I. Ahmed, Détection automatique de signaux en pharmacovigilance: Approche statistique fondée sur les comparaisons multiples, Thèse, 2009.

I. Ahmed, F. Thiessard, G. Miremont-salame, B. Begaud, and P. Tubert-bitter, Pharmacovigilance Data Mining With Methods Based on False Discovery Rates: A Comparative Simulation Study, Clinical Pharmacology & Therapeutics, vol.57, issue.4, 2010.
DOI : 10.1016/0895-4356(92)90088-5

I. Ahmed, A. Pariente, and P. Tubert-bitter, Class-imbalanced subsampling lasso algorithm for discovering adverse drug reactions. Statistical Methods in Medical Research, p.0962280216643116, 2016.
DOI : 10.1177/0962280216643116

J. Almenoff, E. Pattishall, T. Gibbs, W. Dumouchel, S. Evans et al., Novel Statistical Tools for Monitoring the Safety of Marketed Drugs, Clinical Pharmacology & Therapeutics, vol.15, issue.2, pp.157-166, 2007.
DOI : 10.1038/sj.clpt.6100258

J. Aubert, T. Ha, and T. Maryhuard, Modele à blocs latents pour l'analyse de données métagénomiques, 46 ème journées de Statistiques de la SFdS, 2014.

A. Bate, M. Lindquist, I. Edwards, S. Olsson, R. Orre et al., A Bayesian neural network method for adverse drug reaction signal generation, European Journal of Clinical Pharmacology, vol.54, issue.4, pp.315-321, 1998.
DOI : 10.1007/s002280050466

J. Baudry and G. Celeux, EM for mixtures, Statistics and Computing, vol.6, issue.1, pp.713-726, 2015.
DOI : 10.1214/aos/1176344136

URL : https://hal.archives-ouvertes.fr/hal-01256833

Y. B. Slimen, S. Allio, and J. Jacques, Model-based co-clustering for functional data, 48e Journées de Statistique, 2016.
DOI : 10.1016/j.neucom.2018.02.055

URL : https://hal.archives-ouvertes.fr/hal-01383920

C. Biernacki and J. Jacques, Model-based clustering of multivariate ordinal data relying on a stochastic binary search algorithm, Statistics and Computing, vol.5, issue.2684, pp.1-15, 2015.
DOI : 10.1207/s15327906mbr0503_6

URL : https://hal.archives-ouvertes.fr/hal-01052447

C. Biernacki, G. Celeux, and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, issue.7, pp.719-725, 2000.
DOI : 10.1109/34.865189

V. Brault, Éstimation et sélection de modèle pour le modèle des blocs latents, 2014.

V. Brault, C. Keribin, and M. Mariadassou, Consistency and asymptotic normality for the maximum likelihood estimator in the latent block model, 48e Journées de Statistique, SFdS, 2016.

E. G. Brown, L. Wood, and S. Wood, The Medical Dictionary for Regulatory Activities (MedDRA), Drug Safety, vol.20, issue.2, pp.109-117, 1999.
DOI : 10.2165/00002018-199920020-00002

O. Caster, G. N. Norén, D. Madigan, and A. Bate, Large-scale regression-based pattern discovery: The example of screening the who global drug safety database. Statistical Analysis and Data Mining, The ASA Data Science Journal, vol.3, issue.4, pp.197-208, 2010.

A. Channarond, J. Daudin, and S. Robin, Classification and estimation in the Stochastic Blockmodel based on the empirical degrees, Electronic Journal of Statistics, vol.6, issue.0, pp.2574-2601, 2012.
DOI : 10.1214/12-EJS753

URL : https://hal.archives-ouvertes.fr/hal-01190224

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal statistical Society, vol.39, issue.1, pp.1-38, 1977.

W. Dumouchel, Bayesian data mining in large frequency tables, with an application to the fda spontaneous reporting system. The American Statistician, pp.177-190, 1999.
DOI : 10.1080/00031305.1999.10474456

W. Dumouchel and D. Pregibon, Empirical bayes screening for multi-item associations, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '01, pp.67-76, 2001.
DOI : 10.1145/502512.502526

S. Evans, P. C. Waller, and S. Davis, Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports, Pharmacoepidemiology and Drug Safety, vol.8, issue.6, pp.483-486, 2001.
DOI : 10.1002/(SICI)1099-1557(199912)8:7<535::AID-PDS456>3.0.CO;2-D

S. Frühwirth-schnatter, Mixtures : estimation and applications, 2011.

S. Geman and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, issue.6, pp.721-741, 1984.

G. Govaert and M. Nadif, Clustering of contingency table and mixture model, European Journal of Operational Research, vol.183, issue.3, pp.1055-1066, 2007.
DOI : 10.1016/j.ejor.2005.10.074

G. Govaert and M. Nadif, Block clustering with Bernoulli mixture models: Comparison of different approaches, Computational Statistics & Data Analysis, vol.52, issue.6, pp.3233-3245, 2008.
DOI : 10.1016/j.csda.2007.09.007

G. Govaert and M. Nadif, Co-Clustering, 2013.
DOI : 10.1002/9781118649480

URL : https://hal.archives-ouvertes.fr/hal-00933301

R. Harpaz, W. Dumouchel, P. Lependu, A. Bauer-mehren, P. Ryan et al., Performance of Pharmacovigilance Signal-Detection Algorithms for the FDA Adverse Event Reporting System, Clinical Pharmacology & Therapeutics, vol.44, issue.6, pp.93539-546, 2013.
DOI : 10.2307/2531595

URL : http://europepmc.org/articles/pmc3857139?pdf=render

L. Hubert and P. Arabie, Comparing partitions, Journal of Classification, vol.78, issue.1, pp.193-218, 1985.
DOI : 10.1007/978-3-642-69024-2_27

C. Keribin, Consistent estimation of the order of mixture models, Sankhya Series A, vol.62, pp.49-66, 2000.

C. Keribin, G. Govaert, and G. Celeux, Estimation d'un modèle à blocs latent par l'algorithme SEM, 42e Journées de Statistique, 2010.

C. Keribin, V. Brault, G. Celeux, and G. Govaert, Estimation and selection for the latent block model on categorical data, Statistics and Computing, vol.22, issue.2, pp.1201-1216, 2015.
DOI : 10.1007/s11222-011-9233-4

URL : https://hal.archives-ouvertes.fr/hal-00802764

E. Lebarbier and T. Mary-huard, Le critère BIC : fondements théoriques et interprétation, 2004.

A. Lomet, Sélection de modèle pour la classification croisée de données continues, Thèse, 2012.

A. Lomet, G. Govaert, and Y. Grandvalet, Un protocole de simulation de données pour la classification croisée, 44 e Journées de Statistique de la SFdS, 2012.

G. Malsiner-walli, S. Frühwirth-schnatter, and B. Grün, Model-based clustering based on sparse finite Gaussian mixtures, Statistics and Computing, vol.17, issue.2, pp.303-324, 2016.
DOI : 10.1093/bioinformatics/17.10.977

URL : https://link.springer.com/content/pdf/10.1007%2Fs11222-014-9500-2.pdf

M. Marbac, P. Tubert-bitter, and M. Sedki, Bayesian model selection in logistic regression for the detection of adverse drug reactions, Biometrical Journal, vol.11, issue.6, pp.1376-1389, 2016.
DOI : 10.1002/pds.668

URL : https://hal.archives-ouvertes.fr/hal-01140340

G. Mclachlan and T. Krishnan, The EM algorithm and extensions, 2008.

G. Miller and H. Britt, A new drug classification for computer systems: the ATC extension code, International Journal of Bio-Medical Computing, vol.40, issue.2, pp.121-124, 1995.
DOI : 10.1016/0020-7101(95)01135-2

G. N. Norén, A. Bate, R. Orre, and I. R. Edwards, Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events, Statistics in Medicine, vol.13, issue.21, p.253740, 2006.
DOI : 10.1016/S0140-6736(05)17865-9

W. M. Rand, Objective Criteria for the Evaluation of Clustering Methods, Journal of the American Statistical Association, vol.15, issue.336, pp.846-850, 1971.
DOI : 10.1080/01621459.1963.10500845

V. Robert, G. Celeux, and C. Keribin, Un modèle statistique pour la pharmacovigilance, 47èmes Journées de Statistique de la SFdS, 2015.

V. Robert, G. Celeux, C. Keribin, and P. Tubert-bitter, Modele des blocs latents et sélection de modeles en pharmacovigilance, 48èmes Journées de Statistique de la SFdS, 2016.

E. Roux, F. Thiessard, A. Fourrier, B. Begaud, and P. Tubert-bitter, Evaluation of statistical association measures for the automatic signal generation in pharmacovigilance, IEEE Transactions on Information Technology in Biomedicine, vol.9, issue.4, pp.518-527, 2005.
DOI : 10.1109/TITB.2005.855566A

URL : https://hal.archives-ouvertes.fr/hal-00396036

P. B. Ryan, M. J. Schuemie, E. Welebob, J. Duke, S. Valentine et al., Defining a Reference Set to Support Methodological Research in Drug Safety, Drug Safety, vol.142, issue.7, pp.33-47, 2013.
DOI : 10.7326/0003-4819-142-7-200504050-00113

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

URL : http://doi.org/10.1214/aos/1176344136

A. Szarfman, S. G. Machado, and R. T. , Use of Screening Algorithms and Computer Systems to Efficiently Signal Higher-Than-Expected Combinations of Drugs and Events in the US FDA??s Spontaneous Reports Database, Drug Safety, vol.19, issue.3, pp.381-392, 2002.
DOI : 10.2165/00002018-200225060-00001

P. G. Van-der-heijden, E. P. Van-puijenbroek, S. Van-buuren, and J. W. Van-der-hofstede, On the assessment of adverse drug reactions from spontaneous reporting systems: the influence of under-reporting on odds ratios, Statistics in Medicine, vol.126, issue.14, pp.2027-2044, 2002.
DOI : 10.1111/j.1365-2133.1992.tb00009.x

E. P. Van-puijenbroek, A. Bate, H. G. Leufkens, M. Lindquist, R. Orre et al., A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions, Pharmacoepidemiology and Drug Safety, vol.8, issue.1, pp.3-10, 2002.
DOI : 10.1002/(SICI)1099-1557(199903/04)8:2<147::AID-PDS413>3.0.CO;2-6

N. X. Vinh, J. Epps, and J. Bailey, Information theoretic measures for clusterings comparison, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.2837-2854, 2010.
DOI : 10.1145/1553374.1553511

J. Wyse, P. Latouche, and N. Friel, Inferring structure in bipartite networks using the latent block model and exact ICL, Network Science, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00984397