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Abstract

The attempt to massively integrate renewable energy sources in the electric power system
has encouraged major interest in High Voltage DC systems (HVDC). Furthermore, Multi-
Terminal DC grids (MTDC) appear as an attractive solution for the connection of offshore
energy sources. Among different types of Voltage Source Converter (VSC), one of the most
promising topologies for future MTDC grids is the Modular Multilevel Converter (MMC),
which are proposed by the main European vendors. Up to now in Europe, a single vendor is
in charge of the converter stations for each HVDC project, but future DC grids are likely to
be multivendor schemes, where different control strategies may be applied to each converter
station depending on its provider. However, due to intellectual property, manufacturers do
not provide the complete control structure in open source but rather as a black-box models
or control cubicles replicas. For this reason, it is impossible to use a formal mathematical
approach to perform interoperability analysis. Hence, a more formal approach is needed to
cope with the different issues that may arise due to the impact of the MMC controllers on the
MTDC grids.

This thesis deals with the modeling and control of MMCs in the context of MTDC. The first
objective is to obtain an MMC model in dq frame which can reproduce accurately the AC- and
DC- interactions, while representing at the same time the internal dynamics which may interact
with the rest of the system. This model is suitable for linearization and stability studies, among
other linear techniques. Then, based on the developed dq model, different control strategies are
developed based on state-of-the-art MMC controllers. Since the dimension of the system is a
limiting factor for studying MTDC grids with many MMCs, different reduced-order models are
presented and compared with the detailed dq model. Finally, the developed MMC models with
different controllers are used for the MTDC studies. The impact of the selected controllers
for each MMC is evaluated to highlight the potential issues that may occur in multivendor
schemes.

Keywords

«HVDC transmission», «Modular multilevel converter», «State-Space modeling», «Small-
Signal stability analysis», «Interoperability in MTDC grids».
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Résumé étendu en français

Contexte de l’étude

Les développements technologiques, économiques et industriels ont conduits à l’utilisation
massive de l’énergie électrique, où les combustibles fossiles, le charbon, le gaz naturel et le
pétrole étaient toujours les sources d’énergies dominantes. L’exploitation des énergies fossiles
provoque l’émission de gaz à effet de serre, et plus particulièrement de dioxyde de carbone CO2.
Par conséquent, l’écran qui retient la chaleur se densifie, ce qui conduit à l’augmentation de
la température de la planète et le réchauffement climatique. Comme réaction face à ce danger
environnemental qui découle d’une prise de conscience mondiale, des consensus et protocoles
ont été signés et des démarches ont été mises en œuvre pour limiter les dégâts. L’une des
principales actions consiste à transformer progressivement les sources d’énergies fossiles vers
des sources d’énergies naturelles ou vertes, telles que l’énergie solaire et/ou éolienne.

En Europe, les sources d’énergies renouvelables sont disponibles sur des sites éloignés, en
général au large ou à proximité de la mer. Cependant, les investissements dans les systèmes
de transport de l’énergie électrique, en particulier sur de nouvelles lignes, ont été limités en
Europe, à cause de l’opposition de la société civile contre les lignes aériennes pour des raisons
environnementales ou décisions politiques. En outre, la transmission en masse de l’énergie
électrique moyennant des câbles enterrés sous terre (ou sous-marins) en utilisant le courant
alternatif (AC) est non faisable au point de vue technique. De ce fait, l’immigration vers
le transport en courant continu (DC) pour les réseaux électriques en haute tension, été une
nécessité face aux défis actuels où certaines limites des réseaux alternatifs apparaissent. Les
réseaux à courant continu haute tension (HVDC) multi-terminaux peuvent être une alternative
sous réserve de trouver des solutions aux barrières scientifiques et technologiques existantes.

Le débat entre les systèmes électriques à courant continu et à courant alternatif date de
plusieurs décennies, depuis la première ère de l’électrification. Dans les premiers temps, les
systèmes AC ont pris de l’avance, précisément dans les années 1880, à cause de la facilité de
la transformation de la tension qui peut atteindre des niveaux relativement élevés, du champ
tournant (pour les machines électriques) et de la difficulté pour interrompre les courants DC.
Néanmoins, dans les années 1950, la première reprise des systèmes HVDC s’est produite avec le
développement de la technologie à thyristors pour des niveaux d’intensité assez élevés. Cette
technologie de l’électronique de puissance a été principalement utilisé pour la transmission
de puissance sur de longues distances, du transport via des câbles sous-marins et également
pour l’interconnexion de réseaux asynchrones. Au début des années 90, un retour en force
aux applications de type HVDC a été identifié avec l’apparition sur le marché, de nouveaux
composants à base de transistor (IGBT). Avec cette nouvelle technologie d’électronique de
puissance, les systèmes HVDC ont commencés à s’imposer en attirant de plus en plus l’attention
de la communauté scientifique ainsi que les décideurs politiques. Ainsi, la multiplication des
projets HVDC de par le monde prouve l’engouement toujours croissant pour cette technologie
de transport de l’électricité.

L’histoire de systèmes de transport à courant continu (HVDC) a été remarquée par les
convertisseurs de puissance de type LCC (convertisseurs commutés par la ligne). En re-
vanche, suite aux développements technologiques et afin de répondre aux exigences du cahier
des charges, l’émergence de convertisseurs source de tension (Voltage Source Converter, VSC)
a changé la donne par rapport aux nouvelles tendances. Le recours à cette technologie se
justifie par le fait que moyennant les stations de conversion VSC, nous pouvons accueillir plus
de sources d’énergies renouvelables et d’équilibrer les puissances sur des grandes étendues. En

II



outre, les flux de puissance peuvent être commandés dans les deux sens sans changer la polarité
de la tension continue.

Dans la littérature, il existe de nombreuses topologies pour les convertisseurs de type VSC.
Néanmoins, trois topologies sont les plus étudiées par les scientifiques et les spécialistes du
domaine, à savoir : 2-level, 3-level (par exemple, Neutral Point Clamped (NPC) ou Flying
Capacitor) et Multi-level VSC. Les VSC 2-level et 3-level fonctionnent avec une fréquence de
commutation élevée (1–2 kHz) afin de minimiser le taux de distorsion harmonique (THD),
ce qui peut engendrer des pertes par commutation plus élevées ainsi que des contraintes de
haute tension. Dans les applications à haute puissance, les pertes de conversion entraînent
un coût élevé pour les opérateurs du réseau. Pour cette raison, une nouvelle technologie de
VSC à plusieurs niveaux a été développée, connue par les intervenants dans le domaine, sous
le nom de Convertisseur Modulaire Multi-niveaux (MMC, Modular Multilevel Converter), qui
a été largement présentée dans la littérature, avec beaucoup de succès, par Dr. Lesnicar et
Prof. Marquardt. L’avantage majeur de cette topologie est la possibilité de travailler avec
des fréquences de commutation plus faibles (un ordre de grandeur inférieur que celui du VSC
classique), tout en garantissant une meilleure performance harmonique par rapport aux VSC
2-level et 3-level.

Développement de l’exploitation de l’énergie offshore

La Figure 1 montre la vision de développement offshore dans le nord de la mer par Wind
Europe (ex. European Wind Energy Association), où l’idée d’acheminer de l’énergie éolienne à
partir des sources offshore est clairement mise en avant. Par conséquent, un plan de développe-
ment ambitieux analogue à celui proposé par Wind Europe pourrait apporter beaucoup d’avan-
tages aux réseaux électriques européens, outre l’exploitation des sources de l’énergie verte. Pour
aboutir à ce niveau d’innovation et de performance pour le réseau électrique européen, des in-
vestissements importants sont nécessaires pour répondre aux objectifs soulignés à travers la
nouvelle politique énergétique européenne. Cette nouvelle vision pour les réseaux électriques de
demain est bien exprimée à travers les démarches adoptées par ENTSO-E (European Network
of Transmission System Operators).

Systèmes HVDC “Multivendor”

Comme il est illustré par la Figure 1, toutes les liaisons HVDC opérationnels actuellement
sont des liaisons point-to-point. Cependant, vu le besoin que les réseaux électriques à haute
tension ont un intérêt à être plus renforcés pour faciliter les échanges, maintenir la sécurité
de fonctionnement, et raccorder des sources offshore, il est important de passer à une config-
uration HVDC multi-terminaux (MTDC). Le VSC est la technologie la plus appropriée pour
les applications MTDC, car elle utilise une tension continue commune, ce qui facilite la con-
struction et la commande des interconnexions. Cependant, avec l’apparition du MMC sur le
marché et sa capacité d’atteindre des niveaux de tensions très élevés sans le recours au filtrage
côté AC, la technologie MMC-VSC est considérée comme la solution la plus adéquate pour les
réseaux du futur à très haute tension, appelés “Supergrids”. Le développement et les avancés
scientifiques qui ont été réalisées sur les réseaux HVDC a permis d’accueillir de l’expérience
dans le domaine, ce qui a été traduit par la création de nombreuses normes. Cependant, ces
normes traitent plus le comportement des convertisseurs côté AC, mais jusqu’à présent, aucune
norme n’a vu le jour pour le comportement côté DC (“DC Grid Code”). Ainsi, de nombreuses
questions techniques sont en attente de réponses. En considérant les liaisons point-to-point,
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Currently operating cable

Under construction or planned

Under study by TSO

Under study by TSO/EWEA recommendation

Proposed by EWEA by 2020

Proposed by EWEA by 2030

Figure 1 – Développement de l’exploitation de l’énergie offshore — Vision par Wind Europe

les convertisseurs sont fournis généralement par le même constructeur. Le comportement dy-
namique côté DC incombe à chaque fabricant car il est responsable du bon fonctionnement du
système complet. En revanche, les réseaux MTDC ont plus tendance à être des systèmes avec
différents constructeurs contribuant ensemble pour la mise en place du réseau maillé. Ainsi,
nous nous retrouvons devant une configuration d’un réseau DC où les convertisseurs fournis
par les différents constructeurs doivent fonctionner ensemble d’une manière fiable tout en as-
surant le cahier des charges imposé par le TSO. À ce stade, l’absence de normes qui unifient le
comportement côté DC, pourra engendrer des problèmes et des nuances qui peuvent impacter
le bon fonctionnement du système global (e.g., les valeurs de tension et de courant continu ne
sont pas normalisées). En outre, le comportement dynamique de ces futurs réseaux DC sera
fortement influencé par les stratégies de commandes associées aux convertisseurs pour chaque
constructeur. Dans ce sens, il est important que le contrôleur mis en œuvre doit amortir le
comportement oscillatoire qui peut impacter les caractéristiques du câble côté DC et éviter les
problèmes d’instabilité qui peuvent surgir suite aux interactions dynamiques avec le reste du
système.

Le projet européen Best Paths a réuni des partenaires experts du milieu académique et
également de l’industrie autour de cinq démonstrations à grande échelle pour valider la fais-
abilité technique, les coûts, les impacts et les avantages des technologies HVDC. L’objectif des
démonstrations est de fournir des solutions permettant de passer des lignes HVDC aux réseaux
MTDC, de mettre à niveau et de réalimenter les lignes AC existants du réseau et d’intégrer des
liaisons supraconductrices à haute puissance dans un réseau maillé AC. Le démonstrateur # 2
of Best Paths traite des problèmes d’interopérabilité possibles qui peuvent apparaître entre les
MMCs connectés au même réseau DC fournis par différents constructeurs. Cette problématique
pourrait être abordée en fonctionnement normal où la stabilité du réseau DC est assurée, mais
également dans des conditions de fonctionnement anormales, telles que le décrochage d’une
station de conversion, la reconfiguration du réseau et les évènements indésirables qui peuvent
survenir. Les résultats de ce démonstrateur comprennent des recommandations pour les spéci-
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fications et la mise en œuvre du contrôle matériel qui assurera une interopérabilité maximale
pour la configuration en multi-constructeurs. Les lignes directrices proposées ainsi que les
principales conclusions seront fournis comme des recommandations aux équipes de développe-
ment du “DC-Grid Code” de l’ENTSO-E et formeront une base solide pour faire des avancées
significatives vers les exigences d’interopérabilité pour les réseaux HVDC multi-constructeurs,
actuellement ciblés par les groupes de normalisation (CENELEC, CEI, . . . ).

Néanmoins, la notion d’interopérabilité peut être assez large pour explorer tous les do-
maines d’application. Ce travail a pour objectif de mettre en place une démarche systématique
et rigoureuse pour l’étude des réseaux MTDC à base de convertisseurs modulaires multiniveaux
tout en identifiant d’une manière formelle les principaux facteurs qui pourraient engendrer les
phénomènes d’interopérabilité. Par conséquent, l’objectif majeur de ce travail résulte dans le
développement de méthodologies appropriées permettant de synthétiser de lois de commandes
locales basées sur les différentes approches de modélisation du convertisseur MMC et qui répon-
dent convenablement aux performances désirées. Outre cela, des études d’analyse de stabilité
en petits signaux et de sensibilité sont établies sur des modèles linéarisés du réseau MTDC per-
mettant d’évaluer l’impact de différentes stratégies de contrôle proposées sur la dynamique du
réseau. Cette étude aidera à formuler une idée sur l’interaction entre les différentes stratégies
de commande des MMCs intégrés dans le réseau DC et élaborer éventuellement un schéma de
recommandations, actuellement inexistant, pour les réseaux MTDC.

Plan de la thèse

Le plan de la thèse s’articule en cinq chapitres, comme il est indiqué par la Figure 2 :

Chapitre 5

Réseau MTDC

Chapitre 1

Méthodologie

Chapitre 2

MMC: Modélisation

Chapitre 3

Contrôle commande

Chapitre 4

Réduction de modèle

Figure 2 – Plan de la thèse

• Le Chapitre 1 introduit la méthodologie appliquée tout au long de cette thèse pour
l’étude des convertisseurs d’électroniques de puissance avec un intérêt particulier pour
l’intégration dans les réseaux DC. Ce chapitre traite principalement de 2-level VSC, où
les principaux niveaux de modélisation sont bien détaillés : du modèle moyen classique
dans le repère abc au modèle dq, jusqu’à son intégration dans une liaison HVDC point
à point ainsi qu’un réseau MTDC. La technique de linéarisation relative à l’étude de
stabilité en petits signaux est présentée pour assurer par la suite une étude fréquentielle
basée sur les valeurs propres du système. Ce premier chapitre expose également les
principaux concepts qui seront appliqués, tout au long de la thèse, au réseau DC à base
de convertisseurs MMCs.

• Le Chapitre 2 présente la démarche de modélisation en dq dans le domaine continu du
convertisseur MMC. Le modèle non linéaire résultant est valable en régime stationnaire
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dont les variables d’état sont constantes en régime permanent. Cette caractéristique
nous offre la possibilité de linéariser le modèle autour d’un point de fonctionnement et
d’étudier par la suite, la stabilité en se basant sur l’approche d’analyse modale. Sachant
que le modèle à temps invariant exprimé dans l’espace d’état est validé par rapport à un
modèle non linéaire de simulation en EMT (un modèle détaillé du MMC à 401 niveaux)
implanté sous EMTP-RV.

• Dans le Chapitre 3, les stratégies de commande classiques basés sur l’inversion de mo-
dèle sont développées pour un MMC en vue de l’intégrer dans un réseau MTDC. Pour
cela, un bus DC équivalent est pris en considération pour la modélisation du convertis-
seur MMC. L’objectif est d’analyser les interactions dynamiques du convertisseur avec
le réseau DC en considérant les différents schémas de contrôle. Pour évaluer l’influ-
ence des stratégies de commande étudiées, nous nous basons sur le modèle MMC du
Chapitre 2. Deux stratégies de commande découlent de ce chapitre, à savoir : le com-
mande pour la suppression du courant circulaire (Classical CCSC ) et la commande en
énergie (Energy-Based). La première stratégie est la plus évoquée dans la littérature en
raison de sa simplicité et sa performance même si nous ne maitrisons pas toutes les vari-
ables du système. Cependant, le principal inconvénient de cette méthode résulte dans
les oscillations qui sont faiblement amorties par la commande dues aux courant DC ainsi
que les variables en énergies qui sont en régime libre. Cependant, en ce qui concerne
la deuxième stratégie de commande en énergie Energy-based, toutes les variables en én-
ergies ainsi que le courant côté DC sont parfaitement contrôlées. Néanmoins, si nous
nous tenons en compte des modèles détaillés des systèmes de commande et de puissance
du MMC, le développement dans l’espace d’état du modèle augmenté nous conduit à un
ordre très élevé du système global. Vu l’ordre du système, l’utilisation de ce modèle pour
l’analyse modale en domaine fréquentiel, demeure difficile, principalement par rapport à
l’interprétation des modes du système dans le plan complexe.

• Dans le Chapitre 4, un modèle d’ordre réduit du MMC est proposé pour faciliter l’étude
de l’interaction AC-DC. Pour évaluer la validité du modèle réduit, un plan de test est
appliqué en domaines temporel et fréquentiel. Les deux stratégies de commande basées
sur le modèle complet, présentées dans le chapitre précédent, sont considérées où une
étude comparative est menée avec le modèle réduit. D’après les résultats obtenus, nous
confirmons l’utilisation du modèle réduit du MMC pour l’étude d’interopérabilité dans
les réseaux MTDC avec MMC.

• Dans le Chapitre 5, l’analyse dynamique des réseaux MTDC à base de convertisseurs
MMC est détaillée pour les études d’interopérabilité. Sur la base d’un réseau MTDC à
quatre stations, plusieurs variantes d’études sont présentées pour évaluer l’influence de
chaque stratégie de commande du MMC sur la dynamique globale du réseau MTDC.
Par ailleurs, nous proposons également le développement de commande haut niveau
permettant la régulation du niveau de l’énergie stockée (l’énergie interne du MMC) et la
mettre, via la commande, à la disposition du bus DC afin d’améliorer le comportement de
la tension continue. Les résultats obtenus illustrent clairement l’intérêt d’un convertisseur
MMC par rapport à un VSC classique en termes de gestion de l’énergie et la possibilité
de supporter le réseau DC en cas de perturbation. La route pour de nouvelles stratégies
de contrôle pour l’amélioration des réseaux MTDC est pavée dans ce chapitre.
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Les conclusions de la thèse

L’intégration des réseaux HVDC Multi-Terminaux dans les réseaux électriques existants a
mis en défi de nombreux aspects et théories associées au domaine de l’électrotechnique et l’élec-
tronique de puissance. Grâce aux avancés technologiques, nous disposons aujourd’hui tous les
moyens pour mettre en place des réseaux de type HVDC qui peuvent atteindre des niveaux
de puissances élevées. Le convertisseur modulaire multi-niveaux est la topologie la plus appro-
priée pour faire face aux objectifs envisagés en misant sur la technologie HVDC. De plus, il est
fort probable que cette topologie de convertisseurs de puissance multiniveaux, sera la topologie
la plus utilisée pour les projets futurs. L’immigration vers les réseaux MTDC est fortement
envisageable pour des configurations basées sur des multi-constructeurs, où le développement
des algorithmes de contrôle et de protection pour chaque station de convertisseur sera géré
d’une manière locale par chaque constructeur impliqué dans le projet. Cependant, ces algo-
rithmes doivent garantir l’interopérabilité pour chaque convertisseur dans les réseaux DC et
AC. Comme il a été démontré à travers les résultats obtenus dans ces travaux de thèse, la
dynamique globale du réseau DC est très sensible au choix de stratégies de commande pour
chaque station de conversion.

Cette thèse vise à évaluer certains des éléments clés de l’analyse dynamique des réseaux
MTDC basés sur MMC afin d’étudier les problèmes d’interopérabilité éventuels qui peuvent
survenir. Dans ce qui suit, les principales conclusions issues de chaque chapitre sont présentées :

1. Une méthodologie pour l’analyse dynamique des systèmes HVDC à base de convertisseurs
de puissance a été détaillée dans le Chapitre 1. Les principaux niveaux de modélisation
des systèmes HVDC à base de VSC deux niveaux ont été détaillés. Nous précisons, que
les modèles de simulation se distinguent des modèles pour l’analyse. Les modèles modèles
de simulation sont des modèles non linéaires détaillés, développés dans un environnement
en EMT (généralement utilisées dans l’industrie). Ces modèles représentent, avec une
grande précision, le comportement réel des convertisseurs, mais dans de nombreux cas,
ils sont fournis sous forme de modèles de boîtes noires (e.g., projet Best Paths DEMO
# 2) qui font l’étude et la catégorisation dès les convertisseurs et les contrôleurs sont
une tâche impossible (sans parler des conséquences juridiques). Par contre, les modèles
modèles pour l’analyse, qui sont généralement des modèles dynamiques exprimés par des
équations différentielles de premier ordre à temps continu, sont fournis pour l’analyse
de stabilité des convertisseurs AC/DC et leur intégration dans les réseaux. Nous distin-
guons, deux familles de modèles mathématiques, à savoir : les modèles périodiques en
régime permanent “Steady-State Time Periodic” (SSTP), où les variables d’état au point
d’équilibre stable admettent un comportement sinusoïdal. Ce modèle n’est pas adapté à
la linéarisation classique pour l’analyse en se basant sur les valeurs propres du système.
Pour la deuxième classe de systèmes dynamiques, appelée “Steady-State Time Invariant”
(SSTI), toutes les variables d’état convergent vers un état constant lorsque le conver-
tisseur atteint un point de fonctionnement donné. Ce modèle mathématique peut être
linéarisé autour d’un point de fonctionnement, de telle sorte que les outils mathématiques
linéaires dont nous y disposons, peuvent être appliqués facilement pour l’étude de stabil-
ité et l’analyse dynamique des systèmes complets. En outre, les principes fondamentaux
respectifs aux réseaux MTDC ainsi que le principe de contrôle coordonné sont largement
discutés.

2. Pour appliquer la méthodologie susmentionnée avec les MMC, un modèle mathéma-
tique continu non linéaire approprié est nécessaire, capable de représenter toutes les
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dynamiques internes avec une grande précision, c’est-à-dire un modèle pour analyse avec
la représentation SSTI. Dans le Chapitre 2, une analyse approfondie des équations math-
ématiques de la MMC dans des repères référence rotatif synchrone est fournie pour dé-
duire le modèle SSTI du MMC de façon complète. Une validation détaillée en domaine
temporel est fournie, ce qui prouve une excellente correspondance avec le modèle de
simulation détaillé du MMC.

3. Une fois que le modèle pour l’analyse du MMC est obtenu (SSTI), les stratégies de
contrôle les plus courantes et disponibles dans la littérature ont été discutées à travers ce
Chapitre 3 en vue de l’intégration des convertisseurs dans les réseaux AC et DC. Dans
ce chapitre, deux stratégies de modulation ont été distinguées : “Un-Compensated” ou
“Compensated” Modulation, UCM ou CM, respectivement. De plus, deux méthodes
principales de contrôle, issues des travaux de cette thèse, se posent: Classical CCSC et
Energy-based. Le premier est un contrôle typique largement discuté dans la littérature,
qui repose sur l’élimination des courants circulaires au sein du convertisseur. Étant donné
que le courant côte DC est non contrôlé, il a été démontré que des interactions dynamiques
de ce courant avec les autres variables du réseau DC peuvent se produire et déstabiliser
l’ensemble du système en tenant en compte de plusieurs paramètres tels que la capacité du
réseau DC, les inductances de bras ou même les réglages des régulateurs. Pour améliorer la
stabilité, les contrôleurs en énergie Energy-based ont été largement présentés et discutés.
Cette stratégie repose sur le contrôle de toutes les variables internes du MMC (courants
AC et DC, et variables en énergies stockées). Cependant, il est nécessaire d’adapter
les contrôleurs pour leur propre interface avec le modèle SSTI précédemment développé.
Certaines des boucles de contrôle sont déjà développées dans le repère dq (par exemple, les
boucles de contrôle du courant alternatif en dq ou le contrôleur de suppression de courant
circulaire classique) tandis que les autres sont exprimés dans le repère fixe en (abc). La
somme et la différence d’énergies par bras sont contrôlés également dans le repère abc.
Toute la démarche mathématique pour aboutir au modèle SSTI a été exposée. Des tests
de validation par simulation en domaine temporel ont été proposés pour confirmer les
approches proposées.

4. Pour étudier les grands systèmes à l’instar des réseaux MTDC, la complexité de chaque
convertisseur et de son système de contrôle rend difficile l’analyse en petits signaux
moyennant les outils linéaires que nous disposons pour les études d’interopérabilité. A
ce titre, dans le Chapitre 4 nous nous sommes intéressé au développement de modèles ré-
duits SSTI-MMC en vue de l’étude de l’interaction des réseaux AC-DC. Dans ce chapitre,
un modèle d’ordre réduit qui peut représenter fidèlement le comportement du MMC a
été développé. Plusieurs études ont été effectuées pour démontrer la validité du modèle
lorsque le MMC modèle de simulation est contrôlé en Classical CCSC d’une part, ou par
les commandes en Energy-based d’autre part . Il est prouvé que le modèle d’ordre réduit
peut traduire avec précision le comportement du MMC en présence d’un contrôleur en
Energy-Based vu que la technique de modulation découple parfaitement la dynamique
interne du convertisseur. De ce fait, il est clair que la dynamique non représentée à
travers le modèle réduit ne participe pas au comportement du terminal des côtés AC
et DC dans les cas étudiés (les MMC sont connectes aux réseaux AC équilibrées et en
mode de fonctionnement normal). En outre, il a été démontré que le modèle à ordre ré-
duit ne représente pas exactement le MMC lorsque la commande en Classical CCSC est
considérée. Cette conclusion est antonyme avec plusieurs études déjà publiées où l’uti-
lisation du modèle de commande réduit a été effectuée sans le recours à une validation
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appropriée du modèle. En conséquence, le modèle SSTI-MMC complet du Chapitre 2
représente la solution adéquate lorsque le système est muni de la stratégie de contrôle
mentionnée ci-dessus. D’autres variantes de commande ont été investiguées, à l’instar
d’une combinaison de contrôleurs en Energy-based et CCSC. Dans ce cas, l’utilisation du
modèle réduit a conduit à une précision limitée, puisque le choix de la modulation peut
provoquer des dynamiques internes qui ne sont pas modélisées via le modèle réduit.

5. Dans le Chapitre 5, l’étude d’un réseau MMC-MTDC en présence d’un parc éolien off-
shore est réalisée afin d’étudier l’interopérabilité entre les différents convertisseurs. Un
accent particulier a été accordé au comportement dynamique de la tension continue asso-
ciée à chaque convertisseur. En se basant sur les résultats des chapitres précédents, il a
été démontré que la principale caractéristique des réseaux MMC-MTDC est la sensibi-
lité de la tension du bus qui pourra provoquer un comportement fortement oscillatoire,
observée sur la tension DC. En conséquence, pour contourner ce problème, il serait in-
téressant d’exploiter l’énergie interne du convertisseur MMC pour supporter la tension
du bus DC. Dans ce sens, des études ont été menées courant ce chapitre pour évaluer
les différentes stratégies de commandes en énergie afin d’offrir au réseau DC, des de-
grés de liberté supplémentaires pour améliorer la dynamique globale du système. Ainsi,
nous avons démontré qu’une gestion optimale de l’énergie interne de chaque convertisseur
MMC à travers les méthodes de commande proposées, permettra d’améliorer le comporte-
ment des variables coté DC. En effet, nous précisons que même la dynamique globale du
réseau DC peut être ajustée correctement à travers les approches de contrôle proposées.
D’ailleurs, en se basant sur ces techniques de commande en énergie, nous avons conclu
que l’amélioration du comportement de la tension continue au point de raccordement DC
de chaque convertisseur, contribue à la minimisation de problèmes d’interopérabilité qui
peuvent apparaître entre les convertisseurs MMC.
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Introduction to HVDC Systems

1 Context and motivations

Since the massive utilization of electrical energy in the world, fossil fuels — coal, natural
gas, and oil — were always the predominant energy sources. This choice had a very important
impact on the world’s climate change due to carbon dioxide (CO2) emissions [1,2]. Fortunately,
most countries in the world have agreed to limit CO2 production to slow down the global
warming [3]. One of the main actions is to transform gradually the energy sources: from fossil
fuels to natural and greener energy sources such as solar and wind power.

In Europe, large amounts of renewable energy are available on remote locations, often
offshore or near the sea [4, 5]. However, transmission system investments, especially on new
lines, have been limited in densely populated Europe, mainly because of opposition against
overhead lines for environmental or political reasons [6]. Furthermore, the transmission of
large quantities of electric power underground (or undersea) is virtually impossible using the
commonly adopted Alternating Current (AC) because of the capacitance of the cable systems
[7]. For these reasons (among others), High Voltage Direct Current transmission schemes
(HVDC) are now becoming more and more relevant [8].

The struggle between DC or AC electrical systems is not a modern concern; in fact, it
occurred in the beginnings of the electrification era [9]. In those early ages, the AC systems
won the war of currents in the 1880s, mainly because of the ease of voltage transformation up
to higher voltages, the rotating field (for electrical machines) and the difficulty for breaking DC
currents in HVDC systems [10]. Nevertheless in the 1950s the first revival of HVDC systems
occurred with the development of the thyristors with high rating capabilities. It was mainly
used for bulk power transmission over long distances, undersea (cable) connections and also for
the interconnection of non-synchronous networks (e.g. asynchronous AC networks as France -
UK; or 50 to 60 Hz back-to-back as Japan; or Argentina - Brazil). The second revival was due
to the development of transistor based components (IGBT) for HVDC, which started in the
90s [11]. From that moment, the HVDC technology continued to grow with a great success.

The most common and oldest technology in HVDC is the Line Commutated Converter
(LCC) technology, but the Voltage Source Converter (VSC) technology is now well established
in HVDC and is, in many respects, complementary to the older structures. There are many
topologies for the VSC, but three of them are the most widely studied: 2-level, 3-level (e.g.
Neutral Point Clamped (NPC) or Flying Capacitor) and Multi-level VSC [12–14]. The 2-level
and 3-level VSC have a high switching frequency (1–2 kHz) for obtaining a low harmonic
distortion, leading to higher switching losses as well as high voltage stresses. In high power
applications, the conversion losses result in high cost for the grid operators [15]. For this reason,
a new Multi-level VSC technology has been developed called Modular Multilevel Converters
(MMC), which was introduced with great success by Dr. Lesnicar and Prof. Marquardt
in [16]. The main advantage for these converters is the possibility of working with lower
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switching frequencies (one order of magnitude less), while simultaneously achieving better
harmonic performance compared to 2-level and 3-level VSCs [17–19].

Development of offshore energy harvesting

Figure 3 shows the offshore development vision in the North-Sea by Wind Europe (ex
European Wind Energy Association), where the tendency of harvesting the wind energy from
the sea is clearly highlighted. Consequently, an ambitious development plan as imagined by
Wind Europe could bring many other benefits to the European electrical grids, in addition to
the improvement of the green energy portfolio. For the achievement of this modernization of
European power grid, significant investments are needed in order to reach European energy
policy goals as pointed out by the European Network of Transmission System Operators for
Electricity (ENTSO-E) [20].

Currently operating cable

Under construction or planned

Under study by TSO

Under study by TSO/EWEA recommendation

Proposed by EWEA by 2020

Proposed by EWEA by 2030

Figure 3 – Offshore development vision in the North-Sea by Wind Europe [21]

Multivendor HVDC systems

As seen in Fig. 3, all the current operating cables with HVDC technology are point-to-point
schemes. However, these schemes may develop into Multi-Terminal DC systems (MTDC). The
VSC HVDC is the most appropriate technology for MTDC applications as it uses a common DC
voltage, making parallel connections easy to build and control [22]. Moreover, the MMC-VSC
technology is aimed to be the preferred option for these future supergrids [23]. The development
of HVDC systems brought a lot of experience in the field, bringing to light numerous standards.
However, these standards address the converters behavior on the AC side, but none exist for the
DC side connections and many technical issues remain unsolved [24]. On the one hand, when
dealing with point-to-point connections, the converters are always provided by a single vendor.
The dynamic behavior on the DC side is responsibility of each manufacturer since they are in
charge of the proper functioning of the complete system. On the other hand, MTDC systems
are likely to be multivendor systems, where converters provided from different manufacturers
coexist in the same DC grid [25]. At this point, the lack of requirements with respect to the
DC side connections will become an issue to be solved since, for instance, even the DC voltage
and current ratings are not normalized [26]. Furthermore, since the dynamic behavior of these
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future DC grids will be greatly influenced by the control strategies adopted for each vendors,
the converter controller should have the ability to damp potentially hazardous oscillations and
avoid undesired interactions with the rest of the DC grid component [27].

The European project Best Paths1 gathers expert partners from academia and the industry
around five large-scale demonstrations to validate the technical feasibility, costs, impacts and
benefits of the tested HVDC technologies [28]. The focus of the demonstrations is to deliver
solutions to allow for transition from HVDC lines to MTDC grids, to upgrade and re-power
existing AC parts of the network, and to integrate superconducting high power DC links within
AC meshed network. Demonstrator # 2 of Best Paths deals with the possible interoperability
issues that may appear between MMCs connected to the same DC grid from different manufac-
turers [29]. This problematic could be addressed in normal operation where the stability of the
DC grid must be assured, but also in different operations such as the abrupt disconnection of a
converter station, grid reconfiguration, or as many possible cases that may occur. Results from
this Demonstrator will include recommendations for both specifications and hardware control
implementation which would ensure maximum interoperability for multivendor solutions [30].
The proposed guidelines will provide feedback to the Network Code drafting teams of ENTSO-
E, and form a solid basis to make significant advances towards interoperability requirements
for multi-vendor HVDC grids as currently targeted by standardization groups (CENELEC,
IEC, etc.).

The most appropriate definition of “interoperability” for this context may be [31]:

• Interoperability is a characteristic of a product or system, whose interfaces are com-
pletely understood, to work with other products or systems, present or future, in either
implementation or access, without any restrictions.

Nevertheless, the concept of “interoperability” may be very broad to explore all the possibilities.
This Thesis intends to provide an elementary block for the understanding of MTDC grids
with Modular Multilevel Converters where the main key factors that could provoke interope-
rability issues are addressed. For this reason, the development of a proper methodology in
conjunction with the converter models and different controls strategies establishes the main
objectives of this work. Studies on generic MTDC grids are carried out to evaluate the impact
of different available control strategies on the grid dynamics. This task helps to evaluate the
interoperability of the resulting converter with different control strategies in DC grids and
eventually help in the development of the nonexistent recommendations for MTDC grids.

2 HVDC Systems — Generalities

Numerous technological advances in terms of hardware (e.g. semiconductors with lower
losses and higher capabilities) and software (e.g. faster and sophisticated control algorithms)
allowed to consider HVDC systems as a reliable solution for the transmission of electrical energy
with competitive costs and a large number of advantages [32, 33]. Each new HVDC project
challenges thee major electrical engineering disciplines: power transmission engineering since
the penetration of HVDC systems in the existent AC grids is of primary importance; Power
electronics due to the technology involved on each converter station and Control engineering
since the modeling and control design for HVDC systems is the primary responsible for the
proper functioning of the systems [34].

1Best Paths stands for BEyond State-of-the-art Technologies for Power AC corridors and Multi-Terminal
HVDC Systems.

3



Even if the list of HVDC projects in the world is very extensive nowadays [35], the modern
history of VSC-based HVDC systems is remarked by four main disruptive events:

1. 2009: ABB commissioned the first offshore HVDC system BorWin1 which was the first
one to use VSC for the converter stations [36,37].

2. 2011: The first HVDC system using Modular Multilevel Converters; Trans Bay Cable
commissioned by Siemens [38,39].

3. 2013: First three-terminal “multivendor” MTDC grid with MMCs commissioned by the
State Grid Corporation of China (SGCC) [40].

4. 2015: First HVDC link with MMCs for transmitting power in the GW range called
Inelfe, which was commissioned by Siemens [41]. Up to date, it has the biggest HVDC
power capacity in the world.

In HVDC systems, one of the principal and most expensive components of the DC grids are
the cables: the cost of installation and eventual reparation exceeds the cost of converters and
associated hardware. In fact, as a rule of thumb, the cost of the cable itself and its installation
may surpass the price of the converters at each endpoint (when considering point-to-point
connections) [42]. For this reason, the dynamics in the cable should be carefully studied for
assuring that the voltage limits are not surpassed in normal or abnormal operation.

2.1 Voltage Source Converters for HVDC applications

Voltage Source Converters in HVDC applications make use of self-commutated semicon-
ductor devices such as Insulated Gate Bipolar Transistors (IGBT) which allow the full control-
lability of the converter [43]. The main characteristic of this type of HVDC converter is that
it can synthesize an AC voltage output with high accuracy regarding its amplitude and phase.
This way, active and reactive power can be independently controlled. There are mainly three
Voltage Source Converters topologies available in operation for HVDC systems [12]:

1. 2-level topology.
2. 3-level diode-clamped topology.
3. Modular Multilevel topology.

In the following, the 2-level and multilevel floating-capacitor topologies are introduced.
The multilevel diode-clamped topology is out of the scope of this Thesis; however, many of the
studies performed with the 2-level topology apply to this category as well.

2-level VSC

A typical three-phase 2-level topology interfacing an AC and DC grid is shown in Fig. 4a.
It is composed by three phase legs and each one has a series array of semiconductor switches
that in turn, inserts or bypasses each leg thus chopping the DC voltage to form the desired AC
voltage output. The number of switches in series depends on the voltage ratings. On the DC
side, there is a capacitor CS acting as a filter. The typical Pulse-Width Modulation (PWM)
AC output voltage is shown in Fig. 4b. More details on the modeling and control of the 2-level
VSC are given in Chapter 1.

The main disadvantages of the 2-level VSC is the need to switch a large array of IGBT
on each leg simultaneously causing high voltage stresses on the valves, which can be very
challenging. Also, to reduce the harmonic components on the synthesized AC output voltage,
the PWM frequency may be augmented, compromising the switching losses. In HVDC systems,
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Figure 4 – 2-level VSC: Topology and output voltage waveform

these losses are conditioned by the cost of the energy lost, which is a significant issue for
transmission at the MW or GW level [44]. Furthermore, in conjunction with an elevated
switching frequency, the AC filters may be bulky and costly. These factors limit the power
ratings of the whole HVDC project with 2-level VSC.

Modular Multilevel Converter

The most promising topology of multilevel converter is the so-called “Modular Multilevel
Converter” (MMC) [16]. The three-phase MMC topology, shown in Fig. 5a, is composed by
three phase legs, each one formed by an Upper and Lower arm. The arms are constituted by
a stack of Sub-Modules (SM), whose topology may vary from a Half-Bridge, Full-bridge or
other topologies [45]. In this Thesis, the Half-Bridge (HB) is assumed for the SMs due to the
reduced number of semiconductor devices in the converter, as illustrated in the upper-right
corner of Fig. 5a. Moreover, each arm has a series inductance which is used to filter the arm
currents and to limit the inrush currents in case of faults. In the MMC, there is no capacitor
directly connected in the DC bus as it is the case for the 2-level VSC; instead, each SM has a
smaller capacitor which is inserted or bypassed in the circuit to form the desired voltages, as
illustrated in Fig. 5b. More details on the modeling of the MMC are given in Chapter 2.

One of main drawback of the MMC is the high complexity of the control system [46]. On
the one hand, a dedicated controller is in charge of the complex balancing of the voltage on
the submodules capacitors, while guaranteeing at the same time that the output voltages are
as expected from the current controllers. On the other hand, as can be seen by comparing the
MMC topology in Figs. 5a and the 2-level predecessor in Fig. 4a, many currents and voltages
inside the converters should be monitored to avoid any possible misbehavior [47]. For this
reason, it is understood that the control system of the MMC is more challenging than for the
2-level VSC. More details on the control of the MMC are given in Chapter 3.

2.2 Point-to-point MMC-Based schemes

The most common configuration for HVDC projects is the so-called “point-to-point” scheme,
which is exemplified in Fig. 6. In this configuration, there are two AC-DC converters connected
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Figure 5 – Modular Multilevel Converter: Topology and output voltage waveform

with a DC conductor which may be a cable or an Over-Head Line (OHL). Even if the OHL
technology is very interesting since normal AC corridors may be re-developed into DC grids,
this Thesis only focuses on cable configurations. One of each converter in Fig. 6 has a specific
role in terms of control. One converter is in charge of the power flow in the DC link, while the
other fixes the DC voltage to a certain level (the details on the control configurations are given
in Section 1.3). The advantage of this configuration with respect to the classical AC lines is
the ability to control the power flow in the system [44].

AC Grid 1 AC Grid 2DC Grid

Converter 1 Converter 2

positive pole

negative pole

Figure 6 – HVDC point-to-point: Example of typical schematic diagram

As an example of a point-to-point real project, let us consider the INELFE project [48].
This project is made by a joint venture from RTE and “Red Eléctrica de España” (Spanish
TSO). The configuration is given in Fig. 7. This project was carried out for improving the
electric network capacity between Spain and France and hence, with the rest of Europe.

France Spain

Santa LlogaiaBaixas

DC ±320 kV

AC 400 kV

64.5 km
1 GW 1 GW

1 GW 1 GW
64.5 km

Figure 7 – INELFE project — HVDC point-to-point scheme

The INELFE point-to-point scheme is composed by two 1 GW MMC-based HVDC links.
As seen in Fig. 7, the AC grid from Spain and France are also connected in AC, in particular
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by a 400kV AC line in parallel to the two HVDC links, which is partly relieved thanks to
the DC line. From an electrical point of view, both converters are electrically close to each
other which makes the project very challenging from a engineering perspective. For studying
the system, RTE acquired a real-time mock-up of the complete link, where the actual MMC
control replicas are installed and evaluated [49].

In Fig. 8, the footprint of a 2-level VSC station from the BorWin1 project and the MMC
station from INELFE is compared . As it can be seen, in a similar footprint, the MMC of
INELFE project have five times more power than in BorWin1.

100 m

(a) BorWin1: 2-level VSC, 400 MW, ±150 kV

100 m

(b) INELFE: MMC, 2 × 1000 MW, ±320 kV

Figure 8 – BorWind1 VSC station in Diele, Germany. INELFE, 2 MMC stations in Baixas,
France. — Source: https://maps.google.com/

3 Multi-Terminal DC schemes

When more than two converter stations are connected to the same DC grid, the configu-
ration is referred as a “Multi-Terminal DC” system (MTDC). These schemes are expected to
provide additional features compared to point-to-point HVDC links, such as:

• More flexibility in power dispatch [8]
• Optimized assets for offshore wind farm connection to shore and power transmission

capability [50]
• Smoothing wind power fluctuations (mitigation of wind power which is produced from

different area) [51]
• Frequency support to onshore grids [52,53]
• More reliability (can operate or at least partially operate even if one element is out of

service) [54]

From an operational point of view, power flows in HVDC grids would be decided on the
electricity markets in advance according to the supply and the demand. In real time, power
flows must correspond to the schedule and deviations should be regulated according to pre-
defined rules. As for AC system, TSOs are likely to be in charge of managing HVDC grids
to assess their stability and comply with the market schedule. To control the power flows
in the DC grid, two layers of controllers are likely to be used [55]. The first control layer is
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constituted by the coordinated controllers managed by TSOs to dispatch suitable converter
set-points in order to achieve a precise power flow control [56]. Also, in case of a contingency,
it would automatically adapt set-points to find a new stable operating point [57]. Second, local
controls in the VSC stations such as DC voltage droop control are used to the adjustments of
set-points in real-time [58].

Multivendor MTDC real projects

There is little experience worldwide in multivendor VSC-based MTDC schemes. The only
two relevant examples are Nan’ao and Zhoushan projects in China, whose layouts are depicted
in Fig. 9 [59,60]. Both projects, which are operating nowadays, prove that the MTDC schemes
are a feasible solution for high-power transmission systems.

Sucheng
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2
8
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150 MW50 MW
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AC 110 kV

China Southern
Power Grid

JinniuQing’ao

(a) Nan’ao project [61]
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Shangai
Power Grid

Yangshan

41 km 17 km
100 MW
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100 MW

32 km

3
9
k
m

300 MW400 MW

DC ±200 kV

AC 110 kV
AC 220 kV

(b) Zhoushan project [62, 63]

Figure 9 – VSC-based MTDC schemes in China

The aforementioned MTDC projects in China are multivendor schemes, where different
vendors were in charge of the deployment of the hardware of each converter station. However,
control and protection of each station was fully designed by a single vendor [40]. In the western
market, this scenario is most unlikely since western manufacturers mostly valor their know-how
related to the specific control and protection design adapted for their high-voltage equipment.
For this reason, in the Best Paths project the idea was to evaluate interoperability for HVDC
converters from different vendors whereas the control and protection algorithms are specific to
each company.

4 Objectives of the Thesis and Main Contributions

The main research questions of this Thesis are the following:

1. What are the main tools to study the stability of HVDC systems?
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2. How to model the MMC for being able to use it for small-signal stability analysis?
3. What is the impact of the MMC controllers on MTDC grids dynamics?
4. Are the reduced order MMC models valid and representative for large-scale studies such

as MTDC grids?
5. What are the main key factors influencing the DC dynamics and how to improve them?

This Thesis, which aims to answer the aforementioned questions, deals with the dynamic
analysis of MMC-based MTDC grids for interoperability studies, in the same spirit as the Best
Paths project; even if the presented studies were not conducted with the vendors models.
Instead, the idea is to detail the modeling and control of MMCs first, before introducing the
converter in a multi-terminal environment. A step-by-step approach is followed to highlight
each relevant and particular aspect of MMCs for interoperability analysis with special focus
on the overall stability.

The main contributions of this work are listed below:

1. A methodology for the dynamic analysis of HVDC systems with Power Electronics Con-
verters is given. This methodology implies the different modeling degrees and control
strategies for the converters. Mathematical tools that can be applied to each model
representation are defined.

2. Documentation of a novel MMC mathematical model that takes into account all internal
dynamics. This model, which can be easily linearized, is one of the pillars of this Thesis,
since the small-signal dynamics can be studied from the developed model. This model was
firstly developed by NTNU and SINTEF, and later generalized within a collaboration.

3. Different controls strategies for the MMC are described. The impact of each control
in terms of small-signal dynamics is analyzed. Improvements on the system stability
are proposed, which conduces to a promising family of control strategies in term of
interoperability.

4. Demonstration of the applicability of reduced order MMC models: the limitations of the
usage of simplified models is highlighted with respect to the MMC control strategies.

5. Simulations and analysis of MMC-based MTDC grids and the application of linear mathe-
matical tools for the deep understanding of dynamic behavior of the DC grid. The main
variables governing the dynamics, and the impact of the converter controllers on the DC
voltage dynamics are explored.

5 Layout of the Thesis

The Thesis is organized as shown in Fig. 10 and detailed in the following.

Chapter 5

MMC-based MTDC grid

Chapter 1

Methodology

Chapter 2

MMC Modeling

Chapter 3

MMC Control

Chapter 4

Model order reduction

Figure 10 – Thesis Road-map

Chapter 1 introduces the methodology applied throughout this Thesis for the study of
power electronic converters with particular interest on the integration to DC grids. This
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Chapter deals mainly with 2-level VSC, where the main modeling degrees are clearly shown:
from the classical averaged model in abc frame to the dq model, up to its integration in HVDC
point-to-point schemes and MTDC grids. The linearization technique used for eigenvalue-
based stability and dynamic analysis for DC systems is presented. This Chapter stands out
the main concepts that are applied to DC systems with MMC through the Thesis.

Chapter 2 presents the most up-to-date MMC non-linear continuous model in dq frame,
which has the main property that the steady-state operation is represented by constant state
variables. This characteristic makes it possible to linearize the model and to study its stability
with eigenvalue-based techniques. The model is compared against a very detailed EMT MMC
model2 with 401 levels implemented in EMTP-RV.

In Chapter 3 the classical control strategies for the MMC are developed in views of its
integration in MTDC systems. For this reason, an equivalent DC bus is considered with the
MMC. The objective is to analyze the interactions of the MMC with the DC grid when con-
sidering different controllers. For evaluating the degree of impact of the analyzed controllers,
the MMC model with steady-state time-invariant solution from Chapter 2 is used. Two main
control strategies arise from this Chapter: the Classical Circulating Current Suppressing Con-
troller (CCSC) and the Energy-Based controller. The first one is the most used in the literature
due to its simplicity. However, the main drawback of this strategy is the poorly damped os-
cillations that can be caused by the uncontrolled DC output current and internal energy. The
Energy-Based controller, in turn, considers closed-loop controllers for all the energies and cur-
rents of the MMC. Nevertheless, when considering full detailed controllers and the MMC, the
state-space model results with a high number of state variables. This results in a difficult task
for the dynamic and stability analysis based on eigenvalues.

In Chapter 4, a reduced order model of the MMC for interfacing AC and DC grids
is presented. For evaluating the validity of the introduced model, several tests based on
eigen-analysis, time domain simulations and frequency analysis are carried out to delimit the
boundaries and highlight its usage. Two control options detailed in previous Chapter are
considered for the MMC and compared with the analogous reduced order model. Results from
this Chapter are fundamental for the application of reduced order models in MTDC grids for
interoperability studies.

In Chapter 5, the dynamic analysis of MMC-based MTDC grids is presented for inter-
operability studies. Based on a benchmark four-terminal MTDC model, several studies are
developed for evaluating the impact of different MMC control strategies on the MTDC dy-
namics. The use of dedicated controllers for regulating the internal energy of the MMC in
views of the collaboration of each converter on the DC voltage dynamics is explored. Results
highlight the main differences with MTDC grids with 2-level VSCs in terms of the DC grid
energy allocation. The road for new control strategies for improvement of MTDC grids is
paved in this Chapter.

6 List of publications derived from this work

The publications resulting from this Thesis project are listed below. The main contributions
presented in this manuscript are based on the journal papers Journal I and Journal II, and
also the conference papers Conference I to Conference VII. The results of the remaining
publications are not directly embedded in this Thesis, although they helped in the development
of the whole work. For the ease of reading this Thesis, self-citations are given with bold

2EMT: Electro-Magnetic Transient
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Chapter 1

Methodology for dynamic analysis of
HVDC systems with Power Electronics
Converters

1.1 Introduction

One of the major concerns in power systems is the assurance of reliability: the system must
operate in an non-interrupted way. This means that the system must be able to cope with
different events in normal or abnormal operation, such as changes in the power flows, faults,
etc [64]. When the system is operating in a given initial point and it is perturbed (e.g. with
a change on the set-points), it must keep working smoothly and it should be able to stabilize
itself in any possible operating point [65]. This means that a formal study of the dynamics
and stability should be addressed [66]. This aspect is even more relevant when considering
the inclusion of HVDC systems to the grid: the nature of this new equipment is different by
working principle than the existent devices. Hence, the modeling, control and analysis of the
HVDC systems with power electronics becomes crucial [67]. For this reason, this Chapter deals
firstly with the different modeling degrees of a single Voltage Source Converters and HVDC
systems, highlighting the followed methodology for stability and dynamic analysis.

For studying the dynamics and stability of Multi-Terminal DC grids with static Voltage
Source Converters (VSC), the first step is focused on the modeling of the different elements that
compose the system. There are different degrees of modeling depending on the phenomenon
considered, as shown in Fig. 1.1. The most detailed models of the MTDC with VSC consider
all the components of each converters separately, and they are directly assembled to form
the complete system, typically in Electro-Magnetic Transient software such as EMTP-RV [68]
or PSCAD. This degree of modeling is often referred as “Simulation models” or “EMT-type
models”. With these models, parametric and statistical studies techniques are often used. For
this reason (among others) simpler yet representative models are needed to be able to apply
the vast theory on control and stability analysis of dynamic systems. It should be always
borne in mind that all the mathematical models and analysis are meant to be useful for a
better understanding of the “Real system”. For this reason, the “Simulation models” and the
mathematically derived models for analysis are both needed to perform a complete study of
the MTDC system.

In Fig. 1.1, the different levels of modeling for the MTDC grids with VSCs are shown. After
applying fundamental physical relations to model the converters and the other components,
dynamic models of each sub-systems are obtained. Due to the nature of the system, the
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Figure 1.1 – Different models of MTDC grids with VSC for stability and dynamic studies

resultant model may be linear or non-linear, and depends on the absolute time or not. The
models for VSC power electronic devices are usually non-linear. It is of interest to consider
the way that the states of the system (such as currents, voltages or controller state variables)
behave in steady state, i.e. if they are oscillating variables or constant. This is important since
the subset of system variables may represent a fixed point in the state-space when they don’t
depend on the absolute time (usually dqz variables), or an orbit if their are oscillatory (abc,
or αβz). In case that the system presents periodically oscillating variables in steady state, it
will be referred as a system with “Steady-State Time Periodical” solution, or simply “SSTP”.
In the other hand, if the state-variables of the system in steady-state are constant, it will be
referred as a system with “Steady-State Time Invariant” solution, or simply “SSTI”. This last
kind of models can be linearized around an operating point, deriving in the “Linear Time-
Invariant” (LTI) models. With the LTI models, the stability and dynamic analysis based on
eigenvalues can be applied, which is very well established in the power system domain [69–72].
The LTP models can also be linearized; however, the models cannot be utilized for conventional
eigenvalue-based analysis of small-signal dynamics. Instead, the lack of a constant equilibrium
in steady state implies that time periodic theory must be applied [73].

This Chapter is organized as follows. In Section 1.2, and based on a simple 2-level VSC,
the methodology to build the elementary LTI blocks of an HVDC system from Fig. 1.1 is
presented. Once the LTI models of each converter are obtained, they can be used as “building
blocks” for the analysis of HVDC systems. As shown in Fig. 1.1, the “LTI” models can be
assembled to form a complete linear model of the MTDC system. In Section 1.3, an HVDC
point-to-point scheme is modeled and analyzed. Finally, in Section 1.4, a simplified analysis
on MTDC grids is performed to highlight the main results from [74], which serve as a starting
point of analysis for the rest of this Thesis.
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1.2 Modeling of a 2-level Voltage Source Converter

Let us consider a simplified 2-level VSC interfaced between AC and DC sides as depicted in
Fig. 1.2. In this schematic, the AC grid is considered to be a balanced voltage source providing
the voltages vG

abc = [vG
a vG

b vG
c ]⊤. The AC grid currents are denoted by iG

abc = [iG
a iG

b iG
c ]⊤, and

the active and reactive power at the AC-side Point of Common Coupling (PCC-AC) are given
by Pac and Qac, respectively. The resistance and inductor given by Rac

eq and Lac
eq are modeling

the AC-side impedance of the converter (such as transformer, etc.).

Rac
eqLac

eqi
G
abc +

−

vdc

v
G
abc

vmabc

mabc

imdc
2-level VSC

Pac, Qac +
pmdc

pmac il
+

vdc

1
+

CS

2

÷

P ∗

l

vdc

Ideal power source

Figure 1.2 – Simplified 2-level VSC — Selector 1: Constant DC bus voltage; Selector 2:
Variable DC bus voltage and ideal power source

In the rest of this Chapter, the DC side is considered to be either a stiff DC source with
voltage vdc (Selector in lower position), or a variable DC voltage with an ideal power source
where the DC voltage vdc would be represented by the dynamic state of the DC-side capacitor
CS (Selector in upper position). The “DC-side Selector” doesn’t have a physical meaning: it
is only intended to highlight the different configurations that are exploited in this Chapter.

Even though the power converters models are discontinuous due to the switching events, the
average value model is commonly considered by power electronic engineers as the real system
since it provides an insight on the general behavior of the converter [75]. The considered
averaged value 2-level VSC model is based on a AC and DC modulated powers balance, i.e.
pmdc = pmac, where the semiconductor losses are neglected. The working principle consist in
chopping the DC voltage to form the desired AC modulated voltages vmabc = [vma vmb vmc]⊤

by means of the modulation indices mabc = [ma mb mc]⊤.
Even if the model from Fig. 1.2 is overly simplified, it is exploited in this Section for

introducing the different levels of modeling for VSCs used along this Thesis.

1.2.1 Non-linear state-space model with steady-state time-periodic
solution

The first type of VSC model consists in the non-linear state-space model with steady-state
time-periodic solution. A dynamic system can be modeled with a set of n first order differential
equations with m inputs and p algebraic output equation [76,77] as show in (1.1)1.

ẋ(t) = f (x(t), u(t), t) (1.1a)

y(t) = h (x(t), u(t), t) (1.1b)

1Note that ẋ(t) = dx(t)/dt. Both notations are used indistinctly during this Chapter

14



where,

x = [x1(t), x2(t), ..., xn(t)]⊤ ∈ R
n (1.2a)

u = [u1(t), u2(t), ..., um(t)]⊤ ∈ R
m (1.2b)

y = [y1(t), y2(t), ..., yp(t)]⊤ ∈ R
p (1.2c)

f = [f1(x(t), u(t), t), f2(x(t), u(t), t), ..., fn(x(t), u(t), t)]⊤ (1.2d)

h = [h1(x(t), u(t), t), h2(x(t), u(t), t), ..., hp(x(t), u(t), t)]⊤ (1.2e)

The vector x groups the dynamic states of the systems, u the inputs and y the outputs. The
functions f relate the inputs and states of the system with their derivatives, while h relate
the inputs and states of the system with the outputs. When f and h represents non-linear
functions of x and u, the dynamic equations described by (1.1) are non-linear.

Following the example of the 2-level VSC from Fig. 1.2, the balanced inputs vG
abc and

control inputs mabc are given by the following equations:

vG
abc =



vG

a

vG
b

vG
c


 =




v̂G cos(ωt)
v̂G cos(ωt − 2π/3)
v̂G cos(ωt − 4π/3)


 ; mabc =



ma

mb

mc


 =




m̂ cos(ωt + φ)
m̂ cos(ωt − 2π/3 + φ)
m̂ cos(ωt − 4π/3 + φ)


 (1.3)

where v̂G and m̂ are the amplitudes of the AC voltage and modulation indices, respectively.
The variable φ represents the phase of the modulation index vector.

The dynamics of the currents iG
abc = [iG

a , iG
b , iG

c ]⊤ are given by,

diG
a

dt
=

1
Lac

eq

(
vma − vG

a − Rac
eq iG

a

)
(1.4a)

diG
b

dt
=

1
Lac

eq

(
vmb − vG

b − Rac
eq iG

b

)
(1.4b)

diG
c

dt
=

1
Lac

eq

(
vmb − vG

c − Rac
eq iG

c

)
(1.4c)

iG
a + iG

b + iG
c = 0 (1.4d)

Since in this Section it is considered a perfectly balanced AC system, the sum of the currents
is equal to zero, so the third current (i.e. iG

c ) is the difference between the two states. The
modulated voltages vmabc are given by (1.5).

vmabc =



vma

vmb

vmc


 =



ma vdc

mb vdc

mc vdc


 (1.5)

Finally, the modulated DC current imdc is given in (1.6).

imdc = maiG
a + mbi

G
b + mci

G
c (1.6)

The equations from (1.4) can be represented in a state space form of (1.1) as follows:

d
dt



iG
a

iG
b

iG
c


 =




−Rac
eq

Lac
eq

0 0

0 −Rac
eq

Lac
eq

0

0 0 −Rac
eq

Lac
eq






iG
a

iG
b

iG
c


+ 1

Lac
eq




vdcm̂ cos(ωt + φ)
vdcm̂ cos(ωt − 2π/3 + φ)
vdcm̂ cos(ωt − 4π/3 + φ)


− 1

Lac
eq




v̂G cos(ωt)
v̂G cos(ωt − 2π/3)
v̂G cos(ωt − 4π/3)


 (1.7)
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The vector of independent states (it is considered that iG
c = −iG

a − iG
b ) and inputs are:

x =
[
iG
a , iG

b

]⊤ ∈ R
2, u = [ v̂G, vdc︸ ︷︷ ︸

Physical

, m̂, φ︸ ︷︷ ︸
Control

]⊤ ∈ R
4 (1.8)

For this example, the number of independent states is n = 2, the number of inputs is m = 4
and the number of outputs p will depend on the desired outputs of the system.

In case that the Selector from Fig. 1.2 is in lower position, i.e. it is considered a stiff DC
source, the model is linear. However, if the Selector is in upper position, i.e. the DC bus is a
variable source, the model is bilinear (i.e. a dynamic system where there is a multiplication of
state variables with control input variables). Also, due to the fact that (1.7) depends explicitly
on the time t (with the cos(ωt) functions), the solution of the system equations in steady state
are time-variant. Due to the periodical solution of the sinusoidal functions, the model from
(1.7) have a Steady-State with Time Periodic solution (SSTP)2.

Open loop control in abc frame

The control system of the VSC adapts dynamically the modulated voltages vmabc by chang-
ing the modulation indices according to the desired operating point in terms of different control
strategies that can be adopted [58]. As an example, the Open-loop control for the VSC is de-
picted in Fig. 1.3 where the active and reactive power references are controlled.

Q∗
ac

P ∗
ac

mabc
÷

vdc

v∗

mabc

v̂G ω, Lac
eq , R

ac
eq

Modulated Voltages
Calculations
“Open Loop”

Figure 1.3 – Open-loop control for 2-level VSC

Given the active and reactive power references at the PCC-AC, P ∗
ac and Q∗

ac respectively, it
is possible to calculate the functions of the modulated voltages vmabc for the desired operating
point as shown in (1.9). The mathematical deduction of (1.9) is given in the Appendix B. Note
that the frequency ω is given as a parameter. This basic control fails to control the transient
behavior in an acceptable way. Moreover, it is highly sensitive to the parameter variations.
For these reasons, the Open-loop control strategies are not preferred. Nevertheless, it is used
at this stage for exemplifying the modeling steps.

v∗
ma = v̂G cos(ωt) +

2
3v̂G

(
ωLac

eq (Q∗ cos(ωt) − P ∗ sin(ωt))
)

+ ... (1.9a)

... +
2

3v̂G

(
Rac

eq (P ∗ cos(ωt) + Q∗ sin(ωt))
)

v∗
mb = v̂G cos(ωt − 2π/3) +

2
3v̂G

(
ωLac

eq (Q∗ cos(ωt − 2π/3) − P ∗ sin(ωt − 2π/3))
)

+ ... (1.9b)

... +
2

3v̂G

(
Rac

eq (P ∗ cos(ωt − 2π/3) + Q∗ sin(ωt − 2π/3))
)

v∗
mc = −v∗

ma − v∗
mb (1.9c)

2The double “SS” for SSTP stands for Steady-State, do not mix it with State-Space
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The system from (1.7) with the Open-loop control in (1.9) is simulated considering the
average value model of the VSC implemented in Matlab/Simulink. The scenario considers
an active power reference change from P ∗

ac = 1 pu to 0.5 pu at 50 ms, while maintaining the
reactive power reference Q∗

ac at 0 pu. The simulation parameters are given in the Appendix A.
Simulation results are gathered in Fig. 1.4. The DC voltage is considered to be a stiff DC
voltage source (Selector from Fig. 1.2 in lower position).
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Figure 1.4 – SSTP Model: Simulation results of a 2-level VSC with Open-loop control

As it can be seen in Fig. 1.4, the active and reactive powers are highly coupled with the
considered Open-loop control. Moreover, the dynamics of the system are completely unaccept-
able, due to severe oscillations and a slow response time (more than 200 ms) [23]. However,
the interest of this simulation is to highlight that the state variables of the system are periodic
in steady state. If it is desired to study the system stability as it is, complicated mathematical
theories should be applied. The main complexity resides in the fact that, in steady-state, the
solution of the equations given by (1.7) is given by a periodic point on the state-space from
x (i.e. a point which the system returns to after a certain number of time [78]), and not a
fixed point independent of the absolute time. For these two reasons, highly coupled active and
reactive powers and the periodicity of the solutions, the dq theory is commonly applied for
obtaining an equivalent system where the state variables are constant in steady state.
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1.2.2 Non-linear model with time-invariant solution in steady state

Continuing with the example from Fig. 1.2, a state-space model with time invariant solution
is obtained by applying the Park transformation Pω defined in the Appendix A to (1.7) [74]:

diG
d

dt
=

1
Lac

eq

mdvdc︸ ︷︷ ︸
vmd

− 1
Lac

eq

vG
d − Rac

eq

Lac
eq

iG
d − ωiG

q (1.10a)

diG
q

dt
=

1
Lac

eq

mqvdc︸ ︷︷ ︸
vmq

− 1
Lac

eq

vG
q − Rac

eq

Lac
eq

iG
q + ωiG

d (1.10b)

imdc =
3
2


mdiG

d︸ ︷︷ ︸
imd

+ mqi
G
q︸ ︷︷ ︸

imq


 (1.10c)

As it can be seen in (1.10) the equations do not depend explicitly on time, so the solution of
the system equations in steady state becomes time-invariant. This is advantageous since the
steady-state condition can be easily calculated by non-linear numerical methods. Also, dealing
with constant state variables in steady state is more favorable for control purposes, since
simple Proportional-Integral-Derivatives (PID) controllers can be used for achieving acceptable
dynamic responses. These types of models are called in this Thesis as state-space models with
“Steady-State Time Invariant solution” (SSTI).

Calculation of operating point

As it was stated before, one interesting property of SSTI systems is that the operating point
is defined by constant values of the state variables and inputs in steady state. For the VSC
example with fixed DC bus, the operating point is defined by the set of values x0 and u0:

x0 =
[
iG
d0, iG

q0

]⊤ ∈ R
2, u0 =

[
vG

d0, vdc0, md0, mq0

]⊤ ∈ R
4 (1.11)

which verifies:

d

dt

[
iG
d

iG
q

]
=

[
0
0

]
=



−Rac

eq

Lac
eq

ω

−ω −Rac
eq

Lac
eq



[
iG
d0

iG
q0

]
+

1
Lac

eq

[
vdc0md0

vdc0mq0

]
− vG

d0

Lac
eq

[
1
0

]
(1.12)

The system of equations given in (1.12) have 6 unknowns (2 state variables, and 4 inputs).
For this reason, the expressions of the active and reactive power given in (1.13) are also
considered, where it is assumed that vG

q = 03.

Pac0 =
3
2

vG
d0i

G
d0; Qac0 =

3
2

vG
d0i

G
q0 (1.13)

Taking into account (1.12) and (1.13), it is needed to know a priori 2 out of 6 unknowns
so the system may have a solution. In the example followed in this Chapter, the AC and
DC voltages are known at the steady-state condition since they are given by their respective
sources. Moreover, the active and reactive power references are imposed. In this way, the 4
unknowns to be found are iG

d0, iG
q0, md0 and mq0. However, different combinations can be used;

for instance, if the AC or DC voltage are not known, the values md0 and mq0 can be imposed
to solve the system.

3The VSC is considered to be perfectly synchronized with the AC-grid
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Generalization

The non-linear time-invariant models can be expressed as follows:

ẋ(t) = f (x(t), u(t))
y(t) = h (x(t), u(t))

(1.14)

where,

f = [f1(x(t), u(t)), f2(x(t), u(t)), ..., fn(x(t), u(t))]⊤ (1.15a)

h = [h1(x(t), u(t)), h2(x(t), u(t)), ..., hp(x(t), u(t))]⊤ (1.15b)

Note that f and h in (1.14) and (1.15) (time-invariant) are not the same system functions
as in (1.1) (time-variant). This is due to the fact that the absolute time t does not appear as
an explicit parameter on the right side equations of f and h given in (1.15).

The operating point is defined by:

x0 = [x10
, x20

, ..., xn0
]⊤ ∈ R

n (1.16a)

u0 = [u10
, u20

, ..., um0
]⊤ ∈ R

m (1.16b)

which verifies:

0 = f (x0, u0) (1.17)

The outputs in the steady state condition can be obtained by evaluating the output func-
tions h with (x0, u0) as shown in (1.18).

y0 = h (x0, u0) (1.18)

Open loop control in dq frame

The Open-loop control presented in previous section in abc frame is referred to the dq axes
applying the Park transformation to (1.9) as follows:

v∗
md =

2
3

P ∗
acR

ac
eq

vG
d

+
2
3

Q∗
acωLac

eq

vG
d

+ vG
d (1.19a)

v∗
mq =

2
3

Q∗
acR

ac
eq

vG
d

− 2
3

P ∗
acωLac

eq

vG
d

+ vG
q (1.19b)

The same simulation as for the SSTP model is performed, and results are shown in Fig. 1.5.
As it can be seen, the AC grid voltage is now constant and not a sinusoidal function as
in Fig. 1.4. The AC currents in the dq axis are also constant in steady state. During the
transient, a similar behavior as the active and reactive power as in Fig. 1.4 can be noticed.

As it was already pointed out, the Open loop control approach cannot guarantee an a-
cceptable transient behavior. For this reason, in the following section the classical grid current
controllers in Synchronous Rotating Reference Frames (SRRF) based on feedback control and
Proportional-Integral (PI) controllers are introduced.
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Figure 1.5 – SSTI Model: Simulation results of a 2-level VSC with Open-loop control in dq
frame

VSC Classical control

The VSC classical control strategy is based on two cascaded loops (namely inner and outer
loops). The inner loops control the AC currents in dq frame, while the outer loops generate
their references [74].

Since the dq variables are DC values in steady state, the widely adopted Proportional-
Integral (PI) controllers can be used in Synchronous Rotating Reference Frame for achieving
an acceptable dynamic behavior while guaranteeing zero steady-state errors at the same time.
The block diagram of (1.10) and the AC current controllers are depicted in Fig. 1.6.
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−

−

+
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+
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+
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Figure 1.6 – VSC AC Inner current controller in SRRF

Feed-forward decoupling terms are added in the controller structure for allowing an indepen-
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dent control of the dq currents (and in this way, independent control of active and reactive
powers). The response time of these controllers is usually in the order of a few milliseconds.
In this Thesis, the grid current controllers are set to obtain a theoretical time response of 10
ms. Note that the control structure is derived from an exact inversion of the equations of the
physical system [79]. The controller tuning methodology is explained in Appendix C.

It has to be noted that the dq reference frame to which all AC currents and voltages are
referred to, has to be provided by a Phase-Lock-Loop (PLL), which aims at aligning the grid
voltage phasor vG with the d axis4. However, a perfect PLL is considered in this Chapter.

The current references in Fig. 1.6 are generated by the outer controllers shown in Fig. 1.7.
Different control strategies can be implemented for the components iG∗

d and iG∗
q [80].

P ∗

ac

Pac

DC Voltage
Controller

v∗dc

vdc
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ac

Qac

vG∗
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vGrms

Active Power
Controller

Reactive Power
Controller

AC Voltage
Controller

iG∗

d

iG∗

q

Figure 1.7 – VSC Outer controllers

The design of the active and reactive power controllers are based on the following expres-
sions of the AC powers in dq frame:

Pac =
3
2


vG

d iG
d + vG

q︸︷︷︸
=0

iG
q


 (1.20a)

Qac =
3
2


vG

d iG
q − vG

q︸︷︷︸
=0

iG
d


 (1.20b)

Several types of controllers can be considered for the AC active and reactive powers [9, 81],
however in this Chapter it is considered a perfect PLL, so the reference frame used for the
controlled is always aligned with vG

d . This simplification allows to consider that vG
q = 0. In

this way, simple controllers can be deduced by inversion and shown in Fig. 1.8.
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(a) Active power control
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÷

vGd
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ac

vGd
(b) Reactive power control

Figure 1.8 – VSC Outer controllers: Active and reactive power controllers

The VSC controller is demonstrated through time-domain simulations. Starting with an
AC power transfer of Pac = 1 pu and Qac = 0 pu, a step on P ∗

ac of −0.2 pu is applied at 50

4In case that vG is not constant, this variable varies due to the AC-side impedance. In such case, the AC
grid model can be modeled using a Thévenin model with the Short-Circuit Ratio, as detailed in Chapter 4.
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ms. Then, a step on Q∗
ac of 0.1 pu is applied at 250 ms. Results of the AC active and reactive

powers for the VSC are gathered in Fig. 1.9.
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Figure 1.9 – Time domain verification of grid current controllers 2-level VSC

Note that the dynamic responses are highly improved with respect to the results from
Section 1.2, i.e. with the Open-loop strategy. Moreover, a perfect decoupling between the
currents in the d and q axes can be achieved.

1.2.3 VSC with variable DC bus voltage: Energetic modeling

Until now, the Selector in Fig. 1.2 was considered in the lower position, where the DC
voltage is imposed by the DC source. In this subsection, the DC bus is represented by a
capacitor CS. The dynamics of the DC bus are given in (1.21):

dvdc

dt
=

1
CS


il − 3

2

(
mdiG

d + mqi
G
q

)

︸ ︷︷ ︸
imdc


 (1.21)

The block diagram of the VSC model associated with the DC capacitor CS is drawn in
Fig. 1.10. This model highlights the bilinear characteristic of the VSC, where the inputs
mdq = [md mq]⊤ modulates at the same time the AC voltages vmdq = [vmd vmq]⊤ and the AC
currents to form imdc. This property is inherent to static converters [82].

For designing a DC bus voltage controller, a simplified model linking the active power Pac

and vdc is needed. Multiplying (1.21) by vdc it results in:

dv2
dc

dt
=

2
CS


vdcil︸ ︷︷ ︸

P ∗

l

− vdcimdc︸ ︷︷ ︸
pmdc


 (1.22)
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Figure 1.10 – Block diagram of 2-level VSC connected to a DC capacitor CS

Assuming no losses, i.e. pmdc ≈ Pac, the following block diagram can be drawn for (1.22) in
Fig. 1.11, where the deduced controller for v2

dc by inversion is also shown. The DC voltage
controller is set to obtain a theoretical time response of 100 ms, i.e. 10 times slower than the
current controllers to avoid undesired interactions [58].

Pl

v2∗dc

v2dc

+

−

P ∗

ac
PIv2

dc

Controller

−
−

(a) DC Voltage controller

Pac ≈ pmdc

P ∗

l

−
− 2

sCS

v2dc

Physical system

(b) Simplified physical system

Figure 1.11 – DC Voltage controller and simplified physical system

It is important to note that a compensation term of Pl (marked in gray) is added in the
v2

dc controller. In real projects, this compensation is likely to be present but with the power
reference (i.e. P ∗

l ) synchronized in the DC grid by means of a communication system. This
allows to help the v2

dc controller to anticipate actions from the other converter, and in this
way, the DC voltage excursion is limited in normal operation. This communication is useful
(and maybe mandatory) for fast power inversions in HVDC links (for example, a complete
power reversal from 1 pu to −1 pu in less than 200 ms, or vice-versa), and coordinated actions
in MTDC grids. Nevertheless, in the following no communication is considered, as it is the
possible worst case scenario.

1.2.4 Linear time invariant model and linear analysis

Although almost every physical system contains nonlinearities, most of their behavior can
be reasonably approximated around a certain operating point by a linear model [77]. The
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linearized model is commonly referred as linear time-invariant (LTI). In this subsection, a
linearized model of the VSC is obtained and validated through time-domain simulations.

Linearizing a non-linear model with Jacobian

Suppose (x0; u0) is an equilibrium point defined by the steady state conditions of the
variables and inputs (i.e. it verifies (1.17)). It is known that if the system is in equilibrium at
the point defined by x(t0) = x0 with a constant input u(t0) = u0, then the states of the system
will remain fixed at x(t) = x0 for all time t (time-invariant steady-state solution). When the
system is then perturbed and moves a bit away from x0 by applying a slightly different input
from u0 it is used the deviation (or small-signal) variables to study its behavior [83]. The
deviation variables are expressed as:

∆x = x − x0 → x = ∆x + x0 (1.23a)

∆u = u − u0 → u = ∆u + u0 (1.23b)

∆y = y − y0 → y = ∆y + y0 (1.23c)

Equation (1.23) refers to a translation of the origin. Substituting (1.23) into (1.14) it is
obtained:

d(∆x + x0)
dt

= ∆ẋ + ẋ0︸︷︷︸
=0

= f (∆x + x0, ∆u + u0) (1.24a)

∆y + y0 = h (∆x + x0, ∆u + u0) (1.24b)

Equations (1.14) and (1.24) are strictly the same up to this point. The next step is to perform
a Taylor expansion of the right hand side of (1.24), and neglect all higher order terms:

∆ẋ ≈ f(x0, u0)
︸ ︷︷ ︸

=0

+
[

∂f(x,u)
∂x1

, . . . , ∂f(x,u)
∂xn

]∣∣∣
(x0;u0)

∆x +
[

∂f(x,u)
∂u1

, . . . , ∂f(x,u)
∂um

]∣∣∣
(x0;u0)

∆u (1.25a)

∆y + y0 ≈ h(x0, u0)
︸ ︷︷ ︸

=y0

+
[

∂h(x,u)
∂x1

, . . . , ∂h(x,u)
∂xn

]∣∣∣
(x0;u0)

∆x +
[

∂h(x,u)
∂u1

, . . . , ∂h(x,u)
∂um

]∣∣∣
(x0;u0)

∆u (1.25b)

Since ẋ = ∆ẋ and f(x0, u0) = 0, the linear time-invariant (LTI) approximation of (1.14)
takes the State-Space form as:

∆ẋ = A∆x + B∆u (1.26a)

∆y = C∆x + D∆u (1.26b)

where,

An×n =




∂f1(x,u)
∂x1

. . . ∂f1(x,u)
∂xn

...
. . .

...
∂fn(x,u)

∂x1
. . . ∂fn(x,u)

∂xn




∣∣∣∣∣∣∣∣∣
(x0;u0)

, Bn×m =




∂f1(x,u)
∂u1

. . . ∂f1(x,u)
∂um

...
. . .

...
∂fn(x,u)

∂u1
. . . ∂fn(x,u)

∂um




∣∣∣∣∣∣∣∣∣
(x0;u0)

(1.27a)

Cp×n =




∂h1(x,u)
∂x1

. . . ∂h1(x,u)
∂xn

...
. . .

...
∂hp(x,u)

∂x1
. . . ∂hp(x,u)

∂xn




∣∣∣∣∣∣∣∣∣
(x0;u0)

, Dp×m =




∂h1(x,u)
∂u1

. . . ∂h1(x,u)
∂um

...
. . .

...
∂hp(x,u)

∂u1
. . . ∂hp(x,u)

∂um




∣∣∣∣∣∣∣∣∣
(x0;u0)

(1.27b)

Note that the An×n and Bn×m matrices are obtained by applying the Jacobian of the system
equations f with regards to the n states x and the m inputs u respectively, evaluated at the
operating point (x0; u0). The Cp×n and Dp×m matrices are obtained with the Jacobian of the
output equations y with regards to the n states x and the m inputs u respectively, evaluated
at the operating point (x0; u0).
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Linearization of the 2-level VSC model with variable DC bus

Continuing with the VSC example from Fig. 1.2, it is recalled what it was already obtained:

• The non-linear model with time invariant solution (SSTI) from (1.10) and (1.21).
• The operating point given by (x0, u0) from the solution of the system equations obtained

by setting the derivatives to zero as in (1.17).

For obtaining a linearized model of the 2-level VSC considering the DC bus connection,
the complete system (physical part and controllers) in a “SSTI” representation is needed: this
was already developed in this Chapter. The summary of the different parts of the system and
their relations is shown in Fig. 1.12.

2-level VSC - Fig. 1.10

DC capacitor - Eq. (1.21)

+
DC voltage

Fig. 1.11a
controller

AC power

Fig. 1.8

controller
AC currents

Fig. 1.6a

controllers
md

mq

vGd vGq P ∗

l

iG∗

d

iG∗

q

P ∗

ac

Q∗

ac

vGd vGd vGq

vdc iGqiGd

v∗dc

Figure 1.12 – 2-level VSC with DC bus connection - SSTI equations

This kind of block diagrams is exploited in this Thesis for highlighting the SSTI model
(converter and controller, for instance) which is considered prior the linearization process. The
SSTI model from Fig. 1.12 is developed in per-unit5 for each dynamic state in (1.28) and the
algebraic equations in (1.29). The state-variables named as “ξX” correspond to the state of
controller of the variable “X”. Moreover, Idcb and Vdcb are the nominal current and voltage
for the DC side, Ibdq and Vbdq the nominal current and voltage for the AC side in dq frame
(See Appendix A). Note that the DC voltage (square) controller structure corresponds to an
IP controller, to avoid overshoots for reference steps (See Appendix C).

f1 =
dξv2

dc

dt
=

1
Ti,v2

dc

(
(v∗

dc)
2 − (vdc)2

)
(1.28a)

f2 =
dξiG

d

dt
=

1
Ti,iG

(iG∗
d︸︷︷︸

(1.29a)

−iG
d ) (1.28b)

f3 =
dξiG

q

dt
=

1
Ti,iG

(iG∗
q︸︷︷︸

(1.29a)

−iG
q ) (1.28c)

f4 =
diG

d

dt
=

ωb

Lac
eq


 vmd︸︷︷︸

(1.29b)

−vG
d − ωLac

eqi
G
q − Rac

eqiG
d


 (1.28d)

5No indication in the variables in the notation to identify per-unit variables for simplicity
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f5 =
diG

q

dt
=

ωb

Lac
eq


 vmq︸︷︷︸

(1.29c)

−vG
q + ωLac

eqi
G
d − Rac

eqiG
d


 (1.28e)

f6 =
dvdc

dt
=

1

2
(

1
2
CS

v2

dc

Pn

)
(

P ∗
l

vdc

− Ibdq

Idcb

3
2

(
mdiG

d + mqi
G
q

))
(1.28f)

P ∗
ac = −

(
ξv2

dc
− Kp,v2

dc
(vdc)2

)
; iG∗

d =
2
3

P ∗
ac

vG
d

; iG∗
q =

2
3

Q∗
ac

vG
d

(1.29a)

v∗
md = Kp,iG

(
iG∗
d − iG

d

)
+ ξiG

d
+ ωLac

eqi
G
q + vG

d ; md =
Vbdq

Vdcb

v∗
md

vdc

; vmd =
Vdcb

Vbdq

mdvdc (1.29b)

v∗
mq = Kp,iG

(
iG∗
q − iG

q

)
+ ξiG

q
− ωLac

eqi
G
d + vG

q ; mq =
Vbdq

Vdcb

v∗
mq

vdc

; vmq =
Vdcb

Vbdq

mqvdc (1.29c)

The states x and inputs u are listed below (the “∗” in P ∗
l denotes that this power is imposed

externally):

x =
[
ξv2

dc
ξiG

d
ξiG

q
iG
d iG

q vdc

]⊤ ∈ R
6 (1.30)

u =


vG

d vG
q P ∗

l︸ ︷︷ ︸
Phys.

v∗
dc Q∗

ac︸ ︷︷ ︸
Control




⊤

∈ R
5 (1.31)

The operation point in steady-state is given by the point (x0, u0), where:

x0 =
[
ξv2

dc0
ξiG

d0

ξiG
q0

iG
d0 iG

q0 vdc0

]⊤ ∈ R
6 (1.32)

u0 =


vG

d0 vG
q0 P ∗

l0︸ ︷︷ ︸
Phys.

v∗
dc0 Q∗

ac0︸ ︷︷ ︸
Control




⊤

∈ R
5 (1.33)

For simplicity, let us consider the following output functions:

h1 = iG
d h2 = iG

q h3 = vdc (1.34)

The matrices A, B, C and D are computed taking into account (1.27) as follows:

A6×6 =




∂f1

∂ξ
v2

dc

∂f1

∂ξ
iG
d

∂f1

∂ξ
iG
q

∂f1

∂iG
d

∂f1

∂iG
q

∂f1

∂vdc

∂f2

∂ξ
v2

dc

∂f2

∂ξ
iG
d

∂f2

∂ξ
iG
q

∂f2

∂iG
d

∂f2

∂iG
q

∂f2

∂vdc

∂f3

∂ξ
v2

dc

∂f3

∂ξ
iG
d

∂f3

∂ξ
iG
q

∂f3

∂iG
d

∂f3

∂iG
q

∂f3

∂vdc

∂f4

∂ξ
v2

dc

∂f4

∂ξ
iG
d

∂f4

∂ξ
iG
q

∂f4

∂iG
d

∂f4

∂iG
q

∂f4

∂vdc

∂f5

∂ξ
v2

dc

∂f5

∂ξ
iG
d

∂f5

∂ξ
iG
q

∂f5

∂iG
d

∂f5

∂iG
q

∂f5

∂vdc

∂f6

∂ξ
v2

dc

∂f6

∂ξ
iG
d

∂f6

∂ξ
iG
q

∂f6

∂iG
d

∂f6

∂iG
q

∂f6

∂vdc




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(x0;u0)

B6×5 =




∂f1

∂vG
d

∂f1

∂vG
q

∂f1

∂P ∗

l

∂f1

∂v∗

dc

∂f1

∂Q∗
ac

∂f2

∂vG
d

∂f2

∂vG
q

∂f2

∂P ∗

l

∂f2

∂v∗

dc

∂f2

∂Q∗
ac

∂f3

∂vG
d

∂f3

∂vG
q

∂f3

∂P ∗

l

∂f3

∂v∗

dc

∂f3

∂Q∗
ac

∂f4

∂vG
d

∂f4

∂vG
q

∂f4

∂P ∗

l

∂f4

∂v∗

dc

∂f4

∂Q∗
ac

∂f5

∂vG
d

∂f5

∂vG
q

∂f5

∂P ∗

l

∂f5

∂v∗

dc

∂f5

∂Q∗
ac

∂f6

∂vG
d

∂f6

∂vG
q

∂f6

∂P ∗

l

∂f6

∂v∗

dc

∂f6

∂Q∗
ac




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(x0;u0)

(1.35a)

C6×3 =




∂h1

∂ξ
v2

dc

∂h1

∂ξ
iG
d

∂h1

∂ξ
iG
q

∂h1

∂iG
d

∂h1

∂iG
q

∂h1

∂vdc

∂h2

∂ξ
v2

dc

∂h2

∂ξ
iG
d

∂h2

∂ξ
iG
q

∂h2

∂iG
d

∂h2

∂iG
q

∂h2

∂vdc

∂h3

∂ξ
v2

dc

∂h2

∂ξ
iG
d

∂h2

∂ξ
iG
q

∂h2

∂iG
d

∂h2

∂iG
q

∂h2

∂vdc




∣∣∣∣∣∣∣∣∣∣
(x0;u0)

D3×5 =




∂h1

∂vG
d

∂h1

∂vG
q

∂h1

∂P ∗

l

∂h1

∂v∗

dc

∂h1

∂Q∗
ac

∂h2

∂vG
d

∂h2

∂vG
q

∂h2

∂P ∗

l

∂h2

∂v∗

dc

∂h2

∂Q∗
ac

∂h3

∂vG
d

∂h3

∂vG
q

∂h3

∂P ∗

l

∂h3

∂v∗

dc

∂h3

∂Q∗
ac




∣∣∣∣∣∣∣∣∣
(x0;u0)

(1.35b)
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The computation of A, B, C and D is performed in Matlab by means of the Jacobian
function. Then, after the operating point (x0; u0) is obtained numerically, the matrices from
(1.35) are evaluated (becoming full numerical). Finally, the state-space representation of the
LTI model is obtained as follows:

d

dt




∆ξv2

dc

∆ξiG
d

∆ξiG
q

∆iG
d

∆iG
q

∆vdc




= A6×6




∆ξv2

dc

∆ξiG
d

∆ξiG
q

∆iG
d

∆iG
q

∆vdc




+ B6×5




∆vG
d

∆vG
q

∆P ∗
l

∆v∗
dc

∆Q∗
ac




(1.36a)




∆iG
d

∆iG
q

∆vdc


 = C6×3




∆ξv2

dc

∆ξiG
d

∆ξiG
q

∆iG
d

∆iG
q

∆vdc




+ D3×5




∆vG
d

∆vG
q

∆P ∗
l

∆v∗
dc

∆Q∗
ac




(1.36b)

Note that for being allowed to linearize the dynamic model expressed generically in (1.14) in
the classical state-space form of LTI models in (1.26) it is mandatory to know the steady-state
condition given by (x0; u0). Moreover, the LTI model from (1.26) is an approximation of the
non-linear model around the operating point (x0; u0). The range of validity of the LTI model
depends on the degrees of non-linearity of the studied non-linear system. To assess the validity
of the LTI model on a range of operating points, time domain simulations and comparisons of
the LTI and Simulation models are needed (See Fig. 1.1).

LTI time-domain model validation

The resulting LTI model of the single-terminal 2-level VSC with the DC capacitor CS

from (1.36) is compared against the non-linear model with SSTI solution from Fig. 1.12 in
time-domain simulation. A DC power reference change from P ∗

l = 1 pu to 0.8 pu at 50 ms is
simulated, while maintaining the reactive power reference Q∗

ac at 0 pu. At t = 350 ms, a change
on DC voltage reference v∗

dc is applied from 1 pu to 1.05 pu at t = 350 ms. The comparison
results are shown in Fig. 1.13. Note that the operating point is added to the dynamic simulation
of the LTI model, since this one deals only with the variable deviations [58].

As observed in the comparison, results from both models are acceptably similar. As long
as the perturbation is small (i.e. the system remains in the proximity of the starting point
defined by x0 and y0), the LTI model replicates accurately the dynamics of the non-linear
SSTI model.

Linear analysis of LTI models

One of the main purposes of obtaining the LTI model is that the vast theory available
for dynamic linear systems can now be applied. For instance, it is possible to calculate the
eigenvalues of the A matrix (also called “modes”) which provide valorous information about
the system dynamics [64]. The most important feature is that they provide a quick information
about the stability of the system. If all the eigenvalues are placed in the Left-Hand Plane (LHP)
of the “Real-Imaginary” plane (i.e. all the real parts of the eigenvalues are negative), the linear
system is asymptotically stable. If at least one eigenvalue is placed in the Right-Hand Plane
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Figure 1.13 – Time domain validation of the LTI model of a 2-level VSC with Open-loop
control in dq frame – Small signal perturbation

(RHP), the system is unstable [84]. If the non-linear SSTI and the LTI model are close enough
in terms of dynamic behavior, the stability properties of both systems are the same.

The eigenvalues λ of the A matrix from (1.35) are shown in Table 1.1 and plotted in
Fig. 1.14 for gaining a faster representation of the system dynamics. In this figure, a gray
triangle is marked which corresponds to the area where the eigenvalues have a damping equal
or less to ζ = 0.7. The dashed gray zone (positive real part) represents the unstable zone.
Also, the figure highlights the reference eigenvalues obtained with the theoretical closed-loops
simplified systems used for tuning the PI controllers (Fig. 1.6 for the inner current iG controller,
and Fig. 1.11 for the DC voltage (square) v2

dc controller).
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Figure 1.14 – Eigenvalues of LTI model of HVDC Link with 2-level VSC

As seen in Fig. 1.14, the eigenvalues λ are grouped into two squares, denoting the modes
associated with the current loops, and also the DC voltage modes. Due to the simplicity of
the current example, the eigenvalues can be directly associated to the currents or voltages
by visual inspection with respect to the reference eigenvalues. It is clear that the eigenvalues
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Table 1.1 – Eigenvalues of A matrix from (1.35) - VSC connected to variable DC voltage

Eigenvalue Frequency ωn Damping ζ
λ1,2 −21.1444 ± j20.923 3.33 0.71082
λ3,4 −202.1045 ± j229.1433 36.4693 0.66147
λ5,6 −216.16 ± j208.0261 33.1084 0.72053

λ1,2 are linked with the DC voltage since those eigenvalues overlap with the reference modes.
The reference eigenvalues from the DC voltage controller are given in (1.37) (see (C.6) from
Appendix C).

λRef.
DC Voltage = ωn

(
−ζ ±

√
ζ2 − 1

)
=

3
τv2

dc︸︷︷︸
100ms

(
−0.7 ±

√
0.72 − 1

)
= −21 + ±j21.4243 (1.37)

For verifying that λ1,2 corresponds to the DC voltage, the participation factors can be calculated
as detailed in [64,85], and the results are shown in Fig. 1.15. The participation factors technique
relates each mode with the associated state variables. When the A matrix from the LTI system
is diagonal-dominant (i.e. the states are mostly decoupled between them), the participation
factors provide precise information about the system. For very coupled systems the information
that can be obtained with these technique for certain eigenvalues is limited [85]. Nevertheless,
this technique will be exploited in this Thesis for different LTI systems.
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Figure 1.15 – Participation factors of eigenvalues λ1,2 of LTI model of HVDC Link

Finally, the participation factors are calculated and shown in Fig. 1.16 for the rest of the
eigenvalues. This figure verifies the eigenvalues inside the square with “Current modes” from
Fig. 1.14. The reference eigenvalues from the current controllers are given in (1.38).

λRef.
Currents = ωn

(
−ζ ±

√
ζ2 − 1

)
=

3
τiG2

︸︷︷︸
10ms

(
−0.7 ±

√
0.72 − 1

)
= −210 + ±j214.243 (1.38)
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Figure 1.16 – Participation factors of eigenvalues λ3 — λ6 of LTI model of HVDC Link
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1.3 Modeling, control and dynamic analysis of HVDC

links with 2-level VSC

In this section, an HVDC point-to-point connection with 2-level VSC as depicted in Fig. 1.17
is considered. In this configuration, one converter is in charge of the power flow in the DC link
(P-mode converter) and the other has the task of maintaining the DC voltage to the desired
level (DC Voltage mode) [9]. This arrangement of control tasks between both converters is
usually called “Master-Slave”. For the sake of simplicity, the DC cable is considered as a pure
capacitor Cdc in this section6.

Rac
eq,1Lac

eq,1i
G
abc,1 +

−

vdc,1

v
G
abc,1

imdc,1
2-level VSC

CS,1

HVDC Cable 2-level VSC

CS,2vdc,2

imdc,2

+

−

Rac
eq,2L

ac
eq,2 i

G
abc,2

v
G
abc,2

P-mode DC Voltage

mode

idc,1 idc,2

Cdc

Figure 1.17 – Configuration of a VSC-based HVDC link

The mathematical model of each VSC in dq frame is given in (1.10) and for the sake of
simplicity, the parameters of both converters are identical. Also, the dynamics of the simplified
DC bus are given in (1.39):

dvdc

dt
=

1
Cdc

eq

(−imdc,1 − imdc,2) , (1.39)

where,
Cdc

eq = CS,1 + Cdc + CS,2 (1.40)

Note that the DC voltage dynamics are governed by a power balance in the DC grid, and
the parameter associated to these dynamics is the equivalent capacitor Cdc

eq . The tuning of the
DC voltage controller relies heavily on this parameter for having a good voltage regulation.
As it will be discussed in Chapter 5, the equivalent capacitor Cdc

eq would have a great impact
in MTDC grid dynamics and its determination is becoming challenging when converter are
MMCs instead of 2-level VSCs. In the next section, the discussion of the equivalent capacitor
value is treated on a simplified HVDC point-to-point configuration to introduce this concept.

1.3.1 LTI model of the HVDC link: Concatenation of linear models

The HVDC link from Fig. 1.17 with the respective controllers can be expressed as a general
block diagram as in Fig. 1.18. This figure highlights the relations “inputs-outputs” for the
different sub-systems composing the non-linear HVDC link model with SSTI solution [9, 86].
This figure also shows how the complete LTI model is built from the concatenation of the
linearized models of each VSC with the DC bus equation. The applied methodology is described
in the Appendix B.2.

The different LTI models defined by Fig. 1.18 are linearized around an operating point
defined by an active power transfer of 1 pu and a DC voltage level of 1 pu as well. The
information on the operating point condition is listed in Table 1.2. It has to be noted that the
model obtained from the aggregation of linear models is not strictly the same as the linearization

6In Chapter 5, more detailed cable models are used.
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Figure 1.18 – Block diagram of non-linear model of an HVDC link with SSTI solution

of the complete non-linear model: the main difference is due to the degree of non-linearity of
the SSTI system. In this case, since the non-linearity is not so important, the concatenation
method is acceptable.

Table 1.2 – Operating point of HVDC link for linearization

Variable Value Variable Value

Pac,1 1 pu Qac,1 0 pu
vdc 1 pu Qac,2 0 pu

The remaining variables defining the operating point of the system are obtained by solving
the non-linear equations that results from setting the derivatives of the equations to zero in
Fig. 1.18. The states of the complete HVDC link LTI model are listed in (1.41).

xhvdc =
[
iG
d,1 iG

q,1 ξiG
d,1

ξiG
q,1

iG
d,2 iG

q,2 ξiG
d,2

ξiG
q,2

ξv2

dc
vdc

]⊤ ∈ R
10 (1.41)

Time Domain Validation of LTI model

The LTI model is validated through time-domain simulations. Starting with the operating
point defined in Table 1.2, a step on P ∗

ac,1 of −0.2 pu is applied at 50 ms. Then, a step on Q∗
ac,1

of 0.1 pu is applied at 250 ms. Finally, the DC voltage reference v∗
dc is changed from 1 pu to

1.05 pu at 300 ms. In this simulation, two models are compared: the non-linear model (with
VSCs average value models), which is denoted with “SSTI” in the legend; and the LTI model
from the complete system, denoted as “LTI”.

Results of the currents in dq frame for the VSC-1 (P-mode) are gathered in Fig. 1.19 where
it can be noticed that the LTI model reproduces accurately the dynamics of the SSTI system.
Moreover, a perfect decoupling between the currents in the d and q axes can be achieved.

The results of the DC bus voltage is shown in Fig. 1.20, where both models give similar
results. At the moment of the AC power step on the VSC-1, a power imbalance in the DC
capacitor Cdc

eq occurs, so the voltage tends to vary. The DC voltage controller adapts the AC
power of VSC-2 for reestablishing the power balance in the DC bus. At t = 300 ms, the voltage
follows the reference step applied with the 100 ms of response time.
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Figure 1.20 – Time domain validation of the LTI model of HVDC Link with 2-level VSC —
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As it was shown in Figs. 1.19 and 1.20, the LTI model reproduces accurately the dynamics
of the non-linear model. It is recalled that the intention of this Chapter is to highlight the
methodology followed in this Thesis, without too much attention on the analysis of the results.

1.3.2 Linear analysis of HVDC link LTI model

Once the LTI model is validated, the eigenvalues are calculated for studying the dynamics of
the system and, most importantly, its stability. The eigenvalues for the HVDC link example
of this section are shown in Fig. 1.21. Also, the figure highlights the reference eigenvalues
obtained with the theoretical closed-loops simplified systems used for tuning the PI controllers
as the approach followed in the single-terminal VSC station in Fig. 1.14.

Due to the simplicity of the current example, the eigenvalues can be related to the system
states by simple inspection of Fig. 1.21, however, the participation factor analysis is used as
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Figure 1.21 – Eigenvalues of LTI model of HVDC Link with 2-level VSC

in Section 1.2.4 for validating the intuitive deductions. At the top of Fig. 1.22, results of the
participation factors for the eigenvalues λ1,2 are shown, which are related to the DC voltage
closed loop control and its controlled state, as it was suspected from Fig. 1.21. Finally, the
participation factors are calculated and shown in Fig. 1.22 for the rest of the eigenvalues. This
figure verifies the eigenvalues inside the square with “Current modes” from Fig. 1.21.
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Figure 1.22 – Participation factors of eigenvalues λ1 — λ10 of LTI model of HVDC Link

In this section the HVDC link with 2-level VSC was presented and linearized for obtaining
the LTI model of the overall system. Once that the LTI model was verified, the dynamics
are analyzed with the eigenvalues and the participation factors. The system considered is
relatively simple, but it allows to highlight the main key points of the system: the equivalent
DC capacitor Cdc

eq , which governs the DC voltage dynamics in conjunction with the DC voltage
controller.
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1.4 Modeling, control and dynamic analysis of MTDC

grids with 2-level VSC

As it was stated in the Introduction, the MTDC grids are composed by at least three
converters connected to the same HVDC grid. With VSC converters, the studies of MTDC
grids become very popular and many publications can be found on this topic [67]. The aim of
this section is to summarize the main key elements of the MTDC grids with VSCs [74].

For understanding the main phenomenons in DC grids, an analogy with classical AC grids
is fruitful [58, 87]. AC system dynamics are characterized by the kinetic energy stored in
synchronous rotating machines connected to it. For DC systems, the energy is stored under
an electrostatic form since it corresponds mainly to the energy stored in converter station
capacitors (and in the core-to-screen capacitor of DC cables, to a certain extent), as expressed
in (1.42).

Ec =
1
2

Csvdc
2, (1.42)

where Cs is the converter station capacitor value (in F ) and Ec is the energy stored in a
converter station capacitor (in J). In DC systems; the electrostatic energy stored in the
substations capacitor can be weighted by the substation base power Pn. This leads to an
electrostatic constant Hc which is homogeneous to a time as shown in (1.43).

Hc =
1
2

Cs
vdc

2

Pn

, (1.43)

where Pn is the nominal power of the converter station (in W ) and Hc is the electrostatic
constant (in s). For HVDC converters stations Hc is in the order of 30 ms to 40 ms, which is
a very small value compared to conventional unit inertia constant (3 s up to 10 s) [64]. This
means that the dynamics involved in DC systems are much faster than the ones in classical
AC systems.

One of the main concerns in MTDC systems is the control of the DC bus voltage and
the power flows inside the grid. Several works were focused on the coordinated control of the
power dispatch of MTDC grids [88], basically oriented in power flow calculations for generating
the DC power and voltage references for each converters. These controllers rely heavily on
the communication between the converters and a master control unit which calculates the
appropriated references [89]. This aspect of the MTDC grids is not covered in this Thesis.
Nevertheless, the control and dynamics of the DC bus voltage is of interest.

For improving the reliability of MTDC grids, the control of the DC voltage should be
performed without relying on external communications. Therefore, the converters involved on
this task should only utilize the local measures at its Point of Common Coupling on its DC
side (PCC-DC). As for HVDC links, the “Master-Slave” strategy can be used, where only one
converter is in charge of fixing the voltage level at its DC endpoint. However, if this converter
is lost (e.g. due to an external AC fault), the DC voltage is no more controlled. In this way,
MTDC system has a high risk of collapsing if no other action is taken. To avoid this drawback,
it is expected that several converters will share the DC voltage control efforts. In the following
section, the most typical controller of the DC voltage on MTDC grids is introduced: the DC
voltage droop method.
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1.4.1 DC Voltage distributed control: DC Droop Control

The voltage droop method is inspired by the primary frequency control [87]. In AC systems,
to maintain the balance between production and demand, some production units are equipped
by a controller which regulates their output power according to the frequency by following a
power-frequency characteristic which is commonly called droop control [90]. As said in the
previous section, the frequency counterpart in the DC system is the DC voltage level, hence
following the same principle the power flow can be controlled by a Power-Voltage droop as:

∆pdc = − 1
kdr

(v∗
dc − vdc) (1.44)

where kdr is the droop value (in V/W or pu/pu), ∆pdc is the deviation power injected into
the DC grid (in W or pu) and ∆vdc is the deviation of the DC voltage (in V or pu). This
controller, shown in Fig. 1.23, is adopted in conjunction with the AC active power controller
from Fig. 1.8a, where it is assumed that Pac ≈ Pdc.

÷

vGd

iG∗

d2

3

+

−

v∗
dc

vdc

−1
kdr

+

P ∗
ac0

P ∗
ac

DC Droop Controller

Figure 1.23 – DC Voltage droop controller

This method increases the reliability and reduces the stress on the DC system [91], however,
due to the proportional controller; the DC voltage level is not strictly maintained at the
reference value if a transient behavior occurs. Nevertheless, this can be amended by an external
master controller to re-adapt the converter set-points [58, 74]. It should be noted that in this
Thesis it is preferred the droop controllers which generate a new power reference, instead of a
DC current reference [57, 92, 93]. The reason is that with the DC current approach there is a
risk of multiple operating points in the DC grid when a disturbance occurs, and some of them
may be unstable as described in [94].

The choice of the droop gain kdr requires special attention. The most common-practice is
to set the droop-gain following steady-state considerations (i.e. setting a maximum steady-
state possible deviation of DC voltages and power injections, and then calculate the droop
parameters as it will be demonstrated in the following section). This choice may conduct
to undesired oscillations and interactions in the DC grid during transients. For this reason,
in [95] and [69] it is proposed to study the linear models of the MTDC grids for sizing the
droops taking into account the systems dynamics. The dynamic impact of the droop gains will
be exploited along this Thesis.

There is a wide range of other techniques for achieving the same distributed voltage control
in the literature [96]. In the following, a short description on the main methods is given:

• Voltage margin method: This method can be considered as an extension of the master-
slave method: the master role may be successively devoted to different substations de-
pending on the level of power in each station [74,97].

• Dead-band droop method: The dead-band droop control is a mix between the voltage
margin method and the droop voltage method [98, 99]. With low power deviations the

35



balance role is assumed by the stations which are classically droop controlled, but for
severe deviations, when the DC voltage reaches a first critical limit, stations which were
initially constant power controlled switch to droop control to support the DC voltage
and contribute to the balance effort [100]. This method is well adapted for wind farms,
in this way the wind farms produce power delivered by wind in normal operation and
help to the power balance when the DC voltage is outside the bounds.

• Piece-wise droop method: The piece-wise droop method is also called undead-band droop
control and has firstly been presented in [101]. This method is based on piecewise droop
characteristics; it enables to define different droop values according to the voltage level,
i.e. for small and large power deviations. This method seems interesting for on-shore
converters, since the DC voltage operating range can be limited [102].

• Advanced droop methods: In [103] it is proposed an advanced controller with droop
mechanism for linear relation between power and square of the DC voltage. In this way,
the energy of the converter is taken into account in the control design. For improving the
DC voltage dynamics, in [104] it is proposed to add lead-lag compensations in addition
to the proportional droop controller. The authors of [105] propose a novel scheme for
adapting the droop coefficients to share the burden according to the available headroom
of each converter station. Finally, in [106] it is proposed a continuous non-linear P-vdc

relation instead of a simple linear correlation. However, this kind of advanced droop
techniques requires a perfect knowledge of the HVDC system and parameters for a proper
tuning, which is not always the case.

In this Thesis, only the droop controller shown in Fig. 1.23 is considered since advanced
droop methods may be not being considered by TSO and market players because it is difficult
to determine the power flows in advance. However, the other methods can be treated similarly
with the methodology presented in this Thesis providing small adaptations.

1.4.2 Simplified dynamic analysis of droop-controlled MTDC grids

In this section, a simplified analysis of an MTDC grid is performed with the objective of
highlighting the main key parameters of the system. For this task, let us first consider the
MTDC system with Nc VSCs from Fig. 1.24. The first Nd converters are in DC voltage droop
control mode (left side converters in Fig. 1.24), while the rest (Nc − Nd) are controlling the
power into the DC grid (right side converters in Fig. 1.24). A strong assumption is made
on the DC grid at this point: all DC cables are represented by a single equivalent capacitor
Cdc. Even though the lossless DC grid assumption may conduct to different results from the
detailed models [107], the intention is to deduce simple formulations for understanding the key
elements governing the MTDC grid dynamics.

The general model of the VSCs has been simplified as follows [74]:

• Suppression of all parts related to reactive power control.
• The dynamics of the current loops are neglected, set at unitary gain.
• The active power at the AC side becomes equal to the active power at the DC side for

each converter, as expressed in (1.45).

Pmdc,j = P ∗
ac,j = vdcimdc,j. (1.45)

Due to the non-linearity of (1.45), a deviation model is derived as follows:

∆Pmdc,j = ∆vdcimdc,j0 + vdc0∆imdc,j, (1.46)
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where the variables with ∆ denote small deviations, the variables with subscript 0 represent
the operating point and j corresponds to the index of each VSC.

From (1.46), the linear VSC model can be obtained as shown in Fig. 1.25, where Pn and
vdcn are the power and DC voltage base of the converter. Note that the quantities outside the
dashed box are in per-unit system (pu) and the droop parameter kd has no units.
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Figure 1.25 – Linearized VSC-MMC model – SI quantities inside the dashed box and PU
quantities outside the dashed box

Applying the same concept of equivalent DC capacitance Cdc
eq from the previous section,

the equivalent DC grid capacitance of the MTDC grid Cmtdc can be represented by (1.47).

Cmtdc = Cdc +
Nc∑

j=1

CS,j, (1.47)

As the grid is simplified, the DC voltage is the same for all the converters, and considering
(1.45) for each VSC; the DC bus dynamics are given by (1.48).

Cmtdc
dvdc

dt
=

Nc∑

j=1

imdc,j ≈ − 1
vdc

Nc∑

j=1

P ∗
ac,j. (1.48)
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Considering (1.46), the linearization of (1.48) yields:

Cmtdc
d∆vdc

dt
= − 1

vdc0

Nc∑

j=1

(
∆P ∗

ac,j − ∆vdcimdc0,j

)
. (1.49)

The power balance is expressed by the sum of substations output power. At an equilibrium
point this sum must be null if the losses are neglected. Moreover, since the voltage drops are
also neglected, the sum of out-coming currents into the simplified DC grid is null. This leads
to considerably simplify the model with:

Nc∑

j=1

imdc0,j = 0. (1.50)

Using the simplified model of droop controlled station from Fig. 1.25, the linearized model
of the MTDC grid is represented in Fig. 1.26. The voltage deviation reference ∆v∗

dc is equal to
zero for the droop controlled converters.
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Figure 1.26 – Simplified model of the Nc-terminal MTDC grid – SI quantities inside the dashed
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From the block diagram of Fig. 1.26, the DC voltage deviation which occurs after a power
change in the VSC j can be defined by the following first order transfer function:

∆vdc,pu = −

1(
Nd∑
j=1

Pn,j

kd,j

)

1 + vdc0vdcnCmtdc(
Nd∑
j=1

Pn,j

kd,j

) s

Pn,j

vdcn

∆P ∗
ac,jpu

. (1.51)
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Simplification with equally rated converters

For the sake of understanding, it is now assumed that power ratings are the same for each
converter. Moreover, all droop parameters are set to an equal value kd, and the initial value
of vdc is equal to its nominal value (i.e. vdc0 = vdcn). Taking into account the aforementioned
considerations, (1.51) is simplified as follows:

∆vdc,pu = −
kd

Nd

1 + kd

Nd

Cmtdcv2

dcn

Pn
s

∆P ∗
ac,puj

. (1.52)

The time for ∆vdc,pu to reach 95% of the final value for a step in ∆P ∗
ac,puj

is given by (1.53).

τvdc,mtdc
= 3 × kd

Nd

Cmtdc
v2

dcn

Pn

. (1.53)

Thus, for a given number of droop controlled stations Nd, the final value of the DC voltage
with respect to a power variation in the grid is directly provided by the numerator of (1.52),
which is function of the droop value kd and the number of converters Nd which participate to
the voltage control [74]. Moreover, the voltage dynamics depends not only on kd, but also on
the equivalent capacitance of the DC grid (Cmtdc). This capacitance does not affect the steady
state voltage deviation.

1.4.3 LTI Model of a simplified MTDC grid

In this section, the LTI model of a four terminal MTDC grid with 2-level VSC (i.e. Nc = 4)
as shown in Fig. 1.27 is evaluated. It is considered that the converters VSC-1, VSC-2 and VSC-3
are droop controlled (i.e. Nd = 3). The droop gain is set equally for the three converters, with
value kd (in pu). The converter VSC-4 is attached to a Wind-Farm and it is modeled as a
simple power-injector to the MTDC grid [95].
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VSC-3

VSC-4

CS,1

VSC-1

CS,2
CS,4

CS,3vdc

Cdc

imdc,1

imdc,2

imdc,3

imdc,4

DC Grid

Figure 1.27 – Four terminal MTDC grid with 2-level VSC

The MTDC grid from Fig. 1.27 is expressed as a block diagram in Fig. 1.28. This figure
highlights the connections of the different models considered at this point.

Considering the state-equations from Fig. 1.28, it is possible to apply the Jacobian lineariza-
tion explained in Section 1.2.4 to obtain the general state-space system of the MTDC grid as
expressed in (1.54), where the vector of states is given in (1.55) and the inputs in (1.56). The
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Figure 1.28 – Mathematical model of four terminal MTDC grid with 2-level VSC from Fig. 1.27

matrices Amtdc, Bmtdc, Cmtdc and Dmtdc are obtained with the same approach followed for
the HVDC point-to-point scheme from previous Section, i.e. the complete LTI model of the
MTDC grid is obtained by the concatenation of the linearized models of each VSC with the
routine detailed in [9].

∆ẋmtdc = Amtdc∆xmtdc + Bmtdc∆umtdc (1.54)

xmtdc =
[
iG

dq,1 ξiG
dq,1

iG
dq,2 ξiG

dq,2
iG

dq,3 ξiG
dq,3

vdc

]⊤ ∈ R
13 (1.55)

umtdc =
[
P ∗

ac,1 Q∗
ac,1 P ∗

ac,2 Q∗
ac,2 P ∗

ac,3 Q∗
ac,3 P ∗

ac,4 v∗
dc

]⊤ ∈ R
8 (1.56)

In the following sub-section the linearized model of the four-terminal MTDC grid is vali-
dated via time-domain simulations.

Time domain validation of MTDC LTI model

The linear model from (1.54) is compared with the non-linear model from Fig. 1.28 via a
time domain simulation. The response times for the current controllers τiG are set to 10 ms
for the converters VSC-1, VSC-3 and VSC-3. The initial operating point is given in Table 1.3,
where the nominal power Pn is 1GW.

Table 1.3 – Operating point of the four-terminal MTDC grid with 2-level VSCs

Variable Value Variable Value Variable Value Variable Value

Pac,1 −0.3 pu Pac,2 0.49 pu Pac,3 0.8 pu Pac,4 −1 pu
Qac,1 0 pu Qac,2 0 pu Qac,3 0 pu vdc 1 pu

The value of droop parameter kd is calculated based on the numerator of (1.52), which is
shown in (1.57). The gain kd is calculated based on a N − 1 condition, where it is admitted
that one converter may be suddenly lost, causing a deficit of power in the DC grid of 1 pu (i.e.
1 GW).

∆vdc = ±0.05 pu = −kd

3
∆P ∗

ac,puj︸ ︷︷ ︸
=1 pu

→ kd = 0.05 × 3 = 0.15 pu. (1.57)

The values of the DC capacitance for each VSC is considered to be the same for simplicity,
and their values are listed in Table 1.4, where the value of the considered Cdc is also given.
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The value of CS of each converter corresponds to an electrostatic constant of HC = 40 ms,
which is a typical value for HVDC converters [74].

Table 1.4 – DC Capacitor values of 2-level VSCs and DC grid

Variable Value Variable Value

CS,1 = CS,2 = CS,3 = CS,4 195.31 µF Cdc 32.55 µF

The theoretical response time τvdc,mtdc
of the four-terminal MTDC grid can be calculated

based on (1.53), with the parameters from Table 1.4, and considering that vdcn = 640 kV, and
Pn = 1 GW. The calculation of τvdc,mtdc

is then given as:

τvdc,mtdc
= 3 × kd

Nd

Cmtdc
v2

dcn

Pn

= 3 × 0.15pu
3

813.80 µF
(640 kV)2

1 GW
= 50 ms (1.58)

Starting with a power flow as shown in Table 1.3, a step on P ∗
ac,4 of 0.8 pu is applied at

t = 50 ms. The final voltage can be easily calculated from (1.57), as ∆vdc = −(0.15/3) × 0.8 =
−0.04 pu. The steady state error on the DC voltage is directly related to the droop gain kd

and the amplitude of the perturbation Pac,4. Results are shown in Fig. 1.29. In Fig. 1.29a the
response of the DC voltage vdc is given, where the legend “SSTI” corresponds to the non-linear
model from Fig. 1.28, “LTI” is the model from (1.54) and “Simp.” is the simplified model from
(1.52). As it can be observed, it is not possible to distinguish any difference between the three
models, validating the 50 ms of response time as predicted in (1.58).
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Figure 1.29 – Simulation results of a four-terminal MTDC grid with 2-level VSC

In Fig. 1.29b, the results for the active power are shown. The three converters equipped
with the droop controller change their active power in the same amount since their droop
values are equal.

Dynamic analysis of MTDC LTI model

After the time-domain validation of the LTI model, the eigenvalues of the system are
calculated and shown in Fig. 1.30. The reference eigenvalues of the closed-loop for the current
controllers are close to the predicted eigenvalues (blue crosses). The pole from the simplified
formulation from (1.52) (with the legend “Simp.”) is also shown in this figure. As it can be
seen, there is one real pole from the “LTI” system which is very close to the predicted pole
with the simplified formulation, as it was expected due to the close match of the time-domain
results.
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Figure 1.30 – Eigenvalues of LTI model of HVDC Link with 2-level VSC

The participation factors for the real eigenvalue λ1 is shown in Fig. 1.31. As it was expected,
the graphic shows that the state with more participation on this mode corresponds to the DC
voltage vdc.
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Figure 1.31 – Participation factors of LTI model of four-terminal MTDC grid - λ1

To evaluate the range of validity of the simplified model, three different parametric varia-
tions are performed to the LTI system. First, in Fig. 1.32a, the droop gain kd is varied from
0.2 pu down to 0.05 pu (this last value corresponds to a voltage deviation of 0.0167 pu for a
DC power mismatch of 1 pu). Second, in Fig. 1.32b the electrostatic constant Hmtdc, which is
defined in (1.59), is varied from 166.66 ms down to 16.66 ms. The value of Hmtdc = 166.66 ms
corresponds to the capacitance values from Table 1.4. Finally, in Fig. 1.32c, the response times
for VSC-1, VSC-2 and VSC-3 are varied from τiG = 5 ms up to 20 ms.

Hmtdc =
1
2

Cmtdc
v2

dcn

Pn

. (1.59)

As shown in Fig. 1.32, when the droop gain kd or the electrostatic constant Hmtdc decrease,
the real pole from the simplified model and the complete LTI systems start to diverge from each
other. Moreover, when the current controllers are slower (higher values of τiG), the simplified
model does not represent accurately the LTI model. The reason is that the assumption of
infinite wideband of current controllers (without interactions with the DC voltage droop) during
the development of the simplified model is violated [74].

For highlighting the limit of the models validity, an example with kd = 0.05 pu, Hmtdc =
16.66 ms (CS,j = 48.82 µ F) and τiG = 10 ms is evaluated via time-domain simulations. With
these parameters, the theoretical response time of the MTDC grid is given by (1.60). Results
are shown in Fig. 1.33. As it can be seen, the simplified model cannot reproduce the oscillations
on the DC voltage. In the other hand, the LTI model does reproduce the oscillations on the
DC voltage and AC powers. However, the validity of the simplified model can be questioned
directly from (1.60). The theoretical response time is slower than the grid current controllers.
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Figure 1.32 – Parametric variations of kd, Hmtdc or τiG of the LTI model of a four-terminal
MTDC grid with 2-level VSCs

Since the DC voltage droop control is an “outer” loop, for avoiding interactions with the current
controllers, the response times for both loops should be separated in the time frames.

τvdc,mtdc
= 3 × kd

Nd

Cmtdc
v2

dcn

Pn

= 3 × 0.05pu
3

48.82µF
(640kV)2

1GW
= 4.66ms (1.60)

In this section, a linearized model of an MTDC grid is presented. Also, a simplified model
is recalled from [74], which yields a simple equation relating the power deviation and the DC
voltage which highlights the influence of the droop parameter and the stored energy on the DC
grid on the overall dynamics of the system. Even though strong assumption has been made to
lead to this simplified, for realistic values the model is accurate enough for a good indication
on the systems response.
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Figure 1.33 – Simulation results of a four-terminal MTDC grid with 2-level VSC – kd = 0.05
pu, Hmtdc = 16.66 ms, τiG = 10 ms

1.5 Chapter Conclusions

This Chapter introduces the methodological principles in the modeling and dynamic anal-
ysis of HVDC systems with power electronics converters used through this Thesis. The used
examples are based on simple DC systems considering classical 2-level VSCs in order to high-
light the modeling steps. The different models and nomenclature used in this Chapter are
summarized as follows:

• SSTP: Dynamic model (usually non-linear) whose state variables oscillate periodically
in steady state. This model is usually expressed in abc frame.

• SSTI: Dynamic model (usually non-linear) whose state variables are constant in steady
state. It may be obtained directly from mathematical manipulations of the SSTP model
without losing generality. This model is usually expressed in dqz frame.

• LTI: The linearized version around an operating point of the SSTI model and its associ-
ated controller (also in SSTI representation). The LTI models are very convenient since
there is a lot of mathematical theory readily available to be applied, such as stability
studies based on eigenvalues.

Once the different models of the single converter are well established, they may be easily
used to build up bigger systems such as HVDC links or MTDC grids. This Chapter presented a
point-to-point scheme, where the classical controllers (current and voltage) based on cascaded
control loops are introduced. Also, an MTDC case study is presented. The most common
distributed control strategy for the DC voltage, namely droop-control, is presented. Moreover,
a simplified model (first order transfer function) is developed which highlights the main key
components governing the droop-controlled MTDC grid dynamics: the droop parameter, and
the stored energy on the DC grid. Even though the model is very simplified, it us exploited
for the analysis of MTDC grids along this Thesis, mostly when considering the MMC-based
MTDC grids in Chapter 5.

The concepts in this Chapter serve as a prelude for the following in this Thesis. The
following Chapter is focused on the modeling MMC with Steady-State Time Invariant Solution.
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Chapter 2

Modeling of Modular Multilevel
Converters with Steady-State Time
Invariant Solution

2.1 Introduction

As a prerequisite for performing small-signal stability analysis of MMC-based HVDC sys-
tems, it is needed a suitable MMC model that can be linearized. In Chapter 1, the non-linear
model of the 2-level VSC was expressed in dq frame to achieve a Steady-State Time-Invariant
solution (SSTI) in a straightforward manner, obtaining a linearizable model. Obtaining a
linearized small-signal model of an MMC that can be analyzed by traditional techniques for
eigenvalue-based stability techniques requires a model formulation with a uniquely defined
equilibrium point for each operating condition, which corresponds to all state variables settling
to constant values in steady-state [64]. Thus, it is necessary to derive a state-space model with
a SSTI solution in a set of suitably defined Synchronously Rotating Reference Frames.

This Chapter presents a MMC model with SSTI solution which can be linearized involving
as few simplifications as possible in the derivation of the model. Indeed, the presented approach
is intended for preserving the fundamental non-linearity of the stationary frame average model
of the MMC that is used as starting point for the presented derivations. This is achieved
by utilizing the information about how the different variables of the MMC contain mainly
combinations of DC-components, fundamental frequency components (ω), double frequency
oscillations (2ω) and third harmonics (3ω) in steady-state operation. By manipulating the
MMC natural variables corresponding to physical quantities of the upper and lower arms by
using the sum (Σ) and difference (∆) between those quantities as MMC state variables, a nat-
ural frequency separation can be obtained where the ∆ variables contain only a fundamental
frequency and third harmonic component, while Σ variables contain DC and double-frequency
components. Since the DC- and third harmonic components will be equal in all three phases,
they appear only as zero sequence components, and this frequency separation allows for ap-
plying appropriate Park transformations to each set of variables, resulting in an SRRF model
where all state variables settle to a constant equilibrium point in steady-state operation. The
derived model is validated by time-domain simulations in comparison to the average model
used as a starting point for the derivations and then confirmed by EMT detailed simulation of
an MMC with 400 sub-modules per arm.

The content of this Chapter was developed in collaboration with SINTEF and NTNU
(Gilbert Bergna, Jon Are Suul and Salvatore D’Arco) and is part of Journal II.
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2.2 Literature review on the MMC modeling approaches

Different types of studies are necessary for design and analysis of MMC-based HVDC trans-
mission systems, requiring various detail levels in the modeling [108]. A general overview of
MMC modeling approaches suitable for different types of studies is shown in Fig. 2.1. The most
detailed models allow for simulating the switching operations of the individual sub-modules of
the MMC, as shown to the left of the figure. Such models can be used for studying all modes
of operation and all MMC control loops, including algorithms for balancing the sub-module
voltages [109,110]. Two main models are found in this category with respect to [111]: “Model
# 1: Detailed IGBT-Based Model”, where each IGBT and diodes are modeled in detail; and
“Model # 2: Equivalent Circuit-Based Model”, which each sub-module switch is replaced by
a resistance with high value if the switch is off or low value if the switch is on. This last model
was first presented in [112], proving that the computation time can be reduced and is used as
the simulation EMT model in this Thesis as a reference for the rest of the developed models
(more details in Appendix F).

If equal voltage distribution among the sub-modules in each arm of an MMC can be as-
sumed, Average Arm Models (AAM) can be introduced, or also referred as “Model # 3: MMC
Arm Switching Function” in [111]. The AAM modeling approach allows for representing each
arm of the MMC by a controllable voltage source associated with a corresponding equivalent
capacitance, and introduces a significant reduction in complexity while still maintaining an
accurate representation of the internal dynamics [113].
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Figure 2.1 – Overview of MMC modeling approaches and their areas of application

Average modeling by the AAM representation, or by equivalent energy-based models, are
suitable for simplified simulations and analysis, and have been widely used as basis for control
system design [114–117]. However, the variables of such models are Steady-State Time Periodic
(SSTP), but most importantly, the currents and capacitor voltages in each arm of the MMC
contain multiple frequency components [118]. This prevents a straightforward application of
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the Park transformation for obtaining state-space models of three-phase MMCs represented in
a single SRRF, as already performed for the 2-level VSC in Chapter 1. As indicated in Fig. 2.1,
such a SRRF dqz model must be derived from an equivalent average model in the stationary abc
coordinates. If a non-linear model with a SSTI solution, corresponding to defined equilibrium
point, can be formulated, a Linear Time Invariant (LTI) model suitable for eigenvalue analysis
can be directly obtained by the Jacobian linearization detailed in Section 1.2.4.

Several approaches for obtaining LTI state-space models of MMCs have been recently
proposed in the literature, motivated by the need for representing MMC HVDC transmission
systems in eigenvalue-based small-signal stability studies. The simplest approach has been to
neglect parts of the internal dynamics of the MMC, and to model mainly the AC-side dynamics
in a SRRF together with a simplified DC-side representation, as in the models proposed in
[119–121]. However, if the dynamics associated with the internal equivalent capacitor voltages
of the MMC and the interaction with the internal currents are ignored, such models may imply
significant inaccuracies. Especially if the MMC equivalent capacitor is directly connected to
the DC bus similarly as a 2-level VSC, like in [119, 121]; in this case the model will only be
suitable for representing very slow transients. Therefore, more detailed dynamic state-space
models have been proposed in [122–128]. These available models have been developed for
representing two different cases as discussed in the following.

The approaches presented in [122] and [123] are based on the assumption that the modula-
tion indices for the MMC arms are calculated to compensate for the voltage oscillations in the
internal equivalent arm capacitor voltages, referred to as Compensated Modulation (CM) (more
details on the modulation indices calculations for the MMC are found in Appendix F). This
strategy for control system implementation limits the coupling between the internal variables
of the MMC and the AC- and DC-side variables. Thus, CM-based control allows for simplified
modeling of the MMC, where only the aggregated dynamics of the DC-side current and the
total energy stored in the capacitors of the MMC are represented. As a result, these models
can provide accurate representation of the AC- and DC-side terminal behavior of MMCs, but
imply that the dynamics of many internal variables cannot be analyzed. Nevertheless, these
modeling approaches are very useful for HVDC involving many converters and they are evoked
again in Chapter 4.

The approaches proposed in [124–126,128] consider all the internal variables of the MMC,
under the assumption of a control system with a Circulating Current Suppression Controller
(CCSC) implemented in a negative sequence double frequency SRRF [109]. Indeed, the meth-
ods proposed in [124, 125, 128] model the MMC by representing the internal second harmonic
circulating currents and the corresponding second harmonic arm voltage components in a SRRF
rotating at twice the fundamental frequency. The same approach was followed in [129] and
further linearized in [130]. However, since the initial formulation of the MMC is performed with
respect to the arm quantities (i.e. “Upper-Lower” variables), where the ω and 2ω components
coexist in the same state variables, the harmonic superposition principles has to be assumed
in the modeling. This approach corresponds to the phasor-based representation and this could
affect the information about the non-linear characteristics of the MMC, and correspondingly
limit the applicability of the models in non-linear techniques for analysis and control system
design. A similar approximation was also made when separately modeling the fundamental
frequency and the second harmonic frequency dynamics of the upper and lower arm capacitor
voltages in [126].

The first contribution to the modeling approach from this Chapter was presented in [127],
but this Chapter extends the derivations from [127] to obtain a model that is applicable in-
dependently from the applied approach for calculating the modulation indices of the MMC.
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Furthermore, the model derivation has been expanded to include the effect of the zero-sequence
of the difference between upper and lower modulation indices mz in the MMC dynamics, which
was neglected in [127]. This extension of the model can be useful when third harmonic injection
is used for increasing the voltage utilization [131,132], and in case a zero sequence component
in the output voltage is utilized to control the energy distribution within the MMC. Also, it
is fundamental for having the possibility of considering different modulation approaches as it
will be explored in the following Chapter.

2.3 MMC Modeling in the stationary reference frame:

Topology, Σ−∆ vector representation and frequency

analysis

2.3.1 Arm Averaged Model representation of the MMC topology

The basic topology of a three-phase MMC is synthesized by the series connection of N
sub-modules (SMs) with independent capacitors C to constitute one arm of the converter
as indicated by Fig. 2.2. The sub-modules in one arm are connected to a filter inductor
with equivalent inductance Larm and resistance Rarm to form the connection between the DC
terminal and the AC-side output. Two identical arms are connected to the upper and lower
DC-terminals respectively to form one leg for each phase j (j =a, b, c). The AC-side is modeled
with an equivalent resistance and inductance Rf and Lf respectively [108]. On the DC-side,
the smoothing reactors Ldc may be present or not depending on the vendor. In this Thesis,
these inductors are neglected, but the way of taking them into account is highlighted.
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Figure 2.2 – MMC Topology and AAM for the lower arm (phase C)

Assuming that all the SMs capacitors voltages are maintained in a close range, the series
connection of submodules in each arm can be replaced by a circuit-based average model, cor-
responding to the so-called Arm Averaged Model (AAM) as indicated in Fig. 2.2 for the lower
arm of phase c [115, 133]. With the AAM representation, each arm appears as a controlled
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voltage source, while a power balance is established between the arm and its equivalent ca-
pacitance [134]. Thus, each arm can be represented by a conventional power-balance-based
average model of a VSC, with a modulated voltage source in series with the arm inductor Larm,
and a modulated current source interfacing the arm equivalent capacitor Carm.

The output of the controlled voltage and current sources of the AAM are here referred as
the modulated voltages vU

mj and vL
mj and modulated currents iU

mj and iL
mj, for the upper (U)

and lower (L) arms of a generic phase j, and are described by the following equations1:

vU
mj = mU

j vU
Cj, vL

mj = mL
j vL

Cj (2.1a)

iU
mj = mU

j iU
j , iL

mj = mL
j iL

j (2.1b)

where vU
Cj and vL

Cj are respectively the voltages across the upper and lower arm equivalent
capacitors; mU

j and mL
j are the corresponding modulation indices for the upper and lower

arms, and iU
j and iL

j are the currents in the upper and lower arms. The voltages and currents
of the equivalent capacitor are related through the following equations:

Carm

dvU
Cj

dt
= iU

mj (2.2) Carm

dvL
Cj

dt
= iL

mj (2.3)

It is important to mention that the variables vU
Cj and vL

Cj present multiple frequencies at
the same time in steady-state [118] in addition to the DC value which is usually around vdc,
as exemplified in Fig. 2.3, where vU

Cabc and vL
Cabc are the vectors defined as [vU

Ca vU
Cb vU

Cc]
⊤ and

[vL
Ca vL

Cb vL
Cc]

⊤, respectively. This property makes it impossible to obtain a SSTI version of
the MMC model without further mathematical manipulations. For instance, these variables
cannot be referred to single Synchronous Rotating Frame with the Park transformation. For
this reason, more modeling efforts are needed to isolate different frequency components and
then apply the corresponding transformations.
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Figure 2.3 – MMC Steady-State Analysis - Arm capacitor voltages Upper-Lower

2.3.2 Modeling of the MMC with Σ − ∆ variables in the stationary
abc frame

As mentioned in the introduction of this Chapter, the proposed approach adopts the Σ-∆
representation as opposed to the more common one based on the Upper-Lower (U -L) arm
notation, to ease the derivation of an MMC model with SSTI solution. More precisely, under
this Σ-∆ representation, it is possible to initially classify the 11 states and 6 control variables
of the Arm Averaged Model of the MMC into two frequency groups; i.e., the ∆ variables which

1The limits on the modulated voltages vU
mj and vL

mj are studied in Appendix E.
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are associated to the fundamental frequency ω and 3ω, and the Σ variables which are in turn
associated to DC and −2ω, and will be further discussed in Section 2.3.3.

It is therefore useful to redefine the voltages and currents that are defined in Fig. 2.2
using this nomenclature, resulting in (2.4). Indeed, i∆

j is the current flowing through the AC-
side grid, whereas iΣ

j is the common-mode current of the MMC. The current iΣ
j is commonly

referred as “circulating current” or “differential current” [108,114]; however, the more general
term “common-mode current” is preferred in this Thesis, since iΣ is calculated as a sum of two
currents2. Also, the author considers that the term “circulating current” should be reserved
to the dq (or αβ) components of the three-phase iΣ

j currents [135]. Moreover, v∆
Cj and vΣ

Cj are
respectively the difference and the sum of voltages across the upper and lower arm equivalent
capacitors.

i∆
j

def= iU
j − iL

j , iΣ
j

def=
(
iU
j + iL

j

)
/2, v∆

Cj
def= (vU

Cj − vL
Cj)/2, vΣ

Cj
def= (vU

Cj + vL
Cj)/2, (2.4)

In addition, it is also useful to define the modulated voltages given in (2.1) in the Σ-∆
representation as in (2.5)3 [117], as well as modulation indices as in (2.6).

v∆
mj

def=
−vU

mj + vL
mj

2
, vΣ

mj
def=

vU
mj + vL

mj

2
(2.5)

m∆
j

def= mU
j − mL

j , mΣ
j

def= mU
j + mL

j (2.6)

Equations (2.5), (2.6) and the voltages from (2.4) can be gathered in a matrix relating the
“Upper-Lower” modulation indices (which in turn, are the physical inputs of the MMC), with
the internal modulated voltages “Σ-∆”, as shown in (2.7). This equation highlights one of the
main differences between the 2-level VSC with the MMC, since in the first, the modulated
voltage on the AC-side is a product with the actual DC bus voltage vdc. In turn, the AC
modulated voltage on the MMC depends on the arm capacitor voltages v∆

C and vΣ
C (marked in

blue for highlighting the fact that vΣ
C >> v∆

C ).



vΣ
ma

vΣ
mb

vΣ
mc

v∆
ma

v∆
mb

v∆
mc




=
1
2




vΣ
Ca 0 0 v∆

Ca 0 0
0 vΣ

Cb 0 0 v∆
Cb 0

0 0 vΣ
Cc 0 0 v∆

Cc

−v∆
Ca 0 0 −vΣ

Ca 0 0
0 −v∆

Cb 0 0 −vΣ
Cb 0

0 0 −v∆
Cc 0 0 −vΣ

Cc




︸ ︷︷ ︸
V Σ∆

Cmabc




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1







mU
a

mU
b

mU
c

mL
a

mL
b

mL
c




︸ ︷︷ ︸[
mΣ

abc

⊤
;m∆

abc

⊤

]⊤

(2.7)

For compactness, (2.7) is re-written in (2.8):
[

vΣ
mabc

v∆
mabc

]
=

1
2

[
diag(vΣ

Cabc) diag(v∆
Cabc)

−diag(v∆
Cabc) −diag(vΣ

Cabc)

] [
mΣ

abc

m∆
abc

]
= V Σ∆

Cmabc

[
mΣ

abc

m∆
abc

]
(2.8)

where:

mΣ
abc = [mΣ

a mΣ
b mΣ

c ]⊤ vΣ
mabc = [vΣ

ma vΣ
mb vΣ

mc]
⊤ vΣ

Cabc = [vΣ
Ca vΣ

Cb vΣ
Cc]

⊤

m∆
abc = [m∆

a m∆
b m∆

c ]⊤ v∆
mabc = [v∆

ma v∆
mb v∆

mc]
⊤ v∆

Cabc = [v∆
Ca v∆

Cb v∆
Cc]

⊤

Note that the matrix V Σ∆
Cmabc relates the modulation indices with the arm capacitor voltages

in Σ − ∆ and abc frame.
2To the author’s knowledge, the term “difference current” was introduced in [113] since in the followed

arm currents convention, upper and lower currents “arrive” to the AC node. In [116] (and others), the same
current convention as this Thesis was maintained (opposite as [113]), while keeping the “difference current”
nomenclature.

3The limits on the modulated voltages vΣ
mj and v∆

mj are studied in Appendix E.
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AC-grid current dynamics — “∆”

Applying Kirchhoff’s law to the circuit in Fig. 2.2, the following equations are derived for
the phase j:

vdc

2
− vU

mj − Larm

diU
j

dt
− RarmiU

j − Lf

di∆
j

dt
− Rf i∆

j − vG
j = 0 (2.9)

− vdc

2
+ vL

mj + Larm

diL
j

dt
+ RarmiL

j − Lf

di∆
j

dt
− Rf i∆

j − vG
j = 0 (2.10)

With the addition of (2.9) and (2.10) and the consideration of (2.5), the three-phase AC-
grid currents dynamics i∆

abc = [i∆
a i∆

b i∆
c ]⊤ are obtained, which are expressed using vector

nomenclature in the stationary frame as in (2.11),

Lac
eq

di∆
abc

dt
= v∆

mabc − vG
abc − Rac

eqi∆
abc, (2.11)

where vG
abc is the grid voltage vector defined as [vG

a vG
b vG

c ]⊤, whereas v∆
mabc is the modulated

voltage driving the AC-grid current defined as [v∆
ma v∆

mb v∆
mc]

⊤, or more precisely as:

v∆
mabc = −1

2

(
m∆

abc◦vΣ
Cabc + mΣ

abc◦v∆
Cabc

)
(2.12)

where the upper and lower modulation indices (mU
j , mL

j ) and modulated voltages (vU
mj, vL

mj)
were replaced by their Σ-∆ equivalents for consistency. Equation (2.12) is obtained from
a mathematical manipulation of (2.1) with (2.5) and (2.6). It is worth noticing that the
operator “◦” will be used here to represent the element-wise multiplication of vectors (e.g.
[ a

b ]◦[ c
d ] = [ ac

bd ]). Furthermore, Rac
eq and Lac

eq are the equivalent AC resistance and inductance,
respectively defined as Rf + Rarm/2 and Lf + Larm/2 [114].

Common-mode currents — “Σ”

With the subtraction of (2.10) from (2.9), the three-phase common-mode currents dynamics
in the stationary frame can be obtained, which are written by using vector notation as:

Larm
diΣ

abc

dt
=

vdc

2
− vΣ

mabc − RarmiΣ
abc, (2.13)

where vdc is defined as [vdc vdc vdc]⊤ and vΣ
mabc is the modulated voltage driving the common-

mode current defined as [vΣ
ma vΣ

mb vΣ
mc]

⊤, or more precisely as:

vΣ
mabc =

1
2

(
mΣ

abc◦vΣ
Cabc + m∆

abc◦v∆
Cabc

)
, (2.14)

where the upper and lower modulation indices and voltage variables were replaced by their
Σ-∆ equivalents for convenience here as well.

Arm capacitor voltage dynamics — “Σ” and “∆”

Similarly, the dynamics of the voltage sum and difference between the equivalent capacitors
of the AAM can be expressed respectively as in (2.15) and (2.16).

2Carm
dvΣ

Cabc

dt
= m∆

abc◦
i∆

abc

2
+ mΣ

abc◦iΣ
abc (2.15)

2Carm
dv∆

Cabc

dt
= mΣ

abc◦
i∆

abc

2
+ m∆

abc◦iΣ
abc (2.16)
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2.3.3 Summary of MMC Model with SSTP Solution and frequency
analysis in Steady-State of the Σ − ∆ variables

The equations presented in this section can be represented in a block diagram as shown in
Fig. 2.4. This figure highlights the functional relations between the different variables of the
system.
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Figure 2.4 – MMC representation Σ-∆ in abc frame

In the following, a simplified frequency analysis for the MMC variables in steady-state is
provided in order to evaluate their main harmonic content. For this task, a simple time domain
simulation is performed of the MMC from Fig. 2.4. The AC and DC voltages are imposed,
as well as the proper modulation indices from Fig. 2.5 which corresponds to an active power
transit of 1 pu, while maintaining the reactive power to zero.
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Figure 2.5 – MMC Steady-State Analysis - Inputs

The results of the MMC currents are shown in Fig. 2.6. In Fig. 2.6a, the AC grid currents
i∆

abc are shown. The Fast Fourier Transformation (FFT) is applied to i∆
abc and results are
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shown in Fig. 2.6b, where it can be observed that the main frequency component corresponds
to the grids frequency ω as expected and also 3ω.

The common-mode current consists of a DC value, or a DC value in addition to oscillating
signals at −2ω, depending on whether the second harmonic component of the common-mode
current is eliminated by control or not [136,137]. In this example, there is no control on these
currents and the −2ω components are not eliminated for a better exemplification. Results
are shown in Fig. 2.6c, where it can confirmed that they are pulsating with negative-sequence
(“a−c−b” instead of “a−b−c” as the grid voltages) double grids angular frequency. The FFT
of iΣ

abc is shown in Fig. 2.6d without the DC component, and confirms that the 2ω component
is preponderant and also that a small component of 4ω is present.
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Figure 2.6 – MMC Steady-State Analysis - Currents

Results of the arm capacitor voltages v∆
Cabc are shown in Fig. 2.7a and the corresponding

FFT in Fig. 2.7b, where it can be seen that the most important harmonic components are ω
and 3ω. Furthermore, results from vΣ

Cabc are given in Figs. 2.7c and 2.7d, showing that this
variable is composed mainly by a 2ω component in addition to the DC value, which is more
important than the amplitude of the oscillations.

These results can be explained regarding the modulated indices from Fig. 2.5d, where
mΣ

j = 1, and from Fig. 2.5c, where m∆
j ≈ m̂cos (ωt) [108]. By inspecting the right-side of

(2.15) (i.e. m∆
j i∆

j /2 + mΣ
j iΣ

j ), it can be seen that in steady-state, the first product m∆
j i∆

j /2
gives a DC value in addition to an oscillatory signal at 2ω, while the second product mΣ

j iΣ
j

gives a DC value in case a constant value of iΣ
j is imposed by control (e.g. by CCSC [109]), or

a 2ω signal otherwise. Thus, both cases will result in a dominant oscillation frequency of 2ω
in vΣ

Cj [138]. Similarly for v∆
Cj, it is inspected the right-side of (2.16) (i.e. mΣ

j i∆
j /2 + m∆

j iΣ
j ),

where the first product, mΣ
j i∆

j /2, oscillates at ω, while the second product m∆
j iΣ

j oscillates at
ω in the case the CCSC is used or will result in a signal oscillating at ω superimposed to one
at 3ω otherwise [136]. If the assumption mΣ

j = 1 is no longer considered, but instead mΣ
j is

allowed to have a second harmonic component superimposed to its DC value, the first term of
(2.16) will also produce an additional component at 3ω.

As will be shown in the remainder of this Chapter, this additional 3rd harmonic on the
∆ variables don’t affect significantly the initial frequency classification of the variables as it
will be captured and isolated by the zero-sequence component after the application of Park
transformation at ω without affecting its corresponding dq components.
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Figure 2.7 – MMC Steady-State Analysis - Arm capacitor voltages

The modulated voltages are shown in Fig. 2.8. Similar behavior in terms of frequency
spectra as the MMC currents is observed, which is expected since these are the voltages that
drive the currents.
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Figure 2.8 – MMC Steady-State Analysis - Internal modulated voltages

This initial classification of the state and control variables according to their main oscillatory
frequency is summarized in Table 2.1 and is considered the base for the methodology presented
in the following section.

Table 2.1 – MMC variables in Σ-∆ representation

Main frequency content: ω, 3ω Main frequency content: −2ω, DC
i∆
j = iU

j − iL
j iΣ

j = (iU
j + iL

j )/2
v∆

Cj = (−vU
Cj + vL

Cj)/2 vΣ
Cj = (vU

Cj + vL
Cj)/2

v∆
mj = (−vU

mj + vL
mj)/2 vΣ

mj = (vU
mj + vL

mj)/2
m∆

j = mU
j − mL

j mΣ
j = mU

j + mL
j
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2.4 Non-linear MMC model with Steady-State Time-

Invariant solution: Σ−∆ representation in dqz frame

In this section, the derivations needed for obtaining the state-space time-invariant repre-
sentation of the MMC with voltage-based formulation is presented in detail on basis of the
approach from [127]. This step is mandatory in order to be able to get a very accurate LTI
model of MMC which can be used for small signal stability analysis as explained in Chapter 1.
Moreover, thanks to the decomposition of the system, the root causes of internal phenomenon
of MMC can be explained.

As shown in the frequency classifications from Table 2.1, the “∆” variables are associated
mainly with periodic oscillations of ω, and the “Σ” variables with −2ω. In the first attempt
to obtain Steady-State Time Invariant variables of the MMC, the ∆-variables (v∆

Cabc, i∆
abc and

m∆
abc) are transformed into their dqz equivalents by means of a Park transformation Pω at the

grid fundamental frequency ω (see Appendix A). By contrast, the Σ-variables (vΣ
Cabc, iΣ

abc and
mΣ

abc) are transformed into their dqz equivalents by means of a Park transformation P−2ω at
twice the grid frequency in negative sequence, −2ω:

i∆
dqz

def= Pωi∆
abc; v∆

Cdqz
def= Pωv∆

Cabc; v∆
mdqz

def= Pωv∆
mabc; m∆

dqz
def= Pωm∆

abc (2.17a)

iΣ
dqz

def= P−2ωiΣ
abc; vΣ

Cdqz
def= P−2ωvΣ

Cabc; vΣ
mdqz

def= P−2ωvΣ
mabc; mΣ

dqz
def= P−2ωmΣ

abc (2.17b)

The Park transformations are applied to the time-domain results from Section 2.3.3. In
Figs. 2.9a and 2.9c, results of the currents i∆

dqz and modulated voltages v∆
mdqz are respectively

shown. Since the grid currents are oscillating at a single frequency ω, the results for i∆
dqz are

constant values after the Park transformation is applied. Note that the zero-sequence of v∆
mz

is oscillating at 3ω, but since there is no zero-sequence current path, the current i∆
z is null.
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Figure 2.9 – MMC Steady-State Analysis in dqz frame - AC and common-mode currents

In Figs. 2.9b and 2.9d, results of the common-mode currents iΣ
dqz and modulated voltages

vΣ
mdqz that drive those currents are respectively shown. Note that the zero-sequence of the

modulated voltage vΣ
mz as well as the current iΣ

z are composed only by a constant component.
The dq components of both variables present a constant value, but also oscillations at 6ω.
This component is the same as the 4ω values found in the results from the Section 2.3.3 (in
abc frame, the 4ω components with negative-sequence, are reflected as 6ω pulsations after
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applying the Park transformation at −2ω [136]). However, note that the 6ω oscillations can
be considered as negligible.
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Figure 2.10 – MMC Steady-State Analysis in dqz frame - Arm capacitors

In Fig. 2.10a, the results of applying the Park transformations to v∆
Cdqz are shown, where

it can be seen that the dq components are constant, while the zero-sequence presents some 3ω
oscillations [139]. Even though these oscillations may not be so important, it is detailed in
the following of the Chapter how to model these dynamics with constant values. Finally, in
Fig. 2.10b, the results for vΣ

Cdqz are shown. At first sight, the three components dqz are almost
constant after the applied transformation. However, if a zoom is applied on the dq results, some
6ω component can be found. These components will appear naturally during the development
of the MMC model with SSTI solution, and further neglected due to the minimal contribution
on the overall dynamics. It is also useful to observe in Fig. 2.10, that the most important value
is vΣ

Cz, which corresponds to the DC value of the arm capacitor voltages. The dq components
of vΣ

C , and the dqz components of v∆
C are related to the oscillations in steady-state presented

in vU
Cabc and vL

Cabc (see Fig. 2.3).
The formulation of the MMC variables such that the initial separation of frequency com-

ponents can be achieved constitutes the basis for the proposed modeling approach. In the
remainder of this section, the mathematical derivation of dynamic equations with SSTI solu-
tion representing the dynamics of a three phase MMC will be expressed by using the approach
from [127]. The mathematical reformulation consists in expressing the vector variables in the
stationary abc frame as a function of their dqz equivalents at their respective rotating frequen-
cies. The equations from this section can be obtained with the Matlab code from Appendix D.

2.4.1 Voltage difference ∆ SSTI dynamics derivation

Initial formulation

The SSTI dynamics for the voltage difference v∆
C is derived as follows. The starting point

is indeed the SSTP dynamics of the variables v∆
Cabc given in (2.16), and recalled in (2.18a) for

convenience. The first step consists in expressing the abc vectors in the stationary frame as
function of their respective dqz equivalents. This can be seen in (2.18b), where v∆

Cabc, mΣ
abc,

i∆
abc, m∆

abc and iΣ
abc have been respectively replaced by P −1

ω v∆
Cdqz, P

−1

−2ω
mΣ

dqz, P −1
ω i∆

dqz, P −1
ω m∆

dqz

and P
−1

−2ω
iΣ

dqz when considering (2.17).

2Carm
dv∆

Cabc

dt
= mΣ

abc◦
i∆

abc

2
+m∆

abc◦iΣ
abc (2.18a)

2Carm
dP −1

ω

dt
v∆

Cdqz + 2CarmP −1
ω

dv∆
Cdqz

dt︸ ︷︷ ︸
Φ∆

A

= P
−1

−2ω
mΣ

dqz◦P −1
ω i∆

dqz

2︸ ︷︷ ︸
Φ∆

B

+ P −1
ω m∆

dqz◦P
−1

−2ω
iΣ

dqz
︸ ︷︷ ︸

Φ∆

C

(2.18b)
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The equation expressed in (2.18b), must be multiplied by the Park transformation matrix
at the angular frequency ω, so that it can be possible to solve for dv∆

Cdqz/dt.
Multiplying Φ∆

A by Pω, gives:

PωΦ∆
A = 2CarmJωv∆

Cdqz + 2Carm

dv∆
Cdqz

dt
(2.19)

where Jω is defined as in (2.20):

Jω
def= Pω

dP −1
ω

dt
=




0 ω 0
−ω 0 0
0 0 0


 (2.20)

Furthermore, multiplying Φ∆
B by Pω gives:

PωΦ∆
B = Pω


P

−1

−2ω
mΣ

dqz◦P −1
ω i∆

dqz

2


 = M∆

ΦB

[
i∆
d i∆

q i∆
z

]⊤
(2.21)

where M∆
ΦB

is expressed in (2.22). For simplicity, it will be considered that the system under
study does not allow for the existence of the zero-sequence grid current; i.e., i∆

z = 0, highlighted
in gray in (2.21). Under this assumption, only the dq component of (2.21) is time-invariant, as
the 3ω oscillatory signals that appear in M∆

ΦB
are either multiplying i∆

z (third column of the
matrix) or appear in the last row. However, it is possible to rewrite also the dynamics of v∆

Cz

in SSTI form by means of additional mathematical manipulations, as will be shown further.

M∆
ΦB

= 1
4




mΣ
d + 2mΣ

z −mΣ
q 2mΣ

d cos(3ωt) − 2mΣ
q sin(3ωt)

−mΣ
q −mΣ

d + 2mΣ
z 2mΣ

q cos(3ωt) + 2mΣ
d sin(3ωt)

mΣ
d cos(3ωt) − mΣ

q sin(3ωt) mΣ
q cos(3ωt) + mΣ

d sin(3ωt) 2mΣ
z


 (2.22)

Finally, multiplying Φ∆
C from (2.18b) by Pω gives:

PωΦ∆
C = Pω

(
P −1

ω m∆
dqz◦P

−1

−2ω
iΣ

dqz

)
= M∆

ΦC

[
iΣ
d iΣ

q iΣ
z

]⊤
(2.23)

where M∆
ΦC

is expressed in (2.24).

M∆
ΦC

=
1
2




m∆
d + 2m∆

z cos(3ωt) −m∆
q − 2m∆

z sin(3ωt) 2m∆
d

−m∆
q + 2m∆

z sin(3ωt) −m∆
d + 2m∆

z cos(3ωt) 2m∆
q

m∆
d cos(3ωt) + m∆

q sin(3ωt) m∆
q cos(3ωt) − m∆

d sin(3ωt) 2m∆
z


 (2.24)

Here, M∆
ΦC

requires further mathematical manipulation to achieve the desired SSTI perfor-
mance, as the 3ω signals also appear. Moreover, they affect not only the zero-sequence as in
the previous case, yet the dq components as well.

Replacing the definitions given in (2.19), (2.21) and (2.23) in P −1
ω Φ∆

A = P −1
ω Φ∆

B + P −1
ω Φ∆

C

and solving for the voltage difference dynamics in their dqz coordinates results in (2.25):

dv∆
Cdqz

dt
=

1
2Carm

(
M∆

ΦB

[
i∆
d i∆

q i∆
z

]⊤
+ M∆

ΦC

[
iΣ
d iΣ

q iΣ
z

]⊤)− Jωv∆
Cdqz (2.25)

Since neither M∆
ΦB

or M∆
ΦC

are SSTI, equation (2.25) is not directly providing a SSTI
solution. This issue is treated in the remainder of this section.
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Deriving the SSTI dq dynamics of (2.25)

First, the dq dynamics of (2.25) are addressed. As discussed earlier, since it is assumed
that i∆

z = 0, only M∆
ΦC

is hindering a SSTI representation for the dq dynamics due to the
appearance of the cos(3ωt) and sin(3ωt) in the 2 × 2 sub-matrix at the upper left corner of
M∆

ΦC
in (2.24), referred to as M∆2×2

ΦC
. One possible solution is to assume that the MMC

control will always set m∆
z to zero, as was done in [127], as m∆

z is multiplying all of the 3ω
oscillating signals. However, this lead to a restrictive model from a control perspective as it will
be discussed in the following Chapter, and therefore such assumption is avoided here. Taking
inspiration from common engineering practices to increase controllability in VSCs [131], the
proposed solution is to redefine m∆

z as a third harmonic injection, as given in (2.26), where
m∆

Zd
and m∆

Zq
are two SSTI variables which are linked to the amplitude and phase angle of

third harmonic oscillations in m∆
z .

m∆
z

def= m∆
Zd

cos(3ωt) + m∆
Zq

sin(3ωt) (2.26)

Replacing the new definition (2.26) in (2.24) results in the sub-matrix M∆2×2
ΦC

from (2.27a),
which yields (2.27b) after developing.

M∆2×2
ΦC

= 1
2


 m∆

d + 2
(
m∆

Zd
cos(3ωt) + m∆

Zq
sin(3ωt)

)
cos(3ωt) −m∆

q − 2
(
m∆

Zd
cos(3ωt) + m∆

Zq
sin(3ωt)

)
sin(3ωt)

−m∆
q + 2

(
m∆

Zd
cos(3ωt) + m∆

Zq
sin(3ωt)

)
sin(3ωt) −m∆

d + 2
(
m∆

Zd
cos(3ωt) + m∆

Zq
sin(3ωt)

)
cos(3ωt)


 (2.27a)

M∆2×2
ΦC

= 1
2


+

(
m∆

d + m∆
Zd

)
−
(
m∆

q + m∆
Zq

)

−
(
m∆

q − m∆
Zq

)
−
(
m∆

d − m∆
Zd

)

+

[
+ cos (6ωt) + sin (6ωt)
+ sin (6ωt) − cos (6ωt)

] [
+m∆

Zd
+m∆

Zq

+m∆
Zq

−m∆
Zd

]

︸ ︷︷ ︸
≈0

(2.27b)

Furthermore, the multiplication of the oscillatory signals at 3ω induces some terms at 6ω,
which can be neglected as will be confirmed via time-domain simulations.

Deriving SSTI expressions for the zero-sequence dynamics of (2.25)

The zero sequence dynamics equation of (2.25), is given again in (2.28) for convenience.

dv∆
Cz

dt
=

1
Carm

[1
8

(
mΣ

d i∆
d + mΣ

q i∆
q + 2m∆

d iΣ
d + 2m∆

q iΣ
q

)
cos(3ωt) + . . . (2.28)

· · · +
1
8

(
−mΣ

q i∆
d + mΣ

d i∆
q + 2m∆

q iΣ
d − 2m∆

d iΣ
q

)
sin(3ωt) +

m∆
z

2
iΣ
z

]

By replacing the new definition of m∆
z given in (2.26) into (2.28), the zero-sequence dy-

namics of v∆
Cz can be written as:

dv∆
Cz

dt
=

1
Carm

[Ψd cos(3ωt) + Ψq sin(3ωt)] (2.29)

where Ψd and Ψq are defined as below.

Ψd =
1
8

(
+mΣ

d i∆
d + mΣ

q i∆
q + 2m∆

d iΣ
d + 2m∆

q iΣ
q + 4m∆

Zd
iΣ
z

)

Ψq =
1
8

(
−mΣ

q i∆
d + mΣ

d i∆
q + 2m∆

q iΣ
d − 2m∆

d iΣ
q + 4m∆

Zq
iΣ
z

)

Since the zero sequence dynamics in (2.29) are still time-varying in steady-state, further
reformulation is necessary to obtain the desired model with SSTI solution. This can be obtained
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by defining an auxiliary virtual state v∆
CZβ

, shifted 90° with respect to the original “single-
phase” time-periodic voltage difference signal v∆

Cz according to the approach from [127]. This
approach is conceptually similar to the commonly applied strategy of generating a virtual two-
phase system for representing single-phase systems in a SRRF [140] (also called Fictive Axis
Emulator [141]).

The real and virtual voltage difference zero-sequence variables can be labeled as v∆
CZα

and
v∆

CZβ
, and together they define an orthogonal αβ-system. This αβ-system can be expressed

by (2.30a)-(2.30b), where the first equation is exactly the same as (2.29), while the second
equation replaces the cos(3ωt) and sin(3ωt) that appear in (2.29) by sin(3ωt) and − cos(3ωt),
respectively.

dv∆
CZα

dt
=

1
Carm

[Ψd cos(3ωt) + Ψq sin(3ωt)] (2.30a)

dv∆
CZβ

dt
=

1
Carm

[Ψd sin(3ωt) − Ψq cos(3ωt)] (2.30b)

Defining v∆
CZαβ

def= [v∆
CZα

v∆
CZβ

]⊤, the equations (2.30a) and (2.30b) are written in a compact
form as shown in (2.31).

dv∆
CZαβ

dt
=

1
Carm

{
T3ω

[
Ψd Ψq

]⊤}
(2.31)

where T3ω is a rotation matrix at 3ω as defined in (2.32).

T3ω
def=

[
cos(3ωt) sin(3ωt)
sin(3ωt) − cos(3ωt)

]
(2.32)

Furthermore, by defining v∆
CZ

def= [v∆
CZd

v∆
CZq

]⊤ which verifies:

v∆
CZαβ

= T
−1
3ωv∆

CZ , (2.33)

replacing (2.33) into (2.31), multiplying by T3ω and solving for the dynamics of v∆
CZ gives:

dv∆
CZ

dt
=

1
Carm

{[
Ψd Ψq

]⊤ − CarmJ3ωv∆
CZ

}
(2.34)

where J3ω is defined as in (2.35).

J3ω
def=

[
0 −3ω

3ω 0

]
. (2.35)

Equation (2.34) will produce now a SSTI solution. The original oscillating zero-sequence
component v∆

Cz can always be re-created as a function of v∆
CZd

and v∆
CZq

by means of (2.33), as:

v∆
Cz = v∆

CZd
cos(3ωt) + v∆

CZq
sin(3ωt) (2.36)

Final formulation

It is useful to redefine a new augmented vector for the SSTI voltage difference states v∆
CdqZ

(with capital Z), as:

v∆
CdqZ

def=
[
v∆

Cd v∆
Cq v∆

CZd
v∆

CZq

]⊤
,

(2.37)
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as well as for the “∆” modulation indices, as:

m∆
dqZ

def=
[
m∆

d m∆
q m∆

Zd
m∆

Zq

]⊤
.

(2.38)

With the new definitions v∆
CZd

, v∆
CZq

and their associated dynamics given (2.34) as well as
taking into account the modified (sub-)matrix M∆2×2

ΦC
given in (2.27b); the SSTP dynamics

of v∆
Cdqz from (2.25) may be now expressed in their SSTI equivalents, by means of the 4 × 1

state vector v∆
CdqZ as shown in (2.39), with JG defined in (2.40).

dv∆
CdqZ

dt
= − JGv∆

CdqZ +
1

Carm





1
8




(
mΣ

d + 2mΣ
z

)
−mΣ

q

−mΣ
q

(
−mΣ

d + 2mΣ
z

)

+mΣ
d mΣ

q

−mΣ
q mΣ

d




i∆
dq + ... (2.39)

· · · +
1
4




+
(
m∆

d + m∆
Zd

)
−
(
m∆

q + m∆
Zq

)
m∆

d

−
(
m∆

q − m∆
Zq

)
−
(
m∆

d − m∆
Zd

)
m∆

q

m∆
d m∆

q 2m∆
Zd

m∆
q −m∆

d 2m∆
Zq




iΣ
dqz





.

JG
def=




0 ω
−ω 0

02×2

02×2 J3ω


 (2.40)

2.4.2 Voltage sum Σ SSTI dynamics derivation

Initial formulation

The SSTI dynamics for the voltage sum can be derived in a similar way as for the voltage
difference. The starting point is indeed the SSTP dynamics of the variable given in (2.15) and
recalled in (2.41a) for convenience. The first step consist in expressing the stationary frame
abc vectors present in (2.41a) as functions of their respective dqz equivalents. This is done in
(2.41b), where vΣ

Cabc, m∆
abc, i∆

abc, mΣ
abc and iΣ

abc have been respectively replaced by P
−1

−2ω
vΣ

Cdqz,

P −1
ω m∆

dqz, P −1
ω i∆

dqz, P
−1

−2ω
mΣ

dqz and P
−1

−2ω
iΣ

dqz. Notice that here also, the choice of the inverse

Park transformation at ω (P −1
ω ) or at 2ω (P −1

−2ω
) is according to the frequency separation of the

variables given in Table 2.1.
Equation (2.41b) can be divided in three parts: ΦΣ

A, ΦΣ
B and ΦΣ

C , as indicated in (2.41b).
These three parts are treated consecutively in the following.

2Carm
dvΣ

Cabc

dt
= m∆

abc◦
i∆

abc

2
+ mΣ

abc◦iΣ
abc (2.41a)

2Carm

dP
−1

−2ω

dt
vΣ

Cdqz + 2CarmP
−1

−2ω

dvΣ
Cdqz

dt︸ ︷︷ ︸
ΦΣ

A

= P −1
ω m∆

dqz◦P −1
ω i∆

dqz

2︸ ︷︷ ︸
ΦΣ

B

+ P
−1

−2ω
mΣ

dqz◦P
−1

−2ω
iΣ

dqz
︸ ︷︷ ︸

ΦΣ

C

(2.41b)

The equation expressed in (2.41b), needs to be multiplied by Park transformation at −2ω,
so that it can be solved for dvΣ

Cdqz/dt. Multiplying ΦΣ
A by P−2ω gives (2.42), where J−2ω is

defined as −2Jω.

P−2ωΦΣ
A = 2CarmJ−2ωvΣ

Cdqz + 2Carm

dvΣ
Cdqz

dt
(2.42)
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Furthermore, multiplying ΦΣ
B by P−2ω gives (2.43), where MΣ

ΦB
is expressed in (2.44).

P−2ωΦΣ
B = P−2ω


P −1

ω m∆
dqz◦P −1

ω i∆
dqz

2


 = MΣ

ΦB

[
i∆
d i∆

q i∆
z

]⊤
(2.43)

As mentioned earlier, it is assumed for simplicity in this work that there cannot be any
zero-sequence grid current; i.e., i∆

z = 0 (highlighted in gray).

MΣ
ΦB

=
1
4




+m∆
d + 2m∆

z cos (3ωt) −m∆
q + 2m∆

z sin (3ωt) 2
(
m∆

d cos(3ωt) + m∆
q sin(3ωt)

)

−m∆
q − 2m∆

z sin (3ωt) −m∆
d + 2m∆

z cos (3ωt) 2
(
m∆

q cos(3ωt) − m∆
d sin(3ωt)

)

m∆
d m∆

q 2m∆
z


 (2.44)

Equation (2.21) does not yet produce a SSTI solution, as the elements in the upper left
2 × 2 sub-matrix of MΣ

ΦB
in (2.44), contain sine and cosine signals oscillating at 3ω. Note that

this is also the case for the terms highlighted in gray, but since these are being multiplied by
i∆
z = 0, they are not considered in this work. To overcome this obstacle, the same solution

used in the previous section is applied: as all the oscillating terms are being multiplied by m∆
z ,

it is convenient to redefine m∆
z by a third harmonic injection as in (2.26), as a function of the

SSTI virtual variables m∆
Zd

and m∆
Zq

. Replacing (2.26) into (2.44) allows for re-writing (2.43)
as in (2.45).

P−2ωΦΣ
B =

1
4




+
(
m∆

d + m∆
Zd

)
i∆
d −

(
m∆

q − m∆
Zq

)
i∆
q

−
(
m∆

q + m∆
Zq

)
i∆
d −

(
m∆

d − m∆
Zd

)
i∆
q

m∆
d i∆

d + m∆
q i∆

q


+ ... (2.45)

... +
1
4




cos(6ωt) − sin(6ωt) 0
− sin(6ωt) − cos(6ωt) 0

0 0 0







+m∆
Zd

i∆
d − m∆

Zq
i∆
q

−m∆
Zq

i∆
d − m∆

Zd
i∆
q

0




︸ ︷︷ ︸
≈0

Equation (2.45) will become time-invariant only if it is assumed that the oscillatory signals
at 6ω can be neglected, which has been confirmed via time-domain simulations.

In a similar fashion, ΦΣ
C ; i.e., the second component on the right side of (2.41b), is multiplied

by P−2ω, resulting in (2.46), which can be considered SSTI if the sixth harmonic components
are neglected. Here again, the validity of the approximation was confirmed via time-domain
simulations.

P−2ωΦΣ
C =

1
2




2mΣ
z iΣ

d + 2mΣ
d iΣ

z

2mΣ
z iΣ

q + 2mΣ
q iΣ

z

mΣ
d iΣ

d + mΣ
q iΣ

q + 2mΣ
z iΣ

z


+ ... (2.46)

... +
1
2




(
+mΣ

d iΣ
d − mΣ

q iΣ
q

)
cos(6ωt) −

(
mΣ

q iΣ
d + mΣ

d iΣ
q

)
sin(6ωt)(

−mΣ
d iΣ

d + mΣ
q iΣ

q

)
sin(6ωt) −

(
mΣ

q iΣ
d + mΣ

d iΣ
q

)
cos(6ωt)

0




︸ ︷︷ ︸
≈0
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Final formulation

The SSTI dynamics of the voltage sum vector vΣ
Cdqz are found by replacing the SSTI

equations (2.42), (2.45) and (2.46) in (2.41b) and solving for dvΣ
Cdqz/dt, resulting in (2.47).

dvΣ
Cdqz

dt
= −J−2ωvΣ

Cdqz + ... (2.47)

... +
1

Carm





1
4



2mΣ

z 0 2mΣ
d

0 2mΣ
z 2mΣ

q

mΣ
d mΣ

q 2mΣ
z


 iΣ

dqz +
1
8




+
(
m∆

d + m∆
Zd

)
−
(
m∆

q − m∆
Zq

)

−
(
m∆

q + m∆
Zq

)
−
(
m∆

d − m∆
Zd

)

m∆
d m∆

q


 i∆

dq





2.4.3 Common-mode currents Σ SSTI dynamics derivation

The SSTI dynamics for the common-mode currents are derived in the following. First, the
equation of the dynamics for iΣ

abc in stationary frame given in (2.13) and recalled in (2.48a), is
rewritten by expressing the abc vectors in the equation as a function of their dqz equivalents,
as indicated in (2.48b).

Larm
diΣ

abc

dt
=

vdc

2
− vΣ

mabc − RarmiΣ
abc (2.48a)

Larm

dP
−1

−2ω

dt
iΣ

dqz + LarmP
−1

−2ω

diΣ
dqz

dt
=

vdc

2
− P

−1

−2ω
vΣ

mdqz − RarmP
−1

−2ω
iΣ

dqz (2.48b)

By further multiplying (2.48b) by P−2ω and solving for diΣ
dqz/dt gives:

Larm

diΣ
dqz

dt
=
[
0 0

vdc

2

]⊤
− vΣ

mdqz − RarmiΣ
dqz − LarmJ−2ωiΣ

dqz, (2.49)

where vΣ
mdqz = P

−1

−2ω
vΣ

mabc, and vΣ
mabc is defined in (2.14). Nonetheless, in order to assess if

(2.49) is SSTI, vΣ
mdqz needs to be rewritten by expressing the abc vectors in the equation as a

function of their dqz equivalents, as indicated in (2.50).

vΣ
mdqz =

1
2

P−2ω

(
P

−1

−2ω
mΣ

dqz◦P
−1

−2ω
vΣ

Cdqz + P −1
ω m∆

dqz◦P −1
ω v∆

Cdqz

)

=V Σ
A

[
mΣ

d mΣ
q mΣ

z

]⊤
+ V Σ

B

[
m∆

d m∆
q m∆

z

]⊤
,

(2.50)

where V Σ
A and V Σ

B are expressed in (2.51) and (2.52), respectively.

V Σ
A =

1
4




2vΣ
Cz 0 2vΣ

Cd

0 2vΣ
Cz 2vΣ

Cq

vΣ
Cd vΣ

Cq 2vΣ
Cz


+ ... (2.51)

... +
1
4




vΣ
Cd cos(6ωt) − vΣ

Cq sin(6ωt) −vΣ
Cq cos(6ωt) + vΣ

Cd sin(6ωt) 0
−vΣ

Cq cos(6ωt) − vΣ
Cd sin(6ωt) −vΣ

Cd cos(6ωt) + vΣ
Cq sin(6ωt) 0

0 0 0
︸ ︷︷ ︸

≈0




V Σ
B = 1

4




+v∆
Cd + 2v∆

Cz cos(3ωt) −v∆
Cq + 2v∆

Cz sin(3ωt) +2v∆
Cd cos(3ωt) + 2v∆

Cq sin(3ωt)
−v∆

Cq − 2v∆
Cz sin(3ωt) −v∆

Cd + 2v∆
Cz cos(3ωt) −2v∆

Cd sin(3ωt) + 2v∆
Cq cos(3ωt)

v∆
Cd v∆

Cq 2v∆
Cz


 (2.52)
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If the sixth harmonic components are neglected, V Σ
A given in (2.51) can be considered as

SSTI. This is confirmed via time-domain simulations. However, this is not the case for V Σ
B

given in (2.52), as it presents non-negligible third harmonic oscillations. To overcome this
obstacle, it is necessary to replace into (2.51) and in (2.50) the new definitions of both m∆

z

and v∆
Cz given in (2.26) and (2.36), respectively. Doing so, results in the SSTI definition of

vΣ
mdqz in (2.53), where V Σ⋆

B is given in (2.54) and is SSTI if the sixth harmonic components
are neglected.

vΣ
mdqz = V Σ

A

[
mΣ

d mΣ
q mΣ

z

]⊤
+ V Σ⋆

B

[
m∆

d m∆
q m∆

Zd
m∆

Zq

]⊤
,

(2.53)

V Σ⋆
B =

1
4




+v∆
Cd + v∆

CZd
+v∆

CZq
− v∆

Cq v∆
Cd v∆

Cq

−v∆
Cq − v∆

CZq
−v∆

Cd + v∆
CZd

v∆
Cq −v∆

Cd

v∆
Cd v∆

Cq v∆
CZd

v∆
CZq


+ ... (2.54)




+v∆
CZd

cos(6ωt) + v∆
CZq

sin(6ωt) +v∆
CZd

sin(6ωt) − v∆
CZq

cos(6ωt) +v∆
Cd cos(6ωt) + v∆

Cq sin(6ωt) −v∆
Cq cos(6ωt) + v∆

Cd sin(6ωt)
−v∆

CZd
sin(6ωt) + v∆

CZq
cos(6ωt) +v∆

CZd
cos(6ωt) + v∆

CZq
sin(6ωt) −v∆

Cd sin(6ωt) + v∆
Cq cos(6ωt) +v∆

Cd cos(6ωt) + v∆
Cq sin(6ωt)

0 0 +v∆
CZd

cos(6ωt) + v∆
CZq

sin(6ωt) +v∆
CZd

sin(6ωt) − v∆
CZq

cos(6ωt)
︸ ︷︷ ︸

≈0




Replacing (2.51) and (2.54) in (2.53), gives:



vΣ

md

vΣ
mq

vΣ
mz


 =

1
4




2vΣ
Cz 0 2vΣ

Cd v∆
Cd + v∆

CZd
v∆

CZq
− v∆

Cq v∆
Cd v∆

Cq

0 2vΣ
Cz 2vΣ

Cq −v∆
Cq − v∆

CZq
v∆

CZd
− v∆

Cd v∆
Cq −v∆

Cd

vΣ
Cd vΣ

Cq 2vΣ
Cz v∆

Cd v∆
Cq v∆

CZd
v∆

CZq







mΣ
d

mΣ
q

mΣ
z

m∆
d

m∆
q

m∆
Zd

m∆
Zq




(2.55)

Note that in (2.55) the terms vΣ
Cz are highlighted in blue. The reason is that the numerical

value of vΣ
Cz is around the value of vdc, while the remaining components in (2.55) are always

lower than vdc.
Finally, the SSTI dynamics of the common-mode currents are given in (2.56), where the

sixth harmonic components are neglected.

diΣ
dqz

dt
=

1
Larm








0
0

vdc

2


− RarmiΣ

dqz −
(
V Σ

A mΣ
dqz + V Σ⋆

B m∆
dqZ

)

︸ ︷︷ ︸
vΣ

mdqz





− J−2ωiΣ
dqz (2.56)

The dynamic equation in (2.56) can be expressed as a circuit diagram as in Fig. 2.11. The
dq components of iΣ

dqz are represented with two coupled circuits. These currents don’t flow to
the AC- neither DC-side of the MMC; they circulate inside the converter. In fact, that is the
reason why these components are called circulating currents. Also note that the zero-sequence
component iΣ

z is proportional to the DC current, in fact idc = 3× iΣ
z . Moreover, in the circuit of

iΣ
z it is added an inductor Ldc (marked in red). This inductor may represent the DC smoothing

reactor on the DC-side of the MMC as studied in [79], or the inductor from the DC breaker
which can have an important value [142]. Nevertheless, for the rest of this Chapter, Ldc is not
taken into account.
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RarmLarm

vΣmqiΣq

2ωLarmiΣd

RarmLarm

vΣmdiΣd

2ωLarmiΣq

Circulating Currents

RarmLarm

vΣmz
vdc

2 iΣz

∝ DC Current

Ldc

Figure 2.11 – Common-mode currents circuit diagram

Finally, note in Fig. 2.11 that each modulated voltage vΣ
m are driving each one of the dqz

currents. It may appear that the dq and z components are decoupled, but this is only achieved
by a proper selection of the modulation indices. This is due to the relations in (2.55), which
corresponds to a highly coupled matrix relating each component of vΣ

m with all the modulation
indices (even with the “∆” variables in dqZ frame).

2.4.4 Grid currents ∆ SSTI dynamics derivation

Finally, the derivation of SSTI expressions for the grid current dynamics are presented in
the following. The beginning of the proof is the SSTP dynamics equation of the grid current in
the stationary reference frame given in (2.11)-(2.12), and recalled in (2.57a) for convenience.
As for the previous cases, the dynamics are rewritten by expressing the abc vectors present in
(2.57a) as a function of their dqz equivalents, as indicated in (2.57b).

Lac
eq

di∆
abc

dt
= v∆

mabc − vG
abc − Rac

eqi∆
abc, (2.57a)

Lac
eq

dP −1
ω

dt
i∆

dqz + Lac
eqP

−1
ω

di∆
dqz

dt
= P −1

ω v∆
mdqz − P −1

ω vG
dqz − Rac

eqP −1
ω i∆

dqz (2.57b)

By multiplying (2.57b) by Pω and solving for di∆
dqz/dt gives (2.58).

Lac
eq

di∆
dqz

dt
= v∆

mdqz − vG
dqz − Rac

eqi∆
dqz − Lac

eqJωi∆
dqz (2.58)

where vG
dqz = [vG

d vG
q 0]⊤, v∆

mdqz
def= Pωv∆

mabc and v∆
mabc is defined in (2.12). Nonetheless, v∆

mdqz

needs to be assessed in order to verify if (2.58) produces a SSTI solution. For this purpuse,
v∆

mdqz is rewritten by expressing the abc vectors in its definition as a function of their dqz
equivalents, as indicated in (2.59a).

v∆
mdqz = − Pω

1
2

(
P −1

ω m∆
dqz◦P

−1

−2ω
vΣ

Cdqz + P
−1

−2ω
mΣ

dqz◦P −1
ω v∆

Cdqz

)
(2.59a)

v∆
mdqz =V ∆

A

[
mΣ

d mΣ
q mΣ

z

]⊤
+ V ∆

B

[
m∆

d m∆
q m∆

z

]⊤
(2.59b)

where V ∆
A and V ∆

B are expressed in (2.60) and (2.61), respectively.

V ∆
A =

1
4




−v∆
Cd − 2v∆

Cz cos(3ωt) +v∆
Cq + 2v∆

Cz sin(3ωt) −2v∆
Cd

+v∆
Cq − 2v∆

Cz sin(3ωt) +v∆
Cd − 2v∆

Cz cos(3ωt) −2v∆
Cq

−v∆
Cd cos(3ωt) − v∆

Cq sin(3ωt) v∆
Cd sin(3ωt) − v∆

Cq cos(3ωt) −2v∆
Cz


 (2.60)

V ∆
B = 1

4




−vΣ
Cd − 2vΣ

Cz vΣ
Cq −2vΣ

Cd cos(3ωt) + 2vΣ
Cq sin(3ωt)

vΣ
Cq −2vΣ

Cz + vΣ
Cd −2vΣ

Cq cos(3ωt) − 2vΣ
Cd sin(3ωt)

+vΣ
Cq sin(3ωt) − vΣ

Cd cos(3ωt) −vΣ
Cq cos(3ωt) − vΣ

Cd sin(3ωt) −2vΣ
Cz


 (2.61)
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Both matrices present non-negligible third order harmonic components preventing the possibil-
ity of considering SSTI solutions from (2.58). As performed in previous section, it is necessary
to replace into (2.60) and (2.61), the new definitions of m∆

z and v∆
Cz given in given in (2.26)

and (2.36), respectively. Moreover, the zero-sequence of the modulated voltage v∆
mz is defined

following the same approach as for m∆
z and v∆

Cz:

v∆
mz

def= v∆
mZd

cos(3ωt) + v∆
mZq

sin(3ωt) (2.62)

By doing so, the definition of the modulation voltage v∆
mdqZ can be expressed as in (2.63),

where V ∆
A′ and V ∆

B′ are given in (2.64) and (2.65), and will result in SSTI solutions if the sixth
harmonic are neglected.

v∆
mdqZ

def= [v∆
md, v∆

mq, v∆
mZd

, v∆
mZq

]⊤ = V ∆
A′

[
mΣ

d mΣ
q mΣ

z

]⊤
+ V ∆

B′

[
m∆

d m∆
q m∆

Zd
m∆

Zq

]⊤
(2.63)

V ∆
A′ =

1
4




−v∆
Cd − v∆

CZd
+v∆

Cq + v∆
CZq

−2v∆
Cd

+v∆
Cq − v∆

CZq
+v∆

Cd − v∆
CZd

−2v∆
Cq

−vΣ
Cd −v∆

Cq −2v∆
CZd

−vΣ
Cq +v∆

Cd −2v∆
CZq




+ ... (2.64)

... +




−v∆
CZd

cos(6ωt) − v∆
CZq

sin(6ωt) +v∆
CZd

sin(6ωt) − v∆
CZq

cos(6ωt) 0
+v∆

CZq
cos(6ωt) − v∆

CZd
sin(6ωt) −v∆

CZq
sin(6ωt) − v∆

CZd
cos(6ωt) 0

0 0 0
0 0 0




︸ ︷︷ ︸
≈0

V ∆
B′ =

1
4




−vΣ
Cd − 2vΣ

Cz +vΣ
Cq −vΣ

Cd +vΣ
Cq

+vΣ
Cq −2vΣ

Cz + vΣ
Cd −vΣ

Cq −vΣ
Cd

−vΣ
Cd −vΣ

Cq −2vΣ
Cz 0

+vΣ
Cq −vΣ

Cd 0 −2vΣ
Cz




+ ... (2.65)

... +




0 0 vΣ
Cq sin(6ωt) − vΣ

Cd cos(6ωt) −vΣ
Cq cos(6ωt) − vΣ

Cd sin(6ωt)
0 0 −vΣ

Cq cos(6ωt) − vΣ
Cd sin(6ωt) −vΣ

Cq sin(6ωt) + vΣ
Cd cos(6ωt)

0 0 0 0
0 0 0 0




︸ ︷︷ ︸
≈0

Replacing (2.64) and (2.65) in (2.63), gives:




v∆
md

v∆
mq

v∆
mZd

v∆
mZq




= 1
4




−v∆
Cd − v∆

CZd
v∆

Cq + v∆
CZq

−2v∆
Cd −vΣ

Cd − 2vΣ
Cz vΣ

Cq −vΣ
Cd vΣ

Cq

v∆
Cq − v∆

CZq
v∆

Cd − v∆
CZd

−2v∆
Cq vΣ

Cq vΣ
Cd − 2vΣ

Cz −vΣ
Cq −vΣ

Cd

−v∆
Cd −v∆

Cq −2v∆
CZd

−vΣ
Cd −vΣ

Cq −2vΣ
Cz 0

−v∆
Cq v∆

Cd −2v∆
CZq

vΣ
Cq −vΣ

Cd 0 −2vΣ
Cz







mΣ
d

mΣ
q

mΣ
z

m∆
d

m∆
q

m∆
Zd

m∆
Zq




(2.66)

The complete formulation of v∆
mdqZ from (2.63) is useful for control purposes as it will be

detailed in the following Chapter. As it was stated before, the zero-sequence current doesn’t
have a path to flow due to the AC-side connection, but it doesn’t mean that the voltage v∆

mz

should be equal to zero: this is a degree of freedom [143,144].
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Finally, the SSTI dynamics of the grid currents are given in (2.67), where V ∆⋆
A and V ∆⋆

V

are the sub-matrices from v∆
mdqZ , expressed in (2.68) and (2.69), respectively.

di∆
dq

dt
=

1
Lac

eq





−vG
dq − Rac

eqi∆
dq +

(
V ∆⋆

A mΣ
dqz + V ∆⋆

B m∆
dqZ

)

︸ ︷︷ ︸
v∆

mdq





− Jωi∆
dq (2.67)

V ∆⋆
A =

1
4

[
−v∆

Cd − v∆
CZd

+v∆
Cq + v∆

CZq
−2v∆

Cd

+v∆
Cq − v∆

CZq
+v∆

Cd − v∆
CZd

−2v∆
Cq

]
(2.68)

V ∆⋆
B =

1
4

[
−vΣ

Cd − 2vΣ
Cz +vΣ

Cq −vΣ
Cd +vΣ

Cq

+vΣ
Cq −2vΣ

Cz + vΣ
Cd −vΣ

Cq −vΣ
Cd

]
(2.69)

The dq components are naturally coupled due to the Park transformation, with the terms
ωLac

eqi
∆
d and ωLac

eqi
∆
q . Moreover, they are also coupled due to the relation of the voltages v∆

m

and the modulation indices ∆ and Σ in (2.66).

2.4.5 Modulated voltages in dq frame

The modulated voltages vΣ
mdqz from (2.55) and v∆

mdqZ from (2.66) can be expressed in a
single equation as shown in (2.70). This equation shows the relations between the modulated
voltages and the modulation indices (MMC inputs), with the arm capacitor voltages with the
“Σ-∆” representation in dqz frame. This expression is a key point for the MMC control in dqz
frame.



vΣ
md

vΣ
mq

vΣ
mz

v∆
md

v∆
mq

v∆
mZd

v∆
mZq




=
1
4




2vΣ
Cz 0 2vΣ

Cd v∆
Cd + v∆

CZd
v∆

CZq
− v∆

Cq v∆
Cd v∆

Cq

0 2vΣ
Cz 2vΣ

Cq −v∆
Cq − v∆

CZq
v∆

CZd
− v∆

Cd v∆
Cq −v∆

Cd

vΣ
Cd vΣ

Cq 2vΣ
Cz v∆

Cd v∆
Cq v∆

CZd
v∆

CZq

−v∆
Cd − v∆

CZd
v∆

Cq + v∆
CZq

−2v∆
Cd −vΣ

Cd − 2vΣ
Cz vΣ
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Cd vΣ

Cq

v∆
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CZq
v∆

Cd − v∆
CZd

−2v∆
Cq vΣ

Cq vΣ
Cd − 2vΣ

Cz −vΣ
Cq −vΣ

Cd

−v∆
Cd −v∆

Cq −2v∆
CZd

−vΣ
Cd −vΣ

Cq −2vΣ
Cz 0

−v∆
Cq v∆

Cd −2v∆
CZq

vΣ
Cq −vΣ

Cd 0 −2vΣ
Cz




︸ ︷︷ ︸
V Σ∆

CmdqZ




mΣ
d

mΣ
q

mΣ
z

m∆
d

m∆
q

m∆
Zd

m∆
Zq




(2.70)

Equation (2.70) may be written in a compact form as:
[

vΣ
mdqz

v∆
mdqZ

]
= V Σ∆

CmdqZ

[
mΣ

dqz

m∆
dqZ

]
(2.71)

2.4.6 Summary of MMC Model with SSTI Solution

To summarize, the proposed MMC model with SSTI solution is graphically represented in
Fig. 2.12, where the SSTI dynamics can be represented by means of equations (2.39), (2.47),
(2.56) and (2.67), corresponding to the 12 SSTI state variables of the arm voltages difference
v∆

CdqZ , arm voltages sum vΣ
Cdqz, circulating currents iΣ

dqz and grid currents i∆
dq, as expressed

in (2.72). Moreover, this model accepts 7 SSTI control inputs represented by the sum and
difference of the modulation indices mΣ

dqz and m∆
dqZ . In addition, the model receives 3 physical

SSTI inputs represented by the voltage at the DC terminals vdc and the dq components of the
grid voltage, vG

dq, as expressed in (2.73).

xMMC =
[
i∆
d i∆

q iΣ
d iΣ

q iΣ
z vΣ

Cd vΣ
Cq vΣ

Cz v∆
Cd v∆

Cq v∆
Cz v∆

CZd
v∆

CZq

]⊤ ∈ R
12 (2.72)
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uMMC =


mΣ

d mΣ
q mΣ

z m∆
d m∆

q m∆
Zd

m∆
Zq︸ ︷︷ ︸

Control inputs

vdc vG
d vG

q︸ ︷︷ ︸
Phys.




⊤

∈ R
10 (2.73)
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Figure 2.12 – Summary of the MMC equations with SSTI solution in dqz frame

The physical meaning of the variables in dqz frame are discussed in the following:

1. Grid currents “∆” — i∆
dq = [i∆

d i∆
q ]⊤ — (2.67): The classical AC currents in dq frame,

with similar equation as for the 2-level VSC. These currents are driven by the grid
voltages vG

dq = [vG
d vG

q ]⊤ and the AC-side modulated voltages v∆
mdq = [v∆

md v∆
mq]

⊤.

2. Modulated voltages “∆” — v∆
mdqZ = [(v∆

mdq)⊤ v∆
mZd

v∆
mZq

]⊤ — (2.66): The dq com-
ponents of v∆

mdqZ drive the AC-side currents i∆
dq; while the components v∆

mZd
and v∆

mZq

allows a SSTI representation of the amplitude and phase of the periodic third-harmonic
component of the zero-sequence AC modulated voltage, which may be used explicitly for
improving the limits of the MMC [145]. Contrary to the 2-level VSC, where the modu-
lated AC voltage is given by chopping the DC voltage; in the MMC the voltages v∆

mdqZ

are obtained by the modulation of the arm capacitor voltages. As shown in (2.66), all the
modulated signals and capacitor voltages in dqz frame are involved in a highly coupled
mechanism for the generation of v∆

mdqZ . With a proper modulation of these voltages, the
grid currents can be controlled.

3. Common-mode currents “Σ” — iΣ
dqz = [iΣ

d iΣ
q iΣ

z ]⊤ — (2.56): The dq components
corresponds to the internal circulating currents inside the converter. These currents are
driven only by the internal modulated voltage vΣ

md and vΣ
mq. The z sequence component

(which is the sum of all currents in abc) is proportional to the DC output current and
hence, it is in charge of the active power transfer on the DC-side. This current is driven
by the DC voltage and the internal modulated voltage vΣ

mz.

4. Modulated voltages “Σ” — vΣ
mdqz = [vΣ

md vΣ
mq vΣ

mz]⊤ — (2.55): For the generation
of vΣ

mdqz, all the modulated signals and capacitor voltages in dqz frame are involved in
a highly coupled mechanism similarly as for the modulated voltages “∆”. With these
voltages, the three common mode currents can be regulated.
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5. Arm capacitor voltages “Σ” — vΣ
Cdqz = [iΣ

d iΣ
q iΣ

z ]⊤ — (2.47): The dq variables
corresponds to the amplitude and phase of the three-phase arm capacitors voltages sum,
while the z component corresponds to the algebraic sum of the six arm capacitor voltages.
The way that these variables can be controlled is detailed in the following Chapter.

6. Arm capacitor voltages “∆” — v∆
CdqZ — (2.39): As for the “Σ” variables, the dq

components correspond to the amplitude and phase of the three-phase arm capacitors
voltages difference. The z sequence, due to its natural time-periodic behavior, is modeled
with two state variables (v∆

CZd
and v∆

CZq
); representing the amplitude and phase of v∆

Cz.

It is important to recall that all the variables of the MMC model from Fig. 2.12 reach a
constant equilibrium in steady-state operation. This characteristic presents several advantages
such as the direct calculation of operating points by numerical resolution of the state-space
equations; the application of Jacobian linearization for small-signal stability analysis based on
eigenvalue analysis as presented in Chapter 1, application of mathematical tools for dynamic
studies of linear models, among others.

2.5 Model validation by time-domain simulation

The objective of this section is to perform the validation of the obtained MMC model
by time-domain simulations. However, a control system with SSTI solution should be first
considered for this task. In the following section, the most basic MMC control is presented:
The AC current controllers in dq frame and the “Un-Compensated Modulation” (UCM).

2.5.1 Modulation and Grid Current Controllers

The considered AC current controller for the MMC in this section is basically the same as
for the classical 2-level VSC from Section 1.2.2. The implementation of the controller is shown
in Fig. 2.13a for the EMT model. In this figure, the angle θC is considered to be perfectly
estimated by the PLL. Moreover, the boundary between the dq and abc frame is given by a
green dashed vertical line, highlighting the Park transformations used to cross the boundary.
The references for the modulated voltages vΣ∗

mj is set to vdc/2 [117].
For the EMT model, the modulation indices are calculated with the “Un-Compensated

Modulation” (UCM) [146] (also called “direct modulation” in [137]). This modulation is based
on the approximation that the arm capacitor voltages are near vdc (i.e. vΣ

C ≈ vdc) while
considering that all the components from v∆

C are zero. With this assumption, the matrix
V Σ∆

Cmabc from (2.8) is approximated as shown in (2.74).

V Σ∆
Cmabc =

1
2




vΣ
Ca 0 0 v∆

Ca 0 0
0 vΣ

Cb 0 0 v∆
Cb 0

0 0 vΣ
Cc 0 0 v∆

Cc

−v∆
Ca 0 0 −vΣ

Ca 0 0
0 −v∆

Cb 0 0 −vΣ
Cb 0

0 0 −v∆
Cc 0 0 −vΣ

Cc




≈ 1
2




vdc 0 0 0 0 0
0 vdc 0 0 0 0
0 0 vdc 0 0 0
0 0 0 −vdc 0 0
0 0 0 0 −vdc 0
0 0 0 0 0 −vdc




︸ ︷︷ ︸
V UCM

Cmabc

(2.74)

In this way, the modulation indices under the UCM method in abc frame are calculated as in
(2.75). More details on the implementation of MMC controllers for the EMT simulation are
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Figure 2.13 – Grid current controller for EMT model in mixed reference frames (abc for the
MMC, and dq for the controller)

given in Appendix F.

[
mU

abc

mL
abc

]
=

1
2




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1




︸ ︷︷ ︸
From Σ∆ to U,L

2
vdc




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




[
vΣ∗

mabc

v∆∗

mabc

]

︸ ︷︷ ︸[
mΣ

abc

⊤
;m∆

abc

⊤

]⊤

(2.75)

Full dq frame

The grid current controller for the MMC-SSTI is shown in Fig. 2.14a. In this figure, all
the variables are in dqz frame. The references for the modulated voltages vΣ∗

mz is set to vdc/2,
while all the others are set to zero.
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Figure 2.14 – Grid current controller for EMT model in full dq for the MMC-SSTI model

69



For considering the UCM for the dqz MMC model, it is approximated vΣ
Cz ≈ vdc, while

the rest of the arm capacitor voltages are neglected (the dq components from vΣ
C , and all the

components from v∆
C ). With this assumption, the matrix V Σ∆

CmdqZ from (2.71) is approximated
as follows:

V Σ∆
CmdqZ ≈ 1

2




vdc 0 0 0 0 0 0
0 vdc 0 0 0 0 0
0 0 vdc 0 0 0 0
0 0 0 −vdc 0 0 0
0 0 0 0 −vdc 0 0
0 0 0 0 0 −vdc 0
0 0 0 0 0 0 −vdc




︸ ︷︷ ︸
V UCM

CmdqZ

(2.76)

In this way, the modulation indices under the UCM method in dqz frame are calculated as:
[

mΣ
dqz

m∆
dqZ

]
=
(
V UCM

CmdqZ

)−1 [ vΣ∗

mdqz

v∆∗

mdqZ

]
(2.77)

2.5.2 Time domain results

To validate the developed modeling approach, results from time-domain simulation of the
following three different models are shown and compared in this section.

1. The proposed time-invariant MMC model derived in Section 2.4 and represented by
Fig. 2.12, corresponding to the SSTI dynamics in dqz of the arm voltages difference, arm
voltages sum, common-mode currents and grid currents. The implemented AC current
controller and modulation are given in Fig. 2.14. Simulations result obtained with this
model are identified in the legend by “SSTI”.

2. The AAM of a three-phase MMC (also called “Model # 3: MMC Arm Switching Func-
tion” in [111]). Each arm is represented by a controlled voltage source and where the
internal arm voltage dynamics is represented by an equivalent arm capacitance as indi-
cated in the lower right part of Fig. 2.2 [115, 147, 148]. The implemented AC current
controller and modulation are given in Fig. 2.13. The model is simulated in EMTP-RV.
Simulation results obtained with this model are identified in the legend by “AAM”.

3. The system from Fig. 2.2 implemented in EMTP-RV for an MMC with 400 sub-modules
per arm, with a capacitance of 0.01302F each. The MMC is modeled with the so-called
“Model # 2: Equivalent Circuit-Based Model” from [111]. This model includes the
switching operations and the dynamics of the sub-module capacitor voltage balancing al-
gorithm from [109], as indicated in Fig. 2.1 [149]. The implemented AC current controller
and modulation are given in Fig. 2.13. Simulation results obtained with this model are
identified in the legend by “EMT”.

It is worth mentioning that the verification of the scientific contribution represented by the
proposed modeling approach should be done first and foremost with respect to the model it has
been derived from; i.e., the AAM. This initial comparison, where the AAM is considered as the
reference model, is enough to evaluate the accuracy of the modeling proposal and the simpli-
fications it entails. Thus, the analysis of simulation results that will follow is mainly focused
on these two modeling approaches. Nonetheless, for a more practical-oriented comparison, the
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detailed switching model has been included as well, to provide an indication on the accuracy of
both the well-established AAM and the proposed modeling approach with respect to a detailed
switching model of the MMC. All simulations are based on the MMC HVDC single-terminal
configuration shown in Fig. 2.15, with the parameters given in the Appendix A.

+

-

+

vdc

v
G
abc

idc=3×iΣz

VSC-MMC

i
∆

abc

Figure 2.15 – MMC connected to AC and DC perfect sources

For comparing the models, the transient and steady-state responses are performed in dqz
frame and in per-unit quantities. Thus, in most cases, the results obtained from the reference
model are post-transformed into the appropriate SRRFs to ease the comparison. Starting the
simulation with a power transfer of Pac = 1 pu and Qac = 0 pu, the following scenario is chosen
in order to excite the different dynamics existing in the models:

1. At t = 0.1 s: Reactive power reference (i.e. i∆∗
q ) is set to −0.1 pu.

2. At t = 0.4 s: Active power reference (i.e. i∆∗
d ) is reduced to 0.5 pu.

The dynamics of the dq components of the grid current are shown in Fig. 2.16. It is possible
to see that for this variable the reference model and the proposed model with SSTI dynamics
are practically overlapping.
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Figure 2.16 – Comparison of the proposed SSTI model with the AAM and EMT models: grid
current dq components

In Fig. 2.17, the results of the common-mode currents iΣ
dqz are shown. In the upper sub-

figure it is depicted the currents in abc frame for the EMT model. The dynamics of the
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circulating currents iΣ
dq and zero-sequence current iΣ

z are shown in the middle and lower sub-
figures of Fig. 2.17. It can be noticed that the accuracy of the model is very good for the
zero-sequence component iΣ

z . The results of the dq components iΣ
dq for the compared models

are almost the same, only a large zoom (Fig. 2.18) enables to observe the 6th harmonic in the
reference models which is obviously not visible in the model obtained with SSTI solution. In
light of the results, the assumption of neglecting the 6th harmonic in the modeling with the
SSTI solution is confirmed.
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Figure 2.17 – Comparison of the derived SSTI model with the AAM and EMT models: common-
mode currents iΣ

dqz i) dq components and ii) zero-sequence

The dynamics of the voltage sum vΣ
Cdqz are illustrated in Fig. 2.19, where it can be seen how

the variables calculated with the AAM-MMC used as reference are overlapping those calculated
with the model with SSTI solution derived in this Chapter. Notice that the steady-state value
of vΣ

Cz changes with respect to each of the reference steps, since there is no regulation of the
energy stored in the MMC. Furthermore, the non-zero steady-state values of vΣ

Cdq emphasizes
the 2ω oscillations that this variable has in the stationary abc reference frame.

Similarly, the dynamics of the energy difference v∆
Cdqz are depicted in Fig. 2.20. More pre-

cisely, the upper figure is illustrating the dq components behavior of this variable under the
above described case scenario while the lower figure does the same for the zero-sequence. In
terms of accuracy, both of the sub-figures show how the proposed model with SSTI solution ac-

72



 

 

iΣd − SSTIiΣd − AAMiΣd − EMT
iΣ d

[p
u
]

Time [ms]
0 2 4 6 8 10 12 14 16 18 20

−0.78

−0.76

−0.74

−0.72

−0.7

 

 

iΣq − SSTIiΣq − AAMiΣq − EMT

iΣ q
[p
u
]

Time [ms]
0 2 4 6 8 10 12 14 16 18 20

−0.14

−0.12

−0.1

−0.08

Figure 2.18 – Circulating currents iΣ
dq zoom
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Figure 2.19 – Comparison of the derived SSTI model with the AAM and EMT models: arm
capacitor voltage sum vΣ

Cdqz i) dq components and ii) zero-sequence

curately captures the behavior of the AAM-MMC model used as reference. This is particularly
true for the case of v∆

Cdq as almost no distinction can be made between the voltage waveforms
resulting from the two models. For v∆

Cz however, it is possible to notice a slight mismatch
between the derived model and the AAM, particularly during the transient behavior between
t = 0.15 s and t = 0.2 s. This is indeed associated to the neglected sixth harmonic components
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in the mathematical derivation of the proposed model with SSTI solution. Nonetheless, the
model accuracy is not compromised since it has a very little influence on the general dynamics.
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Figure 2.20 – Comparison of the derived SSTI model with the AAM and EMT models: arm ca-
pacitor voltage difference v∆

Cdqz i) dq components and ii) zero-sequence component transformed
to scalar, time-periodic, representation

Notice that the comparison between the reference and the proposed MMC model with SSTI
solution has been done using the SSTP signal v∆

Cz instead of its equivalent SSTI version v∆
CZ

defined in Section 2.4. This is done for simplicity, as the dynamics of the virtual system used
to create v∆

CZ do not directly exist in the reference AAM-MMC model. However, for the sake
of completeness, the dynamics of the SSTI v∆

CZ obtained with the proposed model are depicted
in Fig. 2.21, where it can be confirmed that both the v∆

CZd
and v∆

CZq
sub-variables reach a

constant value in steady-state operation.
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Figure 2.21 – SSTI representation of the voltage difference zero sequence
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2.6 Chapter Conclusions

This Chapter presents a modeling approach for obtaining a state-space representation of
an MMC with Steady-State Time-Invariant (SSTI) solution. The presented approach can be
considered independent from the modulation and control strategy adopted, as only the physi-
cal equations of the MMC have been mathematically manipulated, gaining a more generalized
model compared to previous works available in the literature. Results from time-domain sim-
ulation of a detailed MMC model with 400 sub-modules per arm are presented as point of
reference to illustrate the validity of the derived model. These results demonstrate how the
model with SSTI solution accurately captures the MMC internal dynamics while all variables
settle to a constant equilibrium in steady-state operation.

The proposed model was achieved thanks to a voltage-current Σ-∆ formulation which
enabled separation of the MMC variables according to their oscillation frequencies as part of
the initial model formulation. A procedure for deriving equivalent SSTI dqz representation
of all state variables by applying Park transformations at different frequencies was presented,
referring the variables to three different rotating reference frames, rotating at once, twice
and three times the grid fundamental frequency. The resulting model captures the internal
dynamics of the MMC such as circulating currents and arm capacitor voltages.

Utilization of the proposed model can enable a wide range of studies related to MMC-
based HVDC system analysis such as small-signal stability studies by eigenvalue analysis,
considering an individual MMC HVDC terminal, or an HVDC terminal integrated in a larger
power system configuration. Furthermore, this model can be used for developing appropriate
controller architectures and fine tuning of their parameters, as it highlights one by one the
dynamic modes present in an MMC.

The MMC models used in this Chapter are exploited in this Thesis for dynamic analysis of
the converter and further integration in MTDC grids, which are referred as follows:

• EMT: The efficient MMC model for EMT studies from [112], and called “Model # 2:
Equivalent Circuit-Based Model” in [111]. This model includes also the sub-modules
balancing algorithm [109]. The MMC and its controller are implemented in EMTP-RV.

• AAM: The Arm Averaged Model (or “Model # 3: MMC Arm Switching Function”)
implemented in EMTP-RV.

• SSTI: The MMC model with Steady-State Time Invariant solution developed in Sec-
tion 2.4 and represented by the Fig. 2.12. The considered SSTI representation of the
MMC controller is detailed in the text and in the figure labels. This model is simulated
in Matlab/Simulink.
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Chapter 3

On MMC control for its integration in
MTDC grids

3.1 Introduction

This Chapter deals with the control strategies of the MMC for its integration in MTDC
grids. The objective is to make use of mathematical tools for linear model analysis in order
to study the stability of a MMC station associated to different control strategies. In this way,
the main characteristics of each configuration are highlighted thanks to the linear version of
the MMC model with Steady-State Time Invariant solution from the previous Chapter.

In Chapter 2, a very basic MMC control strategy based on the grid current controllers
was used to validate the MMC-SSTI model, where the Un-Compensated Modulation (UCM)
method was implemented. The idea of this controller was to modulate the AC voltages to
obtain the desired AC currents. However, as it was shown in the simulation results from
Section 2.5, a large amount of circulating currents appear inside the MMC (iΣ

dq). For this
reason, in [135] it was introduced the Circulating Current Suppressing Controller in dq frame
(or simply CCSC). After the appearance of this strategy, it gained a lot of popularity as it was
widely adopted in the literature due to its simplicity, and several publications were already
focused on the dynamic analysis of the MMC with the CCSC as [125, 150, 151]. However,
as stated in [152], the CCSC controller may fail to guarantee stable operation of the MMC.
In this Chapter, it is further shown that the uncontrolled DC current may cause undesired
interactions with the DC grid being the root cause of the unpropitious behavior. For this
reason, the Energy-based controller strategy is introduced, where extra control loops in cascade
are added to regulate the dynamics of interest: for instance, the previously un-controlled DC
current and a stored energy regulator to balance the AC and DC powers explicitly [153,154].

Since many Energy-based control strategies rely on stationary frame per-phase control loops
[155,156], a similar mathematical methodology as in Chapter 2 is used to refer the MMC control
equations from stationary (abc) to rotating (dq) frames. The developed controller is suitable for
obtaining the MMC and its control in SSTI representation, which can be linearized to obtain
a linear time invariant model where small-signal stability analysis can be performed [157].

The rest of the Chapter is organized as follows. After detailing the preliminaries on the
MMC controllers, in Section 3.2, the Classical CCSC strategy is introduced and analyzed. Also,
the issues with this basic strategy are highlighted. For improving the stability, the Energy-
based control strategy is deduced in Section 3.3. This strategy adds only two controllers to
the Classical CCSC. In Section 3.4, an advanced controller which specifically controls all the
MMC state variables is introduced.
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Preliminaries

Due to the complexity and flexibility of the MMC, several controllers can be found in the
literature [137]. For the proper operation of the MMC, the controller must fulfill the following
specifications [146,158]:

1. Match AC and DC power flows: In Fig. 3.1a, it is shown that if an AC and DC
power mismatch occurs, the average of the internal stored energy per phase W

Σ
j will grow

continuously. When a proper energy regulation is set up, the energy can be maintained
at a desired reference level W

Σ∗
j , as shown in Fig. 3.1b) [108].

2. Horizontal balancing — Exchange energy phase to phase: The control system
must guarantee that the stored energy per-phase are maintained to a proper value, as
exemplified in Fig. 3.1c [114].

3. Vertical balancing — Exchange energy arm to arm: Within each phase leg, the
energy stored should be equally repartitioned within the upper and lower arms, as shown
in Fig. 3.1ds [159].

4. Sub-module balancing — Exchange energy SM to SM: This control level should
guarantee that the capacitor voltages at each SM are maintained in a close range with
respect to the SMs of their respective arms [110].

The last item (Sub-module balancing) is highly covered in the literature and it is not a matter
of interest in this Thesis since the main focus is given to the High-level controllers. However,
an implementation of the strategy from [109] is considered for the complete EMT model (See
Appendix F).
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Figure 3.1 – Control specifications of the MMC: graphical description

For anticipating the inclusion of the MMC directly into MTDC grids, a configuration of a
single converter is used in this Chapter as shown in Fig. 3.2. A simplified model is assumed for
the DC bus dynamics consisting of an equivalent capacitor Cdc which emulates the capacitance
of the DC cables and other converter stations connected to the grid. This approach is similar
to what was presented for a classical 2-level VSC (see Section 1.2.3). Also, in parallel with Cdc

there is a controlled current source il whose output power is P ∗
l as an equivalent model of the

power exchanged in the HVDC system. The equation of the DC bus used in this Chapter is
given in (3.1). Since the DC voltage is given by a dynamic state, the droop controller presented
in Section 1.4 is used.

Cdc
dvdc

dt
= il − idc =

P ∗
l

vdc

− 3iΣ
z (3.1)

For the analysis of the system from Fig. 3.2 when considering different control strategies,
the SSTI model from Chapter 2 is used, where (3.1) is taken into account for the DC side as
shown in Fig. 3.3
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3.2 Classical Circulating Current Suppressing Controller

Strategy

As it was shown in the simulation results from Section 2.5, when the MMC controller
is only controlling the AC currents in combination with the Un-Compensated Modulation
(UCM), a non-negligible amount of circulating currents iΣ

dq exists inside the MMC. These
currents augment the RMS value of the arm currents, increasing the internal losses in the
converter. For eliminating these circulating currents, several options were already investigated
in the literature [137]. The widely adopted method is called “Circulating Current Suppressing
Controller”, or simply “CCSC”, which is shown in Fig. 3.4 [135]. This controller monitors
the circulating currents iΣ

dq and, with two PIs controllers in double SRRF, the currents are
controlled to zero at every time. This means that in abc frame, the oscillations at double line
frequency are canceled in steady-state. As it is highlighted in Fig. 3.5, there is no closed loop
control for the third-current iΣ

z . One peculiarity of this control strategy lies in the fact that
the modulation index mΣ

z is a constant value. This is due since vΣ∗
mz is set to vdc/2, and when

obtaining mΣ
z with UCM from (2.77), results in mΣ

z = (vdc/2)/(2/vdc) = 1 [108].
For demonstrating the effectiveness of the controller proposed in [135], a similar simulation
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as in Section 2.5 is performed (i.e. an MMC connected to ideal AC and DC sources and
also, the same models are compared: EMT, AAM and SSTI). With the same initial operating
point as in Section 2.5, the CCSC is activated at t = 0.1 s. The controllers gains of the
CCSC are calculated to achieve a theoretical response time τΣ

i of 5 ms and ζΣ
i of 0.7 (See

Appendix C). The output DC current of the converter is left uncontrolled with this strategy,
and it is naturally adjusted to balance the AC and DC power flow [115]. Results are shown in
Fig. 3.5. In Fig. 3.5a, the common-mode currents in abc frame iΣ

abc are shown (only the EMT
model). Before the activation of the CCSC, it is noticeable the high amount of 2ω components
in the currents iΣ

abc. When the CCSC is activated, the currents iΣ
dq are controlled to zero

(meaning no oscillations in abc frame) as shown in Fig. 3.5b.
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Figure 3.5 – CCSC Validation - Common-mode currents iΣ - CCSC activated at t = 0.1s

The addition of the CCSC in conjunction with the already presented controller from Sec-
tion 2.5.1 forms the first control strategy that is investigated in this Thesis, named as Classical
Circulating Current Suppressing Controller (also named as “Global Control # 1” in [108] or
“Non-energy based control” in [114]).

Since the strategy from Fig. 3.6 is based on the current control of the AC side and the inter-
nal circulating currents in rotating frame (dq), the mathematical expression of this controller
is already in a “Steady-State Time Invariant” (SSTI) representation. This means that it is
readily adapted to the MMC-SSTI model developed in Chapter 2. In the following sections, an
analysis of the single terminal HVDC system from Fig. 3.2 is performed to highlight the main
characteristics and limitations of this strategy.
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3.2.1 Model linearization and time domain validation

For evaluating the Classical CCSC strategy, first an equivalent linear model (LTI) is ob-
tained by direct linearization of the MMC-SSTI with the associated controller. The non-linear
time-invariant model presented in Section 2.4 with the control from Fig. 3.6 are connected as
shown in Fig. 3.7.
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Figure 3.7 – SSTI model of MMC, DC bus and Classical CCSC

This interconnected model is represented by a subset of ordinary differential equation, with
xccsc representing the states of the system as in (3.2) and uccsc the inputs as in (3.3).

xccsc = [ξi∆

dq
ξiΣ

dq︸ ︷︷ ︸
Controllers

i∆
dq iΣ

dqz vΣ
Cdqz v∆

CdqZ︸ ︷︷ ︸
MMC

vdc︸︷︷︸
DC bus

]⊤ ∈ R
17 (3.2)

uccsc = [v∗
dc P ∗

ac0 Q∗
ac iΣ∗

d iΣ∗
q︸ ︷︷ ︸

Controllers

vG
d vG

q︸ ︷︷ ︸
AC grid

P ∗
l︸︷︷︸

DC grid

]⊤ ∈ R
8 (3.3)

The non-linear model resulting from Fig. 3.7 can be linearized around a steady-state oper-
ating point by means of the Jacobian linearization method, resulting in a LTI representation
(See Section 1.2.4). The obtained LTI model is used for evaluating small-signal dynamics and
stability by eigenvalue analysis.

Starting with a DC power transfer of 1 pu (from DC to AC), a step is applied on P ∗
l of

−0.1 pu at 0.05 s. The reactive power is controlled to zero during this scenario. Simulation
results are gathered in Fig. 3.8. The dynamic response of the DC power Pdc is shown in Fig. 3.8a
(i.e. measured power in the reference model and the calculated power for the linearized model
as Pdc = 3iΣ

z vdc). The step applied on P ∗
l produces a power imbalance in the DC bus, so the
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MMC reacts with the droop controller and its internal energy to achieve the new equilibrium
point. The DC voltage results are shown in Fig. 3.8b. Due to the DC voltage droop control
(proportional controller with gain kd), a steady-state error is obtained after the transient. The
internal energy of the MMC participates in the dynamics of the DC voltage regulation by
discharging its internal capacitors into the DC bus during the transients, as seen in the voltage
vΣ

Cz. The behavior of vΣ
Cz is similar to vdc as expected from the discussion in [160].
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in Simulink

The results of the common-mode currents are shown in Fig. 3.8c for the zero-sequence and
in Fig. 3.8d for the dq components. The EMT model presents oscillations at 6ω in steady
state in the dq components. These oscillations were neglected during the development of the
time-invariant model (See Chapter 2). As seen in the comparisons from Fig. 3.8d, the model
captures the average dynamics with reasonable accuracy even if the 6th harmonic components
are ignored (notice the scale). For all other variables, there are negligible differences between
the different models.

3.2.2 Stability analysis

Since the linearized model from Fig. 3.7 has been validated, it can be used for small signal
stability analysis and indirectly infer about the reference system (in this study, the complete
Simulatio model in EMTP-RV). The impact of three main parameters influencing the DC
voltage dynamics are evaluated: the DC capacitance, the droop gain kd [160] and the response
time of the current loops.
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Influence of the DC capacitance

In MTDC systems, the value of the equivalent DC capacitance depends on the number
of MMC stations connected to the grid as well as the cable lengths [160]. This value may
vary because some converters could be disconnected or the grid topology reconfigured. For
this reason, the MMC should be able to operate under different situations that can result from
changes of the DC grid topology and parameters. For evaluating the impact of the DC side
capacitance on the small-signal stability, a parametric sweep is performed on the electrostatic
constant Hdc which is defined as,

Hdc =
1
2

Cdc
v2

dcn

Pn

. (3.4)

The value of Hdc is varied from 40 ms down to 5 ms. This last value represents a small
capacitance of the DC bus (24, 4µF << (6×Carm)), which could represent the DC capacitance
of a short cable. The first results consider a power direction from DC to AC side of 1 GW
(1 pu) of power transfer. Results are shown in Fig. 3.9a. In this case, for the selected values
the system remains stable.

It is known that the converters dynamics depend on the operating point [161]. The same
parametric sweep as the previous example is performed with the opposite power transfer di-
rection (i.e. from AC to DC side). The results are shown in Fig. 3.9b, demonstrating that the
system becomes unstable when the equivalent DC capacitor decreases.
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Figure 3.9 – Parametric sweep of DC capacitor Hdc — DC Operating point vdc0 = 1 pu —
kd = 0.1 pu — Classical CCSC

Influence of the droop parameter

In this case, the droop parameter kd is varied from 0.2 pu down to 0.05 pu. The considered
power direction is from AC to DC since it is the worst case from the previous section. Results
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are shown in Fig. 3.10. When lower values of droop are used, the eigenvalues λ1,2 shift to the
right-hand plane (RHP) resulting in unstable behavior.
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Influence of current controllers

For evaluating the impact of the current controllers on the stability, the response times
of the grid current control loops are varied as well as the circulating current control loops
(CCSC). Results are shown in Fig. 3.11a for the variation of τ∆

i and Fig. 3.11b for τΣ
i . When

faster controllers are used (lower values of response times), the eigenvalues λ1,2 shift to the
RHP.
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3.2.3 Identification of unstable eigenvalues

As observed in the previous results (Figs. 3.9, 3.10 and 3.11), the system may become
unstable due to the same pair of eigenvalues for all cases (λ1,2). For understanding the origin
of these eigenvalues, participation factor analysis is performed for the case from the previous
sub-section and the results are shown in Fig. 3.12.
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Results from Fig. 3.12 indicate that the states with the highest participation in the critical
modes are iΣ

z (i.e. the DC current), vΣ
Cz (the state of the MMC which represents the internally

stored energy) and vdc (DC voltage). It also shows that the internal circulating currents iΣ
dq

do not have significant influence on these eigenvalues and neither do the integral part of the
controllers (with the chosen bandwidths).

The impact of the proportional gains of the controllers are evaluated by calculating the
participation factors for each point from Figs. 3.11 and the results are shown in Fig. 3.13.
In Fig. 3.13a, a similar pattern is observed for the participation factors as in Fig. 3.12. For
fast response times of the CCSC, the dq components of vΣ

C participate more on the studied
eigenvalues, but the system is unstable as shown in Fig. 3.11b. Nevertheless, for realistic
values of response times, the most important states are iΣ

z , vΣ
Cz and vdc, which corresponds to

the results in Fig. 3.12.
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3.3 Small signal stability improvement of an MMC with

Energy-based controller

Since the instabilities identified in the studied cases are due mainly to the uncontrolled
output current iΣ

z , the next step is naturally the explicit control of this current for improving
the behavior of the system.

3.3.1 Energy-based controller # 1

The considered control strategy from previous section controls two out of three common-
mode currents iΣ. The uncontrolled zero-sequence component of iΣ may cause interactions
with the DC bus and the internal capacitor voltages, and can potentially make the system
unstable. To improve the stability of the studied system, it is proposed to add a DC current
control loop (or what is the same, a controller for iΣ

z ).
In the Classical CCSC strategy from last section, the energy is naturally following the DC

bus voltage. The DC current is adjusting itself to achieve an implicit balance of energy and
between AC and DC power in steady state. When controlling the DC current, this natural
balance is lost so the DC current has to be determined explicitly to regulate the internally
stored energy and balance the AC and DC power flow.

Inner control loop — Z-sequence Σ current

The design of the controller for iΣ
z is based on the z-component from equation of (2.56)

which is re-written in (3.5) for convenience, and a simple PI can be deduced as shown in
Fig. 3.14. For tuning purposes, vΣ

mz is supposed to be equal to vΣ∗
mz.

diΣ
z

dt
=

1
Larm

(
vdc

2
− vΣ

mz − RarmiΣ
z

)
(3.5)

vdc

2

PIiΣ

iΣ
z

iΣ∗

z
+

−

vΣ∗

mz−

+

Z-seq. Σ Current Controller

1

Larms+Rarm

iΣ
z

vdc

2
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−
vΣ
mz

Equation (3.5)

÷

mΣ
z Eq.

vdc

2

(2.71)

Figure 3.14 – Block diagram of the iΣ
z current control

Outer control loop — Energy controller

For generating the current reference iΣ∗
z an outer loop is needed. The proposed strategy is

based on the explicit control of the the total stored energy W Σ
z on the MMC capacitors Carm

given by the power balance between AC and DC sides [117]. For designing this controller, a
model with the explicit relation between the DC current idc and the total stored energy W Σ

z

is needed. Assuming P ∗
ac ≈ Pac, a simplified expression of the sum energy dynamics can be

defined as [117]:
dW Σ

z

dt
≈ Pdc − Pac ≈ vdc 3iΣ

z︸︷︷︸
idc

−P ∗
ac (3.6)
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The deduced controller structure is shown in Fig. 3.15. For tuning purposes, the inner iΣ
z

current controller is considered as a unity gain.
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Figure 3.15 – Controller design for W Σ
z

Finally, the complete control structure is shown in Fig. 3.16, where the response time for
the total energy τΣ

W is set to 50 ms (i.e. 10 times slower than the inner Σ current loop). At this
moment, the energy reference W Σ∗

z is set to 1 pu in this Chapter, for maintaining a constant
level of stored energy (corresponding to the rated capacitor voltages). As explained in the
Appendix G [162], the energy W Σ

z is calculated from the dqz components as in (3.7).
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Figure 3.16 – Complete Energy-based control - Current and Energy controllers
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vΣ
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)2


+ Carm

∑

k=d,q,Zd,Zq

(
v∆

Ck
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(3.7)

In general, the additional set of cascaded controllers (for the energy W Σ
z and the current

iΣ
z ) could make the tuning of the controllers more complicated. If they are not properly tuned,

the use of cascaded loops could also cause poorer dynamics or additional stability problems
(or problems with windup etc. if there are saturation limits) in case of large signal transients.
However, the tuning of the current control loop iΣ

z can be based on the same approach as for
the other current controllers. Thus, the added controller of the zero sequence current doesn’t
add much complication to the control system. The tuning of the energy controller W Σ

z could
be considered more challenging due to the coupling between the various states and controllers
in the system. However, this issue can be addressed with the help of the energetic model from
(3.6); the tuning can be done directly from this simple system. Selecting a time response of
τΣ

W = 10 × τΣ
i , as it is usually done, a proper decoupling between both loops can be achieved.
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3.3.2 Model linearization and time domain validation

In a similar way as in Section 3.2.1, the system comprising the non-linear SSTI model from
Fig. 3.3 and the controller from Fig. 3.16 are connected as shown in Fig. 3.17.
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Cdqz

v∆

CdqZ

Energy based

Figure 3.16

controller # 1

Equation (3.7)
WΣ

z WΣ
z calculation

MMC + DC bus
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dq =0

P ∗
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Q∗
ac

v∗dc

Figure 3.3
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dqz m∆

dqZ

i∆dqiΣdq vdcvG
dqWΣ∗

z

vG
dq

P ∗

l

Figure 3.17 – SSTI model of MMC, DC bus and Energy-based controller # 1

In this case, the number of states is n = 19, since the additional ordinary differential
equations from the added controllers (for the energy Wz and the current iΣ

z ) are also considered,
resulting in a vector of states xW as in (3.8) (the additional states with respect to the Classical
CCSC are marked in blue). The vector of inputs uW #1 for the Energy-based control, with
m = 9 elements, is shown in (3.9) (the additional input with respect to the Classical CCSC is
marked in blue).

xW #1 = [ξiΣ
z

ξiΣ

W
ξi∆

dq
ξiΣ

dq︸ ︷︷ ︸
Controllers

i∆
dq iΣ

dqz vΣ
Cdqz v∆

CdqZ︸ ︷︷ ︸
MMC

vdc︸︷︷︸
DC bus

]⊤ ∈ R
19 (3.8)

uW #1 = [W Σ∗
z v∗

dc P ∗
ac0 Q∗

ac iΣ∗
d iΣ∗

q︸ ︷︷ ︸
Controllers

vG
d vG

q︸ ︷︷ ︸
AC grid

P ∗
l︸︷︷︸

DC grid

]⊤ ∈ R
9 (3.9)

To validate the developed small-signal model of the MMC with Energy-based control, re-
sults from time domain simulations are shown in Fig. 3.18. The event and parameters are the
same as for Section 3.2.1, but it can be observed that the transient behavior of the DC power
and voltage are well controlled contrary to the oscillatory behavior from the Classical CCSC
strategy (Fig. 3.8).
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3.3.3 Stability analysis with Energy-based controller

As shown in Section 3.2.2, when the Classical CCSC from Fig. 3.6 was considered, some
instabilities were observed with low values of droop gain kd or low equivalent capacitance on
the DC side (i.e. low values of Hdc). For demonstrating the stability improvement with the
Energy-based controller from Fig. 3.16, the same parametric sweep is performed as for Fig. 3.9
and Fig. 3.10. The results are gathered in Fig. 3.19. For both situations, it is only shown
the case where the power flow is from the DC side to the AC side since it was the case where
the instabilities occurred in Section 3.2.2. However, with this controller, the system presents
similar behavior from both power directions.
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Figure 3.19 – Parametric sweeps for Energy-based control # 1 — vdc0 = 1 pu, Pdc0 = −1 pu,
kd = 0.1 pu — Power flow: DC ⇐ AC

For the case of the variation of Hdc in Fig. 3.19a, as well for the variation of kd in Fig. 3.19b
it can be clearly observed that stability is guaranteed for the studied cases.

3.3.4 Stability comparison with the Classical CCSC

For comparing the stability improvement, the eigenvalues from Fig. 3.9b and Fig. 3.19a
with an electrostatic constant Hdc of 14.2 ms are shown in Fig. 3.20. The value of Hdc is chosen
for highlighting the stability limits for the Classical CCSC. The unstable poles have a value of
2.81 ± j781, which corresponds to a frequency of 124 Hz approximately.

The stability improvements with the Energy-based controller are highlighted by a time
domain simulation. The operating point is the same as for Fig. 3.20 and the simulated scenario
considers an step of 0.1 pu applied on Pl. Simulation results are shown in Fig. 3.21. Since,
for this set of parameters, the configuration of the MMC with Classical CCSC is unstable, the
simulation is started with an extra capacitor connected in parallel with Cdc for stabilizing the
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Figure 3.20 – Eigenvalues comparison Energy-based # 1 and Classical CCSC control — DC
Operating point vdc0 = 1 pu, Pdc0 = −1 pu, Power flow: DC ⇐ AC — kd = 0.1 pu

system, which is disconnected at t = 0 s. The frequency of the oscillations corresponds to the
frequency of the unstable eigenvalues from Fig. 3.20.
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Figure 3.21 – Time domain comparison in EMTP-RV with detailed converters with Classical
CCSC and Energy-based # 1 strategies — Step applied on Pl of 0.1 pu — Hdc = 14.2 ms

The reader may refer to [163] for additional simulation results, such as the improvement
of the system stability when considering the Energy-based # 1 for fast active power reversals,
where the Classical CCSC results unstable.

3.3.5 Issues with Energy-based controller # 1

The Energy-based controller # 1 described in this Section complies with all the specifica-
tions illustrated in Fig. 3.1. However, the current and voltage variables of the MMC are highly
coupled as it is demonstrated in the following time-domain simulations. In this case, a step on
the reactive current reference i∆∗

q of 0.3 pu is applied at t = 0.05 s and the results are shown
in Fig. 3.22.
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The dynamic response of i∆
q doesn’t present a pure second-order response type as for the

2-level VSC from Section 1.2 (See simulation results from Fig. 1.9). Also, as it can be observed
in the grid current on the d axis, the dq currents are not decoupled, even if the decoupling terms
are added to the grid current controller. Moreover, the change on the AC-side reactive current
causes a small perturbation on the DC bus. In the presented simulation case, the coupling
doesn’t imply that the system behavior is not acceptable, but it may limit the system for
designing advanced control strategies where fast current controllers are needed [164]. Finally,
in the lower-right figure from Fig. 3.22 shows the results of the arm capacitor voltages in abc
frame, where it can be observed that the voltages are balanced during the simulation.

Decoupling state variables with Compensated Modulation

As it was explained in Section 2.5.1, the modulation indices of the MMC for the EMT
model or the SSTI were calculated until now with the Un-Compensated Modulation (UCM),
and recalled in Fig. 3.23a for a generic phase j. As observed, the modulation index mU

j (mL
j ) is

calculated dividing the modulated voltage reference vU∗
mj (vL∗

mj) by vdc, without assuring that the
actual applied voltage is equal to its references, i.e. vU

mj 6= vU∗
mj (vL

mj 6= vL∗
mj). This coupling is

preventing to accurately control the d and q axis of the grid currents, among other drawbacks.
However, this issue can be easily solved by compensating the arm capacitor fluctuations using
the actual measure (or estimation) of vU

Cj and vL
Cj for obtaining the modulation indices by simply

inverting the relation of the Physical system given in (2.1), and expressed in Fig. 3.23b [116].
This technique is referred as “Compensated Modulation” (CM), and it allows to assure that
vU

mj = vU∗
mj and vL

mj = vL∗
mj simultaneously [114,146].

The concept of the compensated modulation is easy to understand when it is approached in
abc frame with “Upper-Lower” representation and considering each phase individually as it was
done in Fig. 3.23. However, in dqz and “Σ-∆” representation for a three-phase approach this
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Figure 3.23 – Un-Compensated and Compensated modulation for the Arm Averaged Model in
abc frame with “Upper-Lower” representation for the phase j

task is more cumbersome since complicated matrix relations are needed. For the representation
of the CM in dqz, let us develop mathematically the modulation process in a three-phase
approach and abc frame using the appropriated matrices in “Σ-∆” representation for ease of
understanding. First, consider the relation given in (2.8), which is repeated in (3.10) in matrix
form for convenience. This equation represents the Physical system similarly as in Fig. 3.23, but
now it is relating the modulation indices with the modulated voltages in “Σ-∆” representation
by means of the 6 × 6 matrix V Σ∆

Cmabc.


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vΣ
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m∆
a

m∆
b

m∆
c




(3.10)

In the controller, the expression of the compensated modulation technique in matrix form is
then given by (3.11), where the modulation indices are calculated with the reference modulated
voltages multiplied by the inverse of the 6 × 6 matrix V Σ∆

Cmabc.


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mΣ
a

mΣ
b

mΣ
c

m∆
a

m∆
b

m∆
c




=
(
V Σ∆
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(3.11)

By analogy, the same process in matrix form is performed for the MMC-SSTI controller to
represent the compensated modulation technique in dqz frame. First, the relation between the
MMC modulation indices with the modulated voltages in “Σ-∆” representation and SRRF dqz
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by means of the the 7 × 7 matrix V Σ∆
CmdqZ developed in in Section 2.4 is recalled in (3.12)1.
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(3.12)

Finally, for the SSTI representation of the compensated modulation technique in dqz frame
the inverse of the the 7 × 7 matrix V Σ∆

CmdqZ is used, as expressed in (3.13).
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(3.13)

The relation given in (3.13) can be solved symbolically obtaining (3.14). This may be performed
with commercial software such as Matlab (with Symbolic toolbox) or Wolfram Mathematica,
among others. However, the expressions given by fCM,1 to fCM,7 are highly complex to be
written in this Thesis2.
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, v∆∗

mdqZ , vΣ
Cdqz, v∆

CdqZ

)

m∆
Zd

= fCM,6

(
vΣ∗

mdqz
, v∆∗

mdqZ , vΣ
Cdqz, v∆

CdqZ

)

m∆
Zq

= fCM,7

(
vΣ∗

mdqz
, v∆∗

mdqZ , vΣ
Cdqz, v∆

CdqZ

)

(3.14)

For summarizing, Fig. 3.24 shows the modulation indices calculation process for the three-
phase system in abc (for the classical AAM model) and dqz (for the SSTI-MMC model).

It is important to highlight that at this point that, even if the zero-sequence voltages
references v∆∗

mZd
and v∆∗

mZq
are set voluntarily to zero, it doesn’t imply that the modulation

indices m∆
Zd

and m∆
Zq

are zero as well. This was the case for the UCM, but not anymore for
the CM. This is the main reason of the modeling efforts in Section 2.4.1 by not neglecting the
modulation indices m∆

Zd
and m∆

Zq
.

In Fig. 3.25 it is depicted the MMC-SSTI model considering Energy-based controller # 1
with CM. Since the algebraic equations have changed with respect to Fig. 3.17, a new LTI

1It is recalled that the matrix V Σ∆

CmdqZ has now 7 columns and rows instead of 6, since the z-seq. of the ∆
variables were split into 2 components Zd and Zq for achieving an SSTI representation.

2When assuming that CM is used, a different formulation for the SSTI-MMC model can be performed, as
in [165]. In that case, the state variables of the MMC are the energies W Σ and W ∆, instead of capacitor
voltages.
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Figure 3.24 – Relating modulated voltage references with the actual modulated voltages -
Modulation indices calculation

model should be considered by the linearization of the equations formed with Fig. 3.25 (note
that the model order remains unchanged). Once the LTI model is obtained, the same simulation
is performed as in the previous sub-section. A step on the reactive current reference i∆∗

q of
0.3 pu is applied at t = 0.05 s and the results are shown in Fig. 3.26.
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Cdqz

v∆

CdqZ

Energy based

Figure 3.16
controller # 1
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WΣ

z WΣ
z calculation

MMC + DC bus

iΣ∗

dq =0
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ac

v∗dc

Figure 3.3
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dqz m∆

dqZ

i∆dqiΣdq vdcvG
dqWΣ∗

z & CM Eq. (3.13)

vG
dq

P ∗

l

Figure 3.25 – SSTI model of MMC, DC bus and Energy-based controller # 1 with CM

When comparing the results of the grid currents i∆ from Fig. 3.22 (with UCM) and in
Fig. 3.26 (with CM), it can be noticed that when the CM is considered, an accurate decoupling
between the currents in d and q axes can be achieved. However, as shown in Fig. 3.26, the arm
voltages are not balanced and presenting undamped oscillations. On the one hand, a perfect
decoupling between the grid currents are achieved, but on the other hand, results for other
variables are deteriorated.

In Fig. 3.27 it is shown the results of the eigenvalues of the LTI model. As it can be seen,
the real-part of two pairs of eigenvalues are near zero (λ1,2, with a natural frequency of 100 Hz
and λ3,4 with 50 Hz). This proves that if the CM is considered with the Energy-based controller
# 1, the stability is not ensured as it was observed with UCM [166].

For understanding the origin of the unstable eigenvalues, participation factors are calculated
and the results are shown in Fig. 3.28. As it can be observed, the states that participate in
the two pairs of critical eigenvalues are the arm capacitor voltages vΣ

Cd, vΣ
Cq for λ1,2, and v∆

Cd,
v∆

Cq for λ3,4. In fact, the Energy-based controller # 1 only deals with the total energy on the
MMC (Specification from Fig. 3.1b), but the energy “re-allocation” (i.e. horizontal and vertical
energy balancing) is left uncontrolled (Specifications from Figs. 3.1c and 3.1d). When the UCM
was considered, this energy balancing inside the MMC was obtained intrinsically [115,166]. If
the CM is considered, the energy inside the MMC should be explicitly controlled for assuring
a correct dynamic behavior of the converter, as discussed in [159].
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For improving the dynamic behavior while guaranteeing the control specifications from
Fig. 3.1, a complete Energy-based controller should be considered [114,116].
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3.4 Complete Energy-based controller # 2 with Com-

pensated Modulation

The concept of Energy-based controllers is not new by itself. Several studies were already
performed detailing the cascaded controller for the management of the stored energy in the
MMC [108,114,146,167]. Normally, these controllers are developed in the stationary reference
frame abc, where an inversion-based technique from the energetic model of each leg of the MMC
can be followed [116]. Also, several studies focus on the energy controllers in the stationary
reference frame αβz, which is particularly useful when considering unbalanced situations on
the AC grid [79,168,169].

Due to the extreme complexity of the MMC-SSTI model in full dqz frame, it was preferred
not to develop a new controller based on the new model in this Thesis. For this reason, the
intention is to refer an already existing and well documented abc controller into dqz SRRF for
evaluating the stability of the MMC with complete energy-based controllers. In the following,
a resume of the findings in [162] is given.

3.4.1 Energy-based controller in mixed reference frames

An overview of the structure for a typical Energy-based control strategy which verifies the
specifications is shown in Fig. 3.29 [117] (referred now as Energy-based control strategy # 2).
The AC-side controller is similar to the one already presented in Fig. 3.6 and Fig. 3.16. More
details on this controller can be found in the Appendix F.

i
Σ∗

abc

v
Σ∗

mabc

v
∆∗

mabc

m
U
abc

m
L
abcCommon-mode

current
controllers in abc

frame

W
Σ∗

abc WΣ

controller
per phase

W∆

controller
per phase

W
∆∗

abc

i
Σ∗

abc,dc

+

Grid current

controllers in dq

frame

abc frame

dq frame (ω)

P−1
ω

i
Σ∗

abc,ac

Modulation
indices

calculations
v
U,L
Cabc

v∗
dc

Q∗
ac

P ∗
ac

DC Voltage droop

AC Power control
&

i
∆∗

dq

Figure 3.29 – General scheme Energy-based control # 2 in mixed reference frames (abc and
dq)

For controlling the time-averaged3 energy sum W
Σ
j for each phase, three independent PI

controllers are implemented. The time-averaged value W
Σ

j is obtained with a second-order

notch filter tuned at 2ω [170]. Setting the same energy reference for each phase (i.e. W
Σ∗
a =

3The term time-averaged is used to highlight that W
Σ

j is a DC value in steady state, and all the oscillations
are filtered before sendind the signal to the controller.
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W
Σ∗
b = W

Σ∗
c ), the specification from Fig. 3.1c is assured. These controllers generate the DC

component of the common-mode current references iΣ∗
j,dc for the corresponding phase. The detail

of the controller structure is shown in Fig. 3.30.
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Figure 3.30 – Energy sum (Σ) controller (phase j)

The energy difference controller is depicted in Fig. 3.31, where V G is the RMS value of the
AC grid voltage, R is defined in (3.15) and K is defined in (3.16) . This controller guarantees
specification 3 (i.e. vertical balancing). The control details can be found in [159].
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Figure 3.31 – Energy difference (∆) controller (three-phase)
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
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The three common-mode currents (for each phase j) are corrected to their references via
three independent PI controllers as well [170]. Finally, the modulation signals mU

j and mL
j are

obtained according to the CM from (3.11).

3.4.2 SSTI-SRRF representation of Stationary Frame Energy-based
controllers

For obtaining the full representation of the system in SRRF frame, it is still needed to
reformulate the controllers in stationary frame of the control structure from Fig. 3.29. The
overall Energy-based controller in dqz frame is shown in Fig. 3.32. The expressions of the MMC
energies W Σ and W ∆ in dqz are related with the arm capacitor voltages vΣ

Cdqz and v∆
CdqZ , and

their deductions are found in Appendix G.1.
In the upcoming subsections, the equations of the controller in abc are referred to their

corresponding SRRFs with a similar approach than used for the MMC modeling in Chapter 2
according to the following classification:
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• Common-mode “Σ” current controllers at −2ω: In Fig. 3.29, the common mode currents
are regulated through three independent PI controllers (one per each abc phase). The
details for referring the three-phase regulators from abc to dqz frame are given in Ap-
pendix G.2.1. It should be remarked that the resulting current controller is not the same
as the CCSC structure from Fig. 3.4. As seen in Fig. 3.32, the current references iΣ∗

dqz
are

provided by the outer loops (i.e. energy controllers).
• Energy “W Σ” controllers and averaging filters at 2ω: Similarly as for the current con-

trollers, three independent PI regulators are used to control the energy stored in each
phase-leg of the MMC. Moreover, notch filters tuned at 2ω are used on the measures to
obtain the time-average value of the energies W

Σ

j . The energy references in dqz frame
are discussed later.

• Energy “W ∆”controllers and averaging filters at ω: Again, three independent controllers
are used for the energy differences. Similarly as for the arm capacitor voltage difference
v∆

Cdqz, the energy W ∆
z is not in a SSTI signal. For this reason, the same concept as or v∆

Cz

is used: the energy W ∆
z is represented by two state variables, W ∆

Zd
and W ∆

Zq
for modeling

the dynamics of the amplitude and phase of W ∆
z ; both are SSTI variables then. For the

measures, the notch-filters per-phase are referred to the SRRF as well.

3.4.3 Energy Σ controller reformulation

The PI controller and the notch filter used in W Σ controllers from Fig. 3.30 are expressed
in dqz frame with the methodology explained in section G.2.

Averaging filter for energy “Σ” measures

The energy sum W Σ
abc = [W Σ

a W Σ
b W Σ

c ]⊤ is filtered to obtain W
Σ

abc = [W
Σ
a W

Σ
b W

Σ
c ]⊤ before

sending the signals to the PI controller in abc frame (Fig. 3.30) with a notch filter. In dqz

frame, the variables W Σ
dqz = [W Σ

d W Σ
q W Σ

z ]⊤ are filtered to obtain W
Σ

dqz = [W
Σ
d W

Σ
q W

Σ
z ]⊤,
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and the variables are obtained as in (3.17).

W Σ
abc = P

−1

−2ω
W Σ

dqz; W
Σ

abc = P
−1

−2ω
W

Σ

dqz (3.17)

Considering the SSTI representation of a generic notch-filter tuned to block the frequencies
at ωn (see (G.24)), the filter associated to the energy measures W Σ

dqz can be expressed as in
(3.18) with ωn = 2ω and a damping ratio given by ζ, which is set at 0.7 for all notch-filters in
this Thesis.

dF Σ
1dqz

dt
= F Σ

2dqz − 4ζωF Σ
1dqz − 4ζωW Σ

dqz − J−2ωF Σ
1dqz (3.18a)

dF Σ
2dqz

dt
= −4ω2F Σ

1dqz − J−2ωF Σ
2dqz (3.18b)

W
Σ

dqz = F Σ
1dqz + W Σ

dqz (3.18c)

The state variables of the second-order filter in dqz frame are expressed in F Σ
1dqz = [F Σ

1d F Σ
1q F Σ

1z]⊤

and F Σ
2dqz = [F Σ

2d F Σ
2q F Σ

2z]⊤.

PI controller for energy “Σ”

The PI controller expressed in dqz frame is obtained with the methodology explained in
G.2.1 for a generic three-phase independent PI regulators in abc referred to the SRRF at nω.
In this case, nω = −2ω and the methodology is applied to the controller from Fig. 3.30. The
result is shown in (3.19). The output of the controller is then the “DC” current reference iΣ∗

dqz,dc

as expressed in (3.20) [114].

T W Σ

i

dξW Σ

dqz

dt
= W

Σ∗

dqz − W
Σ

dqz − T W Σ

i J−2ωξW Σ

dqz (3.19)

iΣ∗

dqz,dc =
1

vdc




0
0

P ∗
ac

3


− 1

vdc

(
ξW Σ

dqz + KW Σ

p

(
W

Σ∗

dqz − W
Σ

dqz

))
(3.20)

The three state variables for the PI controllers are given by ξW Σ

dqz = [ξW Σ

d ξW Σ

q ξW Σ

z ]⊤. The

choice for the reference values W
Σ∗

dqz = [W
Σ∗
d W

Σ∗
q W

Σ∗
z ]⊤ is explained in the following section.

Energy “Σ” references in dqz frame

In abc frame it is a common practice to set equal energy references per-phase to ensure the
horizontal balancing illustrated in Fig. 3.1c. However, in dqz frame the choice of the references
may not be trivial. For clarifying this concept, a simple analysis is carried on. In Fig. 3.33,
the three-phase measures of W Σ

abc are filtered to obtain the variables W
Σ

abc. and the signals
before, and after the filter are transformed into dqz variables with P−2ω.

For the sake of clarity, let us consider a generic three-phase signal W Σ
abc oscillating at −2ω

with negative sequence with amplitude Ŵj and phase αΣ
W , and the DC component of each

phase is equal to W0,j. The expression of each component of W Σ
abc can be expressed as in

(3.21).

W Σ
a = W0,a + Ŵa cos

(
−2ωt + αΣ

W

)

W Σ
b = W0,b + Ŵb cos

(
−2ωt − 2π/3 + αΣ

W

)

W Σ
c = W0,c + Ŵc cos

(
−2ωt + 2π/3 + αΣ

W

)
(3.21)
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Assuming a perfect notch-filter, the filtered values of each W Σ
j , namely W

Σ
j , don’t present

any oscillations at the notch frequency (2ω for this case). The expressions of the energies
post-filtered are then given by (3.22).

W
Σ
a = W0,a +

✭✭✭✭✭✭✭✭✭✭✭
Ŵa cos

(
−2ωt + αΣ

W

)
= W0,a

W
Σ
b = W0,b +

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

Ŵb cos
(
−2ωt − 2π/3 + αΣ

W

)
= W0,b

W
Σ
c = W0,c +

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

Ŵc cos
(
−2ωt + 2π/3 + αΣ

W

)
= W0,c

(3.22)

In fact, the energy controllers per-phase regulate the DC component of each energy by setting
W

Σ
j to the DC reference value W ∗

0,j. If equal level of energy is desired for each phase-leg, this
is achieved by the selection of W ∗

0,a = W ∗
0,b = W ∗

0,c = W ∗
0 .

Assuming equal amplitude of oscillations for the energy per-phase such that Ŵa = Ŵa =
Ŵa = Ŵ , and also considering that the energy is equally split between the phase legs so
W0,a = W0,b = W0,c = W ∗

0 , after applying Park transformation at −2ω to W Σ
abc from (3.21)

yields:

W Σ
d = +Ŵ cos

(
αΣ

W

)

W Σ
q = −Ŵ sin

(
αΣ

W

)

W Σ
z = W ∗

0

(3.23)

As observed in (3.23), the dq components are constant values which depends on the amplitude
Ŵ and phase αΣ

W of the energy oscillating part. These variables are correlated to the operating
point of the converter. Moreover, the z sequence is representing the energy level W ∗

0 . With the
same assumptions, applying Park transformation at −2ω to W

Σ

abc from (3.22) yields (3.24):

W
Σ
d = 0

W
Σ
q = 0

W
Σ
z = W ∗

0

(3.24)

As shown in (3.24), the dq components of the filtered energies “Σ” variables are zero. This
means that the amplitude Ŵ and phase αΣ

W are not being imposed by the controller: the
information about the operating point of the converter has been filtered. For this reason, the
energy references W

Σ∗
d and W

Σ∗
q are set to zero. The total stored energy is settled by the

zero-sequence component W
Σ

z . Finally, the structure of the energy Σ controller W Σ
abc in SRRF

is illustrated in Fig. 3.34.
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3.4.4 Energy ∆ controller reformulation

In this section, the controllers and the notch filter used in W ∆ controllers from Fig. 3.31
are expressed in dqZ frame (i.e. d, q, Zd, Zq) with the methodology explained in section G.2.

Averaging filter for energy “∆” measures

The three-phase energy difference measures W ∆
abc = [W ∆

a W ∆
b W ∆

c ]⊤ are filtered with a
notch filter tuned at ω, obtaining W

∆

abc = [W
∆
a W

∆
b W

∆
c ]⊤, before sending the signals to the

PI controllers in abc frame as shown in Fig. 3.31 [159]. Prior to the transcription of the abc
controller into the SRRF dqz, it is first needed to express the abc signals as a function of their
dqz components by means of the inverse Park transformation. As for the other “∆” variables
studied in Chapter 2, the zero-sequence of the energy difference is not represented by a SSTI
variable: it oscillates at 3ω [165]. For overcoming this issue, the same approach is followed
as for the zero-sequence arm capacitor voltage difference, i.e. v∆

Cz, which was solved by the
separation of the variable into two SSTI state variables in the axes Zd and Zq. Taking this into
account, the zero-sequence of the energy difference is expressed similarly as used in (2.36), by
means of the virtual variables W ∆

Zd
and W ∆

Zq
. Finally, the expressions of the “∆” energies as a

function of their dqZ components is given by (3.25) and (3.26) for W ∆
abc and W

∆

abc respectively.

W ∆
abc = P −1

ω

[
W ∆

d W ∆
q W ∆

Zd
cos(3ωt) + W ∆

Zq
sin(3ωt)

]⊤
(3.25)

W
∆

abc = P −1
ω

[
W

∆
d W

∆
q W

∆
Zd

cos(3ωt) + W
∆
Zq

sin(3ωt)
]⊤

(3.26)

For referring the notch-filter from abc to dqZ frame, the methodology described in Ap-
pendix G.2.2 is followed. However, since in this case the zero-sequence is represented by 2
state variables, the same approach as used in Section 2.4.1 is followed. Then, the notch filter
tuned at ω with damping ratio ζ = 0.7 of W ∆

dqZ in dqZ frame is expressed as in (3.27).

dF ∆
1dqZ

dt
= F ∆

2dqZ − JGF ∆
1dqZ − 2ζω

(
W ∆

dqZ + F ∆
1dqZ

)
(3.27a)

dF ∆
2dqZ

dt
= −ω2F ∆

1dqZ − JGF ∆
2dqZ (3.27b)

W
∆

dqZ = W ∆
dqZ + F ∆

1dqZ (3.27c)
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where JG was defined in (2.40). The state variables of the second-order filter in dqZ frame are
expressed in F ∆

1dqz = [F ∆
1d F ∆

1q F ∆
1Zd

F ∆
1Zq

]⊤ and F ∆
2dqz = [F ∆

2d F ∆
2q F ∆

2Zd
F ∆

2Zq
]⊤.

PI controller for energy “∆”

Finally, the PI controller from Fig. 3.31 is now referred to the dqZ axes (i.e. d, q, Zd, Zq).
The same procedure as before is used on the zero-sequence component, where the four states
of the integral part of the PI controller are given by (3.28):

ξW ∆

dqZ =
[
ξW ∆

d ξW ∆

q ξW ∆

Zd
ξW ∆

Zq

]⊤
(3.28)

The four differential equations of the integral part of the PI controller is given in (3.29).

T W ∆

i

dξW ∆

dqZ

dt
= W

∆∗

dqZ − W
∆

dqZ − T W ∆

i JGξW ∆

dqZ (3.29)

Then, the output of the PI controller is obtained applying the Park transformation at ω and
3ω to the control law from Fig. 3.31, which yields (3.30):

IΣ∗

dqZ,ac = − 1
V G

(
ξW ∆

dqZ + KW ∆
p

(
W

∆∗

dqZ − W
∆

dqZ

))
(3.30)

For multiplying the output of the energy-difference controller by the matrix R and K

defined in (3.15) and (3.16) respectively, it is necessary to obtain the three-phase vector IΣ∗

abc,ac

as a function of the components dqZ, which is obtained as:

IΣ∗

abc,ac = P −1
ω




IΣ∗
d,ac

IΣ∗
q,ac

IΣ∗
Zd,ac cos(3ωt) + IΣ∗

Zq,ac sin(3ωt)


 (3.31)

Note that the inverse Park transformation in Fig. 3.31 has a frequency of ω and not 2ω as the
other “Σ” variables. The reason is that the frequency of the “ac” component of the current iΣ

reference used for balancing the W ∆ is ω.
Finally, for obtaining the common-mode currents reference in dqz frame, the Park trans-

formation at 2ω is applied to the controllers output from Fig. 3.31. The results are shown in
(3.32) where the 6th harmonic has been neglected.

P−2ωiΣ∗
′

abc,ac = P−2ω

(
KRIΣ∗

abc,ac

)
(3.32a)

iΣ∗
′

dqz,ac =
3

2
√

2



IΣ∗

d,ac + IΣ∗
Zd,ac

IΣ∗
q,ac + IΣ∗

Zq,ac

0


 (3.32b)

Finally, the structure of the energy ∆ controller W ∆
abc in SRRF is illustrated in Fig. 3.35, where

it can be seen that the filtered energy references are set all to zero. This choice guarantees
equal energy distribution between upper and lower arms per-phase of the MMC.

3.4.5 Complete control structure

The complete control structure represented in dqz coordinates is summarized in Fig. 3.36.
The modulation indices calculation (m∆

dq and mΣ
dqz) is performed with the CM from (3.13).

The common-mode current controllers for iΣ
dqz is obtained from Fig. G.3 with n = −2ω. The
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Figure 3.35 – Detail of the Energy ∆ controller W ∆
dqZ in SRRF

current and energy control loops sum and difference are tuned for a response time of 5 ms,
50 ms and 100 ms respectively.

This controller resulted from the transcription of the scheme from Fig. 3.29 to dqz frame.
It is important to note that this formulation highlights the decoupling of the z-sequence of the
energy sum W Σ

z (proportional to the total stored energy) and the common-mode current iΣ
z

(proportional to the DC current). This characteristic is explored in Chapter 4.

3.4.6 Model linearization and time domain validation

In a similar way as in Section 3.3.2, the system comprising the non-linear SSTI model from
Fig. 3.3 and the controller from Fig. 3.36 are connected as shown in Fig. 3.37. The system
states are gathered in (3.33), while the inputs in (3.34).

xW #2 = [i∆
dq; iΣ

dqz; vΣ
Cdqz; v∆

CdqZ ; vdc;
︸ ︷︷ ︸

Phys.

... (3.33)

... F Σ
1dqz; F Σ

2dqz; ξW Σ

dqz
; ξiΣ

dqz
; ξi∆

dq
; F ∆

1dqZ ; F ∆
2dqZ ; ξW ∆

dqZ︸ ︷︷ ︸
Control

]⊤ ∈ R
39

uW #2 = [v∗
dc P ∗

ac0 Q∗
ac W

Σ∗

dqz W
∆∗

dqZ︸ ︷︷ ︸
Controllers

vG
d vG

q︸ ︷︷ ︸
AC grid

P ∗
l︸︷︷︸

DC grid

]⊤ ∈ R
13 (3.34)

Once the SSTI model from Fig. 3.37 is linearized to obtain the LTI version of the model, a
new time domain simulation is performed. For validating the controller, the linear model is not
mandatory, but it is useful to perform stability analysis. Starting with a DC power transfer
of 1 pu, an step of −0.1 pu is applied at t = 0.05 s. The simulation results are depicted in
Fig. 3.38.

As shown in Figs. 3.38c and 3.38d, the energies related with the arm voltages oscillations
are well controlled during the transient. This can be seen in the results in abc frame in
Fig. 3.38h. The total stored energy W Σ

z in Fig. 3.38e is maintained in the nominal value
as well. The zero sequence W ∆

z results is shown in Fig. 3.38f, which is post-processed with
W ∆

z = W ∆
Zd

cos(3ωt) + W ∆
Zq

sin(3ωt) for the LTI model. Finally, the modulation indices of the
modulation indices m∆

dqz are shown in Fig. 3.38g, where it can be seen that the zero-sequence
m∆

z is not zero during the simulation due to the CM method.
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vΣ

Cdqz

v∆

CdqZ

Energy based

Figure 3.36

controller # 2

Equation (G.5)

MMC + DC busP ∗
ac0

Q∗
ac

v∗dc

Figure 3.3

mΣ

dqz m∆

dqZ

i∆dqiΣdq vdcvG
dq

W
Σ∗

z

Equation (G.12)

WΣ

dqz
calculation

W∆

dqZ
calculation

vΣ

Cdqz

v∆

CdqZ

WΣ

dqzW∆

dqZ

vG
dq

P ∗

lW
Σ∗

dq =0

W
∆∗

dqZ=0

Figure 3.37 – SSTI model of MMC, DC bus and Energy-based controller # 2 — Energies
calculations W Σ

dqz and W ∆
dqZ are given in Appendix G.1

It is important to note that the LTI model clearly reproduced the dynamics of the complete
system. For this reason, the eigenvalues can be calculated to study the full order EMT model.
In Fig. 3.39 it is shown the results of a parametric sweep of the DC capacitor Hdc in Fig. 3.39a,
and for the droop parameter kd in Fig. 3.39b.

As seen in the eigenvalues results from Fig. 3.39, the system is stable for the considered
parameters, while guaranteeing an accurate decoupling of AC active and reactive power is
achieved thanks to the CM. These results validate the approach followed for the Energy-based
controller # 2 from this Chapter.
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Figure 3.38 – Time domain validation Energy-based # 2 controller – Step applied on Pl of
0.1 pu – EMT : EMTP-RV simulation with detailed converter, LTI: Linear time-invariant
state-space model in Simulink
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Figure 3.39 – Parametric sweeps for Energy-based control # 2 — vdc0 = 1 pu, Pdc0 = −1 pu,
kd = 0.1 pu — Power flow: DC ⇐ AC

3.5 Chapter Conclusions

This Chapter dealt with the MMC control strategies for its integration in MTDC grids.
For this reason, a variable DC bus voltage and the proportional droop-controller is considered.
Two main control strategies of the MMC were detailed. First, the Classical CCSC controller
was presented, which is widely adopted in the literature. This classical controller is interesting
since its implementation is rather simple. However, by the analysis of the linearized model
of the MMC and the Classical CCSC strategy, it is demonstrated that this method may fail
to guarantee stable operation for several situations. The reason is that the DC current is left
uncontrolled, so the risk of interactions with the DC grid could be problematic. Nevertheless,
this strategy is still considered in the rest of this Thesis due to its popularity.

As an improvement of the Classical CCSC strategy, the Energy-based control approach is
introduced. The first variant (Energy-based control # 1) results from a basic modification of
the Classical CCSC approach by the addition of the DC current controller. For generating
the reference for the DC current, an energy controller is designed. It is based on the possibility
that the MMC provides to control the AC and DC powers independently. Even if this strategy
showed good results, the existing coupling between the AC and DC sides does not allow a
fully independent control for the AC active and reactive powers. For solving this issue, the
Compensated Modulation is introduced. However, the Energy-based control # 1 with CM
fails to guarantee the stability of the internal variables of the MMC. For this reason, the
Energy-based control # 2 is introduced. The novelty from this Chapter is the mathematical
transformation of the control equations from abc to dqz frame to adapt the controller for being
used with the complete SSTI model from Chapter 2. Finally, this controller is validated in
time domain simulations, and the eigenvalue analysis showed that the stability characteristics
from Energy-based control # 1 are maintained, while guaranteeing an independent control of
the AC active and reactive powers.

Since the MMC and the Energy-based control # 2 have 39 state variables, the high number
of eigenvalues for one single converter results in difficult analysis of the LTI model. When
considering an MTDC system, where several MMCs are connected to the same grid, the number
of eigenvalues grows rapidly, making the analysis a very complex task. For this reason, the
simplified models are mandatory for the study of large systems, as long as the simplified models
reproduce accurately the AC and DC interactions of the converter and controller.
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Chapter 4

On the application of SSTI-MMC
reduced order models for interfacing
AC and DC grids

4.1 Introduction

In the previous Chapter, a very detailed model of the MMC associated to different types
of controllers have been developed. It allows carrying on very accurate studies but may be too
complex to be integrated in large-scale systems like MTDC grids or large AC systems including
HVDC links [171]. For this reason, the availability of open and generic models is important
when performing system studies specially for operation and stability analysis [172]. Many
techniques for model order reduction were already successfully applied on the AC systems,
however the fast and coupled dynamics of DC grids complicates this task [173].

When considering the MMC, the development of reduced order models depends on the
applied control system on the real converter. As it was stated in Chapter 3, there are many
control techniques available in the literature [137]. Two main strategies arise between the
vast options: the Classical CCSC and the Energy-based control. This Chapter focuses on the
validity of the simplified reduced order models of the MMC when considering each of these
two control strategies.

The methodology applied in this Chapter is depicted in Fig. 4.1. Starting with the complete
Steady-State Time-Invariant (SSTI) MMC model interfacing simplified AC and DC grids (Full
order model), some physical assumptions are made to derive the reduced order model presented
in [123] (Reduced order model); this is performed in Section 4.2. Once the reduced model is
obtained, the applied methodology deals with the comparison of the small-signal dynamics of
the MMC model that results when considering the Energy-based control with Compensated
Modulation (CM) from Section 3.4, or the Classical CCSC from Section 3.2. For the compa-
rison tests between the linearized models, there are endless possibilities to consider but in this
Chapter only some of the most representative examples are carried on.

Full order
Modulation Controller

Reference
Voltages

Modulation
Indices

“LTI” Full

Reduced Order
MMC Model

MMC Model

Modulation ControllerReference
Voltages

Modulation
Indices

Reduced Order Reduced Order
“LTI” Red.

Full order

Reduced order

model

model

Figure 4.1 – Comparisons of SSTI-MMC models
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The rest of this Chapter is organized as follows. In Section 4.2, the physical system used
as a benchmark for comparing the full order and reduced models is presented. In Section 4.3,
the Energy-based control is assumed for the complete model. The full and reduced order
models are linearized and validated trough time domain simulations, comparing them against
a detailed EMT Simulation model. Then, further analysis is carried on with the comparison of
the resulting LTI models. In Section 4.4, a similar work is done but considering the Classical
CCSC for the complete MMC. In Section 4.5 an analysis based on the frequency response of the
obtained LTI models is performed. Finally, the Chapter conclusions are stated in Section 4.6.

4.2 MMC model with AC and DC side connections

4.2.1 System description

The comparison methodology is based on the small-signal analysis of the schematic shown
in Fig. 4.2, where two different VSC-MMC models are considered. For this task, it is assumed
that the MMC is connected to an equivalent AC grid modeled by a voltage source in series
with an inductance. Contrary to the previous studies, the AC system is not considered as
infinite anymore and the Short Circuit Ratio (SCR) will be taken into account in this Chapter.
The DC side is the same as the one already introduced in Chapter 3, and the dynamics of
vdc were given in (3.1). The consideration of a simplified AC grid model allows to compare
the interactions of the MMC with the AC and DC sides at the same time with the different
reduced order models.
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Figure 4.2 – MMC Connected to AC and DC equivalent grids

AC Side Connection

In case of classical 2-level VSCs there is a bulky passive capacitive filter at the Point of
Common Coupling in the AC side (PCC-AC), but in case of the MMC this filter is nonexistent
due to the low harmonic content on the AC output voltage v∆

mabc, especially when a high
number of levels is considered (more than 100) [174]. As it can be observed in the system from
Fig. 4.2, the AC side connection is modeled with two “RL” circuits connected in series: Rac

eqLac
eq

and RGLG, so the current is the same for both circuits (i.e. i∆
abc = iG

abc). The relation of the
parameters RG and LG with the SCR is recalled in the Appendix A. The AC current dynamics
are modeled as in (4.1):

(
Lac

eq + LG
) di∆

dqz

dt
= v∆

mdqz − vG
dqz −

(
Rac

eq + RG
)

i∆
dqz −

(
Lac

eq + LG
)

Jωi∆
dqz (4.1)

where vG
dqz = [vG

d , vG
q , 0]⊤ and v∆

mdqz is the AC-side modulated voltage of the MMC in dqz

frame. Since there is no closed-loop circuit for the current i∆
z to flow, it is neglected.
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The voltage at the PCC-AC is measured between the two “RL” circuits from Fig. 4.2,
i.e. vpcc. This voltage is not modeled as a dynamic state, so an algebraic equation is used
instead [81, 175]. The expression of the voltage at the PCC-AC (i.e. v

pcc
abc transformed into

v
pcc
dq

def= [vpcc
d vpcc

q ]⊤) is calculated as a function of the MMC output voltage v∆
mdq, the grid

voltage vG
dq, and the current i∆

dq as shown in (4.2):

vpcc
d =

(
Lac

eq

Lac
eq + LG

)
vG

d +

(
RGLac

eq − Rac
eqLG

Lac
eq + LG

)
i∆
d +

(
LG

Lac
eq + LG

)
v∆

md (4.2a)

vpcc
q =

(
Lac

eq

Lac
eq + LG

)
vG

q +

(
RGLac

eq − Rac
eqLG

Lac
eq + LG

)
i∆
q +

(
LG

Lac
eq + LG

)
v∆

mq (4.2b)

Reference SSTI-MMC model

Since this Chapter deals with the fidelity of the SSTI model order reduction, the model used
as a reference is based on the model developed in Chapter 2. The block diagram of the reference
SSTI-MMC model is shown in Fig. 4.3, where it can be seen that the AC side connection and
DC bus are considered as “outside” the MMC model.
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Figure 4.3 – MMC with SSTI Solution: Reference Model in this Chapter

The following subsection derives a reduced order model, using Fig. 4.3 as a starting point.

4.2.2 Reduced order model

A reduced order model can be obtained by performing some assumptions from a functional
point of view [79]. In the following, results from the findings in [123] are summarized. In
Fig. 4.4, the steady-state results in dqz of an EMT simulation considering the complete MMC
with Classical CCSC transmitting 1 pu of active power are shown. The “Σ” currents are
shown in Fig. 4.4a and, as expected, the circulating currents iΣ

dq are almost zero during the
steady-state due to the CCSC, while the DC current (which is proportional to z component)
is near 1 pu. Even if the MMC equations in dqz frame developed in Chapter 2 showed that

108



there is a complex coupling between the circulating currents (mostly in the modulated voltages
“Σ”), the MMC controller will always guarantee that the circulating currents are suppressed.
This means that the currents iΣ

dq may be omitted for the development of a reduced order model
of the MMC. However, since the DC current is responsible for the exchange of active power
with the DC side, this current must be taken into account (i.e. iΣ

z ).
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Figure 4.4 – Steady-State results of EMT model for justification on the selected variables for
the reduced-order model

As discussed in Chapter 2, the arm capacitor voltages “Σ” in abc frame are composed by a
DC component with superposed oscillations. The DC value corresponds to the average level of
energy stored on phase leg of the converter station; this information is reflected1 in the variable
vΣ

Cz. The oscillations around the DC value in abc, which are much lower in magnitude than
the DC component, are transferred to the dq variables vΣ

Cdq. For this reason, the voltage vΣ
Cz

takes values around 1 pu while the dq components are near zero as shown in Fig. 4.4b. Since
the z component takes much more important values than the dq components, vΣ

Cdq may be
neglected while keeping the state variable vΣ

Cz.
In normal operation, the MMC controller guarantees that the energy stored in the upper

and lower arms for each phase are equal in average (with or without an exclusive controller
for this task). This is manifested in the arm capacitor voltages “∆” in abc frame as oscillating
variables around zero. Once they are reflected in dqz frame, the variables v∆

Cdqz are not so
important in terms of numerical value, as shown in Fig. 4.4c. For this reason, the voltages
v∆

Cdqz may be neglected for the development of a reduced order model.
Summarizing, the model simplification is performed by neglecting the dq components of vΣ

C

and iΣ; and also neglecting the v∆
C variables, as described in Table 4.1 (i.e. from the internal

variables, only the state variable vΣ
Cz and iΣ

z are kept).
If the MMC state variables iΣ

dq, vΣ
Cdq and v∆

Cdqz are neglected, the mathematical equations
of the MMC in dqz from Chapter 2 are highly simplified. For instance, since the circulating
currents iΣ

dq are neglected, the zero-sequence component vΣ
Cz can be re-written as in (4.3), where

1Partially, since the expression of the energies in dqz frame are also coupled between the three compo-
nents, so it is not possible to affirm, a priori, that vΣ

Cz includes all the information about the stored energy.
See Appendix B.

109



Table 4.1 – MMC state variables in dqz frame to keep or neglect

State Variables Description & Comment Keep?
i∆

dq AC grids currents in dqz frame YES

iΣ
dq Internal circulating currents NO

iΣ
z Proportional to DC output current YES

vΣ
Cdq Information of the oscillations of vΣ

C NO

vΣ
Cz Sum of all arm capacitor voltages YES

v∆
Cdqz Arm capacitor voltage difference NO

(4.3a) corresponds to the expression of (2.47) for the z axis.

Carm
dvΣ

Cz

dt
=

1
8

(
m∆

d i∆
d + m∆

q i∆
q

)
+

1
4

(
mΣ

d✓
✓iΣ
d + mΣ

q✓
✓iΣ
q + 2mΣ

z iΣ
z

)
(4.3a)

Carm
dvΣ

Cz

dt
=

1
8

(
m∆

d i∆
d + m∆

q i∆
q

)
+

1
2

mΣ
z iΣ

z (4.3b)

The zero-sequence “Σ” current dynamics (iΣ
z ) are obtained from (2.56) as follows:

Larm
diΣ

z

dt
=

1
2

vdc − vΣ
mz − RarmiΣ

z (4.4)

The AC current dynamics equations remain the same as for the complete model, i.e. as in
(4.1). However, the expression for the modulated voltages “Σ” and “∆” are simplified. The
modulated voltages are obtained from (2.70), where only the components vΣ

mz, v∆
md and v∆

mq are
considered, and neglecting the variables from Table 4.1. The result is shown in (4.5).



vΣ

mz

v∆
md

v∆
mq


 =

1
4



2vΣ

Cz 0 0
0 −2vΣ

Cz 0
0 0 −2vΣ

Cz







mΣ
z

m∆
d

m∆
q


 (4.5)

The states of the reduced order model corresponding to the physical variables are gathered
in xRed.

MMC :

xRed.
MMC =

[
i∆
d i∆

q iΣ
z vΣ

Cz vdc

]⊤ ∈ ℜ5 (4.6)

The reduced order MMC model is then expressed by the dynamic equations (4.1), (4.4),
(4.3) and the algebraic equation given in (4.5). This model accepts 3 control inputs: m∆

dq =
[m∆

d m∆
q ]⊤ and mΣ

z . The block-diagram of the reduced order MMC model is shown in Fig. 4.5
where the physical inputs are the same as the complete model from Fig. 4.3.

It is recalled that both models (complete model from Fig. 4.3 and reduced from Fig. 4.5) are
obtained with the amplitude invariant Park transformation (See Appendix A). At this stage, it
is convenient to convert the reduced order model with the power invariant Park transformation,
for allowing us to draw a comprehensive electrical circuit as it was already performed in [123].
For obtaining the mathematical scaling between the variables of the developed model from
Fig. 4.5 and the one in [123], (4.7) is used:

igd
def=

√
3
2

i∆
d ; igq

def=

√
3
2

i∆
q ; vmd

def=

√
3
2

v∆
md; vmq

def=

√
3
2

v∆
mq; vgd

def=

√
3
2

vG
d ; vgq

def=

√
3
2

vG
q (4.7)

Note that the grid currents are named as igd and igq for the power invariant version of the
MMC model (the counterparts of i∆

dq), the grid voltages are vgd and vgq (for vG
dq), and the
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Figure 4.5 – Reduced order MMC model with SSTI Solution

modulated voltages for the AC side are vmd and vmq for v∆
mdq. With (4.7), the grid current

dynamics can be expressed as:
(
Lac

eq + LG
) digd

dt
= vmd − vgd −

(
Rac

eq + RG
)

igd −
(
Lac

eq + LG
)

ωigq (4.8)
(
Lac

eq + LG
) digq

dt
= vmq − vgq −

(
Rac

eq + RG
)

igq +
(
Lac

eq + LG
)

ωigd (4.9)

Moreover, the arm capacitors vΣ
Cz dynamics can be rewritten as2:

Cmmc
dvΣ

Cz

dt
= −mdigd − mqigq + mdcidc (4.10)

where,

md
def= −3

4

√
3
2

m∆
d , mq

def= −3
4

√
3
2

m∆
q , mdc

def= mΣ
z (4.11)

and Cmmc = 6 × Carm. Taking into account that idc = 3iΣ
z , the DC current dynamics are

expressed as:

Ldc
eq

didc

dt
= vdc − vmdc − Rdc

eqidc (4.12)

where,
vmdc = 2vΣ

mz (4.13)

Ldc
eq

def=
2
3

Larm, Rdc
eq

def=
2
3

Rarm (4.14)

Finally, the modulated voltages are expressed as in (4.15).


vmdc

vmd

vmq


 =



vΣ

Cz 0 0
0 vΣ

Cz 0
0 0 vΣ

Cz






mdc

md

mq


 (4.15)

2Note that the signs of the modulated AC currents in (4.10) are in opposite direction with respect to (4.3).
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With the differential equations from (4.8), (4.12) and (4.10); and the algebraic equation
(4.15), the circuit diagram of the simplified MMC can be obtained as depicted in Fig. 4.6. With
this circuit, the double-stage nature of the MMC operation is clearly highlighted [79], which is
not evident when seeing the complete MMC structure as in Fig. 2.2. This implies that the DC
bus capacitor Cdc is not coupled directly with Cmmc, as it was the case for the 2-level VSC
(See Section 1.3). As it will be detailed in further sections, this can be a disadvantage since
the DC voltage vdc is governed only by the capacitor Cdc [176].
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(
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Figure 4.6 – Circuit diagram of SSTI-MMC simplified model from [123]

4.3 Comparison I: Considering Energy-based controller

# 2 and Compensated Modulation

The aim of this section is to verify the accuracy of the reduced order model when the
MMC is considered to be controlled with the Energy-based controller # 2 from Section 3.4
in conjunction with the Compensated Modulation (CM)3. As stated in the introduction of
this Chapter, the comparison is performed based on the small-signal dynamics of both MMC
models.

4.3.1 Controller for the reference model

First, the Energy-based controller # 2 strategy is slightly modified with respect to the
control strategy detailed in Section 3.4. The modifications are necessary for taking into account
the added AC simplified model.

It should be noted that the dq variables from the AC side of the MMC (currents i∆
dq) and

the AC grid (voltages v
pcc
dq ) are referred to the SRRF which is rotating at the angular frequency

ω imposed by the synchronous generators from the AC grid. In the MMC control system, the
frequency ω is estimated typically by a Phase Locked Loop (PLL). The estimated frequency
is noted as ωC , and the angle between the phasors V G (AC grid) and V pcc (point of common
coupling) is noted as θC .

In steady state, the frequencies ω and ωC are equal, but during transients they can expe-
rience a deviation due to the non-infinite wideband of the PLL. This concept of two frequencies

3It is recalled that with CM, the relation vm = v∗

m for Σ and ∆ variables is always valid.
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involved in the modeling of the MMC and its controller (ω and ωC) is illustrated in Fig. 4.7a
where it is highlighted the new axes dqC corresponding to the SRRF defined by the PLL.

In the control system, the voltages v
pcc
dq and grid currents i∆

dq are referred to the axes dqC

defined by the PLL with the transformation matrix TC(θC), as shown in (4.16) [177]. In (4.16),
a generic variable xdq = [xd xq] is used to exemplify the projected variables into the dqC axes,
obtaining xC

dq = [xC
q xC

q ] [69, 119].
[
xC

d

xC
q

]
=

[
cos(θC) − sin(θC)
sin(θC) cos(θC)

]

︸ ︷︷ ︸
TC(θC)

[
xd

xq

]
(4.16)

The structure of the PLL is shown in Fig. 4.7b, where it can be observed the transformations
TC(θC) applied to v

pcc
dq , i∆

dq and iΣ
dq only if they are controlled in dq frame (as for the Classical

CCSC, as it will be used in Section 4.4).

q
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Figure 4.7 – Phase Locked Loop

The controller in SRRF considered for the generalized MMC model with SSTI solution is
shown in Fig. 4.8. Note that the grid current controller is referred to the axes given by the
PLL, with an angular rotation of ωC . For this reason, the transformation T

−1
C (θC) is used to

rotate the voltage references v
∆,C∗

mdq back to the grid SRRF, obtaining v∆∗

mdq
.

In the EMT Simulation model, the control for the energy sum W Σ and energy difference
W ∆, and the common-mode currents iΣ are implemented in abc frame [178], i.e. it is almost
independent from the PLL (the W ∆ uses the estimated angle for aligning the AC component
of iΣ∗

ac with the grid voltage). In the full-dqz model, this is equivalent to refer the controller
equations of W Σ, W ∆ and iΣ to the SRRF of the AC grid, i.e. to ω. Only the grid current
controllers i∆ are referred to the SRRF defined by the PLL.

4.3.2 Controller for the reduced order model

Since there are less state variables of the physical system of the reduced order model
(Fig. 4.5), the control structure is also simplified. The control model is obtained from the
structure presented in Fig. 4.8, where the dq components of the energy “Σ” are neglected.
Also, the energy difference controllers are not taken into account since the reduced order
model considers that the vertical balancing (i.e. W ∆) is perfectly controlled and decoupled
from the rest of the system [159]. The Compensated Modulation for the reduced order model
is obtained from (3.13), as expressed in (4.17). The resulting controller is shown in Fig. 4.9.

m∆
d = − v∆∗

md

vΣ
Cz/2

; m∆
q = − v∆∗

mq

vΣ
Cz/2

; mΣ
z =

vΣ∗
mz

vΣ
Cz/2

(4.17)
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Figure 4.8 – Modified Energy-based controller # 2 for reference SSTI-MMC model from Fig. 4.3
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Figure 4.9 – Reduced Energy-based controller for simplified SSTI-MMC model from Fig. 4.5

Note that in Fig. 4.9, the notch filter for W Σ
z is present, even if this variable is “pure DC”.

This is due to the fact that in the complete model, this filter exists for the three dqz variables
(See Section 3.4.2). The states of the controllers for the reduced order model are listed in xRed.

Ctrl :

xRed.
Ctrl =

[
θC ξpll F Σ

1z F Σ
2z ξW Σ

z
ξiΣ

z
ξi∆

d
ξi∆

q

]⊤ ∈ R
8 (4.18)

4.3.3 Models Linearization: Time domain comparison

The MMC model in dqz frame with the AC and DC connections is summarized in Fig. 4.10
(Fig. 4.10a for the complete model and Fig. 4.10b for the reduced order model). The Linear
Time Invariant (LTI) models for each configuration is obtained with the Jacobian lineariza-
tion of the MMC and DC bus (System I ) and the AC grid (System II ) separately, with the
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methodology explained in Section 1.2.4. Then, both systems are coupled with the methodology
explained in the Appendix B.2 [9]. The reason of the separation in two different systems is
due to the algebraic equation used in the calculation of v

pcc
dq in (4.2).
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Figure 4.10 – Reduced Order Model Validation of MMC with Energy-based controller

The states of the Full-order model are gathered in (4.19):

xF ull
dqz = [F Σ

1d; F Σ
1q; F Σ

2d; F Σ
2q; ξW Σ

d
; ξW Σ

q
; ξiΣ

d
; ξiΣ

q
; iΣ

d ; iΣ
q ; vΣ

Cd; vΣ
Cq; ... (4.19)

...F ∆
1d; F ∆

1q ; F ∆
1Zd

; F ∆
1Zq

; F ∆
2d; F ∆

2q ; F ∆
2Zd

; F ∆
2Zq

; ξW ∆

d
; ξW ∆

q
; ξW ∆

Zd

; ξW ∆

Zq

; v∆
Cd; v∆

Cq; v∆
CZd

; v∆
CZq

; ...

... θC ; ξpll; F Σ
1z; F Σ

2z; ξW Σ
z

; ξiΣ
z
; iΣ

z ; vΣ
Cz; vdc; ξi∆

d
; ξi∆

q
; i∆

d ; i∆
q

︸ ︷︷ ︸
Common states between the full and reduced order model

]⊤ ∈ R
41

while the states of the reduced system are listed in xRed.
dqz :

xRed.
dqz =

[
θC ; ξpll; F Σ

1z; F Σ
2z; ξW Σ

z
; ξiΣ

z
; iΣ

z ; vΣ
Cz; vdc; ξi∆

d
; ξi∆

q
; i∆

d ; i∆
q

]⊤ ∈ ℜ13 (4.20)

Finally, in (4.21), the inputs for both LTI systems are gathered.

udqz = [P ∗
l ; vG

d ; vG
q︸ ︷︷ ︸

Physical inputs

; v∗
dc; P ∗

ac; Q∗
ac; W ∗

z︸ ︷︷ ︸
Control inputs

]⊤ ∈ R
8 (4.21)

To validate the developed small-signal models of the MMC, results from a time-domain
simulation of three different models are shown and discussed in the following:

1. EMT : The MMC Simulation model with the AC and DC simplified representations as
in Fig. 4.2, implemented in EMTP-RV with 400 submodules (as used in Chapter 2 and
Chapter 3).

2. Full: This model represents the linearized time-invariant model of the interconnected
system from Fig. 4.10a, implemented in Matlab/Simulink.

3. Red.: This model represents the linearized time-invariant model of the interconnected
system from Fig. 4.10b, implemented in Matlab/Simulink.

The operating point corresponds to the parameters given in Table 4.2.
Starting with a DC power transfer of 1 pu (from DC to AC), a step is applied on P ∗

l of
−0.1 pu at 0.05 s. The reactive power is controlled to zero during the whole simulation. Results
are gathered in Fig. 4.11.

The dynamic response of the DC power Pdc and DC voltage vdc are respectively shown in
Figs. 4.11a and 4.11b, showing a perfect match between the compared models. The AC grid
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Table 4.2 – Operating point of MMC for linearization

Variable Value Variable Value

Pdc0 1 pu kd 0.1 pu
vdc0 1 pu Cdc 4 × Carm F
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Figure 4.11 – Reduced Order Model Validation of MMC with Energy-based controller. EMT :
EMTP-RV simulation; Full : LTI model from Fig. 4.10a; Red : LTI model from Fig. 4.10b.

peak voltage v̂pcc is shown in 4.11c (calculated as (4.22) for both LTI models). The estimated
AC frequency by the PLL ωC is given in Fig. 4.11d.

v̂pcc =
√

(vpcc
d )2 + (vpcc

q )2 (4.22)

As it can be seen, the EMT model presents high frequency oscillations in v̂pcc and ωC . This
is due to the switching of the submodules which is transferred directly to the modulated voltage
v∆

m, causing an AC current ripple. In turn, this originates the high frequency components in
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the voltage v̂pcc. This phenomena is due to the physical behavior of the system, and it is
always present when considering the MMC model with all the submodules. Since, in this case,
there are no filters on the AC voltage measures before sending the signals to the PLL, the
high-frequency components are transferred to the estimated frequency ωC . For limiting the
impact of the switching noise, more advanced PLL systems can be considered with appropriated
filtering techniques. Nevertheless, this phenomena is proper to the EMT simulations (and in
the “real” converters), and the LTI model only captures the time-averaged of these signals.

Finally, it is shown in Figs. 4.11e and 4.11f the results of the AC grid current i∆
d , and

the total stored energy W Σ
z . For these and the rest of variables, no noticeable difference is

observed, validating the LTI models (Full and Red.) for the considered condition in terms of
control tuning and physical parameters.

The time domain comparisons show that the reduced order model is very accurate for repre-
senting the MMC and the Energy-based controller with CM from the AC and DC standpoints.
In the following section a more detailed comparison is performed with the modal analysis from
both models.

4.3.4 Models comparisons with respect to their small-signal dynam-
ics

In this section the complete and reduced model are compared in order to verify the validity
of the simplified one. The first comparison is performed on the eigenvalues of the linear systems
validated versus the EMT model previous section, which are shown in Fig. 4.12.
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Figure 4.12 – Eigenvalues comparison of the complete and reduced MMC model with Energy-
based control # 2 and CM

Results from Fig. 4.12 show that several eigenvalues from both models are virtually identi-
cal. The first hypothesis is that these eigenvalues are correlated to the similar state variables
from both models. In the following, several tests are carried out to compare both models with
more details.

Decoupling of the complete model

The eigenvalues of the full order LTI model are firstly studied, with special attention to
the common eigenvalues found from Fig. 4.12. Second, the participation factor analysis are
shown, where an important decoupling can be observed between a subset of MMC variables.
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The eigenvalues of the Full order model plotted in Fig. 4.12 are shown in Table 4.3, where
the common eigenvalues with the reduced order model are marked in blue. Note that these
eigenvalues correspond only to the complete model, and not the reduced one.

Eigenvalue Freq. Damp.
λ1 -5 - -
λ2,3 −16.2 ± j958.3 152.5 0.016944
λ4,5 −22.8 ± j275.9 43.9 0.082463
λ6,7 −25.4 ± j332.2 52.9 0.076328
λ8,9 −48.1 ± j42.7 6.8 0.74776

λ10,11 −51.2 ± j586.1 93.2 0.087033
λ12,13 −52.9 ± j672.9 107.1 0.078375
λ14,15 −62.5 ± j893.7 142.2 0.069791
λ16,17 −129.7 ± j168.9 26.9 0.60899
λ18,19 −137.2 ± j962.6 153.2 0.14112
λ20,21 −183.5 ± j350.9 55.9 0.46339
λ22,23 −215.5 ± j207.9 33.1 0.71965
λ24,25 −244.6 ± j486.9 77.5 0.44891
λ26,27 −248.6 ± j759.2 120.9 0.3112
λ28 -256.9 - -

λ29,30 −274.5 ± j425.1 67.7 0.54247
λ31,32 −276.1 ± j105.7 16.8 0.93394
λ33,34 −280.2 ± j1151.5 183.3 0.23641
λ35,36 −503.7 ± j612.8 97.5 0.63502
λ37,38 −521.2 ± j1253.1 199.4 0.38405
λ39,40 −529.2 ± j7.7 1.2 0.9999
λ41 -2121.5 - -

Table 4.3 – Eigenvalues of the complete
model (common eigenvalues from Full
and Red from Fig. 4.12 marked in blue)
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Figure 4.13 – Eigenvalues of the complete model
(common eigenvalues from Full and Red from
Fig. 4.12 marked in blue)

The information given in Table 4.3 is used to numerate and classify the eigenvalues for the
following analysis. The participation factor analysis is used to verify if the 13 common state
variables of the complete system with reduced order interact with the un-modeled state vari-
ables. The participation factor matrix is shown in Fig. 4.14, where the 13 common eigenvalues
from Table 4.3 are grouped at the beginning of the “x-axis”.
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Figure 4.14 – Participation factor analysis of the complete LTI model

The results from Fig. 4.14 give some valuable information about the complete model. As it
can be seen, the lower-left part (i.e. common state variables and eigenvalues) and upper-right
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part (i.e. un-modeled variables of the reduced order model) of the participation factor matrix
are decoupled: this means that the 13 state variables captured by the reduced order model
are decoupled from the rest of the system. For this reason, the simplifications performed when
developing the reduced order model are valid. Nevertheless, it should be recalled that the
development of the MMC controller was performed in order to achieve a decoupled behavior.

Variation of operating point

Due to the non-linearities of the MMC, there is an impact of the choice of the operating
point in terms of active power transfer for the linearization on the resulting eigenvalues [161].
For this reason, it is performed a parametric sweep in terms of DC power transmission Pdc

from 1 pu to −1 pu. Results are shown in Fig. 4.15.
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Figure 4.15 – Eigenvalues trajectories for Pdc variation (kd = 0.1 pu) – Complete and reduced
MMC model with Energy-based control and CM

As it can be seen from Fig. 4.15, several eigenvalues are shifted with respect to the different
operating points. For both models, the 13 common eigenvalues are similar. Moreover, the
stability is guaranteed for the considered variations.

Variation of DC capacitor

As it was shown in [179], the energy stored on the DC grid have an impact on the network
stability. For this reason, the DC electrostatic constant Hdc is varied from 40 ms down to
5 ms. Results shown in Fig. 4.16.

For this kind of variations, the complete and reduced model gives similar results. It is
also interesting to observe that the modes of the complete model which are not represented
by the reduced model are not shifted by these variations: they remain at a fixed position.
This confirms that the DC side is decoupled from the internal dynamics of the MMC for this
Energy-based controller [160].

Variation of DC droop gain

In this case, the DC droop gain kd is varied from 0.2 pu down to 0.05 pu, and the results
are shown in Fig. 4.17. Similarly, as the previous case, the reduced order model replicates
accurately the mode shifting of the complete model.
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Figure 4.16 – Eigenvalues trajectories for Hdc variation (Pdc = 1 pu) – Complete and reduced
MMC model with Energy-based control and CM
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Figure 4.17 – Eigenvalues trajectories for kd variation (Pdc = 1 pu) – Complete and reduced
MMC model with Energy-based control and CM

Variation of common-mode current and energy sum controllers response times

The following tests are performed with a variation of the response times of the common-
mode currents tiΣ

r and energy sum tW Σ
r . Both response times are modified at the same time,

keeping a time separation factor of 10, as expressed in (4.23), which is a common practice for
avoiding interactions between the inner and outer control loops.

tW Σ
r = 10 × tiΣ

r (4.23)

The response time of tiΣ
r (tW Σ

r ) is varied from 5 ms (50 ms) down to 1 ms (10 ms). Results
are shown in Fig. 4.18, where it can be observed that there are many eigenvalues sensitive to
the performed variation.

Due to the extreme shifting of many modes in Fig. 4.18, the interpretation of the results is
very complicated. But it can be observed that the complete model is unstable for a response
time of tiΣ

r between 1.5 ms and 2 ms. The limit is found around tiΣ
r = 1.67 ms and tW Σ

r = 16.7 ms
as shown in Fig. 4.19. Moreover, it can be seen that only the complete model is unstable, while
the reduced order model is stable. This means that the instability is produced by the internal
variables not modeled in the simplified model.

For validating the results, a new time-domain simulation is performed with the complete
EMT Simulation model. The physical parameters considered for this simulation are the same
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r variation (Pdc = 1 pu) – Complete and
reduced MMC model with Energy-based control and CM
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Figure 4.19 – Eigenvalues for tiΣ
r = 1.67 ms and tW Σ

r = 16.7 ms variation (Pdc = 1 pu) –
Complete and reduced MMC model with Energy-based control and CM

as in Section 4.3.3, while the control parameters of iΣ and W Σ controllers are modified. The
simulation events are listed as follows:

1. For t < 0.15 s, there is a power transfer of Pdc = 1 pu. The response times tiΣ
r and tW Σ

r

are set to 1.83 ms and 18.3 ms, respectively.
2. At t = 0.15 s, the response times tiΣ

r and tW Σ
r are set to 1.67 ms and 16.7 ms, respectively

(i.e. the unstable case from Fig. 4.19).
3. At t = 0.2 s, an step on Pl of −0.1 pu is applied.
4. At t = 0.75 s, the response times of tiΣ

r and tW Σ
r are set back to the initial values (i.e.

1.83 ms and 18.3 ms, respectively).

The simulation results are gathered in Fig. 4.20. The results of the DC power are shown
in Fig. 4.20a where no noticeable change is perceived when the gains of the controllers are
changed. The same statement stands for the DC voltage results in Fig. 4.20b. When the
power step is applied, the transient results are more oscillatory for the DC power and voltages
compared with the case in Section 4.3.3. This is normally due to an undesired interaction
between the energy controllers and the DC voltage droop control.

In Fig. 4.20c it is shown the results for the common-mode currents iΣ
dqz. It can be observed

that the current iΣ
z is not affected by the change of the controllers parameters, while the
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Figure 4.20 – Unstable operation — Validation of MMC with complete Energy-based controller

currents iΣ
dq clearly show the oscillatory instability. The same results, but in abc frame, are

shown in Fig. 4.20d. When the controller gains are set back to their initial values, the system
recovers the stability for t > 0.75 s. Finally, in Fig. 4.20e is shown the results for the arm
capacitor voltage vΣ

Cdq, and Fig. 4.20f gathers the results of the arm capacitor voltages in abc
frame. For both plots, the occurred instability and further clearance is observed as well.

It is recalled that this particular instability found and analyzed for the EMT Simulation
model is observed only for the complete MMC model: the reduced order model is not capable
to capture this behavior. More detailed studies should specify clearly the origin of the unstable
behavior of the complete model for this condition, however this is out of the scope of this
Chapter. As a partial hypothesis, this issue is originated by a strong interaction between the
W Σ and W ∆ controllers. The reason for this hypothesis is that the same simulation without
W ∆ controller doesn’t present the same behavior. Even if the control structure of W Σ and
W ∆ are designed in a decoupled way in abc frame, the internal variables are highly coupled at
the inside of the MMC (more specifically, the variables vΣ

Cdqz and v∆
CdqZ).
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Variation of AC grid strength

The last comparison is based on the variation of the AC grid strength. This change is
reflected in the modification of the SCR, where lower values of SCR correspond to a higher AC
grid impedance. Since the AC grid vector current controllers as they were presented and used
up to this point on this Thesis are not suitable for weak grids (SCR < 3 [180]), they are modified
according to [181] and shown in Fig. 4.21. This modification introduces a first-order filter before
sending the feed-forward signals of the AC voltage on the current controllers outputs, and their
time constants are chosen to be T ∆

mv = 20 ms as in [182]. With the consideration of this modified
controller, the LTI models for the Full and Reduced order model are re-generated prior to the
eigenvalues comparisons. The controller gains are maintained during the parametric sweep.
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Figure 4.21 – AC Grid Current controller for weak grids

In Fig. 4.22 the eigenvalues from the linear models deduced from the complete SSTI-MMC
model and the reduced order model are compared (lower figure corresponds to a zoom of upper
figure). As it can be seen, the common eigenvalues from both systems presents a similar
behavior when the SCR is varied. Both systems are unstable when the SCR is lower than
approximately 2.8.

Results from this section reveals that, if the internal variables of the complete MMC are
well controlled, the reduced order model replicates the main behavior from the AC and DC
port characteristics. The complete model is useful for assuring that the internal variables are
stable. However, for interfacing the MMC with Energy-based controller #2 with CM (i.e. full
control of internal variables), it is recommended to use the reduced order model, since the
accuracy from the AC and DC standpoints is not compromised. Also, the computational effort
for linearizing and calculating the operating point when CM is considered in the Full order
model is very high (more than 10 minutes4 for only one operating point), while for the Reduced
order model it is needed less than 30 s for a single point. This big difference in computing
effort is due to the numerical resolution of the complex equations that are involved in the CM
calculation (inversion of the 7 × 7 matrix from (3.13)).

4Using Matlab with Intel Core i7 2.7 GHz and 16 GB of RAM.
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Figure 4.22 – Eigenvalues trajectories for SCR variation (Pdc = 1 pu) – Complete and reduced
MMC model with Energy-based control and CM

In the following section, the same methodology is applied on the Classical CCSC with
Un-Compensated Modulation.

4.4 Comparison II: Considering Classical CCSC and Un-

Compensated Modulation

In this Section, it is studied if the reduced order model can reproduce in a macroscopic way
the behavior of the MMC when it is controlled with the Classical CCSC strategy considering
UCM. First, the modifications on the controllers for including the PLL are discussed.

From the discussion about the PLL and the two rotating frames (physical and controller),
the Classical CCSC strategy used in the reference Full order SSTI-MMC model is the one
shown in Fig. 4.23. Note that the transformation TC(θC)−1 is used to obtain the vector v∆∗

mdq,
but also the transformation TC(−2θC)−1 is used for vΣ∗

mdq since, in the EMT mode, the Classical
CCSC is implemented in the SRRF defined by the axes dqC given by the PLL.

4.4.1 Reduced order model with Classical CCSC

For the reduced order SSTI-MMC model from Fig. 4.5, the adaptation of the Classical
CCSC control strategy from Fig. 4.23 is needed. Since the simplified model doesn’t consider
the internal circulating currents iΣ

dq, the term “CCSC” may not be representative; however,
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Figure 4.23 – Classical CCSC strategy with UCM considering PLL dynamics for SSTI-MMC

this nomenclature is kept for ease of understanding. For the representation of the UCM, (4.24)
is used, which is directly obtained from (2.77). Finally, the control model is shown in Fig. 4.24.

m∆
d = − v∆∗
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Figure 4.24 – Classical CCSC strategy with UCM considering PLL dynamics for Reduced order
model

It is interesting to redraw the reduced order MMC model when considering UCM, specially
by the fact that with this strategy the modulation index mΣ

z is imposed by the control to 1, as
expressed in (4.24). With this consideration, the circuit from Fig. 4.6 is modified as shown in
Fig. 4.25, where the modification is impacted on the DC side.

This circuit helps to explain partially the oscillatory phenomena already shown in Sec-
tion 3.2. It can be thought that there is a resonant “RLC” circuit formed by the DC capaci-
tance, the internal capacitor Cmmc and Rdc

eqL
dc
eq. Since the current idc is left uncontrolled, it is

clear that this current experiences several oscillations during transients. The resonance fres,dc
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Figure 4.25 – Reduced order MMC model when considering Classical CCSC strategy with
UCM

is calculated as [108]:

fres,dc =
1

2π
√

Ldc
eq (1/(1/Cdc + 1/Cmmc))

(4.25)

With the parameters from the Appendix A, and considering that Cdc = 4×Carm, the resonance
fres,dc is approximately 99.7 Hz. The damping is provided by the resistance Rdc

eq.
Note that the obtained model from Fig. 4.25 is fundamentally the same as the “Model

#4: AVM of MMC” from [111]. This model became very popular in the literature due to
its simplicity [142, 183]. However, the aim of this section is to verify if it’s safe to consider a
simplified model without modeling explicitly the circulating currents (as the circuit in Fig. 4.25)
for representing the complete SSTI-MMC model when considering the Classical CCSC with
UCM; specifically if AC- and DC-side interactions are studied.

4.4.2 Models Linearization: Time domain comparison

The LTI models are obtained similarly as shown in Section 4.3.3, however, the complete
model is represented as in Fig. 4.10a; while in Fig. 4.10b it is shown the summary of the
connections for the reduced order model.
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Figure 4.26 – Reduced Order Model Validation of MMC with Classical CCSC

The states of the Full-order model are gathered in (4.26):

xF ull
dqz = [ξiΣ

d
; ξiΣ

q
; iΣ

d ; iΣ
q ; vΣ

Cd; vΣ
Cq; v∆

Cd; v∆
Cq; v∆

CZd
; v∆

CZq
; ... (4.26)

... θC ; ξpll; iΣ
z ; vΣ

Cz; vdc; ξi∆

d
; ξi∆

q
; i∆

d ; i∆
q

︸ ︷︷ ︸
Common states between the full and reduced order model

]⊤ ∈ R
19
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while the states of the reduced system are listed in xRed.
dqz :

xRed.
dqz =

[
θC ; ξpll; iΣ

z ; vΣ
Cz; vdc; ξi∆

d
; ξi∆

q
; i∆

d ; i∆
q

]⊤ ∈ ℜ9 (4.27)

Finally, in (4.21), the inputs for both LTI systems5 are gathered.

udqz = [P ∗
l ; vG

d ; vG
q︸ ︷︷ ︸

Physical inputs

; v∗
dc; P ∗

ac; Q∗
ac︸ ︷︷ ︸

Control inputs

]⊤ ∈ R
7 (4.28)

The developed small-signal models of the MMC are compared with time domain simulations
against the EMT model with Classical CCSC, the LTI models (whose parameters are given in
Table 4.2) are discussed in the following:

1. Full: LTI model of the interconnected system from Fig. 4.26a, implemented in Simulink.
The operating point corresponds to the nominal ratings.

2. Red.: LTI model of the interconnected system from Fig. 4.26b, implemented in Simulink.
The operating point corresponds to the nominal ratings.

Starting with a DC power transfer of 1 pu (from DC to AC), a step is applied on P ∗
l

of −0.1 pu at 0.05 s. The reactive power is controlled to zero during the whole simulation.
Simulation results are gathered in Fig. 4.27.

At first glance, it is evident that the simplified model doesn’t reproduce accurately the
behavior of the complete model. The oscillations on the electrical variables are poorly damped
in the Reduced order model with respect to the Full order and EMT models. The frequency
of the oscillations is around 100 Hz for both models, as it was expected by (4.25).

4.4.3 Models comparisons with respect to their small-signal dyna-
mics

In this section the complete and reduced model are compared in order to verify the validity
of the simplified one. The comparisons are performed by different parametric sweeps as it was
done in Section 4.3.4.

Variation of operating point

The first comparison is performed via a parametric sweep in terms of DC power transmission
Pdc from 1 pu to −1 pu. Results are shown in Fig. 4.28.

As it can be seen from Fig. 4.28, an interesting phenomenon is observed: when the power
decreases from 1 pu to −1 pu, the eigenvalues that corresponds to the DC current (See Sec-
tion 3.2.3) become more damped for the Full order model, while the eigenvalues of the Reduced
order model become less damped. This phenomenon is verified with a similar time domain sim-
ulation as performed in Section 4.4.2, but in this time the initial DC power direction is given
by Pdc = −1 pu, and the simulated event is a power step Pl of 0.1 pu. Results are gathered in
Fig. 4.29, where it can be seen that the Reduced order model present more damping than the
EMT and Full order model.

5The Full order model has also the circulating currents references iΣ∗

dq but since they are set to zero the
whole time they are not added in (4.28).
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Figure 4.27 – Reduced Order Model Comparison of MMC with Classical CCSC - Pdc = 1 pu.
EMT : EMTP-RV simulation; Full : LTI model from Fig. 4.26a; Red : LTI model from
Fig. 4.26b.
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Figure 4.28 – Eigenvalues trajectories for Pdc variation (kd = 0.1 pu) – Complete and reduced
MMC model with Classical CCSC and UCM

Variation of DC droop gain

In this case, the droop parameter kd is varied from 0.2 pu down to 0.05 pu. The considered
power direction is from AC to DC since it is the worst case as seen in the previous section.
Results are shown in Fig. 4.30. When lower values of droop are used, the pair of eigenvalues
related to the DC current shifts to the right-hand plane (RHP) in both models. However, the
Reduced model becomes unstable first.
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Figure 4.29 – Reduced Order Model Comparison of MMC with Classical CCSC - Pdc = −1 pu.
EMT : EMTP-RV simulation; Full : LTI model from Fig. 4.26a; Red : LTI model from
Fig. 4.26b.
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Figure 4.30 – Eigenvalues trajectories for kd variation (Pdc = 1pu) – Complete and reduced
MMC model with Classical CCSC and UCM

Variation of AC grid strength

For the last comparison, the AC grid strength is varied. In this case, the grid current
controllers are modified as depicted in Fig. 4.21, by the addition of first order filters on the feed-
forward AC voltage compensations. As already performed for the Energy-based controller, the
SCR is decreased from 10 down to 3. Results are gathered in Fig. 4.31. Conversely, comparing
to the droop gain variation, the Full order model is unstable for higher values of SCR than the
Reduced order model. However, the difference is not highly noticeable.

As it is was shown in the eigenvalues comparisons from Figs. 4.28, 4.30 and 4.31, the
Reduced order model cannot replicate with high accuracy the complete model when the MMC
is considered to be controlled with the Classical CCSC and modulated with the UCM. When
considering bigger systems, the noticeable difference in the behavior of both models from an
AC and DC standpoints could potentially lead to false or biased results as a consequence of
different couplings and interactions. However, it is recalled that the Reduced order model that
results from these control considerations was already widely used in the bibliography [184]. In
terms of computational time, the use of the Full order model doesn’t necessarily correspond
to big differences with respect to the Reduced order model. For this reason, when Classical
CCSC and UCM is considered, it is recommended to consider the Full order model for not
compromising the accuracy of the results.

129



 

 

Red.Full

S
C
R

Im
a
g
in
a
ry

Real
−600 −500 −400 −300 −200 −100 0

2

3

4

5

6

7

8

9

10

−1000

0

1000

 

 

Red.Full

S
C
R

Im
a
g
in
a
ry

Real
−80 −60 −40 −20 0 20 40

2

3

4

5

6

7

8

9

10

−400

−200

0

200

400

Figure 4.31 – Eigenvalues trajectories for SCR variation (Pdc = 1pu) – Complete and reduced
MMC model with Classical CCSC and UCM

4.5 Frequency domain analysis

The impedance-based system stability studies gained a lot of popularity in the past years
[185, 186]. Recent works already dealt with the impedance modeling with complete analytic
formulations of the MMC AC and DC side impedances [187,188]. However, the control strategy
adopted for the MMC was the Classical CCSC. The following comparison is carried out on the
frequency domain characteristics of the Full and Reduced order models already compared via
time-domain simulations and eigenvalues. It is important to note that this study is performed
only to give a final conclusion on the utilization of the reduced order MMC model for linear
analysis. In this section, it is proven that accurate representations can be obtained directly
from the respective LTI models (for the full and reduced order model). Also, the comparison
between the different control strategies highlighted in this Chapter allows to determine the
validity of the reduced order model for representing the complete MMC from an AC or DC
standpoint.

Firstly, it is recalled how to obtain the relation between one input and output (i.e. SISO)
from the complete state-space LTI model (i.e. MIMO). Let us consider the MIMO system from
(4.29) where s is the Laplace operator.

{
s xsys(s) = Asys xsys(s) + Bsys usys(s)
ysys(s) = Csys xsys(s) + Dsys usys(s)

(4.29)

In (4.29), the vector xsys represent the system states, and it is only considered one input usys

and one output ysys. The matrices Asys, Bsys, Csys and the constant Dsys are obtained from
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the linearization of the SSTI models. Note that the operating point defined by (xsys0, usys0)
used for the linearization is already embedded in the matrices from (4.29). The relation between
the input usys and output ysys is then obtained as:

ysys(s)
usys(s)

= Csys (sI − Asys)
−1

Bsys + Dsys (4.30)

From a physical perspective, if the input usys is the perturbation current il and the output
ysys is chosen as the DC bus voltage vdc, the relation from (4.30) gives the DC impedance
Zdc(s) as follows6:

Zdc(s) =
ysys(s)
usys(s)

=
vdc(s)
il(s)

(4.31)

Contrariwise, if the input usys is a perturbation around the input voltage vG
d and the output

ysys is chosen as the grid current i∆
d , the relation from (4.32) gives the AC-side admittance

Yac,d(s) as follows:

Yac,d(s) =
ysys(s)
usys(s)

=
vG

d (s)
i∆
d (s)

(4.32)

The DC-side impedance and AC-side admittance for the LTI models (Full and Red.) are
obtained from the direct application of (4.30) or (4.32) for each model. For obtaining the
frequency responses of the EMT simulation model, the procedure detailed in [189] is used7.

4.5.1 Energy-based controller with CM

The DC side impedance Zdc(s) is calculated for the Full and Reduced order model, and
compared in the frequency domain in Fig. 4.32 for Pdc = −1 pu. As it can be seen, both results
are the same for the considered operating point (nominal ratings) and chosen controllers.
Moreover, both LTI models match very accurately with the EMT simulation, in which the 400
sub-modules per arm and associated balancing controllers are taken into account.

In Fig. 4.33, the comparison of the AC-side admittance Yac,d is shown. In this case, a small
offset can be observed for the EMT model with respect to both LTI models. This is due to the
losses in the MMC which are not exactly the same as the LTI model. For frequencies higher
than 1 kHz, a small but noticeable discrepancy is noticed on the magnitude and phase of the
frequency response.

As it was previously discussed, the parametric sweep with respect to a variation of Pdc

doesn’t cause significant shift of the eigenvalues (See Fig. 4.15). In the frequency domain, this
means that the DC-side and the AC-side admittances are not modified due to the DC operating
point change. Most importantly, the use of the Full or Reduced order model for this particular
control strategy is indistinct, i.e. same results can be obtained from both models for this type
of linear studies.

4.5.2 Classical CCSC with UCM

In Fig. 4.34, the DC side Zdc(s) impedance that results from both LTI models for Pdc =
−1 pu is shown. As it can be seen, the amplitude and phase of both models are very similar

6Strictly, a new current should be introduced on the DC bus independent from the DC power source to
obtain Zdc(s). However, since the expression is linearized, perturbing the DC power source for small variations
is equivalent to a current perturbation.

7The author acknowledge Dr. Hani Saad for helping with the simulation for obtaining the EMT results.
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Figure 4.32 – DC side impedance Zdc(s) - EMT, Full order and Reduced order MMC model
with Energy-based control and CM - Pdc = −1 pu
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Figure 4.33 – AC side admittance Yac,d - EMT, Full order and Reduced order MMC model
with Energy-based control and CM - Pdc = −1 pu

for frequencies lower than 20 Hz, and higher than 200 Hz. Between 20 Hz and 200 Hz, the
impedance is very different. There is a noticeable peak around 100 Hz (although, not exactly at
the same frequency), which is the frequency of the oscillations seen in the time-domain results
from Fig. 4.27 (for Pdc = 1 pu) and Fig. 4.29 (for Pdc = −1 pu). However, the magnitude of
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the impedance at 100 Hz for the reduced order model is higher compared to for the full order
model.
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Figure 4.34 – DC side impedance Zdc(s) - EMT, Complete and reduced MMC model with
Classical CCSC and UCM - Pdc = −1 pu

In Fig. 4.35, the comparison of the AC-side admittance Yac,d is shown. For frequencies
higher than 500 Hz the LTI models start diverging from the EMT simulation model. This is
highly noticeable in the phase for the high frequency range (> 1 kHz).

When considering the Classical CCSC control strategy with UCM, the MMC dynamics
depends highly on the active power direction, as discussed in Section 4.4. This means that
for each active power operating point, the DC-side impedance and AC-side admittance varies
considerably. Nevertheless, for a frequency range lower than 1 kHz, the MMC-SSTI model
from Chapter 2 (i.e. Full order model) is able to reproduce the internal dynamics and AC-
and DC- port behavior of the converter. However, the Reduced order model fails to reproduce
the frequency response of the EMT model.

Once more, it is shown that it is not a good choice the use of the Reduced order model for
representing the MMC when it is controlled with Classical CCSC with UCM.

4.6 Chapter Conclusions

The development of simplified MMC models for interfacing AC and DC grids is an impor-
tant topic nowadays for the large-scale studies such as MTDC grids. However, to guarantee
the validity of results for the DC grids, the fidelity of the reduced order model should not be
compromised as little as possible. In this Chapter it was first introduced a simplified MMC
reduced order model. Then, the small-signal dynamics of the resulting systems where studied.
This task was performed for two different control strategies developed in Chapter 3.

For the analysis of MTDC grids in the following of this Thesis, two models will be adopted
with respect to the control strategy adopted in the MMC:
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Figure 4.35 – AC side admittance Yac,d - EMT, Complete and reduced MMC model with
Classical CCSC and UCM - Pdc = −1 pu

• Energy-based controllers with CM: For this control strategy, the use of the Reduced
order model is adapted for AC and DC grids without compromising the results. As it was
introduced in Chapter 3 and formally demonstrated in this Chapter, the adoption of these
control strategies allows a perfect decoupling between the internal MMC variables. For
this reason, the Reduced order model reproduces accurately the MMC from a macroscopic
way.

• Classical CCSC with UCM: In this case, the use of the Reduced order model will
not be adopted in this Thesis. Instead, the Full order model is used. Thanks to the
adopted modeling tools, the limitations of the usage of the Reduced order model were
highlighted (also called called “Model #4: AVM of MMC”).

Other control mixes, such as the utilization of Energy-based controllers with UCM, can
be studied with the elements provided in this Chapter. However, due to the high number of
control combinations, this Thesis will focus only on the aforementioned possibilities.
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Chapter 5

Dynamic Analysis of MMC-Based
MTDC grids for Interoperability
Studies

5.1 Introduction

In multivendor MTDC grids, it is possible that the control strategies adopted on each con-
verter station may differ. As it was studied in previous Chapters, different control techniques
result in different DC voltage dynamics. Since, as discussed in Section 1.4, the analogous
variable to the AC frequency on the DC grids is the DC voltage, the accurate control of this
variable is fundamental for the proper functioning of the grid. For exemplification purposes,
let us consider a generic four terminal MMC-based MTDC grid as depicted in Fig. 5.1. Com-
paring this scheme with the 2-level VSC-based MTDC grid from Fig. 1.27, it can be observed
that in Fig. 5.1, the DC capacitors are no longer part of the converters themselves, but from
the equivalent capacitors from the cable models (marked in blue) [176]. The aforementioned
capacitance may be more than 30 times smaller than for the case of 2-level VSC, meaning that
the voltage dynamics at each endpoint is highly volatile (see Appendix A and H).

MMC-2

MMC-3

MMC-4

MMC-1 idc,1

idc,2

idc,3

idc,4

Cable

RLC
components

DC Grid

vdc,1

vdc,2 vdc,4

vdc,3

Equivalent capacitances
from cables only

Current flows
inside the DC grid

Figure 5.1 – Four terminal MMC-based MTDC grid: Available DC measures for each converter

In MTDC grids, the power flow is driven by the different DC values at each endpoint and
the impedances of the DC grid, which depends on the DC grid scheme. If no communication
is considered between the converters, when the DC voltage in a given station is perturbed
(e.g. a change on the DC power setpoint), currents inside the grid are generated (marked
in red). The propagation of the perturbation inside the grid is not instantaneous due to the
DC grid impedances. Since the only available DC measure on the the other stations is their
respective DC voltage, the MMC should react as fast as possible to clear the perturbation.
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If the DC voltage dynamics at each endpoint are properly controlled, the risk of interactions
between stations is highly diminished. Linear analysis tools can be used to study the MTDC
dynamics but the generalization of findings and conclusions is a difficult task without taking
into account each possible configuration [190]. In this Chapter it is intended to highlight
the main key parameters of the DC grid dynamics with special focus on the DC voltage for
MMC-based MTDC grids and how the MMC could be controlled to improve the DC voltage
dynamics. Improving the behavior of the DC voltage reduces the interactions and enhances
the interoperability of different converters.

This Chapter is focused on the DC dynamics in N − 1 conditions, where heavy and abrupt
changes on the DC power flows occur [191]. This case, which may be considered as a possible
scenario, should be resolved by the converters with the measures that are available at each
endpoint. In the considered MTDC, the converters connected to onshore terminals are equipped
with droop controller to ensure a distributed control of the DC voltage at each endpoint
without relying on external communications [192]. The rest of this Chapter is organized as
follows: In Section 5.2, the modeling basis of the four-terminal MTDC grid are given: the
EMT configuration as well as the linearized LTI model are detailed. In Section 5.3, the small-
signal analysis tools used in the rest of the Chapter are described: eigenvalue analysis and
Singular Value Decomposition (SVD). The influence of the MMC internal energy on the MTDC
dynamics is studied in Section 5.4. Two different control options for the energy management
in Energy-based controllers are presented in Section 5.5. In Section 5.6, a final time domain
simulation is performed with detailed MTDC model in EMTP-RV, contrasting the results and
validating the concepts discussed along the present Chapter.

5.2 MMC-Based MTDC modeling

5.2.1 EMT modeling of MMC-based MTDC grids

The four terminal MMC-based MTDC grid used as a benchmark for this Chapter is shown
in Fig. 5.2. This configuration is similar to the one already introduced in Section 1.4. In
the EMT Simulation model used as a reference, the MMCs are modeled with the so-called
“Model # 2: Equivalent Circuit-Based Model” (ECBM) from [111] as already performed in
the rest of this Thesis. However, the use of “Arm Averaged Models” is also a valid option for
reducing the simulation time [193].
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Figure 5.2 – Four terminal MMC-based MTDC grid used as a benchmark in this Chapter

Converters MMC-1, MMC-2 and MMC-3 are connected to onshore AC grids and they are
equipped with DC voltage droop controllers. Even if many different droop techniques can be
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found in the literature, the most common proportional droop control is taken into account
as discussed in Section 1.4.1. For simplicity, each AC grid is considered to be equal, with a
SCR of 10. In this Chapter, the focus is given to the DC-side interactions and not too much
emphasis on the AC-side.

The model of the Wind Farm (WF) and its associated converter (MMC-4) is modeled1 as
shown in Fig. 5.3a. Note that the WF model and its power Pwf is modeled similarly as the “DC
side connection” from Chapter 4 [95, 194]. The capacitor Cwf has a value of 10 µF (with the
base parameters from Appendix A, corresponds to an electrostatic constant of Hcw = 2.05 ms).
This value corresponds a very low level of DC energy storage, which allows to excite the
dynamics of the complete MTDC grid when the power Pwf is varied.

+

vdc,4Cwf
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(a) Equivalent representation of Wind Farm and MMC-4 simplified
model for DC grid analysis
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Figure 5.3 – Wind farm and cable models for EMT simulation

The DC grid is composed by four sections of cables with equal length for simplicity (70 km),
namely “C1”, “C2”, “C3” and “C4”. Each cable is modeled with the Frequency Dependant-PI
model (FD-Π) from [195, 196], which is shown in Fig. 5.3b. Modeling details and parameters
of the FD-Π are detailed in Appendix H.

5.2.2 Small-Signal modeling of MMC-based MTDC grids

The small-signal model of the MTDC grid is performed following the methodology explained
in Section 1.4, where several steps are carried out [197,198]. The most important concept is that
the overall state-space representation of the MTDC system is obtained by the concatenation
of different linear sub-systems (DC grids, AC grids, MMCs and their controllers) [9, 74]. The
complete system is shown in Fig. 5.5 and the main steps for obtaining the state-space linear
representation (LTI model) are discussed as follows:

1. Creation of DC grid state-space representation: The grid is formed with four
FD-Π cable models detailed in Appendix H. This model is linear by nature (only RLC
components). The capacitors of each node of connection with the MMCs are not consi-
dered in the state-space representation of the DC grid; instead, they are considered in
the modeling of the MMCs. This way, the boundary of each converter results similar as
the configurations already studied among this Thesis (e.g. in Chapter 3).

2. Creation of LTI models of Converters with DC capacitor and controllers in
linear state-space representation: The considered structure is shown in Fig. 4.2, but
in this case the DC input is a current resulting from the sum of all the currents arriving

1Strictly, the offshore MMC should be modeled similarly as the onshore MMC, and the WF model should
be feeding the AC-power: this is adopted in Journal II, but the results of this Chapter don’t lose generality.
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to the node of Point of Common Coupling on the DC side (PCC-DC). Also, note that
the considered capacitor for each MMC is the sum of all the DC cables capacitors of the
cables being connected to the PCC-DC (See Fig. 5.4). It is recalled that the adopted
MMC model depends on the control strategy considered: if the MMC is controlled with
the Classical CCSC with UCM, the full order SSTI-MMC from Chapter 2 model is
adopted. Contrariwise, if the MMC is controlled with the Energy-based controller with
CM, the reduced order SSTI-MMC model is used instead, as concluded from Chapter 4.

MMC-n

+

vdc,n

C cable 1
idc,n

C cable 2

i cable 1

i cable 2

MMC-n

+

vdc,n

(cables)

idc,n

∑

C

∑

i

(cables)

Figure 5.4 – Example of LTI MMCs with DC capacitor for small-signal MTDC model

3. Calculation of Operating Point: First, a DC load flow calculation is used to obtain
all the DC voltages and currents at each PCC-DC [199]. This information is used as
“known variables” for solving the non-linear equations of each MMC in a step-by-step
process. This means that the process is sequential and it is not intended to solve all the
system equations at once due to possible numerical convergence issues.

4. Concatenation of linear subsystems: Once the solutions of the operating point are
obtained, it is possible to transform the matrices of the linear systems for each component
and then combined into a single state-space global representation with the methodology
explained in Appendix B [9].

5.2.3 Time Domain Validation

In order to validate the small-signal modeling approach, time-domain simulations are per-
formed with the EMT model of the MTDC grid in EMTP-RV and the small-signal model with
Matlab/Simulink. All DC cables are considered to have an equal length (70 km each one). The
simulation case starts with a DC load flow provided in Table 5.12. This DC operating point
is independent from the control strategy adopted for the converters. At t = 20 ms, a sudden
reduction of 0.1 pu of wind power production Pwf is simulated. In the following, the same case
scenario is carried out considering Classical CCSC, or Energy-based control strategies.

Table 5.1 – DC Load Flow for time-domain simulations — Base values: 1000 MW; 640 kV

Station Nominal power [MW] Pdc [pu] vdc [pu]

MMC-1 1200 1.1930 1
MMC-2 1000 0.4 1.0017
MMC-3 1000 -0.6 1.0041

Wind Farm 1000 -1 (Pwf ) 1.0053

For setting the droop parameter kd for each controller, the methodology explained in Sec-
tion 1.4.2 is applied based on the steady-state deviation for a total loss of 1 pu of wind power

2Note that the Nominal Power of MMC-4 is 1200 MW, and the common base is chosen as 1000 MW.
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Figure 5.5 – SSTI model equations of MMC-based MTDC grid for linearization

production referred to as ∆Pwf , which is an N − 1 condition. For an allowed ±0.05 pu of DC
voltage deviation around the operating point in N − 1 conditions, the droop parameters kd are
set to 0.15 pu (see (1.57)).

Converters with Classical-CCSC

The first comparison considers that the control strategy for each MMCs is the Classical
CCSC from Section 3.2 [135]. The simulation results of the DC powers are shown in Fig. 5.6a,
which show that both modeling approach conduce to similar time-domain results. The DC
power step on Pwf causes an imbalance in the DC power inflow, so the MMCs equipped with
droop controller adjust their powers for achieving a new steady state condition.

Results of the DC voltage are gathered in Fig. 5.6b. As it can be seen, there is an offset on
the final value for the DC voltages due to the voltage droop controllers. Results from Fig. 5.6a
and 5.6b validate the small-signal model of the MTDC grid.

Converters with Energy-Based controllers

On this comparative study based on EMT simulation, the converters are equipped with
the Energy-based controller described in Section 3.4. The EMT model takes into account the
complete non-linear model and its controllers, while the LTI model is formed with the Reduced
order model detailed in Chapter 4.

Simulation results of the DC powers at each endpoint are shown in Fig. 5.7a. In comparison
with previous results where Classical CCSC was considered, the DC power transient results in
less oscillations, and the steady-state condition is achieved faster. In Fig. 5.7b, the results of
the DC voltages at each endpoint are shown. Comparing with Fig. 5.6b, the voltage transients
present less oscillations, but a more pronounced peak after the simulated event is observed.
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Figure 5.6 – Comparison of time-domain simulations of EMT and small-signal model (LTI) of
a four terminal MTDC grid - Converters are equipped with Classical CCSC

Nevertheless, results from Fig. 5.7a and 5.7b validate the LTI model of the MTDC grid when
considering Energy-based controllers for the converters.
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Figure 5.7 – Comparison of time-domain simulations of EMT and small-signal model (LTI) of
a four terminal MTDC grid - Converters are equipped with Energy-based controllers
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5.3 MTDC Linear analysis tools

In this section, analytic tools for the validated LTI system are applied. First, a brief analysis
based on the eigenvalues of the MTDC is given. Then, the singular value decomposition method
(SVD) is used for characterizing the system.

5.3.1 Eigenvalue analysis

Converters with Classical-CCSC

In this case, the complete LTI system is represented by 70 dynamic states (19 states from
MMC-1, MMC-2 and MMC-3 and their controllers, as shown in (4.26), 1 state from MMC-4
and the Wind Farm and 3 states for each inductance of the cables). The eigenvalues of the LTI
model when considering the converters with Classical-CCSC from Section 5.2.3 are shown in
Fig. 5.8. This figure also shows the zone (marked in gray) where the damping of the eigenvalues
laying inside the region have a damping ζ higher than 0.6 [72]. As it can be observed, many
eigenvalues are placed outside this marked zone, meaning that many poles of the system are
poorly damped. Also, several modes overlap due to the similar parameters of the converters.
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Figure 5.8 – LTI Eigenvalues - MMC equipped with Classical-CCSC

From the participation factor analysis (which is not shown since it doesn’t provide addi-
tional information), it can be observed that many poles are related to many state variables
from different converters. This coupling makes extremely difficult the proper analysis based
only on the modes and they may even lead to uncertain conclusions [85]. From Fig. 5.8, spe-
cial attention will be given to the eigenvalues λ31,32, λ33,34, λ37,38 and λ43,44, since they have
participation from the DC voltage states. The selected eigenvalues are listed in Table 5.2.

Table 5.2 – DC Voltage related eigenvalues — MMCs with Classical CCSC

λi Eigenvalue Freq. Damp. Dominant States
[Hz] ratio (From Participation Factor analysis)

λ31,32 −137 ± j3162.1 503.3 0.04 iΣ
z,1 ; vdc,1 ; vdc,2 ; vdc,3 ; vdc,4 ; iC3

z1 ; iC4
z1

λ33,34 −145.5 ± j4001.3 636.8 0.03 iΣ
z,2 ; vdc,2 ; iΣ

z,3 ; vdc,3 ; iC1
z1 ; iC2

z1 ; iC3
z1 ; iC4

z1

λ37,38 −158.7 ± j1398.9 222.7 0.1 iΣ
z,2 ; iΣ

z,3 ; vdc,4; iC3
z1 ; iC4

z1

λ43,44 −173.7 ± j4900.9 780 0.03 vdc,1 ; vdc,2 ; vdc,3 ; iC1
z1 ; iC2

z1
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Converters with Energy-based controllers

In this case, the analysis is carried out considering the Energy-based controllers, which was
validated by time-domain simulations in Fig. 5.7. The complete LTI system has 52 states
states (13 states from the reduced order models of MMC-1, MMC-2 and MMC-3 and their
controllers, as shown in (4.20), 1 state from MMC-4 and the Wind Farm and 3 states for each
inductance of the cables). Note that there are less eigenvalues than for the previous case, since
now the Reduced order model is adopted; if the full order SSTI-MMC model had been used,
the LTI would have had 136 states making difficult the linear analysis. The eigenvalues of the
LTI system are plotted in Fig. 5.9. Also, as in previous case, several eigenvalues are overlapped
due to the similar parameters used for the converters. After a participation factor analysis on
each eigenvalues, the modes that have participation of the DC bus voltages are highlighted in
blue, and listed in Table 5.3.

Real

Im
ag
in
ar
y

−500 −450 −400 −350 −300 −250 −200 −150 −100 −50 0

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

Well damped area

Damp. ratio > 0.6

λ30

λ32

λ34λ40
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Table 5.3 – DC Voltage related eigenvalues — MMCs with Energy-based controllers

λi Eigenvalue Freq. Damp. Dominant States
[Hz] ratio (From Participation Factor analysis)

λ30,31 −217.5 ± j3608.7 574.3 0.06 vdc,2 ; vdc,3

λ32,33 −218.7 ± j4572.9 727.8 0.05 vdc,1 ; vdc,2 ; vdc,3 ; iC1
z1 ; iC2

z1

λ34,35 −240 ± j2737.1 435.6 0.08 vdc,1 ; vdc,4 ; iC3
z1 ; iC4

z1

λ40,41 −300.8 ± j1061.9 169.02 0.27 vdc,4 ; iΣ
z,2 ; iΣ

z,3

Comparing the eigenvalues from Tables 5.2 and 5.3, it can be seen that the eigenvalues
related to the DC voltage at each converter are poorly damped, and the frequency range is
between 400 Hz and 800 Hz for this particular configuration. This means that, a priori, the
choice on the MMC controller as it was presented up to this point doesn’t guarantee proper
dynamics of the DC grid: the dynamics should be improved, and the issue of surpassing the
allowed DC voltage deviation should be addressed. In the following, it is intended to explain
the origin of this poorly damped modes of the system, and most importantly try to improve
their locations for a better dynamic behavior of the MTDC grid.

The eigenvalue analysis is very powerful when the study is focused on the stability of
the system. Nevertheless, when considering large MTDC schemes the number of dynamic
states grows rapidly, and so the number of eigenvalues. For this reason, the utilization of
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participation factors or sensitivity analysis are not easy to use and obtain general conclusions
[27, 85]. Moreover, those techniques are only based on the A matrix of the linearized system,
so the input-output relations of the system are not explicitly evaluated.

5.3.2 Singular Value Decomposition

For Multi-Inputs and Multi-Outputs (MIMO) systems, an useful tool is the Singular Value
Decomposition (SVD), which is equivalent to the transfer function approach from Single-Input
and Single-Output (SISO) systems [194, 200]. More information about the theory behind the
SVD analysis can be found from [84]; in this Section it is only mentioned for a practical use.

SVD Theory recall

Once the linearized model is obtained, some inputs and outputs of interest are chosen. In
this case, it is chosen the power reference from the Wind Farm as input (u = Pwf ). The
considered outputs are the four DC voltages, so y = [vdc,1 vdc,2 vdc,3 vdc,4]

⊤. Then, the matrix
G(s) is created, which relates the chosen inputs and outputs [9], as shown in Fig. 5.10. Each
element of the matrix G(s) is obtained as the SISO transfer functions as shown in Section 4.5.
Of course, other options can be chosen at this step for the matrix G(s); this depends on the
desired input-output relations of interest [201].

G(s)u = ∆Pwf y =









∆vdc,1
∆vdc,2
∆vdc,3
∆vdc,4









Figure 5.10 – SVD - Matrix G(s)

The gain of the system G(s) between the input signal u(ω) and the output y(ω) is given
by, in terms of the L2 norm [9]:

‖y(ω)‖2

‖u(ω)‖2

=
‖G(ω)u(ω)‖2

‖u(ω)‖2

=

√
∆v2

dc,1 + ∆v2
dc,2 + ∆v2

dc,3 + ∆v2
dc,4√

∆P 2
wf

(5.1)

The singular values of the system transfer function G(jω) at the frequency ω are given by:

σi (G(jω)) =
√

λi (G(jω)⊤G(jω)) (5.2)

where λi(·) is the i-th eigenvalue of the matrix G⊤G. The maximum singular value σ̄ (G(jω))
is defined as the largest gain for the input u(ω) at the pulsation ω:

σ̄ (G(jω)) def= max
u 6=0

‖G(ω)u(ω)‖2

‖u(ω)‖2

(5.3)

The maximum allowable voltage deviation and the maximum possible power reference
change of the converters can then be represented as a gain boundary in the multi-variable
frequency response of the MTDC system. In fact, by ensuring that the maximum singular
value does not bypass the gain boundaries corresponding to the DC voltage deviation, the
linear MTDC system is assured to comply with the imposed constraint [9].
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The boundary for a maximum allowed deviation of the DC voltage of any converter of 5%
respect of a power variation of the wind farm of 1 pu (i.e. N -1 condition) is given by3:

20 log10




√
∆v2

dc,1 + ∆v2
dc,2 + ∆v2

dc,3 + ∆v2
dc,4√

∆P 2
wf


 = 20 log10




√
4(0.05)2

√
12


 = −20 db (5.4)

Application of SVD to the MTDC with Classical CCSC

In this section, the SVD tool is used to evaluate the MTDC grid with the MMCs controlled
with Classical CCSC strategy. The first results illustrate a power variation of the WF Pwf

from 0 pu to 1 pu, and results are shown in Fig. 5.11. Note that the boundary shifts for each
value of Pwf calculated with (5.3). When Pwf is equal to 1 pu, the limit is defined by (5.4).
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Figure 5.11 – SVD results for a sweep of the power from the Wind Farm – Onshore MMCs are
controlled with Classical CCSC strategy

As seen on the SVD results from Fig. 5.11, it can be observed that the different values of
Pwf don’t affect considerably the frequency response. Four different frequency ranges may be
distinguished:

1. Low frequency range — Frequency < 101Hz: This range corresponds to the steady state
deviation. Note that the droop constant used for this example is calculated for obtaining
a DC voltage deviation of 5% for a variation of 1 pu of DC power (from any converter)
with the theoretical calculation from Section 1.4.2. The SVD results for the low frequency
ranges coincide with the value calculated in (5.4).

2. Mid-low frequency range — 101Hz < Frequency < 102Hz: In this frequency range it can
be observed that the maximal gain of the system tends to become smaller. This means
that for slow changes of Pwf , the MTDC grid will not have an important impact on the
DC bus voltages and they will be easily maintained within the desired limits.

3. Mid-high frequency range — 102Hz < Frequency < 103Hz: In this range it can be clearly
observed three resonant peaks around 220Hz, 500Hz and 780Hz correspond to the frequen-
cies of the eigenvalues λ37,38, λ31,32 and λ43,44 respectively (See Fig. 5.8 and Table 5.2).

4. High-frequency range — 103Hz <Frequency : For higher frequencies (more than 1kHz,
the system attenuates all the high frequency perturbations.

Results from Fig. 5.11 show that the system gain is below the limits only when there is
almost no power from the wind farm. For all the values of Pwf the limits are violated for the

3In fact, the 5% limit is applied on ∆vdc (i.e. vdc − vdc0) and not on the output variable vdc, but in this
Chapter it is considered that the operation point for all the DC voltages are set to 1 pu for simplicity
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Mid-high frequency range. In [95] it is proposed to augment the boundary for this frequency
range as it is stated that maintaining the gain below the limits is very complicated. In [9], and
also in this report, it is chosen not to change the limit for the Mid-high frequency range.

The following test considers the variation of the droop gain for all the converters from
0.15 pu down to 0.05 pu. Results are shown in Fig. 5.12. As it can be seen, the most affected
region is the low frequency range. When the droop gain is smaller, the system gain is decreased
and that means that the voltage deviation is lower, as expected. Also, it can be seen that the
Mid and High frequency range remains unaltered with respect to the first results in Fig. 5.11.
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Figure 5.12 – SVD results for a sweep of the droop gain kd of the MMCs – Onshore MMCs are
controlled with Classical CCSC strategy

Finally, the last results are based on the variation of the DC cables length from 50 km up to
300 km. Results are shown in Fig. 5.13, while maintaining the droop constant to kd = 0.15 pu.
In this case, the SVD results is highly modified in Mid to High frequency range but almost no
modification for the Low frequency range. When the DC cables are very long, the DC offset
may be violated due to the voltage drops in the cables but this can be easily compensated with
a slight modification of the droop gains kd.
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Figure 5.13 – SVD results for a sweep of the cables length – Onshore MMCs are controlled
with Classical CCSC strategy

It is important to mention that the frequencies of the peaks of the SVD results from the
Mid frequency range are modified for each different cable length. For longer cables, the peaks
are reduced in amplitude and shifted to lower frequencies. The reason is that longer cables
presents higher damping by their resistances (but increasing their inductance and capacitance
as well, changing the place of the resonances). The resonances are not only due to the DC
cables, but also on the MMC control strategy adopted as it will be shown in further sections.
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Nevertheless, for all the combinations the SVD results show that the boundaries are easily
violated for the Mid frequency range.

The obtained results for each of the variations of Pwf , kd or the cable length results in
different eigenvalues for each case. For each variation, it is mandatory to check if all the
eigenvalues have a negative real part to ensure the global stability. This task is mandatory
since the SVD does not give information about the system stability. This was verified for all
the cases presented in this section, but not shown since they don’t add any further information.

Application of SVD to the MTDC with Energy-based controllers

In the following, it is considered that the MMCs are equipped with Energy-based controller
with constant energy reference. Only the SVD results for a variation on the wind power plant
and the droop parameters are shown, which are gathered in Fig. 5.14.

 

 

P
w
f
[p
u
]

Frequency [Hz]

σ
(G

)
[d
b
]

10−1 100 101 102 103 104
0.01

0.5

1

−60

−40

−20

0

(a) Sweep of the wind farm power
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Figure 5.14 – SVD results when the Onshore MMCs are controlled with Energy-based strategy
— Constant energy reference for all the MMcs

In Fig. 5.14a it is shown the results for a wind power Pwf from 0 to 1pu. The Low- and
High- frequency range responses are similar to the case where all MMCs are equipped with
Classical CCSC (Fig. 5.11). Nevertheless, it can be seen that the Mid-low frequency range
is not attenuated as in previous case. Moreover, the peak at 500Hz in the Mid-high range is
slightly damped as well as the other peaks. For the droop variation in Fig. 5.14b, it can be seen
that only the High-frequency range is not modified for the different gains, unlike the previous
case in Fig. 5.12 where only the Low-frequency range was modified.

These results show that when all the MMCs are being controlled with Energy-based con-
trollers with constant energy references, the dynamic behavior of the DC voltages of the MTDC
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grid are not guaranteed to remain between the boundaries of a variation of ±5%. Nevertheless,
the stability is assured for all the cases considered.

In the following sections, an in-depth analysis is carried out to improve the SVD results
and hence, the dynamic behavior of the DC voltages in MMC-based MTDC grids.

5.4 Influence of MMC energy management on the dy-

namics of droop-controlled MTDC grids

As discussed in Section 1.4, the DC voltage dynamics are governed by the the energy stored
under an electrostatic form since it corresponds mainly to the energy stored in converter station
capacitors directly connected to the DC grid (as it is the case for 2-level VSCs studied in
Chapter 1). For the case of the MMC, since there is no capacitor connected directly to the DC
bus, the internal energy can be shared or not with the MTDC grid depending on the applied
control strategy. This has an important effect on the overall MTDC grid dynamics since the
available energy on the DC bus is modified [160].

For analyzing the MTDC dynamics, the simplified DC dynamics formulation relating the
stored energy of the MTDC grid and the droop constant from Section 1.4.2 is used. However,
first it is needed to adapt the formula from (1.51) for considering the MMC instead of 2-level
VSC, which are very different in terms of dynamics [9, 202].

5.4.1 Participation of the internal stored energy on the DC bus
voltage dynamics

For the adaptation of the simplified formula, let us first consider the Reduced order model
developed in Chapter 4 as shown in Fig. 5.15, where the AC reactive power circuit (i.e. q
axis) is neglected on purpose [203]. This circuit was already validated in Chapter 4 when
using Energy-based controllers with CM, which is the main control structure for the rest of
this Chapter.
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Figure 5.15 – Simplified MMC model — AC and DC powers distribution

The circuit in Fig. 5.15 helps to understand the power flow from DC to AC sides across
one single converter. Suppose that there is a power Pl arriving at the node PCC-DC of the
studied terminal. During transients, a fraction of this power, Pc, goes to the capacitor Cdc,
which is the equivalent capacitor of the considered DC node. The DC power at the PCC-DC
of the MMC is named as Pdc. A part of Pdc, namely PW , is the responsible for charging the
6 equivalent arm capacitors of the MMC, i.e. modifying the internal energy W Σ

z . The output
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AC power is Pac. For the following analysis, the instantaneous power on the inductors and the
converter losses are neglected.

The energy stored on the DC cable (Wdc) depends on the power exchanged by the MMC
(Pdc) with the DC bus and the power flowing from the current source (Pl) as expressed in (5.5).

dWdc

dt
=

1
2

Cdc
dv2

dc

dt
= Pc = Pl − Pdc (5.5)

The approximated dynamics of the energy stored on the MMC (W Σ
z ) was given in (3.6), and

it is repeated in (5.6) for convenience (it is recalled that Cmmc = 6 × Carm). It is approximated
since the dq components of the energy are neglected at this moment.

dW Σ
z

dt
≈ 1

2
Cmmc

d(vΣ
Cz)2

dt
= PW ≈ Pdc − Pac (5.6)

Re-arranging (5.6), the DC power can be expressed as in

Pdc =
1
2

Cmmc
d(vΣ

Cz)2

dt
+ Pac (5.7)

Replacing (5.7) into (5.5) yields:

1
2

Cdc
dv2

dc

dt
+

1
2

Cmmc
d(vΣ

Cz)2

dt
= Pl − Pac (5.8)

For the case when the MMC is controlled with Classical CCSC, the internal capacitors are
charged or discharged accordingly in harmony with the DC bus (See results in Fig. 3.8b). For
this reason, it can be assumed that vΣ

Cz ≈ vdc [115]; and hence, (5.8) results in (5.9).

Classical CCSC :
1
2

(Cdc + Cmmc)︸ ︷︷ ︸
Ceff

dv2
dc

dt
= Pl − Pac (5.9)

Equation (5.9) shows that the effective capacitance on the DC side Ceff is not only the one of
the cables, but also the internal capacitor Cmmc [160].

In case that the Energy-based controller with constant level of energy is considered, (5.9)
is no longer valid since the value of vΣ

Cz depends on the energy reference. For this strategy, the
dedicated energy controller regulates the internal energy to a constant level (normally, 1 pu).
Assuming a perfect energy controller, it can be written that4 W

Σ
z = W

Σ∗
z . This implies that

vΣ
Cz = vΣ∗

Cz, where vΣ∗
Cz =

√
2W

Σ∗
z /Cmmc, and consequently the term d(vΣ

Cz)2/dt is equal to zero.
With this considerations, (5.8) results in (5.10).

Energy-based (constant energy):
1
2

Cdc︸︷︷︸
Ceff

dv2
dc

dt
+✘✘✘✘✘✘✘✘1

2
Cmmc

d(vΣ∗
Cz)2

dt︸ ︷︷ ︸
=0

= Pl − Pac (5.10)

Equation (5.10) shows that the effective capacitance on the DC side Ceff is now only consid-
ering the cable capacitances.

Neglecting the inductances of the cables, the effective DC bus capacitance for the MMC-
based MTDC grid may now be written as the sum of the M cables and the Nc MMCs (see
Section 1.4.2):

Ceff =
M∑

i=1

Ccable,i +
Nc∑

j=1

λCmmc,j (5.11)

4It is recalled that W
Σ

z corresponds to the time averaged value of W Σ
z .
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where λ is 1 if the MMC is sharing the internal energy with the DC bus, or 0 if the energy is
decoupled. From (5.9) and (5.10), and taking into account (5.11), it can be written:

1
2

Ceff
dv2

dc

dt
= Pl − Pac (5.12)

Equation (5.12) is used for extending the simplified MTDC model already done for the
2-level VSC in Section 1.4.2, for taking into account the distinct capacitance of the grid.

5.4.2 Dynamic behavior of a droop controlled MMC-based MTDC
grid

Dividing (5.12) by vdc and considering (5.11), (5.13) is obtained.

Ceff
dvdc

dt
= −P ∗

ac

vdc

− Pl

vdc

= −imdc − il (5.13)

The MMC associated with the droop controller can be represented in a circuit diagram as
shown in Fig. 5.16. The current imdc is the internal modulated current inside the MMC that
charges or discharges the internal capacitors.

+

Cmmc

imdc i∗mdc

÷

vdc

−1
kd

vdc

v∗
dc

+
–

1

0+
vdc

Simplified MMC

Cdc

DC Bus

P ∗

ac
Pmdc

λil
÷

vdc

Pl

Figure 5.16 – Simplified droop-controlled MMC-VSC for analysis purposes

Note that the circuit from Fig. 5.16 is fundamentally the same as the 2-level VSC [74]. The
main difference is due to the effective capacitance on the DC side. In the case of the 2-level
VSC, this physical capacitance is directly connected to the DC bus. Contrariwise, in the MMC
the effective capacitance depends on the control strategy adopted for the converter [160]. For
this reason, the simplified formulation of the MTDC grid developed in Section 1.4.2 can be
directly re-written, replacing only Cmtdc by the definition in (5.11), i.e. Ceff , as shown in
(5.14):

∆vdc,pu = −

1(
Nd∑
j=1

Pn,j

kd,j

)

1 + vdc0vdcnCeff(
Nd∑
j=1

Pn,j

kd,j

) s

Pn,j

vdcn

∆P ∗
ac,jpu

(5.14)

where it is recalled that ∆vdc,pu represents the voltage dynamics in per-unit of a single capacitor
modeling the entire MTDC grid. Also, Nd is the amount of converters in droop control mode;
kd,j is the droop constant of the converter j (in pu); vdc0 is the initial voltage value (in V);
vdcn is the nominal DC voltage (in V); Pn,j the nominal power of the converter j and finally,
∆P ∗

ac,jpu
is the power deviation (in pu).

As already performed in Section 1.4.2, it is assumed that all droop parameters are set to
an equal value kd, and the initial value of vdc is equal to its nominal value (i.e. vdc0 = vdcn) so
(5.14) is simplified as follows:

∆vdc,pu = −
kd

Nd

1 + kd

Nd

Ceff v2

dcn

Pn
s

∆P ∗
ac,puj

(5.15)
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The voltage dynamics depends not only on the droop parameter kd, but also on the equiv-
alent capacitance of the DC grid (Ceff ) which depends on the MMC control strategy. This
capacitance does not affect the steady state voltage deviation.

Time Domain Comparison

For evaluating the effectiveness of the simplified formulation in (5.15), this equation is
contrasted with the results from a large-signal simulation of a power step of the Wind Farm
of 1 pu. The capacitances at stake are listed in Table 5.4.

Table 5.4 – Capacitor values of MMC and DC grid

Variable Value

Cmmc,1 = Cmmc,2 = Cmmc,3 195.31 µF
Cmmc,4 10 µF

4× Cables (70 km each) 22.61 µF

Comparison results are shown in Fig. 5.17a for when considering that the MMCs are con-
trolled with the Classical CCSC. From this comparison, it cannot be said that the simplified
formulation reproduces the DC voltage dynamics. However, there is a similarity on the trend
of the dynamics. Note that the voltage on the converter on the Wind Farm (in light gray) is
the one that falls abruptly at the moment of the applied step, while the voltage on the other
converters are maintained in between the limits of %5. For the Energy-based controllers, the
comparisons are given in Fig. 5.17b. In this case, it is clearly seen that the voltage drop is
produced abruptly for all converters due to the lower effective capacitance on the MTDC grid.
Once again, the simplified model cannot reproduce very accurately the main dynamics.
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Figure 5.17 – Comparison of large-signal time-domain simulations of a four terminal MTDC
grid with simplified MTDC dynamics formulation from (5.15)

Even though the simplified formulation failed to reproduce the voltage dynamics accurately
for both cases, some important partial conclusions can be given. On the one hand, the Classical
CCSC presents the advantage of natural sharing of its energy with the DC bus, so the effective
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capacitance of the MTDC grid is enhanced. This “extra” stored energy on the DC side is
necessary for a proper dynamic behavior of the MTDC grid. However, the fact that the DC-side
dynamics of the MMC are not controlled causes extreme oscillations due to power variations
in the grid (concept that was heavily covered in this Thesis). On the other hand, the Energy-
based controller presents the advantage of an accurate control of the internal variables of the
MMC, making it very robust to different situations. Nevertheless, if the energy management
is considered to keep the internal energy level at a fixed value (and without any other actions),
the effective DC capacitance of the MTDC grid is heavily diminished. For this reason, the
changes on the power transfer on the DC grid will cause large variations on the DC bus voltage,
which can be very dangerous for the proper operation of the cables.

From this discussion and from a DC-side point of view, converters should provide their
internal energy to improve the DC voltage dynamics for augmenting the interoperability of
the MMCs connected to MTDC grids. This functionality can be considered as analogous to
the AC side frequency support; more synchronous machines with large inertia on their shafts
collaborate in the improvement of the frequency regulation. The same concept is needed for
the MMC-based MTDC grids.

5.5 MMC control variants for internal energy sharing

with the MTDC grid

Up to this point, it is clear that the Classical CCSC presents several limitations for MTDC
grids. Contrariwise, in the past section, the main drawback of the Energy-based controller
as it was presented in this Thesis was clearly highlighted: the internal energy of the MMC is
decoupled with the DC side. However, the fact that the internal variables can be accurately
controlled is the main advantage that can be further explored. In this Section, Energy-based
control variants are investigated to allow the internal energy of the MMC to participate in the
improvement of the DC bus voltage dynamics. The main characteristic of the Energy-based
controller is that the AC and DC powers can be controlled independently during the transients.
This degree of freedom can be used for developing control solutions for taking advantage of
the internal energy.

Let us consider again the Reduced-order model, as shown in Fig. 5.18 where now the
Energy-based controller is adopted. In this figure, the independent control of the AC and DC
powers are highlighted. The outer block, named as “Outer Loops - Energy Management” is in
charge for generating the power references P ∗

ac and P ∗
dc. This section is focused on this block,

where different variants are presented.

5.5.1 Coupled MMC energy with DC bus: Virtual Capacitor Con-
trol

In this strategy, the Energy-based controller is slightly modified for enabling the partic-
ipation of the internal energy on the DC bus voltage dynamics. This is performed with
an appropriated modification on the energy reference which is shown in (5.16) as proposed
in [203, 204]. The parameter K is referred as “Capacitor Coefficient” and it is explained later
on this Section [203].

W
Σ∗
z =

1
2

KCmmc︸ ︷︷ ︸
Virtual Capacitor

(
v2

dc − v2
dc0

)
+ W

Σ∗
z0 (5.16)
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Figure 5.18 – Simplified MMC model with Energy-based control — AC and DC powers

In (5.16), vdc0 corresponds to the steady-state value of the DC voltage and W
Σ∗
z0 is the desired

initial stored energy on the converter. The arm capacitors voltage reference vΣ∗
Cz can be related

to the energy reference in (5.16) as in (5.17).

vΣ∗
Cz =

√√√√2W
Σ∗
z

Cmmc

=
√

K (v2
dc − v2

dc0) + W
Σ∗
z0 (5.17)

Replacing (5.17) into (5.8) and taking into account a perfect energy controller where it can
be considered that vΣ

Cz = vΣ∗
Cz, it yields (5.18). Note that the derivatives of v2

dc0 and W
Σ∗
z0 are

zero since they are set to constant values in normal operation.

1
2

Cdc
dv2

dc

dt
+

1
2

Cmmc
d(K (v2

dc − v2
dc0) + W

Σ∗
z0 )

dt
= Pl − Pac (5.18a)

1
2

Cdc
dv2

dc

dt
+

1
2

Cmmc
dKv2

dc

dt
= Pl − Pac (5.18b)

Re-organizing (5.18b), (5.19) is obtained.

Virtual Capacitor :
1
2

(Cdc + KCmmc)︸ ︷︷ ︸
Ceff

dv2
dc

dt
= Pl − Pac (5.19)

For the particular case where the terms v2
dc0 and W

Σ∗
z0 are neglected in (5.17), it is obtained

the same energy reference as first proposed in [176]. However, the strategy from [176] may
conduce to excessive over-voltages on the sub-modules capacitors when selecting high values of
K. This is due to the fact that the steady-state value of the arm capacitor voltages would be√

K times the DC voltage value when using the strategy from [176]. However, this drawback
is solved in [203] with the introduction of the terms v2

dc0 and W
Σ∗
z0 in (5.17).
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The implementation of the Virtual Capacitor control in shown in Fig. 5.19. For improving
the tracking performance of the energy controllers, two options are envisaged: The first one
consists in the addition of a derivative term. The second option is the modification of the
controller tuning for having a faster energy response time. For this task, faster current con-
trollers are needed for avoiding interactions between the different cascaded control loops [164].
In the following examples, the derivative action is preferred to avoid modifying the controller
gains to enable a clearer comparison with the previous strategies. The gains are selected with
a trial and error methodology via time domain simulations and the values which present an
acceptable response are kW = 0.01 and TW = kW /10. More advanced methodologies based on
the linear models can be deployed to a better tuning of this gains as proposed in [205], however
this aspect is out of the scope of this Thesis.
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Figure 5.19 – Energy-based controllers with Virtual Capacitor control — See Section 3.4 for
the details for the Energy W Σ

z controller

In the following sub-sections the Virtual Control strategy is evaluated via time domain
simulations, and the linear analysis tools.

Time domain simulations

For evaluating the developed strategy, the same large-signal time domain simulation as in
Section 5.2.3 is performed. The energy references for converters MMC-1, MMC-2 and MMC-3
are given by (5.16), with K = 1.1. The droop parameters are set to kd = 0.15 pu for the three
aforementioned converters. Starting with the DC power flow given in Table 5.1, the Wind farm
is disconnected at t = 20 ms. The LTI model of the MTDC is re-generated taking into account
the modification on the energy reference with (5.16). Simulation results for the DC power and
voltages are gathered in Fig. 5.20. The first observation is that the LTI model reproduces
accurately the MTDC behavior, even if some differences are observed in the transient (note
that the applied step consist on a large-signal scenario). The DC voltages at the converters
MMC-1, MMC-2 and MMC-3 are well maintained under the %5 limits, while the MMC-4
presents several oscillations.

In Fig. 5.20c a detail of the DC powers is depicted, where it can be seen that the DC power
slope from 20 ms to 40 ms for MMC-1 is around 150 MW/ms, 340 MW/ms for MMC-2 and
335 MW/ms. This rate may be excessive for AC grids, where a maximum rate of 100 MW/ms
may be specified; however the DC grid dynamics are much faster than the AC grids, so the
rates observed in Fig. 5.20c are achievable.

Results from Fig. 5.21 gathers the time domain waveforms of the arm capacitor voltages for
the MMC-1. Also, it is shown

√
W Σ

z and the DC voltage value vdc,1. Note that the steady-state
value at the beginning of the simulation are the same for all the shown signals. This is the main
difference with the energy strategy from [176]; the energy reference from (5.16) allows that the
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Figure 5.20 – Comparison of time-domain simulations of EMT and small-signal model (LTI)
of a four terminal MTDC grid - Converters are equipped with Energy-based controllers with
the Virtual Capacitor control (K = 1.1 for MMC-1, MMC-2 and MMC-3)

average value of the arm capacitor voltages remain at normal levels (e.g. 1 pu). However,
after the transient, the difference between

√
W Σ

z and the DC voltage value vdc,1 depends on
the value of K and the voltage difference v2

dc − v2
dc0. This characteristic is studied in a further

sub-section.

Linear analysis

In Fig. 5.22, the eigenvalues of the validated LTI models for the MTDC grids with con-
stant energy from Fig. 5.9 and with Virtual Capacitor control are shown. As observed, many
eigenvalues shifted their positions. The eigenvalues marked in blue corresponds to the modes
related to the DC voltages for each controls strategy from a participation factor analysis.

In Table 5.5 the eigenvalues related to the DC voltages of the converters are listed for the
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Virtual Capacitor control. As it can be noticed, these eigenvalues are not well damped as the
rest of the eigenvalues of the system (see Fig. 5.22, where the rest of eigenvalues are located in
the well damped gray zone). Comparing the DC voltage eigenvalues from Tables 5.3 and 5.5,
it can be noticed that the DC voltage for MMC-4 is now related only to the currents in the
cables. Moreover, the rest of eigenvalues are related to more than one DC voltage and always
with the DC currents (idc = 3iΣ

z ) of the converters.

Table 5.5 – DC Voltage related eigenvalues — MMCs with Virtual Capacitor control

λi Eigenvalue Freq. Damp. Dominant States
[Hz] ratio (From Participation Factor analysis)

λ35,36 −347.3 ± j1815.6 289 0.19 vdc,4 ; iC3
z1 ; iC4

z1

λ44,45 −469.9 ± j7066.3 1124.6 0.067 iΣ
z,1 ; vdc,1 ; vdc,2 ; vdc,3

λ47,48 −517.3 ± j6516.6 1037.2 0.08 iΣ
z,2 ; iΣ

z,3 ; vdc,2 ; vdc,3

λ49,50 −575.6 ± j5924.8 942.9 0.1 iΣ
z,1 ; vdc,1 ; vdc,2

For evaluating the impact of different values for the “Capacitor Coefficient” K, in Fig. 5.23
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it is shown the SVD results for the parametric sweep of K from 1 up to 2.4 for all converters.
The impact is observed on the low-frequency range, since the virtually augmented capacitance
of the MTDC grid behaves as a low-pass filter such as a single capacitor. The voltage spike
around 290 Hz remains almost unaltered. This peak corresponds to the eigenvalue λ35,36 from
Table 5.5, which it was shown that it has no participation from the other converters (only
from MMC-4, which doesn’t participate on the DC voltage control).
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It seems from Fig. 5.23, that augmenting indefinitely the “Capacitor Coefficient” K improves
the MTDC dynamics. However, special attention should be given to the final value of the
stored energy (or the arm capacitor voltages) since it is possible to hit the converter limits.
This aspect is studied in the following sub-section.

Limitations of Virtual Capacitor strategy in droop-controlled MTDC grids

In [203], a theoretical analysis on the peak of the MMC internal energy W Σ
z was given for

the case of an HVDC point-to-point scheme. Moreover, since in that configuration there is
one converter controlling exclusively the DC voltage vdc to a fixed value (normally 1 pu), the
steady state value for the stored energy after a perturbation, presents no challenge since the
term v2

dc − v2
dc0 from (5.16) is typically zero at the equilibrium.

In droop-controlled MTDC grids, the DC voltage is near the nominal value only when a
dedicated master controller sets the proper references for regulating the DC power flow [88].
Right before a power imbalance, the DC voltage experiences a deviation due to the proportional
droop controllers (see (1.51)). Consequently, for MTDC situations, and after an event, the
term v2

dc − v2
dc0 in (5.16) is not zero, so a deviation on the energy is expected for the steady

state condition after an event. This difference on the energy level will exist until a dedicated
master controller regulates again the stored energy.

The energy deviation Wdev after an event which causes a DC voltage change of ∆vdc is given
in (5.20), where vdc0 is the DC voltage after the event and W Σ

z0 is the initial level of stored
energy. Note that this equation is considering only the steady state values, and not during
transients. As it can be seen, the total energy deviation is proportional to K, and depends also
on ∆vdc, which is defined by the droop parameters of all the converters participating on the
DC voltage regulation.

Wdev(K) = K((vdc0 − ∆vdc)2 − v2
dc0) + W Σ

z0) [pu] (5.20)

However, the information of (5.20) deals with the total stored energy of the converter,
without taking into account the physical limits of the MMC. For exemplifying this phenomenon,
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ten EMT parametric simulations are carried out where the “Capacitor Coefficient” K of the
MMC-1 is varied from 1.5 up to 2.4. With the eigenvalue analysis (not shown since it doesn’t
add more information), the stability of the MTDC grid is verified for the considered values of
K. For each simulation, the same scenario as for the large-signal simulations from Section 5.2.3
is considered: at t = 20 ms, the DC power from the Wind Farm is dropped abruptly to zero.
Since the droop parameters for MMC-1, MMC-2 and MMC-3 are set to kd = 0.15 pu, the final
voltage deviation is around %5. Special attention is given to the steady-state condition after
the simulated event.

In Fig. 5.24 it is shown the steady-state results for the 10 considered cases. In this figure,
the final DC voltage is shown and its final value is 0.95 pu as expected. Also, the results for the
arm capacitor voltage vU

Ca from each simulation, and the modulated voltage vU
ma are shown. As

expected from (5.20), when higher values of K are used, the deviation of the average value of
the energy is increased after the event, which is reflected in Fig. 5.24 as the diminution of the
average value for the arm capacitor voltage. For this case scenario, when K is higher than 2.1
the arm capacitor voltages has such a low value, that it is not possible to form the desired arm
voltage vU

ma needed for the proper operation of the converter. This same phenomenon is shown
in Fig. 5.25, where the maximum value of the modulation indexes are shown for MMC-1. As
it can be seen, for higher values of K, the limit on mU

abc is approached and further violated5.
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In this analysis, it was only taken into account the case where the DC voltage tends to
decrease, and so does the internal stored energy. In the other way around, if vdc increases,
special attention should be given to the maximum limit on the voltage cells of the converter as
studied in [203]. These characteristics of energy deviations, for the previous strategy and the

5More information about the HB-MMC limits is provided in Appendix E.
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Virtual Capacitor control, make the choice of K a complicated task since several limitations
should be taken into account. In the following section, a different approach for controlling the
DC bus voltage while keeping the concept of energy sharing is given, which overcomes these
limitations.

5.5.2 DC Power Derivative control

The last control option is inspired by the Virtual Synchronous Machine Inertia Emulation
concept [206], where a dedicated control with derivative action is used to mimic the behavior
of the converters such as a synchronous machine for regulating the AC frequency [207]. In this
sub-section, a similar approach as the Inertia Emulation for the AC-side, is followed for the
DC-side.

Since the Energy-based control strategy of the MMC has the ability to control independently
the AC and DC powers (to a certain extent), a different choice for the roles of each power
can be set. Up to this point, the droop controller was dedicated to act on the AC power
reference P ∗

ac, while P ∗
dc was formed by the energy controller and the feed-forward action P ∗

ac.
However, an opposite strategy is also possible, as explored in [208, 209]: the energy controller
may generate the AC power reference; while the droop controller generates directly the DC
output power P ∗

dc. If a derivative term with respect to “(KCmmc/2)v2
dc” is also added to the

DC power reference, (5.5) can be re-written as in (5.21):

1
2

Cdc
dv2

dc

dt
= Pl − P ∗

dc (5.21a)

1
2

Cdc
dv2

dc

dt
= Pl − KCmmc

2
dv2

dc

dt
− P ∗

droop − P ∗
dc0 (5.21b)

Re-arranging (5.21b), it yields (5.22).

Derivative Control:
1
2

(Cdc + KCmmc)︸ ︷︷ ︸
Ceff

dv2
dc

dt
= Pl − P ∗

droop − P ∗
dc0 (5.22)

As shown in (5.22), the effective DC bus capacitance Ceff considers Cdc and also K times
the total capacitance of the MMC. This results in the same value of Ceff as for the Virtual
Capacitor control.

The studied energy management controller in this sub-section is given in Fig. 5.26, where
the main characteristic for this case is that the generation of P ∗

ac and P ∗
dc are decoupled. Also,

a derivative term for the squared value of vdc is added to the DC power reference. Moreover,
a washout filter (Low-Pass Filter (LPF)) is added for overcoming the fast changes of the
derivative action.

+

−

v∗
dc

vdc

−1
kd

+
P ∗
dc0

P ∗
dc

Energy

WΣ
z

controller

+

−W
Σ

z

W
Σ∗

z
(cst.)

P
∗

ac
P

∗

dc

+

v2dc
KCmmc

2

d
dt

LPF

P ∗
droop

Figure 5.26 – Energy management controllers for droop-controlled MMC — Derivative control
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Time domain simulations

The same time domain simulation is performed for the energy management strategy from
Fig. 5.26, as in previous Section with the same simulation parameters. Results for the DC
powers are shown in Fig. 5.27a, while in Fig. 5.27b they gather the results for the DC bus
voltages. Comparing the results from Fig. 5.27 with the waveforms from previous strategy in
Fig. 5.20, it can be noticed that the DC powers behave similarly.
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Figure 5.27 – Comparison of time-domain simulations of EMT and small-signal model (LTI)
of a four terminal MTDC grid - Converters are equipped with Energy-based controllers with
the derivative control from Fig. 5.26 (K = 1.1 for MMC-1, MMC-2 and MMC-3)

Similarly as in Fig. 5.21, results from Fig. 5.28a gathers the time domain waveforms of the
arm capacitor voltages for the MMC-1. Also, it is shown

√
W Σ

z and the DC voltage value vdc,1.
In Fig. 5.28b, the AC and DC powers form MMC-1 are shown. At t = 20 ms, the wind farm
power drops from 1 pu to zero abruptly; from the MMC-1 standpoint, the converter measures
the DC voltage and reacts with the droop constant in conjunction with the derivative action
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to damp the DC voltage oscillations. This is reflected in the fast action on the DC power.
Once the DC voltage is stabilized, the DC power remains constant at the new operating point
(around t = 40 ms). The energy used for supporting the DC voltage is obtained from the
arm capacitor voltages, which are discharged. From the AC standpoint, the energy controller
measures that the stored energy was perturbed, and reacts with the energy controller to restore
the nominal arm voltages levels at 1 pu with a time response of 50 ms (from the W Σ

z controller).
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Figure 5.28 – Electrical waveforms for MMC-1 — Energy-based controllers with Derivative
control

Results from Fig. 5.28, shows that the derivative strategy from this sub-section overcomes
the drawback of the steady-state deviation of the stored energy from the Virtual Capacitor
control when used in droop-controlled MTDC grids.

Linear analysis and Comparisons with previous strategy

In Fig. 5.29, the eigenvalues from the derivative control and the Virtual Capacitor strategy
are contrasted. As observed in the figure, the eigenvalues are not the same for both strategies.
However, the same tendency is kept: the majority of modes are well damped, while four
eigenvalues are poorly damped.

After a participation factor analysis, the four poorly damped eigenvalues are found to be
related with the DC voltages. These eigenvalues are listed in Table 5.6. Comparing with the
similar eigenvalues from Table 5.5, the modes from the derivative control are farther away from
the RHP, while the natural frequencies are higher and the damping are slightly improved.

For comparing the frequency response for each strategy, in Fig. 5.30 they are contrasted
the SVD results with the Virtual Capacitor control from Section 5.5.1. For the derivative
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Figure 5.29 – LTI Eigenvalues - MMC equipped with Energy-based controllers with Virtual
Capacitor control or Derivative control — K = 1.1

Table 5.6 – DC Voltage related eigenvalues — MMCs with Derivative control

λi Eigenvalue Freq. Damp. Dominant States
[Hz] ratio (From Participation Factor analysis)

λ35,36 −351.1 ± j1825.8 290.6 0.19 vdc,4 ; iC3
z1 ; iC4

z1

λ39,40 −519.7 ± j7232.7 1151.1 0.07 iΣ
z,1 ; vdc,1 ; vdc,2 ; vdc,3

λ41,42 −571.4 ± j6698.3 1066.1 0.085 iΣ
z,2 ; iΣ

z,3 ; vdc,2 ; vdc,3

λ43,44 −638.6 ± j6123.4 974.6 0.12 iΣ
z,1 ; vdc,1 ; vdc,2

control, the frequency response is slightly different in the Mid-low frequency range, but the
rest of the response is highly similar with the other two strategies. This means that from a
DC perspective, all the strategies discussed in this section present similar dynamics.

 

 

Virtual Capacitor
Derivative Control

Frequency [Hz]

σ
(G

)
[d
b
]

10−1 100 101 102 103 104
−60

−40

−20

0

Figure 5.30 – SVD comparisons of MTDC with different energy management strategies: Deriva-
tive control (Section 5.5.2) and Virtual Capacitor control (Section 5.5.1) — K = 1.1

One potential drawback of the Derivative control explored in this section deals with the
sensitivity of the derivative term on the controller respect to the noise on the measures. How-
ever, advanced filtering techniques may be applied to overcome this obstacle, which is out of
the scope of this Thesis.
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Improving DC voltage dynamics of MTDC grids with Wind Farms

For all studied cases, the DC voltage of the MMC-4 presents several oscillations. This
is observed in the marked peak at the Mid-High frequency range in the SVD results from
Fig. 5.30 around ∼ 290 Hz. This peak corresponds to the uncontrolled DC voltage of the
capacitor of the wind farm (see Fig. 5.3a). Normally, if the wind farm is disconnected from
the MMC-4, the power step appears on the AC power, but from the DC grid, the converter
remains connected and the DC power cannot “disappear” (i.e. a step on Pwf is not realistic).
The DC power results from the internal dynamics and controllers of the MMC connected to
the wind farm. For this reason, the wind farm model and the MMC-4 are modified with the
model from Fig. 5.31, where it is introduced the parameter tr,wf , which represents the time
constant between the AC and DC powers from the simplified representation of MMC-4.

+

vdc,4Cwf

Simplified Wind Farm model + MMC-4

iwf
÷

vdc

Pwf

in4dc

P ∗

wf1

tr,wfs+1

Figure 5.31 – Wind Farm and MMC-4 simplified model with Pwf 6= P ∗
wf

For evaluating the impact of the time constant tr,wf on the SVD of the MTDC grid, a
parametric sweep of tr,wf from 0 ms (pure step) to 2 ms is performed for the Derivative control
considering K coefficient of 2.4 (value unreachable for the Virtual Capacitor control). The
results are shown in Fig. 5.32. For both cases, the Low- and Mid-Low frequency range remains
unaltered respect to the different values of tr,wf . For the Mid-High to High frequency ranges,
the systems gain is reduced when the time constant is slower as expected. The limits imposed
by (5.4) is not violated only when the response time is higher than tr,wf ≈ 1.1 ms.
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Figure 5.32 – SVD results for a sweep of tr,wf - Pwf = −1 pu with K = 2.4

For validating the results from Fig. 5.32, the same time domain simulation as in Sec-
tion 5.5.2 is performed. In this case, it is considered the simplified wind farm model and
MMC-4 with the model from Fig. 5.31 and it is considered that tr,wf is equal to 1.5 ms. Re-
sults are shown in Fig. 5.33a for the DC power and Fig. 5.33b for the DC bus voltage. As it
can be observed, the voltages are maintained strictly within the acceptable limits.
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Figure 5.33 – Comparison of time-domain simulations of EMT and small-signal model (LTI)
of a four terminal MTDC grid - Converters are equipped with Energy-based control with
derivative action — K = 2.4 and tr,wf = 1.5ms

Results from Figs. 5.32 and 5.33 suggests that avoiding the abrupt changes on the DC power
in the wind farm side converter allows to maintain the DC bus voltage at the four terminals
between the desired limits. This limit can be verified with the linear model of the complete
system (MMCs and cables). This means that the converters associated to wind-farms may also
collaborate to improve the power system stability [210,211]. In the following section, a detailed
EMT simulation with realistic wind farm models and mixed controllers for the converters are
analyzed in view of studying the interoperability.

5.6 EMT Simulation results with different control strate-

gies: Interoperability analysis

For the last set of EMT simulations, it is considered that each MMC is controlled with
different strategies, as if it was a realistic multivendor case. The wind farm is modeled with
the aggregated model corresponding to full converter wind turbines (Type 4) [212]. Converter
MMC-4 is represented by a detailed MMC imposing the AC voltage at its terminals (more
details on this controller is found in Appendix F). Four different control strategies are mixed
in the same MTDC grid:

• Classical CCSC : Control detailed in Section 3.2.
• Constant energy: Energy-based controller # 2 from Section 3.4.
• Virtual capacitor control: Strategy from Section 5.5.1.
• Derivative control: Strategy from Section 5.5.2.
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Configuration I

The configuration for the first subset of simulations is given in Table 5.7, where different
control strategies are adopted for each converter.

Table 5.7 – MTDC grid with different control strategies – Configuration II

Station Control K[pu] Cmmc [µF]

MMC-1 Virtual Capacitor 1.1 195.3125
MMC-2 Derivative control 2.4 195.3125
MMC-3 Constant energy Not applicable 195.3125
MMC-4 Classical CCSC Not applicable 195.3125

From the MTDC standpoint, same converters are sharing their internal energy with the DC
grid. For anticipating the results, (1.53) is used for the calculation of the DC voltage response
time. With the information in Table 5.8, the effective DC bus capacitance for this example
can be calculated as in (5.23) (note that the MMC-3 is not sharing the internal energy).

Ceff = (1.1 × 195.3125µF)
︸ ︷︷ ︸

MMC-1

+ (2.4 × 195.3125µF)
︸ ︷︷ ︸

MMC-2

+ 195.3125µF︸ ︷︷ ︸
MMC-4

+ 22.6185µF︸ ︷︷ ︸
DC cables

≈ 902µF (5.23)

Considering Ceff from (5.23), and taking into account that there are three converters with
droop controller (Nd = 3) with gain kd = 0.15, the theoretical first order response time is given
in (5.24).

τvdc,mtdc
= 3 × kd

Nd

Ceff
v2

dcn

Pn

= 3 × 0.15
3

902µF
(640kV)2

1GW
≈ 55ms (5.24)

The initial power flow in the MTDC grid is the same as already used in this Chapter, and
given in Table 5.1. The simulated event is the Wind Farm disconnection at t = 20 ms. Results
of the AC and DC powers for each converter is shown in Fig. 5.34.

As it can be seen, the AC power Pac,4 of MMC-4 drops abruptly to zero when the wind farm
is disconnected. However, the DC power Pdc,4 does not follow a pure step (as considered in the
simplified model from Fig. 5.3a); instead, the observed dynamics are due to the interactions
between its internal energy, the uncontrolled DC current and the DC grid (see Section 3.2.
For the DC power of MMC-1, MMC-2 and MMC-3 are more or less oscillatory, depending on
the adopted strategy. The oscillations on Pdc,2 are important, due to the high coefficient K
adopted (Derivative control). Also, Pac,4 is also oscillatory which may be not convenient for
its respective AC grid.

Results of the DC voltages are shown in Fig. 5.35, where it is also shown the Simplified
first order dynamic model from (5.14). Results of vdc,4 are more oscillatory since the associated
converter is not actively controlling its DC power (note the oscillations on Pdc,4 from Fig. 5.34).
Nevertheless, the DC voltage are well maintained between their limits. It is important to note
also that the DC response time from (5.24) is verified in Fig. 5.35: Even if the simplified
model presents several assumptions (neglecting all the controllers and assuming perfect energy
controllers), the response time can be predicted accurately if the controllers are appropriately
tuned.

In Fig. 5.36, results of the stored energy of each MMC are shown. The energy levels for
MMC-2 and MMC-3 are stabilized to 1 pu since, while in MMC-3 and MMC-4 the energy levels
are given by the DC voltage at their respective terminals and the constant K (for MMC-3).
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Figure 5.34 – Simulation for interoperability analysis – Configuration I – AC and DC powers
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Figure 5.35 – Simulation for interoperability analysis – Configuration I – DC Voltages
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Figure 5.36 – Simulation for interoperability analysis – Configuration I – Stored energy

Configuration II

For the second and last interoperability analysis, the configuration given in Table 5.8 is
adopted. Note that the only modification is the control swap of MMC-3 and MMC-4. In this
example, the effective DC bus capacitance remains the same as in (5.23), so the theoretical
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response time from the simplified model from (5.24) is unchanged.

Table 5.8 – MTDC grid with different control strategies – Configuration I

Station Control K[pu] Cmmc [µF]

MMC-1 Virtual Capacitor 1.1 195.3125
MMC-2 Derivative control 2.4 195.3125
MMC-3 Classical CCSC Not applicable 195.3125
MMC-4 Constant energy Not applicable 195.3125

With the same simulated event as in Configuration I, results for the AC and DC powers
for each converter are shown in Fig. 5.37. Note that the results of Pdc,4 are greatly improved
with respect to Pdc,4 in Fig. 5.34 since now MMC-4 is actively controlling the DC power. When
the wind-farm is disconnected, MMC-4 regulates its internal energy to 1 pu with the response
time given by the energy controllers (around 50 ms). Since the perturbation seen from the DC
side (given by Pdc,4) have smoother dynamics, the responses for the rest of the converters are
improved as well.
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Figure 5.37 – Simulation for interoperability analysis – Configuration II – AC and DC powers

Results for the DC bus voltages are shown in Fig. 5.38, where it is also shown the Simplified
first order dynamic model from (5.14). The response time is similar to the previous case, but
since the DC power Pdc,4 is not a pure step, the voltage dynamics are clearly improved.

Finally, in Fig. 5.39, results of the stored energies are shown. In this case, MMC-2 and
MMC-4 maintain their energies at 1 pu, while the others adapt their energy levels with respect
to the DC voltage.

As a final discussion, simulation results suggests that the Classical CCSC may not be a
suitable controls strategy for MTDC grids and most importantly, if a wind farm is associated
to the converter. The MMC presents outstanding potential, and controllers which do not fully
regulate their internal variables present the risk of hazardous oscillations which disturbs and
increase the interactions between converters. However, even if a converter is controlled with
the Classical CCSC, there are possibilities to improve the DC grid dynamics by the other
converters if they are properly controlled.

The DC voltage dynamics in MMC-based MTDC grids are governed by many factors.
Simulation results suggest that the droop parameter can be used effectively for setting the
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Figure 5.38 – Simulation for interoperability analysis – Configuration II – DC Voltages
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Figure 5.39 – Simulation for interoperability analysis – Configuration II – Stored energy

steady-state deviation and sharing the effort between converters, while energy management
strategies can be involved in the overall response time (by virtually changing the effective DC
grids capacitance). Only two methods for the energy management were presented, but more
advanced strategies may be developed for improving even more the MTDC dynamics, and
augmenting the interoperability between converters.

5.7 Chapter Conclusions

In this Chapter, a four-terminal MTDC based on droop-controlled MMCs was studied.
This example helped to investigate the impact of different MMC control strategies on the
overall MTDC dynamics. The objective was to identify the main key parameters that play
an important role on the grid dynamics with the usage of linear analysis tools and EMT
simulations for validating the studied concepts.

As discussed in the introduction, special attention is given to the DC voltage dynamics
since the cables are one of the most critical parts of the grid. First, it was used the MMC
controllers developed in previous Chapters: Classical CCSC and Energy-based controllers
(with decoupled energy with the DC bus). Once more, the Classical CCSC strategy showed
that the voltage limits are easily violated, and the grid dynamics are very poor. However, even
if the consideration of Energy-based controllers improves partially the grid dynamics, the low
energy storage level on the DC grid is not sufficient to guarantee acceptable dynamics.
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In small MTDC grids, it may possibly be allowed to loosen the imposed limitation on the
acceptable DC voltage deviation during transients. In this Chapter, it is proven that with
appropriated MMC control strategies, the DC voltage deviations can be effectively limited
if each MMC can use its own dedicated internal energy management control strategy. The
development of different strategies are possible since the MMCs under Energy-based control
strategy have the possibility to independently control their AC and DC powers (which was
not possible with 2-level VSC). Since the DC voltage is directly linked with the DC power at
each terminal, different strategies can be employed. In this way, the internal energy of the
MMCs can be used to support the DC voltage, as if the MMC behaved as a physical capacitor
connected directly on the DC side. Most importantly, this capacitance can be even bigger than
the internal MMC capacitance.

Two different variants for using the internal energy of the MMC to collaborate on the DC
dynamics were considered: the first strategy is based on the coupling of the MMC internal
energy with the DC bus setting the internal energy reference associated to the square of the
DC voltage. Nevertheless, if a DC voltage deviation occurs (e.g. in droop-controlled MTDC
grids after a severe change on the power flow), the arm capacitor voltages may be discharged
abruptly, hitting the converter limits. The second option is based on a derivative control for
improving the DC dynamics. Since with this strategy the internal energy and the DC bus are
controlled in separated control paths, the internal energy is maintained at a nominal value at
any time. However, the real implementation of derivative controllers should be studied in detail
since they may be increase the sensitivity of the controllers (e.g. noise on the measures). It is
important to mention that many other energy management techniques may arise for improving
the DC voltage, however a main philosophy remain: the droop controller is in charge of the
DC voltage and power deviation in steady state, while an extra energy management controller
improves the DC voltage dynamics.

In terms of interoperability, this Chapter shows that the choice of the MMC controller have
an important impact on the MTDC grid dynamics. The usage of Energy-based controllers may
be preferred but smart management of the internal energy is needed. The MTDC grid is always
a weak grid in terms of stored energy, so the converters which are feeding (e.g. with offshore
wind farms) or taking power (e.g. onshore), should collaborate to strengthen the MTDC thanks
to improved dynamics.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

The integration of Multi-Terminal DC grids into the existing power networks has challenged
many aspects of the electrical engineering field. On one hand, the technology is now fully
available for HVDC projects with high power ratings. The Modular Multilevel Converter is
the most suitable topology to cope with the ambitious objectives of HVDC integration and it
is likely to be the most widely adopted topology for future projects. In the other hand, MTDC
grids are likely to be multivendor schemes, where the development of control and protection
algorithms for each converter station would be handled by each manufacturer involved in the
project and they must guarantee interoperability for each converter within the DC and AC
grids. As demonstrated in this Thesis, the possibilities for controlling the MMC are very wide,
and the dynamics of DC grids are highly impacted with respect to the control chosen for each
converter.

This Thesis aims at assessing some of the key elements for the dynamic analysis of MMC-
based MTDC grids in order to study possible interoperability issues that may arise. In the
following, the main Chapter conclusions are summarized:

1. A methodology for dynamic analysis of HVDC systems with power electronics converters
was detailed in Chapter 1. The main aspects for modeling HVDC systems with 2-level
converters were detailed. First, the simulation models are distinguished from the models
for analysis. The simulation models are detailed systems developed for Electro-Magnetic
Transient simulations (typically used in the industry). These models represent, with
high accuracy, the real behavior of the converters, but in many cases they are provided
as black-box models (as in the Best Paths DEMO # 2 project) which make the study
and categorization of the converters and controllers an impossible task (not to mention
legal consequences). The models for analysis, which are typically non-linear continuous
models represented by a subset of first order differential equations, are provided for
the mathematical analysis of the converters and their integration in AC and DC grids.
At this point, two mathematical families of models arise: The first one is referred to
as “Steady-State Time-Periodical” model (SSTP), where the state variables in steady
state have “sinus and cosines” terms in their equilibrium solution. This model is not
suitable for classical linearization for eigenvalue analysis. In the second one, referred
to as “Steady-State Time-Invariant” model (SSTI), all the state variables converge to
a fixed value when the converter reaches a given operating point. This mathematical
model can be linearized around an operating point so linear mathematical tools can be
applied for stability and dynamic analysis of the complete systems. Furthermore, the
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fundamentals of the operating principles and distributed control (droop) of MTDC grids
are discussed.

2. To apply the aforementioned methodology with MMCs, a suitable non-linear continuous
mathematical model is needed, able to represent all the internal dynamics with high
accuracy, i.e. a model for analysis with SSTI representation. In Chapter 2, an in-depth
analysis on the mathematical equations of the MMC in Synchronous Rotating Reference
Frame is provided to deduce the complete SSTI MMC model. A detailed time-domain
validation is provided, which proves an excellent matching with the detailed simulation
model of the MMC.

3. Once the SSTI model for analysis of the MMC is obtained, the most common control
strategies readily available are discussed in Chapter 3 for the integration of the converters
in AC and DC grids. In this Chapter, two modulation strategies are discussed: Un-
Compensated or Compensated Modulation, UCM or CM respectively. In addition, two
main control strategies arise: Classical CCSC with UCM and Energy-Based controllers
with CM. The first one is a typical control which relies on the elimination of the circulating
currents inside the converter, while controlling the AC outputs. Since the DC current
is left uncontrolled, it is shown that hazardous interactions of this current with the DC
grid may occur and destabilize the entire system depending on several aspects (as DC
grid capacitance, arm inductances or even controllers tuning). To improve the stability,
the Energy-Based controllers are presented. This strategy is based on the control of all
the internal variables of the MMC (currents and stored energies). However, it is first
needed to adapt the controllers for their proper interface with the SSTI model previously
developed. Some of the control loops are already developed in Synchronous Rotating
Reference Frame (such as the AC grid current control loops in dq frame or the classical
Circulating Current Suppressing Controller), while the others are expressed in Fixed
Reference Frame (abc) as it is the case for the energy sum and energy controllers for
internal balancing of the energies inside the converter. Mathematical manipulations are
therefore exposed to fully express all the MMC control loops in SSTI form; finally, time-
domain validations are also provided.

4. To study larger systems such as MTDC grids, the complexity of each converter and their
controllers makes linear analysis difficult for interoperability studies. For this reason,
Chapter 4 deals with the application of SSTI-MMC reduced order models to interface AC
and DC grids. In this Chapter, a reduced order model that can potentially represent the
terminal behavior of the MMC is developed. Several studies are performed to contrast the
model validity when the MMC simulation model is controlled with the Classical CCSC
and UCM on one hand, or by Energy-Based controllers and CM on the other hand. It is
proven that the reduced order model can replicate accurately the behavior of the MMC
when assuming an Energy-Based controllers with CM since the modulation technique
decouples successfully the internal dynamics of the converter. This way, the un-modeled
dynamics of the reduced-order model do not participate on the terminal behavior of the
AC and DC sides under the studied cases (MMCs are under balanced AC grids and in
normal operation mode). Furthermore, it is proven that the reduced-order model fails to
represent accurately the MMC when considering the Classical CCSC with UCM. This
conclusion is in counter-phase with several studies already published where the usage of
the reduced order model was performed without a proper model validation. Consequently,
the full order SSTI-MMC model from Chapter 2 is the recommended option when the
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aforementioned control strategy is considered. For other control variants, such as the
mixing of Energy-based controllers with UCM and CCSC, the use of the reduced-order
model results in limited accuracy, since the UCM causes several internal couplings that
should be represented to ensure the validity of the involved studies.

5. In Chapter 5, the study of MMC-based MTDC grids with offshore wind farms is per-
formed in order to study the interoperability among various converters. Special focus
is given to the dynamic behavior of the DC voltage at each converter DC point of con-
nection. From the elements provided in previous Chapters, it was shown that the main
characteristic of the MMC-based MTDC grids is the potential lack of stored energy on
the DC grid which may cause hazardous oscillations on the DC voltages. For this reason,
the studies are conducted to evaluate different energy management policies, in order to
supply additional features for the DC grid and to improve the overall system dynamics.
With the proper use of the MMC internal energy on each converter, the DC voltage
behavior can be highly improved; in fact, even the response time of the entire grid can be
adjusted by these control strategies. When taking advantage of these energy management
strategies, the improvement of the DC voltage behavior at each terminal contributes to
the reduction of possible interoperability issues between the converters.

As concluding remarks, it is important to highlight that the multivendor MTDC grids are
very ambitious yet feasible layouts with respect to the control strategies. As exhibited in the
Best Paths project, anticipating interoperability issues between MMCs provided by different
HVDC suppliers is a modern concern. This Thesis is a first attempt to solve such issues from
a technical perspective, mostly focusing on various converter controls. However, the Best
Paths project also highlighted other kinds of difficulties related to the Intellectual Property,
which make it almost impossible to use the methodologies and concepts developed in this
Thesis without violating confidentiality requirement. For the development and study of future
multivendor schemes, it may be convenient to disclose some fundamental information to be
able to use at least generic models that can reproduce the behavior of the vendors’ models. In
the ideal case, the disclosure of the main control strategy applied in the MMC could maximize
the impact and validity of research studies.

6.2 Future Research

From this Thesis, various tracks may be followed to extend the studies of MMC systems
in order to interfacing AC and DC grids, as listed hereunder:

• As pointed out in the Introduction, VSCs can synthesize AC voltage waveforms, the
quality of which is particularly outstanding with the MMC. In future grids, it may happen
that HVDC converters are feeding AC loads without any synchronous machines. In that
situation, VSCs are no longer feeding the AC grid (“grid feeding” mode), but creating by
themselves the AC grid (“grid forming” mode). This means that the interoperability of
multivendor schemes with power electronic converters operating in “grid forming” mode
connected to the same AC grid should be assessed. Also, the synchronization between
the involved VSCs in this particular control mode should be studied carefully.

• Un-balanced situations on the AC grid occur regularly. In these cases, the control design,
as well as the grid synchronization techniques should be revisited. These cases were
studied in the literature for 2-level VSCs and some of them with MMCs; however the

171



MMC provides many options for control strategies as exposed in this Thesis so the most
relevant solution is yet to be investigated.

• The study of AC and DC faults and how they are managed is crucial for the development
of HVDC systems. Many converter topologies are readily available with inherent fault-
blocking capabilities such as the full-bridge MMC, but also the late advances of fast DC
breakers are showing that this evolving technology may cope with DC faults. The AC and
DC faults handling with different options should be assessed to find a good compromise
between performance and cost.

• If DC breakers are to be installed in HVDC systems, it obliges to check over the modeling
and control systems to take into account the new devices into the HVDC grid (e.g. large
inductances connected on the DC side are likely to impact on the DC current dynamics,
for this reason, the DC current controllers should take into account this modification).

• In this Thesis it was shown that linear models can be used to represent MMCs, their
controllers and the whole DC grid. The mathematical tools used among this document are
quite popular, but sometimes it is difficult to obtain relevant conclusions from them. The
linear models developed during this Thesis may have a large number of state-variables
when considering large systems. This results in a high number of modes, making the
eigen-analysis a complicated task. Improved model order reduction techniques should be
developed for a better understanding of the interactions in HVDC grids.

• For obtaining the LTI model for classical linear analysis, an SSTI-MMC model was
obtained. This SSTI model is mathematically complex as shown in Chapter 2. On
the other hand, the MMC model for analysis with LTP theory is very well-known and
relatively simple (i.e. the AAM). However, the LTP theory may be somehow complex
to be applied in large systems. It is relevant to further investigate and compare analysis
based on LTP models and LTI to complement each other.

• In Chapter 2, the 6th harmonic components appearing in the “Σ” variables were con-
stantly ignored. By time domain simulations, it was shown that the amplitude of these
components are negligible with respect to their constant components. However, it should
be of interest to study if there is a case where the aforementioned 6th harmonic compo-
nents may influence in the stability of the MMC.

• In the last months, impedance-based stability has become quite successful for HVDC
studies, dealing mostly with 2-level VSC converters [185]. In this Thesis, the MMC model
and control were developed in a way that the impedance expression can be obtained in a
straightforward manner. The use of impedance-based stability analysis using MMCs and
considering different control strategies may be a relevant topic of further studies. In real
projects, the specifications from the TSOs to the vendors are more likely to be expressed in
time-domain requirements; however, it may be relevant to complement this information
with detailed and determined frequency responses for the converter (i.e. imposing the
“frequency response shapes” and boundaries that the converters must comply). Moreover,
the impedance-based analysis techniques may be compatible for dealing with “black-box”
converter models, and still being able to conclude on the system stability, as recently
discussed in [213].

• The coordinated control of MTDC grids is a key stone on the proper functioning of the
electrical systems. Several techniques were already developed in past years focusing on
classical 2-level VSC. The internal MMC energy management may be used for ancillary
services on DC grids (as explored in this Thesis) but also on the AC grids. Dedicated
master controllers for the alleviation of AC corridors in power systems can be achieved
by a proper management with the fast responsive MMCs.
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Nomenclature

Acronyms

Circulating Currents iΣ
dq or iΣ

αβ

AAM Arm Averaged Model (Model #3 in [111])

CCSC Circulating Current Suppressing Controller

CM Compensated Modulation

ECBM Equivalent Circuit-Based Model (Model #2 in [111])

FD-Π Frequency Dependent Π cable model

HVDC High Voltage Direct Current

MIMO Multi Input Multi Output

MTDC Multi-Terminal DC Grid

PCC-AC Point of Common Coupling on AC side

PCC-DC Point of Common Coupling on DC side

PI Proportional-Integral controller

PID Proportional-Integral-Derivative controller

SCR Short-Circuit Ratio

SIMO Single Input Multi Output

SISO Single Input Single Output

SSTI Steady-State Time Invariant

SSTP Steady-State Time Periodic

TSO Transmission System Operator

UCM Un-Comensated modulation

MMC/VSC Parameters

Ceq = 6Carm

i



Lac
eq = Lf + Larm/2

Ldc
eq = 2Larm/3

Rac
eq = Rf + Rarm/2

Rdc
eq = 2Rarm/3

C Sub-modules capacitance

Ceff Equivalent capacitance of the MTDC grid (MMC)

Cmtdc Equivalent capacitance of the MTDC grid (2-level VSC )

CS DC-side capacitance of a 2-level VSC

HS DC-side electrostatic constant of a 2-level VSC

kdr DC Voltage droop parameter in SI

kd DC Voltage droop parameter in PU

Larm Arm inductor

Lf AC filter inductor

N Number of submodules within an arm

Rarm Arm series equivalent resistance

Rf AC filter resistance

Si Switch in a submodule, lower switch S1; upper switch S2

Carm = C/N

Vectors

W
∆

abc = [W
∆
a , W

∆
b , W

∆
c ]

⊤
- Filtered value of the energy “∆” in abc frame

W
∆

dqz = [W
∆
d , W

∆
q , W

∆
z ]

⊤
- Filtered value of the energy “Σ” in dqz frame

W
∆

dqZ = [W
∆
d , W

∆
q , W

∆
Zd

, W
∆
Zq

]
⊤

- Filtered value of the energy “∆” in dqZ frame

W
Σ

abc = [W
Σ
a , W

Σ
b , W

Σ
c ]

⊤
- Filtered value of the energy “Σ” in abc frame

W
Σ

dqz = [W
Σ

d , W
Σ

q , W
Σ

z ]
⊤

- Filtered value of the energy “Σ” in dqz frame

i∆
abc = [i∆

a , i∆
b , i∆

c ]⊤ - Grid currents “∆” in abc frame

i∆
dqz = [i∆

d , i∆
q , i∆

z ]⊤ - Grid currents “∆” in dqz frame

iΣ
abc = [iΣ

a , iΣ
c , iΣ

c ]⊤ - Common mode currents in the MMC in abc frame

iΣ
dqz = [iΣ

d , iΣ
q , iΣ

z ]⊤ - Common mode currents in the MMC in dqz frame

ii



m∆
abc = [m∆

a , m∆
b , m∆

c ]⊤ - Modulation indexes “∆” in abc frame

m∆
dqz = [m∆

d , m∆
q , m∆

z ]⊤ - Modulation indexes “∆” in dqz frame

m∆
dqZ = [m∆

d , m∆
q , m∆

Zd
, m∆

Zq
]⊤ - Modulation indexes “∆” in dqZ frame

mΣ
abc = [mΣ

a , mΣ
b , mΣ

c ]⊤ - Modulation indexes “Σ” in abc frame

mΣ
dqz = [mΣ

d , mΣ
q , mΣ

z ]⊤ - Modulation indexes “Σ” in dqz frame

v∆
Cabc = [v∆

Ca, v∆
Cb, v∆

Cc]
⊤ - Arm capacitor voltages “∆” in abc frame

v∆
Cdqz = [v∆

Cd, v∆
Cq, v∆

Cz]⊤ - Arm capacitor voltages “∆” in dqz frame

v∆
CdqZ = [v∆

Cd, v∆
Cq, v∆

CZd
, v∆

CZq
]⊤ - Arm capacitor voltages “∆” in dqZ frame

vΣ
Cabc = [vΣ

Ca, vΣ
Cb, vΣ

Cc]
⊤ - Arm capacitor voltages “Σ” in abc frame

vΣ
Cdqz = [vΣ

Cd, vΣ
Cq, vΣ

Cz]⊤ - Arm capacitor voltages “Σ” in dqz frame

vG
dqz = [vG

d , vG
q , vG

z ]⊤ - AC grid voltages in dqz frame

v∆
mdqz = [v∆

md, v∆
mq, v∆

mz]⊤ - Modulated voltages driving “∆” in dqz frame

v∆
mdqZ = [v∆

md, v∆
mq, v∆

mZd
, v∆

mZq
]⊤ - Modulated voltages “∆” in dqZ frame

vΣ
mabc = [vΣ

ma, vΣ
mb, vΣ

mc]
⊤ - Modulated voltages driving “Σ” currents in abc frame

vΣ
mdqz = [vΣ

md, vΣ
mq, vΣ

mz]⊤ - Modulated voltages “Σ” in dqZ frame

W ∆
abc = [W ∆

a , W ∆
b , W ∆

c ]⊤ - Energy “∆” in abc frame

W ∆
dqz = [W ∆

d , W ∆
q , W ∆

z ]⊤ - Energy “∆” in dqz frame

W ∆
dqZ = [W ∆

d , W ∆
q , W ∆

Zd
, W ∆

Zq
]⊤ - Energy “∆” in dqZ frame

W Σ
abc = [W Σ

a , W Σ
b , W Σ

c ]⊤ - Energy “Σ” in abc frame

W Σ
dqz = [W Σ

d , W Σ
q , W Σ

z ]⊤ - Energy “Σ” in dqz frame

Variables

W
∆
z = W

∆
Zd

cos(3ω) + W
∆
Zq

sin(3ω) - Zero-sequence filtered energy “∆”

idc = iΣ
a + iΣ

b + iΣ
c = 3iΣ

z - DC current

i∆
j = iU

j − iL
j - AC line current of the phase j

iΣ
j = (iU

j + iL
j )/2 - Common-mode current of the phase j

λi Eigenvalue i

m∆
z = m∆

Zd
cos(3ω) + m∆

Zq
sin(3ω) - Zero-sequence modulation index “∆”

iii



ω AC grid angular frequency

v∆
Cj = (vU

Cj − vL
Cj)/2

v∆
Cz = v∆

CZd
cos(3ω) + v∆

CZq
sin(3ω) - Zero-sequence arm capacitors “∆”

vΣ
Cj = (vU

Cj + vL
Cj)/2

v∆
mj = (−vU

mj + vL
mj)/2 - Modulated voltage of the phase j driving i∆

j

v∆
mz = v∆

mZd
cos(3ω) + v∆

mZq
sin(3ω) - Zero-sequence modulated voltage“∆”

vΣ
mj = (vU

mj + vL
mj)/2 - Modulated voltage of the phase j driving iΣ

j

W ∆
j = Carm((vU

Cj)
2 − (vL

Cj)
2)/2

W ∆
z = W ∆

Zd
cos(3ω) + W ∆

Zq
sin(3ω) - Zero-sequence energy“∆”

W Σ
j = Carm((vU

Cj)
2 + (vL

Cj)
2)/2

iL
mj Modulated current of the lower arm of the phase j

iU
mj Modulated current of the upper arm of the phase j

iL
j Arm current of the upper arm of the phase j

iU
j Arm current of the upper arm of the phase j

Ibdc Nominal DC current

Ibdq Nominal AC current in dq frame

j = 1, 2, 3, 4 - VSC index (Chapter 1)

j = a, b, c - Phase name

mL
j Modulation index of the upper arm of the phase j (between 0 and 1)

mU
j Modulation index of the upper arm of the phase j (between 0 and 1)

Pb Nominal AC and DC power

vL
mj Modulated voltage of the lower arm of the phase j

vU
mj Modulated voltage of the upper arm of the phase j

Vbdc Nominal DC bus voltage

Vbdq Nominal AC voltage in dq frame

vCi Capacitor voltage of the submodule i

vdc DC bus voltage

vG
j AC phase voltage of the phase j

iv
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Appendix A

Parameters and Transformations

A.1 Parameters of 2-level Voltage Source Converters

The main parameters used for the 2-level VSC are shown in Tables A.1 and A.2.

Table A.1 – VSC Base values

Sb 1 × 109 VA
cos(φn) 1

Pb 1 × 109 W
U1n 320 × 103 V

Vb
U1n√

3
V

fb 50 Hz
Ωb 2πfb rad/s

Vdcb 640 × 103 V

Table A.2 – VSC Parameters

U1n 320 kV Rac
eq 1.02 Ω

fn 50 Hz Lac
eq 83.12 mH

A.2 Parameters of Modular Multilevel Converters

The main parameters used for the MMCs are shown in Tables A.3 and A.4.

Table A.3 – MMC Base values

Sb 1 × 109 VA
cos(φn) 1

Pb 1 × 109 W
U1n 320 × 103 V

Vb
U1n√

3
V

fb 50 Hz
Ωb 2πfb rad/s

Vdcb 640 × 103 V

Table A.4 – MMC Parameters

U1n 320 kV Rf 0.521 Ω
fn 50 Hz Lf 58.7 mH
N 400 Rarm 1.024 Ω

Carm 32.55 µF Larm 48 mH

Note that the parameters Rac
eq and Lac

eq used for the MMC are the same to their homologous
parameters from Table A.2, which are calculated as Rac

eq = Rf +Rarm/2 and Lac
eq = Lf +Larm/2).
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A.3 Parameters for AC grid

The Short-Circuit Ratio is defined as the ratio of the fault level at the Point of Common
Coupling on the AC side (PCC-AC), Ssc, and the nominal power of the VSC Sb:

SCR =
Ssc

Sb

(A.1)

Given the approximate fault level of the network feeder at the connection point (or point of
common coupling), the impedance, resistance and reactance of the network feeder is calculated
as follows [214]:

Zg =
cUn

Ssc

(A.2a)

RG =
Zg√

1 + k2
(A.2b)

Xg = kRG; LG =
Xg

2πfn

(A.2c)

where Zg is the impedance of the network feeder (in Ω); RG is the resistance of the network
feeder (in Ω); Xg is the reactance of the network feeder (in Ω); LG the inductance (in H); Un

is the nominal line-to-line voltage at the point of common-coupling (PCC) (in V); Ssc is the
fault level of the network feeder (VA); c is a voltage factor which accounts for the maximum
system voltage (1.05 for voltages < 1 kV, and 1.1 for voltages > 1 kV; in this thesis c = 1)
and k is the ratio of Xg/RG (in pu).

A.4 Park Transformation — abc to dqz

The Park transformation consists in using a new coordinates to express the three-phase
variables in the static reference frame abc with angular frequency defined by nω into the
rotating frame defined by the axes dqz [215]. The d axis forms an angle θ = nωt with respect
to the fixed vector a and the quadrature axis q is delayed by 90°. The dq axes rotate at an
angular speed nω. This is shown in a graphical description in Fig. A.1.

θ

d

q

a

b c

nω

Figure A.1 – Transformation from abc to dqz in a graphical way

The mathematical transformation Pnω is defined in (A.3). The constant p will take the
value 2/3 if it’s desired to maintain the amplitude of the vectors after the transformation
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(the so-called “Amplitude Invariant Park Transformation”). If the constant p takes the value√
2/3, the power is maintained in abc and dqz frame (the so-called “Power Invariant Park

Transformation”).

Pnω = p




cos(nωt) cos(nωt − 2π
3

) cos(nωt − 4π
3

)
sin(nωt) sin(nωt − 2π

3
) sin(nωt − 4π

3
)

1
2

1
2

1
2


 (A.3)

A.5 Clarke Transformation — abc to αβz

Another useful transformation widely used in electrical systems is the Clarke transformation
[216]. This mathematical transformation projects the three-phase vectors in abc frame displaced
120° from each other, onto two stationary axes namely αβ, which are displaced by 90° from
each other. The third axis, namely z, is the same as for the Park transformation. This
transformation shown in a graphical description in Fig. A.2.

α

a

b c

β
120◦

30◦

Figure A.2 – Transformation from abc to αβz in a graphical way

The mathematical transformation Cαβz is defined in (A.4). Similarly as for the Park trans-
formation, the constant p will take the value 2/3 if it’s desired to maintain the amplitude of the
vectors after the transformation (the so-called “Amplitude Invariant Clarke Transformation”).
If the constant p takes the value

√
2/3, the power is maintained in abc and αβz frame (the

so-called “Power Invariant Clarke Transformation”).

Cαβz = p




1 −1
2

−1
2

0 −
√

3
2

√
3

2
1
2

1
2

1
2


 (A.4)
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Appendix B

Mathematical Proofs and Tools

B.1 Open-loop control for 2-level VSC

In this section it is demonstrated the Open-loop relations from (B.5) in Chapter 1. Con-
sidering an AC balanced grid, the dqz components of the voltages are given as:

vG
dqz =




vG
d

vG
q

vG
z (= 0)


 = Pω



vG

a

vG
b

vG
c


 = Pω




v̂G cos(ωt)
v̂G cos(ωt − 2π/3)

−vG
a − vG

b


 =



v̂G

0
0


 (B.1)

Assuming a perfect synchronization with the grid (i.e. ω is constant, or perfectly estimated),
the current references iG∗

d and iG∗
q are related to the the active and reactive power references

P ∗
ac and Q∗

ac as shown in (B.2).

iG∗
d =

2
3

P ∗
ac

vG
d

; iG∗
q =

2
3

Q∗
ac

vG
d

(B.2)

Taking into account the current references from (B.2) in dq frame, the abc components are
obtained by the multiplication of the inverse of the Park’s transformation P −1

ω to the vector
iG∗

dqz = [iG∗
d , iG∗

q , 0]⊤ as shown in (B.3).

iG∗

abc = P −1
ω iG∗

dqz (B.3)

Finally, the voltages v∗

mabc are given by the resolution of the equations (1.4) as follows:

v∗
ma = vG

a + Lac
eq

diG∗
a

dt
+ Rac

eq iG∗
a (B.4a)

v∗
mb = vG

b + Lac
eq

diG∗
b

dt
+ Rac

eq iG∗
b (B.4b)

v∗
mc = −v∗

ma − v∗
mb (B.4c)

The results of (B.4) are given in (B.5).

v∗
ma = v̂G cos(ωt) +

2
3v̂G

(
ωLac

eq (Q∗ cos(ωt) − P ∗ sin(ωt))
)

+ ... (B.5a)

... +
2

3v̂G

(
Rac

eq (P ∗ cos(ωt) + Q∗ sin(ωt))
)

v∗
mb = v̂G cos(ωt − 2π/3) +

2
3v̂G

(
ωLac

eq (Q∗ cos(ωt − 2π/3) − P ∗ sin(ωt − 2π/3))
)

+ ... (B.5b)

... +
2

3v̂G

(
Rac

eq (P ∗ cos(ωt − 2π/3) + Q∗ sin(ωt − 2π/3))
)

v∗
mc = −v∗

ma − v∗
mb (B.5c)
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B.2 Concatenation of LTI models: State-Space Associ-

ation Theoretical Principle

In this section, the theoretical principle for the association of two LTI models is provided.
Through this Thesis, the concatenation of bigger systems is always performed first between
two LTI models, and the resulting coupled model is then associated with a third one, and so
on. The contents of this section were developed in [9].

Let us consider two independent LTI models expressed in (B.6) and (B.7) which may be
linked by a certain input and output relationship:





d

dt
x1 = A1x1 + B1u1

y1 = C1x1 + D1u1

(B.6)





d

dt
x2 = A2x2 + B2u2

y2 = C2x2 + D2u2

(B.7)

The LTI model “1” (“2”) have n1 (n2) states forming the vector x1 (x2), m1 (m2) inputs
gathered in the vector u1 (u2) and p1 (p2) outputs on the vector y1 (y2). The LTI model is
then completed with the n1 × n1 matrix A1 (n2 × n2 matrix A2), n1 × m1 matrix B1 (n2 × m2

matrix B2); p1 × n1 matrix C1 (p2 × n2 matrix C2) and p1 × m1 matrix D1 (p2 × m2 matrix
D2).

The Step # 1 is to consider the “stack” of both sub-systems represented by their state-space
models without taking into account any possible feedback between the inputs and the outputs
between them, i.e. a sort of open-loop (ol):





d

dt
Xol = AolXol + BolUol

Yol = ColXol + DolUol

(B.8)

where

Xol =

[
x1

x2

]
∈ R

(n1+n2)×1; Uol =

[
u1

u2

]
∈ R

(m1+m2)×1; Yol =

[
y1

y2

]
∈ R

(p1+p2)×1;

and,

Aol =

[
A1 0
0 A2

]
∈ R

(n1+n2)×(n1+n2); Bol =

[
B1 0
0 B2

]
∈ R

(n1+n2)×(m1+m2);

Col =

[
C1 0
0 C2

]
∈ R

(p1+p2)×(n1+n2); Dol =

[
D1 0
0 D2

]
∈ R

(p1+p2)×(m1+m2)

The Step # 1 is exemplified in Fig. B.1
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u2

LTI model 1

d
dt
x1=A1x1+B1u1

y1=C1x1+D1u1

LTI model 2

d
dt
x2=A2x2+B2u2

y2=C2x2+D2u2

y1,1
y1,2

y1,p1

y1

y2,1
y2,2

y2,p2

y2

u1,1
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u1,m1

u2,1
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u2,m2

u1

u2

Uol

y1,1
y1,2

y1,p1

y1

y2,1
y2,2

y2,p2

y2

Yol

LTI open-loop

d
dt
Xol=AolXol + ...

Yol=ColXol+ ...

...+BolUol

...+DolUol

Figure B.1 – Concatenation of LTI models: Step # 1
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The Step # 2 is to assume that some inputs of the system are connected to some of the
outputs (closed-loop, cl). Those inputs are considered as internal inputs denoted by Uint while
the inputs that are not connected to any output are considered as external inputs, denoted by
Uext. In this way, the inputs of the “stacked” LTI model are re-ordered as shown in (B.9).
This step is shown in Fig. B.2.

u1,1

u1,2

u1,m1

u2,1

u2,2

u2,m2

y1,1
y1,2

y1,p1

y2,1
y2,2

y2,p2

Internal inputs Uint

External inputs Uext

LTI open-loop

d
dt
Xol=AolXol + ...

Yol=ColXol+ ...

...+BolUol

...+DolUol

Figure B.2 – Concatenation of LTI models: Step # 2

U ′

ol = Uint + Uext (B.9)

The expressions of Uint and Uext are given by:

Uint = Mint Yol; Uext = Mext Uol

The matrix Mint, also called interconnection matrix, relates certain outputs of the open-loop
LTI model Yol which are linked internally with certain inputs. On the contrary, the matrix
Mext relates the inputs of the open-loop LTI model Uol which are not looped back into the
“stacked” LTI model, i.e. they are external inputs. The creation of the matrices Mint and
Mext can be performed with a Matlab routine based on the identification of the output names
of looped back variables as in [9].

The relationship between the inputs Uol and the outputs Yol can then be expressed by:

U ′
ol = Mint Yol + Mext Uol (B.10)

Replacing the new expression of U ′
ol given in (B.10) into Uol from (B.8) yields:





d

dt
Xol = Aol Xol + Bol (Mint Yol + Mext Uol)

Yol = ColXol + Dol (Mint Yol + Mext Uol)
(B.11)

The expression from (B.2) can be further developed. The term Bol (Mint Yol + Mext Uol)
from the first line (i.e. dXol/dt) is expanded. For the second line, it can be noticed that Yol

appears on both sides of the equation in the second line, so the outputs are grouped to obtain:




d

dt
Xol = Aol Xol + Bol Mint Yol + Bol Mext Uol

Yol = (I − Dol Mint)−1 (Col Xol + Dol Mext Uol)
(B.12)

Defining the matrix Eol
def= (I −Dol Mint)−1, the output is then expressed as Yol =EolColXol+

EolDolMextUol; so replacing the new expression of Yol into the first line of (B.12), it yields:




d

dt
Xol = (Aol + Bol Mint Eol Col) Xol + (Bol + Bol Mint Eol Dol) Mext Uol

Yol = Eol Col Xol + Eol Dol Mext Uol

(B.13)
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The Step # 3 consist in creating the closed-loop state-space LTI model from (B.13) expressed
as: 




d

dt
Xcl = Acl.Xcl + Bcl.Ucl

Ycl = Ccl.Xcl + Dcl.Ucl

(B.14)

Hence, by identification, and according to (B.14), the matrices of the closed-loop state-space
representation are given by:

Xcl = Xol

Ucl = Uext = Mext Uol

Ycl = Yol

(B.15)

and
Acl = (Aol + Bol Mint Eol Col)

Bcl = (Bol + Bol Mint Eol Dol)

Ccl = Eol Col

Dcl = Eol Dol

(B.16)

The Step # 3 is shown in Fig. B.3. Note that the states of the concatenated LTI model
Xcl are the sum of the states of the individual models and the same stands for the outputs
Yol. Moreover, the inputs of the new system are only the “external” ones, i.e. the inputs that
are not internally fed back.
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ucl,2

ucl,mcl

y1,1
y1,2

y1,p1

y2,1
y2,2

y2,p2

LTI closed-loop

d
dt
Xcl=AclXcl + ...

Ycl=CclXcl+ ...

...+BclUcl

...+DclUcl

y1

y2

YclUcl

Figure B.3 – Concatenation of LTI models: Step # 3

xxviii



Appendix C

Controller Tuning

There are many ways for the tuning of PI controllers [205, 217, 218]. In this Thesis, the
classical pole-placement method is used, and explained in the following. Let us consider a
first-order transfer function given by (C.1):

x

u
(s) =

1
κs

(C.1)

where x corresponds to the dynamic state of the equation and u the input, which are assumed
to be both SSTI variables. Moreover, κ represents the main parameter of the system (not
tunable). For controlling the state variable x to a desired reference value x∗, a PI or IP
controller may be used, as shown in Fig. C.1.

x

x∗ +

−

1
κs

x

u∗

Kx
p

+

PI controller

x

x∗ +

−

x

−

IP controller

1

Tx
i
s

1

Tx
i
s

Kx
p

u

r

+ 1
κs

x

u∗

u

r

+

Figure C.1 – Generic PI/IP controller and first order plant

Note that the output of the controllers is noted as u∗, and the actual input for the plant is
u∗ + r, where r represents an external perturbation. For tuning purposes, it is considered that
u = u∗.

The closed loop transfer function respect to the reference x∗ for the PI controller and the
plant (i.e. x∗/x(s)) is given in (C.2), while in (C.3) it is considered the IP controller.

x∗

x
(s) =

1 + Kx
p T x

i s

κT x
i s2 + Kx

p T x
i s + 1

(C.2)

x∗

x
(s) =

1
κT x

i s2 + Kx
p T x

i s + 1
(C.3)

Note that the denominator of (C.2) and (C.3) are the same, the only difference is that the PI
controller induces a zero on the numerator, which is not present when using IP controllers.

The gains Kx
p and T x

i are calculated based on pole-placement method, where the denom-
inators of (C.2) and (C.3) are compared to the well-known second-order transfer function
characteristics given as follows:

T 2ndorder
f =

1
ω2

n

s2 +
2ζ

ωn

s + 1 (C.4)
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where ζ is the damping ratio and ωn is the undamped natural frequency (in rad/s) of the
system response. The controller gains are then chosen as follows:

{
Kx

p = 2ζωnκ
T x

i = 1/ (ω2
nκ)

(C.5)

The poles of (C.4) are given by:

λ1,2 = ωn

(
−ζ ±

√
ζ2 − 1

)
(C.6)

For a damping ratio ζ = 0.7, the response time τx is related with the frequency ωn as in
(C.7) [9].

ωn ≈ 3
τx

(C.7)

As an example, let us consider the plant from (C.2) with κ = 1 pu for a time domain
simulation, where the response of the closed-loops from Fig. C.1 are evaluated. The rest of the
parameters are given in Table C.1. At t = 0.1 s, an unity step on x∗ is applied. Then, a step
on the perturbation r is applied at t = 0.14 s. The time-domain simulation results are depicted
in Fig. C.2.

Table C.1 – Example on controller tuning for the transfer function in (C.2) with κ = 1 pu

Variable Value Variable Value

τx 10 ms Kx
p 420 pu

ωn 300 rad/s T x
i 1.11 × 10−5 s

 

 

x (IP)
x (PI)
x
∗

x
[p
u
]

Time [s]

τx

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17
0

0.2

0.4

0.6

0.8

1

1.2

Figure C.2 – Dynamic response of the closed-loop system with PI or IP controllers (red band
delimits the ±5 % of the applied step value)

As seen in the results, the response for the PI presents a large overshoot due to the zero
in (C.2). Since this zero is filtered when using the IP (see (C.3)) this overshoot is limited.
The theoretical response time τx is the time that the variable x takes to arrive at 95 % of
its final value as denoted in Fig. C.2. Note that the response time τx is only respected when
considering the IP controller for a reference step. When the perturbation r occurs at t = 0.14 s,
both closed loops systems present the same dynamic response. This is due to the fact that
the denominators in (C.2) and (C.3) are the same. From a practical point of view, the PI
controllers are preferred [140]. The overshoot for the reference steps are easily avoided by
filtering the reference x∗.

Finally, note that the methodology is similar for all control loops: it is only needed to
take into account the variable κ from (C.1). For example, κ is replaced by the inductance L,
capacitance C or electrostatic constant H, depending on the nature of the state variable x.
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Appendix D

Matlab code for SSTI-MMC model

This Appendix summarizes the Matlab code used for obtaining the MMC model with
Steady-State Time Invariant solution detailed in Chapter 2. In order to execute this code,
the Symbolic toolbox from Matlab is needed.

Symbolic parameters definitions

1 %% Parameters

2

3 w = sym('w','real'); % AC Grid frequency in [rad/s] (ω)
4 t = sym('t','real'); % Time in [s] (t)
5

6 %% MMC Physical parameters

7

8 Carm = sym('Carm','real'); % Equivalent Arm capacitor voltages (Carm)
9 Larm = sym('Larm','real'); % Arm inductance (Larm)

10 Rarm = sym('Rarm','real'); % Arm equivalent resistance (Rarm)
11 Leqac = sym('Leqac','real'); % AC equivalent inductance (Lac

eq)
12 Reqac = sym('Reqac','real'); % AC equivalent resistance (Rac

eq)

Symbolic transformations definitions

13 %% Park Transformations

14 cte_Park = (2/3); % Park constant

15

16 Parkw = ... % Park transformation at w (Pω)
17 (cte_Park*[ cos(w*t) cos(w*t-2*pi/3) cos(w*t-4*pi/3);

18 sin(w*t) sin(w*t-2*pi/3) sin(w*t-4*pi/3);

19 1/2 1/2 1/2 ]);

20

21 ParkInvw = simplify(inv(Parkw),10); % Inverse Park transformation at w (P −1
ω )

22 Jw = simplify(Parkw*(diff(ParkInvw, t))); % Coupling J (Jω)
23

24 Park2w = ... % Park transformation at -2w (P−2ω)

25 (cte_Park*[ cos(-2*w*t) cos(-2*w*t-2*pi/3) cos(-2*w*t-4*pi/3);

26 sin(-2*w*t) sin(-2*w*t-2*pi/3) sin(-2*w*t-4*pi/3);

27 1/2 1/2 1/2 ]);

28

29 ParkInv2w = simplify(inv(Park2w),10); % Inverse Park transformation (P −1

−2ω
)

30 J2w = simplify(Park2w*(diff(ParkInv2w, t))); % Coupling (J−2ω)

31
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32 % Transformation 3w

33 T3w = [ cos(3*w*t) sin(3*w*t);

34 sin(3*w*t) -cos(3*w*t)]; % Rotation matrix at 3w (T3ω)
35

36 TInv3w = simplify(inv(T3w),10); % Inverse rotation matrix at 3w (T −1

3ω)
37 J3w = simplify(T3w*(diff(TInv3w, t))); % Coupling J3w (J3ω)

MMC symbolic variables definitions

38 %% Variable definitions: MMC Control Inputs

39

40 mSigmad = sym('mSigmad','real'); % (mΣ

d )
41 mSigmaq = sym('mSigmaq','real'); % (mΣ

q )
42 mSigmaz = sym('mSigmaz','real'); % (mΣ

z )
43

44 mSigmadqz = [mSigmad mSigmaq mSigmaz]'; % (mΣ

dqz)

45

46 mDeltad = sym('mDeltad','real'); % (m∆

d )
47 mDeltaq = sym('mDeltaq','real'); % (m∆

q )
48 mDeltaz = sym('mDeltaz','real'); % (m∆

z )
49 mDeltaZd = sym('mDeltaZd','real'); % (m∆

Zd
)

50 mDeltaZq = sym('mDeltaZq','real'); % (m∆
Zq

)

51

52 mDeltadqz = [mDeltad mDeltaq mDeltaZd*cos(3*w*t)+mDeltaZq*sin(3*w*t)]'; % ...

(m∆

dqz)

53 mDeltadqZdZq = [mDeltad mDeltaq mDeltaZd mDeltaZq]'; % (m∆

dqZ)

54

55 %% Variable definitions: MMC Currents

56

57 % Grid currents

58 iDeltad = sym('iDeltad','real'); % (i∆

d )
59 iDeltaq = sym('iDeltaq','real'); % (i∆

q )
60 iDeltaz = sym('iDeltaz','real'); % (i∆

z )
61

62 iDeltadqz = [iDeltad iDeltaq iDeltaz]'; % (i∆

dqz)

63

64 % Common-mode currents (or circulating currents)

65 iSigmad = sym('iSigmad','real'); % (iΣ

d )
66 iSigmaq = sym('iSigmaq','real'); % (iΣ

q )
67 iSigmaz = sym('iSigmaz','real'); % (iΣ

z )
68

69 iSigmadqz = [iSigmad iSigmaq iSigmaz]'; % (iΣ

dqz)

70

71 %% Variable definitions: MMC Capacitor voltages

72

73 % vC SUM

74 vCSigmad = sym('vCSigmad','real'); % (vΣ

Cd)
75 vCSigmaq = sym('vCSigmaq','real'); % (vΣ

Cq)

76 vCSigmaz = sym('vCSigmaz','real'); % (vΣ
Cz)

77

78 vCSigmadqz = [vCSigmad vCSigmaq vCSigmaz]'; % (vΣ

Cdqz)

79

80 % vC DELTA

81 vCDeltad = sym('vCDeltad','real'); % (v∆

Cd)
82 vCDeltaq = sym('vCDeltaq','real'); % (v∆

Cq)

83 vCDeltaz = sym('vCDeltaz','real'); % (v∆
Cz)
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84 vCDeltaZd = sym('vCDeltaZd','real'); % (v∆
CZd

)
85 vCDeltaZq = sym('vCDeltaZq','real'); % (v∆

CZq
)

86

87 vCDeltadqz = [vCDeltad vCDeltaq vCDeltaz]'; % (v∆

Cdqz)

88 vCDeltadqZdZq = [vCDeltad vCDeltaq vCDeltaZd vCDeltaZq]'; % (v∆

CdqZ)

Voltage sum SSTI dynamics derivation from Section 2.4.2

89 %% Arm capacitor voltages SUM (vΣ
C)

90

91 %Part B (ΦΣ

B)
92 PartSigmaB = ...

simplify(Park2w*((ParkInvw*mDeltadqz).*(ParkInvw*((1/2)*iDeltadqz))), 10);

93 EqsPartSigmaB = collect(PartSigmaB, iDeltadqz);

94 MatPartSigmaB = jacobian(EqsPartSigmaB, iDeltadqz);

95 MatPartSigmaBSimp = subs(simplify(expand(MatPartSigmaB)),[cos(6*t*w) ...

sin(6*t*w)], [0 0]); % Neglect 6w terms

96

97 % Part C (ΦΣ

C)
98 PartSigmaC = ...

simplify(Park2w*((ParkInv2w*mSigmadqz).*(ParkInv2w*iSigmadqz)), 10);

99 EqsPartSigmaC = collect(PartSigmaC, iSigmadqz);

100 MatPartSigmaC = jacobian(EqsPartSigmaC, iSigmadqz);

101 MatPartSigmaCSimp = subs(simplify(expand(MatPartSigmaC)), [cos(6*t*w) ...

sin(6*t*w)], [0 0]); % Neglect 6w terms

102

103 % Part A = B + C (ΦΣ

A = ΦΣ

B + ΦΣ

C)
104

105 dvCSigmadqz_dt = simplify((1/(2*Carm))*(MatPartSigmaBSimp*[iDeltad ...

iDeltaq 0]' + MatPartSigmaCSimp*iSigmadqz - 2*Carm*J2w*vCSigmadqz)); % ...

(dvΣ

Cdqz/dt from (2.47))

Voltage difference SSTI dynamics derivation from Section 2.4.1

106 %% Arm capacitor voltages DELTA (v∆
C )

107

108 %Part B (Φ∆

B )
109 PartDeltaB = simplify( ...

Parkw*((ParkInv2w*mSigmadqz).*(ParkInvw*((1/2)*iDeltadqz))), 10);

110 EqsPartDeltaB = collect(PartDeltaB, iDeltadqz);

111 MatPartDeltaB = jacobian(EqsPartDeltaB, iDeltadqz);

112 MatPartDeltaBSimp = subs(simplify(MatPartDeltaB), [cos(6*t*w) ...

sin(6*t*w)], [0 0]);

113

114 %Part C (Φ∆

C )
115 PartDeltaC = simplify( ...

Parkw*((ParkInvw*mDeltadqz).*(ParkInv2w*iSigmadqz)), 10);

116 EqsPartDeltaC = collect(PartDeltaC, iSigmadqz);

117 MatPartDeltaC = jacobian(EqsPartDeltaC, iSigmadqz);

118 MatPartDeltaCSimp = subs(simplify(MatPartDeltaC), [cos(6*t*w) ...

sin(6*t*w)], [0 0]);

119

120 % Part A = B + C (Φ∆

A = Φ∆

B + Φ∆

C )
121
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122 dvCDeltadqz_dt = simplify((1/(2*Carm))*(MatPartDeltaBSimp*[iDeltad ...

iDeltaq 0]' + MatPartDeltaCSimp*iSigmadqz - 2*Carm*Jw*vCDeltadqz)); % ...

(dq components from (2.25))
123

124 % ZERO SEQUENCE: vCDeltaZdZq ([v∆
CZd

v∆
CZq

]⊤)

125

126 dvCDeltaz_dt = dvCDeltadqz_dt(3); % (dv∆
Cz/dt not SSTI; from (2.25))

127

128 COS_part = subs(dvCDeltaz_dt, [sin(3*t*w) cos(3*t*w)], [0 1]); % (Ψd)
129 SIN_part = subs(dvCDeltaz_dt, [sin(3*t*w) cos(3*t*w)], [1 0]); % (Ψq)
130

131 dvCDeltaZalpha_dt = COS_part*cos(3*t*w) + SIN_part*sin(3*t*w); % (2.30a)
132 dvCDeltaZbeta_dt = COS_part*sin(3*t*w) - SIN_part*cos(3*t*w); % (2.30b)
133

134 dvCDeltaZalphabeta_dt = [dvCDeltaZalpha_dt dvCDeltaZbeta_dt]';

135 vCDeltaZdZq = [vCDeltaZd vCDeltaZq]';

136

137 dvCDeltaZdZq_dt = simplify(simplify(expand(T3w*dvCDeltaZalphabeta_dt)) - ...

J3w*vCDeltaZdZq); % ([dv∆
CZd

/dt dv∆
CZq

/dt]⊤ SSTI)

Grid currents SSTI dynamics derivation from Section 2.4.4

138 %% AC-side Curents (i∆

dqz)

139

140 vMDeltad = sym('vMDeltad','real'); % (v∆

md)
141 vMDeltaq = sym('vMDeltaq','real'); % (v∆

mq)
142 vMDeltaz = sym('vMDeltaz','real'); % (v∆

mz)
143

144 diDeltadqz_dt = simplify((1/(Leqac))*([vMDeltad vMDeltaq vMDeltaz]' - ...

[Vgd Vgq 0]' - Reqac*iDeltadqz - Leqac*Jw*iDeltadqz)); % (2.58)
145

146 % Modulated voltages

147

148 vCDeltadqz = [vCDeltad vCDeltaq ...

vCDeltaZd*cos(3*t*w)+vCDeltaZq*sin(3*t*w)]'; % (v∆

Cdqz)

149 mDeltadqz = [mDeltad mDeltaq mDeltaZd*cos(3*t*w)+mDeltaZq*sin(3*t*w)]'; % ...

(m∆

dqz)

150

151 vMDeltaabc = (-1/2).*((ParkInvw*mDeltadqz).*(ParkInv2w*vCSigmadqz) + ...

(ParkInv2w*mSigmadqz).*(ParkInvw*vCDeltadqz));

152 vMDeltadqz = simplify(Parkw*vMDeltaabc);

153 vMDeltadqzSimp = subs(vMDeltadqz, [cos(6*t*w) sin(6*t*w)], [0 0]); % ...

(v∆

mdqz from (2.66))

154

155 % VMDeltaZd y Zq

156

157 vMDeltaZ = vMDeltadqz(3); % (v∆
mz from (2.62))

158

159 COS_part = simplify(subs(vMDeltaZ, [sin(3*t*w) cos(3*t*w)], [0 1]),10);

160 SIN_part = simplify(subs(vMDeltaZ, [sin(3*t*w) cos(3*t*w)], [1 0]),10);

161

162 vMDeltaZalpha = COS_part*cos(3*t*w) + SIN_part*sin(3*t*w);

163 vMDeltaZbeta = COS_part*sin(3*t*w) - SIN_part*cos(3*t*w);

164

165 vMDeltaZalphabeta = [vMDeltaZalpha vMDeltaZbeta]';

166 vMDeltaZdq = simplify(T3w*vMDeltaZalphabeta);

167
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168 vMDeltadqZdq = [vMDeltadqz(1) vMDeltadqz(2) vMDeltaZdq(1) vMDeltaZdq(2)]';

169 vMDeltadqZSimp = subs(vMDeltadqZdq, [cos(6*t*w) sin(6*t*w)], [0 0]); % ...

(v∆

mdqZ from (2.66))

Common-mode SSTI dynamics derivation from Section 2.4.3

154 %% Common mode-currents (iΣ

dqz)

155

156 vMSigmad = sym('vMSigmad','real'); % (vΣ

md)
157 vMSigmaq = sym('vMSigmaq','real'); % (vΣ

mq)
158 vMSigmaz = sym('vMSigmaz','real'); % (vΣ

mz)
159

160 diSigmadqz_dt = simplify((1/(Larm))*([0 0 Vdc/2]' - [vMSigmad vMSigmaq ...

vMSigmaz]' - Rarm*iSigmadqz - Larm*J2w*iSigmadqz)); % (2.49)
161

162 % Modulated voltages

163

164 vCDeltadqz = [vCDeltad vCDeltaq ...

vCDeltaZd*cos(3*t*w)+vCDeltaZq*sin(3*t*w)]'; % (v∆

Cdqz)

165

166 vMSigmaabc = (1/2).*((ParkInv2w*mSigmadqz).*(ParkInv2w*vCSigmadqz) + ...

(ParkInvw*mDeltadqz).*(ParkInvw*vCDeltadqz));

167 vMSigmadqz = simplify(Park2w*vMSigmaabc);

168 vMSigmadqzSimp = subs(vMSigmadqz, [cos(6*t*w) sin(6*t*w)], [0 0]); % ...

(v∆

mdqz from (2.55))

Equations summary

169 diary(strcat('MMC_NonLinear_VoltageBased_',datestr(clock, 30),'.txt'))

170 disp('%% %%%%%%%%%%%%%%%%%%%%%%%%%%%')

171 disp('% STATE VARIABLES %')

172 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')

173 disp(' ')

174 disp([char(iDeltad), ', ',char(iDeltaq)])

175 disp([char(iSigmad), ', ',char(iSigmaq), ', ',char(iSigmaz)])

176 disp([char(vCSigmad), ', ',char(vCSigmaq), ', ',char(vCSigmaz)])

177 disp([char(vCDeltad), ', ',char(vCDeltaq), ', ',char(vCDeltaZd), ', ...

',char(vCDeltaZq)])

178 disp(' ')

179 disp('%% %%%%%%%%%%%%%%%%%%%%%%%%%%%')

180 disp('% INPUTS %')

181 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')

182 disp(' ')

183 disp([char(mSigmad), ', ',char(mSigmaq), ', ',char(mSigmaz)])

184 disp([char(mDeltad), ', ',char(mDeltaq), ', ',char(mDeltaZd), ', ...

',char(mDeltaZq)])

185 disp(' ')

186 disp([char(Vgd), ', ',char(Vgq), ', ',char(w), ', ',char(Vdc)])

187 disp(' ')

188 disp('%% %%%%%%%%%%%%%%%%%%%%%%%%%%%')

189 disp('% Parameters %')

190 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')

191 disp(' ')

192 disp('% Physical Parameters')

193 disp(' ')

194 disp(char(Carm))
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195 disp(char(Rarm))

196 disp(char(Larm))

197 disp(strcat(char(Reqac),' % = Rf + Rarm/2'))

198 disp(strcat(char(Leqac),' % = Lf + Larm/2'))

199 disp(' ')

200 disp('%% %%%%%%%%%%%%%%%%%%%%%%%%%%%')

201 disp('% Grid currents in SI %')

202 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')

203 disp(' ')

204 disp('% Voltage vMDeltadqz')

205 disp(' ')

206 disp(strcat('vMDeltad',' = ', char(vMDeltadqZSimp(1)),';'))

207 disp(strcat('vMDeltaq',' = ', char(vMDeltadqZSimp(2)),';'))

208 disp(strcat('vMDeltaZd',' = ', char(vMDeltadqZSimp(3)),';'))

209 disp(strcat('vMDeltaZq',' = ', char(vMDeltadqZSimp(4)),';'))

210 disp(' ')

211 disp('% AC Current dynamics')

212 disp(' ')

213 disp(strcat('diDeltad_dt',' = ', char(diDeltadqz_dt(1)),';'))

214 disp(strcat('diDeltaq_dt',' = ', char(diDeltadqz_dt(2)),';'))

215 disp(' ')

216 disp('%% %%%%%%%%%%%%%%%%%%%%%%%%%%%')

217 disp('% Common-mode currents in SI %')

218 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')

219 disp(' ')

220 disp('% Modulated Voltage vMSigmadqz')

221 disp(' ')

222 disp(strcat('vMSigmad',' = ', char(vMSigmadqzSimp(1)),';'))

223 disp(strcat('vMSigmaq',' = ', char(vMSigmadqzSimp(2)),';'))

224 disp(strcat('vMSigmaz',' = ', char(vMSigmadqzSimp(3)),';'))

225 disp(' ')

226 disp('% Common-mode Current dynamics')

227 disp(' ')

228 disp(strcat('diSigmad_dt',' = ', char(diSigmadqz_dt(1)),';'))

229 disp(strcat('diSigmaq_dt',' = ', char(diSigmadqz_dt(2)),';'))

230 disp(strcat('diSigmaz_dt',' = ', char(diSigmadqz_dt(3)),';'))

231 disp(' ')

232 disp('%% %%%%%%%%%%%%%%%%%%%%%%%%%%%')

233 disp('% vC SIGMA in SI %')

234 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')

235 disp(' ')

236 disp(strcat('dvCSigmad_dt',' = ', char(dvCSigmadqz_dt(1)),';'))

237 disp(strcat('dvCSigmaq_dt',' = ', char(dvCSigmadqz_dt(2)),';'))

238 disp(strcat('dvCSigmaz_dt',' = ', char(dvCSigmadqz_dt(3)),';'))

239 disp(' ')

240 disp('%% %%%%%%%%%%%%%%%%%%%%%%%%%%%')

241 disp('% vC DELTA in SI %')

242 disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')

243 disp(' ')

244 disp(strcat('dvCDeltad_dt',' = ', char(dvCDeltadqz_dt(1)),';'))

245 disp(strcat('dvCDeltaq_dt',' = ', char(dvCDeltadqz_dt(2)),';'))

246 disp(strcat('dvCDeltaZd_dt',' = ', char(dvCDeltaZdZq_dt(1)),';'))

247 disp(strcat('dvCDeltaZq_dt',' = ', char(dvCDeltaZdZq_dt(2)),';'))

248 disp(' ')

249 diary off
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Appendix E

Steady-State Analysis and Limitations
of MMC with Half-Bridge submodules

The objective of this Appendix is to provide a steady-state analysis of the MMC with Half-
Bridge submodules for gaining insight on the converter operation and limits. First, the analytic
expressions of the MMC voltages and currents are obtained. With this information, the physical
limits of the considered MMC in this Thesis can be studied. The followed methodology can be
further extended to other submodule topologies, but this is out of the scope of this Thesis.

E.1 MMC voltages and currents in steady-state

In the following of this section, the mathematical expressions of the steady-state variables
of the MMC currents are voltages are obtained. The starting point for the methodology is
the mathematical expressions of the MMC dynamic equations in dqz frame and Σ-∆ repre-
sentation from Chapter 2, and then solving the equations by setting the time derivatives to
zero. Then, the Σ-∆ variables in dqz frame are transformed to abc by means of the inverse
Park transformation. Finally, after some mathematical manipulations, the expressions of the
Upper and Lower variables are obtained. The provided steady-state formulations are useful
for the steady-state analysis of the MMC and furthermore, for the complete initialization for
time-domain simulations starting at any operating point.

For the ease of following the transformations from Σ-∆ to Upper-Lower, (E.1) summarizes
the relations between both representations.





mΣ
j

def= mU
j + mL

j

m∆
j

def= mU
j − mL

j

iΣ
j

def= (iU
j + iL

j )/2
i∆
j

def= iU
j − iL

j

vΣ
mj

def= (vU
mj + vL

mj)/2
v∆

mj
def= (−vU

mj + vL
mj)/2

vΣ
Cj

def= (vU
Cj + vL

Cj)/2
v∆

Cj
def= (vU

Cj − vL
Cj)/2

⇔





mU
j = (mΣ

j + m∆
j )/2

mL
j = (mΣ

j − m∆
j )/2

iU
j = iΣ

j + i∆
j /2

iL
j = iΣ

j − i∆
j /2

vU
mj = vΣ

mj − v∆
mj

vL
mj = vΣ

mj + v∆
mj

vU
Cj = vΣ

Cj + v∆
Cj

vL
Cj = vΣ

Cj − v∆
Cj

(E.1)

Modulated voltages and currents in dqz frame and Σ-∆ representation

First, some initial variables are assumed to be known, which are given in (E.2).

Pac; Qac; iΣ
d ; iΣ

d ; W Σ
z0; v∆

mz; vdc; vG
d ; vG

q = 0; ω (E.2)
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From the active and reactive power expressions in dq frame, the grid currents can be
calculated as (E.3) (assuming vG

q = 0):

i∆
d =

2
3

Pac

vG
d

; i∆
q =

2
3

Qac

vG
d

(E.3)

where Pac, Qac and vG
d are known variables according to (E.2). The AC-side modulated voltages

v∆
md and v∆

mq are obtained from the AC currents dynamics given in (2.58) by setting the current
derivative terms to zero (i.e. di∆

dq/dt = 0), yielding:

v∆
md = vG

d + Rac
eqi∆

d + ωLac
eqi

∆
q (E.4a)

v∆
mq = vG

q + Rac
eqi∆

q − ωLac
eqi

∆
d (E.4b)

With (E.3) and (E.4), the voltages and currents for the AC-side (∆ variables) are obtained
analytically. For calculating the voltages and currents for the Σ variables, a power balance
between AC and DC sides is needed as expressed in (E.5): the DC power is equal to the AC
power plus the internal MMC losses, where P ∆

loss represent the losses generated by the AC-side
currents, and P Σ

loss are the losses generated inside the MMC by the Σ currents.

Pdc︸︷︷︸
3iΣ

z vdc

= Pac + P ∆
loss + P Σ

loss (E.5)

Since the AC-side variables were already obtained, the AC-side losses P ∆
loss are expressed as a

function of known variables as follows:

P ∆
loss = Rac

eq






√

3
2

i∆
d




2

+



√

3
2

i∆
q




2

 (E.6)

where the constant
√

3/2 is due to the applied amplitude-invariant Park transformation (see
Appendix A). The internal losses, generated by iΣ

dqz are calculated as in (E.7), where Pcc

indicates the losses generated by the circulating currents iΣ
dq:

P Σ
loss = Rarm

[(√
3
2
iΣ
d

)2
+
(√

3
2
iΣ
q

)2
+
(√

3
2
iΣ
z

)2
]

=
3Rarm

2

((
iΣ
d

)2
+
(
iΣ
q

)2
)

︸ ︷︷ ︸
Pcc

+3Rarm

2

(
iΣ
z

)2
(E.7)

Replacing (E.6) and (E.7) into (E.5) yields:

Pdc = 3iΣ
z vdc = Pac + Pcc + P ∆

loss +
3Rarm

2

(
iΣ
z

)2
(E.8)

For obtaining the expression of iΣ
z , the following second-order equation is needed to be solved:

3Rarm

2
(iΣ

z )2 − 3vdci
Σ
z +

(
Pac + P ∆

loss + Pcc

)
= 0 (E.9)

The current iΣ
z is then calculated as:

iΣ
z =

vdc ±
√

(vdc)2 − (2Rarm/3)
(
Pac + P ∆

loss + Pcc

)

Rarm

(E.10)
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where two values are mathematically possible. However, by inspection, it can be noticed that
the root of the second-order equation which has a physical meaning is obtained as follows:

iΣ
z =




vdc −
√

(vdc)2 − (2Rarm/3)
(
Pac + P ∆

loss + Pcc

)

Rarm


 (E.11)

The modulated voltages vΣ
md, vΣ

md and vΣ
mz are obtained from the dynamic equation for the

common-mode currents given in (2.49) by setting the current derivative terms to zero (i.e.
diΣ

dqz/dt = 0):

vΣ
md = −RarmiΣ

d + 2ωLarmiΣ
q (E.12a)

vΣ
mq = −RarmiΣ

q − 2ωLarmiΣ
d (E.12b)

vΣ
mz =

vdc

2
− RarmiΣ

z (E.12c)

Note that the modulated voltage vΣ
mz driving iΣ

z is almost equal to vdc/2, since the term “RarmiΣ
z ”

is negligible due to the low value of Rarm. Finally, the summary of the expressions for the
modulated voltages and currents of the MMC are listed in (E.13) and (E.14), respectively.

v∆
mdqz = [v∆

md v∆
mq︸ ︷︷ ︸

(E.4)

v∆
mz︸︷︷︸

Known

]⊤ (E.13a)

vΣ
mdqz = [vΣ

md vΣ
mq vΣ

mz︸ ︷︷ ︸
(E.12)

]⊤ (E.13b)

i∆
dqz = [i∆

d i∆
q︸ ︷︷ ︸

(E.3)

0]⊤ (E.14a)

iΣ
dqz = [iΣ

d iΣ
q︸ ︷︷ ︸

Known

iΣ
z︸︷︷︸

(E.11)

]⊤ (E.14b)

Note that v∆
mz is added in (E.13), since the control system may introduce this modulated

voltage for improving the limits of the MMC, as studied in [145].

Modulated voltages and currents in abc frame and Upper-Lower representation

For expressing the modulated voltages in abc frame, the inverse Park transformation at ω
for the ∆ variables and at −2ω for the Σ variables is applied to the expression in (E.13) as:



v∆

ma(t)
v∆

mb(t)
v∆

mc(t)


 = P −1

ω (t)



v∆

md

v∆
mq

v∆
mz


 =




v∆
md cos(ωt) + v∆

mq sin(ωt) + v∆
mz

v∆
md cos(ωt − 2π

3
) + v∆

mq sin(ωt − 2π
3

) + v∆
mz

v∆
md cos(ωt − 4π

3
) + v∆

mq sin(ωt − 4π
3

) + v∆
mz


 (E.15a)



vΣ

ma(t)
vΣ

mb(t)
vΣ

mc(t)


 = P

−1

−2ω
(t)



vΣ

md

vΣ
mq

vΣ
mz


 =




vΣ
md cos(−2ωt) + vΣ

mq sin(−2ωt) + vΣ
mz

vΣ
md cos(−2ωt − 2π

3
) + vΣ

mq sin(−2ωt − 2π
3

) + vΣ
mz

vΣ
md cos(−2ωt − 4π

3
) + vΣ

mq sin(−2ωt − 4π
3

) + vΣ
mz


 (E.15b)

At this moment, the expressions of the Upper-Lower variables can be obtained following
the definitions given in (E.1): (E.16) shows the results for the upper arm variables, and (E.17)
for the lower arm quantities.

vU
ma(t) = vΣ

ma(t) − v∆
ma(t) (E.16a)

vU
mb(t) = vΣ

mb(t) − v∆
mb(t) (E.16b)

vU
mc(t) = vΣ

mc(t) − v∆
mc(t) (E.16c)

vL
ma(t) = vΣ

ma(t) + v∆
ma(t) (E.17a)

vL
mb(t) = vΣ

mb(t) + v∆
mb(t) (E.17b)

vL
mc(t) = vΣ

mc(t) + v∆
mc(t) (E.17c)
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For obtaining the current expressions in Upper-Lower representation, the inverse Park
transformation is applied to (E.14), as shown in (E.18).



i∆
a (t)

i∆
b (t)

i∆
c (t)


 = P −1

ω (t)



i∆
d

i∆
q

i∆
z


 =




i∆
d cos(ωt) + i∆

q sin(ωt)
i∆
d cos(ωt − 2π

3
) + i∆

q sin(ωt − 2π
3

)
i∆
d cos(ωt − 4π

3
) + i∆

q sin(ωt − 4π
3

)


 (E.18a)



iΣ
a (t)

iΣ
b (t)

iΣ
c (t)


 = P

−1

−2ω
(t)



iΣ
d

iΣ
q

iΣ
z


 =




iΣ
d cos(−2ωt) + iΣ

q sin(−2ωt) + iΣ
z

iΣ
d cos(−2ωt − 2π

3
) + iΣ

q sin(−2ωt − 2π
3

) + iΣ
z

iΣ
d cos(−2ωt − 4π

3
) + iΣ

q sin(−2ωt − 4π
3

) + iΣ
z


 (E.18b)

Finally, the expressions of the upper and lower arm variables can be obtained as in (E.19)
for the upper arm variables, and in (E.20) for the lower arm variables with the definitions
given in (E.1).

iU
a (t) = iΣ

a (t) − i∆
a (t)
2

(E.19a)

iU
b (t) = iΣ

b (t) − i∆
b (t)
2

(E.19b)

iU
c (t) = iΣ

c (t) − i∆
c (t)
2

(E.19c)

iL
a (t) = iΣ

a (t) +
i∆
a (t)
2

(E.20a)

iL
b (t) = iΣ

b (t) +
i∆
b (t)
2

(E.20b)

iL
c (t) = iΣ

c (t) +
i∆
c (t)
2

(E.20c)

Arm capacitor voltages in steady-state with Upper-Lower representation

For obtaining the mathematical expression of the arm capacitor voltages, the evolution of
the stored energy W U

j (t) and W L
j (t) on each arm capacitor Carm is used. This is expressed as

shown in (E.21), which is based on the integral of the instantaneous power for each arm.

W U
j (t) =

∫
vU

mj(t) iU
j (t) dt + W Σ

z0 (E.21a)

W L
j (t) =

∫
vL

mj(t) iL
j (t) dt + W Σ

z0 (E.21b)

In this equation, W Σ
z0 corresponds to the average value of the stored energy of the selected arm

which may be imposed by the energy-based control (in normal operation, the same amount of
average energy is expected on each arm). It is possible to write the complete analytic expression
of W U

j (t) and W L
j (t) taking into account the expressions of vU

mj(t) and vL
mj(t) given in (E.16)

and (E.17), and the expressions of iU
j (t) and iL

j (t) given in (E.19) and (E.20), however, given
the complexity of the resultant equations, only the upper arm of phase a is developed in the
following:

W U
a (t) = Wcte︸ ︷︷ ︸

(E.23)

+ W̃(ωt)︸ ︷︷ ︸
(E.24)

+ W̃(2ωt)︸ ︷︷ ︸
(E.25)

+ W̃(3ωt)︸ ︷︷ ︸
(E.26)

+ W̃(4ωt)︸ ︷︷ ︸
(E.27)

(E.22)

In the following, each component of W U
a (t) is developed:

Wcte = W Σ
z0 +

1
8ω

[(
−v∆

mq +
8vΣ

mq

3

)
i∆
d +

(
−v∆

md + 4v∆
mz +

4vΣ
md

3
− 4vΣ

mz

)
i∆
q + ... (E.23)

... +

(
−8v∆

mq

3
− vΣ

mq

)
iΣ
d +

(
−16v∆

md

3
+ 4v∆

mz − vΣ
md − 4vΣ

mz

)
iΣ
q +

(
8v∆

mq − 4vΣ
mq

)
iΣ
z + ...

... +ωt
(
−2v∆

mdi∆
d − 2v∆

mqi
∆
q + 4vΣ

mdiΣ
d + 4vΣ

mqi
Σ
q − 8

(
v∆

mz − vΣ
mz

)
iΣ
z

)]
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W̃(ωt) =
cos(ωt)

ω

(
vΣ

mq

4
i∆
d +

(
vΣ

md

4
+

v∆
mz

2
− vΣ

mz

2

)
i∆
q − v∆

mq

2
iΣ
d − v∆

md

2
iΣ
q + v∆

mqi
Σ
z

)
+ ... (E.24)

... +
sin(ωt)

ω

((
vΣ

md

4
− v∆

mz

2
+

vΣ
mz

2

)
i∆
d − vΣ

mq

4
i∆
q − v∆

md

2
iΣ
d +

v∆
mq

2
iΣ
q − v∆

mdiΣ
z

)

W̃(2ωt) =
cos(2ωt)

2ω

(
v∆

mq

4
i∆
d +

v∆
md

4
i∆
q +

(
−v∆

mz + vΣ
mz

)
iΣ
q + vΣ

mqi
Σ
z

)
+ ... (E.25)

... +
sin(2ωt)

2ω

(
−v∆

md

4
i∆
d +

v∆
mq

4
i∆
q +

(
−v∆

mz + vΣ
mz

)
iΣ
d + vΣ

mdiΣ
z

)

W̃(3ωt) =
cos(3ωt)

3ω

(
vΣ

mq

4
i∆
d − vΣ

md

4
i∆
q +

v∆
mq

2
iΣ
d − v∆

md

2
iΣ
q

)
+ ... (E.26)

... +
sin(3ωt)

3ω

(
vΣ

md

4
i∆
d +

vΣ
mq

4
i∆
q − v∆

md

2
iΣ
d − v∆

mq

2
iΣ
q

)

W̃(4ωt) =
cos(4ωt)

4ω

(
vΣ

mq

2
iΣ
d +

vΣ
md

2
iΣ
q

)
+

sin(4ωt)
4ω

(
vΣ

md

2
iΣ
d − vΣ

mq

2
iΣ
q

)
(E.27)

It should be noted that W̃(ωt), W̃(2ωt), W̃(3ωt) and W̃(4ωt) are oscillating terms with average
value equal to zero. The term Wcte is composed by W Σ

z0 and several other terms, which have
to sum up to zero; if not, it means that the average value of the stored energy per-arm is being
deviated. The equations (E.23) to (E.27) can be much simplified if, for instance, the circulating
currents are assumed to be eliminated (i.e. iΣ

d = iΣ
q = 0), and v∆

mz is omitted. However, in the
following, the most general formulation is kept.

The arm capacitor voltages vU
Cj(t) and vL

Cj(t) can be obtained directly with the expressions
of the stored energy per-arm W U

j (t) and W L
j (t) as follows:

vU
Cj(t) =

√
2

Carm

W U
j (t) (E.28a)

vL
Cj(t) =

√
2

Carm

W L
j (t) (E.28b)

As discussed in Chapter 2, the arm capacitor voltages vU
Cj(t) and vL

Cj(t) have a constant
DC value superimposed with oscillations at mainly ω, 2ω (negative sequence), 3ω and some
content of 4ω. This is coherent with the frequency content found for (E.22). Furthermore, the
DC component of vU

Cj(t) and vL
Cj(t) is related to the average value of the stored energy, W Σ

z0.

Time-domain validation of analytic expressions

For validating the analytic formulations provided in this Section, a time-domain compa-
rison is performed against the detailed EMT simulation considering the Equivalent Circuit-
Based Model in EMTP-RV with 400 SMs per arm model used throughout this Thesis (see
Appendix F). The adopted configuration is given in Fig. E.1, where the MMC is interfaced
between ideal AC and DC sources for simplicity. The considered operating point is given in
Table E.1.
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Figure E.1 – MMC connected to ideal AC and DC sources for time-domain validation of
analytic expressions of voltages and currents

Table E.1 – MMC variables in Σ-∆ representation

Variable Value Variable Value
Pac 1000 MW vdc 640 kV
Qac 200 MVAr vG

d

√
2Vb V

iΣ
d 0.156 kA (0.1 pu) vG

q 0 kV
iΣ
q 0.312 kA (0.2 pu) W Σ

z0 1 pu

The comparison results are given in Fig. E.2. The arm capacitor voltage for the upper arm
of phase a are shown in Fig. E.2a, where the analytic expression given in (E.28) is contrasted
with the EMT simulation results. Also, the modulated voltages for the same arm (upper arm,
phase a) is given on the same figure, where the expression given in (E.16) is used for the
analytic results. For both variables, it can be noticed that the analytic expressions provide
with high accuracy the steady-state waveforms of the EMT model, validating the equations
provided in this Section.
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Figure E.2 – Time domain validation of steady-state analytic formulation of voltages and
currents — EMT : Detailed MMC model with 400 SMs per arm; Analytic: Calculations with
the expressions provided in this Section
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Finally, in Fig. E.2b, the results of the upper and lower arm currents for the phase a are
contrasted. The arm currents for the analytic results are obtained with (E.19) and (E.20).
Again, the steady-state waveform obtained with the mathematical expressions reproduce accu-
rately the EMT currents. Results for the rest of the variables (other arms, and phases) provide
similar results in terms of accuracy.

E.2 Physical limitations of MMC with Half-Bridge sub-

modules

For exploiting the capabilities of the MMC, it is of high importance the knowledge of the
physical limitations of the converter itself. Not only at the stage of the converter design (for
instance, for sizing the MMC components such as inductances or capacitors), but also for
taking advantage of the possibilities in the controller design.

E.2.1 Modulated voltages limitations with Upper-Lower represen-
tation

In Fig. E.3 the upper and lower arms of the MMC-AAM is depicted for the phase j. The
voltages and currents shown in the figure were obtained analytically in the previous Section,
which are used in the following for determining the MMC limitations. The main physical
limitation is given by the fact that the modulated arm voltages can be varied as shown in
(E.29), which is the main characteristic of the Half-Bridge submodules.

iLj

Carm

vLCj

MMC-AAM of phase j - L

vLmj

mL
j

iUj

Carm

vUCj

MMC-AAM of phase j - U

vUmj

mU
j

i∆j

Figure E.3 – MMC single Arm Averaged Model of phase j for Upper and Lower arm

0 6︸︷︷︸
Lower limit of vU

mj

vU
mj(t) 6 vU

Cj(t)︸ ︷︷ ︸
Upper limit of vU

mj

(E.29a)

0 6︸︷︷︸
Lower limit of vL

mj

vL
mj(t) 6 vL

Cj(t)︸ ︷︷ ︸
Upper limit of vL

mj

(E.29b)
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The lower limit for the arm modulated voltages is reached when all the sub-modules in the
arm are bypassed: the modulated voltage takes the value equal to zero (or, which is the same,
the modulation index is equal to zero). On the contrary, the maximum of the arm modulated
voltage is obtained when all the sub-modules in the arm are inserted; in this case, the applied
arm voltage is equal to the sum of all the voltages of the individual sub-modules capacitors.
This voltage is essentially equal to vU

Cj(t) or vL
Cj(t) for the upper or lower arms, respectively,

assuming a perfect sub-module balancing. In this case, the modulation index is equal to one.
Dividing (E.29a) by vU

Cj(t) and (E.29b) by vL
Cj(t), it yields:

0 6 mU
j (t) 6 1 (E.30a)

0 6 mL
j (t) 6 1 (E.30b)

which corresponds to the classical limitation on the modulation indices for the Half-Bridge
MMC in Upper-Lower representation.

Lower limit of the modulated voltages

For exemplifying the lower limit of the modulated voltage (i.e. when vU
mj(t) or vL

mj(t)
reach zero), a similar time-domain simulation as in previous Section is used. In this example,
the same operating point as in Table E.1 is considered, however, the circulating currents are
assumed to be zero (i.e. iΣ

d = iΣ
q = 0). Moreover, the DC voltage is considered to be 0.85 pu,

which is a critically low value. Results for the arm modulated voltage vU
mj(t) and arm capacitor

voltage vU
Cj(t) are shown in Fig. E.4, where the detailed EMT simulation is contrasted with

the analytic calculation of vU
mj(t) from (E.16). Obviously, the analytic results of the modulated

voltage cannot reproduce this physical limitation.
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Figure E.4 – Time-domain simulation for exemplifying the lower limit of the modulated voltage
- DC voltage vdc = 0.85 pu (upper-arm of phase a only)

For calculating the lower limits of the modulated voltages, namely vU
mj,min(t) and vL

mj,min(t),
the left-hand side of the inequality from (E.29a) is transformed into an equality:

vU
mj,min(t) → vU

mj(t) = 0 (E.31a)

vL
mj,min(t) → vL

mj(t) = 0 (E.31b)

The analytic limit can be calculated by replacing the expressions of vU
mj(t) and vU

mj(t) from
(E.16) and (E.17) into (E.31). As an example, let us consider the lower limit for the upper
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arm of phase a analytically:

vU
ma,min(t) → vΣ

md cos(−2ωt)+vΣ
mq sin(−2ωt)+vΣ

mz −v∆
md cos(ωt)−v∆

mq sin(ωt)−v∆
mz = 0 (E.32)

At this stage, the formulation given in (E.32) corresponds to a transcendental equation, and
its analytic solution is not trivial. However, the solution can be found numerically for several
operating points and system parameters [219]. For a fixed operating point, when the DC
voltage decreases, the risk of hitting the lower limitation is increased. The same happens for
high values of AC-voltage.

Upper limit of the modulated voltages

Similarly as for the exemplification of the lower limit, a time-domain simulation is used
for the upper limit of the modulated voltage. The DC voltage is considered to be 1 pu again,
but the average value of the stored energy per-arm is set to W Σ

z0 = 0.78 pu. This value
may be generated by the use of the Virtual Capacitor Control as detailed in Section 5.5.1, or
other Energy-based controllers techniques were the energy reference W Σ∗

z0 is being manipulated.
Results are shown in Fig. E.5.
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Figure E.5 – Time-domain simulation for exemplifying the upper limit of the modulated voltage
- Arm average stored energy W Σ

z0 = 0.78 pu (upper-arm of phase a only)

As observed in the results in Fig. E.5 (zoomed part), the arm voltage is equal to the arm
capacitor voltages near t ≈ 10 ms.

For calculating the upper limits of the modulated voltages, namely vU
mj,max and vL

mj,max, the
right-hand side of the inequality from (E.29a) is transformed into an equality:

vU
mj,max(t) → vU

mj(t) = vU
Cj(t) (E.33a)

vL
mj,max(t) → vL

mj(t) = vL
Cj(t) (E.33b)

The analytic limit can be calculated by replacing the expressions of vU
mj(t) and vU

mj(t) given in
(E.16) and (E.17), and the expressions of vU

Cj(t) and vU
Cj(t) given in (E.28a) and (E.28b) into

(E.33). It is clear that after those replacements, the equations to be solved are transcendental
(since there are many cosines and sines involved in the equations), and the analytic expression
of this limit is not straightforward.

For avoiding the limitation exposed in Fig. E.5, some options can be considered: first,
the insertion of third-harmonic on the arm modulated voltage can be used. This modifies the
waveform of the arm modulated voltage, reducing and displacing its peak value, as explored
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in [145]. This provides a wider margin between vmj and vCj. Second, and the most obvious, is
to increase the average value of the arm capacitor voltage vU

Cj(t) and vU
Cj(t). This value can be

modified with the use of Energy-based controllers, as those presented in Section 3.3 and 3.4,
where the average value of the stored energy is determined by W Σ∗

z0 , and hence, the DC value
of the arm capacitor voltages. Nevertheless, the minimum amount of stored energy varies with
respect to the possible operating points and system parameters, so a determination of this limit
should be further studied. This is explored in Section E.2.3.

E.2.2 Modulated voltages limitations with Σ-∆ representation

In previous Section, the explanation of the physical limits on the modulated voltages in
Upper-Lower representation was given. In this Section it is intended to show how these limits
translate to the Σ-∆ formulation.

Using the definitions given in (E.1) into (E.29), the inequalities for the modulated voltages
limitations as a function of the Σ-∆ variables are obtained as follows:

0 6 vΣ
mj − v∆

mj 6 vΣ
Cj + v∆

Cj (E.34a)

0 6 vΣ
mj + v∆

mj 6 vΣ
Cj − v∆

Cj (E.34b)

As observed in these equations, the interpretation of the voltage limits in Σ-∆ is not straight-
forward. Considering the left side of (E.34) and after some mathematical manipulations, the
expression in (E.35) can be obtained:

∣∣∣v∆
mj

∣∣∣ 6 vΣ
mj (E.35)

This equation highlights that the AC-side modulated v∆
mj voltage should always be lower than

the common-mode modulated voltage vΣ
mj. This limit can be observed considering the lower

limit of the modulated voltages provided in Fig. E.4: the same simulation is shown in Fig. E.6,
where the modulated voltages are shown with their Σ-∆ representation.
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Figure E.6 – Time-domain simulation for exemplifying the limit of the modulated voltage
in Σ-∆ representation given in (E.35) - DC voltage vdc = 0.85 pu (phase a only) — Same
simulation as given in Fig. E.4

Finally, considering the right side of (E.34) and after some mathematical manipulations,
the expression in (E.36) can be obtained:

vΣ
mj − v∆

mj − v∆
Cj 6 vΣ

Cj (E.36a)

vΣ
mj + v∆

mj + v∆
Cj 6 vΣ

Cj (E.36b)
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This limit can be observed considering the upper limit of the modulated voltages provided
in Fig. E.5: the same simulation is shown in Fig. E.7, where the expression given (E.36) is
highlighted.
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Figure E.7 – Time-domain simulation for exemplifying the limit of the modulated voltage in
Σ-∆ representation given in (E.36) - Arm average stored energy W Σ

z0 = 0.78 pu (phase a only)
— Same simulation as given in Fig. E.5

It should be noted in Fig. E.6 and E.7, that the analytic expressions were also plotted. In
both cases, it can be observed that these expressions cannot reproduce the modulated voltages
limitations similarly as in previous Section.

E.2.3 Impact of the stored energy on the modulated voltage limits

As stated before, the upper limit of the modulated voltages can be avoided by storing the
sufficient amount of energy on each arm so the waveform of the arm capacitor voltages is
always above the waveform of the modulated voltage. The minimum amount of stored energy
for each operating point can be calculated numerically by iterations as in [219], or analytically
as in [220].

For simplicity, the numerical iterative method is used. The initial variables for the proce-
dure are: iΣ

d , iΣ
d , v∆

mz, vdc, vG
d , vG

q , and ω. Then, the main steps are listed as follows, focusing
on the upper-arm of phase a for simplicity:

1. Select active and reactive power Pac, Qac.
2. Obtain the arm modulated voltage waveform as a function of time t, i.e. vU

ma(t), with
(E.16), and arm capacitor voltage waveform as a function of time t, i.e. vU

Ca(t), with
(E.28a) for one power cycle.

3. Iterate until it is found the minimum value of W Σ
z0 for such it is verified that vma(t) =

vU
Ca(t) for any t comprised the power cycle.

Results are shown in Fig. E.8, considering that the AC and DC voltages are at nominal
values, v∆

mz = 0, and there are no circulating currents in the MMC (i.e. iΣ
d = iΣ

q = 0).
As it can be seen in Fig. E.8, the reactive power direction influences directly the amount of

required stored energy, which is coherent with the findings in [221]. Note that the used value
W Σ

z0 = 0.78 pu for obtaining the results in Fig. E.5 falls below the lower limit for Pac = 1 pu
and Qac = 0.2 pu (as expected).

The knowledge of the limitation of W Σ
z0 is of high importance for designing the Energy-

based controllers with shared energy capabilities with the DC side, as presented in Section 5.5.
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Figure E.8 – Minimum required average stored energy per-arm W Σ
z0 for different values of

AC active and reactive powers — AC and DC voltages at nominal values, v∆
mz = 0, and no

circulating currents (i.e. iΣ
d = iΣ

q = 0)

Moreover, the limitations of the Virtual Capacitor strategy in droop-controlled MTDC grids
can be directly assessed with the steady-state analysis provided in this Section.

E.2.4 MMC limitations in Small-Signal Stability analysis

It should be stated that all the linearized models used through this Thesis are not able to
cope with the discontinuities produced by the modulated voltage limitations. For this reason,
when performing small-signal stability analyses, it is of crucial importance to consider operating
points within the acceptable range of normal operation to avoid hitting the converter limits.
If the considered operating point falls beyond the converter limits, the linear analysis study
losses its validity.

The analytic expressions of the MMC steady-state variables provided in this Appendix can
be used to verify the inequalities to be satisfied on the modulated voltages. This verification
is mandatory to carry on the linear studies for maintaining the validity of the derived models.
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Appendix F

On the implementation of MMC
controllers for EMT simulations

In this Appendix, the modeling and control details of the EMT model used as a reference
throughout this Thesis are presented. First, the Equivalent Circuit-Based Model from [111]
implemented in EMTP-RV is recalled. Then, the different parts of the control structure are
detailed. Finally, the complete control structures used in the different sections of this Thesis are
shown. A simulation case study is used to highlight the main characteristics of each controller.

F.1 Equivalent Circuit-Based Model in EMTP-RV

The reference EMT-MMC model used in this Thesis is the so-called “Equivalent-Circuit
Based Model” (ECBM) detailed in [111] and implemented in the EMT simulation software
“EMTP-RV”. This MMC model is available in the software library. Originally, this model was
developed mainly within the framework of the PhD Thesis from Dr. Hani Saad in [108]. This
model is based on [112], where each switch of every sub-module is replaced by a resistance
whose value depends on the status of the SM.

The ECBM implemented in EMTP-RV is depicted in Fig. F.1. In Fig. F.1a, the mask of
the converter is provided, which was developed by Dr. Pierre Rault within the framework of
the Bestpaths project. In this figure, the AC- and DC-side connections are clearly observed.
For the example in this Appendix, the AC and DC grids are considered to be stiff voltage
sources for simplicity. Inside the mask, the MMC model from Fig. F.1b can be found. This
figure highlights, on the top, the electrical connections: on the AC side, the Y-D transformer is
presented with internal parameters Rf , Lf , and the DC side by the positive and negative poles
connections. Moreover, all the internal measures of the MMC are provided: the individual
sub-module voltages vCi (400 × 6 signals, grouped in 6 vectors); the arm equivalent capacitor
voltages vU

Cabc and vL
Cabc (which are the algebraic sum of the 400 sub-modules within each

arm); the “Upper” and “Lower” arm currents iU
abc and iL

abc and the applied arm modulated
voltages vU

mabc and vL
mabc. It should be noted that the nomenclature used in the mask may not

be the same as used in this Thesis, for this reason, both notations are shown in the figures.
In Fig. F.2, the implementation of the converter is shown (model inside the mask given

in Fig. F.1b), where the aforementioned inputs and outputs can be observed. Moreover, the
arm inductances Larm and equivalent resistance Rarm are highlighted. More details on the
implementation of MMC converters in EMTP-RV can be found in [222].

The MMC model provided in the EMTP-RV library have a fully functional controller
similar as the Classical CCSC presented in Section 3.2. However, in this Thesis, all the control
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Figure F.1 – Equivalent Circuit-Based Model in EMTP-RV: Mask and connections
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Figure F.2 – Equivalent Circuit-Based Model in EMTP-RV from Fig. F.1b

structures were re-developed. In the following, the details on the controllers implementation
for the Equivalent Circuit-Based model in EMTP-RV are detailed.

F.2 MMC Control Structure

The MMC control structure can be split into two main parts: the “High-level” and “Low-
level” control1. This separation is highlighted in Fig. F.3. The High-Level control is in charge
of regulating the energy, power, currents and voltages on the converter, while the Low-Level
control is in charge of the modulation voltages and the balancing of the sub-modules capacitor
voltages. Note that the boundary between both control layers is given by the modulation
indices in abc frame, i.e. mU

abc and mL
abc. Also, in Fig. F.3b, the control structure for the “Arm-

1Note that this classification is not strictly the same as the one provided in [222]
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Averaged Model” described in Chapter 2 is given. Comparing both figures, it can be seen that
the High-Level controls structures for both models are strictly the same [223]. However, the
Low-level control of the AAM is represented only by the modulation indices generated by the
High-Level control. In the following, only the Equivalent Circuit-Based model is considered.
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Figure F.3 – MMC Control structure

Low level control

The MMC Low-level control in EMTP-RV is shown in Fig. F.4. The inputs for this con-
troller are: the modulation indices generated by the High-level control, the individual sub-
modules capacitor voltages, the arm currents, and a new parameter ∆Vtol which is further
described.

m
U
abc

m
L
abc

◦

v
U∗

′

mabc

◦

v
L∗

′

mabc

v
L
Cabc

vCi
SM capacitor

voltages
(400 × 6 signals)

∆Vtol

i
U
abc i

L
abc

Capacitor
Balancing

Algorithm

vU∗

ma

∆Vtol

iUa

vCi(Ua)

SM gate

Control

Signals

(400 signals)

(400 signals)

Capacitor
Balancing

Algorithm

SM gate

Control

Signals

(400 signals)

Capacitor
Balancing

Algorithm

SM gate

Control

Signals

(400 signals)

Capacitor
Balancing

Algorithm

SM gate

Control

Signals

(400 signals)

Capacitor
Balancing

Algorithm

SM gate

Control

Signals

(400 signals)

Capacitor
Balancing

Algorithm

SM gate

Control

Signals

(400 signals)

vU∗

mb

iUb

vU∗

mc

iUc

vL∗

ma

iLa

∆Vtol
vCi(Ub)

(400 signals)
∆Vtol

vCi(Uc)
(400 signals)

∆Vtol
(400 signals)

∆Vtol
(400 signals)

∆Vtol
vCi(La)

(400 signals)

vL∗

mb

iLb

vL∗

mc

iLc

vCi(Lb)
vCi(Lc)

SM gate

Control

Signals

◦

v
U
Cabc

◦

Capacitor
Balancing

Algorithm

vU∗
′

ma

∆Vtol

iUa

vCi(Ua)

SM gate

Control

Signals

(400 signals)

(400 signals)

Capacitor
Balancing

Algorithm

SM gate

Control

Signals

(400 signals)

Capacitor
Balancing

Algorithm

SM gate

Control

Signals

(400 signals)

Capacitor
Balancing

Algorithm

SM gate

Control

Signals

(400 signals)

Capacitor
Balancing

Algorithm

SM gate

Control

Signals

(400 signals)

Capacitor
Balancing

Algorithm

SM gate

Control

Signals

(400 signals)

vU∗
′

mb

iUb

vU∗
′

mc

iUc

vL∗
′

ma

iLa

∆Vtol
vCi(Ub)

(400 signals)
∆Vtol

vCi(Uc)
(400 signals)

∆Vtol
(400 signals)

∆Vtol
(400 signals)

∆Vtol
vCi(La)

(400 signals)

vL∗
′

mb

iLb

vL∗
′

mc

iLc

vCi(Lb)
vCi(Lc)

SM gate

Control

Signals

Measures

Control inputs Outputs

Figure F.4 – MMC Low level control for Equivalent Circuit-Based Model

As seen in Fig. F.4, the control inputs for the Low-level control are given by the arm
modulated voltages reference, instead of directly the modulation indices, as given in (F.1):

vU∗′

ma = mU
a vU

Ca; vU∗′

mb = mU
b vU

Cb; vU∗′

mc = mU
c vU

Cc (F.1a)

vL∗′

ma = mL
a vL

Ca; vL∗′

mb = mL
b vL

Cb; vL∗′

mc = mL
c vL

Cc (F.1b)

Each of the modulated voltage reference vU,L∗′

m,j is sent to the “Balancing Capacitor Algorithm”
of the respective arm. These blocks were developed by Dr. Riad Kadri for a 20 SMs MMC
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prototype and latter adapted by Thomas Pidancier, MSc (Eng), for 400 SMs. Inside these
blocks, the sub-modules voltages are sorted with respect to their voltages, and the classical
selection based on the reduced switching-frequency modulation from [109] is performed. The
selection of the amount of submodules to be inserted in the circuit is calculated typically with
the Nearest Level Control (NLC) [224]. However, in the strategy from Fig. F.4, the intention
is to select the right amount of SMs taking into account their contribution to the applied
modulated voltage in the arm. For having the modulated voltages as close as possible to the
demanded reference, an extra SM can be inserted or bypassed to correct it. At the same time,
the difference between the most and less charged SMs must be maintained within the specific
limit defined by ∆Vtol.

For demonstrating the working principle, let us consider the simulation results of the MMC
from Fig. F.1 with a power transmission of 1 GW of active power. Results from Fig. F.5a shows
the 400 SMs voltages vCi in per-unit of the upper arm of phase a (similar results can be found
for the others 5 arms). Also, the algebraic sum of all the SMs voltages within this arm is
shown, i.e. vU

Ca. In Fig. F.5b, the difference between the most and less charged SMs and the
5 % limit imposed on ∆Vtol are shown. As it can be seen, the SMs are maintained in a close
range within the imposed limit.

v
U
Ca

v
C

[p
u ]

Time [ms]
0 10 20 30 40 50 60 70 80 90

0.9

0.95

1

1.05

1.1
∆Vtol

∆Vtol

max(vC) - min(vC)

∆
V
to
l
[%

]

Time [ms]
0 10 20 30 40 50 60 70 80 90
4

4.5

5

5.5

Figure F.5 – Simulation results for Low-level control: Sub-modules voltages

F.3 MMC High level controllers

In this section, the different High-level control structures used in this Thesis are detailed:
first, the two main modulation indices calculations used in this Thesis are described (Uncom-
pensated and Compensated modulation). Then, the different strategies defined by the “Inner
Control Loops” and “Outer Control Loops” from Fig. F.3 are shown. For the sake of simplic-
ity, the AC-side outer loops, the direct control of active and reactive powers from Fig. 1.8 are
adopted for all strategies.
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For the evaluation and discussion of each High level control, a simulation case study is
proposed. Starting with no power transfer, and assuming a constant DC voltage fixed at 1 pu,
the following events are considered:

1. At t = 0.05 s: Ramp applied on P ∗
ac from 0 pu up to 1 pu in 100 ms.

2. At t = 0.35 s: Amplitude AC voltage from phase a, i.e. vG
a , drops 20 %, generating an

unbalance AC grid condition during 100 ms.
3. At t = 0.55 s: Step applied on P ∗

ac from 1 pu down to 0.5 pu.
4. At t = 0.8 s: Step applied on Q∗

ac from 0 pu up to 0.2 pu.

The simulation scenario is described graphically in Fig. F.6, where Fig. F.6a shows the active
and reactive power references, and Fig. F.6b the AC voltage. It is recalled that the presented
controllers are not designed exclusively for dealing with an AC unbalanced scenario. However,
several improvements are readily available in the literature for this cases, such as the ones
proposed in [225–227].
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Figure F.6 – Scenario for the evaluation of different MMC High level controllers

F.3.1 Implementation of different modulation techniques: UCM
and CM

Throughout this Thesis, two main modulation indices calculation techniques were widely
used, namely “Uncompensated Modulation” (UCM) and “Compensated Modulation”, which
are shown in Fig. F.7. In this Figure, it is also shown the implementation of the block “Σ-∆
to “U”-“L”” from Fig. F.3, where the decoupling actions are shown [117].

The UCM strategy is depicted in Fig. F.7a, and as it can be seen, the 6 modulation indices
signals are generated from the division of the 6 modulated arm voltages references by the
DC voltage vdc. This last signal may be obtained by the actual measure of the DC voltage
or a fixed nominal value; however, the first option is preferred since the stability is slightly
improved as studied in [179]. It is important to note that the modulation indices signals
are later on multiplied by the respective equivalent arm capacitor voltages in the Low-level
control, as given in (F.1). The difference between the arm modulated voltages v∗

m in Fig. F.7a
and the variables v∗′

m from Fig. F.4 creates an error which is the responsible of the natural
power balance between the AC and DC sides, as shown in Section 2.5 and studied in [115].
However, the main drawback of this modulation technique is the appearance of circulating
currents (or iΣ

dq), which are later suppressed by the CCSC [135].
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Figure F.7 – Modulation strategies (in SI)

The CM strategy is depicted in Fig. F.7b, where it can be seen that the modulation indices
are obtained by the division of the arm voltages references by their respective equivalent arm
capacitor voltages. This corresponds to an exact inversion of the fundamental equation of
the AAM as given in (2.1) and described later in Fig. 3.23. It is important to note that the
modulation indices signals are later on multiplied back again by the respective equivalent arm
capacitor voltages in the Low-level control, as given in (F.1), providing v∗′

m = v∗
m. For this

reason, the natural balance of the AC and DC powers is lost and explicit control of the MMC
internal variables is mandatory at this point [228]. However, the advantage of this strategy is
that there is no circulating currents naturally induced as it was the case for UCM [137].

Naturally, the modulation indices signals are limited between 0 and 1 since, in this work,
the Half-Bridge SM topology is considered. The basic limits are given by the bypassing of
all sub-modules (corresponding to a modulation index equal to m = 0) or the insertion of all
sub-modules (corresponding to m = 1). The rest of the control limitations are not explicitly
implemented, since this Thesis deals with normal scenarios where the converters are maintained
within their nominal values [229].

F.3.2 Measurements and per-unitation

The control structures in this Thesis are implemented with a per-unit approach. In this
section, the measures and further per-unitation from Fig. F.8 are described.

In Fig. F.8a, the adopted Synchronization structure for aligning the AC voltage phasor
with the d axis is shown. It consists in the classical Phase Locked Loop control loop widely
used in the literature [64]. The outputs of this controller are the AC voltages at the Point of
Common Coupling (PCC-AC) in dq frame and in per-unit, vpcc

d,pu and vpcc
q,pu (note that from now

on, the sub-script “pu” is used to denote per-unit variables). Moreover, the estimated angular
frequency ωC,pu and angle θC are also obtained.

In Fig. F.8c, the calculations of the “Σ” and “∆” currents are shown. Also, the Park
transformations at −2ω and ω are used to obtain the dqz components of the aforementioned
currents. Note that the “∆” currents corresponds to the grid currents. In Fig. F.8b, the DC

liv
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Figure F.8 – Synchronization, Measures and per-unitation

side measurements are shown, where the DC current idc,pu is calculated as the sum of the “Σ”
currents iΣ

abc,pu.
Finally, the energies “Σ” and “∆” are calculated as depicted in Fig. F.8d based on the

equivalent arm capacitor voltages.

F.3.3 Classical CCSC

The Classical CCSC control strategy from Section 3.2 is shown in Fig. F.9. For this strat-
egy, the UCM technique from Fig. F.7a is adopted. Note that the obtained modulated reference
voltages are transformed to abc frame and SI before sending the signals to the “Modulation
Indices Calculation”.

Simulation results with Classical CCSC

In Fig. F.10, the simulation results of the single MMC with Classical CCSC in the described
scenario in Fig. F.6 are gathered. Results for the grid currents i∆

dq shows a slight coupling during
the simulation, particularly for the steps applied on P ∗

ac and Q∗
ac. This coupling is mainly due

to the UCM technique from Fig. F.7a. During the AC unbalance event, the grid currents
oscillate at 2ω, which is the main limitation of the SRRF controllers (dq) when dealing with
these events [140]. This oscillations are transferred to the DC side as seen in the results from the
middle figure [230]. From the results of the currents iΣ

abc, it can be observed that the circulating
currents are eliminated. However, several oscillations on the DC current are observed due to
the lack of dedicated controller on this current as explored in Section 3.2. Nevertheless, the
arm capacitor voltages vU

Cabc and vL
Cabc are well balanced during the simulation.

In Fig. F.11, results for the modulated voltages vΣ
m for the period of time from 0.30 s up to

0.65 s are shown. Also, results of the currents iΣ
abc for the same period are plotted. As seen
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Figure F.9 – EMT implementation of Classical CCSC from Section 3.2
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Figure F.10 – EMT simulation results for Classical CCSC

from Fig. F.9, the modulated voltage reference vΣ∗
mz generated by the High level control is fixed

to vdc/2, however, the actual modulated voltage vΣ
mz created by the MMC is naturally adapted

for the induction of the current idc for balancing the AC and DC powers (it is recalled that
iΣ
z = idc/3). When the AC unbalance occurs, the coupling originated from the UCM generates

the 2ω oscillations on idc. Finally, when the AC power step is applied at t = 0.55 s, the voltage
vΣ

mz experiments an uncontrolled transient, causing the high excursion on the DC current. It
is recalled that, for this reason, the Energy-based controllers were introduced in Chapter 3.
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Figure F.11 – Results from “Σ” voltages and currents for Classical CCSC

F.3.4 Energy-based controller # 1

The first Energy-based control strategy used in this Thesis was presented in Section 3.3
which was based on the results from [163], and its implementation is shown in Fig. F.12. This
control structure is similar to the one in Fig. F.9 with the inclusion of two extra control loops:
for the DC current and total energy (highlighted in light yellow).
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Figure F.12 – Energy-based controller # 1 from Section 3.3 [163]

The AC and DC power references are marked in red, i.e. P ∗
ac,pu and P ∗

dc,pu for highlighting
the fact that the Energy-based control strategies are based on the explicit control of both
powers independently. This strategy was used in Section 3.3 in conjunction with the UCM
technique. When considering CM with this strategy, the un-controlled energies compromises
the systems stability.
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Simulation results with Energy-based controller # 1

Simulation results are gathered in Fig. F.13. The dynamics of the AC currents and arm
capacitor voltages are similar as for the Classical CCSC. However, the transient of the DC
current is improved.
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Figure F.13 – EMT simulation results for Energy-based controller # 1

In Fig. F.14, results for the modulated voltages vΣ
mabc and currents iΣ

abc are shown, similarly
as in Fig. F.11. Even if the DC current is controlled, vΣ

mz 6= vΣ∗
mz due to the using of UCM.
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Figure F.14 – Results from “Σ” voltages and currents for Energy-based controller # 1
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F.3.5 Energy-based controller # 2

The Energy-based control strategy # 2 was presented in Section 3.4, and it is based on the
main findings from [114] and [116], and its implementation is shown in Fig. F.15. In this case,
the energy controllers per-phase is clearly highlighted [170].
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Figure F.15 – Energy-based controller # 2 from Section 3.4

In this Thesis, this controller is implemented with the CM modulation. However, the use
of UCM is also possible as performed in [162], but the presence of circulating currents iΣ

dq

obliges the use of an extra CCSC, as in [117]. All the control details from this strategy are
well documented in [114] and [116].

Energy-based controller # 2 for Wind Farm Connection

In Fig. F.16, the AC side controller for Wind Farm connection as used in MMC-4 from
Section 5.6 is shown. This controller is not based on the PLL synchronization loop: the AC
angle is generated by this controller. Since there is no closed-loop control for the AC voltage,
this strategy may be referred as open-loop control for WF connections.
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Figure F.16 – AC side controller for Wind Farm connection as used in MMC-4 from Section 5.6

For the rest of the controller, the lower part from Fig. F.15 was used, where the AC power
compensation used for the DC power reference generation is now the measured AC power
instead of P ∗

ac,pu.
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Simulation results with Energy-based controller # 1

Simulation results are gathered in Fig. F.17. The dynamics of the AC currents improved
with respect to the previous control strategies, while simultaneously maintaining a good regula-
tion of the DC current. The arm capacitor voltages presents different dynamics as in previous
cases; however the arms are correctly equilibrated.
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Figure F.17 – EMT simulation results for Energy-based controller # 2

In Fig. F.18, results for the modulated voltages vΣ
mabc and currents iΣ

abc are shown, similarly
as in Fig. F.11. Note that vΣ

mz is now equal to vΣ∗
mz due to the using of CM. This choice allows

an accurate control of all the MMC currents, i.e. i∆ and iΣ. During the unbalanced event, the
DC current results unmodified, meaning that the 2ω perturbation is accurately isolated from
the DC side.

F.3.6 Energy-based controller for energy “Σ” in αβz frame

Finally, the Energy-based controller for the energy “Σ” in αβz frame is presented. This
control approach presents several advantages when dealing with unbalanced AC systems, since
advanced modifications can be added to cope with this scenarios as studied in [168, 169].
The energy measures are first referred to the αβz axes as shown in (F.2), where the Clarke
transformation Cαβz from Appendix A is used.

iΣ
αβz,pu = CαβziΣ

abc,pu (F.2a)

W Σ
αβz,pu = CαβzW Σ

abc,pu (F.2b)

The control structure is shown in Fig. F.19. As it can be seen, the energy “∆” is still
implemented in abc frame and it is the same as in Fig. F.16. However, this controller may
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Figure F.18 – Results from “Σ” voltages and currents for Energy-based controller # 2

be also referred to the αβz frame if desired, as explored in [79, 167, 168], to name a few. The
energy references W

Σ∗
α,pu and W

Σ∗
β,pu are set to zero, similarly as for the dq references described

in Section 3.4.2.

ωpuL
ac
eq,pu

vpccd,pu

i∆∗

d,pu

i∆∗

q,pu

i∆d,pu

i∆q,pu

+

−

−

+

v∆∗

md,pu
++

+

−
+

+
PIi∆

PIi∆

Inner control loops

vΣ∗

mα,pu

vΣ∗

mβ,pu

v
pcc
d,pu

÷

÷

v
pcc
d,pu

Q∗
ac,pu

P ∗

ac,pu 2

3

2

3

vpccq,pu

P
−1
ω

θC

v∆∗

mz,pu

v∆∗

mq,pu

ωpuL
ac
eq,pu

Vdqb

Vdcb

v
Σ∗

mabc

pu to SIOuter

Control loops

vdc,pu

2

iΣz,pu

iΣ∗

z,pu +

−

vΣ∗

mz,pu−

+
PIiΣ

1

3

vdc,pu

÷

i∗dc,puP ∗

dc,pu

PIWΣ

+

−

WΣ∗

z,pu

Wz,pu

+

P ∗
ac,pu

C
−1

αβz

PIWΣ

+

−

W
Σ∗

α,pu

WΣ
α,pu

PIWΣ

+W
Σ∗

β,pu

Notch

(2ω)

−WΣ
α,pu

Notch

(2ω)

i∗α,dc,pu

Cαβz

iΣ∗

abc,ac,pu

R K

ωt
iΣ∗

′

a,ac,pu

iΣ∗
′

b,ac,pu

iΣ∗
′

c,ac,pu

W∆∗
a,pu

CW∆

W∆∗

b,pu

W∆∗
c,pu

W∆
a,pu

W∆
b,pu

W∆
c,pu

−

Notch

(ω)

V G

+

−

iΣα,pu

+

−
PIiΣ

i∗β,pu

i∗α,dc,pu

i∗β,dc,pu
i∗β,dc,pu

i∗α,pu

iΣβ,pu

+

−
PIiΣ

i∗α,ac,pu
i∗β,ac,pu

+

+

v
∆∗

mabc

CM

m
U
abc

m
L
abc

F
ig
.
F
.7
b

Figure F.19 – Energy-based controller in αβz frame for energy “Σ” suitable for energy-
management strategy from Section 5.5.2

As it can be seen from Fig. F.19, the DC current (i.e. iΣ
z ) and total energy control loops

are the same as for the Energy-based control # 1 from Fig. F.12 (highlighted in light yellow).
Once again, the explicit control of P ∗

ac,pu and P ∗
dc,pu are highlighted.
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Simulation results with Energy-based controller in αβz frame for energy “Σ”

Simulation results are gathered in Figs. F.20 and F.21. As observed in the results, a similar
behavior is obtained as with the Energy-based controller # 2.
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Figure F.20 – EMT simulation results for Energy-based controller in αβz frame for energy “Σ”
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Figure F.21 – Results from “Σ” voltages and currents for Energy-based controller in αβz frame
for energy “Σ”
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Appendix G

Energy Based controllers
representation in SRRF

In this Appendix, the mathematical demonstrations and developments of the Energy-based
controller representation in SRRF are given, based on the main findings of [162].

G.1 MMC Energy calculations

G.1.1 Energy expressions in abc frame

The energy sum W Σ
j and difference W ∆

j are calculated as expressed in (G.1) and (G.2)
respectively [162]. In Fig. G.1, results of the energies from the simulation discussed in Sec-
tion 2.3.3 are provided.

W Σ
j =

1
2

Carm

((
vΣ

Cj

)2
+
(
v∆

Cj

)2
)

(G.1)

W ∆
j =

1
2

Carm

(
2vΣ

Cjv
∆
Cj

)
(G.2)
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Figure G.1 – MMC Steady State Analysis - Energies
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As observed in Fig. G.1a, the variables W Σ
abc are oscillating at 2ω with negative sequence.

The main frequencies for are W Σ
abc shown in the FFT from Fig. G.1b, which reveals that some

components of 4ω are also present. Moreover, results for the variables W ∆
abc given in Figs. G.1c

and G.1d, show that the main oscillations are ω and 3ω. Naturally, the “Σ-∆” variables of the
MMC energies also follows the frequency classification given in Table 2.1.

G.1.2 Energy expressions in dqz frame

The expressions of the MMC energies in dqz frame are obtained as shown in (G.3), where
the Park transformation at −2ω is used for W Σ

abc, and the Park transformation at ω is used
for W ∆

abc, as suggested by the results from Fig. G.1.

W Σ
dqz

def= P−2ωW Σ
abc (G.3a)

W ∆
dqz

def= PωW ∆
abc (G.3b)

Energy sum calculation in dqz frame

Taking into account (G.1), the three-phase energy sum W Σ
abc = [W Σ

a , W Σ
b , W Σ

c ]⊤ is
calculated as a function of the arm capacitor voltages in dqz frame as follows (see (2.17)):

W Σ
abc =

1
2

CarmP
−1

−2ω
vΣ

Cdqz◦P
−1

−2ω
vΣ

Cdqz +
1
2

CarmP −1
ω v∆

Cdqz◦P −1
ω v∆

Cdqz (G.4)

where it is recalled that vΣ
Cdqz = [vΣ

Cd vΣ
Cq vΣ

Cz]⊤ and v∆
Cdqz =

[
v∆

Cd v∆
Cq v∆

Cz

]⊤
. It is worth

noticing that the operator “◦” represents the element-wise multiplication of vectors (e.g.
[ a

b ]◦[ c
d ] = [ ac

bd ]). Moreover, it is recalled that the zero-sequence of the arm capacitor volt-
ages “∆” is expressed as v∆

Cz = v∆
CZd

cos(3ωt) + v∆
CZq

sin(3ωt).
Multiplying (G.4) by P−2ω, taking into account (G.3a), and neglecting the 6th harmonic

component (G.5) is obtained.

W Σ
dqz =



W Σ

d

W Σ
q

W Σ
z


 = 1

2
Carm




(
v∆

Cd

)2 −
(
v∆

Cq

)2
+ 2v∆

CZd
v∆

Cd + 2v∆
CZq

v∆
Cq + 4vΣ

CdvΣ
Cz

2v∆
Cqv

∆
CZd

− 2v∆
Cdv∆

CZq
− 2v∆

Cdv∆
Cq + 4vΣ

Cqv
Σ
Cz(

v∆
Cd

)2
+
(
v∆

Cq

)2
+
(
v∆

CZd

)2
+
(
v∆

CZq

)2
+
(
vΣ

Cd

)2
+
(
vΣ

Cq

)2
+ 2

(
vΣ

Cz

)2


 (G.5)

The expression from (G.5) relates the energies W Σ
dqz with the arm capacitor voltages in

dqz, i.e. vΣ
Cdqz and v∆

CdqZ .

Energy difference calculation in dqz frame

Taking into account (G.2), the three-phase energy difference vector W ∆
abc = [W ∆

a W ∆
b W ∆

c ]⊤

is calculated as a function of the arm capacitor voltages in dqz frame as follows:

W ∆
abc = Carm

(
P

−1

−2ω
vΣ

Cdqz◦P −1
ω v∆

Cdqz

)
(G.6)

Multiplying (G.6) by Pω and taking into account (G.3b), the expression of W ∆
dqz is obtained

as in (G.7).

W ∆
dqz = CarmPω

(
P

−1

−2ω
vΣ

Cdqz◦P −1
ω v∆

Cdqz

)
(G.7)

lxiv



The results for the dq components from (G.7) are time-invariant after neglecting the 6th

harmonic component. However, the zero-sequence W ∆
z is pulsating at 3ω, as shown in (G.8).

The same technique as for the zero-sequence component of v∆
Cz may be applied as explained

in Section 2.4.1, i.e., an auxiliary virtual variable W ∆
Zβ which is 90° phase-shifted from W ∆

z

(renamed W ∆
Zα for convenience) is created. This is done by respectively replacing the sin(3ωt)

and cos(3ωt) that appear in (G.8) by sin(3ωt) and − cos(3ωt), as given in (G.9).

W ∆
z = Carm

(
v∆

CdvΣ
Cd + v∆

Cqv
Σ
Cq + 2v∆

CZd
vΣ

Cz

)

︸ ︷︷ ︸
W ∆

Zd

cos(3ωt) + ... (G.8)

... + Carm

(
v∆

Cqv
Σ
Cd − v∆

CdvΣ
Cq + 2v∆

CZq
vΣ

Cz

)

︸ ︷︷ ︸
W ∆

Zq

sin(3ωt)

W ∆
Zα

= W ∆
Zd

cos(3ωt) + W ∆
Zq

sin(3ωt) (G.9a)

W ∆
Zβ

= W ∆
Zd

sin(3ωt) − W ∆
Zq

cos(3ωt) (G.9b)

Furthermore, the expression from (G.9) is written in vector form as in (G.10), with the defini-
tions given in (G.11) and T

−1
3ω = T3ω the rotational transformation defined in (2.32).

W ∆
Zαβ

= T
−1
3ωW ∆

Z , (G.10)

W ∆
Zαβ

def= [W ∆
Zα

W ∆
Zβ

]⊤; W ∆
Z

def= [W ∆
Zd

W ∆
Zq

]⊤ (G.11)

Finally, an extended definition of the modulated voltage difference is introduced as W ∆
dqZ

def=
[W ∆

d W ∆
q W ∆

Zd
W ∆

Zq
]⊤ and is expressed in (G.12).

W ∆
dqZ =




W ∆
d

W ∆
q

W ∆
Zd

W ∆
Zq
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 = Carm
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
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CdvΣ

Cz − v∆
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CZd
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CZq

vΣ
Cq

2v∆
Cqv
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Cz − v∆

Cqv
Σ
Cd − v∆
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CZd
vΣ

Cq + v∆
CZq

vΣ
Cd
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CdvΣ

Cd + v∆
Cqv
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CZd
vΣ

Cz

v∆
Cqv

Σ
Cd − v∆

CdvΣ
Cq + 2v∆

CZq
vΣ

Cz




(G.12)

G.2 Methodology for expressing Energy based controllers

in abc to dqz frame

In order to illustrate the methodology, the following subsections explains the reformulation
of a generic set of three-phase PI controllers in the abc frame, and a second-order notch filter
used to extract the average value of the per-phase energy components.

G.2.1 Generic PI controller

As an example, let us consider the generic three-phase PI controller in abc frame from
Fig. G.2. It is controlling the variables Xabc = [Xa Xb Xc]⊤ to their references X∗

abc =
[X∗

a X∗
b X∗

c ]⊤. The outputs of the controllers are Yabc = [Ya Yb Yc]⊤, and the states of the
integral parts are ξabc = [ξa ξb ξc]⊤. It is considered that the variables Xabc are pulsating at
an angular frequency nω.
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Figure G.2 – Generic three-phase PI independent controllers in abc frame

The reformulation of the generic PI from Fig. G.2 to the SRRF frame at nω is performed
in two steps. First, the integral part of the controller is obtained and second, the controllers
output.

The differential equation of the integral part is:

Ti
dξabc

dt
= X∗

abc − Xabc (G.13)

This equation can be related to the dqz components at nω as,

Ti

dP −1
nωξnω

dqz

dt
= P −1

nωXnω∗

dqz − P −1
nωXnω

dqz (G.14)

where

ξnω
dqz = Pnωξabc; Xnω

dqz = PnωXabc; Xnω∗

dqz = PnωX∗

abc (G.15)

Expanding (G.14) and multiplying by Pnω results in (G.16).

Ti

dξnω
dqz

dt
= Xnω∗

dqz − Xnω
dqz − Ti Pnω

dP −1
nω

dt︸ ︷︷ ︸
nJω

ξnω
dqz (G.16)

where the coupling matrix nJω was introduced in (2.20).
The output of the controller in abc frame is expressed as,

Yabc = ξabc + Kp (X∗

abc − Xabc) . (G.17)

With the definitions given in (G.15), (G.17) may be written as,

Yabc = P −1
nωξnω

dqz + Kp

(
P −1

nωXnω∗

dqz − P −1
nωXnω

dqz

)
(G.18)

Multiplying (G.18) by Pnω yields,

Y nω
dqz = ξnω

dqz + Kp

(
Xnω∗

dqz − Xnω
dqz

)
(G.19)

The complete PI structure in dqz frame at nω is determined by (G.16) and (G.19). These
results are expressed in block-diagram form in Fig. G.3. This model is the result of applying
the Park transformation to the three-phase PI controllers from Fig. G.2. It can be noted that
the cross-couplings in the model represents the phase-shift resulting from the application of PI
controllers for tracking sinusoidal signals, and should not be confused with decoupling terms
in a classical dq current controller.
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Figure G.3 – Generic three-phase PI controllers from Fig. G.2 in dqz frame

G.2.2 Second order notch filter

The filters used for the energies W Σ
abc and W ∆

abc are second order notch filters tuned
at their corresponding frequencies. As an example, let us consider the three phase signals
Uabc = [Ua Ub Uc]⊤ and the filtered values Y abc = [Y a Y b Y c]⊤. The second order transfer
function of the notch filter for the phase j is:

Y j

Uj

=
s2 + ω2

n

s2 + 2ζωns + ω2
n

(G.20)

where ωn is the natural frequency and ζ is the damping coefficient. Equation (G.20) may be
written as a second order differential function as:

d2Y j

dt2
+ 2ζωn

dY j

dt
+ ω2

nY j =
d2Uj

dt2
+ ω2

nUj (G.21)

Choosing the following state variables:

F1j
def= Y j − Uj (G.22a)

F2j
def=

dY j

dt
− dUj

dt
+ 2ζωnF1j + 2ζωnUj (G.22b)

The output of the notch filter can be obtained directly from (G.22a). Derivating the states
from (G.22) and generalizing for a three-phase system it is obtained:

dF1abc

dt
= F2abc − 2ζωnF1abc − 2ζωnUabc (G.23a)

dF2abc

dt
= −ω2

nF1abc (G.23b)

Y abc = F1abc + Uabc (G.23c)

where F1abc = [F1a F1b F1c]⊤ and F2abc = [F2a F2b F2c]⊤.
Equation (G.23) can be transformed into the SRRF as:

dF1dqz

dt
= F2dqz − 2ζωnF1dqz − 2ζωnUdqz − JnωF1dqz (G.24a)

dF2dqz

dt
= −ω2

nF1dqz − JnωF2dqz (G.24b)

Y dqz = F1dqz + Udqz (G.24c)

where F1dqz = [F1d F1q F1z]⊤, F2dqz = [F2d F2q F2z]⊤, Udqz = [Ud Uq Uz]⊤ and Y dqz =
[Y d Y q Y z]⊤. Equation (G.24) summarizes the three-phase notch filter in dqz frame.
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Appendix H

DC Cable Modeling For Small-Signal
Stability Analysis

One of the main components (and expensive indeed) of HVDC systems are the underground
cables [42]. As for the converters, several models of the “real cables” are available for different
kind of studies, as briefly summarized in Fig. H.1. The study of the DC cables exceeds the
scope of this report: only the methodology for obtaining a cable model for interoperability
studies is detailed.

Real Cable Wideband model

• PI cable model with
frequency-dependent
parameters

• Suitable for EMT si-
mulations

• Need algorithms for
relating frequency-
domain models
with time-domain
simulations

• Designed for each
HVDC project

• Parameters defined
for rated power and
voltage levels mostly

Constant parameter models

• PI structure with constant para-
meters

• Models based on constant values
for R, L, C elements

Needed for small-signal studies

Figure H.1 – Modeling of DC cables for system studies

The most used cable model is the universal line model which is presented in [231], and
implemented in the main EMT simulation software as EMTP-RV or PSCAD with the name of
Wideband model (Fig. H.1). The particularity of the Wideband model is the detailed frequency-
dependent behavior which is inherent of each cable and depends on its physical characteristics
[232]. The difficulty of expressing this model with a state-space representation makes impossible
its utilization for small-signal stability studies.

In many publications and studies, it is usual to represent the cable with a Classical-PI
equivalent circuit, composed with R, L and C (constant parameters). However, this represen-
tation presents many limitations as already studied in [9, 74]. The main issue is the presence
of unreal resonances which can conduct to false conclusions regarding the HVDC system.

Once the limitations of the Classical-PI cable model were pointed out, the author from [74]
proposed a modification of the model for improving the accuracy with a new one called Coupled-
PI. It is based on a physical comprehension of the DC cable and it modifies the typical PI
structure for taken into account the coupling between the core and the screen. This is done with
the insertion of a series inductance coupled with the screen circuit. Nevertheless, the Coupled-
PI model fails to represent accurately the frequency dependence of the model parameters [9].

From the discussion in [74], the authors from [195] were motivated for improving the cable
modeling for stability studies. The intention is to capture the frequency dependence of the
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parameters with a modified PI model with constant parameters [196], resulting in the so-called
Frequency Dependant-PI model (FD-Π) [195]. This model is the scope of this Appendix.

The rest of this Appendix is organized as follows: the cable models Wideband and FD-Π are
first discussed and then the parameters and main assumptions are stated. Also, the method-
ology for obtaining the fitted parameters is explained. Finally, frequency and time domain
simulations are carried on for validating the obtained model.

H.1 Wideband model

For EMT simulations, the Wideband model is the preferred one because of its high accuracy
without compromising the simulation times. As it was stated before, the information needed for
obtaining this model are the physical parameters of the cable. The considered parameters for
the Wideband model are shown in Tables H.1 and H.2 which were provided by Dr. Salvatore
D’Arco and Dr. Andrzej Holdyk1. The main assumption is that the armour and sheath are
considered to be perfectly grounded, hence they can be eliminated by Kron reduction [195]. This
implies that the voltages in armour and sheath remain limited, which is a realistic assumption
for submarine HVDC power cables [233].

Table H.1 – EMT Cable Data - Single core - Number of cables: 1

Number Vertical Horizontal Outer
of Distance Distance Insulation

Conductors [m] [m] Radius [m]

3 1 0 0.0637

Table H.2 – EMT Cable Data - Conductor/Insulator

Conductor Inside Outside Resistivity Relative Insulator Insulator Insulator Phase
Number Radius Radius ρ Permeability Relative Relative Loss Factor Number

Rin Rout [Ω-m] MUE Permeability Permittivity LFCT-IN KPH
[m] [m] MUE-IN EPS-IN

1 0 0.0195 1.68E-08 1 1 2.658 0.001 1
2 0.0487 0.0517 2.20E-07 1 1 2.3 0.001 0
3 0.0547 0.0587 1.80E-07 10 1 2.3 0.001 0

The parameters from Tables H.1 and H.2 are loaded into the EMTP block “Cable DATA”,
creating the frequency-dependence parameters of the cable. Then, the block “WB Fitter”
generates a model data file to be used by the cable model “WB m - phase”. This process is
shown in Fig. H.2.

Figure H.2 – EMTP Wideband cable implementation

The resultant Wideband cable model can be represented as a PI model where their pa-
rameters vary with respect to the frequency f of the inputs as shown in Fig. H.3. The series

1The author acknowledge Dr. Salvatore D’Arco and Dr. Andrzej Holdyk for providing the cable model in
EMTP-RV.
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Figure H.3 – EMTP Wideband cable interpretation

resistance and inductance are noted as Rz(f) and Lz(f), respectively. The shunt parame-
ters are noted as Gz(f) and Cz(f) for the conductance and capacitance. The parameters are
obtained by their respective value per kilometer as:

Rz = rz × d; Lz = lz × d; Gz = gz × d; Cz = cz × d (H.1)

where rz, lz, gz and cz are the parameters per kilometer and d is the length of the cable in
kilometers.

The frequency dependence of the parameters are plotted in Fig. H.4 per km. The series
resistance rz augment with higher frequencies and the inductance lz tends to be smaller. For
being able to represent the dynamics of the cable when studying the stability, the considered
cable should be able to represent this characteristic to a certain extent.
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Figure H.4 – Frequency dependence parameters of wideband cable

Figure H.4c shows the variation of the conductance gy(f) with the frequency. Even if
the conductance presents a variation for high frequencies, the order of magnitude is very low
(meaning that the shunt resistance is in fact extremely large, so little current will flow in this
element). For this reason, it is safe to consider this parameter as a constant, or even neglect
it. Finally, the capacitance cy(f) is shown in Fig. H.4d. As it is observed, cy(f) is modeled as
a constant value for all frequencies. This is proper to the EMT software [195].

The following section explains how to obtain a PI model with constant parameters that
replicates the frequency characteristic of the cable.
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H.2 Frequency Dependent-PI cable model

This section describes the methodology used for modeling the DC cable as described in [195].
The key idea is to propose a “PI cell” structure with parallel branches in the series circuit as
shown in Fig. H.5. The N parallel branches on each cell are meant to reproduce the frequency
dependence of rz(f) and lz(f) from Fig. H.3. The M cells in series are aimed to approximate
the hyperbolic correction factors [195].
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Figure H.5 – PI model with parallel branches - “FD-Π”

Equivalent circuit

If infinite numbers of N and M are considered, the Wideband model and the FD-Π should
virtually present the same impedance variation with respect to the frequency. Nevertheless, if
large number of cells and parallel branches are used, the order of the system increase exponen-
tially [234], making the modeling of DC grids cumbersome and difficult to analyze. For this
reason, only one cell with three parallel branches are considered as shown in Fig. H.6. The
parameters are obtained with (H.1).
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Rz3 Lz3
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Cy
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Gy
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Cy

2
Gy
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vin
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vout
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iin iout

iY 1 iY 2

Figure H.6 – Equivalent circuit of “FD-Π model” for N = 3 and M = 1.

As discussed previously, the value of gy will be considered as a constant value (or even
neglected) since its value and variation respect to the frequency are rather low as seen in
Fig. H.4c. In case of cy, its value is taken directly from Fig. H.4d.

The following section describes the methodology for obtaining the values of rz1, rz2, rz3,
lz1, lz2 and lz3.
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Methodology for obtaining the fitted parameters

The methodology is based on the rational approximation of frequency domain responses by
vector fitting as presented in [235]. The general problem formulation is based in the rational
function approximation given as:

Fest(s) =
N∑

n=1

cn

s − an

+ e + sh (H.2)

Given the frequency response of the “real” system Freal(s), the vector fitting technique esti-
mates all the coefficients in (H.2) so the frequency response of Fest(s) approximates the fre-
quency response of Freal(s). The theory behind this technique exceeds the topic of this report
and the vector fitting technique is used just as a tool, which can be downloaded from [236].

Considering only the parallel branches from Fig. H.6, as in Fig. H.7, the admittance of the
equivalent branch is expressed as in (H.3).

lz1

rz1

lz2

rz2

lz3

rz3

I

V

Figure H.7 – Parallel branches from Fig. H.6

Yest(s) =
I(s)
V (s)

=
N=3∑

n=1

1
lzns − (−rzn)

(H.3)

Note that the expression of Yest(s) in (H.3) is similar to the general formulation in (H.2) if
it is considered cn = 1 and e = h = 0. The “−” sign in the denominator of (H.3) is added for
having a similar formulation than (H.2).

From the output data of rz(f) and lz(f) from the Wideband cable (Figs. H.4a and H.4b),
it is possible to obtain the “real” admittance Yreal(s) of the series parameters as a function of
the frequency as:

Yreal(2πf) =
1

conj(Zreal(2πf))
(H.4)

Once the “real” admittance Yreal(s) is obtained, the vector fitting tool is used for placing
the poles of (H.3) automatically in a proper position to fit the frequency response (“vectfit3”
function from [236]). The vector fitting tool presents many options for this tasks, as iterative
placement, initial position of the poles, etc. These options may result in different final positions
of the pole placement, but the exploration of all the possibilities exceed the scope of this work.
The results of the fitted admittance is shown in Fig. H.8.

The difference on the magnitude and the angles are calculated as the absolute value of
the difference of the admittance of the real and fitted response. The maximum difference in
the magnitude is around 0.8 Ω−1 and it occurs near 0.35 Hz. This error hasn’t a big impact
on the overall frequency response of the complete FD-Π model since, at this low frequency,
the cable behaves more likely a pure capacitor since the series inductance are almost not
solicited. The biggest error on the angle is around 6.5° and it visible around a frequency
of 815Hz. For improving the fitted response, the number of parallel branches (N) can be
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Figure H.8 – Comparison of the fitted admittance Yest(s) from the vector fitting tool and the
reference Yreal(s)

augmented. Nevertheless, the order of the cable will grow rapidly making the further analysis
more complicated.

The output from the function “vectfit3” are the poles of Yest(s) and the associated state-
space function, so another step is needed for obtaining the values of rz1, rz2, rz3, lz1, lz2 and lz3.
This is obtained by converting the state-space model having common pole set into pole-residue
model (this is done with the function “ss2pr” from [236]).

lzn =
1

Reszn

; rzn = −λznlzn (H.5)

where lzn and rzn are the inductance and resistance of the parallel branch n; λzn and Reszn

are the pole and residue associated to the branch n. The “−” sign for rzn is associated with
the sign introduced in (H.3). Finally, the obtained numerical parameters with the described
methodology are listed in Table H.3.

Table H.3 – Cable parameters for the Frequency-Dependent Π model

Parameter Value Parameter Value

rz1 0.1265 Ω/km lz1 0.2644 mH/km
rz2 0.1504 Ω/km lz2 7.2865 mH/km
rz3 0.0178 Ω/km lz3 3.6198 mH/km
gy 0.1015 µΩ−1/km cy 0.16156 µF/km

H.3 Models comparison

The previous section shown how to obtain the parameters of the FD-Π cable model with
N = 3 and M = 1. In this section, the resultant model is compared with the reference Wideband
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model in frequency and time domain in EMTP-RV. For both comparison, the FD-Π model is
developed in EMTP-RV with R, L, C elements implementing the same circuit from Fig. H.6.
The considered parameters are the ones from Table H.3 and the cable length is 300 km (d).

H.3.1 Frequency domain comparison

The frequency domain comparison is done with the scheme from Fig. H.9, using the “Input
Impedance” block from EMTP-RV. The results are gathered in Fig. H.10.

HVDC Cable

Z(f)

Figure H.9 – EMTP Scheme for frequency domain comparison
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Figure H.10 – Complete frequency response comparison of the Wideband model and the
Frequency-Dependent Π model with one cell and three parallel branches – Cable length 300 km

As seen in the results comparison of the cable impedance, the FD-Π cable model shows an
acceptable accuracy up to the first resonance of the Wideband cable model (around 100 Hz).
For higher frequencies, the Wideband model have many resonances that the FD-Π model is
not capturing. For obtaining better results at these high frequencies, more cells connected in
series are needed (increasing the model order) [234]. Nevertheless, it should be studied what is
the range of resonances that will be excited in normal operation of the cable, i.e. if the model
is modeled with extremely high accuracy for all frequencies, but the converters don’t excite
those frequencies, the enormous order of the cable model is not justified.
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H.3.2 Time domain comparison

In this section the dynamic behavior of the Wideband model and the FD-Π model is com-
pared based on EMT time-domain simulation. As for the previous comparison, one end of the
cable is short-circuited, and in the other end, a current perturbation is injected while measuring
the DC voltage at the same endpoint, as shown in Fig. H.11. A DC current step of 10 pu is
injected for a duration of 200 ms, as shown in Fig. H.12a. The results of the obtained voltage
are shown in Fig. H.12b.

HVDC Cableidc
vdc

Figure H.11 – EMTP Scheme for time domain comparison
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Figure H.12 – Time domain comparison of Wideband cable model and Frequency Dependent
Π model – Cable length 300 km (d)

In Fig. H.12b a detail of the step at t = 0.1 s is also shown, where some slight differences
can be observed. Nevertheless, the Frequency Dependent Π model replicates with acceptable
accuracy the overall dynamic response of the Wideband model.
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Analyse de stabilité en petit signaux des Convertisseurs Modulaires Multiniveaux
et application à l’étude des MMC dans des Réseaux HVDC

Ces travaux de thèse portent essentiellement sur la modélisation, l’analyse et la commande
des convertisseurs de type MMC intégrés dans un contexte MTDC. Le premier objectif de ce
travail est d’aboutir à un modèle dynamique du convertisseur MMC, exprimé dans le repère
dq, permettant d’une part, de reproduire avec précision les interactions AC-DC, et d’exprimer,
d’autre part, la dynamique interne du convertisseur qui peut interagir également avec le reste
du système. Le modèle développé peut être linéarisé facilement dans le but de l’exploiter pour
l’étude de stabilité en se basant sur les techniques pour les systèmes linéaires à temps invariant.
Ensuite, selon le modèle développé dans le repère dq, différentes stratégies de contrôle sont
proposées en fonction de systèmes de contrôle-commande existantes dans la littérature mis
en places pour le convertisseur MMC. Étant donné que l’ordre du système est un paramètre
important pour l’étude des réseaux MTDC en présence de plusieurs stations de conversion de
type MMC, l’approche de réduction de modèles à émerger comme une solution pour faciliter
l’étude. En conséquence, différents modèles à ordre réduit sont développés, et qui sont validés
par la suite, par rapport au modèle détaillé, exprimé dans le repère dq. Finalement, les modèles
MMC développés ainsi que les systèmes de commande qui y ont associés sont exploités, pour
l’analyse de stabilité en petits signaux des réseaux MMC-MTDC. Dans ce sens, la stratégie
de commande associée à chaque MMC est largement évaluée dans le but d’investiguer les
problèmes majeurs qui peuvent surgir au sein d’une configuration MTDC multi-constructeurs.

Mots clés

«Réseaux à courant continu multi-terminaux», «Convertisseur modulaire multiniveaux», «Modé-
lisation dans l’espace d’états», «Stabilité en pétits signaux».

Small-signal stability analysis of Modular Multilevel Converters and application
to MMC-based Multi-Terminal DC grids

This thesis deals with the modeling and control of MMCs in the context of MTDC. The first
objective is to obtain an MMC model in dq frame which can reproduce accurately the AC- and
DC- interactions, while representing at the same time the internal dynamics which may interact
with the rest of the system. This model is suitable for linearization and stability studies, among
other linear techniques. Then, based on the developed dq model, different control strategies are
developed based on state-of-the-art MMC controllers. Since the dimension of the system is a
limiting factor for studying MTDC grids with many MMCs, different reduced-order models are
presented and compared with the detailed dq model. Finally, the developed MMC models with
different controllers are used for the MTDC studies. The impact of the selected controllers
for each MMC is evaluated to highlight the potential issues that may occur in multivendor
schemes.

Keywords

«HVDC transmission», «Modular multilevel converter», «State-Space modeling», «Small-
Signal stability analysis», «Interoperability in MTDC grids».
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