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Introduction en français

Le mot spectroscopie est composé d'une première partie d'origine latine, spectrum (ap-
parition, vision) et d'une seconde partie d'origine grecque σκοπέω (skopé	o, voir). Comme ce
nom l'indique, les techniques de spectroscopie consistent à étudier des fantômes.

C'est, par exemple, le cas de la spectroscopie d'absorption X (XAS) dont il sera beau-
coup question dans cette thèse. Le principe de cette expérience est très simple: il consiste à
éclairer l'échantillon que l'on souhaite étudier avec des rayons X d'énergie choisie et de mesurer
l'intensité lumineuse transmise. Par comparaison avec l'intensité lumineuse incidente, il est
possible de savoir quelle quantité de lumière a été absorbée par la matière. On mesure donc ce
que l'échantillon a retiré à la lumière : il s'agit du spectre du matériau. Plus précisément, si,
conformément à la Figure 1, on note I0 l'intensité incidente et I l'intensité transmise, la mesure
d'absorption consiste à évaluer une quantité proportionnelle à ln

(
I0
I

)
. Cette absorption est

généralement tracée en fonction de l'énergie E des rayons X incidents (elle pourrait de manière
équivalente être tracée en fonction de la longueur d'onde ou de la fréquence des rayons X car
ces quantités sont liées par des relations très simples). Lorsque l'intensité est su�samment
faible, on constate qu'elle décroit exponentiellement quand la lumière se propage selon z dans
l'échantillon suivant la relation I(z) = I0e−µz où µ est appelé coe�cient d'absorption linéaire
des rayons X.1

Fig. 1: Principe de l'expérience d'absorption X
(XAS). L'intensité incidente I0 ainsi que l'intensité
transmise I sont mesurées.

A l'échelle microscopique, l'absorption des rayons X par le matériau est décrite par la sec-
tion e�cace d'absorption qui est dé�nie comme le nombre de photons absorbés par centre
absorbeur divisé par le nombre de photons incidents par unité de surface perpendiculaire à
la direction de propagation. Il s'agit en fait de la surface opaque équivalente à un centre ab-
sorbeur qui serait nécessaire pour obtenir la même absorption (d'où le nom de section e�cace).
L'intensité absorbée dans une lamelle dz d'échantillon est I(z)µdz, le nombre de centres ab-
sorbeurs est ρaSdz où ρa est la densité de centres absorbeurs (qui s'exprime en atomes/volume)

1S. Ravy (2013) Cours "Structure de la matière condensée" (https://www.lps.u-psud.fr/spip.php?
article531)

1

https://www.lps.u-psud.fr/spip.php?article531
https://www.lps.u-psud.fr/spip.php?article531
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Introduction

d'obtenir des information sur la structure locale (types de ligands, distances...). Dans cette
thèse, nous nous intéressons seulement à la région XANES.

Un autre type de spectroscopie est la di�usion. Dans le cas de la di�usion, le faisceau
lumineux est dévié de sa direction initiale (voir le schéma Figure 4).

Fig. 4: Principe d'une expérience de di�usion. ki
et kf sont les vecteurs d'ondes incident et di�usé
et h̄ωi et h̄ωf sont les énergies correspondantes.

L'énergie des photons di�usés peut être la même que celle des photons incidents (di�usion
élastique) ou elle peut être di�érente (di�usion inélastique). On parle de di�usion résonante
quand l'expérience est e�ectuée à une énergie proche de l'énergie d'un seuil d'absorption.

De même que pour l'absorption, la section e�cace correspond au nombre de photons di�usés
par centre absorbeur divisé par le nombre de photons incidents par unité de surface perpendic-
ulaire à la direction de propagation. Comme la lumière émergente est recueillie par le détecteur
dans une région donnée de l'espace et pour une énergie donnée, on considère en générale la
section e�cace di�érentielle d2σ

dΩdω
qui est la section e�cace par unité d'énergie et par unité

d'angle solide. Les spectroscopies de di�usion sont abordées de manière marginale dans cette
thèse.

Le mot dichroïsme est, lui, dérivé du grec δίχροος (de deux couleurs). Ce mot a plusieurs
acceptions en physique, plus ou moins proches de son sens littéral. Le dichroïsme de rayons X
qui nous intéresse ici désigne la propriété d'un matériau à absorber di�éremment des rayons X
de polarisations orthogonales :2 verticale et horizontale pour le dichroïsme linéaire ou droite et
gauche pour le dichroïsme circulaire qui est le sujet principal de cette thèse.

Quand la lumière polarisée circulairement est absorbée di�éremment par un matériau selon
qu'elle est droite ou gauche, cela signi�e qu'une symétrie est brisée. On distingue deux types
de dichroïsme circulaire selon la nature de la symétrie brisée :

- Le dichroïsme circulaire naturel (XNCD pour X-ray natural circular dichroism) est lié à la
brisure de la symétrie d'inversion dans les échantillons non centrosymétriques.

- Le dichroïsme circulaire magnétique (XMCD pour X-ray magnetic circular dichroism) est
lié à la brisure de la symétrie par renversement du temps dans les échantillons magnétiques.

Les mesures de XNCD sont encore assez rares mais le développement du magnétisme molécu-
laire et l'apparition de composés à la fois chiraux et magnétiques ont suscité un intérêt nouveau
pour cette technique qui peut être facilement combinée avec les mesures de dichroïsme magné-
tique.

Le XMCD, en revanche, est très utilisé depuis les années 80 pour étudier le magnétisme
de matériaux complexes. Le principe de l'expérience est illustré Figure 5. Son grand intérêt,
par rapport aux mesures de magnétométries, réside dans le fait que l'on peut choisir le type
d'atome que l'on veut sonder dans la structure. Pour cela, il su�t de se placer à une énergie

2A. Rogalev, J. Goulon, F. Wilhelm and A. Bosak (2010) X-ray dectected optical activity. In E. Beaurepaire,
H. Bulou, F. Scheurer and J.-P. Kappler, editors, Magnetism and Synchrotron Radiation, number 133 in Springer
Proceedings in Physics, pages 169-190. Springer Berlin Heidelberg
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Introduction

L'interprétation des spectres de XMCD au seuil K et la compréhension des spectres de
XNCD, qui sont encore semi-quantitatives, nécessitent l'apport de nouveaux éléments théoriques.
Ce que nous proposons est de calculer les spectres ab initio, c'est à dire à partir des premiers
principes de la physique. Pour cela, il faut calculer les spectres d'absorption de la lumière
polarisée circulairement droite et gauche avec une grande précision a�n de pouvoir obtenir, en
calculant leur di�érence, le dichroïsme circulaire.

Pour calculer la section e�cace avec une précision su�sante, il est nécessaire de connaitre
son expression formelle à un ordre su�samment élevé. C'est l'objet du Chapitre 1. Dans
ce chapitre, on exprime la section e�cace d'absorption et de di�usion en incluant les e�ets
relativistes. Un point fondamental est aussi discuté: l'invariance de jauge. On montre que
la démarche usuelle ne garantit pas cette invariance et on propose une nouvelle manière de
mener les calculs pour aboutir à un résultat correct. De cette manière, nous obtenons un terme
supplémentaire par rapport aux approches proposées dans la littérature. Nous avons nommé
ce terme "spin-position". Cette expression de la section e�cace d'absorption semi-relativiste
(Section 1.7) a été utilisée pour l'implémentation numérique présentée dans la suite de la thèse.

LeChapitre 2 est consacré à la présentation de la méthode utilisée pour le calcul numérique
des spectres. Une modélisation des matériaux utilisant la théorie de la fonctionnelle de la den-
sité (DFT), qui a déjà été utilisée avec succès pour modéliser les spectres XAS, est appliquée.
L'implémentation a été réalisée dans le code XSpectra de la suite Quantum ESPRESSO.
L'idée de la méthode numérique est d'e�ectuer un calcul auto-cohérent de la structure électron-
ique en présence d'un trou de c÷ur et de calculer la section e�cace à partir des états obtenus.
Dans ce chapitre, la manière dont la méthode est implémentée est discutée en détail ainsi que
l'e�et des di�érents paramètres de convergence.

Les résultats obtenus pour des systèmes modèles (XMCD du fer, cobalt et nickel et XNCD de
l'iodate de lithium) sont présentés et discutés dans le Chapitre 3. Ces calculs sont l'occasion
de discuter le contenu physique des spectres de dichroïsme circulaire et de clari�er les ap-
proximations de notre méthode numérique. On voit dans ce chapitre que le terme relativiste
spin-position est loin d'être négligeable pour le XMCD. La dernière partie du chapitre est con-
sacrée aux règles de sommes qui permettent de mieux comprendre l'importance des di�érentes
contributions au XMCD au seuil K.

En�n, le Chapitre 4 est consacré à la présentation d'études du magnétisme sous pression
par XAS et XMCD. On présente le dispositif expérimental utilisé mais aussi la manière d'inclure
la pression dans les calculs. Deux matériaux d'intérêt technologique et fondamental sont étudiés:
l'hydrure de fer FeH et le dioxyde de chrome. FeH est obtenu par compression d'une feuille
de fer dans une atmosphère d'hydrogène, son étude concerne donc les hautes pressions de
manière inhérente. Ici, les calculs appuient et enrichissent l'interprétation des expériences.
Pour CrO2, malgré le fait que ses propriétés ferromagnétiques ont été largement utilisées pour
l'enregistrement magnétique sur les cassettes, sa structure électronique qui en fait un demi-
métal ferromagnétique est encore largement incomprise. Dans cette étude, les hautes pressions
sont un moyen de changer l'environnement des atomes de chrome qui, d'après les modèles
proposés, pourraient jouer un rôle très important pour expliquer le ferromagnétisme de CrO2.

Quoique n'étant pas totalement indépendants, ces quatre chapitres peuvent être lus isolé-
ment. En particulier, la lecture du premier chapitre, qui est très formel, n'est pas nécessaire à
la compréhension des trois autres chapitres.
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Introduction

Dans ce manuscrit sont présentés des résultats théoriques, numériques et expérimentaux
centrés sur le dichroïsme de rayons X. Pendant cette thèse, j'ai été a�liée au synchrotron
SOLEIL et à l'IMPMC (Institut de Minéralogie de Physique des matériaux et de cosmochimie).
En tant que membre de la ligne de lumière ODE, j'ai eu l'opportunité de mener et de participer
à des expériences de XAS et XMCD sous pressions (en cellule à enclumes de diamant) qui se
sont avérées très enrichissantes. J'ai aussi eu la chance de participer à des expériences de XAS
et XMCD sur la ligne ID12 de l'ESRF et de RIXS-MCD sur les lignes ID26 de l'ESRF et la ligne
GALAXIES à SOLEIL. A l'IMPMC, j'ai e�ectué aussi bien des calculs théoriques sur papier
ou sur tableau blanc que des calculs numériques parallélisés qui nécessitaient l'utilisation de
machines de calculs de hautes performances.

Cette diversité d'approches a rendu ce travail de thèse extrêmement intéressant. J'espère
que, au-delà des nouveautés théoriques et méthodologiques qu'il présente, ce manuscrit saura
clari�er les questions liées aux calculs de dichroïsme de rayons X.

NB: Ce manuscrit est rédigé en anglais. Il contient de nombreuses abréviations et des
notations mathématiques diverses qui sont listées à la �n (p. 174). Comme les références
bibliographiques se recoupent peu entre les chapitres, une bibliographie est présente à la �n de
chacun d'entre eux.
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Introduction

The word spectroscopy is composed of a �rst Latin-based part, spectrum (appearance,
vision) and a second part derived from the Greek word σκοπέω (skopé	o, to see). As the
etymology indicates, spectroscopy techniques consist in studying ghosts.

It is, for example, the case of X-ray Absorption Spectroscopy (XAS) that we will study and
discuss at length in this thesis. The principle of this experiment is far from being sophisticated:
one simply illuminates a sample with an x-ray beam of chosen energy and measures the intensity
of the transmitted light which, by comparison with the incident luminous intensity, allows
to determine the quantity of absorbed light by the material. Therefore, we measure what
has been withdrawn from the light by the material: it is the spectrum of the sample. More
precisely if, as shown in Fig. 6, we denote I0 the incident intensity and I the transmitted
one, absorption measurements consist in assessing a quantity proportional to ln

(
I0
I

)
. This

absorption is generally plotted against the energy E of the incident X-ray beam (it would be
equivalent to plot it against the wave length or the frequency of the X-rays as these quantities
are linked to each other by very simple relations). When the intensity is weak enough, it
decreases exponentially when the light propagates through the sample according to the relation
I(z) = I0e−µz with µ being called the linear X-ray absorption coe�cient.4

Fig. 6: Principle of X-ray Absorption Spec-
troscopy (XAS). The incident intensity I0 and the
transmitted intensity I are measured.

At the microscopic scale, the absorption of X-rays by the sample is described by the cross
section that is de�ned as the ratio of the number of photons absorbed per absorbing center
divided by the number of incident photons per surface unit perpendicular to the propagation
direction. It corresponds to the opaque surface that would provide the same e�ect as an absorb-
ing center. The intensity absorbed in the sample slice dz is I(z)µdz, the number of absorbing
centres is ρaSdz with ρa being the density of absorbing centers (expressed in atoms/volume)
and the intensity per surface unit is I(z)/S. Therefore, the cross section is expressed in term
of the linear absorption coe�cient as σ = µ

ρa
.

4S. Ravy (2013) Lecture notes "Structure de la matière condensée" (https://www.lps.u-psud.fr/spip.
php?article531)
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Introduction

structure (ligands type, distances...). In this thesis, we will focus exclusively on XANES region.

Another type of spectroscopy is scattering. In the case of scattering, the light beam is
deviated from its original course (see the schematic drawing Fig. 9).

Fig. 9: Principle of a scattering experiment. ki
and kf are respectively the incident and emerging
wave vectors, h̄ωi and h̄ωf are the corresponding
energies.

Energy of the scattered photons can be the same as the one of incident photons (elastic
scattering) or can be di�erent (non-elastic scattering). The term resonant scattering is used
when the experiment is done with an energy corresponding to an absorption edge.

As in the case of absorption, the scattering cross section corresponds to the ratio of the
number of scattered photons per absorbing center divided by the number of incident photons
per surface unit perpendicular to the propagation direction. As the outgoing light is collected
by the detector for a spatially delimited region and a given energy, one generally considers the
di�erential cross section d2σ

dΩdω
that is the cross section per unit of energy and unit of solid angle.

Scattering spectroscopies are marginally addressed within this thesis.

The word dichroism is, for its part, derived from the Greek δίχροος (two-colored). This
word has several meanings in physics, more or less in accordance with its literal signi�cation.
X-ray dichroism, that we are interested in here, designates the capacity for a material to absorb
di�erently X-rays of orthogonal polarization:5 vertical and horizontal for linear dichroism or
right and left for circular dichroism which is the main subject of this thesis.

When circularly polarized light is di�erently absorbed by a material depending on whether
it is left or right, it means that a symmetry is broken:

- X Ray Natural circular dichroism (XNCD) is linked to the breaking of inversion symmetry
in non-centrosymmetric samples.

- X ray Magnetic circular dichroism (XMCD) is linked to the breaking of time inversion
symmetry in magnetic samples.

XNCD experiments are still quite rare but the development of molecular magnetism and
the appearance of both chiral and magnetic compounds have triggered a renewed interest for
this technique that can easily be combined with magnetic dichroism measurements.

XMCD, on the other hand, is widely used since the eighties to study the magnetism of
complex materials. The experiment principle is illustrated in Fig. 10. Its greatest strength,
compared to magnetometry measurements, lies in the possibility to choose the type of atom to
probe within the structure. In order to do so, it is su�cient to choose an energy corresponding to
the absorption edge of the chosen element (the measurement is element selective). The success
of XMCD comes from the existence of magneto-optic sum rules. At the edges corresponding to
spin orbit split core levels (like the L2,3 edges which correspond to 2p1/2 and 2p3/2 core hole),
these sum rules relate combinations of integrals of XAS and XMCD spectra to the orbital and

5A. Rogalev, J. Goulon, F. Wilhelm and A. Bosak (2010) X-ray dectected optical activity. In E. Beaurepaire,
H. Bulou, F. Scheurer and J.-P. Kappler, editors, Magnetism and Synchrotron Radiation, number 133 in Springer
Proceedings in Physics, pages 169-190. Springer Berlin Heidelberg
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Introduction

The interpretation of K -edge XMCD spectra and the understanding of XNCD spectra, that
are still semi-quantitative, require new theory tools. Our proposal is to calculate spectra ab
initio, that is to say from �rst principles. In order to do so, we need to calculate the absorption
spectrum of right- and left-circularly polarized light with a great accuracy in order to be able
to obtain circular dichroism, by calculating their di�erence.

In order to calculate the cross section with su�cient accuracy, it is necessary to know its
formal expression at a high enough order. This is the aim of Chapter 1. In this chapter, we
express the absorption and scattering cross sections by taking into account relativistic e�ects.
A fundamental point is discussed: gauge invariance. We prove that the usual approach does
not ensure this invariance and we propose a new method to obtain a reliable result. With this
method, we obtain an additional term compared to the usual calculations. We have named
this term �spin-position�. The expression of the semi-relativistic cross section (Section 1.7) has
been used for the numerical implementation presented in the remainder of the thesis.

Chapter 2 is dedicated to the presentation of the method used for numerical calculation
of spectra. A modeling of materials using the density functional theory (DFT), which has been
successfully employed to model XAS spectra, is applied. The implementation has been done in
the code XSpectra of the Quantum ESPRESSO suite. The idea of the numerical method
is to perform a self consistent calculation of the electronic structure in the presence of a core
hole and to compute the cross section from the obtained wave functions. In this chapter, the
way the method is implemented is presented and so are the e�ects of di�erent convergence
parameters.

The obtained results for model systems (XMCD of iron, cobalt, nickel and XNCD of lithium
iodate) are presented and discussed in Chapter 3. These calculations serve as basis to dis-
cuss the physical content of circular dichroism and to clarify the approximations made in the
numerical method. We �nd in this chapter that the relativistic spin-position term is far from
being negligible for XMCD. The other part of this chapter is dedicated to sum rules which shed
light on the importance of the di�erent contributions to XMCD.

Finally, Chapter 4 presents studies of magnetism under pressure by XAS and XMCD.
The experimental set-up is presented and so is the way to include pressure in the calculations.
Two materials of technological and fundamental interests are studied: iron hydride FeH and
chromium dioxide. FeH is obtained by application of pressure on a Fe foil in a hydrogen
atmosphere. A study of FeH therefore automatically includes high-pressure. Here, calculations
con�rm and enrich the interpretation of experiments. For CrO2, despite the fact that its
ferromagnetic properties have been widely used for magnetic recording in tapes, the electronic
structure that makes it a ferromagnetic half metal remains largely misunderstood. In this study,
high pressure is a way to change the environment of the chromium atoms and this environment,
according to the proposed models, could play an important role to explain ferromagnetism in
CrO2.

While not being completely independent, these four chapters can be read separately. In
particular, the �rst chapter, which is very formal, is not essential for the understanding of the
other three chapters.
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In this thesis, theoretical, numeric and experimental results about X-ray dichroism are
presented. During my PhD, I was a�liated to both SOLEIL synchrotron and IMPMC (Institut
de Minéralogie de Physique des matériaux et de cosmochimie). As a member of ODE beamline,
I had the opportunity to both lead and be a member of experiments of XAS and XMCD under
pressure (involving diamond anvil cells) which happened to be extremely enriching. I also had
the chance to participate in XAS and XMCD experiments on the ID12 beamline at ESRF
and in RIXS-MCD experiments on the beamline ID26 at ESRF and on the line GALAXIES
at SOLEIL. At IMPMC, I made theoretical calculations on papers or on whiteboard as well
as parallelized numerical calculations that required the use of high-performance computing
clusters.

This diversity of approaches has made this PhD work extremely interesting. I hope that,
beyond the theoretical and methodological innovations it introduces, this manuscript will be
able to clarify questions related to X-ray dichroism calculations.

NB: This manuscript is written in English. It contains a large number of abbreviations
and mathematical notations that are listed at the end (p.174). As the bibliographic references
almost do not overlap between chapters, a bibliography is present at the end of each of them.
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Gauge invariance and relativistic e�ects in

photon absorption and scattering by

matter
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1.1 Introduction

The description of relativistic e�ects in X-ray spectroscopy has become necessary because
the recent experimental developments permit measurements with increased precision. The
use of a semi-relativistic description is interesting because it allows to distinguish the e�ects
related to the relativistic description of matter from the usual non-relativistic e�ects. Also,
from a practical point of view, the use of two components wave functions opens the possibility
to adapt a wide range of existing solid-state methods to spectroscopic calculation.

However, we show here that taking existing semi-relativistic Hamiltonian as a starting point
to determine the absorption or scattering cross sections might be problematic. We propose an
alternative approach in which we start from the fully-relativistic cross sections and we apply
a Foldy-Wouthuysen transformation to the wave functions. Here, we stop the development at
order c−2 but the orders beyond could be obtained with the same method. We also address
the very problematic question of gauge invariance of transition probabilities and we propose a
framework where gauge invariance is veri�ed.

The outline of the chapter is the following:

• Section 1.2 introduces time-dependent perturbation theory in order to �x notation.
• Section 1.3 presents the Foldy-Wouthuysen (FW) transformation in the one-body case.
In this section, we highlight why the straightforward way to obtain semi-relativistic cross
sections (which consists in considering that the system is described by a FW Hamiltonian
and computing the transition probabilities between eigenstates of this Hamiltonian) is,
in fact, not valid. We nevertheless carry this naive calculation of the absorption cross
section in order to have a basis for comparison.
• Section 1.4 reviews the question of gauge invariance of transition probabilities. We con-
clude that, to obtain a gauge invariant result, we must work in a framework where the
states describe both the electronic system and the photons. We show that Quantum Elec-
trodynamics (QED) provides such a framework in which gauge invariance of transition
probabilities has been established for large classes of gauges.
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1.2. Time-dependent perturbation theory

• Section 1.5 is dedicated to the calculation of the fully relativistic absorption and scattering
cross sections in QED.
• In Section 1.6, we derive a time-independent many-body Foldy-Wouthuysen calculation
that is used in the next sections for the semi-relativistic expansion of the cross sections.
• Sections 1.7 and 1.8 present the semi-relativistic expansion of the absorption and scatter-
ing cross section. In both cases, we compare the results with the expressions that can be
found in the literature.

This chapter contains numerous equations. Therefore, the proofs that are not essential for
the understanding of the whole are written in footnotes.

1.2 Introduction to time-dependent perturbation theory

Assume that a time-independent Hamiltonian H0 is subject to a perturbation described by
a time-dependent term W (t) starting at t0. To develop time-dependent perturbation theory for
H(t) = H0 +W (t), we use the interaction representation:

|ψ(t)〉 = eiH0t/h̄|ψs(t)〉 and |ψ(t0)〉 = |φg〉
(
|ψs(t0)〉 = e−iEgt0/h̄|φg〉

)

where |ψs(t)〉 is the Schrödinger wave function which veri�es ih̄∂t|ψs(t)〉 = H|ψs(t)〉. In this
representation the wave function obeys:

ih̄∂t|ψ(t)〉 = WI |ψ(t)〉 where WI(t) = eiH0t/h̄W (t)e−iH0t/h̄.

As in the Schrödinger representation, the time evolution of |ψ(t)〉 is governed by an evolution
operator :

|ψ(t)〉 = VI(t, t0)|ψ(t0)〉.
This operator is solution of ih̄∂tVI(t, t0) = WI(t)VI(t, t0). Successive substitutions of the type
VI(t, t0) = Ĩ − i

h̄

∫ t
t0
dτWI(τ)VI(τ, t0) lead to (note that the n = 0 term is linked to the presence

of the identity matrix Ĩ):

VI(t, t0) =
∞∑

n=0

(
− i
h̄

)n ∫ t

t0

dτ1...

∫ τn−1

t0

dτnWI(τ1)...WI(τn) = T
[
e
i
h̄

∫ t
t0
dτWI(τ)

]
(1.1)

where T is the time-ordering operator (because t0 ≤ τn ≤ ...τ1 ).
If the system is at t = t0 in state |φg〉, the transition probability to the eigenstate |φn〉 of

H0 at time t is:

Png(t) = |〈φn|ψ(t)〉|2 = |〈φn|VI(t, t0)|φg〉|2. (1.2)

From Eq. (1.1),

〈φn|VI(t, t0)|φg〉 = δng −
i

h̄

∫ t

t0

dτ〈φn|WI(τ)|φg〉 −
1

h̄2

∫ t

t0

dτ1

∫ τ1

t0

dτ2〈φn|WI(τ1)WI(τ2)|φg〉+ ...

= δng −
i

h̄

∫ t

t0

dτ〈φn|WI(τ)|φg〉 −
1

h̄2

∫ t

t0

dτ1

∫ τ1

t0

dτ2

∑

m

〈φn|WI(τ1)|φm〉〈φm|WI(τ2)|φg〉+ ...
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1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

Now, 〈φn|WI(τ)|φm〉 = 〈φn|eiH0τ/h̄W (τ)e−iH0τ/h̄|φm〉 = 〈φn|W (τ)|φm〉ei(En−Em)τ/h̄ therefore the
probability of transition to the state n 6= g to second order in perturbation theory is:

Png(t) =
1

h̄2

∣∣∣
∫ t

t0

dτ〈φn|W (τ)|φg〉ei∆Engτ/h̄

− i

h̄

∫ t

t0

dτ1

∫ τ1

t0

dτ2

∑

m

〈φn|W (τ1)|φm〉〈φn|W (τ2)|φg〉ei∆Enmτ1/h̄+i∆Emgτ2/h̄
∣∣∣
2

.

where ∆Eij = Ei − Ej.
If one considers a monochromatic perturbation: W (t) = W e−iωt,
∫ t

t0

dτ〈φn|W (τ)|φg〉ei∆Engτ/h̄ = 〈φn|W |φg〉
∫ t

t0

dτei(∆Eng−h̄ω)τ/h̄

= 〈φn|W |φg〉ei(∆Eng−h̄ω)(t+t0)/2h̄2i sin((∆Eng − h̄ω)(t− t0)/2h̄)

i(∆Eng − h̄ω)/h̄
.

At �rst order, Png(t) = 1
h̄2 |〈φn|W |φg〉|2

(
sin(a(t−t0))

a

)2

, with a = (∆Eng− h̄ω)/2h̄. The transition
rate, that is the probability of transition per unit of time:

wng(t) ≡ lim
t→∞

Png(t)

t
=

2π

h̄
|〈φn|W |φg〉|2δ(∆Eng − h̄ω). (1.3)

This formula due to Dirac was called the Golden Rule by Fermi. It is the formula that is usually
used to derive absorption cross sections [Brouder, 1990].

1.3 One-body Foldy-Wouthuysen Hamiltonian and transi-

tion rate

Including relativistic e�ects in a semi-relativistic way has two advantages. The �rst one is
that it permits to have a good physical insight on the origin of the relativistic phenomenon. The
second one is that, in most solid state calculations, two-component wave functions are used and
thus a semi-relativistic description can be more widely implemented. The Foldy-Wouthuysen
(FW) transformation is widely used in particle physics but also in molecular and condensed
matter physics [Ceresoli et al., 2010, Pickard and Mauri, 2001] to describe relativistic e�ects.
After introducing the principle of this transformation, we discuss in this section the use of the
FW Hamiltonian in perturbation theory.

1.3.1 One-body Foldy-Wouthuysen transformation and Hamiltonian

Time-independent case

In the Dirac theory, the state of the particles is described by four-component wave functions

ΨD =

(
χ1

χ2

)
. The two spinors that compose these wavefunctions, χ1 and χ2, are called upper

and lower components.
For positive energy states, the upper component is called the large component and the lower

component is called the small component. In the non relativistic limit (c→∞), the small (i.e.
lower) component vanishes. For negative energy states, on the other hand, it is the upper
component that vanishes.
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1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

The Dirac Hamiltonian HD has the form HD = mc2β +

(
H11 H12

H21 H22

)
, where each Hij is

a 2×2 matrix. The idea of the Foldy-Wouthuysen (FW) transformation is to apply a unitary
operator U0 such that, even for �nite velocity of light, the upper and lower components of
ψFW = U0ΨD are decoupled. In other words, the transformed Hamiltonian HFW = U0H

DU †0
must be block diagonal.

For a one-body system, the Dirac matrix β =

(
1 0
0 −1

)
allows de�ning odd and even

vectors in the space of spinors: a vector |Ψ〉 is said to be even if β|Ψ〉 = |Ψ〉 and it is said
to be odd if β|Ψ〉 = −|Ψ〉. Odd and even operators are de�ned by the way they transform
vectors: an operator is said to be even if it transforms an even state into an even state and
an odd state into an odd state (in other words it does not change parity). An odd operator,
on the other hand, transforms an even state into an odd state and an odd state into an even
state. An odd operator O veri�es βOβ = −O and an even operator E veri�es βEβ = E . In
a one-body system, even/odd components correspond to upper/lower components so a block
diagonal Hamiltonian is even.

HD can be written HD = mc2β + E + O, where its even part is mc2β + E with E =(
H11 0
0 H22

)
and its odd part is O =

(
0 H12

H21 0

)
. A block diagonal representation of HD

was obtained with a step-by-step method in 1950 [Foldy and Wouthuysen, 1950] and corrected
in 1952 [Foldy, 1952] by L.L. Foldy and S. A. Wouthuysen by applying successive transforma-
tions of the form eiSp . The successive steps are detailed in [Greiner, 2000, p285].

In 1958, E. Eriksen proposed a criteria to de�ne a FW operator [Eriksen, 1958]:

U0 = βU †0β. (1.4)

The transformation eiS1eiS2 ...eiSn used by Foldy and Wouthuysen does not satisfy Eriksen's
condition [Silenko, 2016].1

Eriksen proposed another operator [Eriksen, 1958] that veri�es condition (1.4) and that is
linked to the operator sign of HD through the relation:

U †0βU0 = λ = signHD. (1.5)

Thanks to this relation, the FW transformed wave functions of positive (negative) energy
Dirac wavefunctions only have upper (lower) components. Indeed, it implies that βU0 = U0λ.
Therefore, |ψFW〉, de�ned as |ψFW〉 = U0|ΨD〉, is even (β|ψFW〉 = |ψFW〉) if |ΨD〉 is a positive
energy state (λ|ΨD〉 = |ΨD〉). Therefore, only the upper components of the FW transform of
a positive energy Dirac state are non-zero. Likewise, the FW transform of a negative energy
state is odd, i.e. only its lower components are non-zero. In practice, these statements are
exact up to the order to which the FW transformation is performed.

Eriksen, as Foldy and Wouthuysen, used m−1 as expansion parameter and stopped at order
m−2. At this order, both approaches yield the same transformed HamiltonianHFW. Indeed, the

1 At each step, Sp writes as a function of the odd part of the Hamiltonian:

Sp =
−i

2mc2
βOp.

The operator Up = eiSp veri�es Up = βU†pβ. Indeed, U†p = e−iSp =
∑
k

(−1)k

k!

(
βOp
2mc2

)k
, so as β(βOp)kβ =

(ββOpβ)k = (−1)k(βOp)k, βe−iSpβ = eiSp . However, β(U1U2...Un)†β = Un...U2U1 6= U1U2...Un.
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1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

correction to the operator proposed by Foldy andWouthuysen for it to verify Eriksen's condition
(Eq. (1.4)) is of order m−3c−4 [Silenko, 2016, Eq.(31)]. The corresponding Hamiltonian is:

HFW = βmc2 + E +
β

2mc2
O2 − 1

8m2c4
[O, [O, E ]].

The odd and even operators for the Dirac Hamiltonian are:

O = cα · (p− eA) and E = eφ0Ĩ . (1.6)

It leads, for positive energy states, to [Strange, 1998]:

HFW = mc2 +
π2

2m
+ eφ0 −

eh̄

2m
σ ·B− eh̄

8m2c2
(σ · (E× π)− σ · (π × E))− eh̄2

8m2c2
∇ ·E (1.7)

where π = p− eA. It is the sum of six terms:
(i) the rest energy of positive-energy eigenstates,
(ii) the kinetic energy of the electron,
(iii) the Coulomb interaction of the electron with the nuclei and the other electrons,
(iv) the Zeeman interaction with magnetic �eld,
(v) the spin-orbit interaction (for a spherical potential φ0 and a static vector potential A,
σ · (E× p) = −1

r
dφ0

dr
σ · (r× p) = −1

r
dφ0

dr
σ ·L),

(vi) the Darwin term.
In the time-independent case, which is the object of this section, E×p+p×E = −ih̄∇×E = 0

(Maxwell-Faraday equation) so the writing of the spin-orbit part of HFW could be simpli�ed
by replacing the term in parenthesis by 2σ · (E× π).

Textbooks [Bjorken and Drell, 1965, Itzykson and Zuber, 1980] often derive a FW Hamil-
tonian HTFW with expansion parameter c−1 up to order c−2 which is the same as HFW except
that π is replaced by p in the spin-orbit term. Because of the presence of π, the Hamiltonian
HFW is often considered to be a gauge invariant Hamiltonian contrary to HTFW. However,
we will see in Section 1.4 that the concept of gauge invariance of transition probability is
not straightforward. A mass-velocity term −(p ·p)2/8m3c2 is also often added in textbooks
[Itzykson and Zuber, 1980].

Time-dependent case

IfHD is explicitly time dependent, its FW transformation writes [Foldy and Wouthuysen, 1950]:

HFW = UHDU † − ih̄U ∂U
†

∂t
(1.8)

in order for the time-dependent Schrödinger equation to remain valid. Note that the expression
of HFW remains formally the same as in Eq. (1.7) but the part −ih̄U ∂U†

∂t
is responsible for the

∂A
∂t

term that appears in E = −∇φ0 − ∂A
∂t

[Goldman, 1977].

1.3.2 Naive application to absorption cross section calculation

Calculation from HFW

In this section, we consider that the material is described by the FW Hamiltonian and we
are going to use perturbation theory at �rst order to compute the absorption cross section. We
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1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

split the FW Hamiltonian between a static part, H0, that describes the material in the absence
of the electromagnetic wave and a time dependent part, W , that describes the interaction
between the electron and the incident wave, which can be treated as a perturbation. The total
vector potential A and �elds E and B are decomposed as sums A = A0 + a, E = E0 + e,
B = B0 + b of their static part (letters with index 0) plus their dynamical part representing
the incident electromagnetic wave (lowercase letters). We use Coulomb gauge (∇ · a = 0) and
we choose the potential associated to the wave to be zero. The static Hamiltonian writes:

HFW
0 = mc2 +

1

2m
π2

0 + eφ0(r)− eh̄

2m
σ ·B0 −

eh̄

4m2c2
σ · (E0 × π0) +

eh̄2

8m2c2
(∆φ0)

where π0 = p− eA0, and the perturbation writes:

W (t) = HFW −HFW
0

=
−e
m

a ·π0 −
eh̄

2m
σ ·b− eh̄

8m2c2
σ · (e× π0 − π0 × e− 2eE0 × a).

We have used Maxwell's equation in vacuum ∇ · e = 0, we neglected the term proportional to
a2 because it gives a negligible contribution for available x-rays sources as was evaluated in
[Brouder, 1990] and we have used the fact that in the Coulomb gauge a× p = −p× a.

We consider a monochromatic plane wave: a=Aεei(k.r−ωt), b=∇×a=ik×a and e=−∂a
∂t

=iωa.
To develop further, it is useful to notice that the commutator of the static Hamiltonian with r
is:2

[HFW
0 , r] =

−ih̄
m

π0 +
eh̄

4m2c2
(ih̄)(σ × E0).

Thus W (t) = W e−iωt where,

W =
e

ih̄
a · [HFW

0 , r]− e2h̄

4m2c2
a · (σ × E0)− eh̄

2m
iσ · (k× a)

− eh̄iω

8m2c2
σ · (a× π0 − π0 × a) +

e2h̄

4m2c2
σ · (E0 × a). (1.9)

In Eq. (1.9), the second term, which arises from the commutator of HFW
0 with r, cancels out

the last term that arises from the spin-orbit term in HFW. This fact is not simply anecdotal
because, would one of these terms remain, it would be identical or opposite to the last c−2 term
in the absorption case (which as we will see in the following, is responsible for a signi�cant term
that is called spin-position).3

2 Using the derivation chain rule, ∇2r|Ψ〉 = ∇(r∇|Ψ〉 +∇(r)|Ψ〉) = ∇|Ψ〉 +∇|Ψ〉 + r∇2|Ψ〉, that is to say

[∇2, r] = 2∇. Therefore [
π2

0

2m , r] = −ih̄
m π0. Now,

[σ · (E0 × π0), r] = (σ · (E0 × π0))r− r(σ · (E0 × π0)) = ((σ ×E0) ·π0)r− r((σ ×E0) ·π0)

The projection of this quantity on any axis i:

[σ · (E0 × π0), r]i =
∑

j

(σ ×E0)j(π0jri − riπ0j) =
∑

j

(σ ×E0)j(−ih̄)δij = (−ih̄)(σ ×E0)i

3 Using the relation [p, φ0] = ih̄∇φ0, the electric �eld in matter writes at zeroth order in c−2 as a function
of the commutator of π0 with H0:

E0 = −∇E0 =
−i
eh̄

[π0, H0].

In the case of absorption, the commutator transforms into a factor −∆Efg = −h̄ω in the cross section so that
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1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

This expression of W can be used to determine the transition rate from the Golden Rule
(Eq (1.3)). The absorption cross section is the ratio between the rate at which energy is removed
from the photon beam (h̄ω

∑
f wfg where the sum runs over unoccupied states f) and the rate at

which energy in the photon beam crosses a unit area perpendicular to its propagation direction
(I(ω)):

σ(h̄ω) =
h̄ω
∑

f wfg

I(ω)
where I(ω) = 2ε0cω

2|A|2.

As the core wavefunction is very localized (the evaluation of kr for several edges will be
given in the next chapter), we use the quadrupole approximation eik · r ≈ 1+ ik · r except in the
c−2 term for which we use the dipole approximation eik · r ≈ 1. In this term the commutator at
zeroth order [HFW

0 , r] = −ih̄
m

π0 is su�cient to preserve the c−2 approximation.
Finaly, the semi-relativistic absorption cross section can be written with four operators:4

σ(h̄ω) =
4π2α0(∆Efg)

2

h̄ω

∑

f

|〈φf | ε · r︸︷︷︸
electric dipole

+
i

2
(k · r)(ε · r)
︸ ︷︷ ︸

electric quadrupole

+
h̄

2m∆Efg
(k× ε) · (Λ + h̄σ)

︸ ︷︷ ︸
magnetic dipole

+
ih̄ω

4mc2
σ · (ε× r)

︸ ︷︷ ︸
spin-position

|φg〉|2δ(∆Efg − h̄ω) (1.10)

where Λ = r × π0 = L − er × a0 is sometimes named the moment of mechanical momentum
[Cohen-Tannoudji et al., 1987]. Λ can be understood as a gauge invariant angular momentum.
The �rst two operators are the usual electric dipole and electric quadrupole operators. The
third one is the magnetic-dipole operator [Brouder, 1990] but with Λ instead of the L that
usually enters it through the total angular momentum of the electron (h̄σ + L). We name the
c−2 term spin-position because it is proportional to σ · (r× ε) = ε · (σ × r).

A similar calculation was carried out in 2009 by Christos Gougoussis [Gougoussis, 2009,
Chap. 3] in his PhD thesis. However, he obtained an additional contribution that he named
SO1 and that wrote eω

4m2c2
σ · [∇φ0 × ε]. In our calculation, it cancels out with the c−2 term

when π0 is written as a function of the commutator of HFW
0 with r. This term was not de-

veloped in C. Gougoussis' thesis but it yields the same contribution as the spin-position term

the term that cancels out would lead to the same contribution to the matrix element as the remaining c−2 term:

−ieh̄ω
4m2c2

σ · (a× π0).

4 The rewriting of a · [HFW
0 , r] within the quadrupole approximation requires a little trick:

ε · (k · r)[HFW
0 , r] = (k · r)HFW

0 (ε · r)− (k · r)(ε · r)HFW
0

=
1

2
[HFW

0 , (ε · r)(k · r)]− 1

2
HFW

0 (ε · r)(k · r) +
1

2
(k · r)HFW

0 (ε · r)

− 1

2
(ε · r)(k · r)HFW

0 +
1

2
(k · r)HFW

0 (ε · r)

=
1

2

(
[HFW

0 , (ε · r)(k · r)] + (k · r)(ε · [HFW
0 , r])− (k · [HFW

0 , r])(ε · r)
)

=
1

2

(
[HFW

0 , (ε · r)(k · r)] + (ε× k) · ([HFW
0 , r]× r)

)
.

In this term, as it is proportional to k, the commutator at zeroth order in c−2: [HFW
0 , r] = −ih̄

m π0, is also
su�cient. Therefore, (ε× k) · ([HFW

0 , r]× r) = ih̄
m (ε× k) · (r× π0).

20
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(see footnote 3), called SO2 in his thesis. This illustrates the importance of a derivation of the
commutator that is consistent in order of c−2 with the rest of the development. Here, it is partic-
ularly treacherous because, working in the Heisenberg picture, we could think that [HFW

0 , r] =
−ih̄ d

dt
r = −ih̄

m
p, as it is used for example in [Takahashi and Hiraoka, 2015, Joly et al., 2012].

However, the relation m d
dt

r = p is not valid. Indeed, m d
dt

r = −m
ih̄

[H0, r] is equal to p only if
H0 = p2

2m
+ V (r). If H0 = π2

2m
+ V (r), m d

dt
r = π and if the Hamiltonian includes the spin-orbit

interaction proportional to E× p + p× E, m d
dt

r = π − eh̄
4mc2

(σ × E).

Calculation from HTFW

Surprisingly, if the same calculation is carried out from the FW Hamiltonian HTFW de�ned
p. 18, the result is not the same.

The fact that π is replaced by p in the spin-orbit term is quite important. Indeed, it leads
to the absence of the term σ · (E0 × a) in W in Eq. (1.9). The consequence is that there is
no spin-position contribution to absorption cross section because it is cancelled out by the c−2

term arising from the commutator [HTFW
0 , r].

The additional mass-velocity term−(p ·p)2/8m3c2 does not contribute toW but it is present
in HTFW

0 . It leads to an additional contribution to the commutator [HTFW
0 , r]: ih̄(p ·p)p

2m3c2
. It is

small compared to ih̄
m

p if the order of magnitude of the kinetic energy of the core state satis�es
Ek � mc2 so we could neglect it here.

As the main di�erence is due to the replacement of π by p, it seems to be related to a
problem of gauge invariance. Indeed, it is often said that HTFW is the gauge invariant version
of FW Hamilonian. It is not true that using HTFW provides gauge invariance. The di�culties
related to gauge invariance in transition probabilities calculations will be detailed in Section 1.4.
Before that, we explain why the derivations presented in this section are, in any cases, invalid
because there is a con�ict between FW and time-dependent perturbation theory.

1.3.3 Subtleties in the application of time-dependent Foldy-Wouthuysen

transformation to transition rate calculation

It was noticed by Nieto as early as 1977 [Nieto, 1977, Goldman, 1977] that the FW Hamil-
tonian must not be used to calculate the Hamiltonian matrix elements. Indeed, as HD =
HD(A, V ) is explicitly time dependent, its FW transformation [Foldy and Wouthuysen, 1950]
writes:

HFW = UHDU † − ih̄U ∂U
†

∂t
(1.11)

in order for the time-dependent Schrödinger equation to remain valid for |ψFW〉 = U |ΨD〉.
Therefore, 〈ΦD|HD|ΨD〉 = 〈φFW|UHDU †|ψFW〉 6= 〈φFW|HFW|ψFW〉. The case of the transition
probabilities yields another subtlety: the FW operator U corresponding to HD is di�erent from
the FW operator U0 corresponding to HD

0 = HD(A0, φ0). The transition probability,

|〈Φn
D|ΨD(t)〉|2 = |〈φnFW|U0U

†|ψFW(t)〉|2 6= |〈φnFW|ψFW(t)〉|2. (1.12)

Therefore, the usual formula of perturbation theory cannot be used with FW transformed
quantities. Tricks like transforming 〈Φn

D| with U instead of U0 are not an option because it
would make 〈φnFW| time dependent so that it would not be an eigenstate of HFW

0 .
This illustrates that the straightforward way to obtain semi-relativistic cross sections (that

consists in considering that the system is described by a FW Hamiltonian and computing the
transition probabilities between eigenstates of this Hamiltonian) is, in fact, not valid.
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We propose an alternative approach in which we start from the fully-relativistic cross sec-
tions and we apply a FW transformation to the wave functions. In order for this approach to
be correct, it is important to check its gauge invariance.

1.4 Gauge Invariance

The principle of gauge invariance has become a cornerstone of particle physics. Since general
relativity can also be considered as a gauge theory [Blagojevi¢ and Hehl, 2013], it may be safely
said that gauge invariance was the guiding principle of most of the fundamental physics of the
twentieth century. Therefore, we need to check that the cross section formulas are gauge
invariant to ensure their true physical nature.

1.4.1 Principle of gauge invariance in classical electrodynamics

Maxwell's equation ∇ ·B = 0 has for a consequence that B locally admits a vector potential
A such that B = ∇ × A. The magnetic �eld is unchanged if one adds the gradient of any
continuously di�erentiable scalar function Λ to A: A′ = A + ∇Λ(r, t). Similarly Maxwell's
equation ∇×E = −∂B

∂t
that rewrites ∇×

(
E + ∂A

∂t

)
= 0 leads to the local existence of a scalar

potential V such that E + ∂A
∂t

= −∇V . The electric �eld remains unchanged if A is changed to
A′ and the time derivative of Λ is subtracted to V : V ′ = V − ∂Λ

∂t
. In classical electrodynamics

gauge invariance means that the physics must remain the same when a gauge transformation
is applied to the potentials.

Particle in a �eld

The force F exerted on a particle of charge q and mass m in an electromagnetic �eld is
the Lorentz force: F = q(E(r, t) + v(r, t) × B(r, t)). Newton's law m d2

dt2
r(t) = F governs the

movement of this particle: in this formalism, the problem of gauge invariance does not arise.
However, the motion of this particle can also be described [Cohen-Tannoudji et al., 1987]

by the Lagrangian:

L(v, r, t) =
1

2
mv2 − q (V (r, t)− v ·A(r, t))

The canonical momentum p = ∇vL(v, r, t) = mv+qA(r, t). The position r and the velocity v,
that are driven by Newton's law, are independent of the gauge. Therefore p − qA(r, t) = mv
is independent of the gauge but p is not. The corresponding Hamiltonian is given by,

H(p, r, t) =
∑

piq̇i − L(qi, q̇i) =
1

2m
(p− qA(r, t))2 + qV (r, t).

If the gauge is changed, H is changed toH′ = H−q ∂Λ
∂t

due to the presence of the scalar potential
V in its expression. It can however be checked that the equations of motion associated to this
Hamiltonian lead to Newton's law. Similarly, the Lagrangian is transformed under a gauge
transformation to

L′ = L + q

(
∂Λ

∂t
+ v · ∇Λ

)
(1.13)

so it di�ers only by a total time derivative dΛ
dt

and the equations of motion remain the same. In
conclusion, the quantities used to describe the physics are not necessarily physical quantities
in the sense that physical quantities must be gauge invariant.
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1.4.2 Gauge invariance in quantum mechanics

In quantum mechanics, gauge change consists in both a change of the potentials and a
change of the phase of the wavefunctions:

A→ A′, V → V ′ and ψ(r, t)→MΛψ(r, t) (1.14)

where, MΛ = e
ieΛ(r,t)

h̄ is a unitary operator.
By de�nition [Cohen-Tannoudji et al., 1973] an observable O describes a true physical quan-

tity if it veri�es M †
ΛOA′MΛ = OA for every function Λ(r, t). A Hamiltonian H(A, V ) =

f(p− eA) + eV where f is some function, is not such a gauge invariant operator:

H(A′, V ′) = MΛH(A, V )M †
Λ − e

∂Λ

∂t

(the ∂Λ
∂t

arises because of the potential). The time-dependent Schrödinger and Dirac equations
are, however, invariant under gauge transformation:

M †
Λ(ih̄∂t −H(A′, V ′))MΛ = ih̄∂t −H(A, V ).

So if ψ is solution of ih̄∂tψ = H(A, V )ψ then ψ′ = MΛψ is solution of ih̄∂tψ′ = H(A′, V ′)ψ′.

1.4.3 Gauge invariance of transition probabilities

Let us �rst consider the question of gauge invariance of the matrix element entering the
Golden Rule Eq. (1.3). In the calculation presented in section 1.3.2, we separated the static
�eld in the absence of perturbation (A0, V0) from the incident electromagnetic wave �eld (a, v).
When a gauge change transforms the static potentials A0 and V0, the interaction W is changed
to MΛWM †

Λ and the static eigenstates are transformed to MΛ|Ψn〉. As a consequence, the
matrix element 〈Ψm|W |Ψn〉 is conserved under a gauge transformation for the static �eld.
The gauge function Λ must however be time independent in order for H0 to remain a static
Hamiltonian.

Now, if the gauge for the incident electromagnetic wave is changed, W is transformed
whereas the eigenstates are unchanged. In general,

〈Ψm|H ′ −H0|Ψn〉 6= 〈Ψm|H −H0|Ψn〉.

In order to determine when gauge invariance can still be achieved we compute the di�erence
between these two quantities:

〈Ψm|H ′ −H|Ψn〉 = 〈Ψm|MΛHM
†
Λ −H − e

∂Λ

∂t
|Ψn〉.

Using Baker-Campbell-Hausdor� formula,

MΛHM
†
Λ = H +

[
ieΛ

h̄
, H

]
+

1

2

[
ieΛ

h̄
,

[
ieΛ

h̄
, H

]]
+ ....

If one considers W and Λ as perturbations, at �rst order

MΛHM
†
Λ ≈ H +

[
ieΛ

h̄
, H0

]
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1.4. Gauge Invariance

so that [Kazes et al., 1982, Feuchtwang et al., 1986]:

〈Ψm|H ′ −H|Ψn〉 ≈ ie
Ei − Ef

h̄
〈Ψm|Λ|Ψi〉 − e〈Ψf |∂Λ

∂t
|Ψn〉. (1.15)

Note that the equality is exact in the case of the Dirac Hamiltonian, with no need to make any
approximation on the order of magnitude of the perturbation or the gauge because H ′D−HD =
cα · ∇Λ + ∂Λ

∂t
and cα · ∇Λ = (i/h̄)[HD

0 ,Λ].
During the absorption process, energy conservation implies that Ef = Ei + h̄ω, thus if Λ ver-
i�es ∂Λ

∂t
= −iωΛ then 〈Ψm|H ′ − H|Ψn〉 = 0. This explains the fact that derivations that

have been performed with several di�erent gauges (for example in [Yang, 1988]) lead to con-
sistent results when Ef − Ei = h̄ω. This condition is however not met in scattering experi-
ments [Yang, 1988, Stokes, 2013] and, even for absorption, the restriction to gauges that verify
∂Λ
∂t

= −iωΛ is not enough to provide gauge invariance.
The right term in Eq. (1.15) is also zero in the elastic case (Ei = Ef ) with time-independent
gauge transformations (∂Λ

∂t
= 0 ) which is also a very narrow restriction.

In conclusion, in the semi-classical approach, where the photon is represented by an external
�eld, the matrix elements ofW are not gauge-invariant. Given the remark of the �rst paragraph,
that these matrix elements are invariant under a gauge transformation of A0 and V0, it could
be tempting to apply a method that would consist in subtracting ∂Λ from A0 and V0 instead
of a and v. This would, indeed, have the same e�ect on the total �eld. This method, that
was proposed in [Forney et al., 1977, Epstein, 1979] is questionable for a time-dependent gauge
change because it requires to de�ne 'time-dependent eigenvectors' |φ′n〉 = MΛ|φn〉 which is
not consistent with perturbation theory as presented in Section 1.2. The problem for time-
independent gauge changes is subtle and was noticed by Yang [Yang, 1982]. If one decides to
apply all the gauge changes to A0 and V0, it means that the gauge is �xed for a and v. In
other words, it requires to arbitrary de�ne the "good gauge" for a and v which is in con�ict
with gauge invariance.

More generally, to check if this problem of gauge invariance is not related to the order of
approximation in perturbation theory, we can check whether the transition probability Png
is gauge invariant. For a matter of simplicity, we use Schrödinger representation instead of
the interaction representation. In the Schrödinger representation, the time evolution oper-
ator obeys ih̄∂tV (t, t0) = H(t)V (t, t0) and under a gauge transformation of a, it becomes
[Kobe and Yang, 1985]:

V ′(t, t0) = eieΛ(t)/h̄V (t, t0)e−ieΛ(t0)/h̄

(the proof is given in [Kobe and Yang, 1985] paragraph V).
The transition probability Png(t) = |〈φn|V (t, t0)|φg〉|2 becomes

P ′ng(t) = |〈φn|eieΛ(t)/h̄V (t, t0)e−ieΛ(t0)/h̄|φg〉|2 = |〈φn|eie/h̄
∫ t
t0
dτ Λ̇(τ)+ieΛ(t0)/h̄

V (t, t0)e−ieΛ(t0)/h̄|φg〉|2

The two probabilities are equal if Λ̇(t) = 0 and [Λ(t0), V ] = 0 but in general P ′ng(t) 6= Png(t)
which is alarming. Many papers describe the discrepancy between the probability calculated
in two di�erent gauges, which can be large [W. E. Lamb, 1952, Stokes, 2013, for example].

The fact that the right term of Eq. (1.15) is zero in the elastic case with time-independent
gauge transformations, suggests that gauge invariance could be achieved in a framework where
the states described both the electronic system and the photons so that the �nal and initial
energy are always equal. Such a framework is provided by quantum electrodynamics (QED)
which is a quantized theory of light interacting with matter.
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1.5. Relativistic absorption and scattering cross sections

1.4.4 Gauge invariance in QED

In QED, the electromagnetic �eld is quantized and the photons are excitations of the quan-
tized �eld. A scattering experiment is described by the transition from an initial state involving
both the electronic system in its ground state and the incident photon, to a �nal state involving
both the electronic system in its (possibly) excited state and the scattered photon. The transi-
tion probabilities are now described through the so-called S-matrix. In the Schrödinger picture,
the gauge transformation can be expressed in terms of time-independent operators so both con-
ditions that are su�cient for 〈Ψf |H ′−H|Ψi〉 (Eq. (1.15)) to be zero seem to be met. This is a
hand-waving argument that suggests that gauge invariance could be satis�ed. However, a review
of the literature on quantum electrodynamics is rather confusing. For standard textbooks �the
S-matrix is gauge invariant by construction�[Peskin and Schroeder, 1995]. For mathematically-
minded authors, �an even approximately complete solution [of the gauge invariance problem]
does not exist�[Steinmann, 2000]. The di�culty comes from the fact that the state spaces have
di�erent natures depending on the gauge (Coulomb and Lorenz gauge are a very common il-
lustration of this problem: in the Lorenz gauge there are four polarization vectors whereas in
the Coulomb gauge there are two polarization vectors [Cohen-Tannoudji et al., 1997]).

The gauge invariance of the renormalized S-matrix is however established for in�nitesi-
mal gauge transformations [Weinberg, 1995, Hollands, 2008] and for reasonably large classes of
gauges [Haller and Sohn, 1979, Matsuda and Kubo, 1980, Voronov et al., 1982, Manoukian, 1988,
Haller and Lim-Lombridas, 1994, Lenz et al., 1994, Kashiwa and Tanimura, 1997, Grigore, 2001,
Das et al., 2013]. In other words, it is proved at a reasonable level of rigour for a physicist.

The most studied gauges are the Lorenz and Coulomb gauges. In the Coulomb gauge, the
physical degrees of freedom are manifest: the photon states form a Fock space built by acting
on the vacuum with creation operators of left and right polarized photons. Coulomb gauge
is used in most of the low-energy many-body calculations and, in this gauge, the Coulomb
interaction is exactly accounted for. For these reasons, we will use the Coulomb gauge in the
following derivation of the cross section.

1.5 Relativistic absorption and scattering cross sections

Cross sections are expressed in terms of the S-matrix and T -matrix elements. We present
their calculation in a fully relativistic QED framework in the Coulomb gauge.

1.5.1 Photon matter interaction and S-matrix

The quantum �eld Hamiltonian describing the interaction of light with matter in the
Coulomb gauge is [Greiner and Reinhardt, 1996, Cohen-Tannoudji et al., 1997]:

H = He +Hγ +Heγ.

The electron Hamiltonian is

He =

∫
drψ†(r)

(
cα · (−ih̄∇− eA0) + βmc2 + eφ

)
ψ(r) +

∫
drdr′

ρ(r)ρ(r′)

8πε0|r− r′| ,

where φ is a time-independent scalar external potential (for instance the nuclear potential),
A0 is a time-independent vector potential (describing an external magnetic �eld) and ψ are
fermion �eld operators. The photon Hamiltonian is

Hγ =
ε0
2

∫
dr|e⊥|2 + c2|e|2 =

∑

k,l

h̄ωk,la
†
k,lak,l,
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1.5. Relativistic absorption and scattering cross sections

where l stands for the polarization of a mode (there are two independent directions for a given
wavevector k). Finally, the photon-matter interaction is described by:

Heγ = −ec
∫
drψ†(r)α · a(r)ψ(r).

The S-matrix is

S = lim
ε→0

T (e−
i
h̄

∫∞
−∞Hε(t)dt), (1.16)

where Hε(t) = e−ε|t|eiH0tHeγe
−iH0t. The adiabatic switching factor e−ε|t| enables us to describe

physical processes as matrix elements of S between eigenstates of H0 = He +Hγ.
In the non-covariant approach [Heitler, 1984], using matrix elements of Hε(t) between eigen-

states ofH0, cross sections are expressed in terms of the S-matrix and T -matrix elements related
by:

〈m|S|n〉 = δmn − 2iπδ(em − en)〈m|T |n〉.

Up to second order,

〈m|T |n〉 = 〈m|Heγ|n〉+
∑

p

〈m|Heγ|p〉〈p|Heγ|n〉
ep − en + iγ

, (1.17)

where |m〉, |p〉 and |n〉 are eigenstates of H0 with energy em, ep and en, respectively. The term
iγ was added as a heuristic way to avoid divergence at resonance (i.e. when en = ep). In this
approach, the operators are independent of time (Schrödinger picture).

1.5.2 Matrix-elements of Heγ, multipole expansion

In the Schrödinger picture, the expression for the photon �eld is [Strange, 1998]:

a(r) =
∑

k,l

√
h̄

2ε0V ωk

(
εk,lak,le

ik · r + ε?k,la
†
k,le
−ik · r) .

We denote |n〉 = a†k,l|0〉|Ψn〉 an eigenstate of H0 where one photon is present in mode k, l
and the electrons are in state |Ψn〉 with energy En. The energy of |n〉 is en = h̄ωk,l + En. The
interaction Hamiltonian Heγ is linear in A which is linear in photon creation and annihilation
operators so that only one-photon transitions are possible. From now on, we denote ω = ωk,l,
ε = εk,l, ω′ = ωk′,l′ and ε′ = εk′,l′ .

The state |n〉 can make transitions to |a〉 = |0〉|Ψm〉 by absorption and to |e〉 = a†k,la
†
k′,l′ |0〉|Ψm〉

by emission. The corresponding matrix elements are:

〈a|Heγ|n〉 = −ec
√

h̄

2ε0V ω
ε · 〈Ψm|

∫
ψ†(r)αψ(r)eik · rdr|Ψn〉,

and

〈e|Heγ|n〉 = −ec
√

h̄

2ε0V ω′
ε′? · 〈Ψm|

∫
ψ†(r)αψ(r)e−ik

′ · rdr|Ψn〉.
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1.5. Relativistic absorption and scattering cross sections

To carry the multipole expansion we use the following result:
let F =

∫
ψ†(r)f(r)ψ(r)dr, where f is some function of r then,5

[H0, F ] = −ih̄c
∫
ψ†(r)αψ(r) · ∇f(r)dr. (1.18)

When expanding to �rst order eik · r ' 1 + ik · r, we apply Eq. (1.18) with f(r) = ε · r and
f(r) = ε · r k · r:

[He, ψ
†ε · rψ] = −ih̄cψ†αψ · ε

[He, ψ
†ε · r k · rψ] = −ih̄cψ†αψ · (ε k · r + k ε · r)

where we removed the integral signs for notational convenience. The second relation leads to
2ψ†ε ·α k · rψ = i

h̄c
[He, ψ

†ε · r k · rψ]− ψ†(ε× k) · (r×α)ψ. This leads to:

〈a|Heγ|n〉 =
e∆Ean
ih̄

√
h̄

2ε0V ω
〈Ψm|

∫
ψ†(r)T (r)ψ(r)dr|Ψn〉, (1.19)

where

T (r) = ε · r +
i

2
ε · rk · r− h̄c

2∆Ean
(ε× k) · (r×α).

The �rst term of T is the usual electric-dipole operator, the second one is the electric-quadrupole
operator and the third one will turn to be the magnetic-dipole operator (see Section 1.6).
Similarly for emission,

〈e|Heγ|n〉 =
e∆Een
ih̄

√
h̄

2ε0V ω′
〈Ψm|

∫
ψ†(r)T ′(r)ψ(r)dr|Ψn〉, (1.20)

where

T ′(r) = ε′? · r− i

2
ε′? · rk′ · r +

h̄c

2∆Een
(ε′? × k′) · (r×α).

1.5.3 Fully relativistic absorption and scattering cross section

The transition probability per unit time from state m to state n is related to the T -matrix
elements by [Walecka, 2010]:

w =
2

h̄
δmn Im〈m|T |m〉+

2π

h̄
δ(em − en)|〈m|T |n〉|2. (1.21)

5 To obtain this, we go to the interaction picture and de�ne FI(t) = eiH0t/h̄Fe−iH0t/h̄. Then, the time-
derivative ḞI of FI is given by −ih̄ḞI(t) = [H0, FI(t)]. Now, we notice that F is related to the density operator
ρ(r) = ψ†(r)ψ(r) by F =

∫
ρ(r)f(r)dr. Thus, −ih̄ḞI(t) = −ih̄

∫
ρ̇(r, t)f(r)dr = [H0, FI(t)]. If H0 conserves the

electric charge, the continuity equation eρ̇(r) = −∇ · j holds, where j is the electric current operator. By taking
t = 0 to recover the operators in the Schrödinger picture, we obtain:

[H0, F ] =
ih̄

e

∫
∇ · j(r)f(r)dr = − ih̄

e

∫
j(r) · ∇f(r)dr

Finally, j(r) = ecψ†(r)αψ(r) leads to Eq. (1.18).
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1.5. Relativistic absorption and scattering cross sections

Absorption cross section

The absorption cross section is derived by assuming that initially the electrons are in state
|I〉 with energy Ei and that a photon k, ε, ω is present. In the �nal state, there is no photon and
the electrons are in state |F 〉. The transition rate must be divided by c/V (rate at which the
photon crosses a unit of surface) to obtain the cross section. Since we consider real transitions
(i.e. m 6= n), only the second term in Eq. (1.21) is present. From Eq. (1.19) the absorption
cross section is:

σ = 4π2α0

∆E2
fi

h̄ω

∑

f

|〈F |T |I〉|2δ(Ef − Ei − h̄ω)

= 4π2α0h̄ω
∑

f

|〈F |T |I〉|2δ(Ef − Ei − h̄ω). (1.22)

In a many-body formalism, T writes as a sum over the electrons labeled n:

T =
∑

n

ε · rn +
i

2
ε · rnk · rn −

h̄c

2∆Efi
(ε× k) · (rn ×αn).

Scattering cross section

The scattering cross section is derived by assuming that initially the electrons are in state
|I〉 with energy Ei and that a photon ki, εi, ωi is present. In the �nal state, a photon kf , εf , ωf
is present and the electrons are in state |F 〉. We do not consider the special case when
ki, εi=kf , εf .

The scattering cross section is related to w by [Als-Nielsen and McMorrow, 2000, p.265]:

d2σ

dΩdωf
=

V 2

(2π)3
ω2
f

1

h̄c4
w.

As only one-photon processes are possible, there can not be a contribution from 〈m|Heγ|n〉 in
Eq. (1.17) and the transition rate writes as a sum over intermediate states that contain either
no photon (ki, εi absorbed) or two photons (kf , εf emitted).

Without carrying the multipole expansion:

d2σ

dΩdωf
= (remc

2)2ωf
ωi

∑

F

δ(Ef + h̄ωf − Ei − h̄ωi)

∣∣∣
∑

L

〈F |∑n e−ikf · rnαn · ε?f |L〉〈L|
∑

n eiki · rnαn · εiψ|I〉
Ei − El + h̄ωi + iγ

+
〈F |∑n eiki · rnαn · εiψ|L〉〈L|

∑
n e−ikf · rnαn · ε?f |I〉

Ei − El − h̄ωf

∣∣∣
2

(1.23)

where re is the classical electron radius.
In this expression, the sum over |L〉 involves a complete set of states, with positive and

negative energies. If |L〉 is a positive energy state, only the �rst sum can be resonant. Indeed
as |I〉 is the ground state Ei − El < 0 can not be equal to h̄ωf . If |L〉 is a negative energy
state, none of the two sums can be resonant. Indeed, Ei−El ≈ 2mc2 (the transition from L to
I corresponds to the emission of an electron positron pair) can not be equal to h̄ω in standard
experimental conditions.
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1.6. Many-body Foldy-Wouthuysen transformation

1.6 Many-body Foldy-Wouthuysen transformation

For the semi-relativistic expansion, we have seen in Section 1.3 that it was not correct to
start from FW Hamiltonians to determine the cross sections. However, now that we have
the expression for the cross sections in a fully-relativistic framework, we can apply a time-
independent FW transformation to the wave functions:

〈M |T |N〉 = 〈m|U0TU
†
0 |n〉 (1.24)

wherem and n are the FW transform ofM and N and U0 is the time-independent FW operator.
The static FW operator U0 is known for one-body systems but not for many-body ones.

Therefore, we derive a many-body version of FW transformation here.

1.6.1 Time-independent many-body Foldy-Wouthuysen transforma-

tion

In the literature, the Foldy-Wouthuysen transformation was studied for two-body Hamilto-
nians [Chraplyvy, 1953, Eriksen, 1958], but the results were rather complicated and not easy
to extend to many bodies.

Here, our aim is to obtain wave functions that are even or odd. The generalization of β for
a many-body systems is η = β1 ⊗ · · · ⊗ βn that veri�es η† = η and η2 = 1 which is enough to
de�ne parity.6

For many-body systems, even or odd wave functions do not correspond to wave functions
with only lower or upper components.7

The many-body Dirac Hamiltonian:

HD
N =

N∑

n=1

[
βnmc

2 + eφ0(rn) + cαn · (pn − eA0(rn)) +
∑

m6=n
eV (rm − rn)

]

where V (r) = e
8πε0|r| is the Coulomb potential and φ0(r) describes the Coulomb interaction of

the electron with the nuclei. The even and odd part of HD
N are therefore

∑N
n=1 βnmc

2 + E and

6 Let's consider a self-adjoint operator η such that η2 = 1. It can be used to de�ne projectors B± = (1±η)/2.
It is clear that B+ + B− = 1, B2

± = B±, B
†
± = B± and B+B− = B−B+ = 0. A vector |ψ〉 is said to be even

(odd) if η|ψ〉 = |ψ〉 (η|ψ〉 = −|ψ〉). Then, any vector |ψ〉 can be written as the sum of its even part B+|ψ〉
and its odd part B−|ψ〉. An operator H is said to be even (odd) if it transforms an even state into an even
(odd) state and an odd state into an odd (even) state. An operator O is even (odd) if and only if ηOη = O
(ηOη = −O). Any operator H can be written as the sum of its even part B+OB+ +B−OB− and its odd part
B+OB− +B−OB+.

7 For example, for a two body system, if |ψD〉 =

(
φ1

ψ1

)
⊗
(
φ2

ψ2

)
.

Then, the even part of |ψD〉 is
(
φ1

0

)
⊗
(
φ2

0

)
+

(
0
ψ1

)
⊗
(

0
ψ2

)
,

while its odd part is
(
φ1

0

)
⊗
(

0
ψ2

)
+

(
0
ψ1

)
⊗
(
φ2

0

)
.
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O with:

E = e
N∑

n=1

φ0(rn) + e
∑

m6=n
V (rm − rn) and O =

N∑

n=1

cαn ·πn =
N∑

n=1

On

where πn = pn − eA0(rn).
In analogy with the one-body case, at the �rst order in c−1, the operator is U0 = eiS

(1)
where

S(1) = − i

2mc2

∑

n

βnOn

is chosen as the Foldy-Wouthuysen operator. Indeed, when expanding HFW (1) = eiS
(1)
HD
N e
−iS(1)

using Baker-Campbell-Hausdorf formula:

HFW (1) = HD
N + i[S(1), HD

N ] +
i2

2
[S(1), [S(1), HD

N ]] + ...

the term i[S(1),
∑

n βnmc
2] compensates exactly for O. Moreover, the conditions S(1)† = S(1)

and ηS(1)η = −S(1) are satis�ed.8

From this point, the FW transformation can be carried as in [Greiner, 2000, p285] and we
�nd:

HFW
0 =

∑

n

βnmc
2 + E +

1

2mc2

∑

n

βnO2
n +

1

8m2c4
[
∑

m

βmOm, [
∑

n

βnOn, E ]]− 1

8m3c6

∑

n

βnO4
n.

In the double commutator, the two cases m = n and m 6= n can be separated which leads
to:

HFW
0 =

∑

n

βnmc
2+E+

1

2mc2

N∑

n=1

βnO2
n−

1

8m2c4

∑

n

[On[On, E ]]+
1

8m2c4

∑

m6=n
βmβn[Om[On, E ]]

− 1

8m3c6

∑

n

βnO4
n

Using the formula for O and E :9

HFW
0 =

N∑

n=1

HFW
n +HFW

MB (1.26)

8 The commutator,

[S(1),
∑

n

βnmc
2] =

−i
2

∑

n,n′

βnOnβn′ − βn′βnOn =
−i
2

( ∑

n6=n′

βnβn′On − βn′βnOn +
∑

n

−2On
)

= iO

because [βn′ , βn] = 0.
9 The double commutator [On[On, E ]] rewrites:

[On[On, E ]] = e[On[On,
∑

p

φ0(rp)]] + e[On[On,
∑

p,q 6=p
V (rq − rp)]]

In this expression,

[On, φ0(rp)] = −ih̄c[αn · ∇n, φ0(rp)] = −ih̄cδp,nαp · [∇p, φ0(rp)] = −ih̄cδp,nαp · ∇φ0(rp),

[On, V (rq − rp)] = −ih̄cδp,nαp · ∇V (rp − rq) + ih̄cδq,nαq · ∇V (rp − rq).
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where HFW
n are the usual one-body FW Hamiltonians:

HFW
n = βnmc

2 + eφ0(rn) + e
∑

m6=n
V (rm − rn) + βn

π2
n

2m
− eh̄

2mc
Σn ·B0(rn)

− eh̄2

8m2c2
∇E0(rn) +

eh̄

8m2c2
Σn · (πn × E0(rn)− E0(rn)× πn)− βn

(πn ·πn)2

8m3c2

with B0(rn) = ∇×A0(rn), E0(rn) = −∇φ0(rn)−∑q 6=n∇V (rn − rq) and Σn =

(
σn 0
0 σn

)
.

The other term HFW
MB arises because V (rp − rq) is a two-body operator:

HFW
MB =

∑

n,q 6=n

eh̄2

8m2c2
∆V (rn − rq)−

eh̄

8m2c2
Σn · (πn ×∇V (rn − rq)−∇V (rn − rq)× πn)

+
eh̄2

4m2c2

∑

n,m6=n
βnβm(αm · ∇)(αn · ∇)V (rn − rm).

The �rst line in this expression is due to the factor of 2 in front of ∇V in [On, E ] (Eq. (1.25))
and the second line is due to the sum over m 6= n in the expression of HFW

0 .

As
∑
q∇V (rn − rq) = −∑p∇V (rp − rn) due to the fact that ∇V is a odd function,

[On, E ] = −ieh̄c
(
αn · ∇φ0(rn) + 2

∑

q 6=n
αn · ∇V (rn − rq)

)
. (1.25)

We must therefore calculate two commutators for which we use the formula in Appendix B.4:

• [On,αn · ∇φ0(rn)] = c[αn ·πn,αn · ∇φ0(rn)]

= c
∑

i

[πn,i,∇iφ0(rn)] + icΣ · (πn ×∇φ0(rn)−∇φ0(rn)× πn)

= −ih̄c∆φ0(rn) + icΣ · (πn ×∇φ0(rn)−∇φ0(rn)× πn)

• [On,
∑

q 6=n
αn · ∇V (rn − rq)] = c

∑

q 6=n
[αn ·πn,αn · ∇V (rn − rq)]

=
∑

q 6=n
−ih̄c∆V (rn − rq) + icΣ · (πn ×∇V (rn − rq)−∇V (rn − rq)× πn)

The second double commutator with m 6= n:

βmβn[Om, [On, E ]] = βmβn[Om,−ieh̄c
(
αn · ∇φ0(rn) + 2

∑

q 6=n
αn · ∇V (rn − rq)

)
]

As αn · ∇φ0(rn) commutes with Om, only the second term in [On, E ] must be considered:

• [Om,
∑

q 6=n
αn · ∇V (rn − rq)] = c

∑

q 6=n
[αm ·πm,αn · ∇V (rn − rq)]

= c
∑

q 6=n

∑

ij

αimα
j
n[πm,i,∇jV (rn − rq)]

= −ih̄c
∑

q 6=n

∑

ij

αimα
j
nδmq(−∇i∇jV (rn − rm))

= ih̄c(αm · ∇)(αn · ∇)V (rn − rm)

The expression for O2
n and O4

n can be found in [Strange, 1998, p.220].
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1.7. Semi-relativistic absorption cross sections

1.6.2 Properties of this transformation

At the �rst step, the FW operator, U0 = eiS
(1)

is a tensor product of one-body FW operators:
U0 = eiS

(1)
1 ⊗ ...⊗ eiS(1)

N . At the next step, however, U0 can not be written as a tensor product
because S(2) contains two-body operators. With expansion parameter m−2, in analogy with
the formula in [Eriksen, 1958], U0 writes:

U0 = 1 +
1

2mc2

∑

n

βnOn −
1

8m2c4

(∑

n

βnOn
)2

+
1

4m2c4

∑

n

βn

[∑

m

βmOm, E
]

(1.27)

and it obeys U0 = ηU †0η. Also, if H
D
N is changed to −HD

N ,
10 then U †0ηU0 = ηU2

0 is changed to
−U †0ηU0. This property is required to prove that

U †0ηU0 = signHD
N = λ (1.28)

which is the many-body version of Eq. (1.5) (see the paper in Appendix F).
As in the one-body case, this relation implies that the transform of a wave function corre-

sponding to a positive energy state is even and the transform of a wave function corresponding
to a negative energy state is odd.

1.7 Semi-relativistic absorption cross sections

As the transition operator T in Eq. (1.22) is of order 0 in c, we can use U0 = eiS
(1)

to
compute U0TU

†
0 at order c−2. Indeed, S(2) ∝ 1

c3
.

As T =
∑

n T
n where T n are one-body operators and U0 = eiS

(1)
1 ⊗ ...⊗ eiS(1)

N ,

U0TU
†
0 =

∑

n

eiS
(1)
n T ne−iS

(1)
n (1.29)

In other words, the action of U0 can be calculated for each variable independently. We present
the derivation in the one-body case omitting the index n that will be restored at the end of the
calculation.

1.7.1 Derivation of the transform of T in the one-body case

Using Baker-Campbell-Hausdor� formula,

U0TU
†
0 = eiS

(1)

Te−iS
(1)

= T +
1

2mc2
[βO, T ] +

1

8m2c4
[O, [T,O]] (1.30)

For the electric dipole term, we stop the development at order c−2 and for the term proportional
to k, at order c−1. Moreover, as FW wave functions are even (|F 〉 and |I〉 in Eq. (1.22) are
positive energy states), all the odd operators in Eq. (1.30) have a zero contribution to the matrix
elements. This is the case for the operators [βO, ε · r],[βO, (ε · r)(k · r)] and (ε×k)(r×α). We
do not consider them so that,

U0TU
†
0 = ε · r +

1

8m2c4
[O, [ε · r,O]] +

i

2
ε · r k · r− h̄c

2∆E

1

2mc2
[βO, (ε× k)(r×α)].

10 Formally, to mimic a change HD
N → −HD

N , we change all βn to −βn, O to −O and E to −E in the formula
for U0 Eq. (1.27).
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1.7. Semi-relativistic absorption cross sections

Using the canonical commutation relation and the properties of Dirac alpha matrix, we obtain:11

[O, [ε · r,O]] = −2h̄c2(p− eA0) · (ε×Σ).

As {β,α} = 0, the other commutator writes as a sum of anticommutators:

[βO, (ε× k)(r×α)] = cβ({α ·p, (ε× k)(r×α)} − e{α ·A0, (ε× k)(r×α)})
The two anticommutators rewrite:12

{α ·p, (ε× k)(r×α)} = 2(ε× k) · (h̄Σ + r× p)

and {α ·A0, (ε× k)(r×α)} = 2(ε× k) · (r×A0).

Finally,

U0TU
†
0 = ε · r +

i

2
(ε · r)(k · r)− h̄β

2m∆E
(ε× k) · (h̄Σ + Λ)− h̄

4m2c2
π · (ε×Σ).

where π = p − eA0 and Λ = r × (p − eA0) = L − er × A0 is the moment of mechanical
momentum [Cohen-Tannoudji et al., 1973].

1.7.2 Many-body semi-relativistic absorption cross section

Using Eq. (1.29) and Eq. (1.22) and the formula for eiS
(1)
n T ne−iS

(1)
n the absorption cross

section can be expressed in terms of the many-body FW wave-functions |i〉 and |f〉:

σ(h̄ω) =
4π2α0(∆Efi)

2

h̄ω

∑

f

|〈f |TFW|i〉|2δ(∆Efi − h̄ω) (1.31)

11 The commutator [ε · r,O] = c[ε · r,α ·p]−ec[ε · r,α ·A0] = c
∑
i,j(εjrjαipi−αipiεjrj) = c

∑
i,j αiεj [rj , pi] =

ih̄cα · ε so that using the formula in Appendix B.4:

[O, [ε · r,O]] = ih̄c2[α · (p− eA0),α · ε] = ih̄c2(
∑

i

[(p− eA0)i, εi] + iΣ · ((p− eA0)× ε)

= −2h̄c2Σ · ((p− eA0)× ε)

12 The �rst anticommutator:

{α ·p, (ε× k)(r×α)} =
∑

ijkl

αipi(ε× k)jεjklrkαl + (ε× k)jεjklrkαlαipi =
∑

ijkl

εjkl(ε× k)j(αiαlpirk + rkpiαlαi)

=
∑

ijkl

εjkl(ε× k)j(αiαlpirk + (ih̄δik + pirk)αlαi)

= ih̄
∑

jkl

εjkl(ε× k)jαlαk +
∑

ijkl

εjkl(ε× k)jpirk(αiαl + αlαi)

= ih̄
∑

jkl

εjkl(ε× k)j(δlk + i
∑

m

εlkmΣm) +
∑

ijkl

εjkl(ε× k)jpirk2δil

= ih̄
∑

j

−2i(ε× k)jΣj + (ε× k) · (r× p) = 2(ε× k) · (h̄Σ + L).

To obtain the last line, we used two properties of Levi-Civita symbols: εjll = 0 and
∑
kl εkljεklm = 2δjm.

The second anticommutator requires less steps:

{α ·A0, (ε× k)(r×α)} =
∑

ijkl

εikl(ε× k)iA0jrk{αj , αl} = 2
∑

ikl

εikl(ε× k)iA0lrk = 2(ε× k) · (r×A0)
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1.7. Semi-relativistic absorption cross sections

where

TFW =
∑

n

ε · rn +
i

2
(ε · rn)(k · rn)− h̄βn

2m∆Efi
(ε× k) · (h̄Σn + Λn)− h̄

4m2c2
πn · (ε×Σn).

The �rst two operators are the usual electric-dipole and electric-quadrupole operators. The
third one is the magnetic-dipole operator but with Λn = Ln − ern × A0(rn) instead of the
Ln that usually enters it through the total angular momentum of the electron (h̄Σn + Ln).
The amplitude of the −eA0 part of this term depends on the choice of the space origin in the
Coulomb gauge for A0 but it does not make the cross section gauge dependent. Indeed, when
choosing the origin of the gauge, the states are changed accordingly (see Section 1.4). If the
origin of the gauge is chosen at the atom position (which is the usual choice), �elds way beyond
laboratory accessible values (larger than 106 T) are required for this term to be signi�cant. We
rewrite the last term using πn = (m/ih̄)[rn, H

FW
0 ] +O(c−2):

〈f | − h̄

4m2c2
πn · (ε×Σn)|i〉 = 〈f |i∆Efi

4mc2
Σn · (ε× rn)|i〉.

We call spin-position operator the operator Σn · (ε× rn).
In the one-body case, we �nd the same cross section as the one obtained from the naive

calculation in Subsection 1.3.2 (Eq. (1.10)) by projection of TFW on large components:

TFW,p = ε · r +
i

2
(ε · r)(k · r)− h̄

2m∆Efi
(ε× k) · (h̄σ + Λ)− h̄

4m2c2
π · (ε× σ).

With our method, we eliminated the uncertainty related to the choice of the starting Hamil-
tonian. We intentionally decided not to use the fact that ∆Efi = h̄ω in the expressions for
the cross section to highlight the fact that the spin-position operator obtained from a fully-
relativistic calculation di�ers from the spin-position operator obtained from a naive calculation
by a factor ∆Efi

h̄ω
which is equal to 1 in the case of absorption but not in other kind of experiments

like scattering.

1.7.3 Rewriting the cross section with large components of Dirac wave

functions for the core state

As this subsection concerns a problem related to numerical implementation, we use the
one-body cross section. For practical implementation, it can be useful to consider a di�erent
situation: the use of FW wave function for the �nal states and large components of the Dirac
wave function for the initial (core) state. In practice, this di�erence in treatment is linked to
the fact that the core wave function can be determined from a relativistic atomic code whereas
the unoccupied states are often calculated with a semi-relativistic condensed-matter code.

We note φi and χi the large and small components of |I〉. The order of magnitude of the ratio
between small and large components is v/c where v is the velocity of the particle.[Strange, 1998]
Up to order c−1, the small component writes [Strange, 1998, van Lenthe et al., 1996]:

χi =
1

2mc
σ · (p− ea0)φi. (1.32)

We remind, that at order c−2, the FW operator is:

U0 = 1 +
β

2mc2
O − 1

8m2c4
O2. (1.33)
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1.8. Semi-relativistic scattering cross section

Only the second term in U0 couples the small and the large components. From Eqs (1.32)
and (1.33), the large component of the FW transformed wave function can be expressed as a
function of the large components of Dirac wave functions up to order c−2,

φFW
i = (1− 1

8m2c4
[O2]p)φi +

1

4mc3
Opσ · (p− ea0)φi.

[O2]p is the projection of O2 on large components[Strange, 1998]: [O2]p = c2(p − ea0)2 −
c2eh̄σ.B0 and Op = cσ.(p− ea0) is the projection of βO on the upper right components.

The fact that cOpσ · (p− ea0) = [O2]p leads to:

φFW
i = (1 +

1

8m2c4
[O2]p)φi.

From this relation, the cross section obtained in the previous subsection can be adapted to the
case that we consider here:

σ(h̄ω) = 4π2α0h̄ω
∑

f

|〈φFW
f |T ′FW,p|φi〉|2δ(Ef − Ei − h̄ω) (1.34)

where: T ′FW = TFW,p(1 + 1
8m2c4

[O2]p) = TFW,p(1 + 1
8m2c2

((p− ea0)2 − eh̄σ.B0)).
The expansion for TFW,p was made to order c−2 for the dipole contribution and to order kr

and c0 for multipole contributions. At the same order,

T ′FW,p = TFW,p +
1

8m2c2
((p− ea0)2 − eh̄σ.B0).

This formula is the one used in our numerical implementation presented in the next chapter. In
this chapter, we will also study the relative order of magnitude of the di�erent terms in T ′FW,p.

1.8 Semi-relativistic scattering cross section

The fully relativistic scattering cross section Eq. (1.23) can be written:

d2σ

dΩdωf
= (remc

2)2ωf
ωi

∑

F

δ(Ef + h̄ωf − Ei − h̄ωi)
∣∣∣S< + S>

∣∣∣
2

,

where

S</> =
∑

L,El</>0

〈F |∑n e−ikf · rnαn · ε?f |L〉〈L|
∑

n eiki · rnαn · εiψ|I〉
Ei − El + h̄ωi + iγ

+
〈F |∑n eiki · rnαn · εiψ|L〉〈L|

∑
n e−ikf · rnαn · ε?f |I〉

Ei − El − h̄ωf
.

We have separated the sum over intermediate state of positive energy from the sum over over
intermediate state of negative energy and we are going to treat them separately.
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1.8. Semi-relativistic scattering cross section

1.8.1 Many-body semi-relativistic scattering cross section

Positive energy intermediate states

When El > 0, some of the matrix elements are the same as in the absorption case. The
others correspond to emission and, as illustrated by Eq. (1.20), they are formally very close to
the absorption ones but with ε→ ε′? and k→ −k′. Therefore,

S> =
∑

l,El>0

−∆Eli∆Efl

h̄2c2

(
〈f |T ′flFW(εf )|l〉〈l|T liFW(εi)|i〉

Ei − El + h̄ωi + iγ
+
〈f |T flFW(εi)|l〉〈l|T ′liFW(εf )|i〉

Ei − El − h̄ωf

)
(1.35)

with

T jiFW(εi) =
∑

n

εi · rn +
i

2
εi · rn ki · rn −

h̄βn
2m∆Eji

(εi × ki) · (h̄Σn + Λn)− h̄

4m2c2
πn · (εi ×Σn)

and

T ′ijFW(εf ) =
∑

n

ε?f · rn −
i

2
ε?f · rn kf · rn +

h̄β

2m∆Eij
(ε?f × kf ) · (h̄Σn + Λn)− h̄

4m2c2
πn · (ε?f ×Σn).

Negative energy intermediate states

If |L〉 is a negative energy state, Ei−El± h̄ω = 2mc2 +E ′i +E ′l ± h̄ω with E ′i +E ′l � 2mc2.
None of the two terms in S< can be resonant. Their denominators write:

1

Ei − El ± h̄ω
≈ 1

2mc2
(1∓ h̄ω

mc2
). (1.36)

We can therefore apply the completeness relation on the sum over states of negative energy
that involves the projector onto the space of negative energy Γ−:

∑

L,El<0

|L〉〈L| = Γ− =
1− λ

2
=

1− U †0ηU0

2
,

the last equality being a consequence of Eq. (1.28). If P and Q are odd operators,

PΓ−Q =
1

2
(PQ− PU †0ηU0Q) =

1

2
(PQ+ ηPU2

0Q)

If one performs the semi-relativistic expansion with the principle of Eq. (1.24):

U0PΓ−QU
†
0 =

1

2
(U0PQU

†
0 + ηU †0PU

2
0QU

†
0).

This expansion is made easier by the fact that we stop the development at order c−2 and the
energy denominator is already of this order. It is therefore enough to consider U0 = 1 so that

∑

L,El<0

〈I|P |L〉〈L|Q|F 〉 = 〈i|1 + η

2
PQ|f〉 = 〈i|PQ|f〉 (1.37)

because |i〉 is even (|I〉 is a positive energy state), that is to say η|i〉 = |i〉.
With P =

∑
n eik · rnαn · ε and Q =

∑
m e−ik

′ · rmαm · ε′?, the product PQ is:

PQ =
∑

n

ε′? · ε + iΣn · (ε× ε′?)ei(k−k
′) · rn +

∑

n,m6=n
αn · ε αm · ε′?eik · rn−ik

′ · rm .
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1.8. Semi-relativistic scattering cross section

So that, using Eq. (1.36) and Eq. (1.37) in both parts of the sum constituting S<, it rewrites:

S< =
1

mc2
〈f |
∑

n

eiK.rn
(
εi.ε

?
f +

ih̄

2mc2
(ωi + ωf )Σn.(εi × ε?f )

)

+
∑

n,m6=n

(
1 +

h̄(ωf − ωi)
2mc2

)
αn · εi αm · ε?feiki · rn−ikf · rm|i〉 (1.38)

where K = ki − kf .

1.8.2 Comparison with the results from one-body semi-relativistic

Hamiltonians

There are two important di�erences between the usual scattering cross section [Blume, 1985]
and the one obtained here : the spin-position operators in S> and the two-body term in S<.

Comments on the spin-position operator

The additional spin-position operator πn · (εi×Σn) in S> does not appear in [Blume, 1985,
Eq.(13)]. However, if one starts the calculation from the Hamiltonian that Blume proposed
[Blume, 1985, Eq.(1)] and if one does the same kind of calculation as in Subsection 1.3.2 but
for the scattering case, terms similar to the spin-position terms appear in the matrix elements.
Indeed, Blume's Hamiltonian HB present only two di�erences with HFW:

(i) Blume omitted the term ∇ ·E that does not contribute to the perturbation W in the
Coulomb gauge,

(ii) he assumed that E commuted with π0 which is generally not true in the time-dependent
case. However, in the dipole approximation E is uniform so that, within the approximation
made in the calculation, it has no impact on the result.

However, as was mentioned in subsection 1.7.2, there is a factor ∆E/h̄ω between the spin-
position term obtained from HFW or HB and the one obtained from our semi-relativistic ex-
pansion of the fully-relativistic cross section. The spin-position terms obtained from HB are,
therefore, not the correct ones. Anyway, these terms were neglected by Blume because he con-
sidered them to be small. Indeed, Blume neglected the terms proportional to c−2 in the second
order part of the Kramers-Heisenberg formula.

Comments on S<

The terms on the �rst line of Eq. (1.38) describe usual Thomson scattering and non-resonant
magnetic scattering. In usual calculations, they arise from terms proportional to a2 and ∂ta×a
in the perturbation [Joly et al., 2012, Eq. (3) and (4)]. Here, the physical picture is completely
changed because Heγ is linear in a and these terms arise from the sum over negative energy
intermediate states. This was already noticed by Strange [Strange, 1998, p.525]. However,
Strange did not obtain the two-body term that appears in our calculation because the indexes
of the α matrices (that label the electrons) are omitted in the book which prevents from getting
it.

This two-body term must be computed in order to evaluate its order of magnitude and if
there exists conditions where it could be measured experimentally. In any case, we can already
stress its conceptual importance. Such a two-body term could not arise from an a2 term in the
perturbation because a2 becomes a one-body operator. Therefore it can not be present in a
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calculation starting from a semi-relativistic Hamiltonian. It is a relativistic many-body e�ect
the physical interpretation of which is not straightforward but that could lead to new kinds of
phenomena.

1.9 Conclusion

After presenting the two problems that arise from semi-relativistic calculations of transition
probabilities, we proposed a method which consists in performing the semi-relativistic expan-
sion of the wave-functions in the fully-relativistic matrix elements. We took great care of the
formalism that we used in order to insure gauge invariance and, for this, we worked in a quan-
tum electrodynamic (QED) framework. The results that we obtained for the cross sections
present several di�erences with the usual ones. The most noticeable ones are a relativistic term
in the transition operator for absorption that we called spin-position, that is evaluated in the
next chapter, and a two-body term for scattering that needs to be evaluated in the future.
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2.1 Introduction

X-ray spectroscopy is a tangible example of a �eld where the developments of theory
and experiment are performed in conjunction with a constant mutual enrichment. Several
well-established codes [Haverkort et al., 2012, Ebert et al., 2011, Laskowski and Blaha, 2010a,
Rehr et al., 2010, Bun�au and Joly, 2009, Taillefumier et al., 2002, for selected examples] aim
at reproducing X-ray absorption spectra in order to analyze in detail the experimental data.
Indeed, in calculations e�ects can be turned on or o� selectively (for example, calculations can
be performed with or without the electric quadrupole transition or with or without spin-orbit
coupling) and calculations also permit a comparison of the spectra with quantities that are
computed otherwise (projected densities of states for example) in order to propose a physi-
cal interpretation to the observed features. The experimental developments (such as increase
in brilliance and energy resolution or progress in beam stability) that lead to an increasing
precision and also to new possibilities in the way that the sample is probed, challenge the
theoreticians to improve their tools in order to include �ner e�ects.

X-ray magnetic circular dichroism (XMCD) at K -edge is a good example of an e�ect that
requires the crucial support of theoretical calculations for its analysis. XMCD is a powerful
tool for the study of the magnetic structure of complex systems as it provides element- and
orbital-speci�c information. The well-established magneto-optical sum-rules allow to obtain
the orbital and spin (up to another term called Tz) contribution to the magnetic moment di-
rectly from the integral of the spectra [Thole et al., 1992, Carra et al., 1993, Altarelli, 1993],
see also [de Groot and Kotani, 2008, Section 7.3]. These sum-rules are widely and success-
fully applied at spin-orbit split L2 ,3 -edges of transition metals [Vogel et al., 1997, Stöhr, 1999,
Edmonds et al., 2005, Prado et al., 2013] and M 4 ,5 -edges of rare earths [Schillé et al., 1994]
and actinides [Wilhelm et al., 2013]. In the absence of spin-orbit splitting of the core state (as
forK - and L1-edges), only the orbital magnetization sum-rule [Thole et al., 1992, Altarelli, 1993]
can apply. This sum-rule relates the integral of the XMCD spectrum at theK -edge to the orbital
magnetic moment of occupied p states. The practical application of this sum-rule is however
di�cult (see section 3.4.1) and it provides only indirect information on the magnetic properties
of the sample that are mainly governed by d or f electrons. In this context, calculations of the
spectra could be very useful for interpreting experimental data beyond the �ngerprint approach
which consists in comparing spectra recorded in di�erent samples or under several conditions
and deducing similarities or di�erences in the nature of the sample.

There exist, at the present time, at least two very di�erent codes available to the public
that include calculation of K -edge XMCD spectra in the near-edge region.

• The �rst code is SPR-KKR [SPRKKR, site] developed by the group of Hubert Ebert
in München. It is based on the fully relativistic Korringa-Kohn-Rostoker (KKR) band
structure method. In this method, the electronic structure is represented in terms of
the single particle Green's function of the Kohn-Sham equation. This Green's function
is expressed within the multiple scattering formalism in terms of scattering path. The
expression for the absorption cross section in this formalism is given in [Ebert, 1996, Eq.
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[Bun�au and Joly, 2009]. The main di�culty in the practical use of this method is that
the calculated spectra depend on the size of the clusters used to perform the self-consistent
calculation (�rst step) and the �nite di�erence method calculation (second step).

Here, we present a new method to compute XMCD in which the calculations are performed
in reciprocal space using plane waves and pseudopotentials. The method has been implemented
within a highly e�cient solid-state code so that it can be applied to a large range of systems.

2.2 X-ray Circular Dichroism cross section

X-ray circular dichroism describes the dependence of the absorption cross section on the
state of circularly-polarized light (left/right polarization). In the case of XMCD at the K-edge
of 3d transition elements, the asymmetry in absorption is, at most, of the order 10−3 compared
to the edge jump. To compute XMCD spectra, it is therefore mandatory to compute the
absorption cross sections for right and left circular polarization very accurately. This is the
reason why we start from the semi-relativistic absorption cross section obtained in the previous
Chapter in Section 1.7.

Our numerical calculations are based on a monoelectronic framework with 2-components
wave functions. More precisely, for the core state (initial state) we compute the large com-
ponents of Dirac wave function whereas for the unoccupied states (�nal states) we compute
the Foldy-Wouthuysen wave functions. In other words, we are in the situation described in
Subsection 1.7.3.

2.2.1 Order of magnitude of the terms in the absorption cross-section

The formula obtained in Subsection 1.7.3 Eq. (1.34) for the absorption cross section is:

σ(h̄ω) = 4π2α0h̄ω
∑

f

|〈φFW
f |TD + TQ + TMD + TA0 + TSP + T e|φi〉|2δ(Ef − Ei − h̄ω). (2.1)

In this expression we simply named the operators constituting T ′FW,p. These operators are
detailed hereafter.

As the core wave function is very localized, we can have an idea of the relative order of
magnitude of the operators in this cross-section by evaluating them at the radius corresponding
to the core state. We give these evaluations in Table 2.1 by taking as a reference the order of
magnitude of the dominant operator that is the electric dipole operator (usually called E1):

TD = ε · r.

The second column of the table gives the formula used to determine these orders of magnitude.

The electric quadrupole operator (usually called E2) writes:

TQ =
i

2
ε · r k · r.

Its order of magnitude compared to TD is given by krc/2 where k is the norm of the incident
wave vector (the incident electromagnetic wave is described by a plane wave eik · r) and rc the
mean radius of the core orbital. It is related to the spatial inhomogeneity of the x-ray elec-
tric �eld at the scale of the core state radius. Working in the electric-dipole approximation
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2.2. X-ray Circular Dichroism cross section

Table 2.1: Orders of magnitude of the operators in Eq. (2.1) evaluated at the core state radius rc with
respect to the electric dipole operator. The mean radius of core orbitals is deduced from the e�ective
nuclear charge: rc = 3

2
a0
Zeff

[Clementi and Raimondi, 1963, Clementi et al., 1967]. In the table, B0 has

been �xed to 2×104 T (1.2eV) which is two orders of magnitude larger than the exchange splitting
calculated for Fe K -edge. The Coulomb potential is V =

−Zeff e
4πε0rc

and the core state energy Ei is

evaluated in a planetary model Ei =
−Zeff e2
8πε0rc

.

Edge
L1 L2 K
I Fe Gd Bi O Fe

Energy (keV) 5.19 0.72 7.898 15.71 0.53 7.11

Zeff 39.067 22.089 29.8527 39.2335 7.6579 25.381

rc (a0) 0.038 0.068 0.050 0.038 0.20 0.059

TQ/TD
krc
2

2.7×10−2 6.6×10−3 5.3×10−2 8.1×10−2 1.4×10−2 5.7×10−2

TA0/TD
ekrcB0

4mω
6.0×10−6 1.1×10−5 7.8×10−6 6.0×10−6 3.0×10−5 9.2×10−6

TSP/TD
h̄ω

4mc2
2.6×10−3 3.5×10−4 3.9×10−3 7.7×10−3 2.6×10−4 3.5×10−3

T e/TD
Ei−eV
4mc2

6.7×10−3 2.2×10−3 3.9×10−3 6.8×10−3 2.6×10−4 2.8×10−3

corresponds to considering that the x-ray electric �eld is spatially constant at the scale of the
wave function of the core electron. In the quadrupole approximation (eik · r ≈ 1 + ik · r), one
partially takes into account the spatial variation of the x-ray electric �eld. Given the order of
magnitude of krc (see Table 2.1), it is a good approximation in XAS.

The magnetic dipole operator TMD (usually called M1) is:

TMD =
1

2mω
(ε× k) · (h̄σ + L).

It is proportional to the total magnetic moment operator (h̄σ + L) = (2S + L) where S is
the spin operator. TMD is also present in common non-relativistic derivations [Brouder, 1990,
Di Matteo et al., 2005]. This operator does not incorporate the radial variable r and it con-
serves the orbital angular momentum. Its selection rules are therefore [Brouder, 1990]:1 li=lf
and ni=nf . It vanishes in the X-ray energy range because the states involved in the transitions
have di�erent principal quantum numbers. Note that the argument to justify the selection
rules of TMD is not rigorous. In a monoelectronic framework where we consider that |f〉 is a
stationary state in the presence of the core-hole (so it is not exactly an eigenstate of the same
Hamiltonian as |i〉), the proof does not apply. In a many-body framework, the matrix elements
of the magnetic dipole operator write as sums of one-body matrix elements to which the selec-
tion rules apply. However, it is not sure that a transition that obeys li=lf and ni=nf can not
occur. Finally, the picture is further complicated in a relativistic framework in which l is not a
good quantum number.2 In fact, the electric dipole-magnetic dipole contribution is very small

1The initial state writes as the product of a radial function by a sum of the product of spherical harmonics
and of spinors: |i〉 = Rnili(r)

∑
m,s cm,s|lim〉|s〉. As the MD operator does not act on the radial part and

does not change li, TMD|i〉 = Rnili(r)
∑
m′,s′ cm′,s′ |lim′〉|s′〉. The �nal state writes as a linear combination of

|φf 〉 = Rnf lf (r)
∑
m,s cm,s|lfm〉|s〉, TMD|i〉 and |φf 〉 are orthogonal except if li = lf (otherwise the angular

parts are orthogonal) and ni = nf (otherwise the radial parts are orthogonal).
2For example, in a relativistic framework there is some p character in the core wave function (see

47



2.2. X-ray Circular Dichroism cross section

but non zero. Such a contribution to the XNCD has, for example, been measured at the Ni
K-edge in α-NiSO4×6H2O [Rogalev et al., 2010] and it reaches 3×10−5 of the absorption edge
jump. As it is small, we neglect this term in all this thesis. It is absent in Table 2.1 because
no evaluation a priori of the operator can be given.

The correction to magnetic dipole term due to the external static potential A0 is:

TA0 =
e

2mω
(ε× k) · (r×A0).

This operator is evaluated using A0 = 1
2
r×B0 and considering a magnetic �eld B0 = 2×104 T

so that µBB0 =1.16 eV. The exchange splitting calculated at the 1s state of Fe is 0.015 eV [Y.
Joly private communication, 2016]. The chosen value is, therefore, larger than the exchange
magnetic �eld in matter and it is also way larger than accessible values in laboratory for a
magnetic �eld (which reaches several 100 T for pulsed magnetic �eld).

The spin-position transition operator writes:

TSP =
ih̄ω

4mc2
σ · (ε× r).

It is proportional to the ratio between the energy of the incident photons and the rest energy of
the electron: h̄ω

mc2
. As mc2 = 511 keV, h̄ω

4mc2
can reach 10−3 only if the incident energy is larger

than few keV.

Finally, the extra operator that is related to the use of large components of the Dirac
operator for the core state writes:

T e =
1

4mc2

(
ε · r H0

0 − eε · r V (r)
)

where H0
0 = (p−eA0)2

2m
+ eV (r) − eh̄

2m
σ ·B0. At zero order in c−2, the states |φFW

f 〉 and |φi〉 are
both eigenstates of H0

0 . Moreover the potential felt by the core electron is spherical (the core
states are almost una�ected by the chemical environment). The matrix element of T e therefore
rewrites:

〈φFW
f |T e|φi〉 =

1

4mc2
〈φFW

f |ε · r(Ei − V (r))|φi〉.
This operator concerns transitions to the same orbitals as the electric dipole operator, it has
the same angular dependency and it does not incorporate a spin variable. For this reason, even
in XMCD, it will only yield a very small correction (see the order of magnitude in Table 2.1)
to the electric dipole term.

When expanding the square modulus of the matrix elements in Eq. (2.1), we keep the terms
with contributions higher than 10−3 compared to the dominant electric dipole term (except
T e for the reason mentioned above). Altogether, four terms remain that are listed in the next
subsection (D-D, Q-Q, D-Q and D-SP).

2.2.2 Terms implemented

The electric dipole-electric dipole (D-D) term is:

σD−D(h̄ω) = 4π2α0h̄ω
∑

f

|〈f |ε · r|i〉|2δ(Ef − Ei − h̄ω). (2.2)

[Thaller, 1992, p.126]).
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2.3. Method

It is usually the only term that is taken into account in the calculation of XAS and XMCD
spectra at the L2 ,3 -edges and it is also sometimes the only term that is taken into account in
the calculations at the K -edge [Natoli et al., 1980, Brouder et al., 1996, Rehr and Albers, 2000,
Fujikawa and Nagamatsu, 2003].

The electric quadrupole-electric quadrupole (Q-Q) term is:

σQ−Q(h̄ω) = π2α0h̄ω
∑

f

|〈f |(k · r)(ε · r)|i〉|2δ(Ef − Ei − h̄ω). (2.3)

At the K -edge, it can reach a few percent of σD−D in amplitude (square of the value for TQ
in Table 2.1). Its contribution is mainly signi�cant in the pre-edge region of the absorption
spectra where the D-D contribution is small or nonexistent. It is sometimes included in X-ray
absorption calculations [Taillefumier et al., 2002, Bun�au and Joly, 2009].

If the orbital parts of the wave functions can be chosen real (no spin-orbit coupling or applied
magnetic �eld)3 in the terms D-D and Q-Q, σ(ε) = σ(ε∗), which leads to a zero contribution
to circular dichroism. For this reason it is crucial to take into account the spin orbit coupling
e�ects in the wave functions calculation in order to compute XMCD.

On the other hand, the two following terms can give a non vanishing contribution to the
circular dichroism cross section even when the orbital parts of the wave functions are real.

The electric dipole-electric quadrupole cross term (D-Q) is:

σD−Q(h̄ω) = −4π2α0h̄ω
∑

f

Im[〈f |(k · r)(ε · r)|i〉〈i|ε? · r|f〉]δ(Ef − Ei − h̄ω). (2.4)

If |i〉 and |f〉 are parity invariant (i.e. if inversion r → −r is a symmetry of the system) then
σD−Q = 0. It is however this term that is responsible for XNCD [Natoli et al., 1998] because
the electric dipole-magnetic dipole term (that is responsible for optical activity in the optical
range) is very small in the X-ray range.

The electric dipole-spin-position (D-SP) cross term is:

σD−SP(h̄ω) = −2π2α0h̄
2ω2

mc2

∑

f

Im[〈f |σ · (ε× r)|i〉〈i|ε? · r|f〉]δ(Ef − Ei − h̄ω). (2.5)

It can exist only in materials that exhibit a spin polarization. Like the spin-orbit coupling term
in the FW Hamiltonian, it arises from the coupling of the small components of the Dirac wave
functions. To our knowledge, it has never been evaluated before our work. We will show in
section 3.2 of the next chapter that, despite the small prefactor of this term, its contribution
to XMCD at the K -edge of 3d metals can account for up to one third of the XMCD intensity
near the edge.

2.3 Method

In order to compute the contribution of each of the previously listed terms to the total cross
section, we have modi�ed the code XSpectra [Gougoussis et al., 2009] of the suite Quantum
ESPRESSO [Giannozzi et al., 2009].

3The orbital parts of the wave-functions can be chosen real if the states ±ml are equivalent. We will see
in Section 3.2.1 of the next chapter that the separation of the state ±ml occurs in the presence of spin-orbit
coupling and magnetic ordering but also if an external magnetic �eld is applied (Zeeman e�ect). This second
phenomenon is however too weak to contribute signi�cantly to a XMCD of the order 10−3 the edge jump.
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2.3. Method

The idea of the method is to proceed in two steps:
(1) Determine the electron density of the material using an approximation of Density Func-

tional Theory (DFT) with a self-consistent �eld (scf) method. For this, we use a semi-relativistic
version of the code pwscf.

(2) Compute all the contributions to the absorption cross section for given ε and k.

2.3.1 DFT self-consistent �eld calculation

pwscf code

The code pwscf [Giannozzi et al., 2009] is based on density-functional theory, plane waves,
and pseudopotentials and allows performing self-consistent �eld calculations. In this thesis, we
give only an overview of the principle of the method which is otherwise developed in several
textbooks. For example in the book by R.M. Martin [Martin, 2004], chapters 6 and 7 present
the foundations of DFT and of the Kohn-Sham ansatz. In chapter 9, a description of the self-
consistent solving of the Kohn-Sham equation can be found and chapter 11 is dedicated to the
topic of pseudopotentials.

The principle behind density functional theory is that the energy of a system of elec-
trons (many-body system) can be viewed as a functional of the ground state density n0(r)
[Hohenberg and Kohn, 1964]. In principle, a functional E[n] for the total energy could be de-
�ned and n0(r) could be found by minimizing this total energy. Nevertheless, in practice the
direct minimization of E[n] is impracticable because the functional E[n] is not known explicitly.
The success of DFT is due to the Kohn-Sham (KS) approach [Kohn and Sham, 1965] that pro-
vides a powerful method for electronic structure calculation. In this approach, the many-body
system of interacting electrons is replaced by an auxiliary system of independent electrons. The
ground state energy functional writes in the form [Martin, 2004, p.137]:

EKS = Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n]

where Ts is the independent-particle kinetic energy, Vext is the external potential due to the
nuclei and external �elds, EHartree is the classical Coulomb interaction of the electron density
n(r) with itself, EII is the interaction between the nuclei and Exc is called the exchange-
correlation energy. Exc is the di�erence of the sum of the kinetic energy plus the internal
energy of the interacting system and Ts[n] + EHartree[n] (sum of the kinetic energy and of the
Hartree energy for the �ctitious non-interacting system). In other words, all many body e�ects
are grouped into Exc[n] . If Exc[n] was known exactly, the exact ground state energy and density
of the interacting system could be obtained from the study of the Kohn-Sham auxiliary system.
In practice it must be approximated and this is what is called choice of the functional. Then,
the energy can be determined numerically by iterations with the scf method [Martin, 2004,
p.173].

In the Kohn-Sham approach, the kinetic energy of the auxiliary system is treated in terms
of orbitals:

Ts = − h̄
2

2

∑

σ

N∑

i=1

〈ψσi |∇2|ψσi 〉.

where ψσi are the eigenvectors with lowest eigenvalues of the Hamiltonian of the system of
independent particles. The density of the auxiliary system in the ground state is given by:

n(r) =
∑

σ

N∑

i=1

|ψσi (r)|2.
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Spin-orbit coupling within PAW formalism

Inclusion of the spin orbit coupling (SOC) in the wave functions calculation plays a crucial
role for the evaluation of XMCD spectra. For this, we use an approach [Gerstmann et al., 2014]
where the spin orbit interaction term of HFW (Eq. (1.7)) is implemented through Projector
Augmented Wave (PAW) formalism.

In the PAW formalism, as described by Blöchl [Blöchl, 1994], the physical valence wave
functions |Ψ〉 can be reconstructed from the pseudo-wave-functions |Ψ̃〉 as they are related
through a linear operator T :

|Ψ〉 = T |Ψ̃〉 (2.6)

This linear transformation is chosen to di�er from identity only by a sum of local, atom-centered
operators T̂R (R : atomic positions):

T = 1 +
∑

R

T̂R.

Each local operator T̂R acts only in an augmentation region surrounding the atom. Outside
the augmentation regions, all-electron and pseudo-wave-functions coincide.

Around each atom located at R, a partial wave basis {|φR,n〉} is built4 (in our case, |φR,n〉 are
solutions of the Dirac equation for the isolated atom within a scalar relativistic approximation
[Koelling and Harmon, 1977]). For each partial wave, a pseudo partial wave |φ̃R,n〉, that is
identical to |φR,n〉 outside the augmentation region, is chosen. These pseudo-partial-waves
form a complete set of functions within the augmentation region. Then, the local reconstruction
operators T̂R are de�ned by the fact that |φR,n〉 is the target function of |φ̃R,n〉 i.e. |φR,n〉 =

(1 + T̂R)|φ̃R,n〉 The transformation operator consequently writes:5

T = 11 +
∑

R,n

(|φR,n〉 − |φ̃R,n〉)〈p̃R,n|. (2.7)

where the 〈p̃R,n| form a complete set of projector functions.
The pseudo-Hamiltonian is given by [Ceresoli et al., 2010]:

H̃0 =
p2

2m
+ eV loc

ps (r) +
∑

R

eV nl
R + H̃SO

4 The index n refers to the angular momentum quantum number (l,m) and to an additional number, ς, used
to label di�erent partial waves for the same site and angular momentum (if there is more than one projector
per channel).

5 Within the augmentation region, one can expand any pseudo wave-function into pseudo partial waves :

|Ψ̃〉 =
∑

n

cn|φ̃R,n〉.

Since |φ̃R,n〉 = T |φR,n〉, |Ψ〉 = T |Ψ̃〉 =
∑
n cn|φR,n〉 =

∑
n cn|φR,n〉+ |Ψ̃〉 −∑n cn|φ̃R,n〉.

For the transformation T to be linear, the coe�cients cn must be linear functionals of the pseudo-wave-function.
We call projector functions the functions 〈p̃R,n| such that cn = 〈p̃R,n|Ψ̃〉.
For the relationship |Ψ̃〉 =

∑
i〈p̃Ri |Ψ̃〉|φ̃Ri 〉 to be true within the augmentation region, the projector functions

must ful�ll the condition 11 =
∑
i |φ̃Ri 〉〈p̃Ri | within the augmentation region. This implies that:

〈p̃Ri |φ̃R
′

j 〉 = δi,jδRR′ .

In practice, the projectors are determined iteratively from an initial guess to ful�ll this condition
(See [Blöchl, 1994, Sec. VI C.]). As there is no restriction outside the augmentation spheres, the projector
functions are chosen to be zero.
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4m2c2
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(
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∑

R

FR

)
.

FR

FR =
∑

n,m
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R
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∑
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Fig. 2.4: Computed XMCD spectrum (test calcu-
lation for a bcc-Fe structure) by considering either
the total H̃SO or each term constituting it sepa-
ratly.
In Rydberg atomic units, with e included in the
potentials (i.e. the way it is in the code) the terms
are:
1) α2

0
4

∑
nRm σ · |p̃Rn 〉〈φR,n|1r ∂vae

∂r L|φR,m〉〈p̃Rm|
2) α2

0
4

∑
nRm σ · |p̃Rn 〉〈φR,n|1r

∂vlocps

∂r L|φR,m〉〈p̃Rm|
3) α2

0
4 σ · (∇V loc

ps (r)×p)
We see that, as expected, Term 2 and Term 3 al-
most compensate each other.

Fig. 2.4 illustrates this point but it also shows that it would be a rather rough approximation
to consider only this term in the calculation. Therefore, even if it would represent a substantial
gain in computing time, we do not use this approach and we keep all three terms in H̃SO.

Our calculations are, however, performed with collinear spins along one direction (named z)
and within the diagonal spin-orbit coupling approximation: only σzez is considered in σ which
allows to conserve the decoupling into two equations (one for spin up and one for spin down)
of the Kohn-Sham equation.

2.3.2 Cross-section calculation

We have adapted the Xspectra code of Quantum ESPRESSO [Gougoussis et al., 2009]
for the calculation of XMCD and XNCD spectra.

Principle of the XSpectra code

The main features of the code XSpectra are presented in [Taillefumier et al., 2002]. We
brie�y recall them here.

The aim is to compute the contribution of a given operator O to the absorption cross-section:

σ(ω) = 4π2α0h̄ω
∑

f

|〈f |O|i〉|2δ(Ef − Ei − h̄ω).

The core state |i〉 (for example, at K -edge, the 1s state) is determined from an all-electron
isolated atom calculation because the core states are almost una�ected by the chemical bond
(this is called the frozen core approximation).

The operators O are known. We give the expression of the spin-position operator - in the
collinear spin and diagonal spin-orbit coupling case- in the next subsection and the expression
of all operators in terms of spherical harmonics in Appendix D.2.

The scf calculation described in the previous subsection aims at determining the wave func-
tions of the empty states |f〉 but there are two problems:
(i) the scf calculation is pseudopotential-based so that pseudo-wave-functions |f̃〉 are deter-
mined instead of |f〉. They are not suitable to compute the matrix elements.
(ii) the calculation of empty states by DFT is computationally expensive and it would require

54



2.3. Method

huge resources to compute the empty states in a supercell (which is needed when including the
core-hole, see Section 2.5).

The �rst problem is addressed by using PAW reconstruction as presented in the previous
subsection. In the PAW formalism, the matrix elements can be rewritten:6

〈f |O|i〉 = 〈f̃ |ϕ̃R0〉 with |ϕ̃R0〉 =
∑

n

|p̃R0
n 〉〈φR0

n |O|i〉.

In addition to the initial state wave function and to the operator, the vector ϕ̃R0 contains
quantities related to the PAW reconstruction, |p̃R0

n 〉 and |φR0
n 〉, which can be read in the pseu-

dopotential �le. At this point, the cross section can be rewritten as a sum over |f̃〉:

σ(ω) = 4π2α0h̄ω〈ϕ̃R0 |


∑

f̃

|f̃〉δ(Ef − Ei − h̄ω)〈f̃ |


 |ϕ̃R0〉,

which solves problem (i).
The second problem is addressed by a recursion method so that the cross section can be

determined without having to compute any empty state. Using the Sokhotski�Plemelj theorem,

lim
γ→0+

1

z ± iγ = P

(
1

z

)
∓ iπδ(z)

(where P is the Cauchy principal value). Therefore,

∑

f̃

|f̃〉δ(Ef − Ei − h̄ω)〈f̃ | = − 1

π

∑

f

|f̃〉 Im 1

Ei + h̄ω − Ef + iγ
〈f̃ | = − 1

π
Im[G̃(E)]

where G̃(E) is the Green's operator associated with the pseudo-Hamiltonian H̃0:
G̃(E)=(E − H̃0 + iγ)−1 and the energy E = Ei + h̄ω. Note that, here, the Green's function
is used only as a convenient way to write the invert of a matrix element. With this rewriting,
we transformed the problem of a sum over empty states into a problem of large matrix inver-
sion. In order to proceed to this inversion in a reasonable amount of time, Lanczos algorithm
[Lanczos, 1952] is used to make H̃0 tridiagonal with ai on the main diagonal and bi on the �rst

6 Using Eq. (2.6) and Eq. (2.7),

〈f |O|i〉 = 〈f̃ |O|i〉+
∑

R,j

〈f̃ |p̃Rj 〉〈φRj |O|i〉 −
∑

R,j

〈f̃ |p̃Rj 〉〈φ̃Rj |O|i〉

As the initial wave-function 〈r|i〉 is localized around the absorbing atom R0, we consider that it is zero outside
the augmentation region ΩR0

so that only R = R0 have to be considered in the previous expression. Moreover,
〈r|O|i〉 can be expanded on the |φ̃R,n〉 basis:

O|i〉 =
∑

n

|φ̃n,R0〉〈p̃R0
n O|i〉.

The �rst and the last terms in 〈f |O|i〉 cancel each other, which leads to:

〈f |O|i〉 = 〈f̃ |
∑

n

|p̃R0
n 〉〈φR0

n |O|i〉.
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diagonals:7

H̃0 =




a0 b1 0 0 .. .. 0
b1 a1 b2 0 .. .. 0
0 b2 a2 b3 0 .. 0
.. .. .. .. .. .. ..
.. .. .. .. .. .. ..
0 .. .. 0 bn−1 an−1 bn
0 .. .. .. 0 bn an




.

The inversion leads to a form in continued fraction of the matrix elements:

〈ϕ̃R0|(H̃0 − E − iγ)−1|ϕ̃R0〉 =
〈ϕ̃R0|ϕ̃R0〉

a0 − E − iγ −
b1

2

a1 − E − iγ −
b2

2

...

≡ 〈ϕ̃R0|ϕ̃R0〉cont(E, a,b)

We de�ne this way cont(E, a,b) where a and b are vectors of components ai and bi respectively.
Finally, the contribution of O to the absorption cross section is computed as:

σ(E) = 4πα0h̄ω〈ϕ̃R0|ϕ̃R0〉cont(E, a,b).

In the code, for each k -point, |ϕ̃R0〉 is determined for the chosen operator with the formula
given in Appendix D.3. Then, the Lanczos procedure is applied to determine the vectors a and
b, and a spectrum is calculated. The total spectrum is obtained as a sum over the k -points of
these spectra. If the calculation is spin-polarized the number of k -points is multiplied by two
so that each k -point is associated to a given spin. This allows to obtain spin-up and spin-down
spectra by summing over the corresponding k -points.

Details related to the cross terms

(i) SP operator in the case of collinear spins

In order to compute the D-SP cross term, the calculation must be spin-polarized. The only
case implemented, for now, is that of collinear spins and diagonal SOC (σ is replaced by σzez).
In the code pwscf spin channels remain independent because spin-up and spin-down electronic
states are solutions of separate Kohn-Sham equations. We consider that the collinear spins are

along z. The spin part of the wave functions |s〉 can either be the spin up spinor | ↑〉 =

(
1
0

)
,

or the spin down spinor | ↓〉 =

(
0
1

)
.

7 The Lanczos basis can be determined recursively as it obeys :





|u−1〉 = 0

|u0〉 =
|ϕ̃R0

〉√
〈ϕ̃R0

|ϕ̃R0
〉

H̃0|ui〉 = ai|ui〉+ bi+1|ui+1〉+ bi|ui−1〉

In practice, at each iteration, |t〉 = H̃0|ui〉 − bi|ui−1〉, that is equal to bi+1|ui+1〉+ ai|ui〉, is computed. Then,
ai = 〈t|ui〉 can be determined and |t′〉 = |t〉 − ai|ui〉 is computed. Then bi+1 is equal to the norm of |t′〉:
bi+1 =

√
〈t′|t′〉 and |ui+1〉 = |t′〉

bi+1
. Note that in the code, the indexes for ai start from 1 whereas, in our

notation they start from 0. This only implies a shift of 1 in the index of ai in each formula.
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The D-SP term is a cross term between the electric dipole and the spin-position operator.
Spin does not appear in the electric dipole operator, so it is diagonal in spin

〈φis|ε? · r|φfs′〉 = 〈φi|ε? · r|φf〉δss′ .
This imposes s′ = s. On the other hand, the vector of Pauli matrices σ appears explicitly in
the Spin-Position operator:

〈φis|σ · (ε× r)|φfs〉 = 〈φi|(ε× r)|φf〉 · 〈s|σ|s〉.
As 〈s|σx|s〉 = 〈s|σy|s〉 = 0, we can exclude a priori the terms that are proportional to σx and
σy in the Spin-Position operator. In that case the spin position operator rewrites:

SPcol(ε) = σ.(ε× r) = σz(εxy − εyx).

Its expression in spherical harmonics, as it is implemented in the code, is presented in Ap-
pendix D.2.

(ii) Calculation of the cross terms

To compute the D-Q and D-SP cross terms, we cannot simply apply the procedure presented
above (p. 54) because they do not write as square modulus. Let us consider the electric dipole
operator D and another operator B, which is either the electric quadrupole Q or the spin-
position SPcol operator. We want to compute:

ID−B = π
∑

f

Im[〈f |B|i〉〈i|D∗|f〉]δ(Ef − Ei − h̄ω).

Two calculations are performed in order to obtain: I1 = π
∑

f |〈f |D + iB|i〉|2δ(Ef − Ei − h̄ω)

and I2 = π
∑

f |〈f |D − iB|i〉|2δ(Ef − Ei − h̄ω). The di�erence of I1 and I2 is proportional to
ID−B:

I1 − I2 = −4ID−B.

The prefactors implemented in the code in order to obtain from I1 and I2 the contribution of
the cross terms to the absorption cross section are given in Appendix D.4. The fact that two
Lanczos procedures are needed to determine the cross terms means that they require twice as
much computing time as the other terms.

(iii) Alternative way to compute the term D-SP

If one considers full circular polarization such that k is along the quantisation axis z, there
is an alternative way to compute the D-SP term. This case corresponds to the calculation of
XMCD. Indeed, in XMCD experiments a magnetic �eld is usually applied parallel to the beam,
which justi�es to consider k parallel to the quantisation axis.

The calculation must be performed with left-handed and right-handed polarization:

εL = ε2 =
1√
2




1
i
0


 and εR = ε?L = ε1 =

1√
2




1
−i
0


 (2.9)

Using Eq. (D.2), as Y −1
1 (ε1) = 0, Y −1

1 (ε2) =
√

3/4π, Y 0
1 (ε1) = Y 0

1 (ε2) = 0,
Y 1

1 (ε1) = −
√

3/4π and Y 1
1 (ε2) = 0:

SPcol(ε1) = i

√
4π

3
rY −1

1 (ur)σz = σziε1.r
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SPcol(ε2) = i

√
4π

3
rY 1

1 (ur)σz = −σziε2.r.

Hence,

σD−SP(ε1) = − h̄ω

2mc2
(σ↑D−D(ε1)− σ↓D−D(ε1))

σD−SP(ε2) =
h̄ω

2mc2
(σ↑D−D(ε2)− σ↓D−D(ε2)) (2.10)

with
σsD−D(ε) = 4π2α0h̄ω

∑

f

|〈f s|ε · r|is〉|2δ(Ef − Ei − h̄ω)

where s =↑ or ↓. Therefore, in the collinear case, the D-SP term can be computed from the D-D
cross section for the up and down spin channels. In other words, the calculation of the spin-
dependent D-D term is su�cient to obtain the D-SP term without requiring more computing
time. We have checked that this approach gives the same result as the double Lanczos procedure
described in paragraph (ii).

2.3.3 Discussion on the necessity to include spin orbit coupling in the

scf calculation
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Fig. 2.5: Comparison of the D-D contribution to the spectra (test calculation for a bcc Fe structure)
obtained by including (red) or not (green) spin-orbit coupling in the �rst step of the method (i.e. the
self-consistent �eld calculation). On the left, spectra are convoluted by a Lorentzian of width at half
maximum 1.6 eV and on the right, by a Lorentzian of width at half maximum 0.2 eV. In both cases,
red and green curves are the same.

Due to the rewriting of the sum over |f̃〉 with the delta function in terms of (E−H̃0 + iγ)−1,
in our method, the aim of the scf calculation is only to determine the electron wave functions to
be able to compute H̃0 in the second step of our calculation. In order to better understand the
e�ect of spin orbit coupling (SOC) in the XMCD e�ect, we tried to perform this scf calculation,
that is to say the electron relaxation, without SOC. We included it, however, in the H̃0 used
by XSpectra (otherwise no D-D or Q-Q XMCD could be computed).

The result of this test is shown in Figure 2.5 and it is quite surprising at �rst sight: the
result is exactly the same if SOC is included or not in the scf relaxation.
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p Fig. 2.6: p-projected densities of states (DOS)
for bcc Fe obtained with the relativistic version of
pwscf. In purple for j = 1

2 and in green for j = 3
2 .

The DOS for j = 1
2 multiplied by two has been

added in transparent purple for easy comparison
between j = 1

2 and j = 3
2 DOS.

This is in fact understandable by considering the p-projected density of states in bcc Fe
(Fig. 2.6). From this plot, we can evaluate the order of magnitude of the value of the spin
orbit splitting of the 4p states in Fe: it is at most a few meV which is smaller than the energy
resolution needed for the calculation of the spectra (for the examples of Figure 2.5, the spacing
between points is ∆E = 0.06 eV which is enough even with a 0.2eV broadening).

In other words, it seems that, as long as the spin orbit splitting of the probed states is
small with respect to the energy resolution, the electron relaxation can be performed without
including spin orbit coupling. This represents a signi�cant gain in computing time.

2.4 Convergence with calculation parameters: example of

Fe

When running the two steps of a cross-section calculation, several parameters must be set
in inputs. Computation time and required memory depend on these parameters which limit
their accessible values. For this reason, it is important to �nd the values that allow convergence
of the properties we are interested in. This convergence must be checked for any system under
study. Here, to have an idea of the dependence of the spectra on these parameters, we have
checked in the case of bcc-Fe the convergence of the D-D XAS spectrum and of the XMCD
corresponding to the terms D-D, D-SP and Q-Q.

The correspondence between the quantities de�ned in Subsection 2.2.2 and the quantities
plotted below (in this chapter only - in other chapters XAS spectrum will be the sum of several
terms) are:

"XAS" σD−D(ε1)

"D-D XMCD" σD−D(ε2)-σD−D(ε1)

"Q-Q XMCD" σQ−Q(ε2)-σQ−Q(ε1)

"D-SP XMCD" σD−SP(ε2)-σD−SP(ε1)

with ε2 = 1√
2




1
i
0


 and ε1 = 1√

2




1
−i
0


 .

2.4.1 Parameters of the scf calculation

In this section, calculations for a unitary bcc Fe cell (without core hole) with the experimental
lattice parameter alat = 2.87 Å are presented as a test example. All parameters are varied
independently while others are kept �xed.
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When relevant, the convergence of the total energy, the absolute magnetization and the
total magnetization at the end of the self-consistent �eld calculation is plotted. The total
magnetization is the integral of the magnetization in the cell and the absolute magnetization
is the integral of the absolute value of the magnetization in the cell.

A norm-conserving pseudopotential with GGA-PBE functional is used (see Appendix E).
The values chosen as references for the parameters are: a Methfessel-Paxton smearing of 0.01
Ry, a 10×10×10 uniform k -point grid, an energy cut-o� Ecutoff = 180 Ry and a conver-
gence threshold set to 10−9 Ry. For the spectra, the reference calculation is performed with a
20×20×20 uniform k -point grid and a convergence error set to 5.10−4.

Spectra are convolved with a Lorentzian broadening function with full width at half maxi-
mum set to 0.8 eV.
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Fig. 2.7: Absolute magnetiza-
tion, total magnetization (left
Y-axis) and total energy (right
Y-axis, red) for a unitary bcc-
Fe cell as a function of the size
of the k -point grid in each di-
rection. The smearing is of
Methfessel-Paxton type with a
spreading σ = 0.01 Ry.

We consider a crystal whose translations write T = n1a1 + n2a2 + n3a3 (where n1, n2, n3

are integers) and we name Ω the volume of the cell de�ned by a1, a2 and a3. We note G the
reciprocal lattice vectors (G = n1b1 + n2b2 + n3b3 with bi · aj = 2πδij). In the presence of
a periodic potential, V (r + T) = V (r), Bloch's theorem states that the eigenfunctions can be
written in the form:

ψi,k(r) = eik · rui,k(r)

where ui,k has the periodicity of the crystal and writes:

ui,k(r) =
1√
Ω

∑

G

cik(G)eiG · r.

The Hamiltonian is block diagonal in k such that a Schrödinger equation can be written and
must be solved for any k. As ψi,k+G(r) is the same as ψi,k(r), a restriction to the �rst Brillouin
zone (BZ - primitive cell in reciprocal space that contain the points closer to the origin) is
possible. In practice a �nite number of k -points in the �rst Brillouin zone is used. To choose
these points, the most widely used scheme is the method proposed by Monkhorst and Pack
[Monkhorst and Pack, 1976] which consists in building a uniform set of points in each direction
of the reciprocal lattice:

kn1,n2,n3 =
∑

i

2ni −Ni − 1

2Ni

bi (2.11)
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Fig. 2.8: Calculated XAS and XMCD spectra for a unitary bcc-Fe cell with di�erent k -point grids,
all other parameters being equal to the reference values. The smearing is of type Methfessel-Paxton
with a spreading σ = 0.01 Ry. In inset: zoom near the extrema of the spectra.

with ni = 1, 2, ...Ni where N1, N2, N3 are chosen in input. It is called a N1 ×N2 ×N3 uniform
grid. A sum over these points exactly integrates a periodic function that has Fourier components
that extend to Nibi in each direction [Martin, 2004, p.93].

Symmetry can be used to reduce the calculation to the irreducible Brillouin zone (IBZ).
The weight wk of the remaining k -points is de�ned by the ratio of the total number of k -points
related by symmetry to the given k -point divided by the total number of k -points Nk. The
average value per cell for a general function f(k) is:

f =
1

Nk

∑

k∈BZ

f(k) =
∑

k∈IBZ

wkf(k).

Note that in this thesis the k -point grid dimensions are given for the full Brillouin zone, as it
is customary.

Fig 2.7, the total energy, total magnetization and absolute magnetization at the end of the
scf calculation are plotted as a function of the size of the k -point grid. The total magnetization
is de�ned as Mtot =

∫
cell

(ρ↑(r)−ρ↓(r))dr and the absolute magnetization as Mabs =
∫

cell
|ρ↑(r)−

ρ↓(r)|dr. The fact that they are almost equal indicates that bcc-Fe is ferromagnetic.
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2.4. Convergence with calculation parameters

The convergence is not monotonous and the relative variation of the magnetization is still
rather large (≈ 4%) with dense k -point grids for which the total energy is converged with a
precision of the order of 10−3 Ry. For a metal, convergence with the k -point mesh must be
checked together with the convergence with the spreading corresponding to the chosen smearing
(see Subsection 2.4.1). A combined test can be done by increasing the number of k -points with
several chosen values of smearing and then determine the smearing and k -point grid that allow
to obtain the desired precision on the total energy and magnetization.

Fig. 2.8 shows that the calculated XAS spectrum is not sensitive to the size of the k -point
grid in the chosen interval. The three contributions to XMCD depend more strongly on this
parameter. For the D-D contribution it results only in a small variation of the intensity of the
signal but for the D-SP and the Q-Q contributions, the shape of the spectra very close to the
Fermi level depends on the number of k -points Nk used in the calculation. The convergence of
the XMCD spectra, like the convergence of magnetization, is not monotonous when increasing
Nk.
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Fig. 2.9: Absolute magnetiza-
tion, total magnetization (left
Y-axis) and total energy (right
Y-axis, red) for a unitary bcc-
Fe cell as a function of the en-
ergy cut-o�.

The number of plane waves used to describe the wave functions is limited by the available
computing resources. Therefore the sum over G is restrained to the reciprocal lattice vectors
such that |G| < Gmax (sphere in the reciprocal space) where Gmax is indirectly chosen in input
through the choice of the cut-o� energy.

The kinetic energy associated with a plane wave φG = 1√
Ω

ei(k+G) · r is:

EK =
−1

2
∇2φk,G(r) =

1

2
|k + G|2φk,G(r) ≈ 1

2
|G|2φk,G(r) for |G| large enough.

Therefore, the restriction |G| < Gmax leads to EK < G2
max

2
. The cut-o� energy is de�ned as:

Ecutoff =
G2

max

2
.

For a given cut-o� energy, the number of plane waves is Ng ≈ 1
2π2 ΩE

3/2
cutoff . In other words, the

size of the basis set used to describe the wave functions depends on the cut-o� energy and on
the volume of the cell.
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Fig. 2.10: Calculated XAS and XMCD spectra for a unitary bcc-Fe cell with di�erent cut-o� energies,
all other parameters being equal to the reference values.

The kinetic energy cut-o� for the charge density (that writes as sum of squared modulus of
wave functions) is set to 4Ecutoff .8

The total energy has a monotonous behaviour with Ecutoff (see Fig 2.9) which makes the
convergence with respect to this parameter easier than for the k -point grid size. The combina-
tion of Fig. 2.10 and Fig 2.9 illustrates the fact that, in the case considered here, a precision of
10−2 Ry, which corresponds to a relative error of 4.10−5 on the total energy, is enough for all
spectra to be well converged.

Smearing

If the material under study is metallic, the quantities to be integrated over the �rst Brillouin
zone are multiplied by a sharp function equal to 1 if E < EF and equal to 0 if E > EF . This
discontinuity at the Fermi level is problematic because a very dense k -point grid would be
required to get an acceptable precision on the calculated values. Such a problem does not arise
in the case of insulators because the density of states cancels smoothly before the gap. The
practical solution in the case of metals is to replace the step function by a smoother function

8If ultrasoft pseudopotentials were used instead of norm-conserving ones it should be set to a higher value.
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2.4. Convergence with calculation parameters

β:
∑

k

wkf(k)Θ(E(k)− EF ) with Θ(x) =

{
0 if x < 0
1 if x > 0

−→
∑

k

wkf(k)β

(
E(k)− EF

σ

)
.

A gaussian smearing corresponds to the choice β(x) = 1
2

(1− erf(x)) where erf(x) = 2√
π

∫ x
0
e−t

2
dt.
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Fig. 2.11: Absolute magne-
tization, total magnetization
(left Y-axis) and total energy
(right Y-axis) for a unitary bcc-
Fe cell as a function of the log-
arithm of the spreading σ in
the Methfessel-Paxton scheme.
The k -point grid is a 10× 10×
10 uniform grid.

In the more sophisticated Methfessel-Paxton scheme [Methfessel and Paxton, 1989], the
function β is obtained recursively as it writes as a function of Hermite-polynomials:

β0(x) =
1

2
(1− erf(x))

βN(x) = β0(x) +
N∑

n=1

AnH2n−1(x)e−x
2

with An =
(−1)n

n!4n
√
π

and H0(x) = 1, H1(x) = 2x,Hn+1(x) = 2xHn(x)− 2nHn−1(x)

These βn functions have the interesting property that:
∫

E

dEf(E)βN

(
E − EF

σ

)
=

∫

E

dEf(E)Θ(E − EF )

if f is a polynomial of 2N − th or smaller degree. In the code pwscf, this scheme is used at
�rst order.

A spreading σ that is too large can result in a wrong total energy and a wrong magnetization
but the smaller the spreading is, the larger the k -point grid must be.

To be rigorous, the convergence of the calculation when decreasing the spreading must be
checked together with the choice of the k -point grid (the same plot as in Fig. 2.11 should be
plotted with other grids). Our point here is to show the impact of each parameter on the
spectra, hence we only make σ vary.

As illustrated in Fig. 2.12, the calculated XAS spectrum does not depend much on σ whereas
the three contributions to XMCD depend a little more appreciably on this parameter. For the
D-D and D-SP contribution it results mostly in a small variation of the intensity of the signal
but for the Q-Q contribution, the shape of the spectra very close to the Fermi level changes
when σ is changed.
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Fig. 2.12: Calculated XAS and XMCD spectra for a unitary bcc-Fe cell with di�erent spreading σ,
all other parameters being equal to the reference values.

Convergence threshold

During the scf calculation, a numerical iterative procedure is used, which changes succes-
sively the e�ective potential Veff and the density n. The �ow chart shown in Fig 2.13 illustrates
the idea of this procedure.

The convergence threshold for self-consistency set in input of pwscf corresponds to the limit
on the error on the total energy at the end of the cycle. It is the criterion that puts an end to
the cycle (box "Self-consistent ?" in Fig 2.13).

The calculated spectra are insensitive to a change in convergence threshold if it is smaller
than 10−5 Ry as illustrated in Fig. 2.14. This corresponds to a relative error on the total energy
that is smaller than 4.10−8. Note that, as the total energy is extensive, to obtain the same
relative error on a system that would contain more Fe atoms, a smaller convergence threshold
would be required.
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Fig. 2.13: Schematic repre-
sentation of the self-consistent
loop for solving the Kohn-
Sham equation. In the spin-
polarized case, one must iter-
ate two of such loops simulta-
neously for the two spin chan-
nels. Figure is redrawn from
[Martin, 2004, Fig.9.1].
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Fig. 2.14: Calculated XAS and XMCD spectra for a unitary bcc-Fe cell with di�erent convergence
threshold, all other parameters being equal to the reference values.
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2.4.2 Parameters of XSpectra

Here, we study the e�ect of two parameters that can be set in the input of the code XSpectra:
the number of k -points and the convergence error parameter.

k-point grid
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Fig. 2.15: Calculated XAS and XMCD spectra for a unitary bcc-Fe cell with di�erent k -point grids
for the cross section calculation (input of XSpectra).

In XSpectra, the k -point mesh is of type Monkhorst-Pack (i.e. the k -points are distributed
homogeneously in the Brillouin zone) and the number of k -points is not reduced by symmetry.
In other words, the calculation is performed for all k -points of the mesh and not for the non-
symmetry-equivalent k -points only.

The number of k -points used to compute the absorption cross section has a strong impact
on the result as visible in Fig. 2.15. If the k -point grid is not dense enough, there is a lot of
numerical noise in the XAS spectra, which results in lots of spurious peaks in XMCD. As a
convolution of the spectra with a larger broadening at high energy would smooth them, the fact
that the calculation is not converged might go unnoticed if the calculation is directly performed
with a too large broadening.
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Convergence error
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Fig. 2.16: Calculated XAS and XMCD spectra for a unitary bcc-Fe cell with di�erent values for the
convergence error parameter set in input of XSpectra.

For each k -point, when H̃0 is made tridiagonal with Lanczos algorithm, a spectrum is
periodically computed and compared to the spectrum obtained at the previous iteration in order
to determine if the calculation is converged or not. The number of iterations that separates two
checks of this kind can be set in input (keyword: xcheck_conv). The error (keyword: xerror)
corresponds to the criterion for the spectra to be considered as converged: for a given k -point,
at step l, the spectrum is considered as converged if the relation

∑
E |cont(E, al,bl)− cont(E, al−xcheck_conv,bl−xcheck_conv)|∑

E |cont(E, al,bl)|
≤ xerror

is veri�ed.
As visible in Fig. 2.16, XMCD spectra are more sensitive to this parameter than XAS

spectra. If xerror is set to a too large value, peaks at high energy appear, especially in the
D-D contribution to XMCD.

68



2.5. Inclusion of the core hole

Fig. 2.17: Example of a 3×3×3 supercell of the
bcc Fe cubic cell (conventional cell). With this cell,
periodically reproduced (due to periodic boundary
conditions) atoms with a core hole are 8.61 Å away
from each other.

2.5 Inclusion of the core hole

In X-ray absorption experiments, a core-hole is created by excitation of a core electron. The
spectra can be strongly a�ected by core-hole e�ects (see for example [Taillefumier et al., 2002],
Fig.4 or [Cabaret et al., 2010]). It is therefore important to calculate the screened core-hole
potential that is experienced by an excited electron.

2.5.1 Principle

In the framework of the �nal state rule [von Barth and Grossmann, 1982] the �nal states |f〉
that enter the cross section formula Eq. (2.1) are stationary unoccupied states in the presence
of a static core hole whereas |i〉 is the core state without core hole.

We therefore run the scf calculation with one electron missing in the core state (and a
background charge to insure electrical neutrality). In practice, a core electron is removed from
the pseudopotential of the absorbing atom. For example for Fe, the pseudopotential for the
absorbing Fe is generated with the con�guration 1s1 2s2 2p6 3s2 3p6 3d6 (with the 3s, 3p, 3d
electrons in valence).

The response of the electrons to the presence of the core is therefore considered at all
orders. In other words, we do not use linear-response theory to determine the core-hole
screening as it is done within the random-phase approximation (RPA) [Shirley et al., 2005]
but we compute it self-consistently. This independent particle approximation has proven
successful to compute K -edge XAS spectra but it fails to reproduce L2,3 edges for 3d el-
ements [Laskowski and Blaha, 2010b] because the e�ects related to the electron-hole inter-
actions are strong. A comparison of the calculation using the �nal-state rule with an ap-
proach using Bethe-Salpeter equation to describe the electron-hole interaction is carried out
in Ref. [Rehr et al., 2005]. In this paper, a close connection between the two approaches is
established.

2.5.2 Supercell

The core-hole lifetime τ in XAS is of the order of several 10−15 s = 1 fs. In XAS experiments,
the created core-holes are too distant to interact with each other.9

9For example, at the Fe K -edge the lifetime broadening is Γ = 1.25 eV which corresponds to τ ≈
20 fs (Γτ = h̄/2). The absorption cross section above the edge (7113 eV) is σ ≈ 38000 barns/atom
[database CXRO, site]. On ODE beamline at Soleil synchrotron, the photon �ux on the sample at 7 keV
is f = 4× 1022 photons.m−2.s−1 = 4× 10−6 photons.barns−1.s−1. The number of photons absorbed per second
per atom, nabs = σf . For the mean number of absorbed photons during time τ to be equal to 1, there must be
a total of N = 1

nabsτ
≈ 3 × 1014 atoms. It means, that, on average the core hole are N1/3 ≈ 105 atoms away
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Fig. 2.18: XAS and XMCD spectra calculated with an absorbing atom containing a core-hole (ch)
in bcc-Fe cells of di�erent sizes. The distance between periodically reproduced core-holes ranges from
5.73 to 9.96 Å.

When including a core-hole in the cell used to describe the material, it is important, that
the periodically repeated core holes (due to periodic boundary conditions) do not interact with
each other. A supercell that contains a large number of atoms, among which one atom with
a core-hole, must therefore be built. The k-point grid can be reduced accordingly (×n in
real space corresponds to ×1/n in reciprocal space). To verify that core-holes do not interact
with each other, one must check that the spectra do not change when the supercell size is
increased. Previous works demonstrated that a distance between core-holes of 8 to 10 Å is
usually enough to reach convergence of the XAS spectrum [Cabaret et al., 2010] and that this
distance is material dependent. One sees, in the example of bcc-Fe (Fig. 2.18), that the XMCD
spectra are more sensitive to the interaction between core-holes than the XAS spectrum. A
distance between core-holes of approximatively 10 Å is, however, enough to obtain converged
spectra.

one from each other. With an interatomic distance d = 2 Å, it corresponds to a distance between core holes of
approximatively 10 µm. Therefore, the core holes do not interact with each other.
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2.6 Conclusion

In this chapter, we have presented the signi�cant terms of the absorption cross section and
the method that we use to compute them. To summarize, the cross section is computed in the
presence of a static core-hole with a full relaxation of the valence electrons. For this, we work
in a DFT framework with plane-waves and pseudopotentials. For XMCD, the calculation must
be spin-polarized and include spin-orbit coupling. We consider collinear spins and the spin-
orbit coupling is accounted for within a diagonal spin-orbit coupling approximation. The cross
section is computed using a recursion method that avoids the heavy workload of computing
empty states by DFT.

The e�ect of several parameters that can be set in input of the calculation on the obtained
spectra has been discussed.

The results for model systems are presented in the next chapter.
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3.1 Introduction

The application of the method presented in the previous chapter to well-known systems
was required to serve several purposes. The �rst objective was to calculate the terms listed in
section 2.2 in order to evaluate their relative contribution to absorption and circular dichroism.
Another goal was to assess the capability of the DFT-based method to reproduce the complex
phenomena that are XMCD and XNCD and to try to get a good understanding of its limits.
Finally, the studies presented in this chapter serve to clarify the physical content of the mag-
netic and natural circular dichroism spectra.

The outline of the chapter is the following:

• In section 3.2, after the origin of the XMCD phenomenon is recalled, the calculated
contributions to XAS and XMCD spectra at the K-edge for Fe, Co and Ni are detailed.
Then the calculated and experimental spectra are compared and several features of the
method are discussed.
• Section 3.3 is dedicated to the calculation of XAS and XNCD at the L1-edge of iodine in
LiIO3. The e�ect of the core-hole on XNCD is speci�cally discussed.
• Finally, in section 3.4 the sum-rules for all the terms are derived in order to get an insight
into their physical content. This allows, in particular, to understand the importance of
the D-SP term that was presented in Chapter 2.

3.2 XMCD at K -edge in Fe, Co and Ni

Early spin-polarized DFT-based calculations found accurately that the ferromagnetic state
of Fe, Co and Ni was more stable than the non-magnetic one (by comparison with non-spin-
polarized calculation) and gave values for the spin magnetic moment in agreement with exper-
iment (see for example [Moruzzi et al., 1978, p.161-185]). Here, we try to compute the XMCD
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3.2. XMCD at K -edge in Fe, Co and Ni

spectra with the DFT-based method presented in the previous chapter. XMCD is a good way
to test the validity of the modelling of magnetic materials because the calculation of a spectrum
is more challenging than the calculation of a magnetic moment.

3.2.1 XMCD phenomenon

In XMCD experiments, the absorption by a magnetic sample of right- and left-circularly
polarized X-rays is successively measured and circular dichroism corresponds to the di�erence
between them. Generally, an external magnetic �eld is applied parallel to the direction of
propagation of the incident beam in order to maximize the signal. In a centrosymetric system,
the terms that, a priori, can contribute to XMCD are those that were named D-D, Q-Q and
D-SP. The selection rules for the operators constituting these terms are given in Table 3.1. At
the K -edge, the D-D term and the D-SP term probe the p (l = 1) �nal states whereas the Q-Q
term probes the d (l = 2) �nal states.

Table 3.1: Selection rules in absorption of the operators electric dipole, electric quadrupole and
spin-position.

Operator Selection rule K -edge �nal states
electric dipole D ∆l = ±1 ∆ms = 0 p states

electric quadrupole Q ∆l = ±2 ∆ms = 0 d states
spin-position SP ∆l = ±1 ∆ms = ±1, 0 p states

Among the three terms, D-SP has the characteristic that the spin is explicitly included in
the transition operator. For this reason, the XMCD related to this term has not the same origin
as the two other terms.

As will be mathematically found in section 3.4, when the core state is not spin-orbit split (s
state), the right-handed photons (that carry a helicity −h̄) probe the �nal states with orbital
magnetic quantum number m = −1 and the left-handed photons (that carry a helicity +h̄)
probe the �nal states with m = 1. For the contributions D-D and Q-Q to exhibit circular
dichroism there must be a di�erence in occupation between the states m = 1 and m = −1.
Such a di�erence can only happen when time-reversal symmetry is broken.1 There are two
main phenomena that can lead to the splitting of the states m = 1 and m = −1: the Zeeman
e�ect and spin-orbit coupling in the presence of a spin magnetic moment.

The Zeeman e�ect occurs in the presence of an external magnetic �eld and it is related to the
presence of a termHZ = µB

h̄
B0 ·L in the Hamiltonian (that arises from the term 1

2m
(p−eA0)2).2

The Bohr magneton µB = −eh̄
2m
≈ 5.8×10−5 eV.T−1 so that for m = ±1, the order of magnitude

of the Zeeman term with an external magnetic �eld B0 = 2T , 〈HZ〉(B0 = 2T ) ≈ 0.1 meV.
To evaluate the order of magnitude of the XMCD e�ect that would be induced by the

Zeeman e�ect, we consider that the transition towards the state m = +1 and the state m = −1
yield two identical XAS spectra only shifted by ∆EZ = 0.2 meV. The di�erence between the

1In quantum mechanics, time-reversal is related to complex conjugation: if ψ(x, t) is solution of the
Schrödinger equation ih̄∂ψ∂t = ( p2

2m + V )ψ, then ψ?(x,−t) is also a solution. If a system obeys time-reversal
symmetry, the wave-functions to describe it can be chosen real and the wavefunction Rn,l(r)

∑
m cmY l

m(θ, φ)
is real if c?m = (−1)mc−m.

2In the radiation gauge, A0 = B0×r
2m leads to (p− eA0)2 = p2− e(B0× r) ·p + e2

4 (B0× r)2 = p2− eB0 ·L +
e2

4 (B0×r)2. The term proportional to B0 ·L is called the Zeeman term or paramagnetic term and the last term
is called the diamagnetic term. In general the diamagnetic term is substantially smaller than the paramagnetic
term (but exceptions exist).
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3.2. XMCD at K -edge in Fe, Co and Ni

grid were used for the self-consistent charge density calculation. The spectra calculation was
performed with a 6×6×6 grid for Fe and Co and a 8×8×8 grid for Ni. PBE norm-conserving
pseudopotentials (parameters detailed in Appendix E) were used with cuto� energies 180 Ry
for Fe, 200 Ry for Co and 190 Ry for Ni.

These calculations were performed with collinear spins along the easy axis of the crystal, that
is to say [001] for bcc-Fe and hcp-Co and [111] for fcc-Ni [O'Handley, 1999] and the wavevector
k was set along the same axis.

The spectra were convolved with a Lorentzian broadening function to simulate the e�ect
of the �nite lifetime of the core-hole (constant in energy) and of the inelastic scattering of the
photoelectron (additional energy-dependent broadening). The exact energy dependence of this
broadening is governed by the imaginary part of the self-energy (see subsection 3.2.3) which is a
many-body e�ect that can not be modeled within our DFT approach. In this work, we chose the
values for Γ published in [Müller et al., 1982] and depicted in Fig. 3.4. No additional Gaussian
broadening was added to account for the experimental resolution, so that the calculations can
be compared with experimental data measured on various beamlines.
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Fig. 3.4: Energy-dependent half energy-width
Γ(E) = Γc + ΓMFP(E) where Γc accounts for the
core-hole lifetime [Fuggle and Ingles�eld, 1992]
and ΓMFP(E) is related to the mean-free
path λ of the photoelectron [Müller et al., 1982]:
ΓMFP(E) = 2h̄

√
2E/mλ−1(E).

The calculated spectra are normalized such that the edge jump in absorption is equal to 1.

Calculated absorption cross-section

The di�erent terms of the absorption cross-section listed in section 2.2.2, except the cross
term electric dipole-electric quadrupole (D-Q), were computed with two di�erent polarization
vectors corresponding to left-handed (ε2) and right-handed (ε1) circularly polarized light:

ε2 =
1√
2




1
i
0


 and ε1 = ε?2 =

1√
2




1
−i
0


 ,

where the easy axis of the considered crystal de�nes the z axis. The cross term D-Q was not
computed because it is known to be zero in centrosymmetric systems (systems for which the
inversion r→ −r is a symmetry) which is the case for all three considered structures.

The calculation of the electric quadrupole-electric quadrupole (Q-Q) terms requires the
de�nition of k̂ which is the direction of the wave vector. It was set along z.

In the calculation, the zero of energy is set to the Fermi level. The occupied states, that
do not contribute to the absorption cross section, are cut according to the method described
in paragraph III-B of [Brouder et al., 1996].
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Fig. 3.6: Calculated contributions to the K -edge XMCD for bcc-Fe and hcp-Co and fcc-Ni. For each
term (D-D, Q-Q, D-SP), the spectrum is calculated as the di�erence σ(ε2)− σ(ε1).

Calculated XMCD

The contributions to XMCD (Fig. 3.6) are given by the di�erence of the XAS spectra
obtained with left- and right-handed circular polarization.

The contribution of the Q-Q term to XMCD is small but not negligible. In Fe, it presents a
maximum that has almost the same energy as the maximum of the D-D term. At this energy,
the Q-Q contribution reaches 17% of the D-D XMCD contribution.

As the D-SP term is almost entirely circular-dichroic, its contribution to the XMCD spectra
is signi�cant: it reaches 40% of the D-D term in amplitude. This can also be understood
considering the sum-rules (see Section 3.4): in the XMCD cross-section, the D-SP term probes
the spin polarization of the p states whereas the D-D term probes their orbital polarization.
In [Igarashi and Hirai, 1996] the 4p orbital magnetic moment in Co, Fe and Ni is evaluated to
a few 10−4µB (Fe: 5×10−4µB, Co: 16×10−4µB, Ni: 6×10−4µB) and in [Chen et al., 1995] the
4p spin magnetic moment in Fe and Co is evaluated to several 10−2µB (Fe: 5×10−2µB, Co:
6×10−2µB) in the opposite direction. This di�erence in orders of magnitude compensates for
the smallness of the prefactor (h̄ω/4mc2) of the D-SP term.

To compute XMCD at the K -edge, it is required to compute all three contributions D-D,
Q-Q and D-SP as none of them is negligible. For comparing the result of the calculations with
experimental spectra, sums of the contributions presented above are calculated.4

4The D-SP contribution is negligible in XAS so, in practice, it can be omitted. Also, as XMCD is a very small
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3.2. XMCD at K -edge in Fe, Co and Ni

A rigid shift in energy is applied to all the calculated spectra to make the maxima of the
calculated XAS correspond to the maxima of the experimental spectra.

Comparison with experimental spectra

Fig. 3.7: Comparison between the experimental XAS and XMCD spectra for Fe, Co and Ni and the
total calculated spectra. The experimental spectra were recorded on ODE beamline (SOLEIL). They
are corrected for the rate of circular polarization Pc = 0.7. For the calculation, the wave vector and
the magnetization axis were set to the easy axis of the crystals. The calculated spectra were shifted in
energy by 7113 eV for Fe, 7712 eV for Co and 8333.5 eV for Ni.

The experimental XAS and XMCD spectra for Fe, Co and Ni polycrystalline metallic foils

e�ect the absorption of left- and right-circular polarization are almost equal so that σD−D(ε1)+σQ−Q(ε1) +
σD−SP(ε1) ≈ 1

2 (σD−D(ε1) + σQ−Q(ε1) + σD−SP(ε1) + σD−D(ε2) + σQ−Q(ε2) + σD−SP(ε2)). In other words,
the average of the spectra for both polarizations is almost identical to the spectrum corresponding to one
polarization.
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3.2. XMCD at K -edge in Fe, Co and Ni

were recorded on ODE beamline at SOLEIL (see Section 4.2) with a Si(311) crystal polychro-
mator which corresponds to an energy resolution ∆E/E ≈ 4.10−5. The tabulated edge energy
for the elements Fe, Co and Ni are:

Element K -edge
Fe 7.1120 keV
Co 7.7089 keV
Ni 8.3328 keV.

The foils were tilted by 45�compared to the direction of propagation of the beam which was also
the direction of the 2.1T applied magnetic �eld. The experimental spectra, as the calculated
spectra, are normalized such that the absorption edge jump far from the edge is equal to 1.

The calculated and experimental spectra are depicted in Fig. 3.7. The agreement between
the calculated and the experimental XAS spectra (top panels Fig. 3.7) is fair: all the features
of the experimental spectra are reproduced by the calculations.

The shape of XMCD (bottom panels in Fig. 3.7) near the edge is also well reproduced: a
positive peak followed by a negative peak for Fe and a main negative peak for Co and Ni. All
the secondary peaks in Fe also exhibit a good agreement between experiment and calculation.
For Co and Ni, however, some secondary peaks that appear in the calculation do not seem to
correspond to experimental features. In all three compounds, a positive peak around 10 eV
above the edge (at 7122 eV for Fe, 7722 eV for Co and 8340 eV for Ni) appears in the calculation
that overestimates an experimental feature. Another discrepancy between the calculated and
experimental spectra is the amplitude of the XMCD e�ect: the calculated XMCD amplitude
is too large for Fe and too small for Ni.

In order to narrow down the possible causes of discrepancies between the calculated and
the experimental spectra, we discuss several elements of the method in the next subsection.

3.2.3 Discussion on the calculated spectra

E�ect of the core-hole

To model the absorption process, the calculation presented above was performed in the pres-
ence of a core-hole and the electronic response to this core-hole was determined self-consistently.

In order to have an idea of the e�ect of the core-hole on the calculated spectra, the com-
parison of the spectra with and without core-hole is shown in Fig. 3.8. For the case without
core-hole, the self-consistent calculation is performed without a core-hole but all the parameters
of the spectra calculation remain the same. In particular, the core-hole lifetime broadening is
still included. For a given element, the same rigid shift in energy was applied to all the calcu-
lated spectra. The multiplication factor to obtain an edge-jump equal to 1, on the other hand,
is di�erent for each spectra (e.g. for Co: 820 without core hole and 950 with core-hole).

For Fe and Co K -edges, the presence of the core-hole has a weak e�ect on the XAS spectra
which means that the core-hole is e�ciently screened by the electrons. Yet, the XMCD is visibly
impacted by the presence of the core-hole, in particular in the case of Fe. On the right panel
of Fig. 3.8, we see that the Q-Q contribution to XMCD, that probes the orbital polarization
of the empty d states is shifted to lower energy in the presence of the core-hole (by about
0.5 - 0.7 eV). On the other hand, the energy positions of the D-D contribution in the case of
Co and of the D-SP contributions in both cases, are almost unmoved by the presence of the
core-hole (for the D-D contribution of Fe, the situation is not so clear). As these contributions
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Fig. 3.8: Comparison of the calculated XAS and XMCD spectra obtained in the presence of a 1s
core-hole (solid line) and of the spectra obtained without core-hole (dashed line) at Fe and Co K -edge.
For XMCD, the experimental spectra multiplied by 1600 for Fe and 1100 for Co are plotted in light
gray whereas the calculated spectra are multiplied by 1000. On the right-hand side: detail of the
di�erent terms composing the XMCD spectra.

probe the properties of empty p states, this is in agreement with the idea that the core-hole is
more screened for the p states than for the d states. We see also that the shape of the D-D
contribution is quite di�erent in the presence or in the absence of the core-hole contrary to the
D-SP contribution that is almost una�ected. It means, that the orbital polarization is more
sensitive than the spin polarization to the core-hole-induced perturbation. For this reason, it
is crucial to include the core-hole in the calculations for XMCD even in cases where the XAS
seems well described in the absence of core-hole.

Comparison with FDMNES

To check possible numerical problems, in particular for the newly discovered D-SP term,
Yves Joly performed the same calculations using the FDMNES code [Bun�au and Joly, 2009] in
which he implemented this term. Preliminary results at Ni K-edge are depicted in Fig.3.9.
In FDMNES, the calculation is performed in real space for a cluster of atoms and the potential
is not pseudized. Despite a signi�cant di�erence in method, the result is very similar to the
one obtained with XSpectra, in particular for the shape and relative amplitude of the D-SP
contribution.

This calculation allowed us to assess the possible impact of several approximations of our
method, detailed below, that were otherwise di�cult to check.
One questionable approximation in our method is the diagonal spin-orbit coupling approxima-
tion (see p. 54). The fact that with an implementation that includes full spin-orbit coupling,
the result is consistent with ours implies that this approximation is reasonable in the cases
considered here.
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Fig. 3.9: Preliminary calculation for Ni K -edge with FDMNES. Energy is relative to Fermi level.
Figure provided by Yves Joly.

Another question concerned the spin-polarization of the core state: in the 1s state there is a
splitting between the spin up and the spin down band that has been evaluated by Yves Joly to
approximatively 0.015 eV in Fe. Calculations with FDMNES showed that the in�uence of this
splitting on the spectra is negligible at the K -edge in the considered 3d metals.
Finally, the terms up to the octupole approximation (eik · r = 1+ik · r− (k · r)2

2
) were implemented

in FDMNES. It allowed Yves Joly to check that the electric octupole term was negligible in
accordance with the assumption made in our derivation of the cross-section where we neglected
all k2 terms.

Discussion on the amplitude of XMCD

From the bottom parts of Fig. 3.7, we see that the amplitude of the XMCD e�ect is not well
reproduced by the calculation. The amplitude of the calculated XMCD for Fe is approximately
170% the amplitude of the experimental spectrum, for Ni it is 74%. We show in the following
that the fact that the experimental conditions are quite di�erent from the case treated in the
calculation cannot explain these di�erences.

In the calculations, the rate of circular polarization of the light is Pc = 1. Experimentally,
the circular polarized light is obtained by selecting a portion of beam below the orbit plane
of the radiation emitted by a bending magnet. The rate of circular polarization depends on
the position and on the size of the slit used to select this portion. Pc is then modi�ed by
the optics following this selector and this modi�cation is di�cult to quantify. For this reason,
the experimental Pc is not known exactly. It is however evaluated to approximately 0.7 in
the considered energy range. The experimental XMCD spectra plotted Fig. 3.7 are already
multiplied by 1/0.7 to account for Pc. Despite this, the calculated amplitude of XMCD for Fe
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3.2. XMCD at K -edge in Fe, Co and Ni
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Fig. 3.11: XMCD spectra recorded on ODE beamline (SOLEIL) at Co K -edge in a Co foil. Left:
spectra acquired with two di�erent applied magnetic �eld at room temperature on a foil positionned
at 45�. Right: spectra acquired at room temperature and T=4K on a foil positioned perpendicular to
the beam with a 1.3T �eld.

Table 3.2: Space groups and point groups of the bcc-Fe, hcp-Co and fcc-Ni crystals. The point groups
are given with their short Hermann-Mauguin symbols and the point groups with their Schoen�ies
symbols. Angular dependence of electric dipole absorption were determined in the case of a linear

polarization in [Brouder, 1990]. For cubic symmetries, the absorption cross section is isotropic whereas
in the hexagonal case it is dichroic (σ(ε) = σ‖ sin2 θ+σ⊥ cos2 θ where θ is the angle between ε and the
6-fold rotation axis.).

Space group Point group of the crystal Angular dependence of elect-
ric dipolar absorption [Brouder, 1990]

bcc-Fe Im3m (229) Oh Isotropy
hcp-Co P63/mmc (194) D6h Dichroism
fcc-Ni Fm3m (225) Oh Isotropy

the magnetization axis. In practice, the crystal cell used in input of the calculation is rotated
so that the axis [001] or [100] corresponds to the z axis. In both cases, the total magnetization
obtained at the end of the calculation is 1.665 µB per atom. The results are depicted in Fig. 3.12.
As expected, the XAS and XMCD spectra are not the same for both directions. This angular
dependence a�ects the positions of the peaks but it impacts very weakly the XMCD amplitude.

Another di�erence is that the calculations are performed for the ground state (at T=0K)
whereas the experimental spectra are acquired at room temperature. We observed experimen-
tally that the e�ect of temperature on the amplitude of the experimental XMCD spectra at Co
K -edge is very weak (7 % variation - see Fig. 3.11 Right).

Finally, none of the above mentioned di�erences between the conditions in which the cal-
culation is performed and the experimental conditions seems to explain the di�erences of the
XMCD amplitude between our calculations and experiments. Note that the broadening applied
to the spectra, discussed below, can also in�uence the calculated amplitude.
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Fig. 3.12: Calculated XAS and XMCD spectra at the Co K -edge without core-hole for two directions
of magnetization: along the axis [001] and along the axis [100] in both cases with k parallel to the
magnetization axis (in practice, for the [100] axis, crystal rotated by 90�is used and the calculation is
again performed with z as quantization axis and ε1 and ε2 as polarization vectors).

Comparison to a quasi-particle approach

Kohn-Sham density functional theory describes the ground-state properties of an interacting-
electron system. The �nal states in X-ray absorption are excited states so, in principle, they
would require the use of a many-body method to treat them. DFT is still widely used to com-
pute XAS at K -edge because it is successful to reproduce the experimental spectra in a large
number of cases [Cabaret et al., 2010, Bordage et al., 2010, Ducher et al., 2016, for example].

To be more accurate and still keep one electron equations, the self-energy Σ (complex
quantity) can be introduced to include many-body e�ects and losses during the propagation of
the photoelectron. Within the quasi-particle theory, the �nal states |f〉 are eigenstates of the
equation [Rehr and Ankudinov, 2005]:

[ p2

2m
+ V ′coul + Σ(E)

]
|f〉 = E|f〉

where V ′coul is the Coulomb potential in the presence of the core-hole. This equation is formally
similar to a DFT Schrödinger equation but contrary to the exchange-correlation potential of
DFT, the self-energy is non local and energy dependent. The self-energy can be computed
within the GW approximation as, for example, in [Kas et al., 2007] however the calculations
are time consuming [Rehr and Albers, 2000] (in practice, it is more convenient to use an analytic
representation of Hedin-Lunquvist self-energy [Mustre de Leon et al., 1991]).

Note that this approach does not include all many-body e�ects. For example, the treat-
ment of the electron-hole interaction would require the use of two-body operators. Bethe-
Salpeter equation, that links the interacting polarization propagator to the independent-particle
propagator is an appropriate tool for that. Also the losses due to the excitations in the
medium that arise from the sudden creation of the core-hole, which are called intrinsic losses
in [Kas et al., 2007], are not taken into account.

As illustrated by the case of Cu that was studied in [Kas et al., 2007] the real and imaginary
part of the self-energy Σ(E) vary by several eV over a XAS spectrum. The imaginary part of
the self-energy is negative (it describes losses).

The fact that the real part of the self-energy depends on energy results for the XAS spectra
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3.2. XMCD at K -edge in Fe, Co and Ni

Exchange-correlation functional

Density functional theory calculations would be exact for the ground state energy if the
exchange-correlation functional Exc[n] introduced in section 2.3.1 was known exactly. The in-
terest of separating out the independent-particle kinetic energy and the Hartree terms from the
energy of the interacting system is that the remaining Exc[n] can reasonably be approximated
as a local or nearly local functional of the density.

In the calculations presented above we use the form of the functional proposed by Perdew,
Burken and Enzerhof [Perdew et al., 1996] called PBE. This functional belongs to the family of
Generalized-Gradient Approximations (GGA). It means that it writes as an integral over space
of a function of the local density and of its gradient:

EGGA
xc [n↑, n↓] =

∫
drn(r)εPBE

xc (n↑(r), n↓(r),∇n↑(r),∇n↓(r))

where n = n↑ + n↓.
This is an improved functional compared to LSDA (local spin density approximation) that

was already introduced in the paper by Kohn and Sham [Kohn and Sham, 1965]:

ELSDA
xc [n↑, n↓] =

∫
drn(r)εunif

xc (n↑(r), n↓(r))

where εunif
xc is the exchange-correlation energy per electron of a uniform electron gas. The

analytic form of the exchange part of this energy is known [Martin, 2004, p.106] and the cor-
relation part has been calculated with Monte-Carlo methods so that εunif

xc (n↑, n↓) is considered
a known function. In the seminal paper on PBE, the enhancement factor Fxc de�ned by
εPBE
xc (n↑, n↓,∇n↑,∇n↓) = Fxc(n

↑, n↓,∇n↑,∇n↓)εunif
xc (n↑, n↓) is depicted and not directly εPBE

xc .
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Fig. 3.14: Total calculated bcc-Fe K -edge XMCD spectra without core hole using PBE and LDA
functionals (all other technical parameters identical). Here, the broadening was taken constant (0.8
eV) along the whole energy range.

In practice, the form of the functional used in our calculation is chosen when generating the
pseudopotential �les (the same functional must be used for all atoms in the structure). Fig. 3.14
shows a comparison between the spectra obtained with PBE and LSDA exchange-correlation
functional in a unit cell of bcc-Fe. All other parameters in the pseudopotential generation, in
the scf calculation and in the spectra calculations are the same. We observe that the choice of
the functional does not really a�ect the position or sign of the peaks that appear in the XMCD
spectra but it a�ects their amplitude. In particular, the positive peak around 10 eV above the
edge, which is overestimated in our calculation, compared to experiment (see Fig.3.7), is even
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3.3. XNCD in α-LiIO3

more enhanced with LSDA. We can therefore suggest that the overestimation of this peak is
linked to approximations made in the exchange-correlation functional.

XMCD calculation requires a very good modeling of magnetism and this study illustrates
that the usual functionals used in solid-state DFT are not su�cient to precisely describe such
a �ne and complex phenomenon.

Finally, all the cross-checks presented in this section allow to narrow down the origin of the
failure of our method to reproduce detailed features of the XMCD spectra - even if their overall
shape is correctly described - to inherent limitations of Kohn-Sham DFT. In the next section,
we will see that XNCD, on the other hand, is well described. This illustrates that e�orts should
be pursued to improve the description of magnetism in matter.

3.3 XNCD in α-LiIO3

3.3.1 XNCD e�ect

In non-centrosymmetric crystals, the breaking of inversion symmetry permits the existence
of X-ray Natural Circular Dichroism. In the domain of molecular magnetism, a renewed interest
for this technique has recently grown [Train et al., 2008, Sessoli et al., 2015] with the emergence
of new materials that are both chiral and magnetic.

In the X-ray range, where magnetic dipole transitions are negligible, a single mechanism
largely dominates in the natural circular dichroism phenomenon: the interference of electric
dipole and electric quadrupole transitions [Rogalev et al., 2010, Natoli et al., 1998]. At the L1-
edge, XNCD is an element-speci�c measurement of the mixing between p and d states (see
subsection 3.4.3). It is a parity-odd property in the sense that no such mixing can exist in
centrosymmetric systems. There are 13 crystal classes that may exhibit XNCD associated with
the term D-Q, they are listed in [Rogalev et al., 2010, Table 6.1] and are boxed among the
other crystal classes in Appendix C of this thesis. The point group to be considered is the
point group resulting from the space group of the crystal structure. Note that there exist non-
centrosymetric point groups (no inversion center) that are not chiral (a chiral point group has
no rotoinversion). Among these groups, several may exhibit XNCD (see Appendix C) so that
XNCD can exist in some non-chiral materials.

The �rst XNCD spectra were recorded at the ESRF ten years after G. Schütz et al. recorded
the �rst XMCD spectrum. In 1997, XNCD was measured in a stereogenic organometallic
complex [Alagna et al., 1998] and in the inorganic crystal α-LiIO3 [Goulon et al., 1998]. α-
LiIO3 belongs to the crystal class "6" so that XNCD associated to the D-Q term is possible.
The average of the term D-Q over all directions is zero, so XNCD must be measured on a single
crystal and this is what has been done for the experiments reported in [Goulon et al., 1998].

3.3.2 Calculations of the spectra

Previous calculations [Natoli et al., 1998, Goulon et al., 1998, Ankudinov and Rehr, 2000]
were able to reproduce the overall peak positions and intensities of XNCD (see Fig. 3.15 as an
example) by computing the interference of electric dipole and electric quadrupole transitions.
The agreement is however not entirely satisfactory for the absorption spectra. This discrepancy
has been attributed to the use of mu�n-tin potentials [Ankudinov and Rehr, 2000].

The method presented in the previous chapter, that does not rely on the mu�n-tin ap-
proximation, was applied to compute the XAS and XNCD spectra for α-LiIO3. Since α-LiIO3
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3.3. XNCD in α-LiIO3

Details about the calculation

The experimental structure was used in the calculation. A 2×2×2 supercell (80 atoms)
with one atom containing a core-hole (2s for L1-edge or 1s for K -edge) was used so that the
smallest distance between a core-hole and its periodic image is 10.344 Å. We used Gamma-
centered k -point grids, 3×3×3 for the self-consistent charge density calculation and 9×9×9 for
the spectra calculation. A constant Lorentzian broadening, with full width at half maximum
set to the core-hole lifetime broadening 3.46 eV [Fuggle and Ingles�eld, 1992], was applied.

Calculated spectra were normalized such that the edge jump in absorption is equal to 1 as
it is the case for experimental spectra.

During the calculation of the spectra the origin of energy is set to the energy of the highest
occupied level that we note Eho. For the spectra to be compared with experiment, a rigid shift
in energy was applied to all the calculated spectra to make the maxima of the calculated XAS
correspond to the maxima of the experimental spectra. In the plots for I L1-edge, the origin of
energy E0 is therefore the one chosen in [Goulon et al., 1998].

Results at I L1-edge
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Fig. 3.17: Calculated contributions to the XAS
at I L1-edge in α-LiIO3. For the D-Q term, the
spectrum calculated with the polarization vector
ε1 is in solid line and the one calculated with ε2 in
dashed line (for the terms D-D and Q-Q, there is
only one spectrum because these terms do not ex-
hibit any natural circular dichroism). Inset: zoom
in the vertical direction near zero.

The calculated contributions of the D-D, Q-Q and D-Q terms (as the calculation is not
spin-polarized, there is no contribution from the D-SP term) to the absorption at I L1-edge in
α-LiIO3 are shown in Fig. 3.17. The absorption is largely dominated by the D-D term.

For the terms D-D and Q-Q, the spectra obtained with right-circular polarization (ε1) and
the spectra obtained with left-circular polarization (ε2) are exactly the same. In other words, in
accordance with theory, these terms do not contribute to XNCD. The D-Q term, on the other
hand is entirely circular-dichroic. This was also expected because |i〉 and |f〉 can be chosen real
so that:

σD−Q = −4π2α0h̄ω
∑

f

Im[〈f |(k · r)(ε · r)|i〉〈i|ε? · r|f〉]δ(Ef − Ei − h̄ω).

obeys σD−Q(ε?) = −σD−Q(ε).
The calculated XAS is mostly composed of the D-D contribution and the XNCD is entirely

due to the D-Q term. In [Goulon et al., 1998] σXNCD = σR − σL where σR and σL are the
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3.3. XNCD in α-LiIO3

spectra obtained with right- and left-circularly polarized X-rays so the spectra that we compare
with experiment are:

XAS6 σD−D(ε1) + σQ−Q(ε1)

XNCD σD−Q(ε1)− σD−Q(ε2)
with ε2 = 1√

2




1
i
0


 and ε1 = 1√

2
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Fig. 3.18: Comparison of experimental [Goulon et al., 1998] and calculated XAS and XNCD spectra
at the L1 -edge of iodine in LiIO3. The calculation was performed for both enantiomers with k parallel to
c. Dashed black line: calculation for the Λ enantiomer. Solid black line: calculation for ∆ enantiomer.
The calculated XAS spectrum is the same for both enantiomers.

As illustrated in Fig. 3.18, both the calculated XAS and XNCD spectra at the L1 -edge
of iodine are in good agreement with experiment. However, the amplitude of the calculated
XNCD is 4×10−2 of the edge jump (set to 1) while the amplitude of the experimental spec-
tra is 6×10−2. Such an underestimation of the XNCD spectrum by the calculation was ob-
served in [Natoli et al., 1998] within a multiple-scattering approach (though to a lesser ex-
tent). The sign of the calculated XNCD for ∆ enantiomer is also in agreement with the
result of [Natoli et al., 1998]. Finally, the main di�erence between the result obtained with our
pseudopotentials-based DFT method and those obtained with a multiple-scattering mu�n-tin
calculation in [Natoli et al., 1998] is that the XAS spectrum is better described in our calcula-
tion.

In Fig. 3.18, we see that the XNCD spectra for both enantiomers are opposite. Indeed, it
has the same e�ect for XNCD to change an enantiomer for the other (∆ ↔ Λ) as for XMCD
to change the sign of the magnetic �eld (B↔ −B).

6Note that this is exactly equal to the average of the XAS spectra for left- and right-circular polarization:
1
2 (σD−D(ε1) + σQ−Q(ε1) + σD−Q(ε1) + σD−D(ε2) + σQ−Q(ε2) + σD−Q(ε2)) = σD−D(ε1) + σQ−Q(ε1) because
σD−D(ε1) = σD−D(ε2), σQ−Q(ε1) = σQ−Q(ε2) and σD−Q(ε1) = −σD−Q(ε2).
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3.3. XNCD in α-LiIO3

Angular dependence
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Fig. 3.19: Angular dependence of the calculated XAS (on the left-hand side) and XNCD (on the
right-hand side) at the I L1 -edge in LiIO3. In inset: XNCD amplitude as a function of the angle
following the law 3 cos2 θ − 1 where θ is the angle between c and the incident wave-vector k.

The angular dependence of the calculated XAS and XNCD spectra is shown in Fig. 3.19
and the amplitude of the XNCD is plotted in inset as a function of θ, the angle between k and
the c-axis of the crystal. This amplitude varies as 3 cos2 θ − 1. This dependence is consistent
with the formula derived in [Natoli et al., 1998] for point group C6 (point group of the space
group of the crystal). The amplitude of XNCD is maximal in the case k ‖ c (θ = 0) and
decreases to reach zero when θ = cos−1(1/

√
3) = 54.74�. This angle is sometimes named the

magic angle (note that for XNCD it corresponds to the angle between k and c whereas for
XNLD the magic angle corresponds to an angle between ε and c). If the angle between k and
c is further increased, the XNCD amplitude rises again but the sign of the signal is opposite
compared to the case θ < cos−1(1/

√
3).

Note that, as ε1 and ε2 are kept perpendicular to k and C6 is a dichroic point group for the
electric dipole transition [Brouder, 1990], the XAS spectra also present an angular dependence.
Nevertheless, it does not prevent a direct comparison of the amplitude of the XNCD spectra
because the edge jump of the isotropic spectra remains unchanged.

3.3.3 E�ect of the core-hole on XNCD

It is known that the presence of the core-hole a�ects di�erently the p and d states. As XNCD
probes the mixed p-d states, the presence of the core-hole is expected to lead to important
changes in the XNCD spectra. In Fig. 3.20 the contributions to the XAS at the L1 -edge of
iodine with and without core-hole are shown. Note that, as σD−Q is entirely circular dichroic,
σXNCD = σD−Q(ε1)− σD−Q(ε2) = 2σD−Q(ε1).

The D-D contribution probes the empty p states, the Q-Q contribution probes the empty
d states and the D-Q contribution probes the mixed p − d states. Yet, Fig. 3.20 illustrates
that the D-Q contribution is not some product of the D-D and of the Q-Q contribution. The
maximum of the XNCD e�ect does not correspond in energy to the main peak of the XAS
(white line) but it lies approximately 15 eV higher in energy.

A comparison of the two plots from Fig. 3.20 shows that, as usual, in the calculation
without core-hole the white line is less intense than with a core-hole. We see also that the Q-Q
contribution is larger in the absence of a core-hole. Finally, the XNCD is totally di�erent: with
core-hole, the main peak is positive whereas it is negative without core-hole.
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3.3. XNCD in α-LiIO3

Fig. 3.20: Contributions to the absorption of right-handed polarized light (ε1) at the L1 -edge of
iodine in the ∆ enantiomer of α-LiIO3. On the left-hand side: in the presence of a 2s core-hole. On
the right-hand side: without core-hole.

When the pseudopotential for the absorbing atom in the presence of a core-hole is generated,
it is possible to include fractions of core-hole instead of a full core-hole: one uses 2sx in the
con�guration for the atom with, for example, x=1.5 for 0.5 core-hole, x=1.25 for 0.75 core-hole
and x=1.1 for 0.9 core-hole. Fractions of core-hole allows to some extent to check the in�uence
of the strength of the core-hole screening but the exact physical meaning is not so clear.
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Fig. 3.21: Calculated XAS and XNCD at the I L1 -edge in the ∆ enantiomer of α-LiIO3 with di�erent
fractions of core-hole.

The XNCD spectra obtained with di�erent fractions of core-hole are presented in Fig. 3.21.
The XAS spectra for fractions of core-hole larger than 0.5 are very similar one to each other and
they are quite di�erent from the spectrum without core-hole. On the other hand, the XNCD
spectra with 0.5 core-hole is almost the same as the spectrum without core-hole. When the
fraction of core-hole is increased the amplitude of XNCD decreases and then increases back with
an opposite sign for the main peak. This illustrates the fact that the sign and the amplitude
of the XNCD e�ect is highly dependent on slight changes in the electronic structure.

In order to better understand the core-hole e�ect, we computed the spectra at the I K -edge.
It corresponds to an energy h̄ω = 33.2 keV (for the L1-edge h̄ω = 5.2 keV) and no experimental
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Fig. 3.22: Comparison of the calculated spectra with (solid line) or without core-hole (dashed line)
at the I L1 - (top) and K - (bottom) edge in the ∆ enantiomer of α-LiIO3.

data are available for this edge. The motivation for this calculation is to see if the XNCD
spectra would be less sensitive to a deeper core-hole. As the aim is to compare the calculated
spectra at the L1 - and K -edges, the same broadening is applied to the spectra at the K -edge as
to the spectra at the L1 -edge (3.46 eV) even if the 1s core-hole lifetime broadening is 10.6 eV
(which would result in a more broadened spectra). In Fig. 3.22, for both edges, the same rigid
2.8 eV horizontal shift to the left was applied to the XAS and XNCD spectra without core-hole
in order to make the XAS maxima coincide.
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Fig. 3.23: Radial part Rnl(r) of the 1s, 2s, 5d
and 5p wave functions for an hydrogen-like atom.
The functions R5,2(r) and R5,1(r) are multiplied
by 20.

The �rst notable point is that, in the absence of core-hole (that is to say with the same
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3.4. Sum-rules at K- and L1-edge

electronic structure), XNCD spectra at K- and L1-edges are opposite. The only thing that
di�ers between these two calculations is the core wavefunction |i〉 used in the cross-section
calculation that is a 1s atomic wavefunction in one case and a 2s atomic wavefunction in the
other case. It results in an opposite sign of the quadrupole radial integral (Q - see Eq. (3.12))
whereas the dipole radial integral (D - see Eq. (3.3)) has the same sign in both cases. Now, the
D-Q term is proportional to the product DQ of these two values (see Table 3.5). The di�erence
in the sign of Q is due to the fact that the 2s radial part is negative in the region where the d
radial part is signi�cant whereas the 1s radial wave function is always positive (see Fig. 3.23).
This explains why the XNCD is opposite at the K -edge compared to the L1 -edge despite the
fact that they probe the same valence properties.

Otherwise, the e�ect of a 1s core-hole is as spectacular as the e�ect of a 2s core-hole. As
visible in Fig. 3.23, the 1s and 2s states are spatially very localized near the nucleus: Zr

a0
= 5

with Z = 43 ⇒ r ≈ 0.05 Å which is very small compared to the interatomic distances (the
distance I-O dI−O = 1.8 Å). From the point of view of the valence electrons, removing a
1s or a 2s electron is therefore roughly equivalent to adding a proton on the nucleus (Z+1
approximation). We observe however in Fig. 3.22 that the XNCD amplitude in the presence of
the core hole is signi�cantly smaller at the K -edge than at the L1 -edge, which highlights the
limitation of this Z+1 approximation that would result in identical spectra. By comparison
with Fig. 3.21, we see that the fraction of 2s core hole that would correspond to the e�ect of the
1s core hole lies between 0.9 and 1. This might suggest that a 1s core hole is more e�ciently
screened than a 2s core hole.

The sensitivity of the XNCD to the core hole relaxation creates a possibility for it to be
used as a benchmark to test relaxation processes.

3.4 Sum-rules at K- and L1-edge

A sum-rule is a formula in which the integral of the circular dichroism spectrum due to a
given term of the cross-section is expressed as a function of the ground state expectation value
of some operator. The circular dichroism sum-rules for the dipole-dipole term at L2 ,3 -edges
are well established [Thole et al., 1992, Carra et al., 1993, Wu et al., 1993, Chen et al., 1995]
and are widely used to extract quantitative magnetic ground state properties. At spin-orbit
split edges, two magneto optical sum-rules exist: an orbital sum-rule that links the integral
of the spectra to the ground-state expectation value of 〈Lz〉 and a spin sum-rule that links
the di�erence of the integrals corresponding to the contribution from each spin-orbit split core
levels, to the ground-state expectation value of 〈Sz〉 up to a 〈Tz〉 value that can be signi�cant
[Wu and Freeman, 1994].

At K-edge or L1-edge, only the orbital magnetization sum-rule can apply. This sum rule was
originally derived by B. T. Thole [Thole et al., 1992] using a graphical method but Altarelli
[Altarelli, 1993] proposed later a "physically transparent" proof by expressing the electronic
states in a basis of wave-functions that are eigenstates of Lz. These derivations are based on
several approximations among which the fact that the radial integrals are spin independent and
energy independent [Altarelli, 1998].

Here, we use a second quantization formalism to retrieve this sum-rule at the K- and L1-edge
and we do not try to express the result in terms of spherical tensors. For a matter of simplicity,
the circular dichroism sum-rules for the terms Q-Q, D-Q and D-SP are presented in the case
we considered in the calculation, that is to say with k parallel to the axis z and full circular
polarization and, for D-SP, diagonal spin-orbit coupling.
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3.4. Sum-rules at K- and L1-edge

In this section, we use many-body wave functions: |G〉 for the ground state and |F 〉 for the
�nal state. The operators in the cross section are replaced by many-body operators that write
as sums of one-body operators:
D =

∑
i ε · ri

Q = 1
2

∑
i(ε · ri)(k · ri)

SP=
∑

i σi(ε× ri)

As the derivation is very similar for the four terms (D-D, Q-Q, D-Q and D-SP terms), the
details of the calculations and the main ideas are given for the D-D term whereas, for the other
terms, only the most important results are given.

3.4.1 Sum-rules for the D-D term

As the spin does not appear explicitly in the electric dipole operator, it will be omitted in
the notations for the derivation of the sum-rule for the D-D term and it will be reintroduced
at the end of the derivation.

XAS sum-rule

Using the expression of the electric dipole operator of Appendix D.2, the contribution to
the cross section of the D-D term writes:

σD−D(ε) = 4π2α0h̄ω
∑

F

|〈G|
∑

i

4π

3
ri

λ=1∑

λ=−1

(−1)λY −λ1 (ε?)Y λ
1 (uri)|F 〉|2δ(Ef − Eg − h̄ω)

= 4π2α0h̄ω
1∑

λ,λ′=−1

Y −λ1 (ε?)Y λ′
1 (ε)(−1)λ

′
ζλ,λ

′
D−D

where

ζλ,λ
′

D−D =
(4π)2

9
(−1)λ+λ′

∑

F

〈G|
∑

i

riY
λ

1 (uri)|F 〉〈F |
∑

i

(riY
λ′

1 (uri))
?|G〉δ(Ef − Eg − h̄ω). (3.1)

Note that in this expression the �nal state is in the ket and the ground state is in the bra which
is not the same convention as the one used in Eq. 2.2. To be consistent the operator ε · r is
transformed into ε? · r.

The operators
∑

i riY
λ

1 (uri) are one-body operators in the sense that they have the form
Ô =

∑
i ô[i]. Such operators, in the language of second quantization, take the form:

Ô =
∑

α,β

〈α|ô|β〉a†αaβ

where 〈α|ô|β〉 are the matrix elements of the single-particle operator in a complete single-
particle basis set. We choose a basis of eigenstates of Lz and L2 to make this expansion:7

∑

i

riY
λ

1 (uri) =
∑

lml0m0

(∫
drY m0?

l0
(ur)R

?
l0

(r)rY λ
1 (ur)Y

m
l (ur)Rl(r)

)
a†l0,m0

al,m

7Note that this is not a complete basis set because the quantum number n is missing. We could justify it by
the fact that, at a speci�c edge, the transition occurs from a given n0 to a given n. At K -edge, it is however not
true that the transition occurs to a given n. This is related to the problem on the upper limit of the integral
that we describe below.
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3.4. Sum-rules at K- and L1-edge

where m and l are the usual quantum numbers. Using the formula for the integral of the
product of three spherical harmonics (Appendix D.1):

〈G|
∑

i

riY
λ

1 (uri)|F 〉 =
∑

lml0m0

√
3(2l + 1)

4π(2l0 + 1)
(10l0|l00)(1λlm|l0m0)〈G|a†l0,m0

al,m|F 〉Dl0,l

where Dl0,l =
∫

dr r3R?
l0

(r)Rl(r). The experimental procedure (choice of the edge) enables to
obtain the signal corresponding to a speci�c l0 so the sum over l0 can be removed. At K- and
L1-edges, l0 = 0 and m0 = 0.

The �rst Clebsch�Gordan coe�cient, (10l0|00) = δl,1(−1)/
√

2l + 1 = δl,1(−1)/
√

3, there-
fore, consistently with the selection rules of the dipole operator, only l = 1 will give non-zero
contributions to the sum. The second Clebsch�Gordan coe�cient with l = 1, (1λ1m|00) =
δλ,−m(−1)1−λ/

√
3. So that,

〈G|
∑

i

riY
λ

1 (uri)|F 〉 = (−1)λ
√

1

4π
〈G|a†0,0a1,−λ|F 〉D (3.2)

where

D = Dl0,l =

∫
r3R?

0(r)R1(r) dr. (3.3)

This leads to:

ζλ,λ
′

D−D =
4π

9

∑

F

〈G|a†0,0a1,−λ|F 〉〈F |a†1,−λ′a0,0|G〉δ(Ef − Eg − h̄ω)|D|2. (3.4)

The next step towards the derivation of a sum rule is to integrate ζλ,λ
′

D−D over h̄ω. The
quantity 〈G|a†0,0a1,−λ|F 〉 is zero if the state {l = 1,m = −λ} is fully occupied in |G〉 but also if
it is fully empty in |F 〉. Therefore, it is equivalent to integrate the spectra from 0 or from an
energy E0 that represents the minimal energy for the level {1,−λ} to be populated:

∫ ∞

E0

ζλ,λ
′

D−D dh̄ω =

∫ ∞

0+

ζλ,λ
′

D−D dh̄ω

This is due to the fact that a given l0 was chosen for the core state. It is equivalent to what
is done experimentally: the experimental spectra for a given edge exhibit interesting features
starting from a given energy that corresponds more or less to the edge energy. The baseline
below this energy is set to zero.

To derive the integral over the energy, we use the completeness relation:
∫ ∞

0+

∑

F

|F 〉〈F |δ(Ef − Eg − E) dE = 11− |G〉〈G|. (3.5)

So that the integral of ζλ,λ
′

D−D writes:

∫ ∞

E0

ζλ,λ
′

D−D dE =
4π

9
〈G|a†0,0a1,−λ| (11− |G〉〈G|) |a†1,−λ′a0,0|G〉|D|2

=
4π

9

(
〈G|a†00a1−λa

†
1,−λ′a0,0|G〉 − 〈G|a†0,0a1,−λ|G〉〈G|a†1,−λ′a0,0|G〉

)
|D|2
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3.4. Sum-rules at K- and L1-edge

The second term is zero because, using fermionic anticommutation relations, 〈G|a†0,0a1,−λ|G〉 =

−〈G|a1,−λa
†
0,0|G〉 and the core shell is full in the ground state so a†00|G〉 = 0. The use of the

anticommutation relations in the �rst term leads to:
∫ ∞

E0

ζλ,λ
′

D−D dE =
4π

9
〈G|a1−λa

†
1−λ′a

†
00a00|G〉|D|2

=
4π

9
〈G|a1,−λa

†
1,−λ′(1− a0,0a

†
0,0)|G〉|D|2

=
4π

9
〈G|a1,−λa

†
1,−λ′|G〉|D|2.

Finally, the absorption sum-rule for the D-D term is:

∫ ∞

E0

σD−D(ε)

h̄ω
dh̄ω =

16π3

9
α0

∑

s=↑,↓

1∑

λ,λ′=−1

|Ds|2(−1)λ
′
Y −λ1 (ε?)Y λ′

1 (ε)〈G|a1,−λ,sa
†
1,−λ′,s|G〉. (3.6)

where we reintroduced the spin in the notations.
In Table 3.3 the results for several remarkable polarization vectors are presented. It shows

that the right-handed circular light probes the p states with m= − 1 and the left-handed
circular light probes the p states with m=1. This is in accordance with the fact that the
angular momentum along z of the photons is either −h̄ in the case of a right-handed circular
polarization or +h̄ for a left-handed circular polarization [Stöhr and Siegmann, 2006, p.151]8

and with the fact that the total angular momentum is conserved during the transition.

Table 3.3: Electric dipole XAS sum-rule at the K and L1-edges for �ve remarkable polarization
vectors.

Type of polarization Polarization vector
∫∞
E0

σD−D(ε)

h̄ω
dh̄ω

Right-Handed ε1 = 1√
2




1
−i
0


 4π2

3
α0|D|2〈G|a1,−1a

†
1,−1|G〉

Left-Handed ε2 = 1√
2




1
i
0


 4π2

3
α0|D|2〈G|a1,1a

†
1,1|G〉

Linear along z ε0 =




0
0
1


 4π2

3
α0|D|2〈G|a1,0a

†
1,0|G〉

Linear along x εx =




1
0
0




2π2

3
α0|D|2(〈G|a1,−1a

†
1,−1|G〉

+ 〈G|a11a
†
1,1|G〉 − 〈G|a1,−1a

†
1,1|G〉

− 〈G|a1,1a
†
1,−1|G〉)

Linear along y εy =




0
1
0




2π2

3
α0|D|2(〈G|a1,−1a

†
1,−1|G〉

+ 〈G|a11a
†
1,1|G〉+ 〈G|a1,−1a

†
1,1|G〉

+ 〈G|a1,1a
†
1,−1|G〉)

8We use the convention for right and left polarization that is used in the optics community and that consists
in de�ning the sense of circular polarization "from the sample point of view". In [Stöhr and Siegmann, 2006]
they use the other convention (see p.149).
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3.4. Sum-rules at K- and L1-edge

Link with the number of holes The ground state writes: |G〉 =
∑

k ckΠk where Πk =∏
l,m a

†
l,m|0〉 corresponds to a Slater determinant. The quantity 〈G|a1,−λa

†
1,−λ|G〉 is zero if the

state {1,−λ} is fully occupied in |G〉 that is to say if all Πk include the operator a†1,−λ. It is
one if no Πk include this operator, that is to say if the state {1,−λ} is fully empty in |G〉. In
the general case:

〈G|a1,−λa
†
1,−λ|G〉 =

∑

k
with k such that

Πk does not contain a†1,−λ

|ck|2

This quantity represents the number of holes in the level {1,−λ} in the ground state. For
example, the integral of the XAS spectrum for ε1 is proportional to the number of holes in states
l=1,m=−1. Here, we immediately see a problem related to the upper limit of the integral:
if we integrate up to in�nity, the number of holes would be in�nite so the integral must be
restricted to a given n. For 3d transition elements, it would be interesting to restrict it to the
4p states in order to "count" the number of {4p,m=−1} holes but it is impossible in practice
because the 4p states are in the continuum.

Link with the partial densities of states If we denote E = Eg + h̄ω, Eq. 3.4 writes:

ζλ,λ
′

D−D(E) =
4π

9
|D|2

∑

F

|〈G|a†0,0a1,−λ|F 〉|2δ(Ef − E).

We de�ne Dos1,λ
|G (E) =

∑
F |〈G|a†0,0a1,λ|F 〉|2δ(Ef − E). It corresponds to a G-conditioned

partial density of states (in states/eV) in the presence of a core-hole because it counts in an
energy interval the number of states in which the level {1,−λ} is occupied and the core level
{0, 0} is unoccupied and that are compatible with |G〉.9

The contribution to the spectra from the D-D term now writes:

σD−D(E)

h̄ω
=

16π3

9
α0|D|2

1∑

λ=−1

|Y −λ1 (ε?)|2Dos1,−λ
|G (E). (3.7)

It means that the electric dipole-electric dipole XAS probes the density of empty states with
l=1.

9A natural de�nition of the partial density of states in the presence of a core-hole would be:∑
F 〈F |a

†
1,λa0,0a

†
0,0a1,λ|F 〉δ(Ef − E) whereas here we have

∑
F 〈F |a

†
1,λa0,0|G〉〈G|a†0,0a1,λ|F 〉δ(Ef − E). If |G〉

writes as Π where Π =
∏
l,m a

†
l,m|0〉 and |F 〉 =

∑
k fkΠk where Πk =

∏
l,m a

†
l,m|0〉 then

〈F |a†1,λa0,0|G〉〈G|a†0,0a1,λ|F 〉 = |fk|2 where k is such that Πk = a0,0a
†
1,λΠ

〈F |a†1,λa0,0a
†
0,0a1,λ|F 〉 =

∑

k
with k such that

Πk does not contain a†
0,0

and contains a†1,λ

|fk|2.

Hence, the di�erence between a partial density of states in the presence of a core-hole and Dos1,λ
|G (E) is that

the �nal states must be related to the ground state by a one-body transition. In the following, the mention
"conditioned to |G〉" will be left implicit when mentioning density of states.
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3.4. Sum-rules at K- and L1-edge

Isotropic spectrum To get the expression for the isotropic spectrum, we consider an
arbitrary linear polarization vector:

εl =




sin θ cosφ
sin θ sinφ

cos θ


 .

If this polarization vector is used in the sum-rule of Eq.(3.6) and the integration is performed
over θ ∈ [0, π] and φ ∈ [0, 2π], the result is:10

A0 =

∫

θ,φ

(∫ ∞

E0

σD−D(εl)

h̄ω
dh̄ω

)
sin θ dθ dφ =

16π3

9
α0|D|2〈G|a1,0a

†
1,0 + a1,1a

†
1,1 + a1,−1a

†
1,−1|G〉.

This yields the sum-rule for the isotropic spectrum:
∫ ∞

E0

σ0
D−D

h̄ω
dh̄ω =

A0

∫
sin θdθdφ

=
4π2

9
α0|D|2〈G|a1,0a

†
1,0 + a1,1a

†
1,1 + a1,−1a

†
1,−1|G〉 =

4π2

9
α0|D|2hp

The integral from E0 of the isotropic spectrum is proportional to the total number of holes
in the occupied p states hp. In practice, it is di�cult to apply this sum-rule because of the
uncertainty on the upper limit of the integral already mentioned above. However, a similar
sum-rule at the L2,3-edges has been successfully used to compare the occupation of d states in
a material compared to a reference (Au4Mn compared to Au in [Rogalev et al., 2006, p.93] or
MoIV compared to MoV in [Arrio et al., 2010]).

The spectrum itself is a representation of the total density of empty p states (see previous
paragraph).

From the equality of the sum-rules we can deduce that:

σ0
D−D =

1

3
(σD−D(ε0) + σD−D(ε2) + σD−D(ε1))

In other words, in the general case, the isotropic spectrum (that corresponds to the spectrum
measured on a powder sample) is obtained by computing three di�erent spectra and taking the
average.

Linear dichroism If one consider a non magnetic crystal with a rotation axis of order
strictly higher than two, it is known that the angular dependence of the spectra is [Brouder, 1990]:

σD−D(ε) = cos2 θσ‖ + sin2 θσ⊥

with σ‖ the spectra obtained with a linear polarization vector along the direction of the rotation
axis and σ⊥ the spectra obtained with a polarization vector perpendicular to the rotation axis.
Here we �nd the same result by considering that 〈G|a1−λa

†
1−λ′|G〉 = δλ,λ′〈G|a1−λa

†
1−λ|G〉: this

is the condition to remove all azimuthal angular dependence. In this case if one de�nes

σ⊥ = σD−D(εx) = σD−D(εy) = σD−D(ε1) = σD−D(ε2) and σ‖ = σD−D(ε0),

the isotropic spectrum writes: σ0
D−D = 1

3
(2σ⊥+σ‖). Linear dichroism is de�ned as the di�erence

between σ‖ and σ⊥.
Note that if the symmetry of the crystal is cubic, the σD−D spectrum presents no angu-

lar dependence (so no linear dichroism) and the isotropic spectrum is σ0
D−D = σD−D(ε0) =

σD−D(ε1) = σD−D(ε2).
10The calculation was done with Mathematica. Note that, with an arbitrary linear polarization, the sum-rule

presents both polar- and azimuthal-angle dependence and it contains 9 terms (all the combinations of λ and
λ′). This complexity can be reduced by considering the symmetry of the system as done in [Brouder, 1990].
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3.4. Sum-rules at K- and L1-edge

XMCD sum-rule

The sum-rule for circular dichroism can be deduced from the XAS sum-rule (Eq. (3.6)):
∫ ∞

E0

σD−D(ε)−σD−D(ε?)

h̄ω
dh̄ω =

16π3

9
α0

1∑

λ,λ′=−1

(−1)λ
′
(
Y −λ1 (ε?)Y λ′

1 (ε)− Y −λ1 (ε)Y λ′
1 (ε?)

)
〈G|a1,−λa

†
1,−λ′ |G〉.

The quantity
(
Y −λ1 (ε?)Y λ′

1 (ε)− Y −λ1 (ε)Y λ′
1 (ε?)

)
depends on the rate of circular polarization

de�ned by:
ε× ε? = iPck̂ (3.8)

where k̂ is the direction of the wave vector (it is a vector of norm 1).
The formula [Natoli et al., 1998]

Y −λ1 (ε?)Y λ′
1 (ε)− Y −λ1 (ε)Y λ′

1 (ε?) = −
√

3

2π
Pc
∑

µ

(1λ′1− λ|1µ)Y µ
1 (k̂)

allows to compute (−1)λ
′ 4π

3
(Y −λ1 (ε?)Y λ′

1 (ε) − Y −λ1 (ε)Y λ′
1 (ε?)) for each λ and λ′. The Clebsh

Gordan coe�cient is non zero when µ = λ′ − λ and λ 6= −λ′:

λ\λ′ -1 0 1
-1 −Pck̂z − 1√

2
Pc(ik̂y + k̂x) 0

0 1√
2
Pc(ik̂y − k̂x) 0 − 1√

2
Pc(ik̂y + k̂x)

1 0 1√
2
Pc(ik̂y − k̂x) Pck̂z

Therefore,
∫ ∞

E0

σD−D(ε)− σD−D(ε?)

h̄ω
dh̄ω =

4π2

3
α0|D|2Pc

(
k̂z〈G|a1,−1a

†
1,−1 − a1,1a

†
1,1|G〉

+ k̂y
i√
2
〈G|a1,0a

†
1,1 − a1,1a

†
1,0 + a10a

†
1,−1 − a1,−1a

†
1,0|G〉

+ k̂x
−1√

2
〈G|a1,0a

†
1,1 + a1,1a

†
1,0 + a1,0a

†
1,−1 + a1,−1a

†
1,0|G〉

)
.

We can apply the anti commutation relation to the pairs of fermion operators which only add
a minus sign, even in the term proportional to k̂z because:

〈G|a†1,λa1,λ − a†1,µa1,µ|G〉 = 〈G|1− a1,λa
†
1,λ − 1 + a1,µa

†
1,µ|G〉 = −〈G|a1,λa

†
1,λ − a1,µa

†
1,µ|G〉.

Using the matrix elements for the angular momentum given in Appendix B.2, we de�ne the
components Lzsl=1, Ly

s
l=1 and Lxsl=1 of the operator contribution to the orbital polarization of

the p states as:

Lzsl=1 =
1∑

m=−1

h̄ma†1,m,sa1,m,s

Lysl=1 =
h̄

i
√

2
(a†1,1,sa1,0,s − a†1,0,sa1,1,s + a†1,−1,sa1,0,s − a†1,0,sa1,−1,s)

Lxsl=1 =
h̄√
2

(a†1,1,sa1,0,s + a†1,0,sa1,1,s + a†1,−1,sa1,0,s + a†1,0,sa1,−1,s).
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3.4. Sum-rules at K- and L1-edge

The XMCD sum-rule for the electric dipole term writes as a function of the ground state
expectation value of the angular momentum along the direction of propagation of the incident
beam: ∫ ∞

E0

σD−D(ε)− σD−D(ε?)

h̄ω
dh̄ω =

4π2

3h̄
α0

∑

s=↑,↓
|Ds|2Pc〈G|k̂ ·Ls

l=1|G〉

If the radial matrix element is assumed to be spin-independent (D↑ = D↓) and with L = L↑+L↓,

∫ ∞

E0

σD−D(ε)− σD−D(ε?)

h̄ω
dh̄ω =

4π2

3h̄
α0|D|2Pc〈G|k̂ ·Ll=1|G〉 (3.9)

This corresponds to the sum-rule that has been derived by several authors [Thole et al., 1992,
Ankudinov and Rehr, 1995, Carra et al., 1993, Altarelli, 1993] and that is called the orbital
sum-rule. It can be normalized with the sum-rule obtained for the isotropic spectrum:

∫∞
E0

σD−D(ε)−σD−D(ε?)

h̄ω
dh̄ω

∫∞
E0

σ0
D−D

h̄ω
dh̄ω

=
3Pc〈G|k̂ ·Ll=1|G〉

h̄hp
.

Full circular polarization case In the case of a fully circularly polarized light with k
along z, the sum-rule for σXMCD

D−D = σD−D(ε2)− σD−D(ε1) is (Pc = −1):

∫ ∞

E0

σXMCD
D−D

h̄ω
dh̄ω = −4π2

3h̄
α0

∑

s=↑,↓
|Ds|2〈G|Lzsl=1|G〉

= −4π2

3h̄
α0

∑

s=↑,↓
|Ds|2〈G|a†1,1,sa1,1,s − a†1,−1,sa1,−1,s|G〉

This result can also be deduced directly from the XAS sum-rule for ε1 and ε2 displayed in
Table 3.3.

The spectrum is a representation of the orbital angular momentum density of the empty p
states, that is to say

σXMCD
D−D (E) =

4π2

3
α0ω(|D↑|2O↑p(E) + |D↓|2O↓p(E)) (3.10)

with Oσp (E) = Dos1,1
|G (E)−Dos1,−1

|G (E) where the Dos1,λ
|G (E) are de�ned p. 105. In other words

it probes the di�erence between the densities of the levels {l=1,m=1} and {l=1,m=− 1}.

Di�culties to apply this sum-rule This sum rule is impossible to apply in practice
at the K-edge of 3d transition elements. The �rst di�culty, as in the XAS case, is that the
upper limit of the integral is not well de�ned. Moreover, the 4p states are almost unoccupied
so that 〈Lzl=1〉 = 〈G|Lzl=1|G〉 is very small and it does not contribute to the total magnetic
moment of the material. In other words, this sum-rule relates the integral of the XMCD spectra
to a quantity that is considered zero in most of the models for magnetism. Yet, even if the
quantitative measurement of 〈Lzl=1〉 is of moderate interest in itself, the orbital polarization
of the p states carries information on the magnetic structure of the material in its whole which
justi�es the great interest for XMCD at K -edge beyond the applicability of the sum-rules.
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3.4. Sum-rules at K- and L1-edge

3.4.2 Sum-rules for the Q-Q term

XAS sum-rule

Using the expression of the electric quadrupole operator of Appendix D.2, the contribution
to the cross section of the Q-Q term writes:

σQ−Q(ε,k) = π2α0h̄ω
(ω
c

)2
1∑

λ,λ′,µ,µ′=−1

(−1)λ
′+µ′(1λ1µ|2λ+ µ)(1λ′1µ′|2λ′ + µ′)

Y −λ1 (ε?)Y −µ1 (k̂)Y λ′
1 (ε)Y µ′

1 (k̂)ζλ+µ,λ′+µ′
Q−Q

with ζλ+µ,,λ′+µ′
Q−Q =

(
4π

3

)4
3

10π
(−1)λ+µ+λ′+µ′

∑

F

〈G|
∑

i

r2
i Y

λ+µ
2 (uri)|F 〉

〈F |
∑

i

(r2
i Y

λ′+µ′
2 (uri))

?|G〉δ(Ef − Eg − h̄ω).

As in the previous section we can rewrite the operator within the second quantization formalism:

〈G|
∑

i

r2
i Y

λ+µ
2 (uri)|F 〉 =

∑

lml0m0

√
5(2l + 1)

4π(2l0 + 1)
(20l0|l00)(2λ+ µlm|l0m0)〈G|a†l0,m0

al,m|F 〉Ql0,l

with Ql0,l =
∫

dr r4R?
l0

(r)Rl(r). Again, we only consider K - and L1-edges where l0 = 0 and

m0 = 0. As (20l0|00) = δl,2
(−1)2
√

2l+1
= δl,2

1√
5
and (2λ+ µlm|00) = δλ+µ,−m

(−1)2−(λ+µ)
√

5
,

〈G|
∑

i

r2
i Y

λ+µ
2 (uri)|f〉 = (−1)2−(λ+µ) 1√

4π
〈G|a†0,0a2,−(λ+µ)|f〉Q (3.11)

with

Q = Q0,2 =

∫
r4R?

0(r)R2(r) dr. (3.12)

Making the spin explicit:

∫ ∞

E0

σQ−Q(ε,k)

(h̄ω)3
dh̄ω =

(
4π

3

)3
πα0

10

(
1

h̄c

)2 1∑

λ,λ′,µ,µ′=−1

(−1)λ
′+µ′(1λ1µ|2λ+ µ)(1λ′1µ′|2λ′ + µ′)

Y −λ1 (ε?)Y −µ1 (k̂)Y λ′
1 (ε)Y µ′

1 (k̂)
∑

s=↑,↓
〈G|a2,−(λ+µ),sa

†
2,−(λ′+µ′),s|G〉|Qs|2 (3.13)

In Table 3.4 the results for right-handed and left-handed circularly polarized light are pre-
sented. It shows that the right-handed circular light probes the d states with m = −1 and the
left-handed circular light probes the d states with m = 1. This is, as in the electric dipole case,
in accordance with what is expected from the fact that the angular momentum along z of the
photons is either −h̄ in the case of a right-handed circular polarization or h̄ for a left-handed
circular polarization.
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3.4. Sum-rules at K- and L1-edge

Table 3.4: Electric quadrupole XAS sum-rule at the K - and L1-edges for left and right circularly
polarized X-rays with k along z.

Wave vector Polarization vector
∫∞
E0

σQ−Q(ε)

(h̄ω)3 dh̄ω

k̂ =




0
0
1


 ε1 = 1√

2




1
−i
0




(
π2α0

15(h̄c)2

)
|Q|2〈G|a2,−1a

†
2,−1|G〉

ε2 = 1√
2




1
i
0




(
π2α0

15(h̄c)2

)
|Q|2〈G|a2,1a

†
2,1|G〉

Isotropic spectrum To get the expression for the isotropic spectrum, we consider, as in
[Brouder, 1990], an arbitrary linear polarization vector (both angles θ and φ are needed) and a
wave vector that is perpendicular to the polarization vector (one extra angle ψ is needed):

εl =




sin θ cosφ
sin θ sinφ

cos θ


 and k̂ =




cos θ cosφ cosψ − sinφ sinψ
cos θ sinφ cosψ + cosφ sinψ

− sin θ cosψ


 .

The integral over θ in [0, π] and φ and ψ in [0, 2π] of the XAS sum-rule (Eq. (3.13)) yields:

∫∫∫
sin(θ)dθdφdψ

∫ ∞

E0

σQ−Q(εl,k)

(h̄ω)3
dh̄ω

=
πα0

(h̄c)2

(
4π

3

)3
1

10

9

20
〈G|a2,0a

†
2,0 + a2,1a

†
2,1 + a2,−1a

†
2,−1 + a2,2a

†
2,2 + a2,−2a

†
2,−2|G〉|Q|2

As
∫∫∫

sin(θ)dθdφdψ = 8π2, this means that the isotropic spectrum σ0
Q−Q is such that:

∫ ∞

E0

σ0
Q−Q

(h̄ω)3
dh̄ω =

π2

75

α0

(h̄c)2
|Q|2〈G|

2∑

m=−2

a2,ma
†
2,m|G〉 =

π2

75

α0

(h̄c)2
|Q|2hd (3.14)

The integral of the isotropic spectrum is proportional to the total number of holes in the
occupied d states hd. The spectrum itself, σ0

Q−Q(E), probes the total d density of empty states
in the presence of the core-hole.

Interpretation of XAS pre-edge The electric quadrupole contribution can be signif-
icant in the pre-edge region of the spectrum. In this case, it can be useful to compare the
spectra with the p and d partial density of unoccupied states in the presence of a core-hole in
order to assign the peaks either to electric dipole or to electric quadrupole transition. Indeed,
the spectra recorded on powders (isotropic spectra) are proportional to this density of states
up to the radial matrix element. The relative order of magnitude of the two contributions can
be roughly evaluated by multiplying the d density of state by 9

4π2
π2

75
k2 |Q|2
|D|2 = 0.03k2 |Q|2

|D|2 . The

order of magnitude of |Q|
2

|D|2 is r2
c where rc is the core state radius.

XMCD sum-rule

We explore the XMCD sum-rule for the Q-Q term. In order to get an understandable sum-
rule, the result presented here is limited to the case considered in our numerical calculation:
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3.4. Sum-rules at K- and L1-edge

k along z and a full circular polarization. The general XMCD sum-rule would be obtained by
taking the di�erence of the sum-rule Eq. (3.13) with ε and ε?. This sum-rule can be found in
[Brouder, 1994].

The sum-rule for σXMCD
Q−Q = σQ−Q(ε2) − σQ−Q(ε1) can be directly deduced from the results

presented in Table 3.4:

∫ ∞

E0

σXMCD
Q−Q

(h̄ω)3
dh̄ω =

(
π2α0

15(h̄c)2

)
|Q|2〈G|a2,1a

†
2,1 − a2,−1a

†
2,−1|G〉 (3.15)

Now, we de�ne the operator 1-partial contribution to the orbital polarization along z of the
d states as:

Lzl=2
1 =

1∑

m=−1

ma†2,ma2,m. (3.16)

After restoration of the spin indices, the XMCD sum-rule for the Q-Q term writes:

∫ ∞

E0

σXMCD
Q−Q

(h̄ω)3
dh̄ω = −

(
π2α0

15(h̄c)2

) ∑

s=↑,↓
|Qs|2〈G|Lzl=2

1 s|G〉. (3.17)

Since the Q-Q term is almost always smaller than an accompanying D-D term, this sum-rule
cannot be easily applied to experimental spectra. When applied to calculated spectra, it can
however yield valuable physical information.

3.4.3 Sum-rules for the D-Q term

XAS sum-rule

The expression of the contribution to the cross section of the cross term D-Q is:

σD−Q(ε,k) = −4π2α0h̄ω
∑

F

Im

[
〈F |

∑

i

((k · ri)(ε? · ri))?|G〉〈G|
∑

i

ε? · ri|F 〉
]
δ(Ef −Eg − h̄ω).

Using the expression for the electric dipole and the electric quadrupole operators in terms of
spherical harmonics (Appendix D.2), σD−Q rewrites:

σD−Q=−4π2h̄α0ωk
∑

F

Im

[
1∑

λ,ν,µ=−1

(1λ1µ|2λ+ µ)(Y −λ1 (ε?)Y −µ1 (k̂))?Y −ν1 (ε?)ζλ+µ,ν
D−Q

]
δ(Ef−Eg−h̄ω)

where

ζλ+µ,ν
D−Q =

(
4π

3

)3

(−1)λ+µ+ν

√
3

10π
〈F |

∑

i

(
r2
i Y

λ+µ
2 (uri)

)?
|G〉〈G|

∑

i

riY
ν

1 (uri)|F 〉δ(Ef−Eg−h̄ω).

Using Eq. (3.2) and (3.11), we obtain:

∫ ∞

E0

ζλ+µ,ν
D−Q dE =

(
4π

3

)2
√

1

30π
〈G|a1−νa

†
2−(λ+µ)|G〉Q?D
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3.4. Sum-rules at K- and L1-edge

So that,

∫ ∞

E0

σD−Q(ε)

(h̄ω)2
dh̄ω = − (4π)3

9
√

30πh̄c
πα0

1∑

λ,ν,µ=−1

(1λ1µ|2λ+ µ)(−1)λ+µ

Im
[
Y λ

1 (ε)Y µ
1 (k̂)Y −ν1 (ε?)〈G|a1−νa

†
2−(λ+µ)|G〉Q?D

]

What is noticeable about this sum-rule is that the right term is non zero only if there exist
in |G〉 mixed states l = 1 and l = 2, that is to say mixed p− d states. These kind of states can
exist only in non-centrosymmetric systems. The result for circular polarization and k along z
is given in table 3.5.

Table 3.5: Cross term electric dipole-electric quadrupole XAS sum-rule at the K - and L1-edges for
left and right circularly polarized X-rays with k along z.

Wave vector Polarization vector
∫∞
E0

σD−Q(ε)

(h̄ω)2 dh̄ω

k̂ =




0
0
1


 ε1 = 1√

2




1
−i
0


 −4π2

3
√

5
α
h̄c

Im[〈G|a1−1a
†
2−1|G〉Q?D]

ε2 = 1√
2




1
i
0


 −4π2

3
√

5
α
h̄c

Im[〈G|a11a
†
21|G〉Q?D]

XNCD sum-rule

As for the Q-Q term, the result presented here will be limited to the case k along z,
therefore, no study on the angular dependence of the spectra is possible. The sum-rule for a
general wave vector is treated in [Natoli et al., 1998] in the case where the wave functions |F 〉
and |G〉 are real. Here, |F 〉 and |G〉 are any wave functions but it is important to remind that,
if they cannot be chosen real, circular dichroism can be a combination of XMCD and XNCD
[Sessoli et al., 2015].

The sum-rule for σXNCD
D−Q = σD−Q(ε2) − σD−Q(ε1) can be directly deduced from the results

presented in Table 3.5:
∫ ∞

E0

σXNCD
D−Q

(h̄ω)2
dh̄ω =

−4π2

3
√

5

α

h̄c
Im[〈G|a11a

†
21 − a1−1a

†
2−1|G〉Q?D]

If the wave functions can be chosen real, it can be seen that: ζ−λ−µ,−νD−Q =
(
ζλ+µ,ν

D−Q

)?
so

that the quantities 〈G|a1−1a
†
2−1|G〉 and 〈G|a11a

†
21|G〉 are complex conjugate. The sum-rule for

XNCD becomes:11

∫ ∞

E0

σXNCD
D−Q

(h̄ω)2
dh̄ω = i

4π2

3
√

5

α

h̄c
〈G|a11a

†
21 − a1−1a

†
2−1|G〉QD . (3.18)

Therefore, XNCD probes the di�erence of occupation between the mixed p− d states with
m = 1 and the mixed p− d states with m = −1 in the ground state which is a pure imaginary
quantity. Contrary to the case of the Q-Q term, this sum-rule for the D-Q term can be applied
to experimental XNCD spectra in which this term is the only contribution.

11If x? is the complex conjugate of x, Im[x− x?] = −i(x− x?).
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3.4. Sum-rules at K- and L1-edge

3.4.4 Sum-rules for the D-SP term

Here we derive the sum-rule for the new relativistic term of the cross section electric dipole-
spin-position in the case of collinear spins and diagonal spin orbit coupling. In that case, the
spin is conserved during the transition (see subsection SP operator p.56) and we can use the
collinear spin-position operator:

SPcol(ε) = σz(εxy − εyx).

XAS sum-rule

Using the expression for SPcol given in Appendix D.2,12

σD−SP(ε) =
2π2h̄2α0ω

2

mc2

1∑

ν=−1

Re[Y −ν1 (ε?)
(
Y 1

1 (ε)ζ1,ν
D−SP − Y −1

1 (ε)ζ−1,ν
D−SP

)
]

with

ζλ,νD−SP = (−1)ν
(

4π

3

)2∑

F

〈F |
∑

i

(σziriY
λ

1 (uri))
?|G〉〈G|

∑

i

riY
ν

1 (uri)|F 〉δ(Ef − Eg − h̄ω).

With the spin made explicit, Eq. (3.2) rewrites:

〈G|
∑

i

riY
λ

1 (uri)|F 〉 = (−1)λ
√

1

4π

∑

s,s0=↑,↓
〈G|a†0,0,sa1,−λ,s|F 〉δs,s0Ds

Similarly to what has been done to obtain Eq. (3.2), we obtain:

〈G|
∑

i

σziriY
λ

1 (uri)|F 〉 =
∑

s′,s0=↑,↓
〈s′0|σz|s′〉(−1)λ〈G|a†0,0,s′0a1,−λ,s′ |F 〉Ds

′
0,s
′
. (3.19)

Now, 〈s′0|σz|s′〉 = 〈s′|σz|s′〉δs′0,s′ where 〈s′|σz|s′〉 = 1 if s′ =↑ and 〈s′|σz|s′〉 = −1 if s′ =↓.
Using the same method to integrate over the energy as for the D-D term, the sum-rule for

the term D-SP is:13

∫ ∞

E0

σD−SP(ε)

(h̄ω)2
dh̄ω =

−8π3α

9mc2

1∑

ν=−1

∑

s=↑,↓
〈s|σz|s〉Re

[
Y −ν1 (ε?)

(
Y 1

1 (ε)〈G|a1−νσa
†
1−1σ|G〉 − Y −1

1 (ε)〈G|a1−νσa
†
11σ|G〉

)
|Ds|2

]

With this formula, it is possible to determine the sum-rule for any polarization. The results
for pure circularly polarized light are reported in table 3.6.

12Here, we used the fact that Im[(ix)?] = −Re[x?].
13Note that a δs,s′ appears in the calculation because a†0,0,sa0,0,s′ = δs,s′ − a0,0,s′a

†
0,0,s.
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3.4. Sum-rules at K- and L1-edge

Table 3.6: Sum-rule for the cross term D-SP at the K - and L1-edges for fully circular polarized light
with k along z.

Polarization vector
∫∞
E0

σD−SP(ε)

(h̄ω)2 dh̄ω

ε1 = 1√
2




1
−i
0


 − 2π2α

3mc2
(〈G|a1−1↑a

†
1−1↑|G〉|D↑|2 − 〈G|a1−1↓a

†
1−1↓|G〉|D↓|2)

ε2 = 1√
2




1
i
0


 2π2α

3mc2
(〈G|a11↑a

†
11↑|G〉|D↑|2 − 〈G|a11↓a

†
11↓|G〉|D↓|2)

XMCD sum-rule

The sum-rule for σXMCD
D−SP = σD−SP(ε2)− σD−Q(ε1) can be directly deduced from the results

presented in table 3.6:
∫ ∞

E0

σXMCD
D−SP

(h̄ω)2
dh̄ω =

2π2α

3mc2
(〈G|a11↑a

†
11↑ + a1−1↑a

†
1−1↑|G〉|D↑|2 − 〈G|a11↓a

†
11↓ + a1−1↓a

†
1−1↓|G〉|D↓|2)

Therefore, the XMCD spectrum due to this term is related to the di�erence of density of
states between up and down spins.

If one de�nes the operator partial spin magnetization of the p states as:

Sz1,−1
l=1 =

∑

m=−1,1

a†1m↓a1m↓ − a†1m↑a1m↑. (3.20)

Under the hypothesis that |D↑| = |D↓|:
∫ ∞

E0

σCDD−SP(ε)

(h̄ω)2
dh̄ω = −2π2α

3mc2
〈G|Sz1,−1

l=1 |G〉|D|2. (3.21)

From this sum-rule, we can understand why despite its small prefactor, the D-SP term
contributes signi�cantly to XMCD: Sz1,−1

l=1 has a priori an average on the ground state that is
notably larger than 〈Lzl=1〉 as it is the case for Fe, Co and Ni (see p.84).

This sum-rule is impossible to apply to experimental spectra, not only because of uncertainty
on the upper limit of the integral (due to the fact that the 4p states are in the continuum), but
mainly because experimentally this term is always accompanied by the D-D contribution.

Total dipole XMCD sum-rule

If we consider the sum of the D-D and the D-SP contribution to XMCD: σXMCD
D = σXMCD

D−D +
σXMCD

D−SP , then,

∫ ∞

E0

σXMCD
D (ε)

(h̄ω)
dh̄ω = −4π2α

3

(
Lzl=1 +

h̄ω

2mc2
Sz

1,−1
l=1

)
|D|2 (3.22)

This total sum-rule could be applied to measured XMCD spectra at the K -edge if the
following hypothesis was realized:

• The contribution of the Q-Q term is negligible (else its contribution must be taken into
account)
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3.4. Sum-rules at K- and L1-edge

• h̄ω is approximately constant over the energy range we integrate on (this is the case when
we consider a few 10 eV over the edge and the edge energy is a few keV).
• The radial integral is spin-independent (|D↑| = |D↓|).
• The transition occurs from a given n0 to a given n.

It is particularly di�cult to make a general statement on the validity of the two last hypothesis.

3.4.5 Partial density of states and spectra in the case of Fe and Ni

As explained and illustrated in [Cabaret, 2006, section 4], the comparison of the spectra
with calculated projected density of states must be done with caution. Indeed, the de�nition
of the partial density of states is not unique and the choice of the method used to perform the
projection of the density of states on atomic orbitals has a big in�uence on the �nal result.
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Fig. 3.24: p-projected density of states and K -edge D-D contribution to the XAS in Fe (on the left)
and Ni (on the right) without core-hole for both spin channels (spin up: solid line, spin down: dashed
line). This �gure is an illustration of Eq. 3.6.

In the PAW formalism presented in section 2.3, it is easy to identify the partial density of
states: if one consider that there is only one projector per channel the cross-section writes as a
sum over n where the index n refers to quantum numbers for the angular momentum (l,m):

σ(ω) = 4π2α0h̄ω
∑

n

∑

f

|〈f̃ |p̃R0
n 〉|2δ(Ef − Ei − h̄ω)|〈φR0

n |O|i〉|2.

In this expression, we can identify
∑

f |〈f̃ |p̃R0
n 〉|2δ(Ef −Ei− h̄ω) as being the n-partial density

of empty states. The remaining matrix element |〈φR0
n |O|i〉|2 is weakly energy-dependent as

shown in [Cabaret, 2006]. For this reason, the DOS calculated with Quantum ESPRESSO

are very similar to the spectra. This is con�rmed by the comparison of the p-density of states
with the calculated contribution to the XAS due to the D-D term depicted in Fig. 3.24 (the
full width at half maximum of the broadening applied to the DOS is 1.6 eV and whereas it is
0.8 eV for the the spectra).

In Fig. 3.25, the D-D contribution to XMCD is compared to the density of orbital polariza-
tion of the empty p states and the D-SP contribution to XMCD is compared to the partial spin
polarization Sz1,−1

l=1 (E). It illustrates the validity of the sum rules (Eq. 3.9 and 3.21) at energies
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Fig. 3.25: Comparison of Lzp(E) (top) and Sz1,−1
p (E) (bottom) obtained from p-projected densities

of states with the K-edge D-D (top) and D-SP (bottom) contributions to the XAS in Fe (on the left)
and Ni (on the right) without core-hole. These �gures are illustrations of Eq. 3.9 and 3.21. Lzp(E)

have been multiplied by the same factor as the p density of states in Fig. 3.24 and Sz1,−1
p (E) spectra

by this factor times h̄ω
2mc2

.

higher than 10 eV. However, near the edge, the D-D contribution to XMCD and Lzl=1(E)
are completely di�erent. This leads to the conclusion that, even with a method to compute
the projected density of states that induces weak energy-dependence of the matrix elements, a
calculation of the orbital polarization is not a good way to obtain the signature of the XMCD
spectra at K -edge. The spectrum calculation must be performed. With the method presented
in the previous chapter, the spectra calculations require less computer resources than DOS
calculations.

3.5 Conclusion

In this chapter we presented the results of DFT ab-initio calculations of K -edge XAS and
XMCD in Fe, Co and Ni and L1-edge XAS and XNCD in LiIO3.

The main result of this chapter is the signi�cance of the new D-SP term in XMCD. We
explained it by deriving a sum-rule for this new term. We showed that it probes the spin
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polarization of the p states whereas the D-D term probes their orbital polarization.
The overall agreement of the calculated spectra with the experimental one is fair. For

XMCD, however, the secondary peaks are not always well reproduced. Given the complexity
of the XMCD phenomenon (compared to the magnetic properties that are usually studied by
DFT), it is a unique way to evaluate the precision of the modeling of magnetic systems. We
tested the e�ect on the spectra of a large number of assumptions and approximations and came
to the conclusion that Kohn-Sham DFT is unable to capture the complexity of the spin and
orbital polarization of empty states.

The fact that the overall shape of the spectra is well described still opens perspectives for
the interpretation of various experiments. This is the subject of the next chapter.
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4.1 Introduction

Experimental studies under pressure are very important in the �eld of earth sciences and
they also are of several fundamental interests. The main e�ect of pressure is to reduce the
interatomic distances which can lead to new properties (for example photomagnetic properties
in Prussian blue analogues [Cafun et al., 2013]). Pressure is widely used in condensed matter
physics to uncover new properties (a well known example is high Tc superconductivity). Also,
in the context of combined experimental and numerical studies, pressure is a very good way to
put calculations to the test. Indeed, pressure modi�es the interactions between the atoms and
only a robust method can model it correctly.

In Section 4.2, we present the experimental set-up for acquisition of XAS and XMCD spectra
under pressure on the dispersive beamline ODE in SOLEIL synchrotron (synchrotron facility
situated in Gif-sur-Yvette, France). In Section 4.3, we discuss the way of introducing pressure
in our DFT calculations. Sections 4.4 and 4.5 are dedicated respectively to the study of the
iron hydride FeH and of the transition metal oxide CrO2.

Interest for iron hydrides is important because they are model objects for the study of
transition metal hydrides [Antonov et al., 2002]. XAS and XMCD experiments on Fe under H2

atmosphere are presented in Section 4.4. Calculations give a rich insight into the transitions
that occur under pressure and into the magnetic structure of the formed compound, FeH.

Transition metal oxides are strongly correlated materials which exhibit a wealth of phenom-
ena, so that they have a lot of potential (see for example [Tokura, 2003]). Their theoretical
study is one of the challenges to modern condensed matter physics. Among them Chromium
dioxide is a particularly interesting case because it belongs to the class of half-metallic fer-
romagnets. A RIXS experiment and an XAS and XMCD study under pressure of CrO2 are
presented in Section 4.5. Preliminary calculations show promising results.
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4.2. Experimental method: XMCD under pressure on a dispersive beamline

rate of circular polarization depends on the position and on the size of the slit used for this
purpose.

Dispersive setup ODE is a dispersive beamline, it means that polychromatic X-rays are
used which allows for the instant recording of the whole spectra. The principle is illustrated in
Fig. 4.5. The X-rays provided by the source are focused by a bent monochromator so that all
the di�racted beam converges to the same point (focal point, where the sample is positioned).
This crystal is called polychromator because as the incident angle varies along the crystal, the
di�racted wavelength also varies. This causes a spatial separation of the wavelength (hence the
designation dispersive) and all the di�racted X-rays converge to the sample but with di�erent
angles depending on their energy.

Fig. 4.5: Principle of the energy dispersive EXAFS setup. The sample is positioned between the
polychromator and the detector (red circle). Picture is taken from [Diamond, site].

The spatial separation of the energies after the light is transmitted through the sample
permits to measure simultaneously the transmitted intensity I for all energies using a CCD
detector that is position sensitive. The reference intensity I0 is measured in the absence of
sample and the absorption spectrum is:

XAS(pixel number) ∝ − log
I(pixel number)

I0(pixel number)
.

To calibrate the link between the pixel number and the energy of the X-rays the spectrum
XAS(pixel number) of a metal foil or another reference sample is measured at the beginning of
each experiment. Then this spectrum is �tted with tabulated data.

In addition to the elements depicted in Fig. 4.5, there is also a bent mirror before the
polychromator and another plane mirror between the sample and the CCD for vertical focal-
ization and harmonic rejections respectively. To set-up the beamline to the energy edge of a
speci�c element, the whole bench of experiment (that carries the sample and the detector) is
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4.2. Experimental method: XMCD under pressure on a dispersive beamline

rotated to be placed in the approximate angle corresponding to the chosen edge. After that,
�ne adjustments of the mirror and polychromator curvatures are required.

On ODE beamline, after a precise setting up of the beamline, the size of the focal spot is
approximately 35 µm in diameter (full width at half maximum). As there are no mechanical
movements of the polychromator, the position of the focal point is very stable in time so that
very small samples (70 µm) can be studied. This is particularly interesting for high-pressure
measurements because the smaller samples, the higher the pressure that can be reached.

Another advantage of the dispersive set-up is that the acquisition time of a XAS is very
short, which o�ers perspective to study fast processes over time. Such time resolved experiments
(with a few dozen µs resolution) are possible on ODE beamline.

Magnetic �eld and XMCD experiments The polarization of the light cannot be
changed from right- to left-circularly polarized during the experiment: it would require a com-
plete set up of the beamline each time it is done. For this reason, the applied magnetic �eld is
�ipped instead.

The magnetic �eld is generated by a big electromagnet (weighing several 100 kilograms) and
can reach 2.1 T with a small air gap. When the sample is in the cryostat the air gap cannot
be smaller than 46 mm and the maximum magnetic �eld is 1.3 T. The direction of the �eld is
�ipped by changing the sense of the current in the coils.

XAS spectra are alternatively measured with a magnetic �eld applied in one direction or
the other:

magnetic �eld direction + - + - ... +
spectrum I+

0 I−1 I+
1 I−2 ... I+

N

The aim of the iteration 0 is to cancel the possible linear derivation ε due to beam variations :

log
I+
0

I−1
= XMCD + ε ⇒ 1

2
log

I+
0 I

+
1

(I−1 )2 = XMCD
log

I−1
I+
1

= −XMCD + ε

After N iterations, the saved XMCD is:

XMCDN =
1

2N
log

I+
0 (I+

1 )2...(I+
N−1)2I+

N

(I−1 )2...(I−N)2

It has become less useful in SOLEIL (compared to previous generation synchrotron facilities)
because the beam does not drift.

Low temperature A cryostat designed to receive diamond anvil cells is available on ODE
beamline. The sample is cooled thanks to a �ow of Helium and the temperature is controlled
by a heater. Temperatures down to 5K are accessible.

4.2.3 Data analysis

One drawback of performing experiments with a dispersive set-up is that the data processing
can be complicated by the fact that the baseline of the data is not necessarily �at.
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4.2. Experimental method: XMCD under pressure on a dispersive beamline

The required steps for data analysis are however the same as for any XAS and XMCD experi-
ments:

• set the pre-edge of the XAS spectrum to zero (substract the pre-edge baseline)
• �atten the post-edge region of the XAS
• normalize the XAS so that the edge jump far from the edge is equal to 1
• multiply the XMCD signal by the same factor to obtain the normalized XMCD.

A software called Athena [Ravel and Newville, 2005] is available that facilitates the analysis
of XAS spectra. The pre-edge baseline is treated as a straight line (see Fig. 4.6 top right). The
order of the polynomial used to describe the post-edge baseline can be chosen between 1 and
3. Athena includes a �attening algorithm that aims at pushing the oscillation of the post-edge
part along the y = 1 line.

Fig. 4.6 illustrates the processing of a XAS spectrum of which the post-edge baseline
is not �at. Two methods are compared. The �rst method ("Manual processing") consists
in determining the baseline by visual evaluation and substrating it with a data processing
software (here, OriginPro was used). A comparison with a similar spectrum that serves as
reference can be useful to set the baseline. The second method relies on Athena algorithm.
The main advantage of this second method is its reproducibility associated to its automatic
nature. However, it does not exempt from visually inspecting the spectrum as the algorithm
might, in some situations, lead to inconsistent baselines.

The processing of XMCD spectra acquired on dispersive beamlines also requires to subtract
the baseline. A software that would allow an automatic subtraction of the baseline for XMCD
is currently being developped by Karine Provost at ICMPE. The great di�culty of the task is
linked to the fact that the XMCD spectra can not be treated as oscillations of zero mean-value.
It prevents the use of the algorithms that were developed to treat XAS spectra. We must
therefore rely on the manual processing of the spectra. An example of such a processing is
shown Fig 4.7. Such a treatment was applied to the XMCD spectra acquired on ODE beamline
that are presented later in this chapter.

Fig. 4.7: Example of the normalization and removal of a non-straight baseline of a XMCD spectrum
(one of the spectra acquired during the experiments described section 4.4.1).
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4.3. Pressure in the calculation: Fe

4.3 Introduction of pressure in the calculation: example of

bcc-Fe

4.3.1 Lattice parameter

In the calculation, the e�ect of pressure is taken into account simply by reducing the lattice
parameters of the crystal considered in the self-consistent calculation. There are two ways of
determining the pressure for a given lattice parameter from the calculations. The �rst way
is two compute the forces in the cell; there is a keyword of the input of pw.x that allows to
do so (tprnfor). The second method consists in plotting the total energy at the end of the
self-consistent calculation E as a function of the lattice parameter a. Then, if we denote V the
volume of the cell (in the case of bcc-Fe V = a3), the pressure writes

P (V ) = −
(

dE

dV

)

S

.

The equation of states depicted in Fig. 4.8 on the left-hand side in pink was obtained by
performing scf calculations for each lattice parameter. Then, E(V ) was �tted with Murnaghan
[Murnaghan, 1944] equation of states E(V ) using the tool ev.x of Quantum ESPRESSO:

E(V ) = E0 +
B0V

B′0

[
1

B′0 − 1

(
V0

V

)B′0
+ 1

]
− B0V0

B′0 − 1
(4.1)

where V0 and E0 are the equilibrium volume and energy at zero pressure. B0 = −V0
∂P
∂V

is the
equilibrium bulk modulus and B′0 is its �rst derivative with respect to pressure. The �tted
parameters are: V0 = 22.5 Å3 (which corresponds to a0 = 2.82 Å), B0 = 180 GPa and B′0 = 7.
Then the pressure for a given lattice parameter can be computed with the formula:

P (V ) =
B0

B′0

[(
V

V0

)−B′0
− 1

]
.

The relation P (a) obtained with this method is reproduced in the right panel of Fig. 4.8
(purple line). On this same plot, the pressures obtained by force calculation (with tprnfor)
are represented as diamond scatters. We observe that these two methods give slightly di�erent
results.

The blue dots in Fig. 4.8, right correspond to the points P (a) obtained experimentally
[Mao et al., 1967, Jephcoat et al., 1986] by performing X-ray di�raction experiments in DAC.
The experimental points are �tted with Vinet exponential equation of state:1

P (V ) = 3B0

(
V

V0

)−2/3
[

1−
(
V

V0

)1/3
]

exp

[
−3

2
(B′0 − 1)

[
1−

(
V

V0

)1/3
]]

(4.2)

and the obtained parameters are: V0 = 23.6Å3 (a0 = 2.87 Å),B0 = 150 GPa,B′0 = 6.5. We
observe a 2 % underestimation of the equilibrium lattice parameter by the calculation which is

1Several forms (Murnaghan, third-order Birch-Murnaghan, Vinet...) have been proposed as universal equa-
tions of state. The choices made here of Murnaghan and Vinet E.of S. were only driven by the fact that they
are commonly used.

132



2.72 2.74 2.76 2.78 2.80 2.82 2.84 2.86 2.88

0

5

10

15

20

25

30

35

40

 

P 
(G

Pa
)

bcc

a0

P
aexp(P )

acalc(P )
aexp(P )
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Fig. 4.9: Experimental XAS (left) and XMCD (right) spectra for Fe at ambient pressure (red curve)
and 10 GPa (blue curve) from [Baudelet et al., 2005].

the circles of Fig. 4.10 are extracted [Mathon et al., 2004]. It is somewhat unfortunate because
the main variation of the calculated total magnetization occurs between 0 and 3 GPa but it is
probably linked to a problem inherent to experiments with diamond anvil cells: when a DAC
is loaded with a pressure medium, merely closing it is su�cient for the pressure applied on the
sample to be non zero. To record the spectra below 3 GPa, experiments with larger diamonds
or an other type of pressure cell should be undertaken.
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Fig. 4.10: Calculated total magnetic moment in a unit bcc Fe cell (squares) and amplitude of the
experimental XMCD for bcc-Fe (circles). The points for the amplitude of XMCD are taken from
[Mathon et al., 2004, Fig. 2] in the range in which the fraction of the bcc phase is 100% (i.e. before
the beginning of the bcc/hcp phase transition). Error bars for the calculated total magnetization are
not displayed because they are di�cult to estimate.

By the mean of calculation, larger pressures can be set by decreasing the lattice parameter
to values that are not accessible experimentally. The only limit is the point where the scf
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4.3. Pressure in the calculation: Fe

calculation can not converge because the forces in the cell are too large. At 42 GPa, the
calculated total magnetization is 94% of the total magnetization at ambient pressure (pink
squares in Fig. 4.10).

The calculated XAS and XMCD spectra at the Fe K -edge (with a 1s core hole in a supercell)
for several pressures are shown in Fig. 4.11. The consequence of the increase in pressure on
the XAS is a shift of the features above the edge toward higher energies. The same trend
is seen on the XMCD spectra. Except for P=10 GPa, the main other e�ect of pressure on
XMCD is a decrease of the amplitude of the main negative peak. The total amplitude of the
XMCD spectra at 42 GPa is 89 % of the amplitude at ambient pressure. At P=10 GPa, a small
negative peak near the edge appears that seems to correspond to a negative feature present on
the experimental spectra (Fig. 4.9- right part). The level of noise on the experimental spectra
is high and this negative peak never appeared on any other experimental spectra, so the peak
that appears in the calculations is probably a numerical artifact.
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Fig. 4.11: Calculated XMCD and XAS spectra at K-edge in bcc-Fe with di�erent lattice parameters:
2.87 Å (ambient pressure), 2.814 Å (P=10 GPa) and 2.71 Å (P=42 GPa from extrapolation of the
equation of state). The calculation has been performed in the presence of a core-hole with technical
parameters identical to the one used for Fe in the previous chapter.

4.3.3 E�ect of pressure on the density of states

Computational details The densities of states (DOS) were computed with the regular
code pw.x of Quantum ESPRESSO [Giannozzi et al., 2009] in a unit cell of bcc-Fe with the
same norm-conserving PBE pseudopotentials used for spectra calculation. The cut-o� energy
was set to Ecutoff = 180 Ry. The self-consistent calculation was performed using a Γ-centered
16×16×16 k -point grid for the unit cell that contains one atom. To compute the densities
of states a second calculation including the unoccupied bands is performed starting from the
already converged electron density. This non-self-consistent calculation was performed using
a Γ-centered 40×40×40 k -point grid. The partial density of states are obtained by projecting
wave functions onto orthogonalized atomic wave functions [Giannozzi et al., 2009]. The lattice
parameter was set to a = 2.87 Å for ambient pressure, a = 2.814 Å for P=10 GPa and
a = 2.71 Å for P=42 GPa. This last value was obtained from extrapolation of the experimental
equation of state (in reality, at P=42 GPa, bcc-Fe is not stable). Collinear spins along [001]
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4.3. Pressure in the calculation: Fe

were considered. Spin-up (↑) denotes the majority spin and spin-down (↓) the minority spin.
The zero energy is taken at the Fermi level.

Stoner criterion The simplest model of itinerant magnetism is Hubbard model within
the mean �eld approximation. The Hubbard Hamiltonian in second quantization formalism
writes:

H = −t
∑

i,δ,s=↑,↓
c†i,sci+δ,s + U

∑

i

n↑in
↓
i (4.3)

with nsi = c†i,sci,s. i labels the sites and i+ δ are the sites surrounding i, ni is the occupation of
a site. t is called the hopping integral and describes the ability of an electron to hop from one
site to another one and U describes the intra-site Coulomb interaction. The local electronic
density is ni = n↑i + n↓i and the local spin density is mi =

n↑i−n
↓
i

2
.

The Stoner criterion is a criterion for the ferromagnetic state to be stable that is to say
for an unbalance between spin-up and spin-down to be energetically favourable. As illustrated
Fig. 4.12 a, in the case where U = 0, if n↑ > n↓, it has an energetic cost because higher energy
levels are occupied. For example, if n↑ = n↓ + δn, the cost in energy ∆K =

ρ(Ef )

2
(δE)2 where

ρ(Ef ) is the total density at the Fermi level and δE = δn
ρ(Ef )

. In the case U = 0, the material
remains paramagnetic.

Fig. 4.12: Band ferromagnetism: schematic representation of the spin-up and spin-down density of
states in a) the paramagnetic case, b the ferromagnetic case.

Now, if U 6= 0, an imbalance between spin-up and spin-down induces a Coulomb gain in
the Hamiltonian of Eq.(4.3)

∆HU = U

(
n

2
+
δn

2

)(
n

2
− δn

2

)
− U n

2

n

2
= −U

(
δn

2

)2

.

The criterion for ferromagnetism to exist in a given material at T = 0K is therefore:

|∆HU | ≥ ∆K ⇒ U ≥ 2

ρ(Ef )
.

A ferromagnetic instability is therefore expected in materials with a high density of states at
Fermi level and large electron interactions. Due to the Coulomb energy, the minority-spin band
shifts upward whereas the majority-spin band shifts downward as illustrated in Fig. 4.12 b).
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Fig. 4.13: Partial densities of state of bcc-Fe with di�erent lattice parameter: 2.87 Å (ambient
pressure), 2.814 Å (P=10 GPa) and 2.71 Å (P=42 GPa from extrapolation of the equation of state).
Top half of the graphs: spin-up DOS; lower half of the graphs: the opposite of the spin-down DOS.

Density of states The partial DOS of bcc-Fe with several lattice parameters are depicted
in Fig. 4.13. The DOS of bcc-Fe is dominated by d electrons. There is a spontaneous spin split
of the bands that is associated to the existence of a spin density. When the lattice parameter is
decreased, the DOS widens which results in a decrease of the density at the Fermi level ρ(EF ).
This decrease is consistent with the decrease of the magnetic moment described in the previous
subsection according to the Stoner criterion (see below). This qualitative interpretation is to
be pursued with caution because U can a priori depend on the lattice parameters but it gives
an idea of the mechanism at work when pressure increases: due to the DOS broadening the
product Uρ(Ef ) decreases which leads to a progressive cancellation of the Curie temperature
which tends to zero when 1

2
Uρ(Ef ) = 1 [du Trémolet de Lacheisserie et al., 2005]. According

to this mechanism, the magnetic moment of all materials tends to vanish at high pressure.
In practice, as in the case of Fe, a structural transition often happens before the magnetic
moment reaches zero. In Ni no structural transition occurs and ferromagnetism has been
shown to maintain up to 200 GPa [Torchio et al., 2011], so an even higher pressure would be
required to reach the disappearance of magnetism.
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4.4. Iron hydride

4.4 Iron hydride

The study of the combination of iron and hydrogen under pressure presents a strong geo-
physical interest. Iron is the main constituent of the Earth's core but, according to seismic
models, the density of the core is several percent lower than the density of pure iron. This
density de�cit is attributed to the dissolution of light elements such as silicon, sulfur, oxygen,
hydrogen, and carbon [Birch, 1952]. Hydrogen has become one of the major candidates for the
light element in the Earth's core with the observation of its solubility in Fe under high pressure
conditions [Sakamaki et al., 2009].

The understanding of iron hydrides is also essential for studying the behaviour of hydrogen
in transition metals. Interest for this question has grown because the absorption of hydrogen
by metals or alloys is a promising solution to address the problem of storage of hydrogen. This
is crucial to allow its use as fuel [Schlapbach and Zuttel, 2001].

4.4.1 Fe under a H2 atmosphere: experiment

A tiny foil of Fe was loaded in a diamond anvil cell with hydrogen (H2) as a pressure
medium.2 The XAS and XMCD spectra at the Fe K -edge were measured simultaneously for
several pressures from 2.7 GPa to 28 GPa and back to 2.9 GPa. Pressure was measured using
the �uorescence line of a ruby.

Evolution of the spectrum up to 4 GPa Fig. 4.14 shows the measured absorption
spectra up to 4 GPa. The low pressure spectrum corresponds to the XAS of bcc-Fe. We observe
a drastic change of the spectrum around 3 GPa. The spectra for P > 3 GPa are completely
di�erent from the spectra for P < 3 GPa at high energy (above 7.14 keV i.e. 30 eV above the
edge) and also near the edge. The main changes near the edge are a decrease of shoulders at
7115 eV and 7125 eV (a and b in Fig.4.14) and a shift to lower energy (≈ 1eV) of the maximum
at 7131 eV accompanied by an enhancement of this maximum (c in Fig.4.14).
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Fig. 4.14: Experimental XAS spectra
at the Fe K -edge for Fe under H2 atmo-
sphere of increasing pressure up to 4 GPa.

The measured XMCD (Fig. 4.15) also exhibits a transition around 3GPa with more gradual
changes than the XAS. The main positive peak (α in Fig. 4.15) decreases in amplitude. The
amplitude of the main negative peak (β in Fig. 4.15), on the other hand, increases and it
becomes sharper. Peak β is also clearly shifted to lower energies (from 7118.5 eV at 2.7 GPa to
7116 eV at 4 GPa) while the energy position of peak α barely varies (from 7113 eV to 7112.5 eV).

2When H2 is compressed, it remains �uid only up to P=5.7 GPa, yet hydrostaticity is preserved up to 177
GPa [Miletich et al., 2000, Table 1]
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Fig. 4.15: Experimental XMCD spec-
tra at the Fe K -edge for Fe under H2 at-
mosphere of increasing pressure up to 4
GPa. Note that the energy range is not
the same as on Fig. 4.14 in order for the
region of interest to be more visible (the
experimental spectra were not corrected
for the circular polarization rate of the
light Pc < 1).

The pressure at which the changes are observed corresponds to the pressure of a transition re-
ported in the literature from bcc-Fe to iron hydride FeHx [Badding et al., 1991, Choe et al., 1991]:
hydrogen can be absorbed into the iron lattice by application of a 3.5 GPa pressure in a H2

environment. In the experiment presented here, the H2 �uid is, therefore, a source of hydrogen
in addition to be a pressure-transmitting medium. The fraction of H atoms in the obtained
hydride was estimated by outgassing to be x ≈ 1 [Schneider et al., 1991]. Magnetometry on
samples of FeHx obtained by hydrogenation of Fe at high temperature (T=523 K) and high
H2 pressure (P=6.7 GPa) quenched to 95 K showed that, as bcc-Fe, it is a ferromagnet with a
magnetic moment of approximately 2.2 µB per Fe atom [Antonov et al., 1981].3

Evolution of the spectra in the range 4 GPa - 28 GPa After the transition was
achieved, the pressure on the sample was further increased in order to study the e�ect of
pressure on iron hydride. Above 4 GPa, the only change on the XAS spectra is a progressive
shift of the features to higher energies as the sample is compressed (see Fig. 4.16). The spectra
at 28 GPa is di�erent: the shoulders a and b are enhanced and the maximum c is reduced. In
the literature, no change of the H content nor of the structure of the iron hydride was observed
by XRD with compression up to 136 GPa [Pépin et al., 2014] of Fe under H2 atmosphere.

The main e�ect of pressure on the XMCD spectrum is a slight decrease in amplitude (see
Fig. 4.16). The maximum of the e�ect is also progressively shifted to higher energies. XMCD
vanishes between 23 and 28 GPa, which is consistent with the observation made by Mössbauer
spectroscopy [Mitsui and Hi, 2010] and previous XMCD experiments [Ishimatsu et al., 2012]
that magnetic ordering vanishes at pressures higher than approximately 27 GPa.

Reversibility of the transition When the pressure is decreased, the spectra corre-
sponding to bcc-Fe are recovered between 4 and 2.5 GPa. In other words, the pressure-induced
transition that has been observed is reversible and the transition pressure is approximately the
same in both ways (when the pressure is decreased as when the pressure is increased).

3Note that the stoichiometry of the quenched samples in the study [Antonov et al., 1981] - x ≈ 0.8 - is
di�erent from the stoichiometry evaluated for the sample under pressure probably due to hydrogen losses
during manipulations.
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4.4. Iron hydride

positioned in the octahedral sites. Their displacement with respect to to the center of the site
is represented by arrows in Fig. 4.17. The lattice parameters, atomic coordinates and bond
length of dhcp-FeH at low pressure (3 GPa) are summarized in Table 4.1.

Table 4.1: dhcp-FeH lattice parameters and atomic positions. The position of the hydrogen atoms
is given in three cases: exactly at the center of the octahedral site ("Oct. site"), at the position
determined experimentally in FeD samples ("Exp. [Antonov et al., 1998]") and at the position obtained
from structural relaxation ("Calc.", see section 4.4.5). The corresponding Fe-H bond length is given
in these three cases.

dhcp-FeH P63/mmc, 3 GPa

Lattice parameters [Badding et al., 1991]
a (Å) 2.68
c (Å) 8.76
Volume (Å3) 54.50

Atomic coordinates
x y z

Fe (2a) 0 0 0
Fe (2c) 1/3 2/3 1/4

Oct. site Exp.[Antonov et al., 1998] Calc.
H 1/3 2/3 0.875 0.882 0.880

Bond length (Å)
Oct. site Exp. Calc.

Fe(2a)-H 1.89 1.86 1.87
Fe(2c)-H 1.89 1.93 1.92

The volume of the cell as a function of pressure was determined experimentally in 1991
[Badding et al., 1991] and �tted with the Vinet equation of state (Eq.4.2 p.132). The obtained
parameters were: V0 = 55.6 Å3, B0 = 121 GPa and B′0 = 5.31. This relationship is plotted in
Fig. 4.18 in comparison with the equation of state of bcc-Fe. The volume expansion due to the
internalization of the H atoms is clearly visible on this �gure. It amounts to 17% of the initial
volume of iron.
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Fig. 4.18: Relation between volume and pressure
for dhcp-FeH (black curve) determined from the �t
of experimental point [Badding et al., 1991]. For
comparison the volume of bcc-Fe (see Fig. 4.8) was
reproduced multiplied by two because the num-
ber of Fe atoms in the bcc cell is two while it
is four in the dhcp cell. Inset: Lattice parame-
ter a as a function of pressure in dhcp-FeH de-
termined from the experimental equation of state
[Badding et al., 1991] by setting the ratio c/a to
2× 1.637 [Antonov et al., 1998].
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From the equation of state of [Badding et al., 1991] and by setting the ratio c/a to 2×1.637
[Antonov et al., 1998], we obtain the lattice parameter a as a function of the pressure (the
volume of the dhcp cell V =

√
3a2c
2

) which is plotted in inset in Fig. 4.18.

4.4.3 FeH: Calculated XAS and XMCD spectra

Computational details

For the calculation, the experimental lattice parameters listed in Table 4.1 were used. The
H atoms were positioned exactly at the center of the octahedral sites (see Section 4.4.5 for a
discussion on this approximation).

A 1s static core hole was included in the pseudopotential for the absorbing Fe atom. A
3×3×1 supercell was built (72 atoms in the supercell among which 36 Fe atoms) so that the
distance between periodically repeated core-holes was 8.0 Å. PBE norm-conserving pseudopo-
tentials (parameters detailed in Appendix E) were used with a cuto� energy of 180 Ry. A
Methfessel-Paxton smearing of 0.14 eV (0.01 Ry) and a Γ-centered 4×4×4 k -point grid were
used for the self-consistent charge density calculation. A 9×9×9 k -point grid was used for
spectra calculations. The spectra for the absorbing atom in site (2a) and (2c) were calculated.

Calculations were performed with collinear spins along the axis [001] (z in Fig. 4.17) within
the diagonal spin-orbit coupling approximation (see p. 54). The wavevector k was also set along
the axis z.

The spectra were convolved with the same Lorentzian broadening function that was used
for metal Fe (depicted in Fig. 3.4). No additional Gaussian broadening was added to account
for the experimental resolution. The calculated spectra were normalized such that the edge
jump in absorption is equal to 1.

Results

The self-consistent calculation converges to a ferromagnetic structure with a total magneti-
zation of 80 µB per supercell, i.e. 2.2 µB per Fe atom, which is consistent with the magnetom-
etry experiments [Antonov et al., 1981].

In Fig 4.19, the calculated XAS and XMCD spectra in FeH at the K -edge of Fe with the
absorbing atom either on site (2a) or on site (2c) are depicted. The spectra for the two sites
are very di�erent. In particular the XMCD signal is mainly composed of two negative peaks for
site (2a) and of a positive peak followed by a negative peak for the site (2c) . On the right side
of Fig 4.19, the contributions to XMCD of the terms listed in Section 2.2 are plotted. In both
cases, the electric dipole-electric dipole term (D-D) dominates and the electric quadrupole-
electric quadrupole term (Q-Q) is negligible. The electric dipole-spin position term (D-SP) is
signi�cant though way smaller than the D-D term. In XAS, as for the metals presented in the
previous chapter, only the D-D term is signi�cant. The total spectrum to be compared with
experiment is the average of the spectra for each site (average of the two curves of Fig. 4.19
corresponding of each site ).

Con�rmation of the observed transition

In the right panel of Fig. 4.20, the calculated XAS and XMCD spectra at the Fe K -edge
in dhcp-FeH is plotted along with the spectra obtained for bcc-Fe in the previous chapter.
Experimental XAS and XMCD spectra chosen before and after the observed pressure-induced
transition are depicted on the left part of this �gure.
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Fig. 4.19: Left: Calculated contributions of the two crystallographic sites to the XAS and XMCD
spectra at the K -edge of Fe in dhcp-FeH (sum of the three contributions D-D, Q-Q and D-SP with the
absorbing atom in one site or the other). Right: Detail of the contribution of each term of the cross
section (listed in Section 2.2) to the XMCD of each site.
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Fig. 4.20: Left: Experimental XAS and XMCD spectra at the Fe K -edge of a Fe foil under H2

atmosphere before (blue) and after (green) the observed pressure induced transition. Right: Calculated
XAS and XMCD spectra at the Fe K -edge in bcc-Fe (blue) and dhcp-FeH (green). The experimental
XMCD spectra were not corrected for the circular polarization rate of the light which only partially
explain the di�erence of amplitude between calculation and experiment (see the discussion on the
amplitude Sec. 3.2.3).
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4.4. Iron hydride

The experimental spectra before and after the transition are very similar respectively to the
spectra for bcc-Fe and for dhcp-FeH. The changes described in Section 4.4.1 are also all present
when comparing the calculated spectra for Fe and FeH. We can therefore safely assert, that
during the experiment, hydrogen went into the Fe lattice and a double hexagonal iron hydride
formed. Consequently, the further increase of pressure was, as intended, a way of studying the
compression of dhcp-FeH.

We see that the absorption of H atoms into the Fe lattice has a big impact on the XMCD
spectra. It is very much likely because of the new structure that it permits to stabilize. In
other words, it is possible that a dhcp Fe crystal with Fe atoms positioned as they are in the
dhcp-FeH structure would yield the same XMCD. Such a structure is not stable so that it is
di�cult to achieve convergence of the self-consistent charge calculation that would allow to test
this hypothesis.

It is striking that despite the similarity of the magnetic moment of Fe and FeH, their XMCD
spectra are very di�erent. It illustrates the fact that the link between XMCD at K -edge and
magnetic moment is not straightforward.

Table 4.2: Comparison of the integral of the experimental XMCD spectrum for bcc-Fe and dhcp-
FeH in the range 7105 eV - 7145eV. These integrals are very di�erent despite the fact that the total
magnetization in the cell divided by the number of Fe atoms is the same.

total magnetization per Fe atom Integral of the exp. XMCD spectrum
dhcp-FeH 2.2 µB -6.6 ×10−3

bcc-Fe 2.2 µB -6.5 ×10−4

4.4.4 E�ect of the core-hole
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Fig. 4.21: Comparison of the calculated XAS and
XMCD spectra obtained in the presence of a 1s
core hole (solid line) and of the spectra obtained
without core-hole (dashed line) at the Fe K -edge in
dhcp-FeH. The experimental spectra are plotted in
light gray, for XMCD it is multiplied by 3 (see the
discussion on the amplitude Sec. 3.2.3, the experi-
mental spectrum was not corrected for the circular
polarization rate of the light).
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4.4. Iron hydride

To study the e�ect of the core hole on the calculated spectra, we computed the spectra
without core hole in the simple 8 atom cell with a Γ-centered 12×12×4 k -point grid for the scf
calculation and a 20×20×7 grid for the spectra calculation.

The presence of the core hole in the calculation does not a�ect the calculated absolute and
total magnetization at the end of the scf loop. However, as illustrated in Fig. 4.21, both the
XAS and XMCD spectra are impacted. The energy positions and the sign of the features of
the spectra are the same with and without core hole but there relative intensities are di�erent.

Calculations without core-hole were used for the studies presented below because they re-
quire far less computer resources. The spectra are not intended to be compared with experi-
mental spectra and the absence of core hole does not prevent to discuss variations of the spectra
with respect to parameters of interest.

4.4.5 E�ect of the position of the H atoms

As mentioned above, due to the low X-ray scattering power of H, it is not possible to
determine the exact position of the H atoms by XRD. For a matter of simplicity, calculations
presented in Fig. 4.20 and Fig. 4.19 were performed with the H atoms positioned exactly at
the center of the octahedral sites. Yet, neutron powder di�raction experiments performed on
quenched FeD samples showed that the D atoms were positioned slightly o� the site centers
(their vertical displacement are illustrated by arrows on Fig. 4.17 p. 140). We see below that
the impact of this vertical displacement on XAS and XMCD spectra is tiny. The main interest
for numerically moving the H atoms is to better understand the magnetic structure of FeH.

Relaxation of the position of H

As the vertical position of the atoms H was only measured in quenched FeD samples, we
decided to perform an atomic relaxation in order to determine numerically this position for
each pressure.
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Fig. 4.22: Vertical position of the H atom in dhcp-FeH obtained by structural relaxation of the atomic
positions with the code pw of Quantum ESPRESSO.
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4.4. Iron hydride

The principle of this relaxation is simply to allow for the atoms to move in the cell without
changing the lattice parameter and to look for the lowest energy structure obtained at the end
of a self consistent calculation. The choice of keeping the lattice parameters �xed was driven
by the need to model FeH under high pressure. As explained in Section 4.3, the experimental
volume is used to model a given pressure.

In practice, the relaxation of the atomic positions was performed by setting relax as type
of calculation in input of the code pw.x of Quantum ESPRESSO. As a starting point, the
H atoms were positioned at the center of the octahedral sites in a simple dhcp cell (8 atoms)
using a 10×10×10 k -point grid. PBE norm-conserving pseudopotentials with a cuto� energy
of 180 Ry (parameters detailed in Appendix E) were used. The calculations were spin po-
larized with spins along the axis [001]. Damped dynamics was used for structural relaxation
[Giannozzi et al., 2009].

The relative position of the atom H for several lattice parameters, i.e. for several pressures,
is presented in Fig. 4.22. The reduced coordinate is always in the interval 0.880 ± 0.015.
The result of the relaxation is, therefore, very close to the experimental value that was 0.882
[Antonov et al., 1998].

E�ect on the XAS and XMCD spectra

We performed calculations of the XAS and XMCD spectra without core-hole with the H
atom either in the center of the octahedral site or in the relaxed position (positions denominated
Oct. site and Calc. in Table 4.1). The lattice parameters were set to a=2.68Å and c/a=2 ×
1.637, which corresponds experimentally to a pressure of 3 GPa.

PBE norm-conserving pseudopotentials (parameters detailed in Appendix E) were used with
cuto� energies 160 Ry. The calculations were spin polarized with spins along the axis [001]. A
Methfessel-Paxton smearing of 0.14 eV (0.01 Ry) and a Γ-centered 12×12×4 k -point grid were
used for the self-consistent charge density calculation. A 20×20×7 grid was used for spectra
calculations and a constant Lorentzian broadening, with full width at half maximum set to 1.6
eV was applied. The wavevector k was set along the axis [001].

The XMCD spectra obtained for both positions of H atoms are plotted in Fig. 4.23. The
top line of this �gure shows the electric dipole-electric dipole (D-D) contribution and the bot-
tom line the electric dipole-spin-position (D-SP) contribution. The electric quadrupole-electric
quadrupole term, the contribution of which to XMCD is negligible, has not been studied here.
Note that the scale used to display the di�erent terms is not the same and the D-SP term is
notably smaller than the D-D term.

Visually, the spectra seem almost una�ected by the vertical displacement of the H atoms:
it is very di�cult to distinguish the dashed lines from the solid lines. Yet, if one computes the
integrals of the spectra (shown in the right in Fig. 4.23), an interesting trend emerges. The
integrals of the D-SP spectra are almost exactly equal for both Fe sites when the H atoms are
positioned in the center of the octahedral site whereas the integrals of the D-D spectra are
di�erent for both sites. For both terms, the absolute value of the integral of the contributions
due to the site (2a) decreases when H is moved vertically and for the contributions due to the
site (2c), it increases. In the previous chapter (Section 3.4), we demonstrated that the D-SP
spectra is related to the partial spin magnetization of the occupied p states Sz1,−1

l=1 and that the
corresponding sum-rule is reliable. We can therefore deduce that the spin magnetization of the
p states is the same for both Fe atoms when the H atoms are positioned at the center of the
octahedral site but it is di�erent when, as observed experimentally, they are vertically shifted.
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Fig. 4.23: Left: Contribution to the XMCD due to the D-D term (top) and to the D-SP term (bottom)
of the cross section to the total calculated XMCD of dhcp-FeH with either the H atoms in the center of
the octahedral site (solid lines) or in the position obtained by atomic relaxation (dashed lines). Right:
Integral of this spectra plotted as a function of the z reduced coordinate of the H atom. The integral
of the D-D term has been multiplied by -1 in order to have it positive.

The sign of the integral of the D-D term is opposite to the one of the D-SP term. This is
consistent with Hund's rules that implies that for an orbital that is less than half-�lled (that is
the case of the 4p shell), the spin and orbital angular momentum are anti parallel.

The trend (increasing/decreasing of the absolute value) is the same for the D-D term as
for the D-SP term which suggests that the sum-rule for the D-D term could be reliable for
qualitative interpretation of small variations of the spectra.

Projected density of states and magnetic moment per site

The magnetic moment of FeH is mainly due to the d electrons of Fe.4 The magnetic moment
carried by the d electrons can be obtained from the d -projected densities of states (DOS) that
are plotted on the left side of Fig. 4.24. These DOS present the expected spin split associated
to ferromagnetism.

The curves corresponding to the two di�erent positions for the hydrogen atoms are visually
almost indistinguishable. The d -projected spin polarization 2Sdz (right side of Fig. 4.24) is
obtained by computing the di�erence of the DOS for spin up with the DOS for spin down and
integrating over unoccupied states from -10 eV to the Fermi level.

The magnetic moment associated to this projected spin momentum is given by −gSdzµB
where g is the gyromagnetic factor. As g ≈ 2 for the electron, the absolute value of the
magnetic moment per atom due to the d electrons can be read directly on the right pannel of

4By integration of the projected DOS, we evaluated the magnetic moment per atom due to the Fe p states
to -0.05 µB , that due to the Fe s states to -0.002 µB and that due to H s states to -0.03 µB . We do not have
an evaluation of the orbital magnetic moment.
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Fig. 4.24: E�ect of the position of H on the d projected density of states. Left: Projected d DOS
with the H atoms either in the center of the octahedral site (solid lines) or in the position obtained by
atomic relaxation (dashed lines) for both sites. The upper part of each plot corresponds to the DOS
for spin up (majority spins) and the lower part to the DOS for spin down (minority spins). Right:
d -projected spin polarization per Fe atom.

Fig. 4.24. We see that the position of the hydrogen atoms impacts the division of the magnetic
moment between the two sites without changing its total value. The magnetic moment of the
Fe atoms closer to the H interlayers is smaller while the magnetic moment of the Fe atoms
further to the H interlayer is larger.

4.4.6 Magnetic structure of FeH

Using the tool pp.x of Quantum ESPRESSO, it is possible to extract the electron density
from the output of the scf calculation and to plot it. We used this tool and the software
XCrySDen [Kokalj, 2003] to plot the spin density depicted in Fig. 4.25.

We see that, unsurprisingly, most of the spin density is located on the Fe atoms: the region
between the Fe atoms seems uniformly orange on the plane in the left side of Fig. 4.25. With
a more appropriate scale is used (right side of Fig. 4.25), we see that the H atoms carry a
negative spin polarization. It explains why the magnetic moment of the Fe atoms closer to the
H interlayers is smaller.

It also sheds light on the reason why the magnetic moment per Fe atom in dhcp-FeH is
the same as in bcc-Fe despite the fact that the Fe atoms are more distant one from each
other in dhcp-FeH (2.68 Å whereas they are distant of 2.486 Å in bcc-Fe). This di�erence in
distance suggests that the magnetic moment could be larger in dhcp-FeH (the magnetic moment
decreases under pressure). From Fig. 4.25, we understand that the spin-density around the Fe
atoms is, indeed, larger than in bcc-Fe but it is compensated by a negative moment on the H
atoms which leads to the same total magnetic moment.
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4.4. Iron hydride

Fig. 4.25: Spin density (ρ↑ − ρ↓) calculated on the plane [110] which contains Fe(2a), Fe(2c) and H
atoms. Left: Plane [110] depicted in the 3D structure. The full range of the spin density (-0.015 to
0.697) is included in the color scale. The region between the Fe atoms seems uniformly orange on the
plane in the left side because most of the spin density is located on the Fe atoms. Right: Spin density
in the plane [110]. A limited range of spin density (-0.015 to 0.015) is plotted in order to have the
contributions of the H atoms to be visible.

4.4.7 Increasing pressure in the calculation

Application of pressure is a way of experimentally changing the interatomic distances.

Disappearance of ferromagnetism under pressure

Experimentally, we observe that XMCD vanishes between 23 and 28 GPa. This indicates
that ferromagnetism disappears under pressure. As the Mössbauer spectrum of FeH (that
is a sextet at 3 GPa) becomes a single line between 25 and 28 GPa (at room temperature)
[Mitsui and Hi, 2010]), we deduce that the transition occurs toward a paramagnetic state. In-
deed, Mössbauer spectroscopy probes the energy levels of the nuclei which are sensitive to its
electronic environment. Under a magnetic �eld, the nuclear levels split into (2I+1) components
and the allowed transitions (∆mI = 0, ±1) between the ground and excited levels lead to a
sextet whereas in the absence of magnetic �eld this hyper�ne spectrum collapses.

It is possible to run non magnetic self consistent �eld calculations which means that the
DFT calculations are performed without spin (the density for spin up and for spin down are
the same). The states obtained this way are usually referred to as non magnetic states. We will
use this denomination in the following because it corresponds to the way the system is treated
numerically. The proper way of modelling a paramagnetic state would require a random distri-
bution of localized magnetic moments as it is done in [Mankovsky et al., 2013] using SPR-KKR
method. This is however, to the best of our knowledge, computationally insurmountable with
plane-waves DFT codes of the kind of Quantum ESPRESSO. It is therefore very common
to describe paramagnetic states with non magnetic calculations.
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Fig. 4.26: Calculated total energy as a function of the volume of the dhcp-FeH cell. Red squares
correspond to non magnetic calculations and black circles to spin-polarized calculations that converged
into a ferromagnetic structure. Both curves are �tted with Murnaghan equation of state (Eq. (4.1)
p. 132). The �tted paramaters are V0 = 49 Å3, B0 = 263 GPa and B′0 = 3.8 for the non magnetic
state and V0 = 53 Å3, B0 = 166 GPa and B′0 = 4.4 for the ferromagnetic state.

The total energy of the non magnetic and ferromagnetic states of dhcp-FeH is plotted in
Fig. 4.26. For a volume V=40 Å3, the non magnetic state becomes more stable. This is close to
the result obtained by LMTO-ASA calculations [Elsässer et al., 1998] that showed a magnetic
transition between 75 and 80 Bohr3 (44 - 47 Å3). This volume corresponds experimentally to
the pressure P=92 GPa [Badding et al., 1991]. Using Murnagham equation of state with the
calculated parameters we can also obtain the calculated pressure (derivative of the energy with
respect to the volume): P=94 GPa. The calculations are performed at low temperature (0 K)
so it is not surprising to �nd a transition pressure larger than the one measured at room temper-
ature. The uncertainty on the calculated transition pressure is very large (several tens of GPa)
due to the fact that pressure varies quickly with volume in the range 40 - 45 Å3 (the volume
V=45 Å3 corresponds to a pressure P=40 GPa) and a small error on the lattice parameter a
results in a signi�cant error on the volume.5 For this reason, it is likely that, if experiments at
low temperature were to be performed, the calculated value would also be o� .

Calculated spectra under pressure

The XAS and XMCD spectra without core hole of the ferromagnetic state of FeH were
computed with several lattice parameters and the XAS spectra of the non magnetic state was
computed with the lattice parameter corresponding to P=40 GPa (see inset of Fig 4.18 for
the relationship between the lattice parameter a and the pressure). PBE norm-conserving
pseudopotentials (parameters detailed in Appendix E) were used with a cuto� energy 160 Ry.
Except for 40 GPa, the calculations were spin polarized with spins along the axis [001]. A
Methfessel-Paxton smearing of 0.14 eV (0.01 Ry) and a Γ-centered 12×12×4 k -point grid were
used for the self-consistent charge density calculation. A 20×20×7 grid was used for spectra

5For example, for a = 2.5Å with the uncertainty da=0.1Å, the uncertainty on the volume is dV=2.3Å
3
.

150



4.4. Iron hydride

- 0 . 0 0 6
- 0 . 0 0 4
- 0 . 0 0 2
0 . 0 0 0
0 . 0 0 2
0 . 0 0 4
0 . 0 0 6
0 . 0 0 8
0 . 0 1 0
0 . 0 1 2
0 . 0 1 4
0 . 0 1 6
0 . 0 1 8

7 1 1 0 7 1 2 0 7 1 3 0 7 1 4 0 7 1 5 0 7 1 6 0
0 . 0

0 . 5

1 . 0

C a l c . 2 8  G P a

2 3  G P a

1 5  G P a

1 1  G P a

 

 

No
rm

. X
MC

D x
10

00

4  G P a

�

�

 

 

No
rm

. X
AS

E n e r g y  ( e V )

 4  G P a
 1 1  G P a
 1 5  G P a
 2 3  G P a
 2 8  G P a
 4 0  G P a

a

b
c

Fig. 4.27: Calculated XAS and XMCD
spectra at the Fe K -edge in FeH at sev-
eral pressures (i.e. for several lattice pa-
rameters). All calculations except for 40
GPa were performed from the ferromag-
netic state of dhcp-FeH.

calculations and a constant Lorentzian broadening, with full width at half maximum set to
1.6 eV was applied. The wavevector k was set along the axis [001].

By comparison with Fig 4.16 p. 140, we see that our calculations reproduce very well the
e�ect of pressure on the spectra. The e�ect of pressure on the XAS spectra of ferromagnetic
FeH is to push the peaks at higher energies as the distances are reduced. The amplitude of
XMCD decreases slowly without change of its shape. The similarity between the calculated
XAS spectra for the non magnetic state (in purple in Fig. 4.27) and the XAS spectra at 28 GPa
(in red in Fig. 4.16) that corresponds to the pressure when XMCD vanishes is also striking: the
shoulders a and b are enhanced while the maximum c decreases in amplitude. We can therefore
deduce that the evolution of the shape of the experimental XAS spectra at 28 GPa is a marker
of the transition from ferromagnetic FeH to paramagnetic FeH that is not accompanied by any
structural transition. We see that spectra calculations can also be a useful tool to determine if
changes observed on spectra under pressure are accompanied by a structural transition. This
not obvious when, as in the case presented here, pressure induces not only the expected stretch
of the energies due to distances contraction, but also a variation of the intensities of the peaks.

4.4.8 Conclusion

In this study, calculations helped identifying two transitions that occurred when Fe was
compressed under H2 atmosphere.

The �rst transition corresponds to the absorption of H atoms into the bcc-Fe lattice which
leads to the creation of dhcp-FeH. The calculated spectra for bcc-Fe and dhcp-FeH are in good
agreement with experimental ones. The example of Fe and FeH is perfect to illustrate that a
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4.5. Chromium Dioxide

quick interpretation of XMCD at K -edge saying that the integral of the spectra is proportional
to the magnetic moment is not valid. Here, the magnetic moment in the cell divided by the
number of Fe atoms is the same in bcc-Fe and dhcp-FeH but the integral of the XMCD spectra
at the K -edge of Fe is completely di�erent. The fact that the XAS and XMCD spectra are well
reproduced by the calculations means that the materials under study are well simulated by our
numerical method which allowed to draw conclusions on the magnetic structure of FeH based
on the output of the calculations.

The second transition is a purely magnetic transition from a ferromagnetic state to para-
magnetic state. The existence of this pressure-induced transition, that was inferred from the
observation of the XMCD spectra, was con�rmed by the calculation. The pressure of transi-
tion can, however, not be determined accurately from the calculation because of the enormous
uncertainty on the obtained pressure.

From a methodological point of view, this study is an example of the possibilities that our
method opens as soon as the spectra are well reproduced which ensures that the material is
correctly simulated.

4.5 Chromium Dioxide

The time of glory of chromium dioxide seemed over with the gradual decline of the magnetic
recording cassette tapes in which it had been used along with Fe2O3. Yet, it has been attracting
a renewed interest in recent years. It is a particularly interesting transition metal oxide because
it belongs to the class of half-metallic ferromagnets: the Fermi level crosses a metallic band
for one spin channel while it lies in a gap for the other spin channel. This property makes it a
good candidate for spintronic applications (for example as a source of spin polarized electrons)
especially because it has a rutile structure like several other MO2 oxides, where M is a transition
metal (e.g. Ti, Mo, Ru). These oxides have various properties (e.g. TiO2 is a diamagnetic
semiconductor and RuO2 is a paramagnetic metal [Rao and Gopalakrishnan, 1997, Table 6.4])
so their combination in layered devices is promising.

4.5.1 Electronic properties of CrO2

The interest for the electronic and magnetic properties of CrO2 from a fundamental point
of view is strong. Despite a large number of studies, it is clearly stated in the review by
Katsnelson et al. [Katsnelson et al., 2008], that the intrinsic correlated electronic structure
that induces both ferromagnetism and metallicity remains to be understood. Yet, interesting
lines of explanation can be found in the literature.

Lattice

CrO2 crystallizes in the tetragonal P42/mnm (136) space group [Thamer et al., 1957]. It
has a rutile structure, that is represented in Fig. 4.28. The Cr4+ ions form a body-center
tetragonal lattice and are surrounded by octahedra of oxygen atoms. The structure can be
viewed as ribbons along c-axis of edge sharing octahedra joined together by corners (each
oxygen is shared by three octahedra). The orientation of the octahedra in adjacent ribbons
di�ers by a 90◦rotation about the c-axis.

In CrO2, the octahedra are axially compressed: the Cr-O length in the apical direction is
1.89 Å whereas in the equatorial directions it is 1.91 Å. Moreover, the arrangement of the
four O is rectangular (instead of square in a perfect octahedra) so that when we de�ne the local
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Fig. 4.28: Left: CrO2 structure (Figure from [Yamasaki et al., 2006]). We de�ne the local coordinate
systems with z1,2 pointing exactly to an O atom and x1,2 almost pointing to an O atom. Right: the
unit cell in the local coordinates of the octahedron around Cr1.

coordinates in the octahedra, x and y can not both point toward a ligand (see Fig 4.28, right).
The lattice parameters of CrO2 are listed in Table 4.3.

Table 4.3: CrO2 lattice parameters and atomic positions. As u < 0.304, the CrO6 octahedra are
axially compressed.

CrO2 P42/mnm

Lattice parameters [P.Porta et al., 1972]
a (Å) 4.42
c (Å) 2.92
Volume (Å3) 56.9

Atomic coordinates
x y z

Cr (2a) 0 0 0
O(4f ) u u 0 where u=0.303 [P.Porta et al., 1972]

Bond length (Å)
Cr-O apical 1.89 (two bonds)
Cr-O equatorial 1.91 (four bonds)

Simpli�ed crystal �eld picture

The half metallic behaviour of CrO2 can be understood in simpli�ed terms using the crystal-
�eld model [Katsnelson et al., 2008]. In an octahedron, the d-orbitals are split into two sets of
levels: the t2g orbitals and the eg orbitals. In CrO2, the minority spin states are at signi�cant
higher energy compared to the majority spin states (see diagram Fig. 4.29). In Cr4+, the t2g of
up spins are 2/3 �lled. For spins down, on the other hand, the Fermi level lies in a band gap
between the occupied O p and the unoccupied Cr d states so that CrO2 is a half metal.

Yet, generally, two 3d electrons in the t2g orbitals would make a Mott insulator with S=1
local moments and antiferromagnetic ordering but this seems to be about as far from the actual
observed properties as one can get [Korotin et al., 1998].
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Fig. 4.29: Simpli�ed diagram representing the
energies of the orbitals of the ion Cr4+ in ferro-
magnetic CrO2. The t2g - eg splitting is due to the
ligand in octahedral symmetry. In a ferromagnetic
material, the minority spin states are at higher en-
ergy compared to the majority spin states. The
convention chosen here is that up spins are major-
ity spins.

Partial densities of states

To better understand the electronic properties of CrO2, the projected densities of states in
CrO2 shown in Fig. 4.30 can be useful.

These DOS illustrate the half-metallic property CrO2: the Fermi level intersects the majority
spin bands (spin up in Fig. 4.30) and it is in a gap of the minority spin states. It results in
a complete spin polarization at the Fermi level which is consistent with observations made by
Andreev spectroscopy [Soulen et al., 1998]. The total spin moment is precisely equal to 2.0 µB
per Cr atom due to this gap.

The Cr d density of states (third panel) is consistent with the simpli�ed crystal-�eld picture
of Fig. 4.29. Due to the distortions of the CrO6 octahedra, this crystal-�eld description is
however more complicated than depicted in Fig. 4.29. As was pointed out by Korotin et
al. [Korotin et al., 1998], the t2g orbital is split because of the compression of the octahedra
between the dxy orbital at lower energy and the dzx and dzy orbitals at higher energy. We see
at the bottom of Fig. 4.30, that the dxy orbital is localized in energy. We deduce that it is not
part of the continuum which means that it is also localized in real space contrary to the dzx
and dzy orbitals which are more itinerant. The latter strongly hybridize with O p states.

Double exchange mechanism

Ferromagnetism in CrO2 has been attributed to a speci�c double exchange mechanism
between Cr atoms in which the splitting of the t2g orbital plays a crucial role [Schlottmann, 2003,
Schlottmann, 2004, Korotin et al., 1998].

All Cr atoms in the structure have the same oxidation state so ferromagnetism can not be
described exactly within Zener double exchange model but it has been explained in the same
terms. According to this model, one electron on each site occupies the localized dxy orbital
(which is lower in energy than dyz and dzx due to the compression of the octahedra) and the
other electron is able to hop from one site to the other (t term in the Hubbard model). Hund's
rule couples the spins of the localized electrons with the spin of the itinerant electrons so that
the hopping depends on the relative z projections of the spins. The presence of the hopping
electrons lower the total energy of the system so that, in the ground state, the system favours
ferromagnetic coupling. Note that the hopping between the Cr atoms is mediated by the O
p-states and is not direct. It has been shown that, if the three orbitals were itinerant, an
antiferromagnetic coupling would be favoured [Schlottmann, 2004] which led to the conclusion
that the distortion of the octahedra is crucial to explain ferromagnetism.
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Fig. 4.30: Projected Cr p, O p and Cr d density of states of CrO2 for both spins and t2g density
of states near the Fermi level. The z direction is the apical direction of the CrO6 octahedron.PBE
norm-conserving pseudopotentials (parameters detailed in Appendix E) were used with a cuto� energy
180 Ry. The calculations were spin polarized with spins along the axis [001]. A Methfessel-Paxton
smearing of 0.14 eV (0.01 Ry) and a Γ-centered 6× 6× 9 k-point grid was used for the self consistent
calculation in the conventional cell that contains two Cr and one O. The non-self-consistent part of
the calculation was performed with a 12× 12× 18 k -point grid.

Yet, the double exchange model proposed by P. Schlottmann requires high Coulomb inter-
action and, therefore corresponds to an insulator (Mott-Hubard limit) [Schlottmann, 2004]. As
he himself states, the fact that the ligands are not included in the model Hamiltonians that P.
Schlottmann considered is likely the origin of this problem. Yet, it indicates that the success
of the proposed exchange mechanism is questionable.

In this context, a study of the e�ect of pressure on magnetism in CrO2 could be very
interesting to get new insight on the possible exchange between Cr atoms. Indeed, applica-
tion of pressure changes the local environment of CrO2 [Maddox et al., 2006] which is of great
importance in the proposed mechanism.

Correlations e�ect in CrO2

No Hubbard U term [Cococcioni and de Gironcoli, 2005] was included in the DOS calcu-
lation presented above. The importance of the on-site Coulomb repulsion in CrO2 is still a
subject of active research. Mazin et al. [Mazin et al., 1999] showed that LDA calculations of
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optical conductivity in CrO2 are su�cient to interpret the experimental data and deduced that
there is no experimental smoking gun in regard to strong correlations related exotic phenomena
in CrO2. Contrary to this result, photoemission spectra are better �tted if the Hubbard U
correction is included [Laad et al., 2001] which seems to indicate that electronic localization is
important. Another study by Toropova et al. [Toropova et al., 2005] compared results from
LDA and LDA+U calculations to various experimental data, including L2,3 x-ray absorption
spectra. They observed that LDA calculations better explain experimental data. The question
of the existence of strong correlations in CrO2 remains rather unclear.

We saw above that simple PBE (GGA) calculations are su�cient to obtain half-metallic
ferromagnetism in chromium dioxide. It is a little bit surprising because we could have expected
that strong correlations would be required for the double exchange described above.

To pursue further the investigation of the properties of CrO2, it is important to check if we
can model correctly its electronic and magnetic structure. For this purpose, confrontation with
XAS and XMCD experiments can be a valuable asset.

4.5.2 Pre-edge structure

The X-ray absorption spectra of CrO2 at K -edge of Cr measured on ODE beamline is shown
in Fig. 4.31. There is a peak in the pre-edge but the signal to noise ratio is not su�cient to
study its structure. Therefore, for the pre-edge structure, we are going to use the integrated
data from a 1s2p Resonant Inelastic X-ray Scattering (RIXS) experiment that we performed
on Galaxies beamline at SOLEIL. All the details of this RIXS-MCD experiments are given in
the paper by Patric Zimmermann et al. [Zimmermann et al., 2017] attached in Appendix F of
this thesis. By integration of the RIXS map over the full K α emission energy, we can obtain a
�uorescence spectrum. It is similar to a TFY spectrum 6 as can be measured on certain XAS
beamlines but with a slightly narrower emission energy range.
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Fig. 4.31: XAS of CrO2 at the Cr
K -edge acquired at room temperature
and ambient pressure on ODE beamline.
This spectra was acquired during the ex-
periment discussed Section 4.5.3.

To interpret the experimental spectra, we computed the densities of state in the presence
of a 1s core hole (see Section 2.5 p.69) which required the use of a supercell. It is possible to
perform such calculations for the interpretation of the K pre-edge because the needed energy
range is small. When the energy range increases, it becomes computationally more and more
expensive and therefore intractable (hence, the use of the method presented in Chap. 2 to
compute XAS spectra).

6TFY spectra are usually assimilated to absorption spectra despite the fact that they can be distorted
compared to XAS. [de Groot and Kotani, 2008, de Groot et al., 1994, Eisebitt et al., 1993]
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A 2 × 2 × 3 supercell was used so that the distance between core-holes is 8.4 Å and the
k-point grid was reduced accordingly. The densities of states were computed up to 6 eV above
the Fermi level which already requires the inclusion of 220 bands in the non self consistent part
of the calculation.

The p and d density of states projected on the Cr atom with a core-hole and on a neighboring
Cr are plotted at the bottom of Figure 4.32.
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Fig. 4.32: Top: Experimental absorption spectra (obtained from the integration of the RIXS plane
over emission energy) and projected density of states in the presence of a 1s core hole on the Cr atom
with a broadening of 0.3 eV. The p density of states is multiplied by 400 (the prefactors for terms D-D
and Q-Q are di�erent). The DOS have been shifted by 5996.5 eV in energy to match the experimental
spectra. Bottom: Projected Cr p, O p and Cr d density of states of CrO2 for both spins near the Fermi
level with and without core-hole. Cr? corresponds to projections around the chromium atom with a
1s core-hole and Cr around a neighboring chromium.

The main e�ect of the core hole on the DOS is to shift them to lower energies: it is visible
on the d-projected DOS (on top of the bottom panel of Fig. 4.32). The energy position of p
DOS, on the other hand, is almost una�ected by the core-hole. This leads to the conclusion
that the p density of states in the pre-edge range is due to the hybridization of the p states of
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the absorbing atom with the d states of the neighboring Cr atoms. This hybridization results in
several peaks in the Cr p density of states just above the Fermi level (note that, as the Cr site
is centrosymmetric, on-site p-d hybridization is forbidden by symmetry so these peaks could
not have been due to on-site hybridization). This hybridization is likely mediated by the O p
states because the Cr-Cr distance is 3.45 Å which is too large to allow a direct hybridization.
The energy position of these p features just above the Fermi level are not a�ected by the core
hole because they lie at the energy of the d states of the neighboring Cr which has no core hole.
The main e�ect of the core hole is, therefore, to separate the d and p features in the pre-edge
range. The diagram Fig. 4.33 is an attempt to illustrate this point.

Fig. 4.33: Diagram to qualitatively illustrate the
e�ect of the 1s core hole on the p and d densities
of states just above the edge. The absorbing atom,
with a core hole, is labelled Cr?.

The experimental absorption spectra in the pre-edge is shown on top of Fig. 4.32. We know
that the electric dipole - electric dipole (D-D) transition probes the empty p states whereas the
electric quadrupole - electric quadrupole (Q-Q) transition probes the empty d states. The p
and d densities of state are therefore plotted on the same graph as the experimental spectra.
From this graph, we can infer that there is a signi�cant D-D contribution in the pre-edge and
a Q-Q contribution at lower energy that seems to appear as a shoulder in the experimental
spectra.7

It is known that the energy position of the unoccupied d states near the Fermi level is very
sensitive to core hole e�ects and that, when including a static 1s core-hole with full relaxation
of the electronic structure as we do, it is usually calculated at a too high energy with respect
to the edge (the 1s core hole is overscreened) [Cabaret et al., 2010]. The combined e�ect of the
Hubbard U correction and of a core hole is, a priori, not predictable. In a di�erent study at the
Co K -edge in LiCoO2 [Juhin et al., 2010] the e�ect of the Hubbard U correction in the presence
of a core hole was to increase the splitting between the D-D and the Q-Q contributions. Here,

7 The attribution of features of the RIXS map to transitions toward d or p states is important for the
further study of the RIXS and RIXS-MCD maps. Indeed, DFT-based calculation (which are monoelec-
tronic calculations) can not accurately reproduce 1s → 3d transitions when there is a strong 3d-3d repul-
sion. An adequate theory to perform RIXS calculations in that case is ligand �eld multiplet (LFM) theory
[Stavitski and de Groot, 2010]. In LFM calculations, only the absorbing atom with its ligands are considered
so that only the localized states are accounted for but the big advantage is that it is a multielectronic method
so that the 3d-3d repulsion can be included. LFM calculations are parametrized so that it is important to
know a priori which region of the map is to be computed. Such calculations are presented in the paper
[Zimmermann et al., 2017] reproduced in Appendix F of this thesis.
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the splitting seems correctly computed so that the inclusion of the Hubbard U correction does
not seem to be necessary. For this reason, we decided to pursue the interpretation of the edge
features without U correction.

4.5.3 Magnetism under pressure in CrO2 studied by XMCD at the

Cr K -edge

We measured XAS and XMCD spectra under pressure at the Cr K -edge on ODE beam-
line at SOLEIL. The interest of performing experiments at the K -edge is twofold here: (i) the
surface of the CrO2 grains can be reduced to Cr2O3 so it is important to probe the bulk and
not the surface and (ii) it permits the application of pressure. The application of a hydrostatic
pressure to CrO2 changes the local octahedral environment of Cr: X-ray di�raction measure-
ments [Maddox et al., 2006] revealed that the degree of distortion of the octahedra increases
upon application of pressure. Pressure is, therefore, expected to in�uence the possible double-
exchange mechanism which is related to the distortion of the octahedra and hence the magnetic
state of CrO2.

Experimental details

Sample We used a commercial CrO2 powder sold by Sigma-Aldrich under the name
Magtrieve(TM). We grinded it mechanically to get grains of a size less than 10µm. We per-
formed X-ray di�raction of the obtained powder to check that CrO2 had not been reduced to
Cr2O3. Indeed, CrO2 is metastable and the stable Chromium oxide at ambient conditions is
Cr2O3. The di�raction pattern, shown in Fig. 4.34, shows no other peaks than the rutile CrO2

ones.
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Fig. 4.34: XRD pattern of the �nely grinded CrO2 powder �tted with the standard pattern of CrO2

in rutile phase.

Synchrotron experiments under pressure XAS and XMCD spectra under pressure
at the Cr K -edge were acquired with a Si (111) polychromator. A portion of the beam below
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the plane of the radiation emitted by the bending magnet was selected to obtain circularly
polarized X-rays.

The K-edge of Cr lies relatively low in energy (5989 eV) so we had to use perforated
diamond anvils [Dadashev et al., 2001] to apply pressure because full diamond would have
absorbed too many X-rays. Silicon oil was used as pressure-transmitting medium. A hole with
diameter around 100 µm was drilled in a rhenium gasket of local thickness 20 µm (obtained by
indentation). Cr K -edge XAS spectra were measured in transmission within a 1.3 T magnetic
�eld whether parallel or antiparallel to the direction of propagation of the magnetic �eld.
XMCD was recorded according to the procedure described p. 129 and the sign was set to
correspond to the conventional way of displaying XMCD spectra [Baudelet et al., 1991].

XAS and XMCD at the Cr K -edge

The XAS and XMCD spectra at the Cr K -edge as a function of pressure at two di�er-
ent temperatures (room temperature and T=15K) are shown in Fig. 4.35. The amplitude of
the XMCD on the edge reaches 3 ×10−3 of the edge jump at low temperature. The XMCD
spectra at ambient conditions that we measured is similar to the XMCD spectrum at the
Cr K -edge in CrO2 (recorded only up to 20 eV above the edge) that was published in 1997
[Attenkofer, K. and Schütz, G., 1997].

An isolated positive peak appears in the XMCD spectra approximately 46 eV above the edge.
This feature is very similar to the evidences of multielectron excitations that were reported
in XMCD of rare earth coumponds in [Dartyge et al., 1992]. This peak is likely due to the
existence of a double excitation, that is to say an excitation of two electrons: a 1s electron and
a 3p electron. Indeed, the binding energy of the 3p electrons (M 2,3 edges) of Mn is 47.2 eV
which corresponds to the energy position of the peak above the edge. We consider the binding
energy in atom Mn (Z+1 compared to Cr) because the Z+1 atom qualitatively mimics the 1s
core hole [Dartyge et al., 1992]. Dartyge et al. explain that the double excitation is due to
electric dipole transitions because they checked the angular dependence. It is di�cult to say if
it is due to the D-D or the D-SP operator because our monoelectronic method for calculation
is unable to model a double excitation.

At room temperature, on the right panel of Fig. 4.35, we observe that the XMCD amplitude
decreases rapidly under pressure. In particular, there is a sudden decrease of the XMCD between
9 and 12 GPa accompanied by a slight deformation of the spectrum. The shape of the absorption
spectrum also changes between 9 and 12 GPa. Surprisingly, almost no changes occur in the
near-edge region but they start 40 eV above the edge. In the literature, a structural transition
from rutile structure (P42/mnm) to an orthorhombic CaCl2-like structure (Pnnm, also a sixfold
coordinated structure) is reported to occur at 12±3 GPa [Maddox et al., 2006]. It is likely that
the observed changes of the spectra are due to this transition. The fact that the amplitude of
the XMCD amplitude decreases rapidly with pressure is not in favor of the simpli�ed picture
in terms of double-exchange because the basis of this mechanism that is the distortion of the
octahedra is enhanced by pressure. We can deduce that double exchange probably competes
with one or several other mechanisms that lead to the progressive disappearance of magnetism
under pressure.

On the left panel of Fig. 4.35, we see that the impact of pressure on the XMCD spectrum
at low temperature is mainly a small decrease of its amplitude. Between 11 GPa and 15 GPa,
the main positive peak of the XMCD spectrum is slightly shifted to higher energies. The
corresponding XAS (15 GPa) exhibit several di�erences with the spectra at lower pressure but
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Fig. 4.35: Experimental XAS and XMCD spectra for CrO2 for several values of increasing pressure
at two temperatures: T=15K for the left panel and room temperature for the right panel. The
experimental XMCD spectra were not corrected for the circular polarization rate of the light Pc < 1.

it is not similar to the room temperature-high pressure spectra. The fact that the magnetism
at low temperature is more robust with pressure is interesting because it indicates that CrO2

remains ferromagnetic at high pressure but with a lower Curie temperature. This could be
the sign of a competition between super-exchange (that favors antiferromagnetic ordering) and
double exchange [Loh, 2011].

It is clear that calculations would be very useful to distinguish the changes due to a possible
structural phase transitions from the changes related to the impact of pressure on the electronic
and magnetic structure of CrO2.

Preliminary calculations

For the preliminary calculations presented in this section, the experimental lattice parame-
ters of Table 4.3 were used. The same pseudopotentials (parameters detailed in Appendix E) as
for the DOS calculations were used. A static 1s core hole was included in the pseudopotential
for the absorbing Cr atom. A 4×4×4 k -point grid was used for the scf calculation within
a 2×2×3 supercell (72 atoms, distance between core holes: 8.42Å) with a Methfessel-Paxton
smearing of 0.14 eV (0.01 Ry).

Calculations were performed with collinear spins along the axis [001] (c-axis in Fig. 4.28)
within the diagonal spin-orbit coupling approximation (see p. 54). The wavevector k was also
set along the c-axis.

The results of the calculation are shown in the right panel of Fig. 4.36 next to the experi-
mental spectra. Visually, it is striking that, despite the fact that the X-ray absorption spectra is
well reproduced by the calculation, the calculated XMCD spectrum seems completely di�erent
than the experimental XMCD. Yet, with a closer look, we see that, except in the pre-edge range,
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Fig. 4.36: Left: Experimental XAS and XMCD spectra at the Cr K -edge in powder CrO2 at ambient
pressure and low temperature (T=4K). The experimental XMCD spectra were not corrected for the
circular polarization rate of the light Pc ≈ 0.7. Right: Calculated XAS and XMCD spectra at the Cr
K -edge in CrO2 with k along the c-axis. In both cases, the XMCD spectrum was multiplied by 200.

the peaks positions and sign are in good agreement with experiment. The relative intensity, on
the other hand, is completely o� which gives the visual impression of a totally di�erent spectra.

The contributions to the calculated XMCD of the three terms D-D, D-SP and Q-Q are
shown in Fig. 4.37. We see that, in the pre-edge region, all three contributions are more or less
equally signi�cant whereas at higher energies, the Q-Q term is negligible.
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Fig. 4.37: Detail of the contribution of each term
of the cross section (listed in Section 2.2) to the
calculated XMCD at the Cr K -edge in CrO2.

The calculation was performed with only one direction of k-vector so the calculated spectrum
depicted in Fig. 4.36 is not the isotropic spectrum (which is in principle the spectrum to be
compared with the experimental spectrum acquired on powder). This is expected to have a
strong impact in the pre-edge range because the three terms are angular dependent.

The angular dependence of the the D-D and D-SP term are more simple than that of Q-Q
and we checked by sampling three directions and calculating the spectra without core-hole,
that angular dependency can not explain the discrepancy of the XMCD spectra in the range
6000 eV - 6040 eV.

The fact that the XMCD spectra is not well reproduced by the calculation is a warning
sign that indicates that the method does not fully capture the complex magnetic structure of
CrO2. In particular, the D-SP contribution does not improve the agreement with experiment.
It could be related to a bad modeling of the spin-density close to the nucleus.
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4.5.4 Conclusion

CrO2 is a particularly interesting transition metal oxide because it is a half metallic ferro-
magnet. The fundamental electronic properties of CrO2 remain to be understood. The study
of the impact of pressure on magnetism in CrO2 is a very promising way to shed a new light
on the issues that are discussed and in particular on the double exchange mechanism that was
proposed to explain ferromagnetism in CrO2. Indeed, the distortion of the octahedra of the
rutile structure plays a crucial role in this mechanism and the application of pressure changes
the local environment of Cr. Combined XAS and XMCD experiments at the K -edge of Cr are
the method of choice to undertake this study.

Experimentally we observed several variations of the XAS and XMCD spectra which still
need to be interpreted. Preliminary calculations were not able to reproduce the experimental
XMCD spectrum even if the calculated XAS spectrum is in good agreement with experiment.
Further calculations, which include the Hubbard U correction and the intra-atomic exchange J
(which are not implemented yet) should be performed in order to see if the agreement between
calculated and experimental spectra is improved.
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Conclusion and Outlook

The main purpose of this thesis was to compute X-ray magnetic circular dichroism spectra
at K -edge in order to provide a tool to interpret the, so far very puzzling, experimental spectra.

In order to be able to compute the XMCD signal, we �rst derived the semi-relativistic ab-
sorption cross section. For this, we determined the relativistic cross section from the quantum
electrodynamic photon-matter Hamiltonian and then we performed the semi relativistic expan-
sion of the fully relativistic states that appear in this cross section. We obtained a result with
only even states (which are 2-components states in a mono-electronic system). This is method-
ologically very important because if the derivation would be performed the other way around
(semi-relativistic expansion of the Hamiltonian to deduce the cross section), the obtained result
would not be correct. We applied this method to derive the semi-relativistic X-ray absorption
and scattering cross sections at order c−2 but the same derivation could be extended up to any
order.

The most noticeable novelties of our theoretical results are a transition operator that we
named spin-position and a two-body term in the scattering cross section that has, to our
knowledge, never been reported. The spin-position operator has been studied at length in
the rest of this thesis but the importance of the two-body term in scattering is still an open
question.

We then implemented the signi�cant terms of the absorption cross section into the existing
code XSpectra of the DFT suite Quantum ESPRESSO. The package uses a basis of plane
waves and pseudopotentials, and calculations are performed for a crystal with periodic boundary
conditions. Spectra calculations are performed after a full self consistent relaxation of the
valence electrons in the presence of a core hole. To compute XMCD spectra, spin-orbit coupling
must be included in the DFT Hamiltonian used to compute the sum over unoccupied states.
We used an existing implementation which relies on the approximation of a diagonal spin-orbit
coupling, which seems quite rough at �rst sight. Yet, by comparison with results from the code
FDMNES in which spin-orbit coupling is fully implemented, we veri�ed that this approximation
does not impact signi�cantly the calculated spectra. Also we showed that the inclusion of spin-
orbit coupling in the self-consistent calculation is not needed to obtain XMCD spectra. The
spin-orbit coupling should be accounted in the self-consistent part of the calculation only in
materials exhibiting strong spin-orbit coupling (e.g. iridates). It would not be computationally
expensive to use full spin-orbit coupling in the second part of the calculation (that consists in
determining the sum over unoccupied states) so that it would be a useful implementation to
make.

With this code, we computed X-ray absorption and X-ray natural circular dichroism at
the L1 edge of LiIO3. The calculated spectra are in good agreement with experiment and we
numerically recovered the expected angular dependence. The study of LiIO3 made us appreciate
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the considerable impact of the core hole on the XNCD phenomenon: the calculated spectra
with or without core hole are completely di�erent. Hence, in addition to be a way to study
the chirality of materials, XNCD could be used as a benchmark to understand the process of
relaxation in the presence of a core hole.

To pursue the test of the code, we also calculated XAS and XMCD spectra at the K -edge
in Fe, Co and Ni. These calculations showed that the electric dipole - spin position term is very
important in XMCD. We explained it by deriving a sum-rule for this new term: it probes the
spin polarization of the p states whereas the electric dipole-electric dipole term probes their
orbital polarization. The overall agreement of the calculated spectra with the experimental one
is fair but the secondary peaks are not always well reproduced. Also, the electric dipole-spin
position term, whose existence is prescribed by the theory, does not improve the agreement
between the calculated and the experimental spectra. We tested the e�ect on the spectra of
a large number of assumptions and approximations of our method to better understand the
origin of this discrepancy. We could narrow it down to intrinsic limitations of the spin-polarized
Kohn-Sham DFT which is unable to capture the complexity of the spin and orbital polarization
of the unoccupied states near the nucleus. Despite the fact that Kohn-Sham DFT is deemed
not to be appropriate for excited states, it was surprisingly successful to compute XAS spectra.
It is, therefore, possible that improvements of the way spin-polarized systems are treated could
improve the modeling of XMCD.

The fact that the overall shape of the spectra is well described by our numerical method
still makes it a useful tool for the interpretation of experiments. In this thesis we presented
two examples that concern materials of technological interest: FeH and CrO2.

The study on FeH turned out to be very illustrative of the point that motivated this PhD
work, namely that a quick interpretation of XMCD spectra by computing their integral and
interpreting it as being proportional to the total magnetic moment is not valid at K -edge. The
XMCD spectra at the Fe K -edge in Fe and FeH are very di�erent despite the similarity of the
total magnetic moment in the cells. Our method was successful to reproduce the experimental
spectra and we were able to investigate the magnetic structure of FeH with the various tools
included in Quantum ESPRESSO.

The study on CrO2 is an example of the possibility of enrichment of theory by experiment.
The literature on the electronic properties of CrO2 is very rich but also rather contradictory.
A mechanism has been proposed to explain the origin of ferromagnetism but no general agree-
ment has been reached on the way the material can be numerically modeled. In this context,
confrontation of the numerical results with XAS and XMCD experiments under pressure is a
valuable asset. Indeed, pressure is a unique way to change the local environment of the Cr
atoms and the understanding of the impact of pressure on the electronic and magnetic struc-
ture of CrO2 could give precious clues on the interactions involved. Calculations without the
Hubbard U correction were su�cient to reproduce the half-metallic behaviour of CrO2 and to
infer the presence of a strong electric dipole - electric dipole contribution in the XAS pre-edge.
However, the XMCD spectra was not accurately reproduced by these preliminary calculations.
Further calculations must be pursued before drawing any conclusion but it is possible that
DFT+U is required to model CrO2 correctly.
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My PhD work raised many questions and we answered some important ones but, unfortu-
nately, there was not enough time to address them all.

In particular, we did not study further the consequences of Chapter 1 on the X-ray scattering
cross section. Yet, the result that we obtained could have lots of rami�cations. First of all,
the spin-position operator, whose signi�cance in XMCD has been proven in this thesis, could
also have an impact on magnetic scattering. This needs to be examined with the support of
numerical calculations. Secondly, the fact that Thomson scattering and non-resonant scattering
arise from the existence of negative energy intermediate states, despite not being a novelty, was
not investigated in detail. It changes the physical picture of these processes. And, �nally,
the new two-body term, also arising from the negative energy states, remains entirely to be
investigated. The evaluation of this term is being undertaken in collaboration with Yves Joly
(Institut Néel, Grenoble). In particular, we are investigating the possibility of an experimental
situation in which this term could be distinguished from the other contributions to the cross
section.

In this thesis, I demonstrated that the calculation of XMCD is a challenge to theoreticians.
It is far more complex to compute a spectra than to obtain the total magnetic moment of a
material. In particular, it is absolutely impossible to apply the same procedure that is often
used to get the right magnetic moment with DFT-based calculations, that is to say change the
input until the convergence occurs toward the expected moment. We have seen that there is
still a long way to go before being able to capture all the complexity of the XMCD spectra by
Kohn-Sham DFT. Among the large number of existing functionals, we tested only LDA and
PBE. It could be interesting to try using other functionals but it is di�cult to know a priori if
one could be appropriate to model correctly XMCD. Full modeling of XMCD is an ambitious
objective that requires further development of spin-polarized DFT.

Now, being able to reproduce the experiment is not an end in itself. It is very important that
new information can be extracted from the calculation. It is, for example, very common to relate
peaks in the absorption spectra to transitions toward speci�c orbitals as was done in this thesis
for CrO2. We can also determine if changes of the spectra observed experimentally are related
to a given structural phase transition or to a magnetic phase transition as was done in this thesis
for FeH. It is also practicable, but not easy, to extract crystal �eld parameters from a calculated
band structure by projecting the Bloch states onto Wannier functions.8 These parameters can
then be used in multiplet calculations which allow to include multielectronic e�ects. However,
in regards to long-range magnetism, DFT calculations do not provide the amplitude of the
interactions involved. Yet, the knowledge of the relative importance of the di�erent exchange
interactions in a given magnetic system is very important to get a picture of the physics involved.
For this purpose, model Hamiltonians, in which one can tune the interactions, are precious. It
could be useful to develop bridges between both kinds of approaches.

The numerical method presented in this thesis could be used to study a large variety of
systems. For example, we performed experiments of XAS and XMCD in two CoII based molec-
ular compounds that undergo a pressure-induced spin cross over (SCO) transition at room
temperature. One of them also undergoes a temperature-induced SCO transition at ambient
pressure. The most common SCO systems are FeII based and the transition occurs between a

8M. W. Haverkort, M. Zwierzycki, and O. K. Andersen (2012). Multiplet ligand-�eld theory using Wannier
orbitals. Phys. Rev. B, 85:165113
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diamagnetic state (FeII in low spin con�guration i.e. with S=0) and a paramagnetic state (FeII

in high spin con�guration i.e. with S=2). In that case, the magnetic signature of the transition
can be addressed unambiguously by conventional magnetic measurements (SQUID or VSM
magnetometers). In the case of divalent cobalt, the SCO transition corresponds to a transition
between two paramagnetic states so that spectroscopic methods are required to determine the
exact nature of the electronic states involved in the SCO transition. We followed the pressure-
induced transition in both compounds and the temperature-induced transition of the compound
that transit at low temperature during two beamtimes. It is necessary to separate the study
of the pre-edge (that requires a multielectronic treatment) from the study of the edge. On the
edge, preliminary calculations of XAS with our DFT based method are promising and we will
pursue this study in order to compare the electronic structure of the low-spin and high-spin
con�gurations. The multiplet calculations of the pre-edge spectra are tricky because the sym-
metry of the Co site in the structures is low and, therefore, many crystal-�eld parameters must
be set in input. To obtain ab initio computed values for these parameters CASSSCF/CASPT2
calculations have been undertaken by a collaborating team in Toulouse (Laboratoire de chimie
et physique quantique). We see that, a combination of several theoretical methods is required
for the quantitative interpretation of the electronic and magnetic properties of the compounds.

The numerical method presented in this thesis could also be applied, with only minor
adjustments, to another advanced spectroscopy: X-ray magneto chiral dichroism (XMχD) that
occurs when inversion symmetry and time-reversal symmetry are both broken. XMχD is the
di�erence of absorption, by a material that is both chiral and magnetic, of non-polarized light
depending on the direction of the magnetization. XMχD is a quite recent method: the �rst
ever spectra was recorded in 2002 and, until recent years it was limited to a very few number of
compounds. The development of new systems that exhibit molecular magnetism and which are
both chiral and magnetic has recently raised a new interest for this technique.9 Indeed, it exists
only when magnetic properties are combined with the breaking of inversion symmetry and this
combination is expected to play an important role in many phenomena as multiferroicity. The
fact that both XNCD and XMCD can be computed with our method suggests that magneto
chiral calculations could be possible.

9R. Sessoli, M.-E. Boulon, A. Caneschi, M. Mannini, L. Poggini, F. Wilhelm and Andrei Rogalev (2015).
Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nature Physics,
11:69-74
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Appendix

Appendix A

Abbreviations and Notations

Abbreviations

bcc body-centered cubic (crystal system)
CD Circular Dichroism
ch core hole
D-D electric Dipole - electric Dipole
DFT Density Functional Theory
D-Q electric Dipole - electric Quadrupole
D-SP electric Dipole - Spin Position
dhcp double hexagonal close packed (crystal system)
DOS Density Of States
ESRF European Synchrotron Radiation Facility
EXAFS Extended X-ray Absorption Fine Structure
fcc face-centered cubic (crystal system)
FDMNES Finite Di�erence Method for Near-Edge Structure (code)
FW Foldy-Wouthuysen
GGA Generalized Gradient Approximation
hcp hexagonal close packed (crystal system)
IMPMC Institut de Minéralogie de Physique des matériaux et de cosmochimie
KS Kohn�Sham
LDA Local-Density Approximation (DFT functional)
LSDA Local-Spin-Density Approximation (DFT functional)
LFM Ligand Field Multiplet
ODE Optique Dispersive EXAFS (beamline)
PAW Projector Augmented Wave (method)
PBE Perdew Burke Ernzerhof (DFT functional)
Q-Q electric Quadrupole - electric Quadrupole
QED Quantum ElectroDynamics
RIXS Resonant Inelastic X-ray Scattering
scf self consistent �eld
SOC Spin-Orbit Coupling
SPR-KKR Spin Polarized Relativistic Korringa-Kohn-Rostoker
TFY Total Fluorescence Yield
XAS X-ray Absorption Spectroscopy
XANES X-ray Absorption Near-Edge Structure
XMCD X-ray Magnetic Circular Dichroism
XNCD X-ray Natural Circular Dichroism
XRD X-ray Di�raction
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Notations

Matrix and operators
p momentum operator p = −ih̄∇
π p− eA mechanical momentum
L angular momentum
Ĩ Identity matrix
εjkl Levi-Civita symbols
σi Pauli matrices (see Appendix B.1)
β and α Standard Dirac matrices (see Appendix B.3)

Constants
e charge of the electron e < 0
c speed of light in vacuum
m electron mass
h̄ reduced Planck constant
ε0 vacuum permittivity
α0 �ne structure constant α0 = e2

4πh̄cε0

re classical electron radius re = e2

4πε0mc2

a0 Bohr radius a0 = h̄24πε0
me2

µB Bohr magneton µB = eh̄
2m

Electromagnetic wave
B magnetic �eld
E electric �eld
A vector potential
V scalar potential
k wave vector
ε polarization vector
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De�nitions and useful formula

B.1 Pauli Matrices

The Pauli matrices are dimensionless operators:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(B.1)

They possess the following property, which can easily be veri�ed from their explicit form:

σjσk = i
∑

l

εjklσl + δjkĨ . (B.2)

The vector σ = (σx, σy, σz) is often used to designate the set of three Pauli matrices. For a
spin 1/2 particle, the spin operator writes

S =
h̄

2
σ. (B.3)

The eigenvectors of σz are noted |↑〉 and |↓〉 where the spin up spinor is |↑〉 =

(
1
0

)
and the

spin down spinor is |↓〉 =

(
0
1

)
. The application of σx of σy on |↑〉 changes it in |↓〉 and vice

versa:
σz|↑〉 = |↑〉 σy|↑〉 = i|↓〉 σx|↑〉 = |↓〉
σz|↓〉 = −|↓〉 σy|↓〉 = −i|↑〉 σx|↓〉 = |↑〉 (B.4)

So that if, |g〉 = f1|↑〉+ f2|↓〉 then

〈g|σ|g〉 =




2 Re(f ?1 f2)
2 Im(f ?1 f2)
|f1|2 − |f2|2


 (B.5)

B.2 Angular Momentum matrix for l=1

In the basis |lm〉 = |1 − 1〉, |10〉, |11〉, the components of the angular momentum operator
write as 3×3 matrices. As 〈lm′|Lz|lm〉 = mh̄δm′m,

Lz = h̄




1 0 0
0 0 0
0 0 −1


 .
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As 〈lm′|L±|lm〉 =
√
l(l + 1)−m(m± 1)h̄δm′m,

L+ = h̄




0
√

2 0

0 0
√

2
0 0 0


 and L− = h̄




0 0 0√
2 0 0

0
√

2 0




This leads to

Lx =
1

2
(L+ + L−) =

h̄√
2




0 1 0
1 0 1
0 1 0




and

Ly =
1

2i
(L+ − L−) =

h̄

i
√

2




0 1 0
−1 0 1
0 −1 0


 .

B.3 Dirac Matrices

We note β and α = (αx, αy, αz) the standard Dirac matrices:

β =

(
Ĩ 0

0 −Ĩ

)
and αi =

(
0 σi
σi 0

)
. (B.6)

Some of their basic properties are:1

β2 = 1 (B.7)
{αi, β} = 0 (B.8)
{αj, αk} = 2δjk (B.9)

[αj, αk] = 2(αjαk − δjk) = 2i
∑

m

εjkmΣm (B.10)

αjαk = δjk + i
∑

m

εjkmΣm (B.11)

In the two last equations Σm =

(
σm 0
0 σm

)
. We also de�ne the vector Σ as (Σx,Σy,Σz).

The product βα is:

βα =

(
0 σ
−σ 0

)
(B.12)

and from (B.8), we see that αβ = −βα.

B.4 Commutators

• The canonical commutation relation writes [ri, pj] = ih̄δij.

1B. Thaller, The Dirac Equation, Springer-Verlag Berlin Heidelger (1992) p. 37
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• If a and b are vectors that commute with α:

[α · a,α ·b] =
∑

ij

(αiαjaibj − αjαibjai)

=
∑

ij

δij[ai, bj] + i
∑

mij

εijmΣm(aibj + bjai)

=
∑

i

[ai, bi] + iΣ · (a× b− b× a)
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Appendix D

Operators in XSpectra code

D.1 Spherical harmonics

Below, a list of the spherical harmonics in spherical and cartesian coordinates assuming that

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

For l = 0

Y 0
0 (θ, ϕ) =

√
1

4π

For l = 1

Y −1
1 (θ, ϕ) =

√
3

8π
· e−iϕ · sin θ =

√
3

8π
· (x− iy)

r

Y 0
1 (θ, ϕ) =

√
3

4π
· cos θ =

√
3

4π
· z
r

Y 1
1 (θ, ϕ) = −

√
3

8π
· eiϕ · sin θ = −

√
3

8π
· (x+ iy)

r

For l = 2

Y −2
2 (θ, ϕ) =

√
15

32π
· e−2iϕ · sin2 θ =

√
15

32π
· (x− iy)2

r2

Y −1
2 (θ, ϕ) =

√
15

8π
· e−iϕ · sin θ · cos θ =

√
15

8π
· (x− iy)z

r2

Y 0
2 (θ, ϕ) =

√
15

4π
· (3 cos2 θ − 1) =

√
15

4π
· (2z

2 − x2 − y2)

r2

Y 1
2 (θ, ϕ) = −

√
15

8π
· eiϕ · sin θ · cos θ = −

√
15

8π
· (x+ iy)z

r2

Y 2
2 (θ, ϕ) =

√
15

32π
· e2iϕ · sin2 θ =

√
15

32π
· (x+ iy)2

r2

The spherical harmonics verify the orthogonality relation:
∫
Y m
l (ur)Y

m′
l′ (ur)dθdφ sin θ = δl,l′δm,m′

180



Appendix

The integral of the product of three spherical harmonics is given by:1

∫ π

θ=0

∫ 2π

ϕ=0

Y m
l
∗ Y m1

l1
Y m2
l2

dΩ =

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
(l1 0 l2 0|l 0)(l1m1 l2m2|l m)

D.2 Operators

The three operators that enter the di�erent terms of the absorption cross section are:

D = ε · r,
SP = σ · (ε× r),

Q =
1

2|k|(ε · r)(k · r)

Using the spherical harmonics above, we can rewrite

D =
4π

3
r

λ=1∑

λ=−1

(−1)λY −λ1 (ε)Y λ
1 (ur) (D.1)

In the case of collinear spins with diagonal spin-orbit coupling:

SPcol = σz(εxy − εyx) = σz
4iπ

3
r(Y −1

1 (ε)Y 1
1 (ur)− Y 1

1 (ε)Y −1
1 (ur)) (D.2)

The electric quadrupole operator writes:

Q(r) =

(
4π

3

)2
r2

2

λ=1∑

λ=−1

µ=1∑

µ=−1

(−1)λ+µY −λ1 (ε)Y λ
1 (ur)Y

µ
1 (ur)Y

−µ
1 (k)

As Y λ
1 (ur)Y

µ
1 (ur) =

∑2
ν=0

√
3∗3

4π(2ν+1)
Y λ+µ
ν (1λ1µ|νλ+ µ)(1010|ν0) and

(1010|ν0) = −
√

1

3
if ν = 0

= 0 if ν = 1

=

√
2

3
if ν = 2.

The product of two spherical harmonics with l = 1 writes:

Y λ
1 (ur)Y

µ
1 (ur) =

√
3

4π
Y λ+µ

0 (1λ1µ|0λ+ µ) +

√
3

10π
Y λ+µ

2 (1λ1µ|2λ+ µ).

This formula involves two Clebsch�Gordan coe�cients whose values are:
(1λ1µ|0λ+ µ)

λ / µ -1 0 1

-1 0 0
√

1
3

0 0 −
√

1
3

0

1
√

1
3

0 0

(1λ1µ|2λ+ µ)
λ / µ -1 0 1

-1 1
√

1
2

√
1
6

0
√

1
2

√
2
3

√
1
2

1
√

1
6

√
1
2

1

1Sakurai and Napolitano-Modern quantum mechanics-Revised edition p.217
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The fact that (1λ1µ|0λ+µ) is zero except if λ+µ = 0 implies that there is a term proportional
to Y 0

0

∑λ=1
λ=−1(−1)λY λ

1 (ε)Y λ
1 (k) in Q. This is proportional to ε ·k. So, as ε ·k = 0, this term is

zero. Finally,

Q =

(
4π

3

)2
√

3

10π

r2

2

λ=1∑

λ=−1

µ=1∑

µ=−1

(−1)λ+µ(1λ1µ|2λ+ µ)Y −λ1 (ε)Y λ+µ
2 (ur)Y

−µ
1 (k) (D.3)

D.3 Initial vector |ϕ̃R0〉
We must compute

|ϕ̃R0〉 =
∑

n

|p̃R0
n 〉〈φR0

n |O|i〉

with n referring to (l,m) and an additional number ς. We write:

〈r|i〉 = f i0(r)Y 0
0 (ur) =

f i0(r)√
4π

〈r|p̃R0
n 〉 = fpς,l(r)Y

m
l (ur)

〈r|φR0
n 〉 = fφς,l(r)Y

m
l (ur)

The corresponding variables in the code are listed in Table D.1.
If one considers an operator O which is a linear combination of Y m

l (ur)Y
m′
l′ (ε):

O =
∑

a

Ca(r)Y
ma
la

(ur)Y
m′a
l′a

(ε),

Then,

〈r|ϕ̃R0〉 =
∑

ς,l,m

fpς,l(r)Y
m
l (ur)

∫
dr′fφς,l(r)Y

m
l (u′r)

∗
(∑

Ca(r
′)Y ma

la
(u′r)Y

m′a
l′a

(ε)
) f i0(r′)√

4π

=
∑

a

1√
4π
fpς,li(r)Y

ma
la

(ur)Y
m′a
l′a

(ε)

∫
Ca(r

′)r′2fφς,la(r
′)f i0(r′)dr′

This formula can be applied to the three operators of interest.

Electric-dipole operator

Using Eq. (D.1) we get:

〈r|ϕ̃R0〉 =

√
4π

3

∑

ς

fpς,l(r)
(√ 3

8π
Y −1

1 (ur)(εx + iεy)

+

√
3

4π
Y 0

1 (ur)εz −
√

3

8π
Y 1

1 (ur)(εx − iεy)
)∫

r′3fφς,l(r
′)f i0(r′)dr′
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Electric-quadrupole operator

Using Eq. (D.3), with k̂ = k
|k| :

〈r|ϕ̃R0〉 =
∑

ς

fpς,l(r)

(
Y −2

2 (ur)
1√

3 ? 40
(εx + iεy)(k̂x + ik̂y)

+ Y 2
2 (ur)

1√
3 ? 40

(εx − iεy)(k̂x − ik̂y)

+ Y 0
2 (ur)

√
2

3
√

40
(2εzk̂z − εxk̂x − εyk̂y)

+ Y −1
2 (ur)

1√
3 ? 40

[
(εx + iεy)k̂z + εz(k̂x + ik̂y)

]

−Y 1
2 (ur)

1√
3 ? 40

[
(εx − iεy)k̂z + εz(k̂x − ik̂y)

])∫
r′4fφς,l(r

′)f i0(r′)dr′.

Spin-Position operator

Using Eq. (D.2),

〈r|ϕ̃R0〉 = sign(σz)

√
4π

3
i
∑

ς

fpς,l(r)
(√ 3

8π
Y 1

1 (ur)(εx − iεy)

+

√
3

8π
Y −1

1 (ur)(εx + iεy)
)∫

r′3fφς,l(r
′)f i0(r′)dr′

where sign(σz) is the sign of the spin associated to the current k.

Table D.1: Correspondence between some variables in XSpectra and the corresponding quantities.

core_wfn rf i0(r)

paw_recon(xiabs) % aephi(ip) %psi rfφς,l

paw_vkba
∑

ς y
m
1 (ur)f

p
ς,l(r)

paw_vkb_cplx
∑

ς Y
m

1 (ur)f
p
ς,l(r)

psiwfc 〈r|ϕ̃R0〉
xnorm

√
〈ϕ̃R0|ϕ̃R0〉

xanes_dipb
∫
r′3fφς,l(r

′)f i0(r′)dr′

xanes_qua
∫
r′4fφς,l(r

′)f i0(r′)dr′

xepsilon(1:3) ε

xkvec(1:3) k̂

sign_sigma sign(σz)

a In Quantum Espresso, the real harmonics are de�ned such that y1
1 ∝ −x, y−1

1 ∝ −y and y0
1 ∝ z.

b Note that the radial integrals are the same for all k -points. They are computed at the beginning of the
calculation.
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D.4 Prefactors

In Rydberg atomic units, h̄ = 2m = 1 and c = 2
α
, so |k| = ω

c
= ωα

2
. So that,

σD−Q = −8π2ωα
∑

f

Im 〈f |1
2

(ε · r)(k · r)|i〉〈i|ε? · r|f〉δ(Ef − Ei − h̄ω)

σD−SP = −π2ω2α3
∑

f

Im 〈f |σ · (ε× r)|i〉〈i|ε? · r|f〉δ(Ef − Ei − h̄ω)

If one considers I1 and I2 as they are de�ned in subsection 2.3.2 then,

σD−Q = 2πωα|k|(I1 − I2) = πω2α2(I1 − I2)

and σD−SP =
1

4
πω2α3(I1 − I2).
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Technical details of the pseudopotentials
The pseudopotentials have been generated with the code atomic (ld1.x) of Quantum-

espresso. The complete description of the input of ld1.x can be found in the directory
atomic/Doc of Quantum Espresso or online.1 A documentation is also available in the di-
rectory atomic/Doc: Notes on pseudopotential generation - Paolo Gianozzi .2

The reader is referred to these documents for details on the pseudopotentials generation.

E.1 Norm conserving (NC) pseudopotentials

Table E.1: Technical details of the norm-conserving pseudopotentials used in this thesis.

Element functional type of PP lloc generation cut-o� GIPAW energy position
con�guration radius projectors of projectors (Ry)

Fe PBE TM SR 2 3s2 1.1 3p 0.0
3p6 1.1 4p 0.0
3d6 1.1 3d 0.0

4d 0.0
Co PBE TM SR 1 3s2 1.1 3p 0.0

3p6 1.1 4p 0.0
3d7 1.1 3d 0.0

4d 0.0
Ni PBE TM SR 2 3s2 1.1 3p 0.0

3p6 1.1 4p 0.0
3d8 1.1 3d 0.0

4d 0.0
H PBE TM SR 0 1s1 0.9 - -
Cr PBE TM SR 1 3s2 1.0 3p 0.0

3p6 1.7 4p 0.0
3d2 1.4 3d 0.0

1.4 4d 0.0
O PBE TM SR 2 2s2 1.0 - -

2p4 1.0 - -

1URL for ld1 input: http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_LD1.html#

idm140471497748848
2URL for documentation: www.quantum-espresso.org/wp-content/uploads/Doc/pseudo-gen.pdf
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• PBE stands for Perdew, Burke, and Ernzerhof exchange-correlation functional.3

• TM is the used pseudization algorithm: Troullier-Martins.4

• SR stands for scalar-relativistic
• lloc is the angular momentum of the local chanel.
• For K - and L1-edge spectra calculations GIPAW p- (for electric dipole transitions) and d-
projectors (for electric quadrupole transitions) must be de�ned for the absorbing atom.
These projectors are used in XSpectra to compute the cross-section (see Chapter 2). If
their energy position is set to 0.0, the one-electron energy of the all-electron state is used
to pseudize the corresponding states.

E.2 Ultrasoft pseudopotentials

Table E.2: Technical details of the ultrasoft pseudopotentials used in this thesis.

Element functio- type of PP lloc generation cut-o� US energy pro- energy
nal con�guration radius radius jectors position

Li PBE TM SR -1 1s2 0.7 1.2 0.0 - -
2s2 0.7 1.2 0.0
2p0 2.0 2.2 0.3
2p0 2.0 2.2 1.7

I PBE TM SR -1 5s2 1.3 1.7 0.0 5p 0.0
5s0 1.3 1.7 6.0 6p 6.0
5p5 1.4 1.8 0.0 4d 0.0
5p0 1.4 1.8 6.0 5d -0.5
4d10 1.3 1.7 0.0
4d0 1.3 1.7 -2.5

O PBE TM SR 2 2s2 1.0 1.35 0.0 - -
2s0 1.0 1.35 0.05
2p4 1.0 1.35 0.0
2p0 1.0 1.35 0.05

For Ultrasoft pseudopotentials, an additional cut-o� radius for charge compensation must
be de�ned in addition to the cut-o� radius for the wave-functions. This Ultrasoft radius must
be larger than the other one.

A negative lloc means that the local potential is generated by pseudizing the all electron
potential.

3J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
4N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).
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Articles

This appendix contains three articles that are mentioned in the manuscript:

• N. Bouldi and Ch. Brouder (2017). Gauge invariance and relativistic e�ects in photon
absorption and scattering by matter. Accepted in Euro. Phys. J. B

• N. Bouldi, N. J. Vollmers, C. G. Delpy-Laplanche, Y. Joly, A. Juhin, Ph. Sainctavit, Ch.
Brouder, M. Calandra, L. Paulatto, F. Mauri, and U. Gerstmann (2017). X-ray magnetic
and natural circular dichroism from �rst principles: Calculation of K- and L1-edge spectra.
Phys. Rev. B 96, 085123

• P. Zimmermann, N. Bouldi, M. O.J.Y.Hunault, M. Sikora, J. M.Ablett, J.-P. Rue�, B.
Lebert, Ph. Sainctavit, F. M.F.de Groot and A. Juhin. (2017) 1s2p Resonant Inelastic X-
ray Scattering Magnetic Circular Dichroism as a probe for the local and non-local orbitals
in CrO2 1s2p Resonant Inelastic X-ray Scattering Magnetic Circular Dichroism as a probe
for the local and non-local orbitals in CrO2. J. Electron. Spectrosc. Relat. Phenom.
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Abstract. There is an incompatibility between gauge invariance and the semi-classical time-dependent
perturbation theory commonly used to calculate light absorption and scattering cross-sections. There is
an additional incompatibility between perturbation theory and the description of the electron dynamics
by a semi-relativistic Hamiltonian. In this paper, the gauge-dependence problem of exact perturbation
theory is described, the proposed solutions are reviewed and it is concluded that none of them seems
fully satisfactory. The problem is finally solved by using the fully relativistic absorption and scattering
cross-sections given by quantum electrodynamics. Then, a new general Foldy-Wouthuysen transformation
is presented. It is applied to the many-body case to obtain correct semi-relativistic transition operators.
This transformation considerably simplifies the calculation of relativistic corrections. In the process, a new
light-matter interaction term emerges, called the spin-position interaction, that contributes significantly to
the magnetic x-ray circular dichroism of transition metals. We compare our result with the ones obtained
by using several semi-relativistic time-dependent Hamiltonians. In the case of absorption, the final formula
agrees with the result obtained from one of them. However, the correct scattering cross-section is not given
by any of the semi-relativistic Hamiltonians.

PACS. 78.70.Ck X-ray scattering – 78.70.Dm X-ray absorption spectra – 11.15.Bt Perturbation theory,
applied to gauge field theories – 31.30.jx Nonrelativistic limits of Dirac-Fock calculations

1 Introduction

The x-ray absorption and scattering cross-section is often
derived by considering the incident photon as a perturb-
ing external electromagnetic potential [1,2]. Since only
gauge-invariant observables are physically meaningful, it
is legitimate to investigate whether this approach leads to
gauge-invariant cross-sections. This question is even more
crucial in a context in which experimental improvements
urge the community to compute the x-ray cross-sections
with an increasing accuracy.

The short answer is that the absorption and scattering
cross-sections derived by semi-classical arguments are not
gauge invariant. This is a (not so well-known) consequence
of a widely studied conflict between time-dependent per-
turbation theory and gauge invariance (see section 2 for
a non exhaustive list of references). Indeed, |⟨φn|ψ(t)⟩|2
gives the probability to find the system described by the
state |ψ(t)⟩ in the eigenstate |φn⟩ at time t, where |ψ(t)⟩
is a solution of the time-dependent Schrödinger equation
for the Hamiltonian H(t) = H0 + H1(t), while |φn⟩ is
an eigenstate of the time-independent Hamiltonian H0.
A time-dependent gauge transformation of H(t) will be

assigned to H1(t) but not to H0, which must remain inde-
pendent of time. The transition probability is then modi-
fied because the state |ψ(t)⟩ is gauge-transformed and not
the state |φn⟩ (see section 2 for a more detailed argument).
We meet there a serious difficulty: “Until this problem is
understood, therefore, it seems that no calculation can be
trusted at all.”[3]

There is another conflict between time-dependent per-
turbation theory and semi-relativistic physics [4]. The semi-
relativistic approximation of |φn⟩ is obtained by apply-
ing to it the time-independent Foldy-Wouthuysen trans-
formation: |φFW

n ⟩ = UH0
|φn⟩. The semi-relativistic ap-

proximation of |ψ(t)⟩ is derived from the time-dependent
Foldy-Woutuysen transformation |ψFW(t)⟩ = UH(t)|ψ(t)⟩.
Since UH(t) ̸= UH0

, the transformed transition probabil-

ity |⟨φFW
n |ψFW(t)⟩|2 is not equal to |⟨φn|ψ(t)⟩|2, even if

the Foldy-Wouthuysen transformations UH0
and UH(t) are

known to all orders.
In this paper we discuss and solve these two conflicts.

In a nutshell, the gauge problem is solved by deriving
relativistic absorption and scattering cross-sections from
quantum electrodynamics instead of the usual semi-classical
argument where the incident light wave is described by
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a time-dependent potential. The semi-relativistic prob-
lem is solved by applying a many-body Foldy-Wouthuysen
transformation to the relativistic cross-sections instead
of describing the dynamics of the system with a semi-
relativistic Hamiltonian. The final result is a semi-relativistic
absorption and scattering cross-section involving a new
term that couples the spin and the position operators.
In a companion paper, we show that this new term con-
tributes significantly to the x-ray absorption of magnetic
materials [5].

We now describe the outline of this paper. Section 2
discusses the gauge transformation of transition probabil-
ities and reviews the solutions to the gauge-dependence
problem proposed in the literature. Since none of them
was widely accepted, we turn to the quantum electrody-
namics framework in section 3, where we derive the rel-
ativistic electric dipole, quadrupole and magnetic dipole
relativistic transition operators. In section 4, we describe
a many-body Foldy-Wouthuysen transformation that we
apply to the transition operators. They are used to obtain
semi-relativistic absorption and scattering cross-sections
in sections 5 and 6, where a new spin-position term is de-
rived. In section 7, the conflict between time-dependent
perturbation theory and semi-relativistic methods is de-
scribed and illustrated by presenting the explicit calcu-
lations using four different semi-relativistic Hamiltonians
commonly used in the literature. The conclusion presents
possible extensions of the present work.

2 Gauge invariance

The gauge invariance of the absorption and scattering
cross-sections of light is a long-standing problem. It started
in 1952 when Willis Lamb calculated the spectrum of Hy-
drogen in two gauges and obtained different results [6].
This gave rise to a long series of papers up to this day [7–
11,3,12–25,4,26–55]. In 1987, the same Lamb (then Nobel
prize winner) still considered this as “one of the outstand-
ing problems of modern quantum optics.” [39]

We quickly describe the meaning of gauge invariance
and then consider its failure in semi-classical perturbation
theory.

2.1 The principle of gauge invariance

The two homogeneous Maxwell equations ∇ × E + Ḃ = 0
and ∇ · B = 0, where the dot denotes time derivative,
imply the local existence of a vector potential A and a
scalar potential Φ such that B = ∇×A and E = −∇Φ−Ȧ.
We denote A = (Φ,A). The same E and B are obtained

from the potentials A′ = (Φ − Λ̇,A + ∇Λ), that we also
denote A′ = A − ∂Λ, where Λ is any smooth function
of space and time. In classical electromagnetism, gauge
invariance means that the physics described by A and A′

is the same.

In quantum mechanics, consider a non-relativistic Hamil-
tonian

HA =
(p − eA)2

2m
+ eΦ,

or a relativistic (Dirac) Hamiltonian

HA = cα · (p − eA) + mc2β + eΦ,

where α = (αx, αy, αz) and β are the Dirac matrices.
Both Hamiltonians are of the form HA = f(p− eA)+ eΦ,
where f is some function. For such Hamiltonians it can

be checked that M†
Λ(i!∂t − HA′)MΛ = i!∂t − HA, where

MΛ = eieΛ/!. As a consequence, if ψ is a solution of the
time-dependent Schrödinger equation i!ψ̇ = HAψ, then
ψ′ = MΛψ is a solution of i!ψ̇′ = HA′ψ′.

In quantum mechanics, a gauge transformation con-
sists in both a change of the potentials and a change in
the phase of the wavefunctions. An observable OA depend-
ing on the electromagnetic potential A is said to be gauge

invariant if M †
ΛOA′MΛ = OA for every function Λ(t, r).

An observable must be gauge invariant to be considered a
true physical quantity [56].

The principle of gauge invariance has become a corner-
stone of particle physics. Since general relativity may also
be considered as a gauge theory [57], it may be safely said
that gauge invariance was the guiding principle of most of
the fundamental physics of the twentieth century. There-
fore, we need to check that the cross-section formulas are
gauge invariant to ensure their true physical nature.

Note that the time-dependent Dirac or Schrödinger
equations are always gauge invariant but the time-independent
ones are not because HA is not gauge invariant due to
the the scalar potential Φ. Indeed, under a gauge trans-
formation Φ becomes Φ − Λ̇ and the term Λ̇ cannot be
compensated for in the absence of a time derivative.

2.2 Gauge dependence of transition probabilities

In time-dependent perturbation theory, a system is as-
sumed to be in the ground state |φg⟩ of a time-independent
Hamiltonian Ha0

. Then, at time t0, an electromagnetic
wave represented by the time-dependent potential a is
added to the system (with total potential A = a0 + a),
which is represented at time t by the state |ψ(t)⟩. A good
way to take both the initial state and the dynamics into
account is to use the evolution operator UA(t, t0), which
is the solution of i!∂tUA(t, t0) = HA(t)UA(t, t0) with the
boundary condition UA(t0, t0) = 1. Thus, |ψ(t)⟩ = UA(t, t0)|φg⟩.
The probability of a transition to the eigenstate |φn⟩ of
Ha0

at time t is

Png(t) = |⟨φn|ψ(t)⟩|2 = |⟨φn|UA(t, t0)|φg⟩|2. (1)

Since we want to ensure that the breakdown of gauge in-
variance is not due to an approximation, we work with
exact (i.e. to all orders) perturbation theory. If we carry
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out a gauge transformation of the perturbation from a to
a′ = a − ∂Λ, then the evolution operator becomes [35]

UA′(t, t0) = MΛ(t)UA(t, t0)M
†
Λ(t0), (2)

where A′ = a0 + a′.
Therefore ⟨φn|ψ′(t)⟩ = ⟨φn|UA′(t, t0)|φg⟩ is

∫
drdr′φ∗

n(r)eieΛ(r,t)UA(r, t; r′, t0)e
−ieΛ(r′,t0)φg(r

′),

which is generally different from ⟨φn|ψ(t)⟩ since Λ(r, t) is
an arbitrary function (take for example Λ(r, t) = r · k(t),
where k(t) is an arbitrary function of time). Therefore, in
general, P ′

ng(t) ̸= Png(t) and the transition probabilities
calculated in the two gauges are different. Moreover, since
the transition rate entering cross-sections is the derivative
of the transition probability with respect to time [58], the
arbitrariness of the transition rate is increased by the fact
that an arbitrary function Λ(r, t) enters the integrand. In-
deed, several papers evaluate the discrepancy between the
probability calculated with two different gauges, and they
find that it is generally not small [6,41,53]. By properly
choosing Λ, the discrepancy can even be made arbitrary
large [51].

The absence of gauge invariance is due to the fact that
the operator is transformed but not the eigenstates of a0.
This is called a hybrid transformation in the literature [15].

2.3 Proposed solutions

The lack of gauge invariance of transition probabilities
is an alarming problem to which several solutions have
been proposed. Since no clear consensus appears to have
emerged [48], we present a critical review of these solu-
tions.

The first one, called the consistent procedure, was pro-
posed by Forney and coll. and Epstein [11,13]. It is based
on the observation that, if instead of gauge-transforming
a we transform the potential a0 of the initial Hamiltonian
to get Ha′

0
, where a′

0 = a0 − ∂Λ, then the evolution oper-
ator becomes again UA′(t, t0) (because a′

0 + a = a0 + a −
∂Λ = A′) but the eigenstates |φg⟩ and |φn⟩ are also trans-
formed into time-dependent states |φ′

g⟩ = MΛ(t0)|φg⟩ and
|φ′

n⟩ = MΛ(t)|φn⟩. Therefore, the transition probability is
now conserved. In other words, gauge invariance is lost if
we subtract ∂Λ from the perturbation but not if we sub-
tract it from the unperturbed Hamiltonian H0 = Ha0

.
Since the reference states |φn⟩ become time-dependent,

we leave the standard framework of time-dependent per-
turbation theory where the initial Hamiltonian H0 does
not depend on time. Moreover, it is not physically clear
why the gauge transformation should be applied to H0

and not to the perturbation.
In spite of these difficulties, many authors proposed

to use the consistent procedure. However, as noticed by
Yang [4], this does not really solve the problem because, if
we start the calculation with the initial potential Ha0

and
the perturbation a′, the transition probability is P ′

ng(t).

If we then use the consistent procedure to come back to
the perturbation a, then we still find P ′

ng(t) and we do
not recover the result Png(t). In other words, the transi-
tion probability is now gauge invariant (in the sense that
a change of gauge does not modify the result) but it is
gauge-dependent (in the sense that the result depends on
the gauge we use in the perturbation to start the calcula-
tion). This gauge dependence would be a serious problem
because we would have to select the “true” physical gauge
for the perturbation.

A second solution appeared in a series of papers start-
ing in 1976 [9,17,18,25,4,26,23,31,35,37,42], where Yang
and collaborators proposed to define a gauge invariant
transition probability. His idea is to start from the gauge-
invariant (but time-dependent) initial Hamiltonian

H0(t) =
(p − ea0 − ea(t))2

2m
+ eV, (3)

where V describes the electron-electron and electron-nuclear
interactions so that H = H0 +eφ: the perturbation is only
the scalar potential φ. Then, the Hamiltonian H0(t) is di-
agonalized at every time t: H0(t)|φn(t)⟩ = En(t)|φn(t)⟩
and the transitions are calculated between the time-dependent
states |φn(t)⟩. The corresponding transition probabilities
are indeed gauge invariant. This solution has been used
up to this day [40,52,55], although it was also strongly
criticized [12,19,20,27–29,32–34,59,60]. The main argu-
ments against Yang’s interpretation are: (i) the quantity
En(t) is not physical because you cannot measure an en-
ergy at a given time with arbitrary precision; (ii) the time-
dependent states |φn(t)⟩ can be neither prepared nor de-
tected; (iii) the term V in Eq. (3) should be removed from
H0(t) because it is a scalar potential and, as such, not
gauge invariant. But if V is removed, then H0(t) is so far
from the true Hamiltonian that perturbation theory is no
longer valid.

Following Goldman [61], Feuchtwang, Kazes and coll.
proposed the following alternative solution [27,28,62,33,
34]. They started from the well-known fact that the equa-
tions of motion of a Lagrangian are not modified by the ad-
dition of the total time derivative of a function [56]. Thus,
two Lagrangians that differ by a total time derivative are
equivalent [63]. Then, they remark that the addition of a

total time derivative eΛ̇ to the Lagrangian induces a gauge
transformation A → A − ∂Λ of the Hamiltonian [62,56,
49]. Finally, they use such a total derivative to compen-
sate for the electric potential that is the cause of the gauge
variance of the Hamiltonian. However, it is difficult to dis-
tinguish this procedure from picking up a specific gauge,
namely the Weyl or temporal gauge where the scalar po-
tential vanishes. We can conclude this short review by
stating that no solution was found fully satisfactory.

To determine when gauge invariance can be achieved
at the first order of perturbation theory, we consider a
Dirac Hamiltonian in two gauges A and A′ = A − ∂Λ and
we calculate the difference

⟨ψ|HA − HA′ |ψ′⟩ = e⟨ψ|cα · ∇Λ+ Λ̇|ψ′⟩.
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The advantage of the Dirac Hamiltonian is that the differ-
ence HA −HA′ does not depend on A, but a similar calcu-
lation can be carried out in the non-relativistic case [60].
Then, we notice that cα·∇Λ = (i/!)[HD, Λ] for any Dirac
Hamiltonian HD. Thus, if |ψ⟩ and |ψ′⟩ are eigenstates of
HD with energy E and E′, we obtain

⟨ψ|HA − HA′ |ψ′⟩ = e⟨ψ|Λ̇|ψ′⟩ + ie
E − E′

!
⟨ψ|Λ|ψ′⟩. (4)

If we consider the absorption cross-section of a pho-
ton of energy !ω, then energy conservation implies that
E′ = E+!ω. Thus, if Λ satisfies Λ̇ = −iωΛ, then ⟨φ|HA −
HA′ |φ′⟩ = 0 [60,42]. In other words, by restricting the

gauge transformations to those satisfying Λ̇ = −iωΛ, the
absorption cross-section, calculated up to first order in
perturbation theory, is gauge invariant. However, in the
resonant scattering cross-section, energy conservation does
not apply to the transition involving intermediate states,
and the cross-section is not gauge invariant even for those
gauges [10,42,53].

Equation (4) shows that the matrix elements are also
gauge invariant for a time-independent gauge transforma-
tion and energy conserving processes (i.e. E′ = E). How-
ever, the gauge invariance principle is not supposed to
restrict to gauges satisfying specific constraints such as
Λ̇ = −iωΛ or Λ̇ = 0.

This rapid overview shows that, in the published semi-
classical approaches where the photon is represented by
an external potential, the transition probabilities are not
gauge-invariant and no proposed solution has reached gen-
eral acceptance. Therefore, we turn now to a framework
where both electrons and photons are quantized: quantum
electrodynamics (QED).

2.4 Quantum electrodynamics

In QED the incident light is no longer described by an ex-
ternal electromagnetic field but by a photon, i.e. a state in
a bosonic Fock space. Therefore, a scattering experiment
is now described by the transition from an initial state
involving both the electronic system in its ground state
and the incident photon, to a final state involving both
the electronic system in its (possibly) excited state and
the scattered photon. Thus, the energy of the initial and
final states is the same and, in the Schrödinger picture,
the gauge transformation is expressed in terms of time-
independent operators instead of a time-dependent func-
tion Λ [64]. Equation (4) suggests that transition prob-
abilities, which are now described through the so-called
S-matrix, could be gauge invariant.

This is indeed the case, although a review of the liter-
ature on the gauge invariance of QED might look ambigu-
ous because the kind of gauge transformation considered
in different works can vary. In standard textbooks, “the
S-matrix is gauge invariant by construction” [65] because
only the so-called ξ-term is modified. In the most gen-
eral gauge transformation, the space of states change from
one gauge to the other [66]. For example, in the Coulomb

gauge, only the transverse degrees of freedom are quan-
tized and the photon states form a Hilbert space built by
acting on the vacuum with creation operators of left and
right polarized photons, while in the Lorenz gauge four
degrees of freedom are quantized and the states (built by
acting on the vacuum with creation operators of the left,
right, longitudinal and scalar photons) can have a negative
norm. In the Lorenz gauge, the Lorenz condition cannot
be satisfied as an operator equation [67], it becomes a sub-
sidiary condition used to determine a subspace of physical
states with positive norm.

In other words, the state spaces of the Coulomb and
Lorenz gauges have a quite different nature and the re-
lation between them is delicate. Haller managed to show
that the usual gauges are equivalent by devising a com-
mon framework containing all of them [43]. Note also that
the gauge-invariance can only be expected for the renor-
malized S-matrix [68–70].

The gauge invariance under a general infinitesimal gauge
transformation is well established within the Becchi-Rouet-
Stora-Tyutin (BRST) approach: matrix elements of gauge-
invariant operators between physical states are indepen-
dent of the choice of the gauge-fixing functional if and only
if the physical states |α⟩ satisfy Q|α⟩ = 0, where Q is the
BRST charge [71,72].The case of finite BRST transforma-
tions is in progress [73,74].

To summarize the discussion, the gauge invariance of
the renormalized S-matrix is established for infinitesimal
gauge transformations and for a reasonably large classe of
gauges [15,75,76,70,43,77–80]. In other words, it is proved
at the physicist level of rigour.

The most studied gauges are the Lorenz and Coulomb
gauges. Renormalization is perfectly established for the
Lorenz gauge, but in most practical calculations the sub-
sidiary condition (Gauss’ law) is not enforced [81]. Al-
though it was proved that the S-matrix elements are often
the same with and without the subsidiary condition [82,
83,15,12,28], this fails when the Hamiltonian is suddenly
changed [84], as in the sudden creation of a core hole in
photoemission or x-ray absorption [85,86]. In that case,
Gauss’ law has to be imposed in the Lorentz gauge and
the Coulomb gauge result is recovered [84].

We choose to use quantum electrodynamics in the Coulomb
gauge because it is the most accurate gauge for low-energy
many-body calculations [56,87].

3 Relativistic matrix elements

Since we now have a gauge-invariant framework, we can
calculate the relativistic matrix elements that will be used
in x-ray scattering and absorption cross-sections.

3.1 The Hamiltonian

The quantum field Hamiltonian describing the interaction
of light with matter in the Coulomb gauge is [15,88,56,
89]:
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H = He + Hγ + Heγ ,

where

He =

∫
drψ†(r)

(
cα · (−i!∇ − ea) + βmc2 + eφ

)
ψ(r)

+

∫
drdr′ ρ(r)ρ(r′)

8πϵ0|r − r′| ,

where φ is a time-independent scalar external potential
(for instance the nuclear potential), a is a time-independent
vector potential (describing an external magnetic field)
and ψ are fermion field operators. Normal ordering is im-
plicit in He. It is the QED form of the Dirac Hamiltonian
in the Coulomb gauge. The many-body version of this
Hamiltonian is

HN =
N∑

n=1

cαn · (−i!∇n − ea(rn)) + βnmc2 + eφ(rn)

+
∑

m̸=n

e2

8πϵ0

1

|rm − rn| ,

where αn and βn act on the nth Dirac electron. It can
be given a well-defined mathematical meaning if the elec-
tronic system is described with respect to the Dirac sea [90],
although the physical validity of the Dirac sea is some-
times disputed [91].

The photon Hamiltonian is

Hγ =
ϵ0
2

∫
dr|E⊥|2 + c2|B|2 =

∑

k,l

!ωk,la
†
k,lak,l,

where l stands for the polarization of a mode (there are
two independent directions for a given wavevector k) and

Heγ = −ec

∫
drψ†(r)α · A(r)ψ(r),

describes the photon-matter interaction in the Coulomb
gauge. According to Bialynicki-Birula, the Hamiltonian
H also describes the dynamics of gauge-invariant states in
any gauge [89]. The many-body version of this interaction
Hamiltonian is

HI = −ec

N∑

n=1

αn · A(rn).

3.2 S-matrix elements

Since we saw that the S-matrix is gauge invariant, we cal-
culate its matrix-elements. We recall that

S = lim
ϵ→0

T (e− i
!

R ∞
−∞ Hϵ(t)dt), (5)

where Hϵ(t) = e−ϵ|t|eiH0tHeγe
−iH0t. The adiabatic switch-

ing factor e−ϵ|t| enables us to describe physical processes

as matrix elements of S between eigenstates of H0 =
He + Hγ . The limit ϵ → 0 can be shown to exist up to
technical assumptions [92]. Note that H0 is not quadratic
because of the Coulomb interaction term in He. The eigen-
states of He are correlated multi-electronic wavefunctions.
As a consequence, we are not in the textbook framework,
the time-dependence of Hϵ(t) cannot be calculated explic-
itly and the Feynman diagram technique is no longer avail-
able to describe electrons. We can bypass this problem
with the so-called “non-covariant” approach [93], using
matrix elements of Hϵ(t) between eigenstates of H0. Then,
cross-sections are expressed in terms of the S-matrix and
T-matrix elements related by:

⟨m|S|n⟩ = δmn − 2iπδ(em − en)⟨m|T |n⟩.

Up to second order,

⟨m|T |n⟩ = ⟨m|Heγ |n⟩ +
∑

p

⟨m|Heγ |p⟩⟨p|Heγ |n⟩
ep − en + iγ

, (6)

where |m⟩, |p⟩ and |n⟩ are eigenstates of H0 with energy
em, ep and en, respectively. The term iγ was added as a
heuristic way to avoid divergence at resonance (i.e. when
the states |n⟩ and |p⟩ are degenerate). More sophisticated
methods exist to deal with such degeneracies [94] but they
would bring us too far. From the physical point of view,
γ describes the life-time of the state |p⟩, which can de-
cay by radiative or non-radiative relaxation. The sign of
the damping term γ has been the object of some contro-
versy [95–98].

Let us stress again that, since He is not quadratic,
we essentially work in the Schrödinger picture, where the
operators are independent of time, instead of the standard
interaction picture which is used in most textbooks. Both
approaches are equivalent [99]. A modern version of the
Schrödinger picture of QFT is given by Hatfield [100].

Our purpose is now to calculate the matrix elements
⟨m|Heγ |n⟩, where Heγ is independent of time. The second
quantized expression for the photon field in the Schrödinger
picture is [101]:

A(r) =
∑

k,l

√
!

2ϵ0V ωk

(
ϵk,lak,le

ik·r + ϵ⋆k,la
†
k,le

−ik·r
)

.

Note that we do not assume the polarization vectors ϵk,l

to be real.
We denote |n⟩ = a†

k,l|0⟩|Ψn⟩ an eigenstate of H0 where
one photon is present in mode k, l and the electrons are
in state |Ψn⟩ with energy En. The energy of |n⟩ is en =
!ωk,l+En. The interaction Hamiltonian Heγ is linear in A
which is linear in photon creation and annihilation opera-
tors so that only one-photon transitions are possible. The
state |n⟩ can make transitions towards |a⟩ = |0⟩|Ψm⟩ by

absorption and |e⟩ = a†
k,la

†
k′,l′ |0⟩|Ψm⟩ by emission. From

now on, we denote ω = ωk,l, ϵ = ϵk,l, ω
′ = ωk′,l′ and

ϵ′ = ϵk′,l′ . The corresponding matrix elements are:

⟨a|Heγ |n⟩ = −ec

√
!

2ϵ0V ω
ϵ · ⟨Ψm|

∫
ψ†αψeik·r|Ψn⟩,
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and

⟨e|Heγ |n⟩ = −ec

√
!

2ϵ0V ω′ ϵ
′⋆ · ⟨Ψm|

∫
ψ†αψe−ik′·r|Ψn⟩,

where
∫
ψ†αψe±ik·r =

∫
ψ†(r)αψ(r)e±ik·rdr.

3.3 Electric dipole and multipole transitions

Johnson and coll. calculated relativistic multipole transi-
tions of arbitrary order for two-electron atoms [102]. Here
we stop at the first order in k but we do not assume spher-
ical symmetry of the Hamiltonian.

To carry out a multipole expansion of the previous
matrix elements, we shall continue working with quantum
fields instead of the usual many-body expressions. In that
framework, the expressions are simpler because there is no
electron index and we can use the following well-known
trick [103,67].

Let F =
∫
ψ†(r)f(r)ψ(r)dr, where f is some function

of r. To calculate the commutator of F with some Hamil-
tonian H0, we go to the interaction picture and define
FI(t) = eiH0t/!Fe−iH0t/!. Then, the time-derivative ḞI of

FI is given by −i!ḞI(t) = [H0, FI(t)]. Now, we notice that
F is related to the density operator ρ(r) = ψ†(r)ψ(r) by

F =
∫
ρ(r)f(r)dr. Thus, −i!ḞI(t) = −i!

∫
ρ̇(r, t)f(r)dr =

[H0, FI(t)]. If H0 conserves the electric charge, the conti-
nuity equation eρ̇(r) = −∇· j holds, where j is the electric
current operator. By taking t = 0 to recover the operators
in the Schrödinger picture, we obtain

[H0, F ] =
i!
e

∫
∇ · j(r)f(r)dr = − i!

e

∫
j(r) · ∇f(r)dr

= −i!c

∫
ψ†(r)αψ(r) · ∇f(r)dr. (7)

To find the electric dipole transition term we apply Eq. (7)
with f(r) = ϵ · r and H0 = He:

[He,

∫
ψ†(r)ϵ · rψ(r)dr] = −i!c

∫
ψ†(r)αψ(r) · ϵdr,

and we obtain in the dipole approximation eik·r ≃ 1

⟨a|Heγ |n⟩ =
e(Em − En)

i!

√
!

2ϵ0V ω
⟨Ψm|

∫
ψ†ϵ · rψ|Ψn⟩.

To deal with electric quadrupole and magnetic dipole
transitions, we expand to the first order: eik·r ≃ 1 + ik · r.
We apply Eq. (7) with f(r) = ϵ · rk · r and H0 = He:

[He, ψ
†ϵ · rk · rψ] = −i!cψ†αψ · (ϵk · r + kϵ · r),

where we removed the integral sign for notational conve-
nience. Thus,

ψ†ϵ · αk · rψ =
i

!c
[He, ψ

†ϵ · rk · rψ] − ψ†ϵ · rk · αψ.

If we add ψ†ϵ · αk · rψ to both terms we obtain

2ψ†ϵ · αk · rψ =
i

!c
[He, ψ

†ϵ · rk · rψ]

−ψ†(ϵ × k) · (r × α)ψ.

Finally, up to electric quadrupole transitions

⟨a|Heγ |n⟩ =
e∆E

i!

√
!

2ϵ0V ω
⟨Ψm|

∫
ψ†Tψ|Ψn⟩, (8)

where ∆E = Em − En and

T = ϵ · r +
i

2
ϵ · rk · r − !c

2∆E
(ϵ × k) · (r × α). (9)

The first term of T is the usual electric-dipole operator,
the second one is the electric-quadrupole operator and the
third one will turn out to be the magnetic-dipole operator
(see section 4.3). Similarly,

⟨e|Heγ |n⟩ =
e∆E

i!

√
!

2ϵ0V ω′ ⟨Ψm|
∫
ψ†T ′ψ|Ψn⟩, (10)

where

T ′ = ϵ′⋆ · r − i

2
ϵ′⋆ · rk′ · r +

!c

2∆E
(ϵ′⋆ × k′) · (r × α).

4 Foldy-Wouthuysen transformation of
cross-sections

In the previous sections, we have shown that gauge invari-
ance is ensured by describing the interaction of light and
matter with quantum electrodynamics, where photons are
quantized and electrons are described by four-component
Dirac spinor quantum fields.

Although fully relativistic spectroscopy packages do
exist [104,105], in most solid-state calculations, we do
not use Dirac spinors but two-component (Pauli) wave-
functions. Moreover, semi-relativistic expressions are of-
ten physically clearer. Therefore, we need to link the two
representations by using a generalization of the Foldy-
Wouthuysen transformation.

In this section, we first describe the Foldy-Wouthuysen
transformation and its many-body extension. Then, we
use this framework to calculate the relativistic corrections
to the dipole and quadrupole transitions. The calcula-
tions are considerably simpler than the usual approach,
where the relativistic corrections are derived from a semi-
relativistic Hamiltonian.

4.1 The Foldy-Wouthuysen transformation

The idea of the Foldy-Wouthuysen transformation is the
following. If HD is a time-independent relativistic Hamil-
tonian, it has the form

HD = H0 +

(
H11 H12

H21 H22

)
,
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where H0 = mc2β and each Hij is a 2x2 matrix. We write
HD as the sum of even and odd parts HD = H0 + E + O,
where

E =

(
H11 0
0 H22

)
, O =

(
0 H12

H21 0

)
,

satisfy βEβ = E and βOβ = −O. Note that H0 is also
even. If |ψD⟩ is a solution of the Dirac equation HD|ψD⟩ =
E|ψD⟩, where HD is the Dirac Hamiltonian, then the up-
per two components of |ψD⟩ are called the large com-
ponents and the lower two the small components. The
Dirac equation couples the large and small components of
|ψD⟩ through the odd terms of HD. Foldy and Wouthuy-
sen [106] looked for a unitary operator U that decou-
ples the large and small components of |ψ⟩ = U |ψD⟩. In
other words, H = UHDU† has only even components:
H = βHβ. The method proposed by Foldy and Wouthuy-
sen consists in successive transformations of the form U =
eiS [106,107].

This transformation does not satisfy Eriksen’s condi-
tion U = βU†β discussed in the Appendix. This is because

the product U = eiS(2)

eiS(1)

does not satisfy this equation

even if eiS(1)

and eiS(2)

do. Silenko recently derived the cor-
rection that must be applied to go from Foldy-Wouthuysen
to Eriksen transformations [108], and he showed that the
correction is at an order beyond the one we consider in
this paper.

In the Appendix, we derive a very general Foldy-Wouthuysen
transformation which only assumes the existence of a self-
adjoint operator HD and a self-adjoint involution η (i.e.
η† = η and η2 = 1). We show that we can build from HD

and η a unitary matrix U such that ηUHDU†η = UHDU†

(which means that UHDU† couples only even components
to even components and odd components to odd compo-
nents). Moreover, Eriksen’s condition U = ηU†η is satis-
fied.

This transformation is exact in the following sense.
The positive energy Dirac wavefunctions |Φ⟩ and |Ψ⟩ can
be expressed in terms of the Foldy-Wouthuysen ones |φ⟩
and |ψ⟩ by |Φ⟩ = U †|φ⟩ and |Ψ⟩ = U†|ψ⟩, where |φ⟩ and
|ψ⟩ are even (i.e. they satisfy η|φ⟩ = |φ⟩ and η|ψ⟩ = |ψ⟩).
For one-particle wavefunctions, this means that the small
components of |φ⟩ and |ψ⟩ is zero.

The relativistic x-ray absorption cross-section can then
be written

σ = 4πα0!ω
∑

φ

|⟨φ|UTU†|ψ⟩|2δ(Eφ − Eψ − !ω),(11)

where α0 is the fine-structure constant.
This relation is exact if U is calculated to all orders in

1/c2. In the next sections, we shall expand U in powers of
1/c2.

4.2 Semi-relativistic dipole transitions

We consider the matrix elements D = ⟨Φ|
∫
ψ†ϵ · rψ|Ψ⟩,

that we rewrite in terms of Foldy-Wouthuysen wavefunc-
tions as in Eq. (11). Since U is written as a many-body

operator, we translate the quantum field expression for
D into the many-body formula D = ⟨Φ|ϵ · R|Ψ⟩, where

R =
∑N

n=1 rn [109,110]. We calculate D = ⟨φ|Uϵ·RU†|ψ⟩,
where U = eiS by using the Baker-Campbell-Hausdorff
formula

eiSTe−iS = T + i[S, T ] +
∞∑

n=2

in
Ln(T )

n!
,

where L(T ) = [S, T ] and Ln(T ) = L(Ln−1(T )). At the
first order in 1/c2 we have U = U1 ⊗ · · · ⊗ UN , where

Ui = eiS
(1)
i , with S

(1)
i = −i

2mc2βiOi. Hence, we can calcu-
late the action of U on each variable independently. Re-
moving temporarily the constant −i/2mc2, we take the
one-body operator S = βO and compute

L(ϵ̂ · r) = c[βα · (p − ea0), ϵ̂ · r] = c
∑

ij

βαiϵj [pi, rj ]

= −i!c
∑

ij

βαiϵjδij = −i!cβα · ϵ̂,

and

L2(ϵ̂ · r) = −i!c2[βα · (p − ea0), βα · ϵ̂]
= −i!c2

∑

ij

(pi − ea0i)ϵj [βα
i, βαj ]

= i!c2
∑

ij

(pi − ea0i)ϵj [α
i, αj ],

where we used βαi = −αiβ and β2 = 1. We compute

[αi, αj ] = 2i
∑

k

ϵijk

(
σk 0
0 σk

)
= 2i

∑

k

ϵijkΣ
k,

which defines Σk the components of Σ. Therefore,

L2(ϵ̂ · r) = −2!c2(p − ea0) · (ϵ̂× Σ).

So that, for each particle, and up to O(m−2),

Unϵ · rnU†
n = ϵ · rn − i

!
2mc

βnαn · ϵ

− !
4m2c2

πn · (ϵ × Σn).

The many-body version is obtained by summing the right-
hand side over n.

In the matrix elements D = ⟨φ|Uϵ·RU †|ψ⟩, recall that
|ψ⟩ = η|ψ⟩ and |φ⟩ = η|φ⟩ because |Ψ⟩ and |Φ⟩ are posi-
tive energy states, as shown in the Appendix. Therefore,
⟨φ|Uϵ ·RU †|ψ⟩ = ⟨φ|ηUϵ ·RU†η|ψ⟩ and all the terms that
are odd in Uϵ·RU † are eliminated by the matrix elements.
This eliminates the term proportional to βnαn and we are
left with

D =

N∑

n=1

⟨φ|ϵ · rn − !
4m2c2

πn · (ϵ × Σn)|ψ⟩.
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4.3 Semi-relativistic multipole transitions

From Eq. (9), we write the multipole transitions

M =
i

2
E2 − !c

2∆E
M1,

where

E2 =
∑

n

⟨φ|Uϵ · rnk · rnU†|ψ⟩,

M1 =
∑

n

⟨φ|U(ϵ × k) · (rn × αn)U†|ψ⟩,

correspond to the electric quadrupole and magnetic dipole
transitions, respectively. Since multipole transitions are
smaller than dipole ones, it is enough to use the first two
terms of the Baker-Campbell-Hausdorf formula.

The term [Sn, ϵ · rnkn · rn] is odd and disappears in
the matrix element. Thus, at the order we consider,

E2 =
∑

n

⟨φ|ϵ · rnk · rn|ψ⟩.

Let T2 = (ϵ × k) · (r × α). We write

[βO, T2] = c[βα · p, T2] − ec[βα · a0, T2]

= cβ({α · p, T2} − e{α · a0, T2}).

The anticommutators are

{α · p, T2} =
∑

ijkl

ϵjkl(ϵ × k)j(αiαlpirk + rkpiαlαi)

= 2(ϵ × k) · (!Σ + L),

and

{α · a0, T2} =
∑

ijkl

ϵikl(ϵ × k)iajrk{αj , αl}

= 2(ϵ × k) · (r × a0).

Note that !Σ = gS with g = 2 (because the spin operator
is S = !Σ/2). Thus, we recover the fact that the Dirac
equation gives a gyromagnetic factor g = 2 to the electron.
Moreover, L+!Σ = L+2S is the total magnetic moment
of the electron.

Finally, since rn × αn is odd,

M1 =
∑

n

βn

mc
⟨φ|(ϵ × k) · (!Σn + Λn)|ψ⟩,

where Λn = Ln − ern × a0(rn) is the moment of the me-
chanical momentum as defined in Ref. [111]. The term
M1 describes magnetic-dipole transitions. The multipole
transitions are

M =
∑

n

⟨φ| i
2
ϵ · rnk · rn

− !βn

2m∆E
(ϵ × k) · (!Σn + Λn)|ψ⟩.

5 Absorption cross-section

The absorption cross section is calculated by assuming
that initially the system of electrons is in state |I⟩ that
can be transformed into Foldy-Wouthuysen eigenstate |i⟩,
with energy Ei, and that a photon k, ϵ is present. In the
final state there is no photon and the system is in state
|F ⟩ (|f⟩ after transformation).

The transition probability per unit time from state m
to state n is related to the T-matrix elements by [112]:

w =
2

!
δmn Im⟨m|T |m⟩ +

2π

!
δ(en − em)|⟨n|T |m⟩|2. (12)

and must be divided by c/V (rate at which the photon
crosses a unit of surface) to obtain the cross section. Since
we consider real transitions (i.e. m ̸= n), only the second
term is present.

From (8) and using the result of transformation de-
rived in the previous section:

σ = 4π2α0!ω
∑

f

|⟨f |TFW|i⟩|2δ(Ef − Ei − !ω),

where TFW is:

TFW =
∑

n

ϵ · rn +
i

2
ϵ · rnk · rn − !

4m2c2
πn · (ϵ × Σn)

− βn

2mω
(ϵ × k) · (!Σn + Λn),

with α0 the fine structure constant and ∆E = Ef − Ei =
!ω.

It corresponds to the usual formula for the cross section
[113] with two more terms: the third one and the last one.

The third term was already found by Christos Gougous-
sis in his PhD thesis [114], but his final result was not in
agreement with ours because of his use of the commuta-
tion relation, as described in section 7.6. We rewrite it by
using π = (m/i!)[r,HFW

0 ] + O(c−2), where HFW
0 is the

Foldy-Wouthuysen Hamiltonian, to get:

− !
4m2c2

⟨f |π · (ϵ × Σ)|i⟩

=
i

4mc2
(Ei − Ef )⟨f |r · (ϵ × Σ)|i⟩

=
i!ω

4mc2
⟨f |(ϵ × r) · Σ|i⟩.

We call spin-position operator the operator (ϵ× r) ·Σ. Its
evaluation at the K-edge of materials will be presented in
a companion paper [5].

The amplitude of the last term depends on the choice
of the space origin in the Coulomb gauge for a0. It does
not make the cross section gauge dependent because the
states are changed accordingly when choosing the origin
of the gauge. If the origin of the gauge is chosen at the
atom position, fields larger than 106 T are required for
this term to be significant. Such fields are way beyond
laboratory accessible values.
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6 Scattering cross-section

The scattering cross section is calculated by assuming that
initially the system of electrons is in state |I⟩ with a pho-
ton ki, ϵi and that in the final state the system is in state
|F ⟩ with a scattered photon kf , ϵf . We do not consider
the special case when ki, ϵi = kf , ϵf .

Eqs. (8), (10) and (12) yield:

w =
2π

!
∑

F

δ(Ef + !ωf − Ei − !ωi)
∣∣∣
∑

L

e2c2!
2ϵ0V

1
√
ωiωf

⟨F |e−kf
ψ†α · ϵ⋆fψ|L⟩⟨L|eki

ψ†α · ϵiψ|I⟩
Ei − El + !ωi + iγ

+
⟨F |eki

ψ†α · ϵiψ|L⟩⟨L|e−kf
ψ†α · ϵ⋆fψ|I⟩

Ei − El − !ωf

∣∣∣
2

,

where γ > 0 and

ekψ
†α · ϵψ =

3∑

j=1

∫
eik·rψ†(r)αjψ(r)ϵjdr.

The scattering cross-section is related to w by [115]:

d2σ

dΩdωf
=

V 2

(2π)3
ω2

f

1

!c4
w.

Since the electric charge is related to the classical electron
radius re by e2 = 4πϵ0remc2, we obtain the relativistic
Kramers-Heisenberg scattering cross-section:

d2σ

dΩdωf
= (remc2)2

ωf

ωi

∑

F

δ(Ef + !ωf − Ei − !ωi)

∣∣∣
∑

L

⟨F |e−kf
ψ†α · ϵ⋆fψ|L⟩⟨L|eki

ψ†α · ϵiψ|I⟩
Ei − El + !ωi + iγ

+
⟨F |eki

ψ†α · ϵiψ|L⟩⟨L|e−kf
ψ†α · ϵ⋆fψ|I⟩

Ei − El − !ωf

∣∣∣
2

.

In this expression, the sum over |L⟩ involves a complete set
of states, with positive and negative energies. Since Ei is
usually the positive energy of the ground state including
the electron rest energy, we have Ei = mc2 + E′

i > 0,
where E′

i is the usual (negative) ground state energy. If
|L⟩ is a positive energy state, we have El = mc2 +E′

l with
E′

l > E′
i and the first term is resonant at !ωi = E′

l −E′
i. If

|L⟩ is a negative energy state, then El = −mc2 − E′
l and

Ei −El −!ωf = 2mc2 +E′
i −E′

l −!ωf cannot be resonant
in standard experimental conditions.

We show that the resonant scattering term has a semi-
relativistic expansion close to, but different from, the stan-
dard one [116]. If we are interested in the resonant part of
the scattering cross section, then El > 0 and

d2σ

dΩdωf
= (

rem

!2
)2
ωf

ωi

∑

f

δ(Ef + !ωf − Ei − !ωi)

∣∣∣
∑

L>

(El − Ei)(Ef − El)

⟨f |T ′fl
FW(ϵf )|l⟩⟨l|T li

FW(ϵi)|i⟩
Ei − El + !ωi + iγ

∣∣∣
2

.

with

T ij
FW(ϵi) =

∑

n

ϵi · rn +
i

2
ϵi · rnki · rn

− !
4m2c2

πn · (ϵi × Σn)

− !βn

2m∆Eij
(ϵi × ki) · (!Σn + Λn),

and

T ′ij
FW(ϵf ) =

∑

n

ϵ⋆f · rn − i

2
ϵ⋆f · rnkf · rn

− !
4m2c2

πn · (ϵ⋆f × Σn)

+
!βn

2m∆Eij
(ϵ⋆f × kf ) · (!Σn + Λn),

where ∆Eij = Ei − Ej .
As in the absorption case, the spin-position term in

the transition operator is not present in the usual for-
mula [116].

7 Other methods

In this section, we compare our semi-relativistic transition
matrix elements with the ones obtained by using time-
dependent perturbation theory where the time-evolution
is described by several time-dependent semi-relativistic
Hamiltonians: the one proposed by Blume, the “gauge-
invariant” Foldy-Wouthuysen one, the textbook Foldy-
Wouthuysen one and the effective Hamiltonian derived in
non-relativistic QED (NRQED). Before making this com-
parison, we first explain why using a time-dependent semi-
relativistic Hamiltonian in a perturbation calculation can
lead to incorrect results.

7.1 Foldy-Wouthuysen subtelties

In this section, we assume that the exact time-dependent
Foldy-Wouthuysen operator U is known. Thus, the fol-
lowing difficulties are not related to the use of an approx-
imation, but to the interplay of the Foldy-Wouthuysen
method with perturbation theory.

The first subtelty was noticed by Nieto [117,61]: If
|Ψ⟩ is a solution of the time-dependent Dirac equation
(i!∂t − H)|Ψ⟩ = 0, then the Foldy-Wouthuysen trans-
formation turns it into |ψ⟩ = U |Ψ⟩, where U is a uni-
tary time-dependent operator. The time-dependent Dirac
equation for |Ψ⟩ implies that |ψ⟩ is a solution of the time-
dependent Schrödinger equation (i!∂t−H ′)|ψ⟩ = 0, where
H ′ = UHU−1 + i!(∂tU)U−1 is the time-dependent Foldy-
Wouthuysen Hamiltonian. In the following, an uppercase
Greek letter (|Φ⟩ or |Ψ⟩) refers to a solution of the Dirac
equation and the corresponding lowercase letter (|φ⟩ or
|ψ⟩) to its Foldy-Wouthuysen transformation.

As a consequence, a matrix element ⟨Φ|H|Ψ⟩ is not
equal to ⟨φ|H ′|ψ⟩, but to ⟨φ|H ′ −i!(∂tU)U−1|ψ⟩. In other
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words, H ′ has to be used to calculate the states |φ⟩ and
|ψ⟩ but not to calculate the matrix elements of the Hamil-
tonian.

The second subtelty was observed by Yang [4] and
concerns the most straightforward way to use the Foldy-
Wouthuysen Hamiltonian H ′(t), where the time depen-
dence is now explicit, to compute transition probabilities.
This Hamiltonian is split into a time-independent part
H ′

0 and a time-dependent one H ′
1(t), so that H ′(t) =

H ′
0+H ′

1(t). The scalar product ⟨φ′
n|ψ(t)⟩, where |φ′

n⟩ is an
eigenstate of H ′

0, cannot be equal to the relativistic scalar
product ⟨Φn|Ψ(t)⟩. Indeed |ψ(t)⟩ = U(H0 + H1(t))|Ψ(t)⟩
but |φ′

n⟩ ≠ U(H0 + H1(t))|Φn⟩ because |φ′
n⟩ and |Φn⟩

are independent of time whereas U(H0 + H1(t)) depends
on time. Since only the QED relativistic matrix elements
where found to be gauge invariant, ⟨φ′

n|ψ(t)⟩ is generally
not physically meaningful.

The two problems combine if first-order perturbation
theory is naively applied with Foldy-Wouthuysen eigen-
states and Hamiltonian. The Foldy-Wouthuysen interac-
tion Hamiltonian H ′

1(t) = H ′(t) − H ′
0 ̸= U(H0)(H(t) −

H0)U
†(H0). As a consequence, ⟨φ′

n|H ′
1(t)|φ′

g⟩ is not equal
to ⟨Φn|H1(t)|Φg⟩.

To illustrate the variety of results that can be ob-
tained by using first-order perturbation theory with semi-
relativistic Hamiltonians, we now examine four Hamilto-
nians used in practice. To help comparing these Hamilto-
nians, we express them in a common one-particle frame-
work.

7.2 The Blume Hamiltonian

Blume discussed the interaction of light with magnetic
matter by starting from the Hamiltonian [118,116]:

HB =
π2

2m
+ eV − e!

2m
σ · B − e!

4m2c2
σ · (E × π), (13)

where π = p − eA. This Hamiltonian is the sum of four
terms: (i) the kinetic energy of the electron, (ii) an external
potential, (iii) the Zeeman interaction between the elec-
tron and a magnetic field and (iv) the spin-orbit interac-
tion (because, for a spherical V and a static A, σ·(E×p) =
−1
r

dV
dr σ · (r × p) = −1

r
dV
dr σ · L).

There are several differences between our notation and
Blume’s: he considers a many-body Hamiltonian (involv-
ing sums over electrons) and writes

∑
ij V (rij) for our eV ,

he adds the Hamiltonian Hγ of the free photons, he uses
A/c, ∇ × A/c and s where we use A, B and σ/2, finally,
his Zeeman term is wrong by a factor of 2 in his first two
papers on the subject [118,116], but this was corrected in
the third one [119]. In this third paper, Blume also replaces

E by −Ȧ. This is not compatible with his quantized de-
scription of the photon field. Indeed, the time-derivative
Ȧ is present in the Lagrangian but, after the Legendre
transformation leading to the Hamiltonian, Ȧ is replaced
by its canonical momentum −E. Note that Blume does
not sketch any derivation of his Hamiltonian.

7.3 Foldy-Wouthuysen Hamiltonian

We consider now the so-called “gauge-invariant” Foldy-
Wouthuysen Hamiltonian for positive-energy states up to
order 1/(mc)2 [120]:

HFW = HB + mc2 − e!2

8m2c2
∇ · E − ie!2

8m2c2
σ · (∇ × E).

The difference between the Foldy-Wouthuysen and the
Blume Hamiltonians consists of three terms: the rest en-
ergy mc2 of positive-energy eigenstates, the Darwin term
proportional to ∇ · E and a last term, proportional to
σ · (∇ × E) and called the curl-term, that we discuss
presently. A basic difference between HB and HFW must
first be stressed: the former is a QED expression where the
quantum fields A, B and E are independent of time be-
cause they are written in the Schrödinger representation,
while the latter was derived under the assumption that
A and V are external time-dependent potentials. In par-
ticular, the curl-term disappears if the external field A is
independent of time [101]. In the semi-classical treatment
of light-matter interaction, the photons are represented
by an external time-dependent potential and this term is
present.

These Hamiltonians can be written H(A, Φ), where
the total vector potential A and scalar potential Φ are a
sum A = a0 + a, Φ = φ0 + φ, of static external potentials
a0 and φ0 (representing the static internal and external
fields) perturbed by dynamical potentials a and φ repre-
senting the incident electromagnetic wave. We write the
interaction Hamiltonian as HI = H(A, Φ) − H(a0, φ0).
The two Hamiltonians HB and HFW lead to two differ-
ent interactions: HB

I = h1 + h2 + h3 + h4 + h5 + h6 and
HFW

I = HB
I + h7, where

h1 =
e2

2m
a2,

h2 = − e

m
a · π0,

h3 = − e!
2m

σ · (∇ × a),

h4 =
e2!

4m2c2
σ · (e × a),

h5 = − e!
4m2c2

σ · (e × π0),

h6 =
e2!

4m2c2
σ · (e0 × a),

h7 = − ie!2

8m2c2
σ · (∇ × e),

with π0 = p − ea0. The curl-term in HFW is the origin
of the presence of h7 in HFW

I . It originates from the term
i!(∂tU)U−1 in the time-dependent Foldy-Wouthuysen Hamil-
tonian. The Darwin term gives no contribution to the in-
teraction because ∇·e is zero for the electromagnetic wave.
The terms h5 and h6 were omitted by Blume, who con-
sidered them to be small [118]. We shall see that h5 is the
source of a spin-position term which is not negligible in
x-ray magnetic circular dichroism (XMCD) spectra [5].
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7.4 Textbook Foldy-Wouthuysen Hamiltonian

Standard textbooks often derive a Foldy-Wouthuysen Hamil-
tonian HTFW which is the same as HFW, except for the
fact that π is replaced by p in the spin-orbit term [121,
122]. A mass-velocity term −(p·p)2/8m3c2 is often added [121]
but its contribution to the radiation-matter interaction is
zero. The difference with the Foldy-Wouthuysen Hamilto-
nians is a term in σ ·E×A. This results in the absence of
h4 and h6 in the perturbation Hamiltonian, which changes
the transition probabilities.

7.5 NRQED

To deal with QED calculations involving bound states,
Caswell and Lepage proposed an alternative approach to
relativistic effects, called non-relativistic QED (NRQED),
which turned out to be highly successful [123]. They wrote
the most general gauge-invariant non-relativistic Lagrangian
terms and fitted the coefficients of these terms to known
QED processes [124].

The corresponding NRQED Hamiltonian is the same
as HFW up to order c−2, but its interpretation is dif-
ferent [124]. Indeed, NRQED is a quantum field theory,
and the fields are independent of time in the Schrödinger
representation. However, the curl-term is present in time-
independent NRQED although it is generated by a time-
dependence in HFW. In particular, the curl-term must not
be removed from the Hamiltonian to calculate matrix el-
ements of the Hamiltonian operator, in contrast to the
example of section 7.1.

Besides these four different Hamiltonians, we consider
an additional source of discrepancies between authors: the
commutators.

7.6 Commutators

To derive the multipole expansion of the matrix element
of HI , it is useful to replace π by a commutator with
H0 = H(a0, φ0). The derivations that start from Blume’s
interaction Hamiltonian usually use the relation [125,2].

p =
mi

!
[H0, r]. (14)

However, if one considers the static Hamiltonian given by
Blume (13), its commutator with r is:

[HB
0 , r] = − i!

m
π0 +

e!
4m2c2

(i!)(σ × e0),

which is different from Eq. (14) because p is replaced by
π0 = p−ea0 and because of the term proportional to c−2.
The commutator of r with HTFW

0 and HFW
0 are the same.

In HFW
I and HB

I , when π0 in h2 is rewritten as a function
of the commutator, the extra relativistic term leads to the
cancellation of h6, which is important in XMCD. On the

other hand, it leads to a contribution e2!
4m2c2 σ · [∇v0 × a]

in HTFW
I .

If the mass-velocity term −(p · p)2 is present in H0,

the additional contribution to the commutator, i!(p·p)p
2m3c2 is

small compared to i!
mp if the order of magnitude of the

kinetic energy of the core state satisfies Ek << mc2.
For all the Hamiltonians presented here, using the re-

lation [p, v0] = i!∇v0, the electric field in matter writes
at zeroth order in c−2 as a function of the commutator of
π0 with H0:

e0 = −∇v0 =
−i

e!
[π0,H0].

In the case of absorption, the commutator transforms into
a factor ∆E = −!ω in the cross section so that h5 and h6

lead to the same contribution to the matrix element:

−ie!ω
4m2c2

σ · (a × π0),

which corresponds to the spin-position interaction. Ex-
plicit calculations showed that this contribution can ap-
pear two times, one time or cancel completely, according
to which Hamiltonian and which commutator was used.
Starting from HFW, the same absorption cross section as
in our new approach can be derived. However, in the case
of scattering, even with HFW, there is a factor ∆E/!ω
which is not correct. The same kind of discrepancy was
already observed in the literature [10,42].

8 Conclusion

This paper was written because of the gauge-dependence
of transition probabilities in the semi-classical approach
and because we observed, after other authors [125,126],
that different semi-relativistic Hamiltonians lead to dif-
ferent cross-sections.

Our solution makes essential use of quantum electro-
dynamics as the correct gauge-invariant framework to dis-
cuss the interaction of light with matter. It is well-known
that the semi-classical and QED absorption cross-sections
are identical in the Coulomb gauge [127]. This is compat-
ible with our discussion because, to go from the Coulomb
gauge to another gauge, the semi-classical approach only
involves the operator MΛ, while QED involves a redef-
inition of the space of states, including in an essential
way non-physical polarizations and even ghost states in
the BRST approach. This redefinition is able to maintain
gauge invariance where the semi-classical MΛ fails to do
so.

In the present paper, the stationary states of the elec-
tronic system was taken to be eigenstates of He. The inter-
action Hamiltonian Heγ can modify these states through
various QED effects, for example the Breit interaction dis-
cussed by Bethe and Salpeter [128]. We expect these con-
tributions to be small in x-ray spectroscopy.

The explicit calculation of the spin-position contribu-
tion at the K-edge of Fe, Co and Ni will presented in a
forthcoming publication [5].

It was known since Heisenberg in 1928 [129], that the
Thomson cross-section which is due to the A2 term in the
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non-relativistic approach, can be derived from the rela-
tivistic framework by using a sum over negative-energy
states [130,101]. We intend to provide a more accurate
discussion of the contribution of negative-energy states
to the scattering cross-section by using our many-body
Foldy-Wouthuysen approach.
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A Foldy-Wouthuysen transformation

In this appendix we derive a new general Foldy-Wouthuysen
transformation and we apply it to the many-body Hamil-
tonian.

A.1 General Foldy-Wouthuysen transformation

To derive a many-body Foldy-Wouthuysen transforma-
tion, we first notice that, in the one-body case, β endows
the space of spinors with the structure of a Krein space,
where β is then called a fundamental symmetry [131]. For
quite a different purpose [132], we investigated the tensor
product of such spaces and showed that the fundamentaly
symmetry of the Nth tensor power is essentially η = β⊗N .
The abstract Krein-space framework leads us naturally to
the following theorem:

Assume that HD and η are self-adjoint operators and
η2 = 1. Then, there is a unitary operator U such that
U = ηU†η and ηUHDU†η = UHDU†. Moreover, if |ψD⟩
is an eigenstate of HD with positive (resp. negative) eigen-
value, then |ψ⟩ = U |ψD⟩ satisfies |ψ⟩ = η|ψ⟩ (resp. |ψ⟩ =
−η|ψ⟩).

The condition U = ηU †η does not appear in Foldy
and Wouthuysen works. It was added by Eriksen [133,134,
108]. It means that U is self-adjoint for the Krein-space
structure.

Let us start with general considerations involving a
self-adjoint operator η such that η2 = 1. It can be used
to define projectors B± = (1 ± η)/2. It is clear that B+ +

B− = 1, B2
± = B±, B†

± = B± and B+B− = B−B+ =

0. A vector |ψ⟩ is said to be even (odd) if η|ψ⟩ = |ψ⟩
(η|ψ⟩ = −|ψ⟩). Then, any vector |ψ⟩ can be written as the
sum of its even part B+|ψ⟩ and its odd part B−|ψ⟩. An
operator H is said to be even (odd) if it transforms an
even state into an even (odd) state and an odd state into
an odd (even) state. An operator H is even (odd) if and
only if ηHη = H (ηHη = −H). Thus, the theorem states
that UHDU is an even operator. Any operator H can be
written as the sum of its even part B+HB+ + B−HB−
and its odd part B+HB− + B−HB+.

Our proof of the theorem is essentially a generalized
and rigorous version of Eriksen’s proof [134]. We use the
fact that HD is self-adjoint to define λ = signHD by
functional calculus. The operator λ is called the flat band
Hamiltonian in topological insulator theory [135]. In phys-
ical terms, let |ψD⟩ be an eigenstate of HD for the energy
E, then λ|ψD⟩ = |ψD⟩ if E ≥ 0 and λ|ψD⟩ = −|ψD⟩ if
E < 0. Since η and λ are self-adjoint and η2 = λ2 = 1,
they are bounded and ηλ is unitary: ηλ(ηλ)† = ηλλη =
η2 = 1 and (ηλ)†ηλ = 1. By the spectral theorem for uni-
tary operators [136], there is a unique family of orthogonal
projections Pt such that

ηλ =

∫ π

−π
eitPtdt.

In the finite dimensional case we could write this [137]

ηλ =
∑

n

eitn |φn⟩⟨φn|.

Thus,

λη = (ηλ)† =

∫ π

−π
e−itPtdt =

∫ π

−π
eitP−tdt,

and, by unicity of Pt, ηλ = η(ηλ)†η implies Pt = ηP−tη.
We can now define a unitary square root U of ηλ by func-
tional calculus [138,139]:

U =
√
ηλ =

∫ π

−π
eit/2Ptdt,

which satisfies

ηU†η =

∫ π

−π
e−it/2ηPtηdt =

∫ π

−π
e−it/2P−tdt = U.

We now show that this U satisfies the intertwining
relation ηU = Uλ. Indeed, the relation U2 = ηλ implies
U = U†ηλ. By multiplying from the left with η and using
ηU†η = U we find ηU = Uλ. This important relation
implies that H = ηHη and that |ψ⟩ = U |ψD⟩ is even if
|ψD⟩ is a positive energy state and odd if |ψD⟩ is a negative
energy state.

The first property is easy to show:

ηHη = ηUHDU†η = UλHDλU† = UHDλ
2U† = H,

because λ commutes with HD since it is a function of HD.
To show the second property, let Γ± = (1 ± λ)/2, so

that Γ+ projects onto the space of positive energy and Γ−
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of negative energy, and recall that B± = (1 ± η)/2. For a
one-body system, B± projects onto the large/small com-
ponents. Then, UΓ± = U/2±Uλ/2 = U/2±ηU/2 = B±U ,
which can be used to show that the Foldy-Wouthuysen
wavefunctions |ψ⟩ = U |ψD⟩ corresponding to positive en-
ergy have only even components. Indeed, let |ψD⟩ be an
eigenstate of HD corresponding to a positive energy. By
definition of λ we have Γ+|ψD⟩ = |ψD⟩ and Γ−|ψD⟩ = 0.
Thus, UΓ+|ψD⟩ = U |ψD⟩ = |ψ⟩ and UΓ+ = B+U im-
plies |ψ⟩ = B+U |ψD⟩ = B+|ψ⟩. Thus η|ψ⟩ = ηB+|ψ⟩ =
B+|ψ⟩ = |ψ⟩ and |ψ⟩ is even. Similarly 0 = B−|ψ⟩, so that
the odd part of |ψ⟩ is zero.

For a one-body system, even components and large
components are identical. Indeed a Dirac one-body wave-
function can be written

|ψD⟩ =

(
φ
ψ

)
,

If η = β, then the even part and the odd parts of |ψD⟩
are, respectively,

(
φ
0

)
and

(
0
ψ

)
.

so that the small components of |ψ⟩ are zero for a positive-
energy state. This is not true for many-body systems. For
example, if we neglect antisymmetrization for notational
convenience, a two-body state can be obtained as the ten-
sor product of one-body wavefunctions:

|ψD⟩ =

(
φ1

ψ1

)
⊗

(
φ2

ψ2

)
.

Then, the even part of |ψD⟩ is

(
φ1

0

)
⊗

(
φ2

0

)
+

(
0
ψ1

)
⊗

(
0
ψ2

)
,

while its odd part is

(
φ1

0

)
⊗

(
0
ψ2

)
+

(
0
ψ1

)
⊗

(
φ2

0

)
.

The characterization of U as the square root of ηλ is
not easy to handel. We give now a much simpler charac-
terization:

Let U be a unitary operator continuously defined (out-
side zero) in terms of HD such that: (i) U = ηU†η; (ii)
ηUHDU†η = UHDU†; (iii) U2(−HD) = −U2(HD). Then
U†ηU = ±sign(HD).

To prove this, define Z = U†ηU . Clearly, Z† = Z.
Moreover, Z is defined in terms HD since U is. However,
for Z to be a function of HD in the sense of functional
calculus, Z needs to commute with HD [140]:if we multi-
ply condition (ii) from the right by ηU we find ηUHD =
UHDU†ηU = UHDZ. Hence,

ZHD = U†ηUHD = U†UHDZ = HDZ.

Thus, there is a real function f(t) and a family of orthogo-
nal projections Pt corresponding to the eigenstates of HD

such that

Z =

∫ ∞

−∞
f(t)dPt.

Moreover, Z2 = 1 because Z2 = U†ηUU†ηU = U†η2U =
U†U = 1. Therefore, f2(t) = 1 for every t. Finally, observe
that Z = η2U†ηU = ηU2, and condition (iii) implies that
Z is an odd function of HD: f(−t) = −f(t). To conclude
that f(t) = ±signt, we need to add the condition of con-
tinuity on f outside zero. Indeed, functional calculus is
valid for measurable functions and we could build a non-
continuous odd function f such that f2 = 1 outside the
origin. In practice this does not take place because U is
smoothly defined in terms of HD, except at zero. No odd
continuous function can satisfy f2 = 1 over R. It has to
be discontinuous at zero. Since it is crucial that f2 = 1
everywhere, we can choose either sign0 = 1 or sign0 = −1.
Both solutions are valid.

A.2 Many-body Foldy-Wouthuysen transformation

To apply our Foldy-Wouthuysen approach to the many-
body Dirac Hamiltonian we face the following problem.
The generalization of H0 is imposed by the many-body
Dirac Hamiltonian:

H0
N =

N∑

n=1

βnmc2,

where βn is the matrix β acting on the nth electron (i.e.
βn = 1⊗(n−1) ⊗ β ⊗ 1⊗(N−n)). This definition is valid be-
cause H0

N commutes with the projector PN onto the space
of antisymmetric N -body states.

We show in the Appendix that a Foldy-Wouthuysen
transformation can be defined whenever we have a self-
adjoint operator η (with η2 = 1) to define parity. In the
one-body case, β2 = 1 and η = β defines parity. But in the

many-body case the operator
∑N

n=1 βn suggested by H0
N

cannot be used for that purpose because its square is not
proportional to the identity (it contains products βnβm).
It turns out that η = β1⊗· · ·⊗βn is the natural many-body
generalization of β. Indeed, η† = η and η2 = 1. Moreover,
η commutes with PN , which allows us to work with tensor
products instead of antisymmetric tensor products.

In the literature, the Foldy-Wouthuysen transforma-
tion was studied for two-body Hamiltonians [141,142,133],
but the results were rather complicated and not easy to
extend to the many-body case. Pachucki calculated an
alternative semi-relativistic Hamiltonian by carrying out
a Foldy-Wouthuysen transformation of the one-particle
Dirac Hamiltonian followed by a perturbative expansion
of the many-body Green function [143].
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The even and odd parts of HN are then H0
N + E and

O, respectively:

E = e

N∑

n=1

φ0(rn) + e
∑

m̸=n

V (rm − rn),

O =

N∑

n=1

cαn · πn =

N∑

n=1

On,

where V (r) = e
8πϵ0|r| is the Coulomb potential and πn =

−i!∇n − ea0(rn).
At first order in c−2, the Foldy-Wouthuysen operator

is U = eiS(1)

where

S(1) = − i

2mc2

∑

n

βnOn.

Indeed, it can be checked that i[S(1),H0
N ] = −O removes

the odd term of HD. At this order U = U1 ⊗ · · · ⊗ UN is
a tensor power of one-body Foldy-Wouthuysen operators,
as proposed by Moshinksy and Nikitin [144].

However, this tensor-power form does not hold at higher
orders. Indeed, we show now that at the next order, the
many-body Foldy-Wouthuysen Hamiltonian is the sum of
one-body and two-body contributions. The usual formal

Foldy-Wouthuysen transformation U = eiS(1)

eiS(2)

can be
carried out almost unchanged and we find, with m as ex-
pansion parameter, at order m−2:

HFW = H0
N + E +

1

2mc2

N∑

n=1

βnO2
n

− 1

8m2c4

N∑

n=1

[On, [On, eϕn + eV ]]

+
1

8m2c4

∑

p̸=n

βpβn[Op, [On, V ]].

This Hamiltonian obeys ηHFWη = HFW which makes it
a Foldy-Wouthuysen Hamiltonian.

It rewrites

HFW =
N∑

n=1

Hn
FW + HMB

FW . (15)

where each Hn
FW is the usual one-body Foldy-Wouthuysen

Hamiltonian:

Hn
FW = βnmc2 + eφ0(rn) +

∑

p̸=n

eV (rn − rp)

+
1

2m
βnπ2

n − e!Σn · b0(rn) − !2e

8m2c2
∇ · En

+
!e

8m2c2
Σn · (πn × En − En × πn)

where
b0(rn) = ∇ × a0(rn)

and
En = −∇φn(rp) −

∑

p̸=n

∇V (rn − rp).

The mass-velocity term βn

8m3c2 (pn ·pn)2 would be obtained
by expanding to higher order.

The two-body term HMB
FW arises because V (rm −rn) =

V (rmn) is a two body operator:

Hn,p
FW =

!e

8m2c2

N∑

p̸=n

(
!∆V (rnp)

− Σn · (πn × ∇V (rnp) − ∇V (rnp) × πn)

+ 2!βnβp(αn · ∇n)(αp · ∇p)V (rnp)
)
.

By using [145]:

∂j∂kV (r) =
e2

8πϵ0

(
− δjk

4π

3
δ(r) − δjk

1

r3
+

3rjrk

r5

)
,

the derivatives in the last term can be rewritten

(αn · ∇n)(αp · ∇p)V (rnp) =
∑

jk

αj
nαk

p∂j∂kV (rnp)

=
e2

8πϵ0

(
− 4π

3
αn · αpδ(rnp) − αn · αp

|rnp|3

+ 3
αn · rnpαp · rnp

|rnp|5
)
.

This expression looks superficially like some contributions
to the Breit interaction as presented by Bethe and Salpeter [128].
However, they are different since the Breit interaction
is due to the exchange of a photon and not to a semi-
relativistic effect. Note that the last two terms are singu-
lar. It is known that the expansion of the Foldy-Wouthuysen
transformation as a power serie in 1/c2 becomes more and
more singular because of the presence of the Coulomb po-
tential [146]. At order m−2, the transformation writes

U = 1 +
1

2mc2

∑

n

βnOn − 1

8m2c4

( ∑

n

βnOn

)2

+
1

4m2c4

∑

n

βn

[ ∑

m

βmOm, E
]

and it obeys U = ηU†η. We also checked that U2 is odd
in HD after paying attention to the discontinuity at zero
discussed in the Appendix. Thus, the positive (negative)
energy eigenstate of HD are transformed into even (odd)
states by the action of U .
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An efficient first-principles approach to calculate x-ray magnetic circular dichroism (XMCD) and x-ray natural
circular dichroism (XNCD) is developed and applied in the near-edge region at the K and L1 edges in solids.
Computation of circular dichroism requires precise calculations of x-ray absorption spectra (XAS) for circularly
polarized light. For the derivation of the XAS cross section, we used a relativistic description of the photon-electron
interaction that results in an additional term in the cross section that couples the electric dipole operator with
an operator σ · (ε × r) that we call the spin position operator. The numerical method relies on pseudopotentials,
on the gauge including projected augmented-wave method, and on a collinear spin relativistic description of
the electronic structure. We apply the method to calculations of K-edge XMCD spectra of ferromagnetic iron,
cobalt, and nickel and of I L1-edge XNCD spectra of α-LiIO3, a compound with broken inversion symmetry. For
XMCD spectra we find that, even if the electric dipole term is the dominant one, the electric quadrupole term
is not negligible (8% in amplitude in the case of iron). The term coupling the electric dipole operator with the
spin-position operator is significant (28% in amplitude in the case of iron). We obtain a sum rule relating this
term to the spin magnetic moment of the p states. In α-LiIO3 we recover the expected angular dependence of the
XNCD spectra.

DOI: 10.1103/PhysRevB.96.085123

I. INTRODUCTION

A dichroic (“two-colored” in Greek) material has the prop-
erty to absorb light differently depending on its polarization.
X-ray circular dichroism is the difference between x-ray ab-
sorption spectra (XAS) obtained from left- and right-circularly
polarized light, so it describes the dependence of the absorption
cross section on the state of circularly polarized light.

In a magnetic sample, the breaking of time-reversal symme-
try permits x-ray magnetic circular dichroism (XMCD). This is
a powerful tool for studying the magnetic structure of complex
systems as it gives element-specific information. Almost
all synchrotron facilities around the world have a beamline
dedicated to XMCD [1]. The existence of well-established
magneto-optical sum rules that allow us to obtain the spin
and orbital contribution to the magnetic moment directly
from the integral of the spectra [2–4] made it an essential
technique to study the magnetic properties of matter. These
sum rules are widely and successfully applied at spin-orbit
split L2,3 edges of transition metals [5–8] and M4,5 edges of
actinides [9]. On the other hand, in the absence of spin-orbit
splitting of the core state (like for the K or L1 edge), only the
orbital magnetization sum rule [2,4] applies, and a quantitative
analysis of the spectra is far from being straightforward. Yet,
for 3d transition elements, measurements of XMCD at the K
edge are the main way to probe magnetism under pressure, and
XMCD is a widely used technique despite the interpretation
difficulties [10–12].

*nadejda.bouldi@impmc.upmc.fr

X-ray natural circular dichroism (XNCD) occurs in non-
centrosymmetric materials (for which the inversion symmetry
is not a symmetry of the system). Up to now, it has been
less widely used than XMCD, but it presents a fundamental
interest as it gives access to element-specific stereochemical
information [13]. In the domain of molecular magnetism,
renewed interest in this technique has recently grown [14]
with the emergence of new materials that are both chiral and
magnetic. Contrary to optical activity to which a large number
of mechanisms contribute [15], XNCD is largely dominated by
a single contribution [13]. At L1 and K edges, XNCD exists
only if p and d orbitals are mixed [16], yielding a unique
measure of the mixing of even and odd orbitals.

The starting point of our work is a density functional
theory (DFT)-based pseudopotential method. Using projector
augmented-wave (PAW) reconstruction, the Lanczos algo-
rithm, and a continued-fraction calculation [17–19], this
method has proved to be successful for the calculation of
absorption (XAS) spectra at the K edge [17,18,20,21]. The
L1 edge, which corresponds to a 2s core hole, is expected to
have the same behavior. In this paper, we propose the same
kind of DFT-based approach for the calculation of XMCD and
XNCD spectra in the near-edge region.

Several calculations of XMCD at the K edge in the
near-edge region can be found in the literature. Most of
these calculations are based on fully relativistic [22–27] or
semirelativistic [28,29] multiple-scattering approaches with
muffin-tin potentials even if efforts have been made to go
beyond this approximation [30,31].

2469-9950/2017/96(8)/085123(12) 085123-1 ©2017 American Physical Society
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The technique presented in this paper allows the use of a
free-shape potential. Relativistic perturbations were taken into
account both in the band structure [32] and in the photon-
matter interaction [33]. The method has been implemented
within a highly efficient reciprocal space code that allows the
modeling of a large range of systems [19].

In Sec. II, the terms that enter the absorption cross section up
to the electric quadrupole approximation are listed. Section III
is dedicated to the presentation of the computational method.
Results obtained for XAS and XNCD at the L1 edge of
iodine in both enantiomers of α-LiIO3 and for K-edge XAS
and XMCD spectra in 3d ferromagnetic metals are presented
in Sec. IV. Finally, in Sec. V, the relativistic operator is
examined in detail within the collinear spin approximation. Its
corresponding sum rule is derived and evaluated numerically,
and an expression that allows for a simple implementation of
this term is given.

II. CONTRIBUTIONS TO THE CROSS SECTION

In the case of a fully circularly polarized light with a wave
vector k along z, the circular dichroism (XMCD and XNCD)
cross section is written

σCD = σ (ε2) − σ (ε1), (1)

where ε2 = 1/
√

2(1,i,0), ε1 = ε�
2 = 1/

√
2(1, − i,0), and

σ (ε) is the XAS cross section of the material. The XMCD
effect at the K edge of 3d transition elements results at most
in an asymmetry in absorption of the order of 10−3. For this
study, it is therefore important to compute the absorption cross
section very accurately.

In a monoelectronic semirelativistic framework the contri-
bution to the XAS cross section from a given core state of
energy Ei is given by (see the Appendix)

σ = 4π2α0h̄ω
∑
f

|〈f |T |i〉|2δ(Ef − Ei − h̄ω), (2)

where α0 is the fine-structure constant, |i〉 is the two-
component wave function that corresponds to the large
components of the Dirac wave function of the core state, and
the sum runs over unoccupied final states with energy Ef . The
wave functions |f 〉 are eigenstates of the time-independent
Foldy-Wouthuysen (FW) Hamiltonian of the electron in the
presence of an electromagnetic field E0,B0 [34,35]:

H FW = mc2 + p2

2m
+ eV − eh̄

2m
σ · B0

− eh̄

4m2c2
σ · (E0 × p) − eh̄2

8m2c2
∇ · E0. (3)

Finally, T is the sum of three operators: (i) the electric dipole
operator, (ii) the electric quadrupole operator, and (iii) a new
light-matter interaction term that we named the spin-position
operator (see the Appendix):

T = ε · r + i

2
ε · rk · r + ih̄ω

4mc2
σ · (ε × r), (4)

where σ is the vector of the Pauli matrices.
The absorption cross section expands in six terms, among

which four terms are significant (see the orders of magni-
tude in the Appendix). The dominant term is the electric

dipole–electric dipole (D-D) term:

σD−D = 4π2α0h̄ω
∑
f

|〈f |ε · r|i〉|2δ(Ef − Ei − h̄ω). (5)

It is usually the only term that is taken into account in
calculations of XAS and XMCD spectra at the L2,3 edges
and sometimes at the K edge [29,36–38].

The electric quadrupole–electric-quadrupole (Q-Q) term is

σQ−Q = π2α0h̄ω

×
∑
f

|〈f |(k · r)(ε · r)|i〉|2δ(Ef − Ei − h̄ω). (6)

At the K edge, it can reach a few percent of σD−D in amplitude.
It contributes mainly to the preedge region. It is sometimes
included in x-ray absorption calculations [17,39].

When neglecting spin-orbit coupling and in the absence of
an external magnetic field, it is possible to choose real wave
functions. In that case, the D-D and Q-Q terms verify σ (ε) =
σ (ε∗), which leads to a zero contribution to circular dichroism.
For this reason it is crucial to account for relativistic effects in
the wave functions calculation in order to compute XMCD.

On the other hand, the two following terms can give a non-
vanishing contribution to the circular dichroism cross section
even when wave functions can be chosen real.

The electric dipole–electric quadrupole cross term (D-Q) is

σD−Q = −4π2α0h̄ω
∑
f

Im[〈f |(k · r)(ε · r)|i〉

× 〈i|ε� · r|f 〉]δ(Ef − Ei − h̄ω). (7)

If |i〉 and |f 〉 are parity invariant (i.e., if inversion r → −r is
a symmetry of the system), then σD−Q = 0. It is, however, this
term that is responsible for XNCD [16] because the electric
dipole–magnetic dipole term (which is responsible for optical
activity in the optical range) is very small in the x-ray range.

The cross term between the electric dipole and the relativis-
tic operator that we call spin position (D-SP) is

σD−SP = −2π2α0h̄
2ω2

mc2

∑
f

Im[〈f |σ · (ε × r)|i〉

× 〈i|ε� · r|f 〉]δ(Ef − Ei − h̄ω). (8)

It exists only in magnetic materials. Like the spin-orbit cou-
pling term in the FW Hamiltonian, it arises from the coupling
of the small components of the Dirac wave functions. To our
knowledge, it has never been evaluated before. We will show in
the following that, despite the small prefactor of this term, its
contribution to XMCD at the K edge of 3d metals can account
for up to one third of the XMCD intensity near the edge.

III. METHOD

In the framework of the final-state rule [40] the ab-
sorption cross section is obtained from one-electron wave
functions. Within the frozen-core approximation, the 1s (K-
edge) or 2s (L1-edge) unperturbed core states |i〉 can be
determined from an all-electron isolated atom calculation.
The stationary final states |f 〉 are calculated self-consistently
in the presence of a core hole. Here, they are calculated
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within a semirelativistic pseudopotential-based DFT and PAW
reconstruction framework [32]. The absorption cross section
is then calculated in a continued-fraction scheme using the
Lanczos algorithm [17,18].

A. Collinear semirelativistic self-consistent field calculation

Self-consistent field calculations in this study are based
on DFT with a plane-wave basis set and pseudopotentials
as implemented in QUANTUM ESPRESSO [19] including the
spin-orbit coupling (SOC) term [32]. Since an accurate
implementation of SOC plays a crucial role for the evaluation
of XMCD spectra, we briefly describe the underlying approach
in the following.

In pseudopotential-based methods the potential near the
nuclei is replaced by a fictitious smooth potential. The
valence-electron wave functions are replaced by pseudo-wave-
functions that are exempt from the rapid oscillations near the
core. The size of the plane-wave basis set needed to describe
the system is therefore considerably lowered, which leads
to a much better computational efficiency compared to an
all-electron approach, making an ab initio description of large
systems with thousands of electrons possible.

In the PAW formalism, as described by Blöchl [41], the
physical valence wave functions |�〉 can be reconstructed from
the pseudo-wave-functions |�̃〉 as they are related through a
linear operator T : |�〉 = T |�̃〉, with

T = 1 +
∑
R,n

(|φR,n〉 − |φ̃R,n〉)〈p̃R,n|. (9)

In our case, the set of all-electron partial waves centered
on atomic site R, |φR,n〉, contains solutions of the Dirac
equation for the isolated atom within a scalar relativistic
approximation [42], |φ̃R,n〉 are the corresponding pseudo
partial waves, and 〈p̃R,n| form a complete set of projector
functions. The operator T acts only in augmentation regions
enclosing the atoms. Outside the augmentation regions the
all-electron and pseudo-wave-functions coincide.

The pseudo-Hamiltonian is given by T †H FWT [32,43]

H̃ = Ekin + eṼ loc(r) +
∑

R

eṼ nl
R + H̃SO, (10)

where Ekin is the kinetic energy as implemented in QUANTUM

ESPRESSO and Ṽ loc and Ṽ nl
R are the local part and the nonlocal

part in the separable form of the pseudopotentials. H̃SO is the
pseudo-Hamiltonian corresponding to the time-independent
spin-orbit term in the Foldy-Wouthuysen transformed Hamil-
tonian [43]:

H̃SO = T †
(

eh̄

4m2c2
σ · [∇V (r) × p]

)
T

= eh̄

4m2c2

(
σ · [∇loc(r) × p] +

∑
R

F nl
R

)
. (11)

F nl
R at the atomic site R are [44]

F nl
R =

∑
n,m

|p̃R
n 〉σ · [〈

φR,n

∣∣∇vR(r) × p|φR,n〉

− 〈φ̃R,n|∇ṽloc
R (r) × p|φ̃R,n〉

]〈
p̃R

m

∣∣, (12)

where vR and ṽloc
R are the atomic all-electron and local-

channel pseudopotentials, respectively. As these potentials are
spherical, F nl

R is rewritten as

F nl
R =

∑
n,m

∣∣p̃R
n

〉
σ ·

(
〈φR,n|1

r

∂vR

∂r
L|φR,n〉

− 〈φ̃R,n|1
r

∂ṽloc
R

∂r
L|φ̃R,n〉

)〈
p̃R

m

∣∣. (13)

The local potential Ṽ loc(r) = ∑
R ṽloc

R (r), and the quantity
1
r

∂ṽloc
R

∂r
decreases in 1/r3, so that the action of the operator

Ṽ loc(r) × p in the augmentation region is, at first order, the
same as the action of ∇ṽloc

R (r) × p. In the PAW framework
any pseudo-wave-function in the augmentation region can be
expanded according to |�̃〉 = ∑

n |φ̃n,R〉〈p̃R
n |�̃〉. Therefore,

the term proportional to ṽloc
R and the term proportional to

Ṽ loc(r) partially compensate each other, so that the dominant
contribution arises from the term

eh̄

4m2c2

∑
nRm

σ · ∣∣p̃R
n

〉〈φR,n|1
r

∂vR

∂r
L|φR,m〉〈p̃R

m

∣∣. (14)

In this study, we consider collinear spin along z, and only
the z Pauli matrix is considered (diagonal spin-orbit-coupling
approximation):

σ = σzez. (15)

In XMCD experiments a magnetic field is usually applied
parallel to the beam [45], which justifies considering the
quantization axis parallel to k.

This semirelativistic approach, which includes spin-orbit
coupling in a two-component approach, is computationally
less expensive than a fully relativistic one. It has been shown
to reproduce the fully relativistic band structure [32]. For heavy
atoms, the formula can be generalized by substituting ∇Ṽ loc

and ∂ṽloc
R

∂r
with reduced gradients, resulting in a zeroth-order

regular approximation (ZORA) type of Hamiltonian [32].
In this study, the calculations have been performed using

Troullier-Martins norm-conserving pseudopotentials and are
based on the generalized gradient approximation (GGA) with
Perdew-Burke-Ernzerhof (PBE) functionals [46]. The charge
density is evaluated self-consistently in the presence of a core
hole which is described by removing a 1s or 2s electron in the
pseudopotential of the absorbing atom. A jellium background
charge is added in order to ensure charge neutrality. A large
unit cell (supercell) must be built to minimize the interactions
between periodically reproduced core holes, and the k-point
grid can be reduced accordingly.

B. Cross-section calculation

We implemented XMCD and XNCD in the XSPECTRA code
[18] of QUANTUM ESPRESSO [19] distribution. The first results
of this implementation for the terms D-D and Q-Q can be
found in Ref. [47].

In the PAW formalism it has been shown [17,18] that the
contribution of the operator O to the absorption cross section,

σ (ω) = 4π2α0h̄ω
∑
f

|〈f |O|i〉|2δ(Ef − Ei − h̄ω), (16)
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can be rewritten, as the initial wave function is localized around
the absorbing atoms R0,

σ (ω) = 4π2α0h̄ω
∑
f

|〈f̃ |ϕ̃R0〉|2δ(Ef − Ei − h̄ω), (17)

with

|ϕ̃R0〉 =
∑

n

∣∣p̃R0
n

〉〈
φR0

n

∣∣O|i〉. (18)

This sum involves, in principle, an infinite number of projec-
tors, but experience demonstrated that two or three linearly
independent projectors are, in general, sufficient in order to
achieve the convergence of the D-D term at the K edge in the
near-edge region [48].

The determination of all empty states in Eq. (17) would
require a lot of computing resources and, as a consequence,
would limit the size of the manageable supercell. To increase
the efficiency of the method, the cross section is evaluated as
developed in Refs. [17,18] via the Green’s function using the
Lanczos algorithm [49], which avoids the heavy workload of
a large matrix inversion. The cross terms D-SP and D-Q are
not in the form of Eq. (16), but they can be determined from
two calculations of this type using the relationship

Im[DB�] = 1
4 (|D + iB|2 − |D − iB|2), (19)

where B is either the electric quadrupole or the spin-position
operator and D is the electric dipole operator. For the term
D-SP within the diagonal spin-orbit-coupling approxima-
tion, we have checked that this approach yields the same
result as the computational-time-sparing calculation from
the D-D spin-polarized contributions presented in Sec. V
[Eq. (26)].

The calculated spectra are broadened with a Lorentzian
function. Furthermore, the occupied states, which do not
contribute to the absorption cross section, are cut according
to the method described in Sec. III B of Ref. [29].

For the selected examples below, the different contributions
to the cross sections for left- and right-circularly polarized light
σ (ε2) and σ (ε1) were computed accurately in order to obtain
circular dichroism.

IV. APPLICATIONS

A. Technical details

For LiIO3, the experimental structure is used [50]: the
� enantiomer of α-LiIO3 belongs to the hexagonal space
group P63 with lattice parameters a = 5.48 Å and c =
5.17 Å. The atomic positions [15] are Li 2(a) (0,0,0.076),
I 2(b) (1/3,2/3,0), and O 6(c) (0.247,0.342,0.838). The 


enantiomer is the mirror image of the � one (see Fig. 1), and
it belongs to the same space group. A 2 × 2 × 2 supercell
(80 atoms) is used so that the smallest distance between a
core hole and its periodic image is 10.344 Å. �-centered
k-point grids, 3 × 3 × 3 for the self-consistent charge-density
calculation and 9 × 9 × 9 for the spectra calculation, are used.
A constant Lorentzian broadening, with FWHM set to the
core-hole lifetime broadening of 3.46 eV [51], is applied. As
XNCD is a structural effect and not a magnetic effect, the
calculation is not spin polarized.

FIG. 1. Top: hexagonal α-LiIO3 unit cell for (a) � and (b) 


enantiomers [15]. Bottom: top view of the cells [projection on (001)].

The XMCD calculations for the 3d ferromagnetic metals
are carried out using the following experimental lattice
parameters: a = 2.87 Å for bcc Fe, a = 3.52 Å for fcc Ni,
and a = 2.51 Å and c = 4.07 Å for hcp Co. The number
of atoms per supercell is 64 atoms for Fe and Ni and 96
atoms for Co, so the smallest distance between the periodically
repeated core holes is 9.84 Å in Fe, 9.97 Å in Ni, and 10.03
Å in Co. A Methfessel-Paxton cold smearing of 0.14 eV
(0.01 Ry) and a centered 2 × 2 × 2 k-point grid are used
for the self-consistent charge density calculation. The spectra
calculation is performed with a 6 × 6 × 6 grid for Fe and Co
and an 8 × 8 × 8 grid for Ni. These calculations are performed
with collinear spins along the easy axis of the crystals, that is
to say, [001] for bcc Fe and hcp Co and [111] for fcc Ni [52],
and the wave vector k is set along the same axis.

The spectra are convolved with a Lorentzian broadening
function to simulate the effect of the finite lifetime of the core
hole (constant in energy) and of the inelastic scattering of
the photoelectron (additional energy-dependent broadening)
for which we use the curves published by Müller et al. [53].
Experimental and calculated spectra are normalized such that
the edge jump is equal to 1.

During the calculation of the spectra the origin of the energy
is set to the Fermi energy of the material EF . For the spectra
to be compared with experiment, a rigid shift in energy is
applied to the calculated spectra to make the maxima of the
calculated XAS correspond to the maxima of the experimental
spectra. The same shift is applied to the XMCD spectra. In
the plots, the origin of energy E0 is therefore the one chosen
in the publications from which the experimental spectra are
extracted.

B. XNCD at the L1 edge of I in α-LiIO3

Natural circular dichroism in the inorganic noncentrosym-
metric lithium iodate (LiIO3) crystal was measured in
1998 [15], and it was attributed to the interference of electric
dipole and electric quadrupole transitions [15,16]. Previous
calculations [15,16,54] were indeed able to reproduce the
overall peak positions and intensities in this framework.
The agreement is, however, not entirely satisfactory for the
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FIG. 2. (a) Comparison of experimental [15] and calculated XAS and XNCD spectra at the I L1 edge in LiIO3 for both enantiomers with
k ‖ c. The XNCD spectra arise from the D-Q term exclusively. Here, in the calculation as in the experiment σCD = σR − σL. (b) Calculated
contributions to the XAS at the I L1 edge in LiIO3. The D-Q term was multiplied by 100, and the Q-Q term was multiplied by 500. (c) Angular
dependence of the XNCD at the I L1 edge in LiIO3. Inset: XNCD amplitude as a function of the angle following the law 3 cos2 θ − 1, where θ

is the angle between c and the incident wave vector k.

absorption spectra. These discrepancies have been attributed
to the use of muffin-tin potentials [54].

The approach presented in this work, which does not rely on
the muffin-tin approximation, was applied to compute the XAS
and XNCD spectra for α-LiIO3. The absorption is dominated
by the D-D term, as shown in Fig. 2(b). The XNCD spectra,
on the other hand, are entirely due to the D-Q cross term.

As illustrated by Fig. 2(a), both the calculated XAS and
XNCD spectra at the I L1 edge are in good agreement with
experiment. However, the amplitude of the calculated XNCD
is 4 × 10−2 compared to the edge jump, while the amplitude
of the experimental spectra from Ref. [15] is 6.5 × 10−2. Such
an underestimation was also observed in Ref. [16] within a
multiple-scattering approach.

From Fig. 2(a) (bottom), it becomes obvious that the XNCD
spectra for both enantiomers are opposite. Indeed, changing
an enantiomer for the other (� ↔ 
) has the same effect for
XNCD as changing the sign of the magnetic field (B ↔ −B)
for XMCD.

The angular dependence of the calculated XNCD spectra
is depicted in Fig. 2(c), and its amplitude is plotted in the
inset as a function of θ , the angle between k and the c axis
of the crystal. This amplitude varies as 3 cos2 θ − 1, so it is
maximal in the case where k is parallel to the c axis. This
dependence is consistent with the formula derived in Ref. [16]
for point group C6 (the point group of the space group of the
crystal). Note that, as ε is kept perpendicular to k and C6 is
a dichroic point group [55], the XAS spectra also present an
angular dependence. This does not prevent a comparison of
the amplitude of the XNCD spectra because the edge jump
remains unchanged.

C. XMCD at the K edge of 3d transition metals

XMCD was recorded at the Fe K edge in magnetized Fe in
1987 [56]. Ever since, a large number of calculations for the
electric dipole term of the XMCD spectra on the Fe K edge
in bcc Fe in the near-edge region have been reported (see,
for example, Refs. [23,25–27,29,38,57,58]). Calculations of
XMCD at the K edge in fcc Ni and hcp Co are fewer in
number [26,57,59,60] and are not really conclusive.

These calculations have been performed with various
methods, often within the electric dipole approximation and
with muffin-tin potentials. Here, we present the calculation
of the three terms (D-D, Q-Q, and D-SP) that are likely
to contribute to the XMCD cross section at the K edge of
ferromagnetic 3d transition metals, showing the relevance of
the D-SP term.

The contribution of the D-SP term to the absorption cross
section is not shown here because it is negligible. On the
other hand, its contribution to the XMCD spectra (Fig. 3) is
significant: it reaches 28% of the D-D term in amplitude. This
can be understood considering the sum rules that are made
explicit in the next section: in the XMCD cross section, the
D-SP term probes the spin polarization of the p states, whereas
the D-D term probes their orbital polarization. In Ref. [59] the
4p orbital magnetic moment in Co, Fe, and Ni is evaluated
to a few 10−4μB (Fe: 5 × 10−4μB , Co: 16 × 10−4μB , Ni:
6 × 10−4μB), and in Ref. [61] the 4p spin magnetic moment
in Fe and Co is evaluated to several 10−2μB (Fe: 5 × 10−2μB ,
Co: 6 × 10−2μB) in the opposite direction. This difference
in order of magnitude of both quantities compensates for the
smallness of the prefactor (h̄ω/4mc2) of the D-SP term (see
Table I in the Appendix).
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FIG. 3. Calculated contributions to the K-edge XMCD spectra in
the ferromagnetic 3d metals Fe, Co, and Ni.

To check possible numerical problems, we also performed
the calculations using the FDMNES code [39], where, for this
purpose, the D-SP term was introduced in the same way. This
code follows Wood and Boring [64] to eliminate the small
component and obtain a couple of Schrödinger-like equations,
including the spin-orbit effect, closely akin to but improving
the Pauli equation. Despite the very different approach (no
pseudopotential, calculation in real space and no diagonal
spin-orbit-coupling approximation), we found very similar
results for both the shape and relative amplitude of the D-SP
contribution.

The agreement with the experimental spectra is fair, as
illustrated in Fig. 4. As usual in independent-particle calcula-
tions, the energy axis is slightly compressed [65–67] due to
the energy dependence of the real part of the self-energy [68]
for which corrections to the calculated spectra could be
applied [69]. Alternatively, the position of the calculated peaks
could be improved by phenomenological rescaling [65,68].

For Fe, the main peaks of the experimental XMCD
are reproduced by the calculation. As in calculations by
others [27], the positive peak at 10 eV is overestimated,
probably due to the approximate description of the
exchange-correlation energy. Indeed, the comparison
between the spectra calculated with PBE and local-density
approximation (LDA) functionals (Fig. 5) shows that this
peak would be even more enhanced with LDA.

For Ni and Co, a main negative peak is present near the
main rising edge in the calculation as in the experiment, but
the satellite peaks that appear in the calculation are difficult to
link to the experiment.

In these calculations, the polarization rate of the light is
taken to be 100%, and a single crystal with full 3d spin
polarization is considered. In Fe, Ni, and Co, saturation is
reached with the usual experimentally applied magnetic field,
and the anisotropy is quite weak, so that the rate of circular

polarization of the light Pc is expected to account for most
of the discrepancy in amplitude between the calculated and
experimental XMCD spectra. The data for Fe and Co were
recorded in a 5-T magnet at 5 K and within a setup that
reaches a 90% circular polarization rate [70]. The correction to
the amplitude of the calculated spectra to fit the experimental
condition should therefore be of the order of 0.9. Here, it is
approximately 0.6 in the case of Fe and 1.0 in the case of
Co. The data for Ni were recorded at ambient temperature
in a 0.7-T magnet within a dispersive setup with a diamond
quarter-wave plate for which we can infer that Pc ≈ 0.7 [71].
However, no correction to the amplitude of the calculated
spectra is needed to make it correspond to the amplitude
of the experimental spectra. Thus, whereas our calculation
overestimates the amplitude of the XMCD spectra in the case
of Fe, it underestimates it in the case of Ni.

V. CONTRIBUTION OF THE D-SP TERM TO XMCD: THE
CASE OF COLLINEAR SPINS

A. The SP operator

In this section, we study the spin-position operator SP(ε) =
σ · (ε × r). We consider collinear spins along z with indepen-
dent spin channels. The spin part of the wave functions |s〉 can
either be the spin-up spinor (1

0) or the spin-down spinor (0
1).

The D-SP term is the cross term between the electric dipole
and the spin-position operator. Spin does not appear in the
electric dipole operator, so it is diagonal in spin:

〈φis|ε� · r|φf s ′〉 = 〈φi |ε� · r|φf 〉δss ′ . (20)

This imposes s ′ = s. On the other hand, the vector of Pauli
matrices σ appears explicitly in the spin-position operator:

〈φis|σ · (ε × r)|φf s〉 = 〈φi |(ε × r)|φf 〉 · 〈s|σ |s〉. (21)

As 〈s|σx |s〉 = 〈s|σy |s〉 = 0, we can exclude a priori the terms
that are proportional to σx and σy in the spin-position operator.
In that case the spin-position operator is rewritten as

SPcol(ε) = σz(εxy − εyx)

= σz

4iπ

3
r
[
Y−1

1 (ε)Y 1
1 (ur) − Y 1

1 (ε)Y−1
1 (ur)

]
.

(22)

Its selection rules are almost the same as those for the electric
dipole [72] one: �l = ±1,�m = ±1.

As Y−1
1 (ε1) = 0, Y−1

1 (ε2) = √
3/4π , Y 0

1 (ε1) = Y 0
1 (ε2) =

0, Y 1
1 (ε1) = −√

3/4π , and Y 1
1 (ε2) = 0,

SPcol(ε1) = i

√
4π

3
rY−1

1 (ur)σz = σziε1 · r, (23)

SPcol(ε2) = i

√
4π

3
rY 1

1 (ur)σz = −σziε2 · r. (24)

Hence,

σD−SP(ε1) = − h̄ω

2mc2
[σ ↑

D−D(ε1) − σ
↓
D−D(ε1)], (25)

σD−SP(ε2) = h̄ω

2mc2
[σ ↑

D−D(ε2) − σ
↓
D−D(ε2)], (26)
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FIG. 4. Comparison between the experimental XAS and XMCD spectra for Fe, Co [62,63], and Ni [60] and the total calculated spectra.
The wave vector and the magnetization axis were set to the easy axis of the crystals, that is to say, [001] for bcc Fe and hcp Co and [111] for
fcc Ni [52].

with

σ s
D−D(ε) = 4π2α0h̄ω

×
∑
f

|〈f s |ε · r|is〉|2δ(Ef − Ei − h̄ω), (27)

where s =↑ or ↓. Therefore, in the diagonal spin-orbit-
coupling collinear spin case, the D-SP term can be computed
from the D-D cross section for the up and down spin channels.

B. Sum rule at the K edge

A sum rule is a formula in which the integral of the circular
dichroism spectra due to a given term of the cross section

is expressed as a function of the ground-state expectation
value of some operator. The sum rules at L2,3 edges are well
established [61,73] and are widely used to extract quantitative
magnetic ground-state properties. Their derivation is based
on several approximations, including the fact that the radial
integrals are spin and energy independent [74]. At the K
edge the sum rule for the electric dipole-electric dipole
term [3,4,59,75] relates the integral of the XMCD spectra
to the orbital magnetic moment of occupied p states that
is proportional to 〈Lz〉p. This sum rule is, however, almost
impossible to apply in practice because the upper limit of the
integral is not well defined and, in the case of 3d transition
elements, the 4p states are almost unoccupied, so 〈Lz〉p is
very small and has a minor impact on the magnetic moment
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FIG. 5. Total calculated bcc Fe K-edge XMCD spectra without
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constant (0.8 eV) along the whole energy range.

of the material. Deriving a similar sum rule for the D-SP
term is nevertheless very useful to understand why, despite
its very small prefactor, this term is so large in XMCD. We
derive it following the method of Thole et al. [2,4] with
many-body wave functions and operators assuming that all
spins are collinear and within the diagonal spin-orbit-coupling
approximation.

In a many-body framework, using the expression for SP in
terms of spherical harmonics (22),

σD−SP(ε) = 2π2h̄2α0ω
2

mc2

1∑
ν=−1

Re
{
Y−ν

1 (ε�)

× [
Y 1

1 (ε)ζ 1ν
D−SP − Y−1

1 (ε)ζ−1ν
D−SP

]}
, (28)

with

ζ λν
D−SP = (−1)ν

(
4π

3

)2 ∑
f

〈f |
∑

i

[
σziriY

λ
1

(
uri

)]�|g〉

× 〈g|
∑

i

riY
ν
1

(
uri

)|f 〉δ(Ef − Eg − h̄ω). (29)

In a second quantized form with l, m, and σ being the usual
quantum numbers [16],

〈g|
∑

i

riY
λ
1

(
uri

)|f 〉

=
∑

lmσ l0m0σ
′
0

√
3(2l + 1)

4π (2l0 + 1)

× (10l0|l00)(1λlm|l0m0)〈g|a†
l0m0σ

almσ |f 〉Dl0,l , (30)

where Dl0,l = ∫
dr r3R�

l0
(r)Rl(r) is assumed (as usual in sum-

rule derivations) to be spin independent. The experimental
procedure enables us to obtain the signal corresponding to a
specific l0. At the K edge l0 = 0 and m0 = 0, so that

〈g|
∑

i

riY
ν
1

(
uri

)|f 〉 =
√

1

4π

∑
σ

(−1)ν〈g|a†
00σ al−νσ |f 〉D,

(31)

where D = D0,1.

Similarly, as 〈σ ′
0|σz|σ ′〉 = σ ′δσ ′

0,σ
′ ,

〈g|
∑

i

riY
λ
1

(
uri

)
σzi |f 〉 =

∑
σ ′

σ ′(−1)λ〈g|a†
00σ ′al−λσ ′ |f 〉D.

(32)

Using the completeness relation
∫

dE
∑

f |f 〉〈f |δ(Ef −
Eg − E) = 1 − |g〉〈g|, as the core shell is full and under the
assumption that the radial integral D does not depend on
energy,∫

dE ζλν
D−SP = 4π

9

∑
σ

(−1)λσ 〈g|a1−νσ a
†
1−λσ |g〉|D|2.

(33)

The combination of Eqs. (33) and (28) leads to

∫
dh̄ω

σD−SP(ε2
1

)

(h̄ω)2

= ±2π2α0

3mc2
|D|2〈g|a1±1↑a

†
1±1↑ − a1±1↓a

†
1±1↓|g〉. (34)

The difference between the two integrals yields the XMCD
sum rule for the D-SP term:∫

dh̄ω
σXMCD

D−SP

(h̄ω)2
= −2π2α0

3mc2

〈
Sz

1,−1
l=1

〉|D|2, (35)

with the operator

Sz
1,−1
l=1 =

∑
m=−1,1

a
†
1m↓a1m↓ − a

†
1m↑a1m↑ (36)

corresponding to a partial spin polarization of the occupied p

states.
If one considers the derivative of this sum rule, we see

that the electric dipole–spin-position circular dichroism signal
probes the spin polarization of the empty p states. Figure 6
illustrates the correspondence between both quantities. This
proves the validity of the D-SP sum rule. Unfortunately, this
sum rule cannot be applied directly to experimental spectra,
mainly because of the superposition of the D-D contribution
to the D-SP contribution.

VI. CONCLUSION

We have developed an efficient computational approach
to determine accurate XMCD and XNCD spectra. The main
result is that the contribution from the relativistic term D-SP in
the transition operator is significant in XMCD spectra despite
being negligible in XAS. This importance is explained by the
fact that this term probes the spin of the p states that is two
orders of magnitude larger than its orbital counterpart.

For XNCD, the calculated spectra are in good agreement
with experiment, and the angular dependence corresponds to
the expected one.

A big advantage of the method employed in this paper
to perform XMCD and XNCD calculations is its large
adaptability, which opens opportunities for applications to
several kinds of systems such as strongly correlated materials
or molecules absorbed on functionalized surfaces. The same
method could be applied to compute x-ray magnetochiral
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FIG. 6. Comparison between the calculated D-SP spectra without
a core hole for Fe, Co, and Ni and the calculated projected densities
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1,−1
l=1 (E) has been multiplied by the factor between the

p density of states and the dipole XAS spectra times R = h̄ω

2mc2 in
accordance with the sum rule (35).

dichroism (XMχD) that has been observed in magnetized
chiral systems [14]. The features of XMχD differ from those
of XMCD and XNCD, making it a promising probe of the
interplay between chirality and magnetism.
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APPENDIX: SEMIRELATIVISTIC TRANSFORMATION OF
THE RELATIVISTIC CROSS SECTION

We start with the expression for the cross section in a
relativistic framework [33], and we adapt it to the specific
need of our numerical method that is the determination of large
components of the Dirac wave function for the core state and of
Foldy-Wouthuysen (FW) wave functions for the valence states.

1. Relativistic cross section

The contribution to the x-ray absorption (XAS) cross
section from a given four-component Dirac core state |�i〉
of energy Ei is given by [33]

σ (h̄ω) = 4π2α0h̄ω
∑
f

|〈�f |T |�i〉|2δ(Ef − Ei − h̄ω),

(A1)

where the sum runs over unoccupied final states |�f 〉 with
energy Ef , α0 is the fine-structure constant, and T is the
transition operator, defined as

T = ε · r + i

2
ε · rk · r − h̄c

2ω
(ε × k) · (r × α), (A2)

where the polarization vector ε, the wave vector k, and the
energy h̄ω describe the incident electromagnetic wave; r is
the position operator; and α = (αx,αy,αz) is the vector of
Dirac matrices.

Here, as in our numerical calculations, a one-electron
scheme is used. In a many-body framework the formula for
the cross section would be the same but with N -electron wave
functions and many-body operators that are written as sums
over electrons.

In Ref. [33], the transformation into a two-component
representation for |�i〉 and |�f 〉 was performed by applying
a time-independent FW transformation at order c−2. The
FW transformation of �l is obtained by applying a unitary
operator: ψFW

l = UFW�l , with [76]

UFW = 1 + β

2mc2
O − 1

8m2c4
O2, (A3)

where β is the standard Dirac matrix. In this expression, O
is the odd operator entering the Dirac Hamiltonian: HD =
βmc2 + O + E , where E is even. It is defined as O = cα ·
(p − eA0), where p is the momentum operator and A0 is the
static vector potential.

Only the large components of ψFW
l , denoted φFW

l , are
nonzero up to order c−2. The cross section can be written
as a function of the large components of ψFW

i and ψFW
f [33]:

σ = 4π2α0h̄ω
∑

f

∣∣〈φFW
f

∣∣TFW

∣∣φFW
i

〉∣∣2δ(Ef − Ei − h̄ω).

(A4)

The operator TFW is the projection on the upper components
of UFWT U

†
FW:

TFW = TD + TQ + TMD + TA0 + TSP, (A5)

where

TD = ε · r (A6)

and

TQ = i

2
ε · rk · r (A7)

are the standard electric dipole and electric quadrupole
operators.

The magnetic dipole operator TMD is written as

TMD = 1

2mω
(k × ε) · (h̄σ + L), (A8)
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where L = r × p and σ is the vector of the Pauli matrices.
TMD is proportional to the total magnetic moment operator
(h̄σ + L) = (2S + L), where S is the spin operator. TMD is
also present in common nonrelativistic derivations [55,77].
Another use of the name “magnetic dipole” is for the spin-
quadrupole coupling term, usually denoted Tz, that appears in
the spin sum rule for XMCD at spin-orbit split edges. It is not
the quantity that is discussed here. The selection rules of TMD

are li = lf and ni = nf [55], so TMD vanishes in the x-ray
energy range because the states involved in the transition have
different principal quantum numbers.

The correction to this term due to the static vector potential
A0 is

TA0 = − e

2mω
(k × ε) · (r × A0). (A9)

The last term in Eq. (A5) is present only when relativistic
effects are included in the calculation of the transition operator:

TSP = − h̄

4m2c2
(p − eA0) · (ε × σ ). (A10)

A similar term was already found in Ref. [47] but was
derived from a semirelativistic Hamiltonian, and this approach
presents a conflict with time-dependent perturbation the-
ory [33]. It can be rewritten noticing that, in the nonrelativistic
limit, |φFW

i 〉 and |φFW
f 〉 are eigenstates of

H 0
0 = (p − eA0)2

2m
+ eV (r) − eh̄

2m
σ · B0, (A11)

where B0 is the static external magnetic field. This Hamiltonian
obeys p − eA0 = (m/ih̄)[r,H 0

0 ], so that

− h̄

4m2c2

〈
φFW

f

∣∣(p − eA0) · (ε × σ )
∣∣φFW

i

〉
= i

4mc2
(Ei − Ef )

〈
φFW

f

∣∣r · (ε × σ )
∣∣φFW

i

〉
= ih̄ω

4mc2

〈
φFW

f

∣∣(ε × r) · σ
∣∣φFW

i

〉
.

We name σ · (ε × r) the spin-position operator and define the
associated transition operator:

TSP = ih̄ω

4mc2
σ · (ε × r). (A12)

For technical reasons, in the present paper we consider
a different situation than the one in Ref. [33]: we use the
FW wave function for the final states and large components
of the Dirac wave function for the initial (core) state. This
difference in treatment is linked to the fact that the core wave
function is determined from a relativistic atomic code, whereas
the unoccupied states are calculated with a semirelativistic
condensed-matter code.

2. Rewriting the cross section with large components
of the Dirac wave function for the core state

We denote φi and χi the large and small components of
�i , respectively. The order of magnitude of the ratio between
the small and large components is v/c, where v is the velocity
of the particle [78]. Up to order c−1, the small component is

written as [78,79]

χi = 1

2mc
σ · (p − eA0)φi. (A13)

Only the second term in UFW [Eq. (A3)] couples the small
and large components. From Eqs. (A13) and (A3), the large
component of the FW transformed wave function can be
expressed as a function of the large components of the Dirac
wave function up to order c−2,

φFW
i =

(
1 − 1

8m2c4
[O2]p

)
φi + 1

4mc3
Opσ · (p − eA0)φi.

(A14)

[O2]p is the projection of O2 onto large components [78]:

[O2]p = c2(p − eA0)2 − c2eh̄σ · B0

= 2mc2
[
H 0

0 − eV (r)
]
,

and Op = cσ · (p − eA0) is the projection of βO on the top
right components.

The identity cOpσ · (p − eA0) = [O2]p leads to

φFW
i =

(
1 + 1

8m2c4
[O2]p

)
φi. (A15)

From this relation, the cross section of Eq. (A4) can be adapted
to the case that we consider here.

In Ref. [33] the expansion was made to order 1/c2 for the
dipole contribution and to order kr for multipole contributions.
At the same order,

σ = 4π2α0h̄ω
∑

f

∣∣〈φFW
f

∣∣T ′
FW|φi〉

∣∣2δ(Ef − Ei − h̄ω),

(A16)

where T ′
FW is

T ′
FW = TFW

(
1 + 1

8m2c4
[O2]p

)
= TFW + T e.

There is one extra term in the cross section compared to TFW

that is related to the use of large components of the Dirac wave
function instead of the Foldy-Wouthuysen wave function for
the core state:

T e = 1

4mc2

[
ε · rH 0

0 − eε · rV (r)
]
. (A17)

We show in the next section that it is negligible for the core
states considered in this work. As the magnetic dipole term is
negligible in the x-ray range, TFW thus contains four operators
[see Eq. (A5) and the subsequent comments], so T ′

FW is written
as

T ′
FW = TD + TQ + Ta0 + TSP + T e. (A18)

3. Order of magnitude of the operators

As the core wave function is very localized, we obtain an
idea of the relative order of magnitude of the operators in
Eq. (A18) by evaluating them at the radius corresponding to
the core state. In Table I these evaluations are given compared
to the electric dipole operator.
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TABLE I. Order of magnitude of the operators in Eq. (A18) evaluated at the core-state radius rc compared to the electric dipole operator.
The mean radius of the core orbitals is deduced from the effective nuclear charge: rc = 3

2
a0

Zeff
[80,81]. B0 has been fixed to 2 × 104 T (1.2 eV),

which is two orders of magnitude larger than the exchange splitting observed for the Fe K edge. The Coulomb potential is V = −Zeffe

4πε0rc
, and the

core-state energy Ei is evaluated in a planetary model, Ei = −Zeffe
2

8πε0rc
.

Edge

L1 L2 K

Order of Magnitude I Fe Gd Bi O Fe

Energy (keV) 5.19 0.72 7.898 15.71 0.53 7.11

Zeff 39.067 22.089 29.8527 39.2335 7.6579 25.381

TQ (A7) krc/2 2.7 × 10−2 6.6 × 10−3 5.3 × 10−2 8.1 × 10−2 1.4 × 10−2 5.7 × 10−2

TSP (A12) h̄ω/4mc2 2.6 × 10−3 3.5 × 10−4 3.9 × 10−3 7.7 × 10−3 2.6 × 10−4 3.5 × 10−3

TA0 (A9) ekrcB0/4mω 6.0 × 10−6 1.1 × 10−5 7.8 × 10−6 6.0 × 10−6 3.0 × 10−5 9.2 × 10−6

T e (A17) (Ei − eV )/4mc2 6.7 × 10−3 2.2 × 10−3 3.9 × 10−3 6.8 × 10−3 2.6 × 10−4 2.8 × 10−3

When expanding the square modulus of the matrix elements
in Eq. (A16), we keep the terms with contributions higher
than 10−3 compared to the dominant electric dipole term. We
also neglect the term T e: as V (r) is almost spherical at the
core state radius, it concerns transitions to the same orbitals as

the electric dipole term. It does not contain a spin operator, so
that, even in XMCD, it yields only a negligible correction to
the electric dipole contribution. Therefore, we are left with the
four significant terms, D-D, Q-Q, D-Q, and D-SP, discussed in
Sec. II.
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Amélie Juhin†

∗Debye Institute of Nanomaterial Science, Utrecht University, 3584 CA Utrecht, The Netherlands

+Synchrotron SOLEIL, L’Orme des Merisiers, BP48 Saint-Aubin, 91192 Gif-sur-Yvette, France
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We have determined the magnetic ground state of the half-metal CrO2 based on
1s2p Resonant Inelastic X-ray Scattering Magnetic Circular Dichroism (RIXS-MCD)
experiments. The two-dimensional RIXS-MCD map displays the 1s X-ray absorption
spectrum combined with the 1s2p X-ray emission decay, where there is a large MCD
contrast in the final state involving the 2p core hole.

Our measurements show that the Cr K pre-edge structure is dominated by dipolar
contributions and the quadrupole peak is invisible in direct K pre-edge absorption. Us-
ing RIXS-MCD, we reveal that the quadrupole 1s3d pre-edge has a large MCD contrast,
which appears at lower energy with respect to the K pre-edge maximum.

We use crystal field multiplet calculations to model the excitonic RIXS-MCD spectral
shape in tetragonal (D4h) symmetry. The RIXS-MCD is strongly sensitive to the ground
state distortion of the Cr4+ sites. The calculations of the RIXS-MCD maps suggest
that the 3d spin-orbit interaction is fully quenched (ζ3d = 0 meV) and the ground
state electron configuration must contain a 3B2g (D4h) contribution, which is required
to explain the appearance of the Magnetic Circular Dichroism (MCD) in the Cr K
pre-edge. This is in apparent contrast with the compressed tetragonal distortion.
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1. Introduction

The detection of the X-ray magnetic circular dichroism (XMCD) has become a powerful tool for
the element-specific study of the magnetic properties of complex systems. The MCD of 3d transi-
tion metal ions is usually studied at the spin-orbit split L2,3 absorption edges (2p → 3d) to allow
the determination of the spin and orbital magnetic moments using the sum rules.15,44

The L2,3-edges of 3d transition metals are in the soft X-ray range requiring vacuum conditions,
implying that they are difficult for liquid or high-pressure cells. This limits the number of possible
applications and the nature of the samples. The energy of the K-edge of 3d transition metals lies
in the hard X-ray range, but the direct K-edge MCD signal is weak and the absence of spin-orbit
splitting a priori prohibits a quantitative analysis using the spin sum rules.

Some of the above limitations can be addressed with the novel RIXS-MCD approach, in which one
combines XMCD and resonant inelastic X-ray scattering (RIXS) at the K pre-edge of 3d transition
metals according to the following two-step-model (FIG. 1):

1s2 2p6 3dN
	 �−−−−−→
XAS

1s1 2p6 3dN+1 −−−→
XES

1s2 2p5 3dN+1

The excitation step (X-ray Absorption Spectrum, XAS) is performed with circular polarised light,
being either left (lcp, 	) or right circular polarised (rcp, �). The detection of the subsequent X-ray
emission spectrum (XES) can in principle also be polarisation dependent, however, for this study
no polarisation analyser was used in the XES channel.
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Figure 1: Atomic term scheme for the 1s2p RIXS-MCD photon-in photon-out process for a 3d2

electron configuration. Ein and Eout denote the energies of the incoming and outgoing
light, and ET the energy transferred to the system.

RIXS measurements are established to study the electronic structure, while RIXS-MCD addi-
tionally offers magnetic information with the advantage that it enhances the contrast of resonant
features. The first 1s2p RIXS-MCD experiments have shown that the RIXS-MCD signal of iron in
magnetite, can be of the same order of magnitude as L2,3-edge XMCD.27,44,51,52 The RIXS-MCD
approach can thus be considered as a high resolution magnetic spectroscopy, while hard X-rays
yield bulk sensitivity.

Chromium dioxide (CrO2) is a half-metallic ferromagnet (TCurie ≈ 390 K) which means that
one spin channel is conductive while the other one is insulating; in other words the electrons in
the occupied Cr(3d) bands in CrO2 show nearly 100% spin polarisation.35,40,53 This makes it a
promising candidate for future applications in the field of spintronics40, for example as a source for
spin-polarised currents, magnetic tunnel junctions or other magneto-electronic devices that require
a large spin polarisation.60
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The ferromagnetism is usually explained in terms of a specific double-exchange mechanism 30,46

related to the existence of the combination of a strongly localised state just below the Fermi level
and another dispersed band at higher energy. As Schlottmann states Hund’s rule couples the spin
of the localised electron with that of the itinerant electrons and the hopping becomes correlated.46

This implies a strong correlation between the spins of the localised and non-localised electrons.46

The metallicity is due to the dispersed bands that hybridise with the O(2p) bands and cross the
Fermi level. This mechanism and the importance of local and non-local correlations is a subject of
active research.29

In spite of the large number of studies, the electronic structure that induces both ferromagnetism
and metallicity in CrO2 remains to be understood and the origin of the half-metallic ferromagnetism
is highly nontrivial.54

It is expected that RIXS-MCD probes specifically the local magnetic contribution yielding valu-
able information on the complex electronic structure that leads to metallic ferromagnetism in CrO2.
In RIXS-MCD, transitions involving localised d states are expected to give an enhanced intensity
with respect to conventional XMCD, while those involving delocalised states are not.52

RIXS measurements are established to study the electronic structure, while RIXS-MCD addi-
tionally offers magnetic information with the advantage that local features appear on resonance
with enhanced contrast. The bulk sensitivity of 1s2p RIXS-MCD addresses the common problem
of a reduced surface (Cr4+ → Cr3+) in surface sensitive measurements in the soft X-ray range, as
in L2,3-edge XMCD2,8,17,18,22,23,28,40 or L-edge RIXS.32

2. Technical details

2.1. Experimental setup and measurements

The measured sample is a commercially available crystalline CrO2 powder (MagtrieveTM) with
a density of ρ = 4.85 g

cm3 at 25◦C and a grain size of 44µm (mesh 325).50 The powder was milled
by hand with mortar and pestle and then pressed into a pill.

The measurements were performed at ambient conditions (T ≈ 25◦C, p ≈ 1 bar) at the GALAX-
IES inelastic-scattering beamline at the SOLEIL synchrotron radiation facility.45 The synchrotron
radiation was monochromatised using a Si(111) nitrogen-cooled fixed-exit double-crystal monochro-
mator (DCM) with ∆E/E ≈ 1.4 · 10−4, followed by a Pd-coated spherical collimating mirror. The
X-rays were then focused to a spot-size of 30µm (vertical) by 90µm (horizontal) full width at
half maximum (FWHM) at the sample position by a 3:1 focusing toroidal Pd-coated mirror. A
vertical Rowland circle geometry was implemented using a Ge(422) spherical-bent analyser crystal
(R = 1m) which was used to energy-select and focus the emitted X-rays onto a silicon avalanche
photodiode detector.

The overall resolution was found to be FWHM ≈ 0.74 eV or E/∆E ≈ 7700 by measuring the
quasi-elastic line at 5.4 keV, corresponding to the energy of the Cr Kα fluorescence line. A diamond
quarter-wave plate in (111)-orientation with a thickness of d = 500µm, located immediately after
the DCM, was used in order to select between left (	) and right circular polarised (�) light. An
electromagnet created a magnetic flux density ~B of up to | ~B| ≈ 0.7 T on the sample.

The setup was aligned in longitudinal geometry31 with ~k|| ~B||~z as shown in FIG. 2. The angles
of the sample and the analyser with respect to the incident beam were θ = 45◦ and θ = 90◦

respectively.
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Figure 2: Scheme of the experimental setup with the sample in orange between the two poles of the
electromagnet. The circularly polarised incident beam in blue, magnetic field in red and
the detected X-ray emission in green. The detector, an avalanche photo diode (APD), is
not shown for clarity.

Each measurement was performed with alternating polarisation (lcp↔ rcp) for each data point.
All spectra were acquired as incident energy scans with the spectrometer fixed to detect a given
emission energy Eout. For the spectra in FIG. 7 the emitted photons corresponding to the Cr Kα1

emission at Eout = 5415.3 eV were detected. For the RIXS maps the detected emission energies
were varied accordingly between Eout = 5406 eV and Eout = 5423 eV. After completion of a spec-
trum the direction of the magnetic field was reversed and the measurement repeated. This yields
two inverse spectra which are added to minimise noise and reduce systematic errors.

The two-dimensional RIXS maps are displayed either in an emitted energy view with the intensity
I(Ein, Eout), or in an energy transfer view with the intensity I(Ein, ET ). The incident energy Ein
is in both cases the horizontal x axis, and the y axis is either the emitted photon energy Eout or
the energy transfer ET = Ein − Eout. The incident energy Ein of the experimental spectra was
calibrated against a CrO2 reference38. The energies of the emitted photons Eout and energy transfer
ET were calibrated with literature values from the X-ray Data Booklet (http://xdb.lbl.gov/).
The intensities of all spectra are normalised with respect to the sum maximum and given in arbitrary
units (a.u.).

2.2. Calculations of the densities of states

The density of states (DOS) has been calculated using density-functional theory (DFT) as imple-
mented in Quantum-Espresso16, i.e. using a plane-wave basis set, pseudo-potentials and periodic
boundary conditions. We used Troullier-Martins61 norm-conserving pseudo-potentials and the for-
mulation of Perdew-Burke-Ernzerhof41 (GGA) for the exchange and correlation density functional.
The electric dipole and quadrupole contributions to the absorption cross-section are calculated with
Xspectra.19,56

To interpret the experimental spectra, a 1s core hole is added in the calculation. It is described
within a static approximation by including a core-hole in the pseudo-potential of the absorbing Cr
atom. The Hubbard U correction, whose relevance in the case of CrO2 is discussed in Refs6,30,36,58,
was not included in the calculation.

The lattice parameters and the dimensionless internal coordinate defining the positions of the
atoms were set to their experimental values (a = b = 4.421Å, c = 2.916Å18,35, u = 0.30333). The
self-consistent charge density calculation was performed using a centered 6 × 6 × 9 k-points grid
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for the conventional cell that contains one Cr atom and two O atoms. The non-self-consistent
calculation is performed with a 12 × 12 × 18 k-point grid and the projected density of states are
obtained by projecting wave functions onto orthogonalised atomic wave functions. A 2 × 2 × 3
supercell is used to minimise interactions between neighbouring core-holes upon application of
periodic boundary conditions and the k-point grid is reduced accordingly.

2.3. Crystal-field multiplet calculations

The quadrupole contribution to the pre-edge structure cannot be accurately reproduced with the
present DFT-based calculations due to the strong 3d3d correlation effects that determine the pre-
edge spectral shape and also the X-ray emission matrix elements. Instead, a crystal-field multiplet
(CFM) calculation of the 1s2 3d2 → 1s1 3d3 quadrupole transition with subsequent dipole decay
1s1 3d3 → 1s2 2p5 3d3 is applied.

The multiplet calculations are based on the absorption and emission matrices created with the
CTM4XAS program.55 It takes into account all the 3d-3d, 1s-3d and 2p-3d electronic Coulomb in-
teractions, as well as the spin-orbit coupling ζ on every open shell of the absorbing atom and treats
the geometrical environment through a crystal-field potential. All calculations are performed using
the C4 point group symmetry to take into account the presence of a magnetic field ( ~B||~k). The
RIXS process is modelled with the Kramers-Heisenberg relation44 using additional scripts written
for this purpose.

The atomic Slater coefficients for the 3d3d Coulomb interaction Fdd are scaled to 65% of the
Hartree-Fock values and the 2p3d Coulomb Fpd and the exchange interactions (Gpd, Gsd) are scaled
to 52%. This reduction of the Slater integrals is a result of the expansion of the wave function due
to charge transfer effects and the actual values used are an empirical result as they show the best
results presented here. The atomic values for the spin-orbit interaction are in the ground state
ζ3d = 41 meV, in the intermediate state ζ3d = 54 meV and in the final state ζ2p = 5.668 eV and
ζ3d = 53 meV.

For CrO2, there are some reported values for the crystal-field parameter 10Dq (Ikeno: 2.28 eV25,
Lewis: 2.5 eV33), but we are not aware of any reports for the tetragonal distortion parameters
Ds and Dt. Based on the magnitude of the spatial distortion we estimate the two distortion
parameters, Ds and Dt, to be of the order of tens of millielectronvolt ( meV). The crystal-field
parameters (Dq,Ds,Dt) have been varied across a significant section of the parameter space. Only
a few representative maps have been chosen to illustrate the general appearance for a given ground
state. The displayed calculations refer to the crystal-field splitting parameter 10Dq = 2.347 eV and
the distortion parameters Ds = −0.036 eV, Dt = −0.007 eV for 3Eg and Dt = −0.2 eV for the 3B2g

case. The molecular field M reflecting the interatomic exchange interactions is set to M = 30 meV,
being estimated with the Curie temperature Tc ≈ 390 K.

The following Lorentzian broadenings are applied for the intermediate state (IS) LIS = 1.2 eV
and the final state (FS) LFS = 0.6 eV. Here LFS is an intermediate value between the two natu-
ral broadenings for the 2p3/2 and 2p1/2 final states, corresponding to the Kα1 and Kα2 emission

respectively. As discussed elsewhere11,14 the lifetime broadening of the 2p1/2 shell (Kα2 line, L2

edge) can be up to five times larger with respect to the 2p3/2 shell (Kα1 line, L3 edge). The
experimental (Gaussian) broadening GIS = 0.7 eV is set to the experimentally acquired FWHM
of the quasi-elastic scattering peak. For the emission, a resolution of GFS = 0.4 eV is used. All
broadenings are given as full width at half maximum.

Finally, the energy calibration for the theoretical maps is not absolute. The calculated spectra
were shifted in both directions for the best agreement with the experimental MCD.
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3. Theory

3.1. Crystal-field multiplet theory

The CrO2 crystal has a rutile structure and belongs to the spacegroup P42/mnm (136).35,53 With
the metal ion as the inversion center (inversion symmetry) local pd-mixing is forbidden, but mixing
between different sites is possible. The Cr4+ ions occupy the six-fold oxygen-coordinated sites with
Wyckoff position 2a corresponding to D2h point group symmetry.1,18,35,40,53,59,60 In the ground
state, Cr4+ in CrO2 has a high spin (S = 1) 3d2 electron configuration,8 which corresponds to the
multi-electronic ground state 3F+ in spherical symmetry (O3) as derived with Hund’s rules. The
splitting of the atomic multi-electronic state by the crystal-field, through the successive branchings
O3 → Oh → D4h → D2h is illustrated in FIG. 3.
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Figure 3: Energy splittings of the multi-electronic state 3F+ for Cr4+ (3d2 configuration in high-
spin S = 1), for each symmetry for O3 → Oh → D4h → D2h (local exchange is included,
but no spin-orbit or magnetic field is taken into account). The order of the energy levels
shown above is not fixed. It can be altered in dependency on the specific crystal-field
parameters chosen.

In Oh symmetry only one crystal-field parameter Dq (or 10Dq) is needed. D4h symmetry requires
in total three crystal-field parameters (Dq,Ds,Dt), and in D2h symmetry five splitting parameters
(Dq,Ds,Dt,Dα,Dβ) are required. In FIG. 4, we illustrate in the single-electron picture the splitting
of the atomic 3d2 orbital into the partially filled and spin-polarised t2g, and the empty eg level in
Oh symmetry.

3d2 66
e0g

t22g
66

6

?
≈ 10Dq

3F+ (O3)
3T1g (Oh)

Figure 4: Crystal field splitting of the 3d2 high-spin multi-electronic configuration 3F+ (O3), as
derived with Hund’s rules in spherical symmetry (O3), into the multi-electronic 3T1g (Oh)
ground state that is dominated by the |t22g e0g〉 single-electron configuration in octahedral

symmetry (Oh).

For a tetravalent Cr cation (Cr4+) the crystal-field splitting energy 10Dq separating the t2g and
the eg states is estimated (0.6 eV per valency) to be approximately 10Dq ≈ 2.4 eV, in agreement
with other reported values (Ikeno: 2.28 eV25, Lewis: 2.5 eV33). The other parameters introduced
by lower point group symmetries describe further the splittings of the mono-electronic levels as the
consequence from a distortion of the metal ion site.
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3.2. Importance of the distortion

For CrO2 there are publications dating back to the 1970s42 reporting a compression of the octa-
hedron. The metal-ligand distances in the equatorial plane de and the apical distances da on the
local z-axis can be directly acquired from X-ray diffraction (XRD) data . The published values are
summarised in Table 1.

Reference de da de − da
Porta et al42 1.910 1.891 0.019
Deng et al13 1.914 1.911 0.003
Burdett et al5 1.911 1.888 0.023
Baur et al3 1.917 1.882 0.035

Average 1.913 1.893 0.020

Table 1: Metal-ligand distances in the equatorial plane de and apex direction da for CrO2 from
various sources (all values in angstrom (10−10 m) rounded to the last given digit).

Though the difference de − da varies between 0.3 pm (0.15%) and 3 pm (1.5%) all reports in
Table 1 confirm an axial compression. We note that XRD measurements, due to relying on Bragg
diffraction, are always an average across many coordination spheres, while the crystal-field model
used here is strictly local.

As already pointed out by Korotin et al.30, the compression of the Cr octahedron induces the
further splitting of the t2g orbitals.33,47 As shown in FIG. 3, a longitudinal compression of the z-axis
results in the lower point group symmetry D4h and splits the orbital triplet 3T1g (Oh) ground state
into 3Eg and 3B2g (D4h).
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Figure 5: Distortions for a 3d2 configuration yielding the transition from octahedral (Oh) to tetrag-
onal (D4h) symmetry. This changes the multi-electronic 3T1g (Oh) ground state into an
orbital doublet 3Eg (D4h) in case of a compression, and it yields the orbital singlet 3B2g

(D4h) as the ground state for an axial elongation (T = 0K, no spin-orbit interaction). For
the assignment of the energys see equations (1) to (4).

In the single particle picture as illustrated in FIG. 5, a compression of the octahedron along its
z-axis splits the three-fold orbital degenerate t22g level (Oh, two spin-up electrons in xy, xz, yz) into
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the b1
2g (D4h) level (xy orbital) and the xz, yz orbitals subsequently form the formally half-filled

and two-fold orbital degenerate e1g (D4h) level.46 In addition, the empty two-fold degenerate eg (Oh)
level splits into the a1g (D4h) level (z2 orbital) and the b1g (D4h) level (x2− y2 orbital). Altogether
this yields the multi-electronic ground state 3Eg (D4h) in the compression case. This situation, with
one strongly localised electron in the b2g (D4h) level (xy orbital) and the second itinerant electron
at a higher energy level in the eg (D4h) level is crucial for ferromagnetic CrO2.

13,30,33,46

This is of great importance because the double-exchange mechanism between the Cr ions
requires one strongly localised electron in the xy orbital and another delocalised and dispersed
electron in a higher level mediating the magnetic exchange information (ferromagnetic coupling)
via non-local transitions.30,46,47,48

The spins of the strongly localised electrons in the xy orbitals of each Cr site are then coupled
via the double-exchange mechanism.30,39,47 It has been shown that if all electrons were itinerant,
an antiferromagnetic coupling would be favoured48 making the compression (meaning the 3Eg
groundstate) a requirement to explain the ferromagnetism in CrO2.

47

On the contrary, in the case of an elongation of the octahedrons z-axis, the orbital singlet 3B2g

(D4h) becomes the ground state, where the two 3d electrons are in the e2g (D4h) level (xz, yz or-
bitals) as shown in FIG. 5. In this case, the two electrons are not treated differently, making one
localised and one delocalised electron impossible in the elongation case. Hence the ferromagnetism
in CrO2 and the distortion of the octahedra are due to this connection closely related.

These considerations highlight that the nature of the Cr site distortion and the relative energies
of the electronic levels of the Cr4+ ion have a subtle, yet critical, relationship. To approximate
the relative energies of the 3d orbitals in the single-particle picture using the three crystal-field
parameters Dq, Ds and Dt in tetragonal (D4h) symmetry, we use the following set of formulae:9,43

Ea1g = +6Dq − 2Ds− 6Dt (dz2 orbital) (1)

Eb1g = +6Dq + 2Ds−Dt (dx2-y2 orbital) (2)

Eeg = −4Dq −Ds+ 4Dt (dxz, dyz orbital) (3)

Eb2g = −4Dq + 2Ds−Dt (dxy orbital) (4)

Usually da and de are of the order of angstroms (10−10 m) yielding for |Dq| values of the order
of ∼ 100 meV, and |Ds| and |Dt| are usually < 100 meV. The expressions (1) to (4) are an ap-
proximation in the sense that they consider the crystal-field effects due to the Coulomb interaction
between the ion and the ligands, but they entirely disregard local spin-orbit and non-local exchange
interactions. However, they are useful to derive the general behaviour in a single-particle picture
for a given parameter set (Dq,Ds,Dt).

Although the exact point group symmetry of the Cr ions is D2h, the D2h splittings are by far too
small to be resolvable in the present experimental data. Furthermore the two additional parame-
ters in D2h are essentially unknown, making an evaluation of the crystal-field parameters difficult.
Therefore, in the present paper we use D4h symmetry as an approximation in all calculations. In
other words, the two D2h parameters Dα, Dβ are implicitly set to zero. For an accurate assessment
of the two additional D2h parameters based on experimental data a high resolution of a few milli-
electronvolt ( meV) is required.

Often apical compressions and elongations are discussed as a so called Jahn-Teller distortion
describing the change of symmetry from Oh to D4h. Jahn-Teller distortions arise when the ground
state energy can be reduced due to the distortion and hence it has a stabilising effect. However,
for CrO2 we note that the point group symmetry is not due to a Jahn-Teller distortion, because
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this would induce an axial elongation for a 3d2 system, where in fact an axial compression is
observed. An axial elongation due to Jahn-Teller would lead to the energy stabilised 3B2g (D4h)
ground state corresponding to a double occupied eg level (see FIG. 5). In other words the axial
compression in CrO2 is not a Jahn-Teller distortion, instead another mechanism is required to
justify the stabilisation of the observed compression.

3.3. Cr4+ ground states 3Eg (D4h) and 3B2g (D4h)

The two multi-electronic states, the 3-fold (spin) degenerate 3B2g (D4h) and the 6-fold degener-
ate 3Eg (D4h), have formally the lowest ground state energy, for an elongation and compression
respectively. Hence, at absolute zero T = 0 K these are therefore the corresponding ground states
(see FIG. 5). However, using only the lowest multi-electronic ground state 3Eg (D4h) for the ex-
pected compression implies a temperature of T = 0 K. The partial term scheme in FIG. 6 illustrates
that the multi-electronic state 3B2g (D4h), corresponding in the single electron picture to the two
electrons in a |e2g〉 configuration, is also one of the excited states in the compression case.

t22g 66
e1g6

b12g6

e2g (xz, yz)66

b02g (xy)

3T1g (Oh)
3Eg (D4h)

3B2g (D4h)

6?
−Ds + 4Dt

−4Dq

6?2Ds− Dt

Figure 6: Examples illustrating possible 3B2g (D4h) and 3Eg (D4h) contributions in the compression
case. The picture is restricted to the three t2g (Oh) orbitals (xy,xz,yz) leaving the eg
(Oh) orbitals empty yielding a total of 9 micro states: 6 for 3Eg (D4h) and 3 for 3B2g

(D4h).

Comparing FIG. 5 and FIG. 6 also shows that possible 3B2g (D4h) contributions from an ex-
cited state in the compression case can be possible. The multi-electronic ground state GS is in
this example an unknown linear combination of the 3B2g (D4h) and 3Eg (D4h) configurations as
schematically formalised in expression (5):

GS = α · 3B2g + β · 3Eg (5)

However, it shall be clear that this is yet simplified and the real linear combination directly relates
to the exact multiplet structure, and the result therefore depends on the specific distortion and on
the magnetic splitting energies as well as spin-orbit and exchange interactions. In other words, the
linear combination depends on the exact order and energy splittings of the individual states due to
the various interactions.

To consider temperatures T > 0 K the effective spectrum is commonly approximated as a linear
combination of all contributing ground states according to the

Boltzmann distribution pi ∝ exp

(−Ei
kBT

)
(6)

where the occupation probability pi for the multi-electronic state i depends, with the Boltzmann
constant kB and energy Ei, on the absolute temperature T .

Due to the fact that in CrO2 several energy splittings in the tens of meV lead to a complex
multiplet structure, it is without additional information impossible to determine the exact linear
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combination of the actual ground state. Additionally local and non-local mixing add further dif-
ficulties when identifying the ground state character. This can be illustrated with energy level
diagrams showing the dependency of the energy levels on the crystal-field parameters Dq, Ds, Dt
and M (see FIG. 21 in the appendix).

In this paper we discuss, based on crystal-field multiplet calculations, the different characters
of the RIXS and RIXS-MCD maps for two characteristic contributions for the 3B2g (D4h) and
3Eg (D4h) ground states. The crystal-field multiplet approach without additional charge transfer
is a local theory, that we use here to model the effect of the local point group symmetry on the
splittings of the multi-electronic energy levels of Cr4+ ions (3d2). In other words, we calculate only
the local contributions explicitly, while non-local hybridisation (charge transfer) is approximated
by the reduction of the Slater integrals.10

Hence it is expected that the calculated sum pre-edge spectrum (Sum = 	 + �) will lack any
intersite transitions or metal-to-ligand charge transfer and will therefore not be able to reproduce
the experimental RIXS map for the sum correctly. However, it is assumed that RIXS-MCD probes
a local property, the local magnetic moment, and should therefore be well reproducible within a
crystal-field multiplet approach.

4. Results and Discussion

4.1. Chromium K-edge

The X-ray Absorption Near Edge Structure (XANES) measured with High Energy Resolution Flu-
orescence Detection (HERFD) at the Cr K-edge are shown in FIG. 7. It covers the Cr K pre-edge
region and the main edge, corresponding to a 1s X-ray absorption scan while the spectrometer
(analyser angle) remains fixed in order to detect the Cr Kα1 (Eout = 5415.3 eV) emission that has
been calibrated far from resonance.

pre-edge
structure
BBN

main absorption
edge

-RIXS range� -

Figure 7: Experimental High Energy Resolution Fluorescence Detection Magnetic Circular Dichro-
ism (HERFD-MCD) spectra at the Cr K-edge on CrO2, for Eout = 5415.3 eV, illustrating
the low MCD intensity in the pre-edge (Ein ≈ 5992 eV) and in the dipole main edge
(Ein ≥ 5998 eV).

The dichroism (FIG. 7 bottom) confirms the general trend of two inverted MCD signals for the
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positive and negative magnetic field direction and it illustrates how small the MCD signal in the
pre-edge region really is. The asymmetry between the MCD signals for the two magnetic field
directions relates mostly to the relative high noise level as only three scans were averaged. In the
following we will look only at the pre-edge structure with incident energies Ein < 6 keV.

4.2. Density of states

The electric quadrupole and dipole absorption cross-section of the Cr K-edge calculated by first-
principle methods (solid lines) is shown in FIG. 8 (top) and compared to the experimental spectrum
(dotted line).

Figure 8: Electric dipole and quadrupole contributions to the absorption cross-section for incident
~k = (0, 0, 1) and polarisation ~ε = (1, 0, 0), and calculated densities of states (DOS) in
CrO2 for the ground state and with a core hole in the Cr 1s shell (indicated as Cr•).
Relative contributions of the electric dipole and quadrupole transitions to the pre-edge
structure (top), and projected densities of states (DOS) in CrO2 for both spin directions.
The Fermi level lies in a gap of the minority spin states and it is fully spin-polarised.
Cr(4p),Cr(3d) and O(2p) are overlapping in energy and considered as contributions to
the intersite Cr(4p)-O(2p)-Cr(3d) band.

In 1s X-ray Absorption Spectroscopy (XAS), the electric dipole transition probes the empty Cr p
states whereas the electric quadrupole transition probes the empty Cr d states. From the calculated
p and d density of states projected on the Cr atom with a core-hole (FIG. 8, lower 3 plots), we
can infer that there is a strong electric dipole contribution between 2 and 5 eV, that is due to the
hybridisation of the Cr(4p) states of the absorbing atom with the Cr(3d) states of the neighbouring
Cr atoms. Furthermore we find an electric quadrupole contribution at lower energy that appears
as a shoulder in the experimental spectra. The main effect of accounting for the onsite Coulomb
repulsion through the U term would be an upward shift of the unoccupied d-band.36 It is known
that the energy position of the unoccupied d states near the Fermi level is very sensitive to core
hole effects and that, when including a full static 1s core-hole, it is usually calculated at a too high
energy with respect to the edge.6 Hence, the energy separation between the d peak and the p states
may not be accurately computed.

11



In Figure 9 the Cr(3d) densities are displayed as partial density of states projected onto the
corresponding orbitals. The xy orbital is localised in energy and thus not part of the continuum,
hence it is also localised in real space contrary to the xz,yz orbitals which are more itinerant, in
agreement with the effect of the crystal-field in the compression case. The latter two orbitals (Cr
xz,yz) strongly hybridise with O(2p) states related to the double-exchange mechanism.

Figure 9: Partial projected Cr(3d) densities of states near the Fermi level. The xy orbital appears
very localised and lowest in energy being in agreement with the expected compression.

Because Cr is centro-symmetric, on-site pd-hybridisation is forbidden by symmetry. Nevertheless
intersite hybridisation between the local Cr(4p) orbitals and the non-local Cr(3d) orbitals of the
neighbouring ions is possible (cf. FIG. 7 in12). This non-local or intersite hybridisation can arise
in solids where the many metal sites form bands adding some local Cr(4p) character to the mostly
Cr(3d) character of the pre-edge. In CrO2 the O(2p) orbitals mediate the hybridisation between
the local Cr(4p) character and the Cr(3d) bands of all Cr sites in the solid to form a ”non-local
band” Cr(4p)-O(2p)-Cr(3d) due to intersite 4p3d hybridisation.12,26,62

In the ground state, this non-local band overlaps in energy with the Cr(3d) and the Cr(4p)
character in the pre-edge. When a 1s core hole, indicated as Cr•, is created the local electronic
structure is effectively shifted to lower energy due to the reduced Coulomb repulsion of the core
level. The shift of the local Cr•(3d) level with respect to the unchanged Cr(3d) level is expected to
be approximately ∆Ein ≈ 2 to 2.5 eV while the Cr•(4p) level is, due to a different screening, only
slightly shifted by ∆Ein ≈ −0.5 eV to lower energy.26,62

All other non-local Cr sites and the non-local band Cr(4p)-O(2p)-Cr(3d) remain essentially un-
affected and the pre-edge consists of two types of transitions:

i) Purely local or onsite transitions i.e. the native quadrupole 1s → 3d peak that will appear
lowest in energy.

ii) Non-local or intersite transitions i.e. from the local 1s shell into the non-local Cr(4p)-O(2p)-
Cr(3d) band which is approximately 2.5 eV above the native Cr•(3d) peak.

This non-local mixing combined with the above described complex order of the multi-electronic
ground states makes a detailed analysis of the real electronic configuration difficult.
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4.3. 1s2p RIXS-MCD map of CrO2

The sum of both circular polarisations (	 + �) yields the 1s2p RIXS map shown in FIG. 10.a,
and the difference (	−�) results in the experimental 1s2p RIXS-MCD map of a crystalline CrO2

powder displayed in FIG. 10.b.

a.) 1s2p RIXS sum intensity (	+�) b.) 1s2p RIXS-MCD intensity (	−�)

CIE
fig. 13

CIE
fig. 14

CIE
fig. 13

CIE
fig. 14

CEE
fig. 12

CEE
fig. 12

Kα2

Kα1

Kα2

Kα1

Figure 10: a.) Experimental 1s2p RIXS sum (	+�) and b.) the corresponding RIXS-MCD map
(	−�) of the CrO2 powder covering the Kα1,2 doublet, namely the 2p 3

2
→1s (Kα1) and

2p 1
2
→1s (Kα2) decays after absorption in the Cr K pre-edge. The vertical and diagonal

lines highlight the CIE and CEE slices discussed in this paper (see FIG. 12, FIG. 13 and
FIG. 14 ).

The sum (FIG. 10.a) shows the typical band-like diagonal orientation for the Kα1,2 fluorescence
decays. The experimental 1s2p RIXS-MCD map (FIG. 10.b) clearly displays an intense magnetic
circular dichroism for the 2p3/2 → 1s decay channel (Kα1) around ET ≈ 577 eV. Its vertical
orientation indicates a resonant final state (FS) effect, as opposed to a MCD in horizontal direction
would mean resonance on an intermediate state (IS).

The MCD of the 2p1/2→ 1s decay channel (Kα2) in the upper half of the map is an order of
magnitude less intense with respect to the Kα1 dichroism. The Kα1 and Kα2 regions both display
a weak diagonal dichroic background in the MCD map (FIG. 10.b).

The Kα1 pre-peak maximum in the RIXS map (FIG. 10.a) is at Ein ≈ 5995 eV and ET ≈ 580 eV
while the center of the Kα1 MCD appears approximately at Ein ≈ 5992.5 eV and ET ≈ 577.5 eV
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(FIG. 10.b). In other words, the position of the intense Kα1 dichroism, marked with a circle in
both maps, is located at approximately ∆Ein ≈ 2.5 eV lower incident energy with respect to the
pre-peak maximum of the Kα1 emission.

4.4. Constant Emitted Energy (CEE) slices

The Constant Emitted Energy (CEE) slices are in the following used to investigate the Cr Kα1

pre-peak structure. They are comparable to HERFD-XAS and appear as diagonals in a RIXS map
in an energy transfer view I(Ein, ET ). They are identical to the corresponding horizontal slices in
maps in an emitted energy view I(Ein, Eout). Subsequently, the CEE slices shown as diagonals in
FIG. 10 appear as horizontal lines in an emitted energy view as displayed in FIG. 11.

a.) Sum intensity (	+�) b.) MCD intensity (	−�)

CEE CEE

Figure 11: RIXS and RIXS-MCD maps of the Kα1 region in an emitted energy view showing the
positions of the extracted CEE slices as horizontal lines.

These CEE slices correspond to the emitted energies Eout ∈ {5414.5, 5414.75, 5415.0, 5415.25} eV.
They are shown in FIG. 12 and immediately reveal that the pre-edge structure consists of at least
two visible peaks. One peak at Ein ≈ 5992 eV which is assigned to the quadrupole peak (1s→ 3d)
giving rise to the MCD, and another structure centred around Ein ≈ 5995 eV is interpreted as a
non-local peak, whose contribution to the MCD signal is small.

onsite� -

intersite� -

Figure 12: Constant Emitted Energy (CEE) slices for Eout ∈ {5414.5, 5414.75, 5415.0, 5415.25} eV
top: CEE sum slices showing that the Kα1 pre-peak clearly consists of multiple peaks;
bottom: CEE MCD slices revealing the relative position of the dichroism.
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Therefore, the transitions into the spin-polarised t2g will dominate the MCD.13,24,33 The empty
eg level however can contribute to the MCD only via the exchange splitting between the spin-up
and spin-down eg states. This seems to be consistent with the MCD appearing at a lower incident
energy with respect to the pre-peak maximum as visible in FIG.12. Here we will use crystal-field
multiplet theory in an attempt to calculate the local quadrupole contributions.

4.5. Constant Incident Energy (CIE) slices

A vertical slice extracted from a two dimensional RIXS map is a Constant Incident Energy (CIE)
slice. The CIE slices across the 1s pre-peak are expected to be similar to conventional L2,3-edge
spectra, because the final state 1s2 2p5 3dN+1 is identical in 1s2p RIXS and in 2p XAS. However,
the spectra are not identical because the 1s2p RIXS process involves the matrix elements for the
1s → 3d excitation and the 2p → 1s decay, which are different from the direct 2p XAS matrix
elements. Thus the MCD CIE slices across the intense dichroism extracted from the MCD map are
expected to be similar but not identical to conventional L2,3-edge XMCD spectra.7

In the following the CIE slices corresponding to the vertical lines in the two maps in FIG. 10 are
discussed. The first set of three CIE slices intersecting the intense Kα1 dichroism in the onsite
region at the incident energies Ein ∈ {5992.25, 5992.50, 5992.75} eV is displayed in FIG. 13.

Kα1 Kα2

-
band-like

shift

Figure 13: Constant Incident Energy (CIE) slices across the onsite region (vgl. Figure 12)for Ein ∈
{5992.25, 5992.50, 5992.75} eV derived from the two maps in Figure 10. top: CIE sum
slices showing the Kα1,2 doublet; bottom: CIE MCD slices with the strong dichroism
for the Kα1 emission, while the Kα2 region appears only weakly dichroic.

As expected, the CIE sum slices in FIG. 13 show the typical band-like shift with increased
incident energy Ein being consistent with the diagonal appearance of the Kα pre-edge emission in
FIG. 10.a.

The MCD slices on the other hand show only minor differences with no energy shift indicat-
ing a resonant (→ excitonic) effect. Only the minima and maxima of the MCD intensity, at
ET ≈ 576.5 eV and ET ≈ 578 eV respectively, vary a bit. This can be explained with the overlap-
ping diagonal band character which is also visible as weak diagonal dichroism in the RIXS-MCD
map (FIG. 10.b).
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Four other CIE slices across the intersite region in the maximum of the Cr Kα1 pre-edge struc-
ture, extracted at the incident energies Ein ∈ {5994.50, 5994.75, 5995.00, 5995.25} eV, are displayed
in FIG. 14.

Kα1 Kα2

-
band-like

shift

Figure 14: Constant Incident Energy (CIE) slices across the intersite region (vgl. Figure 12) for
Ein ∈ {5994.50, 5994.75, 5995.00, 5995.25} eV extracted from Figure 10. top: CIE sum
slices showing the Kα1,2 doublet; bottom: CIE MCD slices with a relatively weak dichro-
ism for the Kα1,2 region.

The CIE sum slices (FIG. 14 top) are again similar with the typical band-like shift with increased
incident energy Ein. The CIE MCD slices (FIG. 14 bottom) show some energy dependent shift,
which indicates that the dichroism in this region, is not purely quadrupolar (→excitonic). The
MCD intensities are in this case almost an order of magnitude smaller with respect to the dichro-
ism measured in the low-energy tail of the pre-peak around Ein ≈ 5992 eV as shown in FIG. 13

The observed energy shift is also consistent with the partially diagonal appearance of the dichro-
ism in the 1s2p RIXS-MCD map (FIG. 10.b) around ET ≈ [580 ± 1] eV. This may be assigned
to the non-local mixing of the 3d states inducing some band-like character visible as dipole band
transitions into the spin-polarised 3d-band. A detailed quantitative analysis of the dichroism in
this intersite region is difficult due to the involved intersite 4p3d hybridisation: this aspect goes
beyond the local CFM approach, which does not account for the band structure of the solid and
thus it prevents the calculation of transitions to delocalised levels.

It is however noteworthy that overall the Kα2 dichroism shows in this experiment no indication
of a resonating behaviour as opposed to the Kα1 dichroism.

4.6. RIXS-MCD ground state character of CrO2

The detailed analysis of the CEE and CIE slices have revealed that the intense dichroism in the
experimental RIXS-MCD map in FIG. 10.b is dominated by local excitonic transitions. Therefore,
we assume that the local contributions to the pre-edge sum, and that most of the MCD intensity
can be calculated within the local crystal-field multiplet framework.

As discussed above, for ferromagnetic CrO2 an electronic structure corresponding to an axial
compression with one strongly localised and one itinerant electron is required for the proposed
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double-exchange mechanism. The energy level diagram in FIG. 15 shows the behaviour of the
multi-electronic states in the case of the compressed distortion of the Cr site for a floating magnetic
exchange interaction M and without spin-orbit coupling.

3B2g

3Eg

e e
e

∆E

6

?

Figure 15: Multi-electronic energy level diagram floating the magnetic exchange parameter M from
0 to 50 meV. The threefold spin degenerate states 3Eg (D4h) and 3B2g (D4h) are sepa-
rated at M = 0 meV by ∆E = | − 3Ds + 5Dt| = 73 meV. The spin degeneracy is then
removed due to the magnetic field (→ Zeeman effect). The circles highlight intersections
between the states indicating a possible mixing between the states and a change of the
ground states order. The dashed line marks M = 30 meV used in the calculations.

As shown by this diagram, the super-exchange interaction M removes the threefold spin degen-
eracy of the 3Eg (D4h) and 3B2g (D4h) terms. The lowest multi-electronic ground state arises from
3Eg (D4h) and should therefore dominate the spectrum. The energy ∆E separating the 3Eg (D4h)
and 3B2g (D4h) at M = 0 meV corresponds in this case to ∆E = | − 3Ds + 5Dt| = 73 meV and
is therefore also dependent on the specific parameter set chosen. In this case the splittings are
too large to justify a population of 3B2g (D4h) states only due to thermal excitation (T = 300K
 E = kT ≈ 25 meV).

However, it is important to note that the twofold orbital degeneracy of the 3Eg (D4h) state,
leading in total to six levels, is not removed here by the magnetic field scaled with M . Hence, only
the threefold spin degeneracy is removed. This is due to the fact that for ferromagnets one has
to use the Heisenberg exchange coupling in the Hamiltonian in which the magnetic operator Ô is
defined without the orbital momentum L:

Ô = Bx · (2 Ŝx) +By · (2 Ŝy) +Bz · (2 Ŝz) (7)

Whereas for paramagnets one has to use the usual definition including the orbital momentum L:

Ô = Bx · (2 Ŝx + L̂x) + By · (2 Ŝy + L̂y) +Bz · (2 Ŝz + L̂z) (8)

For both cases, Bx, By, Bz are the components of the magnetic field with Bx = (1, 0, 0) ·M (and
By, Bz analog), and Ŝx, Ŝy, Ŝz are the operators for the corresponding spin components. For
the definition in (8) L̂x, L̂y, L̂z are then analogous the operators for the corresponding orbital
components.

As we have to use for the ferromagnet CrO2 the definition in (7), this explains why the twofold
orbital degeneracy of the 3Eg (D4h) state is not removed in the energy level diagram shown in Fig.
15 (ferromagnet and spin-orbit interaction off). The 3Eg (D4h) state will only split into six separate
levels (3 for spin, 2 for orbit) when equation (8) is used (paramagnets), or for a ferromagnet with
the definition in (7) when spin-orbit interaction is on as shown in the appendix in Fig. 21 top row.
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It would go beyond the scope of this paper to discuss all calculated RIXS-MCD maps that were
made to find acceptable agreement with the experimental data. Thus here we present the calculated
RIXS-MCD map for a chosen parameter set that corresponds to the compressed distortion, as a
benchmark example for the interpretation of the excitonic RIXS and RIXS-MCD features.

4.6.1. RIXS-MCD for 3Eg (D4h) ground states

One example calculation for a RIXS and RIXS-MCD map for 3Eg (D4h) ground state is shown in
FIG. 16 and shortly discussed in the following. The general appearance of the RIXS-MCD map is
not similar to the experimental MCD map.

a) SUM (	+�) b) MCD (	−�)

Figure 16: Calculated 1s2p RIXS sum and MCD map for a 3Eg (D4h) ground state with spin-orbit
coupling ζ3d = 100%.

Most notable is that the minimum and maximum of the MCD are more separated on both axis
when compared to the experimental data. Even under the consideration of the absence of any
non-local contributions at higher energies it appears clear that the dichroism is not shifted to the
low-energy tail of the pre-edge structure as marked with a circle in the RIXS and RIXS-MCD maps
in FIG. 10 and as it is better visible in the CEE slices in FIG. 12.

The CIE slices show the Kα1 well reproduced, while the Kα2 dichroism apparently has the
opposite tendency in the calculation (↓↑ ↓↑) with respect to the experimental data (↓↑ ↑↓). The
red and blue arrows correspond to the local minima and local maximal in the MCD slice and they
emphasise the opposite behaviour of the minima and maxima in the MCD of the Kα2 region for
the comparison between the experimental and calculation data. The effect is also illustrated with
arrows in Figure 17 comparing the calculated CIE slice, which is highlighted by the red line in the
RIXS MCD map in Figure 16.b, with the experimental slice already shown in Figure 13.

This behaviour is visible for essentially all calculated 3Eg (D4h) ground states, but because the
experimental Kα2 MCD appears to be mostly due to non-local mixing, an accurate modelling of
the Kα2 MCD is beyond the scope of the present multiplet model.

We have performed many calculations across a significant section of the parameter space, and
none of the parameter sets for a 3Eg (D4h) ground state yields an overall satisfactory result com-
parable to the experimental data.
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?? 66 6?
?6

Kα1 Kα2

Figure 17: Comparison the MCD CIE slices to visualise the inverted behaviour of Kα2 MCD with
respect to the Kα1 emphasised with arrows indicating the local minima and maxima.
The calculated MCD CIE slice is scaled to match the experimental intensity.

4.6.2. RIXS-MCD for 3B2g (D4h) ground states

As discussed above 3B2g (D4h) corresponds in the single electron picture for 3d2 having both elec-
trons in the e2g level (xz,yz orbitals) as displayed in FIG. 5 and FIG. 6. Even though a 3B2g (D4h)
ground state appears to contradict the requirements for the proposed double-exchange mechanism
as cited above,30,46 and it is known that the ground state at absolute zero temperature should be
a 3Eg (D4h) ground state, our calculations show that we find multiple solutions yielding a RIXS-
MCD map comparable to the experimental data for 3B2g (D4h) ground states. Furthermore we find
that for 3B2g (D4h) ground state calculations the RIXS and RIXS-MCD maps are in many cases
essentially the same for 3d spin-orbit interaction ζ3d either on or off.

One example for a calculation for a 3B2g (D4h) ground state with 3d spin-orbit interaction set
to ζ3d = 0.0 eV is displayed in FIG 18.

a) SUM (	+�) b) MCD (	−�)

Figure 18: Calculated 1s2p RIXS sum and MCD map for a 3B2g (D4h) ground state without spin-
orbit interaction ζ3d = 0%.

This is in agreement with other reports finding a reasonably good agreement with spin-orbit
interaction effectively switched off due to the vanishing influence of an orbital momentum and
correlated spin-orbit effects.49 Most notable is that the RIXS sum for a 3B2g (D4h) ground state
in FIG. 18.a now consists of two single-peak structures, as opposed to the double-peak structures
as visible for the 3Eg (D4h) ground state.
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A comparison of the calculated RIXS-MCD map in FIG. 18.b with the experimental map (FIG.
10.b) shows that the weak diagonal dichroism related to the band-character is absent in the cal-
culation. But this is expected and the general appearance of the RIXS-MCD map is quite well
reproduced. In fact, under assumption of a 3B2g (D4h) ground state we find many solutions similar
to the experimental RIXS-MCD map.

In addition we now also find a different behaviour in the CIE slices for the calculation (↓↑ ↑↓)
with respect to the calculation for the 3Eg (D4h) ground state. The results for 3B2g (D4h) do in
fact also agree better with the experimental slices (↓↑ ↑↓) as shown in Fig. 19.

??66 66
??

Kα1 Kα2

Figure 19: Comparison of the experimental and the calculated CIE slices extracted from FIG. 10.b
and FIG. 18.b. (The calculated slice is scaled to match experimental data.)

Again, it would go beyond the scope of this paper to discuss all calculated RIXS and RIXS-MCD
maps for 3B2g (D4h) ground states, thus it shall be clear that the shown maps are not supposed
to be taken as proposed solutions. Instead the calculations shown here serve only as example to
illustrate the general appearance of the RIXS and RIXS-MCD map with a 3B2g (D4h) ground state
character.

From these calculations, we conclude that the RIXS-MCD signal appears to be dominated by
ground state contributions with a 3B2g (D4h) character. This would therefore suggest that the
ground state is a mixed one, which further triggers the counter-intuitive distortion with respect
to pure Jahn-Teller considerations. Such a complex ground state has already been suggested for
various systems and in some cases is mediated by both double-exchange mechanism and vibronic
couplings, which were not accounted in our present model.4,57.

5. Summary

The RIXS-MCD approach delivers valuable information to experimentally disentangle the quadrupole
from the dipole contributions, where the quadrupole part of the spectrum reveals magnetic infor-
mation. As such, hard X-ray RIXS-MCD is a bulk-sensitive high resolution magnetic spectroscopy.

In the case of CrO2 the pre-edge is dominated by dipole transitions into the non-local Cr(4p)-
O(2p)-Cr(3d) band originating from intersite 4p3d hybridisation and the quadrupole pre-edge not
detectable. The 1s2p RIXS-MCD unravels the strong resonant features in the Kα1 dichroism
assigned to excitonic states. The non-local states only show a weak non-resonant dichroism.

The assignment of the resonant features in the Kα1 dichroism was interpreted with the CFM
theory that describes the 3d3d and 2p3d multiplet interactions. Although the compressed axial
distortion of the Cr4+ octahedron predicts a 3Eg (D4h) ground state, the RIXS-MCD calculation of
this ground state only fails to reproduce the observed dichroism. Our calculations suggest that i)
the spin-orbit coupling of the 3d electrons is quenched, and ii) there is non-negligible contribution
from the excited multi-electronic state 3B2g (D4h) in the ground state.
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We conclude that we cannot give an unambiguous description of the ground state from a local
crystal-field approach. Both, the existence of a double-exchange mechanism and the strong non-
local Cr(4p)-O(2p)-Cr(3d) hybridisation indicate strong Cr-Cr interactions.

Recent computational developments that enable the coupling between first principle density-
functional theory and multi-electronic calculations would enable to go beyond the crystal-field
model and provide valuable insights into the nature of the ground state of CrO2.
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A. RIXS-MCD for 3Eg (D4h) without spin-orbit interaction

Another set of calculated maps for a 3Eg (D4h) ground state with the 3d spin-orbit interaction
turned off (ζ3d = 0.0 eV) is shown in Figure 20. This could be explained with a quenching of the
3d spin-orbit interaction because the atomic value ζ3d = 54 meV is small.

a) SUM (	+�) b) MCD (	−�)

Figure 20: Calculated 1s2p RIXS sum and MCD map for a 3E (D4h) ground state with 3d spin-orbit
interaction ζ3d off.

Furthermore the orbital magnetic moments of 3d transition metals are generally quenched be-
cause of the crystal-field18,22,23,28. The metallicity of CrO2, crystal-field or symmetry effects as well
as angular averaging for a powder, all can reduce the spin-orbit interaction.

The general appearance of the RIXS-MCD map is remotely similar to the experimental data,
but the MCD intensity is by several orders of magnitude too low (IMCD ∼ 10−7) with respect to
the quadrupole maximum in the sum. Furthermore the dominant MCD of the Kα1 region again
does not appear in the low energy tail of the pre-edge structure of the RIXS sum, which is the case
for the experimental data (see circle in Figure 10).

Usually it is expected that the 3d spin-orbit interaction ζ3d separates the MCD minima and
maxima in the incident energy Ein direction. However, there is clearly a separation of the MCD
minimum and maximum also in the incident direction visible in this example proving that it is not
purely be the 3d spin-orbit interaction ζ3d.
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B. Values used for the calculations

In this part we summarise the values used for the calculations shown in this paper for the com-
pression case with the ground state 3Eg (Table 2) and for the elongation case for the ground state
3B2g (Table 3).

GS IS FS

10Dq 2.347 eV 2.347 eV 2.347 eV
Ds −36 meV −36 meV −36 meV
Dt −7 meV −7 meV −7 meV
M 30 meV 30 meV 30 meV

F 2(2p3d) - - 4.687 eV
G1(2p3d) - - 3.508 eV
G2(1s3d) - 38 meV -
G3(2p3d) - - 1.996 eV

F 2(3d3d) 6.133 eV 6.496 eV 6.538 eV
F 4(3d3d) 3.868 eV 4.092 eV 4.123 eV

SOC ζ2p - - 5.668 eV
SOC ζ3d 41 meV 54 meV 53 meV

Table 2: Values for the ground state (GS), intermediate state (IS) and final state (FS) for the 3Eg
state. Note, the values for spin-orbit interaction ζ3d are set to 0 meV for the spectra shown
in Figure 20. The results of the calculation are shown in section 4.6.1 and appendix A.

GS IS FS

10Dq 2.347 eV 2.347 eV 2.347 eV
Ds 0 meV 0 meV 0 meV
Dt 200 meV 200 meV 200 meV
M 30 meV 30 meV 30 meV

F 2(2p3d) - - 4.687 eV
G1(2p3d) - - 3.508 eV
G2(1s3d) - 38 meV -
G3(2p3d) - - 1.996 eV

F 2(3d3d) 6.133 eV 6.496 eV 6.538 eV
F 4(3d3d) 3.868 eV 4.092 eV 4.123 eV

SOC ζ2p - - 5.668 eV
SOC ζ3d 0 meV 0 meV 0 meV

Table 3: Values for the ground state (GS), intermediate state (IS) and final state (FS) for the 3B2g

state. Note, to reflect a fully quenched spin-orbit interaction ζ3d it is set to 0 meV. The
results of the calculation are shown in section 4.6.2.

23



C. Energy Level Diagrams

Energy level diagrams for 10Dq, Ds, Dt and M with 3d spin-orbit interaction on

Energy level diagrams for 10Dq, Ds, Dt and M with 3d spin-orbit interaction off

Figure 21: Energy level diagrams for Cr4+ with 3d spin-orbit interaction ζ3d on (top row) and off
(bottom row). The vertical red dashed marker lines highlight the approximate value
used in the calculation (10Dq = 2.347 eV, Ds = −0.036 eV, Dt = −0.007 eV, M =
30 meV). The intersections of the dashed marker line with the energy levels do agree
between the four corresponding diagrams and hence enable to illustrate the behaviour in
the parameter space in the proximity of the chosen crystal-field and magnetic splitting
parameter values. Furthermore it is noteworthy that there are several crossings between
the individual states which on the one hand implies a change of the order of the ground
states, and on the other hand can indicate a mixing of the ground state characters.
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[45] J.-P. Rueff, J. M. Ablett, D. Céolin, D. Prieur, T. Moreno, V. Balédent, B. Lassalle-Kaiser,
J. E. Rault, M. Simon, and A. Shukla. The GALAXIES beamline at the SOLEIL synchrotron:
inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range. Journal of
Synchrotron Radiation, 22(1):175–179, 2015.

27



[46] P. Schlottmann. Double-exchange mechanism for CrO2. Physical Review B, 67(17):174419–7,
2003.

[47] P. Schlottmann. Spin exchange in CrO2: the role of a localized level. Journal of Magnetism
and Magnetic Materials, 272-276:553–554, 2004.

[48] P. Schlottmann. Double exchange and charge fluctuations in CrO2. Journal of Applied Physics,
95(11):7471–7473, 2004.
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Abstract Résumé

Keywords: X-ray absorption near-edge spectrocopy, X-ray circular dichroism, DFT cal-
culations, Magnetism, Transition metals, High-pressure

The main purpose of this thesis was to compute X-ray magnetic circular dichroism spectra
at the K -edge in order to provide a tool to interpret the, so far very puzzling, experimental
spectra. Computation of circular dichroism requires precise calculations of X-ray absorption
spectra (XAS) for circularly polarized light. We have found that there is an incompatibility of
the semi-classical time-dependent perturbation theory commonly used to calculate light absorp-
tion and scattering cross-sections with both gauge invariance and semi-relativistic descriptions
of the electron dynamics. The problems are solved by applying a Foldy-Wouthuysen transfor-
mation to the fully relativistic cross-sections given by quantum electrodynamics. In the process,
a new light-matter interaction term emerges, that we named the "spin-position" interaction.
An e�cient �rst-principles approach was developed to compute the absorption cross-section in
order to obtain X-ray magnetic circular dichroism (XMCD) and X-ray natural circular dichro-
ism (XNCD). The numerical method relies on density-functional theory with plane waves and
pseudopotentials. We �nd that the term coupling the electric dipole operator with the spin-
position operator contributes signi�cantly to the XMCD at the K -edge of ferromagnetic iron,
cobalt, and nickel. We obtain a sum rule relating this term to the spin magnetic moment of
the p states. We also applied the method to calculations of K -edge XMCD in FeH and CrO2.
In both cases, the combination of experiment and theory leads to mutual enrichment.

Mots-clés: Spectroscopie d'absorption près du seuil d'absorption de rayons X, Dichroïsme
circulaire de rayons X, Calculs DFT, Magnétisme, Métaux de transition, Hautes-pressions

Le but principal de cette thèse était de calculer les spectres de dichroïsme circulaire magné-
tique de rayons X au seuil K a�n de fournir un outil pour interpréter les spectres expérimentaux,
jusqu'ici très déroutants. La détermination du dichroïsme circulaire nécessite le calcul précis des
spectres d'absorption des rayons X polarisés circulairement. Nous avons constaté que la théorie
des perturbations semi-classique dépendante du temps, communément utilisée pour calculer les
sections e�caces d'absorption et de di�usion, est incompatible à la fois, avec l'invariance de
jauge et avec les descriptions semi-relativistes de la dynamique des électrons. Pour résoudre
ces problèmes, on applique une transformation de Foldy-Wouthuysen aux sections e�caces
relativistes données par l'électrodynamique quantique. Ainsi, un nouveau terme d'interaction
lumière-matière émerge, que nous avons appelé "spin-position". Une approche performante a
été développée pour calculer la section e�cace d'absorption a�n d'obtenir le dichroïsme circu-
laire magnétique de rayons X (XMCD) et le dichroïsme circulaire naturel de rayons X (XNCD).
La méthode numérique repose sur la théorie de la fonctionnelle de la densité en ondes planes
avec des pseudopotentiels. Nous constatons que le terme couplant l'opérateur dipolaire élec-
trique avec l'opérateur spin-position contribue signi�cativement au XMCD au seuil K du fer,
du nickel et du cobalt ferromagnétiques et nous l'expliquons grâce aux règles de somme. Nous
avons également appliqué la méthode aux calculs du XMCD dans FeH et CrO2. Dans les deux
cas, la combinaison de l'expérience et de la théorie conduit à un enrichissement mutuel.
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