�D�W�H�V���W�K�H���K�L�J�K�O�\���F�R�Q�V�H�U�Y�H�G���/�\�V�L�Q�H���U�H�V�L�G�X�H���Q�H�F�H�V�V�D�U�\���I�R�U���F�D�W�D�O�\�W�L�F���D�F�W�L�Y�L�W�\����
�E�O�X�H���G�R�W���V�K�R�Z�V���W�K�H���F�R�Q�V�H�U�Y�H�G���D�V�S�D�U�W�L�F���D�F�L�G���U�H�V�L�G�X�H���S�U�H�V�H�Q�W���L�Q���W�K�H���D�F�W�L�Y�H���V�L�W�H���D�Q�G���J�U�H�H�Q���G�R�W�V���V�K�R�Z���W�K�H���F�\�V�W�H�L�Q�H��
�U�H�V�L�G�X�H�V���W�K�D�W���F�R�Q�V�W�L�W�X�W�H���D���>���)�H�±���6�@���F�O�X�V�W�H�U���������������$�F�F�H�V�V�L�R�Q���Q�X�P�E�H�U�V���D�U�H���L�Q�G�L�F�D�W�H�G���L�Q���7�D�E�O�H���6���� 
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Figure S2:  

(A) RNAi strategy: the sequence encoding part of the Helix-hairpin-helix -Gly/Pro rich domain (HhH-
GPD) of SlDML1 (+3897; +4123) was used to generate an RNAi construct in the vector pK7GWIWG2 
(I). Alignment with corresponding sequences of SlDML2 (+4252; +4378), SlDML3 (+4191; +4470) and 
SlDML4 (+3328; +3551) are shown. Sequence homology of SlDML1 with the corresponding domain of 
SlDML2, SlDML3, and SlDML4 is 90%, 83% and 75% respectively. Nucleotides shown in black 
correspond to differences between SlDML 2, 3, and 4 and SlDML1. Alignment was performed using 
the multalin software (http://multalin.toulouse.inra.fr/multalin/multalin.html).  
 
(B) Residual SlDML gene expression : SlDML gene expression was measured by Real time RT-PCR 
analysis in WT1 and DML2A (line 2) fruits at 20, 35, 55 (Br+16), 70 (Br+31) and 85 (Br+46) dpa. An 
ANOVA was performed and differences with WT1 fruits of the same age were analyzed using a 
student t test (n=3). Stars indicate difference between WT and transgenic fruits of the same age (*: 
p<0.05; **: p<0.01; ***p<0.001).  The Br stage (39 dpa) was not analyzed due to a limited number of 
fruits produced by the transgenic plants of line 2 as explained in the methods. 
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Figure  S3: Fruit,  flower  and leaf  phenotypes  of  transgenic  RNAi  plants . (A) Phenotype of fruits formed on T2 plants (line 8) obtained after self-pollination of 
a single T1 parent. Fruits were harvested at 85 dpa. Number refers to individual plants from which fruits were harvested. Fruits representative of each plant are 
shown although on a single plant, fruit phenotype intensity may vary depending on plant age and position of the fruit. �Ì  indicates azygous plants that have lost 
the transgene after segregation. In this situation fruit ripening reversed to WT. �Å design plants DMLA and DMLB that were selected for metabolic, gene 
expression and methylation analysis. �x  indicate additional plants used as control for carotenoid measurement and or gene expression analysis and or 
methylation analysis. White bar: 1 cm. Similar ripening phenotypes were obtained in T2 plants of line 2. (B) Typical fruits of plants DML8B, and DML2B are 
shown along with WT fruits of the same age. Developmental stages are indicated. Plants of line 8 were self-pollinated whereas flowers of plant 2B required to be 
back crossed with WT pollen to allow fruit development. Fruits of plant DML2B are characterized, in addition to the delayed ripening phenotype by an increased 
number of locules. (C) Leaf (upper panel) and flowers (lower panel) of WT (left) and transgenic plants of line 2 (right). Leaf lacks indentation and flowers are 
fasciated. Such flowers need to be hand pollinated and will give fruits with multiple carpels (up to 18 in a few cases). (D) Representative leaf  (upper panel) of 
WT (left) and transgenic T2 plants of line 1 (right). Representative flower (left) and fruit (right) of transgenic T3 plants of line 1 (lower panel). 
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Figure  S4: VIGS analysis  of  SlDML2 function  in  tomato  fruit  ripening . (A) Construction of PVX/SlDML2. The specific 5�¶ coding region (1- 480) of 
SlDML2 mRNA was PCR amplified and cloned into the PVX vector to generate PVX/SlDML2. (B) Fruits from Ailsa Craig plants were injected with 
PVX/SlDML2 (1, 2) or PVX (3, 4) at 14 dpa. Fruits were photographed 2 days after the breaker stage (Br + 2, 43dpa); (2, 4) Inside of fruits 1-3, respectively. 
Ripening-inhibited sectors in fruits injected with PVX/SlDML2 remain green.(C) SlDML gene expression analysis in ripening (R) and non ripening (NR) 
sectors of fruits treated with PVX/SlDML2. Values are normalized to EF1�D and to the expression of the corresponding gene in the ripening sectors which 
represent the 100% of expression level. *** indicate significant difference (p<0.005) between R and NR sectors as determined with a student t test (n=3). 
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Figure S5: characterization of the metabolites content of the transgenic RNAi fruits. (A) PCA was performed with MatLab 
Software (version 7.4.0) to evaluate the grouping of samples without any knowledge of their group, using the absolute 
concentration of 31 metabolites determined from 1H-NMR analysis of WT2 (�Þ) and DML8B (o) [upper panel] and WT1 (�Þ) and 
�'�0�/���$�����R�����D�Q�G���'�0�/���%�����‘�����>�O�R�Z�H�U���S�D�Q�H�O�@���W�R�P�D�W�R���S�H�U�L�F�D�U�S���I�U�X�L�W���K�D�U�Y�H�V�W�H�G���D�W�������������������������������������������������D�Q�G�����������G�S�D�����3�&�����������������������R�I��the 
global variability) separates WT fruits at 55, 70, 85 [upper and lower panels] and 110 dpa, [upper panel] from all other samples. 
PC2 (19.15% of the total variability) separates fruit samples of WT1, WT2 and transgenic (DML8B and DML2A, 2B) at 20 dpa from 
35dpa and 39dpa, irrespective to their genotype. (B) Sugar (sucrose, glucose, fructose, galactose and rhamnose), (C) organic 
acids (malic and citric acids) and (D) amino acids (aspartate, asparagine, glutamate, glutamine and GABA) content was determined 
by quantitative 1H NMR spectroscopy as previously described (Sup ref S11) using for each stage and plant a minimum of 6 fruits in 
3 biological replicates.  An ANOVA one way was performed and difference between samples were evaluated using a t student test 
(n=3). Stars indicate difference between WT and transgenic fruits of the same age (*: p<0.05; **: p<0.01; ***: p<0.001).  
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Figure  S6: Ethylene production in WT and transgenic fruits  

Fruits were harvested from 2 (line 2) or 4 (line 8) independent T2 plants at the developmental stages indicated and analyzed individually for 
ethylene production. Values represent the average of a minimum of 4 to 10 independent fruits for each line and time point. An Anova was 
performed and differences between samples were evaluated using a �W�X�U�N�H�\�¶�V test. Stars indicate difference between WT and transgenic 
fruits of the same age (*: p<0.05; **: p<0.01; ***: p<0.001). The Breaker stage (Br) for WT fruits corresponds to 39 +/-1 dpa. 
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Figure  S7: Candidate  gene expression  during  the ripening  of  RNAi  transgenic  fruits  of  line  2 plants  

RIN, NOR, CNR and PSY1 gene expression was analyzed in the transgenic plant DML2A during fruit ripening using real time RT-PCR. 
Primers are listed in Table S2. Values are normalized to EF1�. and to the WT fruits at 20dpa.  Stars (*: p<0.05; **: p<0.01; ***: :p<0.001) 
indicate significant difference between WT and DML2A plants at a given stage using a student t test (n=3).  
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RIN (Solyc05g012020) . 
-2132 
ATCTGGTACATAAACTATTGTGCTTATGTAGAATTTGGGGAAGAAACGTCAAGGAATATA
ATGTAAAGTATAGTAGACAATTTATTTTATCGTATACATATTAATAATTATTTTCACGATTC
GAATATATATAACCGATAGATCACACAATAATAAATATTAGTGTTGCTCATCGAAAACTCC
GATGCACTAATGTTTGCCACTAATTCTTAAGATAGATAACAAACACATCTAAACATTATTA
ATTAAGTGTATATATACAACATATTTTAAACTTATTCTATAACTGGATTTCAATTTAAAAAA
AATAATGATGTGTCATGTCCCAAAGTTAGTTGCACTCTAAAAAAAGTTAAAAGGTTTTTAA
CCAAAAATAACTTCTTGACTATAACAAATTAGAGTTGGAATTAATAATCAAAACATATAAA
AATTGATATTTTTAAACAAGTTTTACACCATAATGTAGCAATCCATCCTGTTAGTGATATT
GTCTGCTTTAAATCTAGGAATGTACGTCTTTAAAATGCGTCATTAGTGGGTAAGACATGC
TTACTTAAAACACGTCATTAATGAATAAGATTTGTTTACTTATATACTCAACATCTCTCATA
TATTTTACTGATGTGAAATTAGTTATCTTAAACCGGAATGTCAGTACACTTCATTTGTATC
TTTTTTTATATGAGCCATTATCATTTACATGTAAAAGTGCACCTTAAAGCTGGTTAAGCTT
ATAAACTATAAATTGTTCATTTTTTCTCGTTTAATAATCAATATCTACTTAACAAGGCCTGT
TTAATAGATGATAATAGTTTAAGTAGAAAAATGAAATTGTAACTTTTTTACGACTTTTAACA
TTTCAACTATCAGTTAGTAATATGCTCATCCATTACATATTTTAAAGAGAACAAAGAACCA
TTAAAAGGTTAAAAACTTATTATAAAGTTAAATATTTTTTCAGTATATATGAAAGGACCTTA
CAAGTTACAACTAAATCTTTTGAAAGAAAAGTATCGGTCACTACTAAGTTTTCCAAGAAAA
ACAACAACAAAGGAACAATCTTTTTCTACCACAAGGGGATGTGACTATTGATAGAATCCA
TTCATTTTAATGGGAGGGCAATTTTTTTTTAAGCGGATTCAAAATATAAAAAAGTAAATAT
ACGGACAAAAAAAAATAAGAAAATTTATCAACGTATACATAAGAAAAGTTGCATACTTCCA
AATAGACATGATACATAAACATGATCTTTAACTTGACGTCAGTTGGCAACTATATGTGCA
CAAGTAGGCACTTAAACTTGTATAAGATTGAACAATTGACACATTCATCCTACAGGCACC
CTACATGAAAATTTTGTGTCCTGCGTGGCGTCCTACGTGTATCATGTCATGCATGACATG
TGTGGCTACTTGTTCAATTTTATACAAGAGTAAGTGCCTACTTGTGCGCATCCAAAGTTG
AGGGTCATAGTTACCGACTGACGTCAAGTTAAGAGTCATGTTTATGTATTATGCCCTCCA
GGTAACATAGATTTGAAGAAGCATGGAATGCATGTAGATCTTACTTCTCGTGAAAATGGT
TTTCAAATACGAATAGATTAGTCTCGGCTCAAGTAAAACATTTTAAAAGTAAGTACTTAAG
ACAAAATAATACAATAATAAAAAAGTTATGATAATATTAAATAATAAAAACTATAGCAAAAT
ATAATATATTATCGAAGCAAACATAAATGTCTAATTCAAGCCTCGATAAATGAAAAAAATA
ATCTAATTTGAACACCGCAACTTTCTTTTAAATGGGCCCTCCACGACACTAATCTAGATT
AATCGAAATAATAAATTCTGAAATACCTCATGATATATAGTAAAACAAAAAAGTCTTTATT
CTCTTTTCTTCTTGACTAGGGAACCATTAGATTTTAAAGACATTAAATCTATTACCCTTAC
CCTAAGAATAAGAAGATGTAAAGTAGAAGAGAAAACAACCAAAACCATATATATACATAT
ATATAATTACATTATATTGTCTTATAACATATAGTCTTTTAAGGAAAAACAAATTTAGAAAA
AAATAATATTATTTTACATTTTTTTTCTTCATACAATATG 
 
NOR (Solyc10g006880).  
-2568  
TAATTCAAAAGCAAATGAAGGACCATTCAAAAATTGTCCAAGTTAGGGCTACTAATTTTG
AAATAGATTCCACTTGCTTTTTTCTTTAATTAGGTAAGTGCAACATCCATAAATATTTTTCA
AGATATTTTTCCGTAATTCATTCACAATTTTTTTTAAAAGAATTATTTAGTGTTTACCTGTT
TACATTTATATTGAAATTAATTAAATTTAAAATCATAATTAAGAGTGGAGAAATTTCATTTA
TCAATAACCTAAATACTTAATTCTCCAATGAAACTAACTATAAGATTTTTCTCCCTAATAAT
AGGTTCATTTATTTTAGATTGGTCATGTGAAGGATATGTGT TGAAAC1AAATCCC2TAAAT
TTC3TTATTC4TTGTTAAGTTTAAAAATAAAAATGC5TAAAAAAATTTTTTAC6AATGAAAGAA
TATTATAAAAC7TAATTAAATCC8GTCC9AAATTATATC10ATAC11GTATC12GC13GAGGATTC1

4ATC15ATAAATTGAC16TAC17TAGTC18GTCGTATTTGTTGTCTCTATCCGA GTTCAAGATCA
ACGATACTATATATAAATACATCGATAGAGACAAGTTGTTGTAAA AAAATTCC1AAGTGT
GAC2AC3TAGGCC4AAATTTGTCC5AAAGAGTAGCC6TAGAAATGCTTTC7TTATC8TTATTAT
C9TGTC10TGTCG11AGTC12ATGTC13AAACTTC14TGTTGTAAAATTTAATC15ACTCC16TAATT
CG17ATATTTC18AAAATCG19AGTTTTGC20AAATTAAGAAAATTTC21ATTGTAGGACG22AGT



TTCCTC23TTTAATTAAATGATTC24ATATGAGCG25CC26ACG27AATTC28AAC29TGAATATC30

AAATAAAATAC31TGAATGATTGATATAGATCTC32TTTATATATC33TTGTGCAGGATAAAGT
AGTTCTGCGTATATGCCCCTTTTACTCGATTGTCCACGTGTTGGTACCAACTTGCATGCG
TATCGATTAATTATATTGCCTAATTTTCAGTTATCAAGCTCTAATTACATCATTGTCATGTA
TTAATCTAATCACCTCTTCAATTTATGCTAATGACGACCTCCACTTCTAATTTAATATTAAC
ATATACACTATTTATTTTTCCACTAACGACTAATTTTTTTAATTTTTTTTTGACAATATTTAT
ATAGTAATTTCTGCTAAGGTTAATTCTTAGTTTTTATCAACTCATTTTTACTATATATAATTA
ATGTCCTTCTCAAAGCCTAATAACGCCCATTTTACGTTAAGTTAAACTGTTAGAATTGAC
GAAATTAGGATTAAATTTTAAAAAGAATCTTGAAATATGATTTAAATATATTCACAAAATTA
TATCAGAAAAATAAATAAAAAATTTAAAATAAAATTGTGTAAGAAAAAAAGAATTGTTATC
GATTTTAAATAAAAAAGAAAAAATAACATATATAAAACGAAAAAAAATATATTTTTCTTAGT
GAGTAGATTTATCCACACTAGTAATTGTGTGATTATTGTAACATATTATTCATTAGTCTAG
GTACGAATTAATTGACTCGAATATTATCGTCCTAATAAAAAAAATATTCTTAATTTTGTTCT
ATTTTTTAATTAGCTTATTCCAAAGTAAAAAAAATCAAAGACATGTTCTTATATTTATGAAC
TTCTTAATTAAACATTTATAATTACCACAAGAATCTCAAGACATGTTTATAATTAATAAATT
TAGATGTCTGTTTTTCTTTCTAATTAAATTAATATAATTTTACCTTTGATAGCATATATTTAT
AATTACCATAGAATTCAAAGCATGTTTACTGTTAGATAAATTTAAATATCTTCTATATTTTC
TAAAACCTTTGGCGTCCAATTCGATCAAAGTATGTCCACACAATTCAATACTACAAAAAC
TTTCTATATAAAGAGAGATAATAGTCAAAATACATCTGAAATGTTACGTTTTTTGTAAAATT
TCTATTTAAATTATCACGTGCTCAATTTTTTTTACCTAAATCATTATCAACTATTTAACAAT
ACACATCTCAATTATCAGTTATTTTCTTTTTCTACTTGAATACAGTAATATTTCAGATAAAA
AAAGAAAAAGAGAAACAATTGATAATTATATTAACGCGTGATTTGATAAATAATTAATGAG
TTTATGTATAAAAAATGAACACCTCATGGTTCAAAAAAAAATCTTGCAAAAATATAATACT
CTAGATACTATTTTTTACCATTAAAGTATATATTTCAATATATATATATATATATATATATAT
ATATAAACAAAAATATATGTAATGGCATTACTGTAAATTCAGTGTTGCCTTATACCATATA
TAAGTAAGTGTGGGGGCTAAATTAACCAACTAAATTCCTTCTTGTTTATCATTTTCTCTCT
TCCCAAAAAAAAATCCCAAAATTTAATCATAATACAATTCGAATTTATCAACCTCGTACTA
CGTACATATTTTTGTTGGTACGTAAAATACTGAATTCAGGTCAACTCAAACATCGTAAATT
GTGATTTCTTTATG 
 
PSY1 (Solyc03g031860).  
-2345 
GTTCACAATGTCAAAATCTAAACAACTAAAAACGACGAGGAGTAAGGTTTGCAAC
GACGATAACAAGGATTAGGCAACAATTAGAGTTGTGAATTGTGAGTATTAACTAT
ACTTTTACTATATTAGGCAGAATTTTTGCACTCAATGAGTAACTTGATTTATTTATT
TTTTATTTCGCCCTAAATTATTGGACAAGTCATATATTTGTTTTGAAAACATTCTTT
TATTGGCTAAATCGAAAATTGAATCGTTAAAGATCAAAAATCAATAACAAATATCT
TATTGGTTTAACATATTTAAAAATAAAAAACCAATAAATCTAACTAATAATATTTAA
TACGAAAACGAAATGGACTGACACACATTCCTAAATTTTTGGTCAAAATTTTTTCA
TAATTTCCCTAAAATCTAAAATATTAAATATTTGACGGAAACAAAAAATTCACTTTT
AATAAATTATTTGAAGGACTAAAACAGTGGAAGAATATATTTAAGAAGCTAATTTG
AACCTAGTGCCAAATATAAAGGGACCATTTTTGTCATTTTTCAACTTGAAAATCTA
CGTGTCTTAATATAACACCAAAGAATTAATATTTACTGAAAAAATGTAAAAATGAG
GATATGGATTCTGAATCACTCAATTCCAATCAGCAAAAATAAAATAAAATAAAATA
AAATAAAATTTAAAAAATAATAATAAATGCTATAAAATGACCAAAATGTGTGGAGC
AAAAAGTGCAGAAAAAACCAACAAATTGCATTCTCCATTCTTGGAAGTGGCCATT
CTTGATTTCTTGAAACAAAGGTTTGTTTCCCTTCACTTCTTGATATGTAAAGTTGC
AATCTTTATAACTTTCTATTGCTTTGCTAGTGTTTTTGTTATATACAGGGGGTGGA
GTTAGAGGGTAAGTTACGCATTTAGTCGTAACTTAGTCAAACTTCGTAATAATTT
AGTAAGTTAAAATATATTAGAAATTTTCAGAATTCATAAACTTTAAATTTTAAATTTTG
ACTTCGCTTTGTGTGACTATACAATTACAGAAATTCAGAGTGGCCATTGTTGAAA GAGA
GGGTGGAATTTGTGTAAGTTTTGTTTCCTTTC1AGTTC2TTGATATATAAAGTTGC3AATC4T
TTAAC5ATTC6TTTGTTCAC7TTTC8TATAGGTTTGC9TAGGTTC10GGTTAAATTC11AGTAGC1



2TTTAGTTTAAACCC13TATGC14GGAATAGAGAATGTGTAAAC15TTTAAACTTC16AAATTTT
GGCTCC17GC18ATACG19AC20TAGC21GAC22TATATAATAATAGGAATTGAGCACTTGGCTT
TTGTATATAGCTTCTATGTGTACCAAAATTAGAAAATCAGGCGATTATTATAATCTTGTTG
ACTAAATATAGAATGCATCCATTACCCCCAAAAAGTGTGATTCCACTGTCATAGGAGGTT
TTTTTTATTTCATTTTATTTGTGCTTTCAATAATGTAGAGTAGTTTTACAAAGATCCTTTCT
TTGTGACACATGGTAGGTAATATTGCTGATTTTGTTGTAGTTTTGGGGTTATAAAGTTTCA
AATTATTTATACTGGAGGGTAGGGGTGGGGGTTGTCTATAATGCAGGTTATGG TTTTAC1

GTGAACTC2AATAATTATTGTAGATAC3TAAGAAATCC4ACTC5AGTGTTC6TTGC7GGTGTC8

TTGC9TTTTGATTTC10AGC11ATC12AC13TTGTAGTTGATTGTGTTTAGATTATC14AC15ATTAT
TC16TGTGGC17TGTAAC18TGTATCC19TTGTTAGTTGC20TTTGTTTC21TAC22AC23TGTTGTTT
TCCCTC24TTTTATACC25TATTTTGATATGTTGTACTCGAACGAGG GTCATCGGGGAACA
ACCTCTTTACCTCCGTGAGGTAGAGCTATGGTCTGTGTCCACTCTACCCTCCCCAGATC
CCTCTTGTAGGATTTCACTATATTGTAATATTAACTTGAGGTCACTATAGGAGCTCAAA
AACTTCTAATTTTGAATCAATGTCTGGTTATACTTTTTTTGTCATAACTGTATCTCA
AATGTGGTGTTTGGTTTATCTCATTTTGCAGAAGTCAAGAAACAGGTTACTCCTG
TTTGAGTGAGGAAAAGTTGGTTTGCCTGTCTGTGGTCTTTTTATAATCTTTTTCTA
CAGAAGAGAAAGTGGGTAATTTTGTTTGAGAGTGGAAATATTCTCTAGTGGGAAT
CTACTAGGAGTAATTTATTTTCTATAAACTAAGTAAAGTTTGGAAGGTGACAAAAA
GAAAGACAAAAATCTTGGAATTGTTTTAGACAACCAAGGTTTTCTTGCTCAGAAT
G 
 
 

CNR (Solyc02g077920).  
-3526 
TCACAATCACAAGCAGGCAGTGAAACAATTACATCAAGCTCGTTTCATAGATTCTTCATT
TTGGAATAATAGCTTGTCACAGAGTCTGTTCCTTGTTTCAAATTAGCAATTTCTGCGCAC
AAATAATAAATCCTCGTCAAATTCGATCTATCAAAACGCTCCTTGTATTCATCCCATACCT
TCTTCGCAATTGAAGCATAAACTATGCTTGGCATCAAATCAGCTGTAACAGTACTTCCTA
TCCATGATAACACAATTGCATTAAATTTTTCCCATTACGCTTCTAGGTCTCCTTTAAACTT
ACTCTTTGTGCAGTTTCCATCCACAAATCCAAGTTTTACTTTGCCTCGCAGTGCTAGTTT
CATCGATTTGCTCCATAGAGAGTAGTTCTCTGGTCCTGTGAGTTTGATCGGAGTTATTAC
TAAGTCTGGAGAATCAGAAGCTTAAAGATAGAGAGGATGATGATGATTAA TTTTTGTTG
C1AGC2TGGAACTTCC3ATC4TGTAGC5AC6ATTGTTCTCC7TGTC8ATTTCC9TAAAC10TAATT
GATTGC11GATTAACTC12AAATTCC13TAAGCTC14AGC15TGAAGGTGAGATC16GCC17GCTC1

8TGATACC19ATGTTAATTTGTAGTTATGTATGTAGAATTTATGGTGAATAAGTTC20ACC21A
TTGATGAATTTTC22TAAGCTGCTACAGAGATATTGGAAGA GAAAAAGAGGATCACTATT
TCATTGAATCTAAATTGAATTATCTTTTTTTAATCATAATTGATGGCTAGTACTGTTATAGG
TCCAGCTAACCTACTTCTAGAAAGTTCCATTTTAACTGACCTCATAACAAATTGTAACTAA
TTTTGTTAGCTACATCACAAATGACACTTACAAGAATAACAGTAATAAGAAACAAGTTATT
TCAACAGCTATCATTTATTATGTTACCTCATCTTGTATCGTGTTAATCCGTACAGACATAA
TTAAAATACAAAATAAGAAAATTAGAACTAGAGGCTCTAAACAGGAAATTTCAGGAAGTT
CCACCTCTGCCTAGCTATATTACATGATTTAAAAGGTATAATACAAGATGAACTCCTTAAA
ATTATCAGAATACTTTTGTTTAAAAACTCGAATTACCCGTTGTTTCAATTGATGAAGTGTT
TTAATCTGACACTTCCGGTTCGTTGTTATTCCTATACTAGATTGTTAAGTTAACCACATAT
TTTTTTAATCACACATTTACCTCAATAAGATATAAAACTTTAAATATTTTCTTCTTGAGGTT
GATACATATTATTATGAGATGACATATTTATGTGGTTAACTTAATTATGCGATAGACAAAT
AAAAACACGTGCAAAAGTTCATTCAAAATTTAAAATTTAACGTGACTACTTGGAACATTTT
ATTAGAAATTTAGGTGTTCAGTTAAAATAAGACTTATTGAAGTATCTAACCAGAATATCCT
GACAAATTAAGGGACTTATCATGTATTATGCCCTTCAAAAAGATTACTTCTTTATTAATGA
TGATTAGTTATACTCATAAGTAATAACCTCACTTCTTTTTCAGCCCATGTCCTAACCTTGT
TTTGTTTTCTTCCAATCATGGAGTCCCTTTGTCATTTGTCTATCAGTTTGTTAGCCTCCCT
TCACTAATAATTATCCATAACCGGCTAATAAAGTACATTCCATTTAAGTGTAAAAGAAAAA
TTGAAGAGTTTGCCTATTCTTTCTCACCACGTCCTCCCTAGAAAGTTCTCGTCACGCTTC
ATTGTCAATTGTCATTCCTTCGACAACAAGGGAATATATAGTTGGAATACTTCTGTCCCA
TCCATCCTGCCTACACACAAGTTATTCATTCTAACCTGTCTTTGCCTACTAAGATACGTCT



AGTTCTTCCTCTACTTGCCTATCTCGATAGAAAAATTTTTGATAGGAAAGAAAAAAACTGA
TCGAAGCGAGAGAGGGAGCAGTAATGAGGAATATACAAATAAGGTCATTTTGGGGAACC
ATTAAGCTATAAAACAATAATACACACTTATGAATTACCGATATATAATTTAATTTGGAATT
TCATTCATATGGTTAATAGCAACAGAGTTGTCTTTGTATTAGTGCACTATCAATTTAATAC
CTAGCTGTGACACTAAAAAGCTAGGTGCCCACAATTATTAAAACAAAAGTGTATCCACCT
CAAGAAGAAGAAAAAAGGCAAATATGATATAAAACCATTTAACAAAGTCCATATCACAAA
AATTAGACGGCAAAATCATACACGACTAATTTATAGATTCACTGAACCATGCAATTCTATA
CCGTTCACTTCCAATAAATAAAACATAATACACTATGTTTAGAGTACAAGACTCTCCTTGC
TTGAAAAGGACTACCAAGTAGGGGTTACTGCAGTGACTACCAAGTAGGGGTTACTGCAG
TCATTTGTTAATTCATTTTGAGTAATGTAACTGTGCAAGATAATGATGTTTTTTTTCCTTTT
TGGTTAACTAAGATAATGATGGATTTAGGTAGATGAATTAG AC1ATC2TAGTGATAATGG
AGAGCC3AGTGC4AAC5AATTGAGC6ACTC7TAC8TGGACC9GAC10ATGGAC11AAC12TGAGA
GACC13AAC14TTGC15AGTATTATAATAGTGC16AAATTATAGTTTAGTC17GACTCCCTTC18G
GAATC19TAC20TAC21ATAAAGAAC22TACC23ATAAAC24TATGTTAGATGGC25TATTAC26GGA
GTTTAAATTAAACTC27GAAAATATC28AGAAAAAGAAGTAACTTC29AACC30AATTAC31AATG
C32ATACCC33TTATC34AC35AAGTGAAAAAGAGTAAAC36GTGCC37AAACTC38TTTTGATCCC
TCC39AAAGCTAGAGGAAAAGAGTGAGCAA TTCACTACAAACCACTGGCTTTGGTCTAT
GGTTGACACAACTCCTCGGCTAATTGGTCAAAATATCTTGTGACCACCAACCAGCAAGC
ACTAAATTGGATGTTCTATCAGCTTCTTTACATCATAAAACAGTGAATACTGAACGCTGA
GAGGCTAACTGACTGCCCAAAAAAACCTTGACAAAAAGTTAGTGGAGTAACTACCTAGG
AGTAAATTCAATAGTAGACCTTGAAAAGAACTTTAGCAAAGTCATCATAAATGCTCTTCAC
GTCTCATGTACTATGTTAAGGAATGGTCACATTTCTCTCTGCATTAAAGCTAGTTCATGTT
AAAAGTTGAGGCCGGTAGTAGTTTCAACTTTCAATTTAATTCCACCTTTCCTGGCCCACT
TCTGTACGGAACACCAATCAGAATCTTTAGTTCATCTTAACACCAAAGCATCTCCACTTA
GACACTTACTAGACTTCACATAGGAGGAAAAATATGGAACTGGTGGTCCTCACACGTAC
TTACCTTTCTTTTTTTACCTTTGTTCAAGTTTCATACTCTTTTATCTGGCTTCCTCACTCTA
TTTTGGCCCAATAGGTTCTCCTCACAGGGATG 
 
 
Figure S8: Promoter sequences analyzed using MCR -BC PCR and bisulfite Pyrosequencing  

Promoter sequences of RIN, NOR, PSY1 and CNR genes. Bases are numbered from the ATG. 
Fragment analyzed using McrBC-PCR (Fig. 5) are shown in italic. For the NOR, CNR and PSY1 
promoter fragments, sequences analyzed by Bisulfite-pyro-sequencing are underlined and limited 
either by red primers (PCR fragment 1) or by blue primers (PCR fragment 2). For each fragment 
analyzed by BS pyro-sequencing cytosines or group of cytosines for which the methylation level has 
been determined���� �K�D�Y�H�� �E�H�H�Q�� �Q�X�P�E�H�U�H�G�� �V�W�D�U�W�L�Q�J�� �I�U�R�P�� �W�K�H�� ���¶�� �S�D�U�W�� �R�I�� �W�K�H�� �D�P�S�O�L�I�L�H�G�� �V�H�T�X�H�Q�F�H���� �$�7�*�� �L�V��
shown. 

 



 
 

 
 

 
 
 

 
 
 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S9: Gene targeted Bisulfite Pyrosequencing Analysis: Methylation levels of the PSY1 (A), NOR (B), and CNR (C) promoters at the two PCR fragments shown in Fig. S8. 
Methylation level at 20, 35, 39 (Br), 55 and 85 dpa is shown in WT fruits (upper panels) and in the transgenic RNAi line DML8A (lower panels) at the same stages. Fruit phenotypes are 
indicated on the right. DNA sequence is depicted as a black line on which are shown the differentially methylated regions (DMR) as determined using McrBC-PCR (red lines, this study), 
DMRs identified in (20) (black lines) and the position of the RIN BS identified by RIN-ChIP sequencing (20). Note the higher methylation level of  PSY1 fragment 1 (A; CC8 to C22) at all 
stages observed in plant DML8A as compared to WT as well as the reduction in methylation at the NOR (B) and CNR (C) fragment 2 during WT fruit ripening but not in fruits of the 
DML8A plant . 
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SI Supplementary Tables  

Supplementary Table  S1:  

Database and Accession  Name Domain A   Glycosylase domain Domain B   Total size 

  numbers   Position size(aa) Position size(aa) Position size(aa) (aa) 

  Solyc09g009080.2.1 SlDML1 691-811 121 1151-1366 216 1498-1702 205 1702 

SGN Solyc10g083630.1.1 SlDML2 846-966 121 1267-1482 216 1615-1824 210 1824 

  Solyc11g007580.1.1 SlDML3 836-955 120 1279-1494 216 1645-1869 225 1869 

  Solyc03g123440.2.1 SlDML4 786-900 115 992-1206 215 1346-1538 193 1538 

  NP_196076.2 AtDME  678-796 119 1190-1405 216 1530-1729 200 1729 

NCBI  NP_181190.3 AtROS1 508-626 119 857-1072 216 1191-1393 203 1393 

  NP_187612.5 AtDML2  477-595 119 789-1004 216 1129-1332 204 1332 

  NP_195132.3 AtDML3  331-445 115 500-712 213 841-1044 204 1044 

 
Supplementary Table 1 : Tomato and Arabidopsis DML genes Accession number of the 
tomato and Arabidopsis Demeter like cDNA is indicated together with the size of the 
corresponding proteins, and the position of the three conserved domains characteristic of the 
DNA Glysosylase-Lyase23.  
 

Supplementary Table  S2: list of primers  

Supplementary Table 2 

 Primers for qRT-PCR 
NCBI Accession  
   AK326269.1 EF1alpha F GCTGTCGGTGTTGTCAAGAAT 
 EF1 alpha R  CATCACACTGCACAGTTCACT 
   XP_006341256.1 SIDML1 F GGGCTGAACAAGCTAACAACA 
 SIDML1 R TGACCACCCTAAGTATCAGCTACA 
   XP_004249459.1 SIDML2 F AGTACTCATGCCAAAGCCAAA 
 SIDML2 R CCTATCTTCTTTTTACCGACTGGA 
   XP_004250000.1 SIDML3 F GCAGAATTGAAGTCACCCTTG 
 SIDML3 R GATGGCTCAGTTTGTGAGCA 
   XP_004236376.1 SIDML4 F GAGCGAGTGTGGGAACAAC 
 SIDML4 R ATGCGGGCAATGAATGAGTC 
   NM_001247741.1 Rin F AACATCATGGCATTGTGGTG 
 Rin R GTGTTGATGGTGCTGCATTT 
    Psy1 F ATCTTTGGTCTTGTACCGCAAA 
KC767847.1 Psy1 R  GGCAGTTTTTGTAGGAGGCACA 
   NM_001247249.1 NOR F AGAGAACGATGCATGGAGGTTTGT 
 NOR R ACTGGCTCAGGAAATTGGCAATGG 
   XM_004232854.1 CNR F GCCAAATCAAGCAATGATGA 
 CNR R TCGCAACCATACAGACCATT 
   Primers for RNAi construction 
 DMLENTRS CACCGTATAGCTGTTAGAC 
 DMLENTRAS GAACATGCGTTGCAGTTG 
   Primers for McrBC analysis of promoter fragments 



Solgene accession  
  
Solyc02g077920 CNR F TGAGCATCAACCACTCCTAATA 
 CNR R CAGACTTAGTAATAACTCCGAT 
   Solyc03g123630.2.1 PM F AAACTAGACCATGAGTGTTGAGA 
 PM R TTTTAGAGTGAATTACAGAGAAGC 
   Solyc03g031860 PSY1 F TTGTTATATACAGGGGGTGGAGTT 
 PSY1 R TAGAGTGGACACAGACCATAGCTC 
   Solyc10g006880 NOR F CAAAAATTGTCCAAGTTAGGGCTAC 
 NOR R GTGGAGGTCGTCATTAGCATAAAT 
   Solyc05g012020 RIN F GTAGAATTTGGGGAAGAAACGTC 
 RIN R TATCAATAGTCACATCCCCTTGTG 
   Primers for bisulfite sequencing analysis 
PCR primers Sl_NOR_F1 GATTGGTYATGTGAAGGATATGTG 

Sl_NOR_R1 Biotin-CTCRRATARARACAACAAATACRAC 
Sl_NOR_F2 ATYGATAGAGAYAAGTTGTTGTAAA 
Sl_NOR_R2 Biotin-ACRCARAACTACTTTATCCTRCACA 
Sl_PSY1_F1 ATTGTTGAAAGAGAGGGTGGAA 
Sl_PSY1_R1 Biotin-CAAAARCCAARTRCTCAATTCCTA 
Sl_PSY1_F2 GGGTTGTYTATAATGYAGGTTATGG 
Sl_PSY1_R2 Biotin-CCTCRTTCRARTACAACATATCAAA 
Sl_CNR_F1 AAGATAGAGAGGATGATGATGATTAA 
Sl_CNR_R1 Biotin-TCTTCCAATATCTCTRTARCARCTT 
Sl_CNR_F2 TGATGGATTTAGGTAGATGAATTAG 
Sl_CNR_R2 Biotin-TTRCTCACTCTTTTCCTCTARCTT 

Sl_NOR_pyro1F1 TGAAGGATATGTGTTGAAA 
Pyrosequencing 

primers 
Sl_NOR_pyro1F3 YAATGAAAGAATATTATAAA 
Sl_NOR_pyro2F1 GAGAYAAGTTGTTGTAAAAA 
Sl_NOR_pyro2F2 TYAAAYTTYTGTTGTAAAAT 
Sl_NOR_pyro2F3 GTTTYYTYTTTAATTAAATG 
Sl_PSY1_pyro1F1 AATTTGTGTAAGTTTTGTTT 
Sl_PSY1_pyro1F2 GCGGAATAGAGAATGTG 
Sl_PSY1_pyro2F1 AATGYAGGTTATGGTTTT 
Sl_PSY1_pyro2F2 GTTGATTGTGTTTAGATTAT 
Sl_CNR_pyro1F1 GATGATTAATTTTTGTTG 
Sl_CNR_pyro1F2 AGYTGAAGGTGAGAT 
Sl_CNR_pyro2F1 ATTTAGGTAGATGAATTAGA 
Sl_CNR_pyro2F3 AGTGYAAATTATAGTTTAGT 
Sl_CNR_pyro2F4 ATYAYAAGTGAAAAAGAGTA 
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Part II.  Activity test  for tomato SlDMLs protein  

As reviewed in chapter 1, in plants, active DNA demethylation is catalyzed by bifunctional 
enzymes, the DNA Glysosylase-lyases, which possess both DNA glycosylase and 
apurinic/apyrimidinic (AP) lyase activities. DNA glycosylase cleaves the phosphodiester backbone 
at the 5-meC removal site by ���� �/-elimination, AP lyase subsequently nicks the DNA, and an AP 
endonuclease generates a 3-hydroxyl to which a DNA repair polymerase adds an unmethylated 
cytosine. DNA ligase completes the repair process by sealing the nick (Penterman et al., 2007). 
Finally this biochemical process results in a net loss of cytosine methylation (Chapter 1, Fig 1.8).   

In Arabidopsis, four DEMETER-like DNA demethylases were indentified, including 
Repressor Of Silencing (ROS1), DEMETER, DEMETER-LIKE 2 (AtDML2) and DEMETER-
LIKE 3 (AtDML3) (Choi et al., 2002;Gong et al., 2002;Penterman et al., 2007;Ortega-Galisteo et 
al., 2008). All these four Arabidopsis DEMETER-like DNA demethylases protein are DNA 
Glycosylase-lyases, characterized by a highly conserved Glycosylase domain present in both 
prokaryotic and eukaryotic DNA glycosylases, an iron-sulfur cluster motif, which is suggested 
critical for DNA glycosylase-lyases activity is located in this domain. Another two additional 
conserved domains A and B flanks in the central glycosylase domain, these three conserved domain 
are necessary and sufficient for DNA demethylation activity (Agius et al., 2006;Mok et al., 
2010;La et al., 2011).  

The tomato genome contains four DEMETER-like (DML) genes with three characteristic 
domains of DNA demethylases, suggesting that these proteins are functional DNA Glycosylase-
lyases. They code for putative proteins of 1702aa, 1824aa, 1869aa and 1538aa (aa = amino acids). 
SlDML1 (Solyc09g009080) and SlDML2 (Solyc10g083630) are orthologous to AtROS1, SlDML3 
(Solyc11g007580) to AtDME, whereas SlDML4 (Solyc03g123440) is distinct from the three other 
proteins (Fig 2.1, p58) as have been reported before (Liu et al., 2015).  

  
 

Fig 2. 1 Structures of SlDML protein and Phlogenetic analysis with Arabidopsis homologous 
proteins. (A) Schematic diagram of domain structures of SlDML in tomato and its four AtDML 
paralogs in arabidopsis. (B) Phylogenetic analysis of SlDML and AtDML ( Liu et al., 2015). 

 
To assess the biochemical activity of SlDML protein using in vitro assays, three full length 

cDNA, including SlDML1, SlDML2 and SlDML3 were selected to develop a protein activity test. 

A 
B 



  Chapter 2 

 

61 
 

To address whether the three conserved domains are also necessary and sufficient for SlDML2 
DNA demethylases activity, three different truncated cDNA forms (SlDML2-962, SlDML2-845, 
SlDML2-694) were designed in addition to the reference full length of SlDML2 protein (Fig 2.2). 
We hypothesized that SlDML2-694 and SlDML2-845 will be active proteins because they still 
contain the complete three conserved domains. In contrast SlDML2-962 has a truncated domain A, 
which may result in a loss of activity.  

Together, all of the six cDNAs were cloned into the cloning vector (pENTR) and subsequently 
subcloned into the expression vector (pET300/NT-DEST) and introduced in E.coli cells (Rosetta2 
strain, DE3) with modified codon usage (Fig 2.3).   

 
Fig 2. 2 Structures of SlDML2 proteins along with their truncated versions used in this study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig 2. 3  Cloning vector and expression vector used in this study 

 

 

To purify recombinant proteins, proteins expression and solubility were first tested. 
Unfortunately, full length SlDML1 and SlDML2 could not be  successfully produced, and the 
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truncated forms SlDML2-962 and SlDML2-694 were not continued after the construction of the 
recombinant vectors. Only SlDML3 and the truncated SlDML2-845 were successfully expressed 
although the production remained very low irrespective to the conditions used. Several different 
conditions were tested, including different incubation temperatures (16°C,  23°C, 26°C) as well as 
different sonication buffers but the production of SlDML2-845, SlDML2-962 remained very low.  

 

 

 

 

 

 
 

 

 

 

 

 

Fig 2. 4  SlDML2- full leng, SlDML3-full length and SlDML2-845 expression and purify test. 
Crude protein of full length SlDML2 and SlDML3 (A), DML2-845 and DML2-962 (B), purified 
protein DML2-845(C).���:�D�V�K�����S�X�U�H�H�G���S�U�R�W�H�L�Q���G�X�U�L�Q�J���S�U�R�W�H�L�Q���S�X�U�L�I�L�F�D�W�L�R�Q�������������1�R���,�3�7�*���L�Q�G�X�F�W�L�R�Q 

Finally, only SlDML2-845, DML2-962 could be purified, and the concentration is still low 
(Fig 2.4). Protein purification was performed using the following method which referenced as 
Ponferrada-Marín  et al., 2009. 

(1) DNA substrates: Oligonucleotides used as DNA substrates were synthesized and were purified 
by PAGE from company. Double-stranded DNA substrates were prepared by mixing a 5 mM 
solution of a 50 -fluorescein-labelled oligonucleotide (upper-strand) with a 10 mM solution of an 
unlabelled oligomer (lowerstrand), heating to 95�-  for 5 min and slowly cooling to room 
temperature; (2) Expression and purification of DML2 and DML3  : The full-length cDNA was 
inserted into the pET300 /NT-DEST expression vector  to add a polyhistidine (His6) Tag at the N-
terminus of DML2 and DML3 protein. Expression of recombinant genes was carried out in E. coli 
(Rosetta2 strain, DE3) (Stratagene). A fresh transformant colony was transfereded into 10 mL of 
LB medium containing kanamycin (50 mg/ml) and chloramphenicol (34 mg/ml), then the culture 
was incubated for overnight with shaking. A 2.5 ml aliquot of the overnight culture was added into 
1L of fresh LB medium with kanamycin (50 mg/ml) and chloramphenicol (34 mg/ml), and 
incubated at 37�- , 250 rpm, until the A600 was 0.1. The culture was then transfered at 23�- , and 
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incubation continued at 250 rpm for 3h. Cells were collected by centrifugation at 13 000 g for 30 
min and the pellet was frozen at �±80�- . (3) Recombinant protein purification. The stored pellet 
was thawed and resuspended in  10 ml of Sonication Buffer (SB: 20 mM Tris�±HCl pH 8.0, 
500 mM NaCl, 20% glycerol, 15 mM b-mercaptoethanol, 1% Tween-20) supplemented with 5 mM 
imidazole. Cells were disrupted by sonication and the lysate was clarified by centrifugation. The 
supernatant was loaded onto a Ni2+-sepharose column  preequilibrated with SB buffer 
supplemented with 5 mM imidazole. The column was washed with 10 ml of SB supplemented with 
5 mM imidazole, followed by 10 ml of SB supplemented with 100 mM imidazole. Proteins were 
eluted with a 30 ml gradient of imidazole (100 mM to 1 M) in SB and collected in 2 ml solution. 
The protein was disalted and disolved in the following buffer (DB: 50 mM Tris�±HCl pH 8.0, 500 
mM NaCl, 1 mM DTT, 50% glycerol). The protein preparation was divided into aliquots, and 
stored at �±80�- . All steps were carried out at cold room (4�- ). Protein concentrations were 
determined by the Bradford assay. Denatured proteins were analysed by SDS�±PAGE (10%) using 
broad-range molecular weight standards (Bio-Rad). (4) Enzyme activity assays. Double-stranded 
oligodeoxynucleotides (20 nM, unless otherwise stated) were incubated at 308C for the indicated 
times in a reaction mixture containing 50 mM Tris�±HCl pH 8.0, 1 mM EDTA, 1 mM DTT, 0.1 
mg/ml BSA, and the corresponding amount of purified protein in a total volume of 50 ml. Reactions 
were stopped by adding 20 mM EDTA, 0.6% sodium dodecyl sulphate, and 0.5 mg/ml proteinase 
K, and the mixtures were incubated at 37�-  for 30 min. DNA was extracted with 
phenol:chloroform:isoamyl alcohol (25:24:1) and ethanol precipitated at �±20�-  in the presence of 
0.3 mM NaCl and 16 mg/ml glycogen. Samples were resuspended in 10 ml 90% formamide and 
heated at 95�-  for 5 min. Reaction products were separated in a 12% denaturing polyacrylamide 
gel containing 7 M urea. Fluorescein-labelled DNA was visualized using the blue fluorescence 
mode of the FLA-5100 imager.  

The activity of purified proteins was tested in a DNA incision assays. SlDML2-845 contains the 
3 complete domains, which are necessary for activity, so it is expected to be active. SlDML2-962 
with truncated domain A is supposed to have no activity; therefore, it was used as a negative control. 
The DNA incision assay mechanism as below (Fig 2.5A). Fluorescein-labeled duplex 
oligonucleotides containing 5-methylcytosine in different sequence contexts were chosen as the 
substrates of SlDML2-845 protein. Incubation of SlDML2-845 with an oligonucleotide containing 
the unmethylated CpXpG site will result in the generation of a cleavage product after incubation 
with MsP1, which can be visualized in a Fluorescein-labeled DNA imager. The test took MspI as 
positive control, which will show incision activity on CCGG sites if cytosines are not methylated, 
but will be inhibited if the second C is methylated. Hence incubating DML with methylated DNA 
containing a methylated CCGG site will provide a cleavage product after MSP1 incubation, only 
if the DML are active. If the enzyme is not active, no cleavage product will be obtained. A positive 
control is done by incubating the same unmethylated DNA with MSP1, which allow visualizing 
the cleavage product. 
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Fig 2. 5  Mechanism of DNA demethylase incision assays (figure comes from Gehring et al 
(2005)) and the acitivity test of SlDML2-845, SlDML2-962 and MspI. No signal was dected on 
DML2-845 or DML2-962, but signal was found on MSPI (B). 

 
As a conclusion, we coud not detect any significant activity using either SlDM2-845, or 

SlDML2-962, although MspI could cleave the substrate very efficiently (Fig 2.5B). The reasons 
are unclear and could be due to a lost of activity during the protein purification process associated 
to the low protein yield.  

 

 

Part III   Analysis of the inheritance of phenotypes generated in DML 

RNAi plants after transgene out-segregation 

The Cnr mutant was the first epimutant identified in tomato. In this epimutant, fruit ripening 
was inhibited due to an increased methylation at the CNR promoter region, and this phenotype is 
stably heritable (Manning et al, 2006). We have now shown that repression of SlDML2 expression 
results in hypermethylation at specific loci that blocks fruit ripening. It is unclear whether these 
hypermethylated loci are stable through generation and will maintain the phenotypes observed in 
the transgenic lines.  

 

Preliminary observation have already shown that segregation of the transgene after selfing 
plants of line 8 heterozygous for the transgene resulted in reversion of ripening phenotype to a WT 
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phenotype (Fig 2.6A). This suggests that hypermethylation of genes controlling fruit ripening is 
not transmitted to the next generation in the absence of the transgene. However fruit ripening 
phenotypes are late developmental events. Hypermethylation at these ripening genes occur at the 
onset of fruit ripening in the pericarp of fruit and therefore cannot be transmitted to the gamete. 
The demethylation at these pormoters requires to be newly made in each plant during fruit ripening 
and is therefore unlikely to be stably transmitted to the next generation.  . 

We have also noticed that other lines present additional phenotypes affecting leaves and 
flowers. Such phenotypes are likely to be due to early developmental events that may take place in 
meristems and therefore could be transmitted to the next generation of plants. In order to test the 
possible transmission of these phenotypes, we have investigated their heritability in Line 2 and 
Line 1 that present modified floral shape and development that result in fruits with multiple carpel, 
and alteration of leaf shapet. The experimental plan used for this study was applied to lines 2 and 
1 ((Fig 2.6B). Hemizygotes of T3 plants from these two lines were generated by crossing 
homozygotes T2 parents with WT plants. T3 hemizygous plants were selected and selfed. T4 plants 
were screened for the presence of the transgene (Fig 2.6).  
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Fig 2. 6  Fruit phenotype of azygous and other defects on line 1 and line 2 as well as process 
of �V�F�U�H�H�Q�L�Q�J���7�����J�H�Q�H�U�D�W�L�R�Q���R�I���O�L�Q�H�������D�Q�G���O�L�Q�H���������$�����)�U�X�L�W�V���S�K�H�Q�R�W�\�S�H���R�I���D�]�\�J�R�X�V���S�K�H�Q�R�W�\�S�H�����%����
�2�W�K�H�U���G�H�Y�H�O�R�S�P�H�Q�W�D�O���G�H�I�H�F�W�V���R�I���O�L�Q�H�������D�Q�G���O�L�Q�H���������&�����6�F�U�H�H�Q�L�Q�J���7�����J�H�Q�H�U�D�W�L�R�Q���R�I���O�L�Q�H�������D�Q�G���O�L�Q�H������
�Z�L�W�K���P�X�O�W�L���F�D�U�S�H�O�V���D�Q�G���D�E�Q�R�U�P�D�O���I�O�R�Z�H�U�V�� 

Table 1.  T4 Plants culture in greenhouse  

Plants Azygous plants % azygous plants Germinated seeds 

Line2-AC11 1 8% 13 

Line2-T6 2 6% 36 

Line1-B7 10 22% 45 

Line 1-D8 3 7% 46 
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Fig 2. 7  All phenotypes of RNAi DML transgenic plants reversed to WT after transgenic 
segregation. Leaf, flower and fruit (Br+7/46dpa) of WT (A) and transgenic plants of Line 1 after 
lose transgene on T4 generation (B).  

The phenotype of all T4 plants was analyzed irrespective to the presence of the transgene. 
Finally we found that for both line 2, and line 1 plants that had lost the transgene by segregation 
(table 1) have reversed to WT phenotype (Fig 2.7), suggesting an absence of heritability of the 
modifications induced by SlDML2 knock down. However, we cannot rule out that some abnormal 
methylation pattern, not linked to these apparent phenotypes are inherited. In addition, it is unclear 
whether the plants obtained present an homozygous epigenetic state. Additional generations 
obtained after selfing these plants should be analyzed.   
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Conclusion 

In this chapter, we demonstrated that among the four SlDML genes, SlDML2 knockdown 
results in fruit ripening inhibition via hypermethylation and repression of the expression of ripening 
related genes. Four essential genes that related to fruit ripening were identified as the potential 
primary targets of SlDML2, including three fruit ripening transcription factors, RIN, NOR, CNR 
and a key enzyme of carotenoid biosynthesis PSY1. Our data demonstrate first time that active 
DNA demethylation is critically important for tomato fruit ripening to occur.  

 
To characterize the SlDML protein activity, SlDML1, 2, 3 full length and three truncated 

SlDML2 (SlDML2-694, SlDML2-845, SlDML2-962) were successfully cloned into an expression 
vector and destination vector. The recombinant constructions were expressed in vitro (E.coli), 
unfortunately, the full length SlDML1, SlDML2 could not be successfully expressed in E.coli. 
Only a full length SlDML3 and a truncated versions of SlDML2, SlDML2-845 containing the three 
complete domains) and SlDML2-962 containing a truncated domain A) could be synthesized at 
low levels in E coli. Unfortunately, �6�O�'�0�/�����I�X�O�O���O�H�Q�J�W�K���Z�D�V�Q�¶�W���V�X�F�F�H�V�V�I�X�O�O�\���S�X�U�L�I�L�H�G�����6�O�'�0�/��-845 
and SlDML2-962 were obtained, that were subsequently used for an activity test. We could not 
demonstrate any activity for these two proteins which may be caused by the low production of 
recombinant protein purification. 

 
To study the potential stability of the phenotypes affecting plant development after transgene 

segregation, T4 plants of line 1 and line 2 with abnormal flower and pericarp phenotype were 
analyzed. As a result, T4 plants show us that the phenotypes reversed to WT phenotype once the 
transgene was out segregated, suggesting an absence of heritability of the modifications induced 
by SlDML2 knock down.  However, we cannot rule out that some abnormal methylation patterns 
linked or not to these apparent phenotypes have been inherited. Indeed, due to flower abnormalities, 
hemizygous T2 plants have been back crossed to WT plants generating a heterozygous epigenetic 
state. Indeed these plants have been selfed for one generation before their analysis as a first step to 
generate homozygous epigenetic states. In addition, it is not known how many loci are involved in 
generating the flower and leaf abnormalities. Hence, it is possible that lack of phenotypes is not 
due to the non-heritability of the improper methylation state at specific loci. It may reflect that the 
correct combination of homozygous methylation state at all required loci was not obtained. Further 
generation and screening of more important plant population will be necessary to answer this point.   

In this chapter, we have shown that the inhibition of fruit ripening in RNAi SlDML lines is 
correlated with the hypermethylation of ripening related genes. Four genes (RIN, NOR, CNR and 
PSY1) were identified to have a direct causal and effect relationship between active DNA 
demethylation and gene expression. However, in addition to these four genes, how many genes 
expressed during tomato fruit development and ripening have been impacted in plants knocked 
down for SlDML2? What is the global impact of impaired active DNA demethylation on tomato 
fruit ripening? To answer these questions, our next objective is to establish a global regulatory 
network associated with active DNA demethylation during fruit ripening. For this purpose, 
metabolome and transcriptome analyses were combined with the analysis of the genome wide 
distribution of DNA methylation.  
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Introduction  

DNA methylation is a reversible epigenetic modification that plays important roles in transposon 
silencing, genomic imprinting and regulation of gene expression (Bender 2004). Unlike in 
mammals which genomic DNA methylation mainly occurs in the CG context; in plants, 
methylation of cytosine occurs in three sequence contexts: the symmetrical contexts, CG and CHG 
and in the non-symmetrical context CHH (H=A, C, T). A majority of DNA methylation in plants 
occurs at transposable elements and repetitive sequence that are clustered in heterochromatin 
(Zhang et al., 2006). In Arabidopsis, DNA methylation can also occurs in promoters and in the 
bodies of expressed genes. In this later case DNA methylation ishighly correlated with gene 
transcription. Indeed 61.5% of Arabidopsis  expressed genes of Arabidopsis are entirely devoid of 
methylation where 5.2% are methylated within their promoters and 33.3% are methylated within 
their transcribed regions also called gene body (Zhang et al., 2006;Lister et al., 2008). Although 
DNA methylation is essential for Arabidopsis, its impact on plant development may vary between 
plant species.. For example, DNA methyltransferases 1 (MET1) mutant in Arabidopsis, late-
flowering plants were frequently observed among plants heterozygous, and this phenotype is more 
sever in met1 homozygotes. This is caused by the hypomethylation of the FWA gene, which is 
specifically controlling Arabidopsis flowering time (Soppe et al., 2000;Kankel et al., 2003;Saze 
and Kakutani 2011). In rice, knocking out the major CG methyltransferase, OsMET1, impaired 
seed development and vegetative growth and all seedlings underwent swift necrotic death(Hu et 
al., 2014). 

In plants, DNA methylation of cytosine can be removed by DNA demethylase (DMLs). DNA 
demethylases are bifunctional 5-methylcytosine DNA glycosylase/lyase, which are critical for 
preventing DNA hypermethylation at hundreds of genomic regions in Arabidopsis. More recently, 
ros1 mutant was discovered 6902 hypermethylated differentially methylated regions with whole genome bisulfate 

sequencing (Penterman et al., 2007; Tang et al., 2016). Four genes encoding DNA demethylase have 
been identified in this species, DEMETER, DEMETER-LIKE 2 (AtDML2), DEMETER-LIKE 3 
(AtDML3), and REPRESSOR OF SILENCING1 (AtROS1) (Cao and Jacobsen 2002;Choi et al., 
2002;Gong et al., 2002;Penterman et al., 2007;Ortega-Galisteo et al., 2008). The function of 
Arabidopsis DNA demethylase family members have been well studied in recent years. In addition, 
all of these four DNA demethylases can target both symmetrical cytosine CG, CHG and 
asymmetrical cytosine CHH. It is worth pointing out that, DME and ROS1 can also remove methyl 
from thymine, but not uracil, and show a preference for CG context (Morales-Ruiz et al., 2006).   

DEMETER is known to be critical for active DNA demethylation in the central cell and thereby 
for gene imprinting and endosperm development. Heterozygous DME/dme-1 mutant produced 1:1 
seeds with normal embryos and enlarged endosperm with aborted embryos (Choi et al., 2002;Xiao 
et al., 2003). AtROS1 is required for release of transcriptional silencing of an hypermethylated 
transgene, and was shown protect the genome against unwanted methylation (Gong et al., 
2002;Agius et al., 2006). Yamamuro et al (2014) found that AtROS1 can influence the initiation of 
stomatal lineage cell by regulating EPF2 expression(Yamamuro et al., 2014). AtROS1 may also 
associate with RdDM pathway to participate to pathogen defense through regulating some defense 
genes linked to TEs/repeats (Yu et al., 2013).XXXX here you have a put a sentence on thos article 
in nature plant cocnering ros1!! AtDML2 and AtDML3 function as genome wide DNA 
�G�H�P�H�W�K�\�O�D�V�H�V���W�K�D�W���U�H�P�R�Y�H�����P�&���P�D�U�N�V���D�W���V�L�W�H�V�����¶���D�Q�G�����¶���R�I���J�H�Q�H�V���L�Q���D�G�X�O�W���F�H�O�O�V�����E�X�W���W�K�H�U�H���Z�D�V���Q�R��
obvious phenotype in the corresponding mutants and gene expression was not significantly affected. 
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In addition, ros1, dml2 or dml3 double or triple Arabidopsis mutants showed little or no 
developmental alterations, suggesting that DNA demethylases do not have essential functions for 
development in this species (Penterman et al., 2007;Yu et al., 2013). 

Tomato is an important model to study fleshy fruit development and ripening. Some obvious 
characters associated with fruit development and ripening have been well characterized such as 
pigment synthesis and degradation, cell wall biosynthesis and disassembling, sugar and organic 
acids metabolism, hormone biosynthesis and regulation, more specifically ethylene accumulation. 
Recent studies have shown that the development and ripening of tomato fruit relies on the 
establishment and maintenance of differential transcription patterns (Alba et al., 2005;Osorio et al., 
2011) and complex regulatory pathways that involve both genetic and hormonal controls are 
operating at these developmental phases (Osorio et al., 2013). Several mutants affecting tomato 
fruit ripening process or specific fruit characteristic of ripening fruits such as their color have now 
been characterized. These include the ripening-inhibitor (RIN), non-ripening (NOR), colorless non 
ripening (CNR) but also never-ripe (Nr), high pigment1 (hp1), high pirment2 (hp2), fruitfull (FUL1 
and FUL2), agamous-like1 (AGL1) or the phytoene synthase 1 (PSY1) (Lanahan et al., 1994; 
Vrebalov et al., 2002; Manning et al., 2006; Giovannoni 2007; Vrebalov et al., 2009; Bemer et al., 
2012). Other mutants include cell wall mutants, such as expansion (Exp1), pg2, Pectin 
�P�H�W�K�\�O�H�V�W�H�U�D�V�H�� ���3�0�(������ �F�H�O�O�X�O�R�V�H�� ���&�O�H�������� �W�R�P�D�W�R�� �� ��-galactosidase (TBG1 and TBG4) (Brummell 
2006), Sugar and organic acids mutants, such as 2-oxoglutarate dehydrogenase complex (OGDH) 
as well as fumarase and malate dehydrogenase (MDH) mutants were also generated (Centeno et 
al., 2011; Araújo  et al., 2012). Another tomato mutant, GOLDEN2-LIKE (GLK) shows gradient 
expression of GLK can influence the uneven coloration of green and ripe in fruit. In addition, GLK 
expression may under regulation of histone modification, suggesting potential function of 
epigenetic on the fruit ripening process(Nogueira et al., 2013). 

In recent years, the coordinated changes during tomato development and ripening was analyzed 
using combined transcriptome, metabolism and proteome characterization(Osorio et al., 2012). 
However, it appears that a full understanding of tomato fruit development and ripening will not be 
achieved based only on genetic models. In addition epigenetic regulation, mainly genomic DNA 
methylation may play a key role in this process (Teyssier et al., 2008; Zhong et al., 2013). However, 
the study of how fruit development and ripening process is controlled at the epigenetic level is still 
at its early beginning. Indeed several evidence point out the importance of DNA methylation and 
chromatin regulation on fleshy fruit development and ripening ripening (reviewed inGallusci et al., 
2016). For example, the fruit ripening defect of Cnr mutant is caused by hypermethylation of an 
upstream region of the CNR promoter (Manning et al., 2006). Zhong et al (2013) also detected that, 
the promoter region of several genes are demethylated  during tomato fruit ripening, suggesting 
that DNA demethylation may play critical role during this phase of development (Zhong et al., 
2013). 

Indeed we have now shown that active DNA demethylation is critically important for fruit ripening 
to occur. Phylogenic analysis of DNA demethylases in Arabidopsis and tomato has pointed out that 
among the four tomato DML genes, SlDML1 and SlDML2 are orthologous to AtROS1, SlDML3 to 
AtDME (DEMETER), while SlDML4 has no closely related Arabidopsis orthologue (Liu et al., 
2015). Tomato DML RNAi plants present fruit ripening defect, likely mediated by inhibition of 
the expression of key ripening regulator genes RIN, NOR, CNR and carotenoid biosynthesis 
enzyme PSY1 (Liu et al., 2015). Based on this finding, SlDML2 is considered to be a master 
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epigenetic regulator that governs tomato fruit ripening by controlling the DNA methylation level 
at least at these four genes.  

However, the pathways under the regulation of SlDML2 have not been comprehensively identified. 
With the aim to obtain a more comprehensive view of the roles of active DNA demethylation on 
tomato fruit development and ripening, we have performed a comparative analysis of the 
transcriptome and metabolome of WT and DML RNAi fruits at eight fruit development and 
ripening stages. These analyses was integrated with tomato epigenome determined in WT Ailsa 
craig plants ( Zhong et al 2013). These analyses reveal that in addition to the four genes (RIN, NOR, 
CNR, PSY1) previously characterized a large number of metabolites and genes present differential 
accumulation and expression patterns respectively in DML RNAi transgenic fruits. For example, 
carotenoid, ethylene biosynthesis and signaling, cell wall synthesis and dissembling, transcription 
factors, and manu y others are extremely affected in transgenic fruits. These results suggest that 
several genes, including those playing essential roles for fruit development and ripening might 
require demethylation for their expression. Here, we present evidence for the first time that active 
DNA demethylation has very global effects on fruit development and ripening.  

I -Fruit Physiology and four DMLs Repression levels in transgenic fruits 

To analyze at the molecular and biochemical level the fruits formed by RNAi DML transgenic 
plants, two independent cultures were performed. For line 8, we used the culture already analyzed 
in Liu et al (2015). For line 2, a new culture was performed in order to increase the number 
developmental stages harvested. Interestingly, Line 2 plants from T2 generation showed two 
distinct phenotypes. Sixteen plants out of the 23 used in this experiment showed fruits with an 
�L�Q�F�U�H�D�V�H�G�� �F�D�U�S�H�O�� �Q�X�P�E�H�U�� �W�K�D�W�� �Z�L�O�O�� �E�H�� �V�X�E�V�H�T�X�H�Q�W�O�\�� �U�H�I�H�U�U�H�G�� �W�R�� �³�I�U�X�L�W�V�� �Z�L�W�K�� �P�X�O�W�L�S�O�H �F�D�U�S�H�O�V�´����
whereas 7 plants showed no change in fruit shape or developed fruits smaller than WT (Small fruit). 
To distinguish between these two fruit phenotypes observed in line 2, fruits with multiple carpels, 
named line 2Y, were sampled separately from small fruits that were named line 2 X. The same 
relevant WT control (WT1) was used for both line2Y and line2X. Fruits were harvested at 7 
different developmental stages: 20, 30, 35, 39 (equivalent to the WT1 Breaker stage), 46 
(equivalent to the WT Red Ripe stage), 55, 70, 85dpa. The samples for line 8 and the relevant WT 
control (WT2) are described in Liu et al (2015), including an azygous sample at 20 dpa. In this 
case, fruits were harvested at 5 developmental stages: 20, 35, 39 (equivalent to the WT1 Breaker 
stage), 55, 70, 85dpa. In total, two independent T2 lines, lines 2 and 8, were used in this study, and 
for line 2 plants two sublines that differed on fruit size and shape were sampled separately. For 
each line and subline three individual plants were used as biological replicates for the production 
of RNA-seq libraries and for GC-MS and NMR analysis. 

Fruits from both Line 2Y and Line 2X showed a strong inhibition of the ripening process (Fig 3.1 
A) similar to those previously described for Line 8 and Line 2 (Liu et al., 2015). Indeed, some 
variations were consistently observed between plants of the same line and subline, as previously 
documented (Liu et al., 2015)  

RNA seq data obtained from WT1, WT2, line 2X and Y and line 8 were used to determine the 
expression level of the 4 tomato SlDMLs gene (Fig 3.1B, p73). Expression patterns in WT were 
essentially as described in Liu et al (2015). In particular, SlDML2 was the more highly expressed 
SlDML gene in fruits and is characterized by a sharp increase at the breaker (Br) stage in WT, 
before decreasing to half of its maximum expression level at 46 dpa, and to almost undetectable 
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levels in fruits at 70 and 85 dpa. In contrast, in transgenic fruits of lines 2 and 8, SlDML2 is knocked 
down to 50% of WT level during early fruit development and severally repressed at the Br stage. 
However, SlDML2 mRNA levels increase in overripe fruits to levels higher than WT fruits of the 
same age. SlDML1 is also repressed by 50% of WT level at 20 and 30 dpa but increased at later 
stages to levels higher than WT fruits. No major effects were observed on SlDML3 and SlDML4 
genes. Similar results are observed in both transgenic lines, consistent with previous conclusion 
obtained by Q RT-PCR using these transgenic lines. Hence, ripening defects are correlated with 
the strong repression of SlDML2 during fruit ripening (Liu et al., 2015). 
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�I�U�R�P���7�����S�O�D�Q�W�V�����O�H�I�W���W�R���U�L�J�K�W�������:�7���S�O�D�Q�W�V�����O�L�Q�H�������S�O�D�Q�W�V�����/�L�Q�H���<���D�Q�G���/�L�Q�H���;�������)�U�X�L�W�V���R�I���/�L�Q�H�����<���K�D�Y�H��
�P�X�O�W�L�S�O�H���F�D�U�S�H�O�V�����W�K�R�V�H���I�R�U���/�L�Q�H�����;���D�U�H���V�P�D�O�O���D�Q�G���K�D�Y�H���D���Q�R�U�P�D�O���F�D�U�S�H�O���S�K�H�Q�R�W�\�S�H�������%�����(�[�S�U�H�V�V�L�R�Q��
�O�H�Y�H�O���R�I���I�R�X�U���'�0�/���J�H�Q�H�V���L�Q���:�7�������:�7�����D�Q�G���O�L�Q�H�����<�����O�L�Q�H�����;�����O�L�Q�H�������D�V���G�H�W�H�U�P�L�Q�H�G���E�\���5�1�$���V�H�T����
�$�V�W�H�U�L�V�N�V�� �L�Q�G�L�F�D�W�H�V�� �V�L�J�Q�L�I�L�F�D�Q�W�� �G�L�I�I�H�U�H�Q�F�H�� �E�H�W�Z�H�H�Q���:�7�� �D�Q�G�� �W�U�D�Q�V�J�H�Q�L�F�� �V�D�P�S�O�H�V�� �D�W�� �D�� �J�L�Y�H�Q�� �V�W�D�J�H����
��S�����������������S������������������S�����������������(�U�U�R�U���E�D�U�V���L�Q�G�L�F�D�W�H���E�L�R�O�R�J�L�F�D�O���U�H�S�H�W�L�W�L�R�Q�V���R�I���P�H�D�Q�V���f �6�'�� 
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II - Metabolic composition of WT and transgenic fruit 

Previous results have shown that metabolic composition of DML RNAi fruits is clearly modified 
as compared to WT (Liu et al., 2015, Chapter 2). In order to determine possible correlation between 
the RNA patterns described later (see Chapter 3, part III) and metabolite accumulation both in WT 
and DML RNAi plants, we further investigated the metabolic composition of WT and transgenic 
fruits. To achieve this goal, metabolite composition was determined in exactly the same biological 
samples as those used for transcriptomic analyses (see Chapter 3, part 3) as follows: (1) primary 
metabolites, including a few secondary metabolites were measured by broad targeted method GC-
MS (quantification of 58 identified metabolites in Line 2Y/2X, 64 metabolites in line 8) as the 
method in (Carrari et al., 2006)and NMR (34 metabolites in line2Y/2X) as described in Liu et al 
(2015); (2) in Line 2X and 2Y isoprenoids including chlorophylls, carotenoids were analyzed by 
HPLC (Télef  et al., 2006) and starch using an enzymatic approach (Hendriks et al., 2003). 

�7�X�N�H�\�¶�V�� �S�D�L�U�V�� �W�H�V�W�� �Z�D�V�� �S�H�U�I�R�U�P�H�G�� �R�Q�� �D�O�O�� �L�G�H�Q�W�L�I�L�H�G�� �P�H�W�D�E�R�O�L�W�H�V���� �7�K�H�� �H�Y�R�O�X�W�L�R�Q�� �S�U�R�I�L�O�H�V�� �R�I��
metabolites are presented in Fig3.2 and FigS3.1 (p75, p131, Line 2) and FigS2 (p126, Line 8). For 
GC-MS data on line 2, 47 compounds showed significant changes in Line 2Y, 49 in Line 2X and 
17 in line 8 as compared to their respective WT controls. For NMR data, 26 in Line 2Y and Line 
2X, showed significant differences with WT controls. 
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�)�L�J�� ������ ���� �&�K�D�U�D�F�W�H�U�L�]�D�W�L�R�Q�� �R�I�� �P�H�W�D�E�R�O�L�W�H�� �F�R�Q�W�H�Q�W�� �L�Q�� �:�7���� �D�Q�G�� �L�Q�� �W�U�D�Q�V�J�H�Q�L�F�� �5�1�$�L�� �I�U�X�L�W�V. 
�$�E�V�R�O�X�W�H���F�R�Q�F�H�Q�W�U�D�W�L�R�Q���R�I�����$�����$�P�L�Q�R���D�F�L�G�V�������%�����6�R�O�X�E�O�H���V�X�J�D�U�V�������&�����R�U�J�D�Q�L�F���D�F�L�G�V�������' �����S�L�J�P�H�Q�W�V��
�D�Q�G���V�W�D�U�F�K�����D�Q�G�����( �����2�W�K�H�U���F�R�P�S�R�X�Q�G�V�����)�R�U���H�D�F�K���F�R�P�S�R�X�Q�G���D���7�X�U�N�H�\���W�H�V�W���Z�D�V���S�H�U�I�R�U�P�H�G���E�H�W�Z�H�H�Q��
�:�7���D�Q�G���W�U�D�Q�V�J�H�Q�L�F���I�U�X�L�W�V�����6�W�D�U�V���L�Q�G�L�F�D�W�H���V�L�J�Q�L�I�L�F�D�Q�W���G�L�I�I�H�U�H�Q�F�H���E�H�W�Z�H�H�Q���:�7���D�Q�G���W�U�D�Q�V�J�H�Q�L�F���I�U�X�L�W�V���R�I��
�W�K�H�� �V�D�P�H�� �D�J�H�� ������� �S�������������� ������ �S�������������� ������� �S������������������ �&�R�P�S�R�X�Q�G�V�� �V�K�R�Z�Q�� �L�Q�� �$���� �%���� �&���� �(�� �Z�H�U�H��
�D�Q�D�O�\�]�H�G���X�V�L�Q�J���+�����1�0�5���D�V���G�H�V�F�U�L�E�H�G���L�Q���/�L�X���H�W���D�O���������������� 
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2.1 PCA analysis of metabolic compositions allows the separation of WT and transgenic fruits 
during ripening  

To visualize the modifications of WT and DML RNAi fruits metabolic composition through 
development and ripening, PCA were performed on line 2 and line 8 separately and their respective 
WT controls. For Line 2, all data including primary metabolites determined by GC-MS and NMR, 
as well as chlorophylls, carotenoids, lycopene and starch were integrated together. When similar 
compounds have been analyzed by GC-MS and NMR, only GC-MS result were considered. 
Altogether, 58 metabolites from GC-MS, 15 from NMR, and chlorophylls, total isoprenoids 
(including beta-carotene and lycopene) and starch, in total 74 metabolites were considered for line 
2 and WT1. For line 8 and WT2 the 64 metabolites obtained by GCMS were used for the PCA 
analysis. 

For WT1 and Line 2, PC1 and PC2 represent 37.1%, 16%, respectively of the total differences in 
metabolite composition. Similarly for Line 8 and WT2, PC1 represents 30.7% and PC2 19% of the 
total differences (Fig 3.3, figS3.3, p77, p133). In both cases, a clear separation is observed between 
early and late developmental stages for both WT and transgenic fruits, which are mainly separated 
along PC1. WT1 and WT2 from 20dpa to the Br stage were clustered together with transgenic 
fruits of line 2 and 8 respectively, from 20dpa to 46 dpa (corresponding to Br+7 in WT), indicating 
that at these stages the changes of metabolites of fruits is very similar in both type of genotypes. 
At later developmental stages (starting after 46dpa for DML lines, and at Br stage in WT) and older 
stages up to 85dpa, WT1 and WT2 fruits were all clustered and clearly separated from fruits of line 
2 or line 8 respectively of the same age that also clustered together. 

When analyzing the compounds responsible for the separation between samples, major differences 
between Line 2 and WT1 are due to dehydroascorbate, galactose, glucose, Gln, fumarate. 
Adenosine-like, galactinol, glycerate, carotenoids, xylose as well as malate. Similar results are 
found for line 8, with the exception of isoprenoids and starches that were not considered for this 
line. In addition, galactose, raffinose were quite different in line 8 as compared to line 2.
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Fig 3. 1 Principal component analysis of metabolic profiles of WT1 and line 2 fruits during development and ripening. (A) PCA using primary 
metabolites determined by H1-NMT, chlorophylls, carotenoids and starch of WT1 (red square), line 2 X (green circle) and line 2Y (blue triangle) at 
8developmental stages. Note the clear separation of WT and transgenic fruits from Br (39 dpa) to 85 dpa. (B) Variables plot of metabolites for the 
first two principal components (PC1 and PC2). Compounds that give large contribution either to PC1, PC2 or both are labeled with red color. 
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2.2 Sugars, organic acids, amino acids, pigments show different accumulation pattern in WT 
and transgenic fruits  

To determine the differences in accumulation patterns between WT and transgenic fruits, K-means 
clustering was performed using metabolites showing significant differences between WT1 and 
Line 2Y. A total of 64 compounds were used here (see method). Six clusters were obtained for WT 
and transgenic fruits that could be ranged in four major accumulation patterns. (i) the abundance 
of most metabolites in WT1, increased at Br, but almost all these metabolites showed a delayed 
increase (cluster 5 at 46 dpa) or a delayed and reduced accumulation pattern (cluster 6 at 70dpa) in 
transgenic line; (ii) the abundance of metabolites in clusters 1 and 2 decreased from Br onward in 
WT. A similar pattern is also found in the transgenic lines but at later stages at 55dpa or later at 
70dpa in transgenic fruits (Fig3.4, p79); (iii) metabolites in Cluster 3 dramatically increased at very 
late stages (70 and 85 dpa) in WT fruits but the increase does not occur in transgenic fruits; (iv) 
cluster 4 showed stage specific accumulation pattern, while in transgenic plants almost keep stable 
level.  Compound in each group is indicated in table (Fig 3.4B, p79). The pathway map that shows 
significantly changed metabolites between WT and transgenic fruits indicates that major 
differences are observed at ages corresponding to WT fruit ripening (Fig3.5, p80), consistent with 
the results of the PCA and cluster analyses (Liu et al., 2015). As a conclusion, the general trend is 
that soluble sugars, amino acids, organic acids and also secondary metabolites, accumulation or 
degradation is delayed and for some of them remains limited at low levels in transgenic fruits as 
compared to WT fruit of the same age during the ripening phase (Fig3.4, Fig 3.5).  
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�)�L�J�������������&�O�X�V�W�H�U�L�Q�J���R�I���P�H�W�D�E�R�O�L�F���S�U�R�I�L�O�H�V���L�Q���:�7�����D�Q�G���O�L�Q�H�����<���I�U�X�L�W�V���G�X�U�L�Q�J���I�U�X�L�W���G�H�Y�H�O�R�S�P�H�Q�W����
�U�L�S�H�Q�L�Q�J���D�Q�G���O�D�W�H�U���V�W�D�J�H�V�������$�����&�O�X�V�W�H�U�V���Z�H�U�H���R�E�W�D�L�Q�H�G���E�D�V�H�G���R�Q���D�O�O���������P�H�W�D�E�R�O�L�W�H�V���P�H�D�V�X�U�H�G���E�\��
�/�&���0�6�� �D�V�� �G�H�V�F�U�L�E�H�G�� �L�Q�� �W�K�H�� �P�H�W�K�R�G�V�����7�K�H�� �S�L�Q�N�� �O�L�Q�H�� �U�H�S�U�H�V�H�Q�W�V�� �W�K�H�� �P�H�G�L�D�Q�� �Y�D�O�X�H�� �L�Q�� �H�D�F�K�� �F�O�X�V�W�H�U����
�*�U�H�\�� �O�L�Q�H�V�� �U�H�S�U�H�V�H�Q�W�� �L�Q�G�H�S�H�Q�G�H�Q�W�� �P�H�W�D�E�R�O�L�W�H�V�� �:�7�� �L�V�� �R�Q�� �W�K�H�� �O�H�I�W���� �D�Q�G���/�L�Q�H�� ���<�� �R�Q�� �W�K�H�� �U�L�J�K�W���� ���%����
�&�R�P�S�R�X�Q�G�V���L�Q���H�D�F�K���F�O�X�V�W�H�U�� 
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Fig 3. 5 Metabolite changes in WT1 and line2 tomato fruits . The color legend indicates normalized fold changes relative to the mean 
of WT and line2. 3PGA, 3-phosphoglyceric acid; PEP, phosphoenolpyruvate. Amino acids, sugars, TCA-cycle intermediates, pigments 
and metabolites without measured with GC-MS or NMR are displayed in blue, green, purple, red, and grey colored font, respectively. 
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2.2.1 Accumulation of sugars  

Accumulation kinetics of major soluble sugars were measured using  H1 NMR in WT1 and WT2 
WVA106 fruits during fruit development and ripening were quite similar to those previously 
described in Ailsa craig (Carrari et al., 2006)and in WVA106 (Fig 3.2, p 75 and Liu et al, 2015 ). 

Glucose and fructose accumulated in a linear manner from 20 to 39 dpa and peaked at the red ripe 
stage 46dpa, before a slight decline in overripe fruits (55 dpa onward). Cell wall related sugars, 
such as galactose, guanosine show an accumulation pattern similar to glucose and fructose, in 
contrast to raffinose, another cell wall related sugar, which showed an opposite trend.  

In contrast to what observed in WT1 and WT2 fruits, glucose, fructose and galactose accumulation 
remains very limited at all stages in DML RNAi fruits of lines 2 (Fig 3.4, Fig S3.1 p79, p131). 
Consequently, whereas sucrose, declined in WT 1 (cluster 1), it remained abundant even at late 
stages indicating that this sugar was not efficiently metabolized in transgenic fruits, but this is not 
the case for sucrose in WT2 and line 8. The accumulation profile of glucose and fructose in DML 
fruits is similar to the one observed in fruits of the rin, nor and Nr mutants. However, sucrose 
behaved in the different way as compared to these three mutants that are all  characterized by a 
significant decrease in sucrose content (Osorio et al., 2011).  

 

2.2.2 Accumulation of amino acids  

When considering the amino-acids, 21 and 14 were analyzed with GC-MS and NMR respectively, 
a subset of which presented clearly distinct accumulation patterns in transgenic fruits of both lines 
as compared to fruits of WT1 and WT2 controls. In WTs, the changes in amino acid content 
followed essentially two major patterns (1)Glu, Asp,Trp, Ala, Tyr, Gly amount increased during 
fruit ripening, which located in clustering patterns (i) and (iii).(2) the abundance of GABA, Ser, 
�7�K�U�����9�D�O�����3�K�H�����,�O�H������-Ala, Leu decreased from 46 dpa to 85 , although not exactly with the same 
profile consistent with clustering pattern (ii). In transgenic fruits, these accumulation profiles were 
changed; with the major differences being observed at fruit ages corresponding to ripe and over 
ripe WT. 

Among the main effects observed, the content in a few amino acids displayed a delayed and limited 
reduction in transgenic as compared to ripening WT fruits. Thus, Asn, pyroglutamate and Gln 
remained at high levels in transgenic plants from 55dpa onward, although their content decreased 
at later developmental stages (70 and 85 dpa). A similar trend was observed for GABA and Val, 
although in these cases, the differences were transient and occurred between 39 and 55 dpa (Fig 
3.5).  

In contrast, other amino acid showed a reduced accumulation level in transgenic fruits as compared 
to WT fruits of the same age. This was observed for Leu, Ile and Ala from 39dpa to 85 dpa (Leu) 
or later from 46 dpa onward (Ala and Ile). Asp and Glu as two major amino acids, which were also 
clustered in cluster 5 showed delayed and even higher accumulation in transgenic fruits.  

 

2.2.3 Accumulation of organic acids 

�� 
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When considering Organic acids, they show specific behaviors during WT fruit development and 
ripening. Hence malate, a major TCA intermediates, accumulates to reach the highest level in 
immature fruits, and starts decreasing at 46 dpa and later stages. Citrate followed an U shaped 
accumulation kinetics whereas, fumarate remains at rather low level all through fruit development. 
Succinate accumulated at very low levels and followed a wave like accumulation kinetic. Finally, 
2-oxglutarate peaked at Br+7 in WT. In transgenic fruits, all of these intermediates behaved 
differently as compared to WT. For example, malate amounts are similar to WT up to the breaker 
stage, although slightly more abundant in a few plants. In contrast to WT fruits characterized by  a 
sharp decrease in malate content after  46 dpa (6 fold decrease), malate content remains high at 46 
dpa before a very progressive decrease from 55 dpa onward. It reached a level similar to WT fruits 
only after 85 dpa. Considering fumarate, in contrast to WT fruits this compound accumulate in 
transgenic fruits with the highest content observed at 39 and 46 dpa, before a slight decrease at 
later developmental stages. Citrate, although the kinetic of accumulation detected using GC-MS 
and NMR were different, behaved with both methods similarly in transgenic and in WT fruits as 
previously described (Liu et al., 2015, Sup data Fig S5, p48). Fumarate was slightly more abundant 
at certain stages in the transgenic lines.  

Additional compounds also showed significant differences between line 2 and WT1 at specific fruit 
developmental stages. For example, organic acids that do not belong to the TCA cycle, including 
phosphorate, threonate, ethanolamine, nicotinate, galactinol, but also sugar alcohol and sugar 
phosphate, and octadecanoate, myo-�L�Q�R�V�L�W�R�O�����G�L�G�Q�¶�W���G�L�V�S�O�D�\���F�O�H�D�U���S�H�D�N�V��at the onset of fruit ripening 
although some of them increased gradually (ethanomamine, galacturonate, threonate, 
adenosine_like, threitol, guanosine) or inversely decreased (glycerol, myo-insositol).  

 

2.2.4 Accumulation of pigments 

Pigments, including chlorophylls, lycopene and total carotenoids were dramatically affected in 
transgenic fruits. In WT fruits, Chlorophylls showed gradual degradation during development, to 
reach undetectable levels in red ripe fruit. In transgenic fruits of both line 2 (Fig 3.5 and 8 (fig 
S3.1), chlorophyll degradation is delayed and chlorophylls were still detected even at 55 dpa. This 
pattern is similar to the one observed for starch and malate (cluster 1). 

Lycopene and total carotenoids are known to accumulation at very high level during tomato fruit 
rienng (Liu et al., 2015). In WT fruits lycopene was first detected at the breaker stage and reach a 
maximum level accumulation level at Br+7 (46dpa) and remained highly abundant at later stages 
in WT fruits. In transgenic fruits, the lycopene accumulation is delayed and dramatically limited. 
It could hardly be detected at 39 dpa in line 2 plants and 39 in line 8 and its accumulation remainded 
very limited in both caseq. A similar behaviorwas observed for major sugars (fructose and glucose), 
and also for galactose which all clustered together (cluster 6).  

2.3 Network analysis indicates that RNAi DML transgenic fruits display higher network 
density than WT  

To compare the metabolites network in WT and RNAi DML transgenic fruits, we evaluated 
pairwise correlations of metabolites in each genotype, separately. The same metabolites as those 
used for clustering analyses in line 2 were also used for pairwise correlation analysis, but only 
using five developmental stages (35, Br, 55, 70, 85dpa) in order to focus on on fruit ripening. 
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Similarly 50 compounds obtained by GC-MS for WT2 and line 8 were analyzed at the same 
developmental stages. 

Results indicate that 254, 466, 185 pairwise correlations between metabolites could be identified 
that were unique in WT or in transgenic fruits, and common to both type of fruits, respectively. 
Similar results were obtained with line 8 (130, 222, 87, pair wise correlation with WT2, in line 8, 
and both, respectively) (tableS1, provided as additional excel file online). 

We subsequently extracted these two types of correlation to determine the corresponding 
metabolite connections (Fig3.6, p84; figS3.4, p34, table S1). Obvious examples are pigments and 
starch that showed more correlated pairs than in WT1. Sugars related to cell wall metabolism, 
including rhamnose and xylose also had more correlated pairs than in WT (similar to line8/ WT2 
analysis). Another cell wall compounds, galactose, behaved in a distinct way. Only 2 common pairs 
of significant correlation were found in WT and line 2Y (Gln and glucose), but 15 unique pairs 
were found in WT. This is consistent with the specific accumulation pattern of galactose that do 
not change along the fruit ripening process in transgenic fruits (FigS3.1, p131).  Another striking 
example is malate, a major intermediate of the TCA cycle. Malate show 9 pairs of significant 
correlation with other compounds, including positive correlation with citrate, pyroglutamate, 
galactose in WT1 consistent with the observation that these compounds accumulate in a 
coordinated way. In contrast, these correlations are not maintained in RNAi DML transgenic fruits, 
but 28 more pairs were found, for example positive correlation with rhamnose, sucrose. This 
indicates that primary metabolism as well as carotenoid pathway was affected during fruit ripening 
in transgenic fruits and suggests that the repression of demethylation affects differentially the 
accumulation of the different metabolites detected in this study. 
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Fig 3. 6 �0�H�W�D�E�R�O�L�W�H���Q�H�W�Z�R�U�N���R�I���F�R�U�U�H�O�D�W�L�R�Q�V���L�Q���:�7���I�U�X�L�W���D�Q�G���'�0�/�����I�U�X�L�W�����7�K�H�V�H���Q�H�W�Z�R�U�N�V���U�H�S�U�H�V�H�Q�W���X�Q�L�T�X�H���P�H�W�D�E�R�O�L�W�H���F�R�U�U�H�O�D�W�L�R�Q�V��
�L�Q���:�7�������I�U�X�L�W�����$�����D�Q�G���X�Q�L�T�X�H���P�H�W�D�E�R�O�L�W�H���F�R�U�U�H�O�D�W�L�R�Q�V���L�Q���'�0�/�����I�U�X�L�W�����%�������7�K�H���%�O�X�H���H�G�J�H�V���U�H�S�U�H�V�H�Q�W���V�L�J�Q�L�I�L�F�D�Q�W���S�R�V�L�W�L�Y�H���F�R�U�U�H�O�D�W�L�R�Q�V�����5�H�G��
�H�G�J�H�V���U�H�S�U�H�V�H�Q�W���V�L�J�Q�L�I�L�F�D�Q�W���Q�H�J�D�W�L�Y�H���F�R�U�U�H�O�D�W�L�R�Q�V�����D�G�M�X�V�W�H�G���S���������������������'�R�W���Q�R�G�H�V���Z�L�W�K���S�L�Q�N���F�R�O�R�U�V���U�H�S�U�H�V�H�Q�W���D�P�L�Q�R���D�F�L�G�V�����3�D�U�D�O�O�H�O�R�J�U�D�P��
�Z�L�W�K���J�U�H�H�Q���F�R�O�R�U�����7�&�$���F�\�F�O�H�����+�H�[�D�J�R�Q���Z�L�W�K���J�U�H�H�Q���F�R�O�R�U�����R�U�J�D�Q�L�F���D�F�L�G�V�����2�F�W�D�J�R�Q���Z�L�W�K���F�\�D�Q���E�O�X�H�����I�D�W�W�\���D�F�L�G�V�����5�R�X�Q�G���U�H�F�W�D�Q�J�O�H���Z�L�W�K���J�U�H�\����
�R�W�K�H�U�V�����9���Z�L�W�K���\�H�O�O�R�Z�����V�X�J�D�U�V���D�Q�G���V�X�J�D�U���U�H�O�D�W�H�G�� 
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III.  RNA seq analysis WT and RNAi Transgenic Lines  

Previous results have shown that three key fruit ripening regulators (RIN, NOR, CNR) 
and lycopene biosynthesis gene PSY1 were extremely repressed (RIN, NOR, PSY1) or 
delayed (CNR) in transgenic fruits (Liu et al., 2015b, Chapter 2). Moreover, the promoter 
regions of these genes were hypermethylated in RNAi transgenic fruits as compared to WT 
fruits. In addition, metabolic analyses showed significant differences during fruit ripening 
between WT and DML RNAi transgenic plants. In order to complete the networks of genes 
that were differentially expressed in WT and DML transgenic lines and to label out the 
potential DMLs primary targets, we have characterized transcriptomes using the same 
tissues as those used for metabolic analysis.  

 

3.1. Summary of RNA seq data 

RNA seq analysis was performed as described in Zhong et al, (2013). A total of 72 
(line 2) and 36 (line 8) samples were analyzed by RNA seq which generated between 3.27 
to 14.12 million reads per sample (sampling method see materials and methods). Given the 
high number of samples, and the quality of the tomato genome assembly, the targeted 
number of counts was 10 million for all samples. This was shown to be sufficient to 
determine the main differences between samples but will not allow identifying differences 
in weakly expressed genes. After filtering 2.57 to 12.25 million reads were obtained 
between 77.63% and 93.36 %, which could be mapped to the tomato reference genome 
(Table S2). These analyses were performed in the laboratory of J Giovannoni, using the 
protocols and bioinformatics pipelines described in Zhong et al (2013). 

 

3.2. Differential Gene Expression between WT and transgenic fruits 

To identify the differentially expressed genes between WT and transgenic fruits, all 
DEGs were analyzed by DESeq2. A total of 15,556 genes in WT1 and Line 2Y, 15,556 
genes in WT1 and line2X, 14,274 genes in WT2 and line 8, approximately 44.8%, 44.8% 
and 41.1% respectively of the annotated genes in the tomato genome (Tomato Genome 
Consortium, 2012), were expressed in at least one sample, The size of the different libraries 
is shown in FigS3.5 (p135). There was little variation in the total number of genes 
represented at each stage, similar to other fruit transcriptomic studies (Pattison et al., 2015). 

Normalized read counts from independent biological replicates within one line was 
highly correlated at each stage (R2>0.98) (line2Y compared with line2X), whereas the 
correlation between line2Y and line8 was lower (for example, R2=0.892 at 55dpa). This 
suggests variations between lines at the stages analyzed. A higher correlation between 
adjacent stages was also detected in transgenic lines than in WT meaning that the 
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expression pattern of adjacent stages is more similar in transgenic plants as compared to 
WT fruits (fig3.7A, figS3.6, p87 and p136).  
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Fig 3. 7 Relationship of tomato fruit pericarp related transcript expression profiles 
and differentially expressed genes. A. Correlation analysis of RNA seq data between line 
2Xand Y at 39 dpa., line 8 and line 2Y at 39dpa, line 2Y at 35 and 39 dpa, and WT1 at 35 
and Br stage (39dpa) B. Number of DEGs at each stage between Line 2Y and Line 8 and 
their respective controls, WT1 and WT2. 

 

�% 

�$ 



 
Chapter3 

 88 

 

       Differentially expressed genes (DEGs, Fig3.7, figS3.6, p87 and p136) were identified 
by pairwise sample comparisons, and those differentially expressed in at least one stage 
were recorded as DEGs (Method is described as materials and methods). In total, 9,975; 
10,095 and 8,390 genes were identified as DEGs in Lines 2Y and 2X versus WT1 and line 
8 versus WT2, respectively. 

The numbers of up- and down-regulated genes according to fruit stages are shown in 
Fig.7B and FigS6B (p83, p130). When comparing the distribution of DEGs at each stage 
between the different lines, a similar pattern was observed in line 2X, 2Y and line 8, 
although line 2Y is closer to line 2X as expected. At early stages, from 20 days post-
anthesis (dpa) until before Breaker (Br) stage, the number of DEGs remained low ranging 
from 301 to 617 in line2Y, 238 to 486 in line 2X and 38 to 201 in line 8. This indicates that 
there is little difference between WT and DML RNAi fruits during tomato fruit 
development. Obviously, there is a sharp increase in DEG number from Br stage and during 
ripening and later. DEG numbers varies from 3404 to 6759 in line 2Y, 3268 to 7045 in line 
2X and 4327 to 5047 in line 8. This clearly indicates that the effect of DML knock down 
mainly affect the fruit ripening process and has very little impact on early stages of fruit 
development. Increase in DEG number observed at Br of fruit ripening could be linked to 
the induction of genes observed in WT fruits at the Br stage (Fig 3.8A, p90). This massive 
gene induction is not observed in transgenic plants of line 2 and 8. Additionally, many 
genes are also down regulated in WT fruit at this stage, a phenomenon also not observed 
with the same intensity in transgenic fruits (see below). It should be noted the number of 
DEGs is higher when comparing line 8 to WT2 than lines 2 (X and Y) to WT1 at the Br 
stage. However, as explained above, both cultures were performed independently at two 
different seasons (line 2 is mainly in spring, while line 8 is in winter). Hence, WT fruits of 
the same age were more advanced in the line 2 culture than in the line 8. For line 8, WT 
fruits were at the late Br stage but Line 2 is at early the breaker stage. Comparatively, fewer 
genes are likely induced at the early breaker stage in WT1 fruits as compared to WT2 fruits 
at the late breaker stage, the number of DEGs at this stage might be reduced in line 8 versus 
WT2, as compared to line 2 versus WT2.  

For further analysis, DEGs that are common between all lines at selected time points 
(20, 35, 39, 46, 55, 70 and 85dpa) in all lines (Line 2Y/2X and line 8) were selected. In 
total, 6212 DEGs satisfied this condition. Additional DEGs that were found in only one line, 
the list of which is shown in table S3, will not be included in the analysis presented below 
(Fig3.8B, p90). 

To determine the reliability of RNA seq data, five of the DEGs (RIN, NOR, PSY1, 
ACS4, ZISO) in Line 2Y; eight DEGs (RIN, NOR, CNR, PSY1, ACS2, ACS4, PG2a, ZISO) 
in line 8 were analyzed at the 8 and 6 stages respectively were checked using QRT-PCR. 
As shown in Supplemental Figures S3.6C, S3.6D (p136). The RNA seq data were 
confirmed for the downregulated genes in line 2Y, in line 8.  RNA seq data is consistent 
with qRT-PCR (R2>0.8 in each genotype). In a conclusion, all of these checked DEGs 
show consistent changes, which confirming the reliability of RNA seq data.  
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Fig 3. 8���'�L�I�I�H�U�H�Q�F�H�� �R�I�� �'�(�*�V�� �Q�X�P�E�H�U�V�� �D�W�� �G�L�I�I�H�U�H�Q�W�� �V�W�D�J�H�V�� �D�Q�G���Y�H�Q�Q�H���G�L�D�J�U�D�P���R�I��
�F�R�P�P�R�Q���'�(�*�V�� �D�P�R�Q�J�� �/�L�Q�H�� ���<���� �/�L�Q�H���;�� �D�Q�G�� �/�L�Q�H�� �������$���� �'�L�I�I�H�U�H�Q�W�O�\�� �H�[�S�U�H�V�V�H�G�� �J�H�Q�H�V��
���'�(�*�V���� �E�H�W�Z�H�H�Q�� �O�L�Q�H�� ���<�� �D�Q�G�� �:�7�� ���� �D�W�� ������ �D�Q�G�� ������ �G�S�D���� �O�L�Q�H�� ���� �D�Q�G�� �:�7�� ���� �D�W�� ������ �D�Q�G�� ������ �G�S�D��
���%�U�������V�W�D�J�H�����5�H�G���G�R�W�V���U�H�S�U�H�V�H�Q�W���'�(�*���E�H�W�Z�H�H�Q���W�K�H���W�Z�R���V�D�P�S�O�H�V���D�Q�D�O�\�]�H�G���Z�K�H�U�H�D�V���E�O�D�F�N���G�R�W�V��
�J�H�Q�H�V�� �Q�R�W�� �G�L�I�I�H�U�H�Q�W�L�D�O�O�\�� �H�[�S�U�H�V�V�H�G�� �E�H�W�Z�H�H�Q�� �W�K�H�� �W�Z�R�� �V�D�P�S�O�H�V���F�R�P�S�D�U�H�G���� �7�K�R�V�H�� �Z�L�W�K��-���� ����
�/�R�J���)�&�� ���� ���� �D�U�H�� �D�O�V�R���U�H�S�U�H�V�H�Q�W�H�G���L�Q�� �U�H�G�� �F�R�O�R�U�� �L�Q�� �W�K�L�V�� �F�D�V�H���� �� �%���� �9�H�Q�Q�� �G�L�D�J�U�D�P�� �R�I�� �'�(�*�V��
�X�Q�L�T�X�H���D�Q�G���V�K�D�U�H�G���E�H�W�Z�H�H�Q���O�L�Q�H�����<�����O�L�Q�H���;���D�Q�G���O�L�Q�H������ 
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3.3. Comparative analysis of transgenic and WT fruits   

 
To assess the dynamics of transcriptional patterns among samples, principal 

component analysis (PCA) and hierarchical clustering were performed on all the DEGs 
selected above (Fig 3.9, Fig S3.7, p92 and p137). Both analyses confirmed that most 
differences in gene expression profiles occurred during the fruit ripening process. The first 
two principle components explain approximately 68% of the variation at the global 
transcriptomic level for WT1 and line 2Y/2X (70% for WT2 and line 8, including an 
azygote line at 20dpa). Before fruit ripening from 20dpa to the Br stage, WT and transgenic 
fruits were plotted together. The first principal component, which explains 49.3%, separates 
WT at 46dpa and later ripening stages (55dpa~85dpa) from all other samples; whereas the 
second principal component (17.7%) (19.8% for WT2 and Line 8) separate WT and 
transgenic fruits from 20 to 39dpa; from the transgenic fruits at 46dpa and more.  
Obviously, most of the transcriptomic variance is detected during fruit ripening, as 
previously described (Liu et al, 2015b).  

To discriminate between DEGs, all DEGs were first separated based on the log2FC 
ratio (Line2Y versus WT1) at each stage (To be clear, here the separation of all DEGs is 
based on common DEGs were defined above). Once those showed Log2FC<-1 at any stage 
(among 8 stages that were detected), were considered as downregulated DEGs genes. Those 
with a Log2FC ration above 1 were considered as upregulated genes in transgenic as 
compared to WT. This implies that DEGs belonging to the upregulated class are never 
repressed in transgenic fruit compared with WT. Thus downregulated and upregulated 
genes were clustered separately.  

All DEGs fall into 9 clusters that can be organized in three distinct groups: (i) group 1 
corresponding to Clusters 1, 2, 3, represents a total of 3499 genes which show absence or 
delayed down regulation in transgenic fruits as compared to their repression during WT 
fruit ripening (ii) group 2 corresponding to clusters 4, 5, represents 1345 genes that show 
no or delayed induction in contrast to their strong induction observed during WT fruit 
ripening (iii) group 3 corresponding to clusters 6, 7, 8, 9 represents 1368 genes that show 
stage specific down regulation during fruit development and ripening in transgenic fruits as 
compared to WT fruits of the same age (Fig3.10, p93). Number of DEGs in each cluster 
was listed in table1. 

In order to analyze how the global difference of DEGs in three groups, we used 
Log2FC (2Y/WT1) of all DEGs to plot in PCA again, as in clusters, we found that most 
genes were overlapped in their own group, indicating the fold change of these genes 
between WT transgenic fruits occurs on the similar stages. Genes in group 1 and group 2 
were separated by those of group 3, which is widely overlapped with group 1 and group2, 
since the expression of genes in group 3 is either similar to group 1 or group 2, except 
39dpa to 55dpa were different with group 1 or group 3, this is the reason why group 3 is 
overlapped with group 1 and group 2.  This result is consistent with the grouping of clusters 
that show distinct transcript accumulation patterns among the three groups. However as 
genes in group3 present stage specific repression they might appear similar with those of 
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group2 or group3 at other stages, thus explaining the partial overlap between group 3 and 
groups 1 and 2 (Fig 3.12A, p102).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. 9���3�U�L�Q�F�L�S�D�O���F�R�P�S�R�Q�H�Q�W���D�Q�D�O�\�V�L�V���R�I���5�1�$���V�H�T���G�D�W�D���D�Q�G���'�(�*�V���S�U�R�I�L�O�H�V���R�I���:�7�����D�Q�G��
�O�L�Q�H�� ���� �I�U�X�L�W�V�� �G�X�U�L�Q�J�� �G�H�Y�H�O�R�S�P�H�Q�W���� �U�L�S�H�Q�L�Q�J�� �D�Q�G�� �O�D�W�H�U�� �V�W�D�J�H�V���� �$�����'�L�V�W�U�L�E�X�W�L�R�Q�V�� �R�I��
�J�H�Q�R�W�\�S�H�V���D�Q�G���G�H�Y�H�O�R�S�P�H�Q�W���V�W�D�J�H�V�����&�R�O�R�U���L�Q�G�L�F�D�W�H�V���W�K�H���G�L�I�I�H�U�H�Q�W���J�H�Q�R�W�\�S�H�V�����U�H�G���V�T�X�D�U�H�����:�7����
�E�O�X�H�� �W�U�L�D�Q�J�O�H�� �O�L�Q�H���<�� �D�Q�G�� �J�U�H�H�Q�� �F�L�U�F�O�H�� �O�L�Q�H�� ���;���� �)�R�U�� �(�D�F�K�� �V�W�D�J�H�� �K�D�V�� �E�H�H�Q�� �S�H�U�I�R�U�P�H�G�� �L�Q��
�W�U�L�S�O�L�F�D�W�H�����%�����+�H�D�W�P�D�S�� �R�I�� �D�O�O�� �F�R�P�P�R�Q�� �'�(�*�V�� �E�H�W�Z�H�H�Q�� �:�7���� �D�Q�G�� �/�L�Q�H�� ���<���� �+�L�H�U�D�U�F�K�L�F�D�O��
�&�O�X�V�W�H�U�V���D�U�H���V�K�R�Z�Q���R�Q���W�K�H���O�H�I�W���D�Q�G���Z�H�U�H���R�E�W�D�L�Q�H�G���E�\���6�S�H�D�U�P�D�Q���P�H�W�K�R�G�� 
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Fig 3.10 Nine���F�O�X�V�W�H�U�V���R�I���'�(�*�V���Z�H�U�H���F�O�D�V�V�L�I�L�H�G���E�H�W�Z�H�H�Q���:�7�����D�Q�G���O�L�Q�H�����<�����1�L�Q�H���F�O�X�V�W�H�U�V��
�K�D�Y�H���E�H�H�Q���R�E�W�D�L�Q�H�G���X�V�L�Q�J���6�S�H�D�U�P�D�Q���P�H�W�K�R�G���D�Q�G���J�U�R�X�S�H�G���E�D�V�H�G���R�Q���W�K�H�L�U���H�[�S�U�H�V�V�L�R�Q���S�D�W�W�H�U�Q��
�D�V���V�K�R�Z�Q�������$�����J�U�R�X�S�������F�R�U�U�H�V�S�R�Q�G���W�R���F�O�X�V�W�H�U�V���Z�L�W�K���J�H�Q�H�V���E�H�L�Q�J���O�H�V�V���H�[�S�U�H�V�V�H�G���L�Q���:�7���W�K�D�Q���L�Q��
�W�U�D�Q�V�J�H�Q�L�F���D�W���D�O�O���V�W�D�J�H�V���R�I���I�U�X�L�W���G�H�Y�H�O�R�S�P�H�Q�W�����F�O�X�V�W�H�U����-���������%�����J�U�R�X�S�������F�R�U�U�H�V�S�R�Q�G�V���W�R���'�(�*�V��
�L�Q�G�X�F�H�G�� �D�W�� �W�K�H�� �%�U�� �V�W�D�J�H�� �L�Q���:�7�� �D�Q�G�� �H�[�S�U�H�V�V�H�G�� �G�X�U�L�Q�J�� �I�U�X�L�W�� �U�L�S�H�Q�L�Q�J�� �D�Q�G�� �D�W�� �O�D�W�H�U�� �V�W�D�J�H�V����
�Z�K�H�U�H�D�V���W�K�H�\���D�U�H���Q�R�W���H�[�S�U�H�V�V�H�G���R�U���O�D�W�H�O�\���H�[�S�U�H�V�V�H�G���L�Q���W�U�D�Q�V�J�H�Q�L�F���I�U�X�L�W�V���D�Q�G�����F�O�X�V�W�H�U����-���������&����
�J�U�R�X�S������ �F�R�U�U�H�V�S�R�Q�G���W�R���F�O�X�V�W�H�U�V���Z�L�W�K���V�W�D�J�H���V�S�H�F�L�I�L�F���G�L�I�I�H�U�H�Q�F�H�V���E�H�W�Z�H�H�Q���:�7���D�Q�G���W�U�D�Q�V�J�H�Q�L�F��
�I�U�X�L�W�V���� �Z�L�W�K���F�O�X�V�W�H�U�V�� ��-���� �F�R�U�U�H�V�S�R�Q�G�L�Q�J�� �W�R�� �J�H�Q�H�V�� �L�Q�G�X�F�H�G�� �D�W�� �%�U�� �D�Q�G�� �H�[�S�U�H�V�V�H�G�� �G�X�U�L�Q�J�� �I�U�X�L�W��
�U�L�S�H�Q�L�Q�J���E�X�W���Q�R�W���D�W���O�D�W�H���V�D�J�H�V���L�Q���:�7�����D�Q�G���L�Q�G�X�F�H�G���D�W���Y�H�U�\���O�D�W�H���V�W�D�J�H�V�������D�I�W�H�U���������G�S�D���Q���F�O�X�V�W�H�U��
�����W�R���J�H�Q�H�V���L�Q�G�X�F�H�G���D�W���O�D�W�H���V�W�D�J�H�V�������D�I�W�H�U���������G�S�D�����L�Q���:�7���E�X�W���Q�R�W���L�Q���W�U�D�Q�V�J�H�Q�L�F���I�U�X�L�W�V���D�Q�G���3�L�Q�N����
�W�U�D�Q�V�J�H�Q�L�F�� �I�U�X�L�W�V���� �*�U�H�H�Q���� �:�7���� �E�O�D�F�N�� �D�Q�G�� �E�O�X�H�� �O�L�Q�H�V�� �D�U�H�� �W�K�H�� �P�H�D�Q�� �Y�D�O�X�H�� �R�I�� �F�D�O�F�X�O�D�W�H�G�� �X�V�L�Q�J��
�W�K�H���Q�R�U�P�D�O�L�]�H�G���F�R�X�Q�W�V�� 
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3.4. DEGs distribution within in each cluster 

To investigate the distribution of DEGs in biological process, we performed gene 
enrichment analysis for each group and each cluster, using mefisto software that has ranked 
genes in 35 MapMan functional categories termed BINs (TableS4, provied as additional 
excel file online), as indicated in the material and methods  (Usadel et al., 2005). 

DEGs belonging to group 1 (clusters 1, 2, 3 including 920, 2441, 138 DEGs 
respectively), are in general repressed in WT fruits either during all the ripening process 
(clusters 1 and 2) or more specifically at the Br stage (cluster 3). However, in transgenic 
fruits, group 1 DEGs showed distinct expression profiles as compared to WT. DEGs from 
cluster 1, are induced instead of repressed during fruit ripening. For cluster 2 and 3, DEGs 
are also down regulated during the ripening of DML RNAi fruit, but their repression level 
remains limited as compared to WT. Transgenic fruits in cluster 2 showed a slight decrease 
all along fruit development and ripening, unlike cluster 3, WT presented specific drop at Br 
stage, causing the separation of cluster 2 and cluster 3 (Fig3.10A, p93).  

Gene enrichment shows that Group1 over-represented genes belong to 15 categories 
(Fig3.11, p95, see table S4). Indeed many genes are unknown, and misc belong to misc. 
However, the main functional categories correspond to RNA (including RNA processing, 
transcription and transcription factor), signaling (including sugar and nutrient physiology, 
receptor kinases) and many cell wall genes. 

More interesting, when over-representation were performed on each cluster separately, 
genes involved in photosystem and cell wall were only enriched in cluster 2. In hormone 
category, 8 genes responsible for brassinosteroid synthesis and degradation were also found 
in this cluster. Only histone genes (DNA functional category) were over-represented in 
cluster3 (Table S4, provided as additional excel file online).  

 

 

 

 

 

 

 

 

 

 

 



 
Chapter3 

 94 

 

Fig 3. 11���(�Q�U�L�F�K�P�H�Q�W�� �R�I�� �'�(�*�V�� �L�Q�� �H�D�F�K�� �J�U�R�X�S���� �*�H�Q�H�� �Q�X�P�E�H�U�V�� �L�Q�� �H�D�F�K�� �F�D�W�H�J�R�U�\�� �Z�H�U�H��
�R�Y�H�U�U�H�S�U�H�V�H�Q�W�H�G�������$�����*�U�R�X�S���������F�O�X�V�W�H�U����-���������%�����*�U�R�X�S�������F�O�X�V�W�H�U����-�����������&�����*�U�R�X�S���������F�O�X�V�W�H�U��
��-�������� 
 
Table 1���� �'�(�*�V�� �G�L�V�W�U�L�E�X�W�L�R�Q�� �D�Q�G�� �'�0�5�V�� �W�\�S�H�� �L�Q�� �H�D�F�K�� �F�O�X�V�W�H�U�� �D�Q�G�� �J�U�R�X�S���� �'�0�5�V�� �K�D�Y�H��
�E�H�H�Q�� �F�O�D�V�V�L�I�L�H�G�� �L�Q�� �I�R�X�U�� �J�U�R�X�S�V�� �E�D�V�H�G�� �R�Q�� �W�K�H�� �P�H�W�K�\�O�D�W�L�R�Q�� �U�D�W�L�R�� �5��� �� �P�H�W�K�\�O�D�W�L�R�Q�� �D�W�� �����G�S�D����
�P�H�W�K�\�O�D�W�L�R�Q���D�W���������G�S�D�����D�Q�G���5��� ���P�H�W�K�\�O�D�W�L�R�Q���D�W�������G�S�D�����P�H�W�K�\�O�D�W�L�R�Q���D�W���������G�S�D�� 

 

        DMR distribu tion     

Group Clusters  DEGs A b c d RIN target 

Group1 C1 920 373 50 46 33 26 

  C2 2441 895 132 112 119 23 

  C3 138 47 8 8 4 1 

Group2 C4 904 265 26 25 32 20 

  C5 441 139 26 17 25 9 

Group3 C6 238 252 19 30 30 67 

  C7 582 198 24 25 19 6 

  C8 523 83 8 19 13 7 

  C9 25 7 1 3 0 1 
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Group 2 includes 904, 441 genes in cluster 4 and 5, respectively. In WT fruits the 
expression of cluster 4 and 5 genes peaked at the Br stage (39dpa), or even later at 46 or 
55dpa. In contrast, in transgenic fruits, DEGs from cluster 4 are characterized by a delayed 
increase in expression that occurs at 70dpa or later, whereas most DEGs in cluster 5 are not 
induced and remain at the same level throughout fruit development and ripening. In 
addition, most group2 DEGs are expressed at very low levels in transgenic fruits of both 
lines 2 and 8. Only 6 functional categories were over-represented in this group (Fig 3.10B, 
p93). The most abundant subcategory (394 genes) corresponds to genes with unknown 
function. In addition, 140 genes are related to protein degradation, 48 genes to heat stress, 
255 genes to RNA metabolism, including a number of transcription factors, among which 
the key ripening associated gene RIN (cluster 4) and 7 genes encode receptor kinases. This 
is consistent with the fruit ripening defect phenotype (see Fig 3.11, p95, and liu et al., 
2015b), as genes like RIN are major regulators of fruit ripening. Therefore, huge amount of 
genes in category of protein degradation, especial ubiquitin was also overrepresented in this 
group, indicating the normally degradation of proteins during fruit ripening, while the 
degradation is delayed in transgenic fruits, this is consistent to fruit ripening inhibited fruit 
phenotype.  

When considering clusters enrichment in group 2 separately, we found that all the 
categories in group 2 (Fig3.11, p95) except signaling were found in cluster 4 and cluster 5, 
although stress category was not significantly enriched in cluster 5, indicating at least 4 
major functional categories in this group, including protein degradation, DNA, RNA and 
unknown were mainly affected in DML RNAi transgenic fruits (TableS4, provided as 
additional excel file online).  

Group3 which correspond to clusters 6 to 9 is characterized by genes overexpressed in 
transgenic fruits as compared to WT at specific stages of fruits ripening. In cluster 6 most 
genes peaked at ripening induction (Br, 39dpa) or at the fully ripe stage(46dpa) of WT 
fruits, dropped at later stages when fruits were over-ripe, but in transgenic plants, almost all 
the induction is very limited. Therefore, in transgenic fruits, most genes in this cluster were 
extremely repressed at 39 to 55dpa, but not at 70-85dpa. This cluster also include some 
genes were slightly repressed at early stages. DEGs belonging to cluster 7 lately induced in 
the transgenic fruits (after 70dpa), whereas these genes are highly expressed in WT 
between 39 (Br) and 55 dpa and drop at later stages when fruits were over-ripe. Therefore, 
most genes in this cluster appear extremely repressed between 39 to 55dpa, but are more 
expressed in transgenic than in WT fruits at 70-85dpa. In clusters 8 and 9, gene expression 
in WT peaked at Br or Br+7dpa and Br+7 or 55dpa respectively. Then their expression 
level dropped down, however, in transgenic fruits, the induction were delayed even until 
55-85dpa.  

Most WT genes in cluster 8 were dropped at Br or B7, but induced at later stages, 
from 55-85dpa. However, in transgenic fruits, these genes kept slightly declined trend from 
early stages.  
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Seven categories were over-represented in this group, including genes related to 
specific pathway, hormone metabolism, amino acid, lipid metabolism and cell wall. 

In cluster 6, genes were over-represented with eight categories. Six DEGs that are 
considered as hallmarks of the ripening process are found in this cluster. They correspond 
to the NOR, a NAC transcription factor necessary for ripening induction (Giovannoni 2004), 
the PSY1 gene that governs carotenoid accumulation(Bartley et al., 1992), the 
polygalacturonase gene PG2a involved in cell wall softening(Zhong et al., 2013), the ACC 
oxidase gene ACO3(E8), involved in ethylene synthesis during fruit ripening (Kneissl and 
Deikman 1996),  E4 (Lincoln et al., 1987), and the Zeta-carotene desaturase ZDS gene 
encoding another critical enzymes of the carotenoid pathway (Fantini et al., 2013). Genes 
involved in ethylene biosynthesis and signaling are particularly enriched in cluster 6, 
including ACS2, ACS4 (ACC synthase) and various ETR (ethylene receptors) genes. As 
well as genes encoding proteins involved in jasmonate synthesis and degradation. This is 
consistent with the idea that many genes of cluster 6 are tightly related to the fruit ripening 
process.  

Only 3 functional categories are overrepresented in Cluster 7 genes with 95 genes 
related to RNA metabolisms, including 11 homeobox (HB) transcription factors, 31 to cell 
whereas 111 DEGS were not assigned. Four functional categories were over-represented in 
Cluster 8 , in addition to 45 not assigned genes, 10 genes in amino acid metabolism (3 
genes involved in glutamate family), 7 genes in ethylene synthesis and degradation 
(TableS4, provided as additional file on line). Among the 25 DEGs of cluster 9, 7 DEGs are 
related with ethylene synthesis, degradation and ETR genes were found in this cluster. 
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IV Analysis of differentially methylated region, in relation to DEGs 
patterns.  

4.1. DEGs associated with DMR are distributed among all clusters and 
groups  

Among the DEGs we have identified, it is very likely that only part of them will be 
directly regulated by their DNA methylation level. In order to determine these direct targets, 
Whole Genome Bisulfite Sequencing has been initiated in collaboration with Pr J 
�*�L�R�Y�D�Q�Q�R�Q�L�¶�V�� �O�D�E�R�U�D�W�R�U�\���� �+�R�Z�H�Y�H�U�� �G�X�H�� �W�R�� �W�H�F�K�Q�L�F�D�O�� �G�L�I�I�L�F�X�O�W�L�H�V���� �W�K�H�� �U�H�V�X�O�W�V�� �D�U�H�� �Q�R�W�� �\�H�W��
available. For this reason, we have decided to use previous results obtained in Pr J 
�*�L�R�Y�D�Q�Q�R�Q�L�¶�V�� �O�D�E�R�U�D�W�R�U�\�� �W�K�D�W�� �K�D�Y�H�� �V�K�R�Z�Q�� �W�K�D�W�� �P�D�Q�\ genes are demethylated during the 
ripening of tomato fruits (Zhong et al., 2013). To determine what genes, among the DEGs 
contain differentially methylated regions (DMRs), DEGs were compared to a list of genes 
that were shown to contain DMRs within the first 2kb of their promoter region (personal 
communication from Dr Fei, Boyce Thompson Institute, Cornel NY). These DMRs lists 
were determined by calculating the average methylation levels on a sliding window of 
100bp with 50 bp iteration as described in Zhong et al (2013). It should be noted that this 
list of genes was obtained by analyzing the development of Ailsa Craig tomato fruits, and 
we cannot formally rule out that some differences may exist with the WVA106 variety used 
in our study and Ailsa Craig. However, genes that were shown to contain DMRs in this 
previous study- RIN, NOR, CNR, PSY1- were also identified has differentially methylated 
in WVA106 (Liu et al., 2015b), consistent with the idea that DMRs are conserved between 
both varieties. To identify the DEGs containing DMRs in their promoter regions, the list of 
common DEGs identified in line 2Y, line 2X, and line 8 and its corresponding WT was 
crossed with the list of DMRs containing genes (Zhong et al., 2013, Dr Fei, personal 
communication). 

A total of 3,113 DEGs containing one or more DMRs in their promoter region were 
identified (see Table S9, provided as additional excel file online). DMRs were classified 
based on two ratios calculated using the DNA methylation percentage. R1 is the ratio 
between the methylation at 17dpa and breaker stage (42dpa) and R2 at 17 dpa versus 
breaker+10 (52 dpa). Four main types of situations were found (table 1): (type-a) DEGs 
with a unique or more DMRs that have both R1 and R2 above 1, this indicates that DNA 
demethylation occurs at all DMRs during fruit ripening. 2,259 DEGs correspond to this 
situation; (type-b) DEGs with a unique or more DMRs that have R1 and R2 ratios below 1, 
consistent with an increase in methylation during fruit ripening at all DMRs. 294 DEGs 
belong to this class; (type-c) 285 DEGs with more than one DMR but have opposite 
behaviors, in addition at least one has a type -a behavior and another one with a type-b; 
(type-d) 294 DEGs with DMR that have the opposite ratios between R1 and R2 at lease in 
one DMR (See FigS11).  
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Surprisingly, DEGs that contain DMRs are found in all three expression groups and 
almost all clusters. In addition each type of DMR was distributed among the different DEG 
expression groups (table 1, p91). 

In this study, SlDML1 and SlDML2 were suppressed in RNAi DML transgenic plants, 
especially only SlDML2 was extremely suppressed at breaker stage. Normally, only this 
gene has the dominant expression during fruit ripening in WT. However, as only DMRs 
corresponding to a decrease in methylation level during fruit ripening are potential targets 
for SlDML2 and might therefore be the most relevant in this study (Fig10B, 10C, p89, 
table1, p95), therefore, further work was focused on genes containing type-a DMRs 
corresponding to their clusters. Thus, to have the global overview on DEGs with type-a 
DMRs, gene enrichment were analyzed with over-representation (table 2, p101). DEGs 
with type-a DMR in group 1 are abundant, involving 12 functional categories: 
photosynthesis (34 genes), cell wall (52 genes), lipid metabolism (44 genes), amino acid 
metabolism (11 genes), brassinosteroid (7 genes), C1-metabolism (7 genes), misc (140 
genes), RNA (100 genes), kinase (32 genes), signaling (119 genes), transport (97 genes) 
and 266 no assigned genes.  

Those belonging to the expression group 2 range in 4 main functional categories: 
glycolysis (3 genes), abiotic stresses (22 genes), more specifically heat stress including 
heat-shock transcription factors, protein degradation (43 genes) and a number of unknown 
genes (107genes). Concerning group 3, DEGs with type-a DMRs correspond to cell wall 
degradation (11 genes), lipid metabolism (22 genes), ethylene (14 genes) and UDP glucosyl 
and glucuronyl transferases (17 genes in misc group) and 112 genes correspond to 
unknown proteins.  

To visualize the distribution of DEGs with DMR among the different DEGs, similar 
PCA were performed on all DEGs as fig 11A, but this time all DEGs with DMR were 
labeled with red color (Fig3.12B, p102). Six genes with DMR that were selected (these six 
genes were far from other genes with DMR, indicating specific difference compare with 
other DEGs as we can see from table 3 (Fig3.12B, p102; table3, p102). All these six genes 
contain type-a DMR, except loxC with type-c DMR. Three of these six genes are already 
known: LOXC, encodes a chloroplast-targeted lipoxygenase isoform responsible for the 
generation of volatile C6 flavor compounds (Chen et al., 2004). LOXC mRNA amount 
increases sharply at Br stage in WT. However, this increase is delayed in transgenic fruits. 
The second gene is LTGP1 encoding a nonspecific lipid transfer protein, a tomato allergen 
(Le et al., 2006). This gene is highly expressed in WT fruits at early stages until the Br 
stage, and extremely repressed during fruit ripening. In transgenic fruits, the expression of 
this gene was extremely repressed at all stages, suggesting that DNA demethylation is 
necessary for the early expression of LTGP1. AL encodes an acid beta-fructofuranosidase, 
which is involved in carbohydrate metabolism. AL is highly expressed in style but weakly 
at stem end of tomato fruit (fruit close the sepal part) during ripening (Nguyen et al., 
2014;Zouari et al., 2014).  

    In this study, this gene is repressed all through the development and ripening process of 
DML RNAi fruits, while it is strongly induced in WT fruits at the Br stages and further 
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increases at Br+7. This indicates that AL may need DNA demethylation for its expression 
during fruit ripening, as already demonstrated for the NOR or the PSY1 gene (Liu et al., 
2015b).  

The three other outliners correspond to the uncharacterized genes Solyc01g081250, 
Solyc06g060410, Solyc09g066150, encoding Glutathione-S-transferase, MORN 
(Membrane Occupation and Recognition Nexus Domain) repeat protein, Cytochrome P450, 
respectively. The expression of these three genes peaked at Br+7 or 55dpa in WT, but they 
are almost totally not expressed at all fruit development and ripening stages in transgenic 
fruits. This suggests that the expression of these three genes also requires active DNA 
demethylation during fruit development and ripening.  

        As a conclusion, all of these six analyzed genes, except loxC containing  type-c DMRs, 
and belong to group 3 or 2, indicating they are potential primarily target of SlDML2. 

         In the following parts I will detail different metabolic pathway and physiological 
processes that are critical for fruit ripening and analyze what DEGs between WT and 
transgenic present potential DMRs. 
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Groups Bin BinName Contingency 
Adj.Pvalue 
(Bonf.) 

Group 1 
type-a 
DMR 

1 PS 34-393-1281-33470 2.1279E-02 
10 cell wall 52-524-1263-33339 2.7449E-06 
11 lipid metabolism 44-539-1271-33324 5.7757E-03 
13.1.6 amino acid metabolism.synthesis.aromatic aa 11- 63- 1304- 33800 4.2247E-02 

17.3.1 
hormone metabolism.brassinosteroid.synthesis-
degradation 7- 22- 1308- 33841 3.4894E-02 

17.3.1.2 
hormone metabolism.brassinosteroid.synthesis-
degradation.sterols 6- 11- 1309- 33852 1.0745E-02 

25 C1-metabolism 7- 18- 1308- 33845 1.2250E-02 
26 Misc 140-1679-1175-32184 2.8508E-13 
27 RNA 100-3857-1215-30006 4.6237E-03 
29.4.1 protein.postranslational modification.kinase 32-299-1283-33564 5.0178E-04 

29.4.1.57 
protein.postranslational modification.kinase. 
receptor like cytoplasmatic kinase VII 31-288-1284-33575 6.5818E-04 

30 signalling 119-1473-1196-32390 3.9406E-10 
30.2 signalling.receptor kinases 54-641-1261-33222 2.2302E-04 
34 transport 97-1320-1218-32543 5.1262E-06 

34.13 transport.peptides and oligopeptides 15-103-1300-33760 1.6205E-02 
35 not assigned 266-14000-1049-19863 1.0432E-54 

35.2 not assigned.unknown 266-13974-1049-19889 2.5097E-54 
Group 2 
type-a 
DMR 

4.2.4 
glycolysis.plastid branch.phosphofructokinase 
(PFK) 3- 5- 401- 34769 1.7828E-02 

20.2 stress.abiotic 22-486-382-34288 3.0717E-05 

20.2.1 stress.abiotic.heat 20-213-384-34561 9.3418E-10 

27.3.23 
RNA.regulation of transcription.HSF,Heat-
shock transcription factor family 5- 26- 399- 34748 5.7225E-03 

29.5 protein.degradation 43-1670-361-33104 4.1704E-04 
29.5.11 protein.degradation.ubiquitin 36-1053-368-33721 3.9588E-06 
29.5.11.20 protein.degradation.ubiquitin.proteasom 9 -62- 395 -34712 2.7924E-05 
29.5.11.4 protein.degradation.ubiquitin.E3 25-794-379-33980 2.5000E-03 

29.5.11.4.2 protein.degradation.ubiquitin.E3.RING 17-440-387-34334 5.8184E-03 
35 not assigned 107-14159-297-20615 7.9778E-07 

35.2 not assigned.unknown 107-14133-297-20641 8.1797E-07 
Group 3 
type-a 
DMR 

10.6 cell wall.degradation 11-171-529-34467 3.7484E-02 
11 lipid metabolism 22-561-518-34077 3.5199E-02 
17.5 hormone metabolism.ethylene 14-263-526-34375 3.2716E-02 

17.5.1 
hormone metabolism.ethylene.synthesis-
degradation 13-157-527-34481 7.4364E-04 

26 Misc 62-1757-478-32881 1.6543E-06 

26.2 misc.UDP glucosyl and glucoronyl transferases 17-321-523-34317 6.6401E-03 
35 not assigned 112-14154-428-20484 2.7481E-20 

35.2 not assigned.unknown 112-14128-428-20510 2.9124E-20 

�7�D�E�O�H�������� �� �(�Q�U�L�F�K�P�H�Q�W���R�I�� �0�D�S�0�D�Q���I�X�Q�F�W�L�R�Q�D�O���F�D�W�H�J�R�U�L�H�V�� ���%�,�1�V���� �L�Q���W�K�H�� �'�(�*�V���D�V�V�R�F�L�D�W�H�G���Z�L�W�K��
�W�\�S�H-�D���'�0�5���L�Q���J�U�R�X�S�������������D�Q�G���������&�R�Q�W�L�Q�J�H�Q�F�\���J�L�Y�H�V���W�K�H���Q�X�P�E�H�U�V���R�I���J�H�Q�H�V�����L�����I�U�R�P���W�K�H���%�,�1���L�Q���W�K�H��
�L�Q�S�X�W���O�L�V�W�� ���L�L���� �W�K�H�� �E�D�F�N�J�U�R�X�Q�G�� ���L�L�L���� �Q�R�W�� �L�Q�� �W�K�H�� �%�,�1�� �L�Q�� �L�Q�S�X�W���O�L�V�W���� �D�Q�G�� ���L�Y���� �Q�R�W�� �L�Q�� �W�K�H�� �E�D�F�N�J�U�R�X�Q�G���� �3-
�9�D�O�X�H�V���D�G�M�X�V�W�H�G���Z�L�W�K���%�R�Q�I�H�U�U�R�Q�L���� 
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Groups Clusters 
DMR 
type Solyc Name 

39_Log2
FC 

46_Log2F
C Pathway Reference 

3 7 

c 

Solyc01g006540 loxC -6,12 1,69 

jasmonate.synthesis-
degradation 
lipoxygenase Chen et al., 2004 

3 6 
a 

Solyc10g075100 Itpg1 -7,56 -2,29 lipid transfer proteins Le et al., 2006 

2 5 

a 

Solyc03g083910 AI -6,47 -8,23 
major CHO 

metabolism.vacuolar 
Nguyen et al., 2014; 
Zouari et al., 2014 

2 5 
a 

Solyc01g081250 Unknown1 -3,95 -8,92 
misc.glutathione 

transferases   

2 5 
a 

Solyc06g060410 Unknown2 -4,23 -6,06 
signalling. 

phosphinositides   

2 4 
a 

Solyc09g066150 P450 -4,98 -7,9 misc.P450   

�)�L�J���������������3�&�$���R�I�� �D�O�O���'�(�� �J�H�Q�H�V���L�Q���W�K�U�H�H���J�U�R�X�S�V���R�Q�W�R���W�K�H���������� �V�X�E�V�S�D�F�H���Z�L�W�K���/�R�J���)�&���R�I�� �/�L�Q�H���<���:�7�����$����
�'�L�V�W�U�L�E�X�W�L�R�Q�� �R�I�� �D�O�O�� �F�R�P�P�R�Q�� �'�(�*�V���L�Q�� �W�K�U�H�H�� �J�U�R�X�S�V�����J�U�R�X�S�V�� �Z�H�U�H�� �F�O�D�V�V�L�I�L�H�G�� �L�Q�� �)�L�J���������������%���� �3�&�$�� �R�I���'�(�*�V��
�D�V�V�R�F�L�D�W�H�G�� �Z�L�W�K�� �'�0�5�V�� �L�Q�� �W�K�U�H�H�� �J�U�R�X�S�V���� �3�L�Q�N���� �J�H�Q�H�V�� �L�Q���J�U�R�X�S������ �%�O�X�H���� �J�H�Q�H�V�� �L�Q�� �J�U�R�X�S������ �*�U�H�H�Q���� �J�H�Q�H�V�� �L�Q��
�J�U�R�X�S�������*�U�H�\�����D�O�O���'�(���J�H�Q�H�V�����5�H�G�������J�H�Q�H�V���Z�L�W�K���'�0�5�����&�����6�X�P�P�D�U�\���R�I���D�O�O���'�(�*�V���Z�L�W�K���'�0�5�V���L�Q���H�D�F�K���J�U�R�X�S�� 

 

�7�D�E�O�H���������&�K�D�U�D�F�W�H�U�L�]�D�W�L�R�Q���R�I���V�L�[���'�(�*�V���Z�L�W�K���'�0�5���Z�K�L�F�K���Z�H�U�H���V�H�O�H�F�W�H�G���L�Q���)�L�J�������%�� 
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4.2 Expression pattern of genes of the carotenoid biosynthesis pathway and 
association with differentially methylated regions. 

The biosynthesis of the linear C40 lycopene from Geranyl Geranyl Pyrophosphate (GGPP) 
is one of the most extensively studied metabolic pathways in tomato (Lois et al., 2000;Liu et al., 
2015a). Accumulation of lycopene typically occurs during fruit ripening concomitantly to 
chlorophyll breakdown which result in the typical green to red color change of tomato fruits. All 
the carotenoid biosynthetic enzymes are located in the plastid, even though the genes are encoded 
by the nuclear genome. The bottlenecks in carotenoid biosynthesis have been explored by 
analyzing the transcript level in carotenoid biosynthetic genes and their potential correlation with 
changes in carotenoid content (for a review see reference (Liu et al., 2015a)). It is well known 
that a subset of these genes are induced or upregulated at the onset of fruit ripening in WT fruits. 
They include the genes encoding the 1-deoxy-D-xylulose 5-phosphate synthase (DXS), 
geranylgeranyl pyrophosphate synthase (GGPPS), phytoene synthase (PSY1), phytoene 
desaturase (PDS), 15-cis-zeta-carotene isomerase (ZISO), £-carotene desaturase (ZDS), carotene 
isomerase (CrtlSO). On the contrary, the expression of genes encoding the lycopene �0-cyclase 
(LCY-E) gene and lycopene �0-cyclase is dramatically repressed at the Br stage of fruit ripening 
(Lois et al., 2000;Liu et al., 2015a). All these genes (Fig 3.13, FigS3.8, p105, p138) behaved in 
WVA106 WT1 and WT2 fruits as described in these studies and similarly to previous results 
obtained on the same variety (Télef et al., 2006).  

An important aspect of the transgenic fruit phenotype is either the absence or the reduced 
and delayed accumulation of carotenoid during fruit ripening in RNAi DML transgenic fruits 
(Fig3.2, p75; Fig2.4A in chapter2 p37); (Liu et al., 2015b). We therefore examined the 
expression profiles of all known genes of the carotenoid pathway as well as those of the genes 
involved in the 2-C-methyl-erythritol-4-phosphate/1-deoxy-D-xylulose 5-phosphate 
(MEP/DOXP pathway) that leads to the synthesis of Isopentenyl pyrophosphate, the precursor of 
all isoprenoids. Plastidic carotenoid synthesis during fruit ripening was shown to initiate from 
this pathway (�5�R�G�U�Õ�“�J�X�H�]-Concepción and Gruissem 1999).  

Eight genes of the MEP/DOXP pathways are differentially regulated between WT and 
transgenic RNAi DML lines, and one of them, GGPS3 contain putative type-c DMRs in its 
promoter region (Fig3.13A, 3.13C, FigS3.8, p105, p138). Indeed GGPS3 (cluster 7) is not 
induced in transgenic fruits (log2FC (Line2Y/WT 1) = -1.06; log2FC (Line 8 / WT 2) = -1.60 at 
39 dpa) consistent with the idea that demethylation is necessary for the induction of this gene. 
However, as it promoter region contains two DMRs with opposite behaviors their potential role 
in the regulation of this genes is unclear. IPI2 is clustered in cluster 2, indicating that this gene is 
more expressed in transgenic fruits as compared to WT fruits during ripening. However IPI2 
contains a type-a DMR in its promoter, also questioning the function of DNA demethylation in 
this case. 

The expression of DXS1 and GGPS2 also increases during WT fruit ripening, but not in 
DML RNAi  transgenic fruits of the same age. As the promoter region of these genes do not 
contain any DMRs it seems unlikely that they depend on the activity of the DML2 protein for 
their expression. Thus there is no evidence that genes of the MEP/DOX pathway are directly 
regulated by methylation. 
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Thirteen of the 29 known genes of the carotenoid biosynthesis pathway are differentially 
expressed in DML RNAi fruits compared to WT fruits of the same age. Among these genes PSY1, 
CrtlSO, ZISO and ZDS are clustered in group2. They are induced at the Br (39dpa) and remain 
expressed at the Br+7 (46dpa) stages in WT, but are not expressed or lately and weakly in all 
transgenic lines (Fig3.13B, 3.13C, FigS3.8A, 3.8C, p105, p138). We have already shown that the 
PSY1 promoter region contain a Type-a DMR and undergo DNA demethylation during WT fruit 
ripening but not in transgenic fruits, which correlates with the absence of gene induction (Liu et 
al., 2015b). Three additional genes, namely, CrtlSO, ZISO, and ZDS also contain a type-a DMR 
in their promoter, indicating that their expression correlates with demethylation in WT fruits. 
Thus it is very likely that the DMRs present in the CrtlSO, ZISO, and ZDS promoter region will 
not be demethylated in the DML RNAi lines thereby impairing their expression. 

As previously observed for IPI2, CCD4B and NCED although clustered in group 1 (delayed 
degradation in transgenic lines) contain a type-a DMR. Two other genes of this pathway do not 
contain any DMR in their promoter although their regulation is affected in transgenic lines, yet 
not in a consistent way. CHY1 is repressed at 46dpa in line 2 (log2FC=-2.07), but not in line 8, 
whereas CHY2 is repressed at 39dpa in line 8 (log2FC=-1.49) but not in line 2.  
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