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Introduction en francais

Le mot spectroscopie est composé d’une premiére partie d’origine latine, spectrum (ap-
parition, vision) et d’une seconde partie d’origine grecque oxonéw (skopéo, voir). Comme ce
nom l'indique, les techniques de spectroscopie consistent a étudier des fantomes.

C’est, par exemple, le cas de la spectroscopie d’absorption X (XAS) dont il sera beau-
coup question dans cette thése. Le principe de cette expérience est trés simple: il consiste a
éclairer I’échantillon que I’on souhaite étudier avec des rayons X d’énergie choisie et de mesurer
I'intensité lumineuse transmise. Par comparaison avec l'intensité lumineuse incidente, il est
possible de savoir quelle quantité de lumiére a été absorbée par la matiére. On mesure donc ce
que I’échantillon a retiré a la lumiére : il s’agit du spectre du matériau. Plus précisément, si,
conformément a la Figure 1, on note [y I'intensité incidente et I l'intensité transmise, la mesure
d’absorption consiste a évaluer une quantité proportionnelle & In (ITO) Cette absorption est
généralement tracée en fonction de I’énergie F des rayons X incidents (elle pourrait de maniére
équivalente étre tracée en fonction de la longueur d’onde ou de la fréquence des rayons X car
ces quantités sont liées par des relations trés simples). Lorsque intensité est suffisamment
faible, on constate qu’elle décroit exponentiellement quand la lumiére se propage selon z dans
I’échantillon suivant la relation I(z) = Ipe™"* ou u est appelé coefficient d’absorption linéaire
des rayons X.!

Fig. 1: Principe de 'expérience d’absorption X
(XAS). L’intensité incidente I ainsi que 'intensité
transmise I sont mesurées.

Echantillon

2 l—

Rayons X incidents Rayons X transmis

dz

A Péchelle microscopique, 'absorption des rayons X par le matériau est décrite par la sec-
tion efficace d’absorption qui est définie comme le nombre de photons absorbés par centre
absorbeur divisé par le nombre de photons incidents par unité de surface perpendiculaire a
la direction de propagation. Il s’agit en fait de la surface opaque équivalente & un centre ab-
sorbeur qui serait nécessaire pour obtenir la méme absorption (d’ou le nom de section efficace).
L’intensité absorbée dans une lamelle dz d’échantillon est (z)udz, le nombre de centres ab-
sorbeurs est p,Sdz ol p, est la densité de centres absorbeurs (qui s’exprime en atomes/volume)

1S. Ravy (2013) Cours "Structure de la matiére condensée" (https://www.lps.u-psud.fr/spip.php?
articleb31)


https://www.lps.u-psud.fr/spip.php?article531
https://www.lps.u-psud.fr/spip.php?article531

Introduction

et U'intensité par unité de surface est 1(z)/S. La section efficace s’exprime donc en fonction du

coefficient d’absorption linéaire comme o =

N

Pa’

La section efficace est habituellement exprimée en barns (1 barn = 1072® m?). Elle dépend de
la nature des atomes absorbeurs mais aussi de leur environnement. Dans la gamme d’énergie des
rayons X (100 eV a 100 keV), le processus responsable de I'absorption est 'effet photoélectrique

dont le principe est illustré Figure 2.

Etats vides
photoélectron
3s,p,d M
2p3p
ZP;z Ll3
L
O K

" Trou de coeur

Fig. 2: Tlustration de l'effet photoélectrique. Le
photon est absorbé par l'atome si son énergie
est supérieure & 1'énergie de liaison d'un électron.
L’¢lectron excité est appelé photoélectron et 1'état
vacant dans son niveau d’origine est appelé trou de
coeur.

Quand ’énergie des photons incidents correspond & ’énergie de liaison d’un électron, il y a
une angmentation soudaine de I'absorption. Cette résonance est appelée sewil. Par exemple, le
seuil K correspond a l'excitation d’un électron 1s.

Fig. 3: Courbe d’absorption au seuil K
du fer dans FeyO3. T.a partie non oscil-
lante correspond & 'absorption atomique.
T.e domaines XANES correspond aux én-
ergies proche du seuil (jusqu’a 50 eV) et
le domaine EXAFS aux plus hautes én-
ergies. La région juste avant le seuil est
appelée pré-seuil.

T T T T
0.6 B
£ o4 i
c
Re]
g
<]
[72]
2 pré-seuil
02
XANES EXAFS
0.0 L 1 L 1 L 1 1
7000 7100 7200 7300 7400
Energie (eV)

7500

Un exemple de spectre d’absorption au voisinage du seuil est représenté Figure 3. On

distingue deux régions sur ce spectre :

- la région XANES (pour X-ray absorption near edge structure) proche du seuil et

- la région EXAFS (pour extended X-ray absorplion fine structure) aux plus hautes énergies.
Dans la région XANES, le spectre dépend de la structure électronique de 'atome absorbeur
ainsi que de la structure locale autour de celui-ci alors que la région EXAFS permet surtout
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d’obtenir des information sur la structure locale (types de ligands, distances...). Dans cette
thése, nous nous intéressons seulement a la région XANES.

Un autre type de spectroscopie est la diffusion. Dans le cas de la diffusion, le faisceau
lumineux est dévié de sa direction initiale (voir le schéma Figure 4).

Fig. 4: Principe d’une expérience de diffusion. k;
et k; sont les vecteurs d’ondes incident et diffusé

/\/ et fiw; et wy sont les énergies correspondantes.
kfn(“;

k;, w; ’I\—/

L’énergie des photons diffusés peut étre la méme que celle des photons incidents (diffusion
élastique) ou elle peut étre différente (diffusion inélastique). On parle de diffusion résonante
quand l'expérience est effectuée a une énergie proche de I’énergie d’un seuil d’absorption.

De méme que pour ’absorption, la section efficace correspond au nombre de photons diffusés
par centre absorbeur divisé par le nombre de photons incidents par unité de surface perpendic-
ulaire a la direction de propagation. Comme la lumiére émergente est recueillie par le détecteur
dans une région donnée de l'espace et pour une énergie donnée, on considére en générale la
section efficace différentielle d(gé’w qui est la section efficace par unité d’énergie et par unité
d’angle solide. Les spectroscopies de diffusion sont abordées de maniére marginale dans cette
thése.

Le mot dichroisme est, lui, dérivé du grec diypooc (de deux couleurs). Ce mot a plusieurs
acceptions en physique, plus ou moins proches de son sens littéral. Le dichroisme de rayons X
qui nous intéresse ici désigne la propriété d’un matériau & absorber différemment des rayons X
de polarisations orthogonales :? verticale et horizontale pour le dichroisme linéaire ou droite et
gauche pour le dichroisme circulaire qui est le sujet principal de cette thése.

Quand la lumiére polarisée circulairement est absorbée différemment par un matériau selon
qu’elle est droite ou gauche, cela signifie qu'une symétrie est brisée. On distingue deux types
de dichroisme circulaire selon la nature de la symétrie brisée :

- Le dichroisme circulaire naturel (XNCD pour X-ray natural circular dichroism) est 1ié a la
brisure de la symétrie d’inversion dans les échantillons non centrosymétriques.

- Le dichroisme circulaire magnétique (XMCD pour X-ray magnetic circular dichroism) est
lié a la brisure de la symétrie par renversement du temps dans les échantillons magnétiques.

Les mesures de XNCD sont encore assez rares mais le développement du magnétisme molécu-
laire et 'apparition de composés a la fois chiraux et magnétiques ont suscité un intérét nouveau
pour cette technique qui peut étre facilement combinée avec les mesures de dichroisme magné-
tique.

Le XMCD, en revanche, est trés utilisé depuis les années 80 pour étudier le magnétisme
de matériaux complexes. Le principe de l'expérience est illustré Figure 5. Son grand intérét,
par rapport aux mesures de magnétométries, réside dans le fait que 'on peut choisir le type
d’atome que l'on veut sonder dans la structure. Pour cela, il suffit de se placer & une énergie

2A. Rogalev, J. Goulon, F. Wilhelm and A. Bosak (2010) X-ray dectected optical activity. In E. Beaurepaire,
H. Bulou, F. Scheurer and J.-P. Kappler, editors, Magnetism and Synchrotron Radiation, number 133 in Springer
Proceedings in Physics, pages 169-190. Springer Berlin Heidelberg
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correspondant au seuil d’absorption de I’élément choisi (on dit que la mesure est sélective en
élément). Le succés du XMCD est 1ié a Uexistence de régles de sommes magnéto-optiques. Aux
seuils correspondant & des niveaux otl il y a une levée de dégénérescence due au couplage spin
orbite (comme les seuils Iy 3 qui correspondent & des trous 2p; /5 et 2ps)0), ces régles de sommes
lient des combinaisons d’intégrales des spectre XAS et XMCD aux moments d’orbite et de spin
dus & certains électrons.® Pour les autres senils, comme le seuil K (excitation d’un électron
15), une seule régle de sommes magnétique existe (basée sur des hypothéses dont la validité
est difficile & vérifier). Celle-ci lie I'intégrale du spectre au moment orbital di aux électrons p
alors que, dans les éléments de transition 3d, le magnétisme est principalement porté par les
électrons d.
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Fig. 5: Principe des mesures de dichroisme circulaire magnétique de rayons X (XMCD): I'absorption
des rayons X polarisés circulairement a droite (schématisés par la fleche ronge) on a gauche (schématisés
par la fleche verte) est mesurée. Ta différence de ces deux absorptions est le signal de dichroisme
circulaire. L’échantillon est positionné dans un champ magnétique dirigé le long de la direction de
propagation des rayons X. ILes spectres représentés ici sont les spectres obtenus au seuil K du Fe dans
une feuille de fer métallique.

Le XMCD au senil K est donc extrémement complexe a interpréter. Une autre difficulté est
que le signal est faible (la différence entre les absorptions au seuil K des rayons X polarisés
circulairement a droite et a gauche atteint seulement quelques milliémes du saut au seuil).
Pourtant, de nombreuses expériences de XMCD sont menées au seuil K car, dans les éléments
de transition 3d, le seuil K correspond & des rayons X durs (> 5 keV). Ces rayons X trés
énergétiques peuvent pénétrer plus profondément la matiére que les rayons X mous, ce qui
permet de sonder des échantillons dans des environnements contraignants comme des cellules
pour liquides ou encore des cellules & enclumes de diamant. Ces derniéres sont utilisées pour
appliquer une pression (pouvant atteindre des centaines de GPa) sur I’échantillon. T.es études
sous pression sont trés importantes pour les sciences de la terre car, combinées aux hautes
températures, elles permettent de reproduire des conditions proches de celles de lintérieur
terrestre. La pression est aussi beaucoup utilisée en science des matérianx poir son intérét
fondamental : en changeant les distances interatomiques, la pression modifie les interactions
entre les atomes ce qui donne lieu a de nouvelles propriétés de la matiére.

3F. de Groot, A. Kotani (2008). Core level spectroscopy of solids,Advances in Condensed Matter Science.
CRC Press
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L’interprétation des spectres de XMCD au seuil K et la compréhension des spectres de
XNCD, qui sont encore semi-quantitatives, nécessitent ’apport de nouveaux éléments théoriques.
Ce que nous proposons est de calculer les spectres ab initio, c’est a dire a partir des premiers
principes de la physique. Pour cela, il faut calculer les spectres d’absorption de la lumiére
polarisée circulairement droite et gauche avec une grande précision afin de pouvoir obtenir, en
calculant leur différence, le dichroisme circulaire.

Pour calculer la section efficace avec une précision suffisante, il est nécessaire de connaitre
son expression formelle & un ordre suffisamment élevé. C’est I'objet du Chapitre 1. Dans
ce chapitre, on exprime la section efficace d’absorption et de diffusion en incluant les effets
relativistes. Un point fondamental est aussi discuté: l'invariance de jauge. On montre que
la démarche usuelle ne garantit pas cette invariance et on propose une nouvelle maniére de
mener les calculs pour aboutir & un résultat correct. De cette maniére, nous obtenons un terme
supplémentaire par rapport aux approches proposées dans la littérature. Nous avons nommé
ce terme "spin-position". Cette expression de la section efficace d’absorption semi-relativiste
(Section 1.7) a été utilisée pour I'implémentation numérique présentée dans la suite de la thése.

Le Chapitre 2 est consacré a la présentation de la méthode utilisée pour le calcul numérique
des spectres. Une modélisation des matériaux utilisant la théorie de la fonctionnelle de la den-
sité (DFT), qui a déja été utilisée avec succés pour modéliser les spectres XAS, est appliquée.
L’implémentation a été réalisée dans le code XSPECTRA de la suite QUANTUM ESPRESSO.
L’idée de la méthode numérique est d’effectuer un calcul auto-cohérent de la structure électron-
ique en présence d’un trou de coeur et de calculer la section efficace a partir des états obtenus.
Dans ce chapitre, la maniére dont la méthode est implémentée est discutée en détail ainsi que
'effet des différents paramétres de convergence.

Les résultats obtenus pour des systémes modéles (XMCD du fer, cobalt et nickel et XNCD de
l'iodate de lithium) sont présentés et discutés dans le Chapitre 3. Ces calculs sont 'occasion
de discuter le contenu physique des spectres de dichroisme circulaire et de clarifier les ap-
proximations de notre méthode numérique. On voit dans ce chapitre que le terme relativiste
spin-position est loin d’étre négligeable pour le XMCD. La derniére partie du chapitre est con-
sacrée aux régles de sommes qui permettent de mieux comprendre 'importance des différentes
contributions au XMCD au seuil K.

Enfin, le Chapitre 4 est consacré a la présentation d’études du magnétisme sous pression
par XAS et XMCD. On présente le dispositif expérimental utilisé mais aussi la maniére d’inclure
la pression dans les calculs. Deux matériaux d’intérét technologique et fondamental sont étudiés:
I’hydrure de fer FeH et le dioxyde de chrome. FeH est obtenu par compression d’une feuille
de fer dans une atmosphére d’hydrogéne, son étude concerne donc les hautes pressions de
maniére inhérente. Ici, les calculs appuient et enrichissent l'interprétation des expériences.
Pour CrO9, malgré le fait que ses propriétés ferromagnétiques ont été largement utilisées pour
Penregistrement magnétique sur les cassettes, sa structure électronique qui en fait un demi-
métal ferromagnétique est encore largement incomprise. Dans cette étude, les hautes pressions
sont un moyen de changer I'environnement des atomes de chrome qui, d’aprés les modéles
proposés, pourraient jouer un role trés important pour expliquer le ferromagnétisme de CrOs.

Quoique n’étant pas totalement indépendants, ces quatre chapitres peuvent étre lus isolé-
ment. En particulier, la lecture du premier chapitre, qui est trés formel, n’est pas nécessaire a
la compréhension des trois autres chapitres.
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Dans ce manuscrit sont présentés des résultats théoriques, numériques et expérimentaux
centrés sur le dichroisme de rayons X. Pendant cette thése, j'ai été affiliée au synchrotron
SOLEIL et a 'TMPMC (Institut de Minéralogie de Physique des matériaux et de cosmochimie).
En tant que membre de la ligne de lumiére ODE, j’ai eu 'opportunité de mener et de participer
a des expériences de XAS et XMCD sous pressions (en cellule a enclumes de diamant) qui se
sont avérées trés enrichissantes. J’ai aussi eu la chance de participer a des expériences de XAS
et XMCD sur la ligne ID12 de 'ESRF et de RIXS-MCD sur les lignes ID26 de 'ESRF et la ligne
GALAXIES a SOLEIL. A PIMPMC, j’ai effectué aussi bien des calculs théoriques sur papier
ou sur tableau blanc que des calculs numériques parallélisés qui nécessitaient 1’utilisation de
machines de calculs de hautes performances.

Cette diversité d’approches a rendu ce travail de thése extrémement intéressant. J’espére
que, au-dela des nouveautés théoriques et méthodologiques qu’il présente, ce manuscrit saura
clarifier les questions liées aux calculs de dichroisme de rayons X.

NB: Ce manuscrit est rédigé en anglais. Il contient de nombreuses abréviations et des
notations mathématiques diverses qui sont listées a la fin (p. 174). Comme les références
bibliographiques se recoupent peu entre les chapitres, une bibliographie est présente a la fin de
chacun d’entre eux.
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The word spectroscopy is composed of a first Latin-based part, spectrum (appearance,
vision) and a second part derived from the Greek word oxoméw (skopéo, to see). As the
etymology indicates, spectroscopy techniques consist in studying ghosts.

It is, for example, the case of X-ray Absorption Spectroscopy (XAS) that we will study and
discuss at length in this thesis. The principle of this experiment is far from being sophisticated:
one simply illuminates a sample with an x-ray beam of chosen energy and measures the intensity
of the transmitted light which, by comparison with the incident luminous intensity, allows
to determine the quantity of absorbed light by the material. Therefore, we measure what
has been withdrawn from the light by the material: it is the spectrum of the sample. More
precisely if, as shown in Fig. 6, we denote I, the incident intensity and [ the transmitted
one, absorption measurements consist in assessing a quantity proportional to In (170) This
absorption is generally plotted against the energy F of the incident X-ray beam (it would be
equivalent to plot it against the wave length or the frequency of the X-rays as these quantities
are linked to each other by very simple relations). When the intensity is weak enough, it
decreases exponentially when the light propagates through the sample according to the relation
I(z) = Ipe™"* with u being called the linear X-ray absorption coefficient.*

Fig. 6: Principle of X-ray Absorption Spec-
sample troscopy (XAS). The incident intensity Iy and the
transmitted intensity I are measured.

Incident X-rays Transmitted X-rays

—

dz

At the microscopic scale, the absorption of X-rays by the sample is described by the cross
section that is defined as the ratio of the number of photons absorbed per absorbing center
divided by the number of incident photons per surface unit perpendicular to the propagation
direction. It corresponds to the opaque surface that would provide the same effect as an absorb-
ing center. The intensity absorbed in the sample slice dz is I(z)udz, the number of absorbing
centres is p,Sdz with p, being the density of absorbing centers (expressed in atoms/volume)
and the intensity per surface unit is 1(z)/S. Therefore, the cross section is expressed in term
of the linear absorption coefficient as o = pﬂ.

a

4S. Ravy (2013) Lecture notes "Structure de la matiére condensée" (https://www.lps.u-psud.fr/spip.
php7articleb31)


https://www.lps.u-psud.fr/spip.php?article531
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The cross section, usnally expressed in barns (1 barn = 1072 m?), depends both on the
nature of the absorbing atoms and on their environment. In the energy range of X-rays (100
eV to 100 keV), the process responsible for the absorption is the photoelectric effect, which

principle is illustrated in Fig. 7.

Fig. 7: Tllustration of the photoelectric effect.
The photon is absorbed by the atom if its energy
is higher than the binding energy of an electron.
The excited electron is called a photoelectron and

Unoccupied states
photoelectron

the empty space in its initial energy level is called
a core hole.
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When the energy of the incident photon matches the binding energy of an electron, there
is a sudden increase in absorption. This resonance is called an edge. For example, the K-edge
corresponds to the excitation of a 1s-electron.

Fig. 8: Absorption curve at the K-edge
i of iron in FexO3. The non-oscillating
part corresponds to the atomic absorp-
tion. The XANES region corresponds
to the energies close to the edge (up to
50 €V) whereas the highest energies are
within the EXAFS region. The region
right before the edge is qualified as pre-
edge.
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An example of absorption spectrum near the edge is shown on Fig. 8. Two regions can be
seen on this spectrum:

- The XANES region (for X-ray absorption near edge structure) close to the edge and

- The EXAFS region (for extended X-ray absorption fine structure) corresponding to higher
energies.
In the XANES region, the spectrum depends on the electronic structure of the absorbing atom
and on its local environment and the EXAFS region provide mainly information on the local
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structure (ligands type, distances...). In this thesis, we will focus exclusively on XANES region.

Another type of spectroscopy is scattering. In the case of scattering, the light beam is
deviated from its original course (see the schematic drawing Fig. 9).

Fig. 9: Principle of a scattering experiment. k;
and kj are respectively the incident and emerging

wave vectors, hw; and fiwy are the corresponding
ky, wy energies.

k;, w;

Energy of the scattered photons can be the same as the one of incident photons (elastic
scattering) or can be different (non-elastic scattering). The term resonant scattering is used
when the experiment is done with an energy corresponding to an absorption edge.

As in the case of absorption, the scattering cross section corresponds to the ratio of the
number of scattered photons per absorbing center divided by the number of incident photons
per surface unit perpendicular to the propagation direction. As the outgoing light is collected
by the detector for a spatially delimited region and a given energy, one generally considers the
differential cross section -2 that is the cross section per unit of energy and unit of solid angle.

dQdw
Scattering spectroscopies are marginally addressed within this thesis.

The word dichroism is, for its part, derived from the Greek Siypooc (two-colored). This
word has several meanings in physics, more or less in accordance with its literal signification.
X-ray dichroism, that we are interested in here, designates the capacity for a material to absorb
differently X-rays of orthogonal polarization:® vertical and horizontal for linear dichroism or
right and left for circular dichroism which is the main subject of this thesis.

When circularly polarized light is differently absorbed by a material depending on whether
it is left or right, it means that a symmetry is broken:

- X Ray Natural circular dichroism (XNCD) is linked to the breaking of inversion symmetry
in non-centrosymmetric samples.

- X ray Magnetic circular dichroism (XMCD) is linked to the breaking of time inversion
symmetry in magnetic samples.

XNCD experiments are still quite rare but the development of molecular magnetism and
the appearance of both chiral and magnetic compounds have triggered a renewed interest for
this technique that can easily be combined with magnetic dichroism measurements.

XMCD, on the other hand, is widely used since the eighties to study the magnetism of
complex materials. The experiment principle is illustrated in Fig. 10. Its greatest strength,
compared to magnetometry measurements, lies in the possibility to choose the type of atom to
probe within the structure. In order to do so, it is sufficient to choose an energy corresponding to
the absorption edge of the chosen element (the measurement is element selective). The success
of XMCD comes from the existence of magneto-optic sum rules. At the edges corresponding to
spin orbit split core levels (like the L, 3 edges which correspond to 2p;/, and 2ps/, core hole),
these sum rules relate combinations of integrals of XAS and XMCD spectra to the orbital and

>A. Rogalev, J. Goulon, F. Wilhelm and A. Bosak (2010) X-ray dectected optical activity. In E. Beaurepaire,
H. Bulou, F. Scheurer and J.-P. Kappler, editors, Magnetism and Synchrotron Radiation, number 133 in Springer
Proceedings in Physics, pages 169-190. Springer Berlin Heidelberg
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spin moments due to some electrons.® For other edges, as K-edge (excitation of a 1s electron),
there is only one magnetic sum rule (based on hypothesis which validity are hard to verify)
that relates the integral of the spectrum to the orbital moment due to p-electrons whereas, in
3d transition elements, magnetism is mainly carried by d-electrons.

+ Magnetic sample

Circularly polarized X-rays
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Fig. 10: Principle of X-ray magnetic circular dichroism (XMCD) measurements: the absorption of
right- (illustrated by the red arrow) or left-(illustrated by the green arrow) circularly polarized X-rays
are measured. The difference is circular dichroism. The sample is placed in a magnetic field along the
direction of propagation of the X-rays. Spectra represented here are the ones obtained at the K-edge
of Fe, within a metal iron foil.

XMCD at the K-edge is therefore extremely complex to interpret. Another difficulty is that the
signal is weak (the difference between the absorption at the K-edge of right and left circularly
polarized X-rays only reaches few thousandths). Nevertheless, many XMCD experiments are
conducted at the K-edge because in 3d transition elements, the K-edge corresponds to hard
X-rays (> 5 keV). Those highly energetic X-rays can penetrate matter deeper than soft X-rays
and thus enable to probe materials in constraining environments as liquid cells or diamond
anvil cells. The latter are used in order to apply pressure (that reaches hundreds of GPa) on
the sample. Studies under pressure provide valuable information for Farth sciences because,
combined with high temperatures, they offer the ability to reproduce conditions fairly similar to
the ones existing in the inside of the Earth. Pressure is also much used in material science for its
fundamental interest: by changing the interatomic distances, pressure modifies the interactions
between atoms, which lead to new properties of matter.

SF. de Groot, A. Kotani (2008). Core level spectroscopy of solids,Advances in Condensed Matter Science.
CRC Press
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The interpretation of K-edge XMCD spectra and the understanding of XNCD spectra, that
are still semi-quantitative, require new theory tools. Our proposal is to calculate spectra ab
initio, that is to say from first principles. In order to do so, we need to calculate the absorption
spectrum of right- and left-circularly polarized light with a great accuracy in order to be able
to obtain circular dichroism, by calculating their difference.

In order to calculate the cross section with sufficient accuracy, it is necessary to know its
formal expression at a high enough order. This is the aim of Chapter 1. In this chapter, we
express the absorption and scattering cross sections by taking into account relativistic effects.
A fundamental point is discussed: gauge invariance. We prove that the usual approach does
not ensure this invariance and we propose a new method to obtain a reliable result. With this
method, we obtain an additional term compared to the usual calculations. We have named
this term “spin-position”. The expression of the semi-relativistic cross section (Section 1.7) has
been used for the numerical implementation presented in the remainder of the thesis.

Chapter 2 is dedicated to the presentation of the method used for numerical calculation
of spectra. A modeling of materials using the density functional theory (DFT), which has been
successfully employed to model XAS spectra, is applied. The implementation has been done in
the code XSPECTRA of the QUANTUM ESPRESSO suite. The idea of the numerical method
is to perform a self consistent calculation of the electronic structure in the presence of a core
hole and to compute the cross section from the obtained wave functions. In this chapter, the
way the method is implemented is presented and so are the effects of different convergence
parameters.

The obtained results for model systems (XMCD of iron, cobalt, nickel and XNCD of lithium
iodate) are presented and discussed in Chapter 3. These calculations serve as basis to dis-
cuss the physical content of circular dichroism and to clarify the approximations made in the
numerical method. We find in this chapter that the relativistic spin-position term is far from
being negligible for XMCD. The other part of this chapter is dedicated to sum rules which shed
light on the importance of the different contributions to XMCD.

Finally, Chapter 4 presents studies of magnetism under pressure by XAS and XMCD.
The experimental set-up is presented and so is the way to include pressure in the calculations.
Two materials of technological and fundamental interests are studied: iron hydride FeH and
chromium dioxide. FeH is obtained by application of pressure on a Fe foil in a hydrogen
atmosphere. A study of FeH therefore automatically includes high-pressure. Here, calculations
confirm and enrich the interpretation of experiments. For CrO,, despite the fact that its
ferromagnetic properties have been widely used for magnetic recording in tapes, the electronic
structure that makes it a ferromagnetic half metal remains largely misunderstood. In this study,
high pressure is a way to change the environment of the chromium atoms and this environment,

according to the proposed models, could play an important role to explain ferromagnetism in
CI’OQ.

While not being completely independent, these four chapters can be read separately. In
particular, the first chapter, which is very formal, is not essential for the understanding of the
other three chapters.

11
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In this thesis, theoretical, numeric and experimental results about X-ray dichroism are
presented. During my PhD, I was affiliated to both SOLEIL synchrotron and IMPMC (Institut
de Minéralogie de Physique des matériaux et de cosmochimie). As a member of ODE beamline,
I had the opportunity to both lead and be a member of experiments of XAS and XMCD under
pressure (involving diamond anvil cells) which happened to be extremely enriching. T also had
the chance to participate in XAS and XMCD experiments on the ID12 beamline at ESRF
and in RIXS-MCD experiments on the beamline ID26 at ESRF and on the line GALAXIES
at SOLEIL. At IMPMC, T made theoretical calculations on papers or on whiteboard as well
as parallelized numerical calculations that required the use of high-performance computing
clusters.

This diversity of approaches has made this PhD work extremely interesting. I hope that,
beyond the theoretical and methodological innovations it introduces, this manuscript will be
able to clarify questions related to X-ray dichroism calculations.

NB: This manuscript is written in English. It contains a large number of abbreviations

and mathematical notations that are listed at the end (p.174). As the bibliographic references
almost do not overlap between chapters, a bibliography is present at the end of each of them.

12
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(Gauge invariance and relativistic effects in
photon absorption and scattering by
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1.1 Introduction

The description of relativistic effects in X-ray spectroscopy has become necessary because
the recent experimental developments permit measurements with increased precision. The
use of a semi-relativistic description is interesting because it allows to distinguish the effects
related to the relativistic description of matter from the usual non-relativistic effects. Also,
from a practical point of view, the use of two components wave functions opens the possibility
to adapt a wide range of existing solid-state methods to spectroscopic calculation.

However, we show here that taking existing semi-relativistic Hamiltonian as a starting point
to determine the absorption or scattering cross sections might be problematic. We propose an
alternative approach in which we start from the fully-relativistic cross sections and we apply
a Foldy-Wouthuysen transformation to the wave functions. Here, we stop the development at
order ¢=2 but the orders beyond could be obtained with the same method. We also address
the very problematic question of gauge invariance of transition probabilities and we propose a
framework where gauge invariance is verified.

The outline of the chapter is the following:

e Section 1.2 introduces time-dependent perturbation theory in order to fix notation.

e Section 1.3 presents the Foldy-Wouthuysen (FW) transformation in the one-body case.
In this section, we highlight why the straightforward way to obtain semi-relativistic cross
sections (which consists in considering that the system is described by a FW Hamiltonian
and computing the transition probabilities between eigenstates of this Hamiltonian) is,
in fact, not valid. We nevertheless carry this naive calculation of the absorption cross
section in order to have a basis for comparison.

e Section 1.4 reviews the question of gauge invariance of transition probabilities. We con-
clude that, to obtain a gauge invariant result, we must work in a framework where the
states describe both the electronic system and the photons. We show that Quantum Elec-
trodynamics (QED) provides such a framework in which gauge invariance of transition
probabilities has been established for large classes of gauges.

14



1.2. Time-dependent perturbation theory

e Section 1.5 is dedicated to the calculation of the fully relativistic absorption and scattering
cross sections in QED.

e In Section 1.6, we derive a time-independent many-body Foldy-Wouthuysen calculation
that is used in the next sections for the semi-relativistic expansion of the cross sections.

e Sections 1.7 and 1.8 present the semi-relativistic expansion of the absorption and scatter-
ing cross section. In both cases, we compare the results with the expressions that can be
found in the literature.

This chapter contains numerous equations. Therefore, the proofs that are not essential for
the understanding of the whole are written in footnotes.

1.2 Introduction to time-dependent perturbation theory

Assume that a time-independent Hamiltonian Hj is subject to a perturbation described by
a time-dependent term W (t) starting at ty. To develop time-dependent perturbation theory for
H(t) = Ho+ W (t), we use the interaction representation:

[ (1)) = e (1)) and [¥(to)) = log) (Ws(to)) = e~/ gy))

where |14(t)) is the Schrédinger wave function which verifies ih0;|1s(t)) = H|vs(t)). In this
representation the wave function obeys:

ihoy | (t)) = Wil (t)) where Wy(t) = eHot/hyy ()e~Hot/h,

As in the Schrédinger representation, the time evolution of [¢(t)) is governed by an evolution
operator:

[4(t)) = Vi(t, to)|1(to))-

This operator is solution of ihd;V;(t,to) = Wi(t)Vi(t,t9). Successive substitutions of the type
Vit to) =1 — % fti dTWi(T)Vi(7,t0) lead to (note that the n = 0 term is linked to the presence

of the identity matrix I):

0 N t Tr—1 -
Vit to) = (—%) / dﬁ.../ AT, Wi(m).. Wi(r,) = T [eﬁ Jig dTWf(”] (1.1)
n=0 to to

where 7 is the time-ordering operator (because to < 7, < ...71 ).
If the system is at t = ¢, in state |¢,), the transition probability to the eigenstate |¢,) of
H, at time ¢ is:

Pog(t) = Kal(E)I* = [{dnlVi(t, to) dg)[". (1.2)

From Eq. (1.1),

. t 1 t T1
OulVitt ko) = by~ 1 [ dr@ Wil = g [ [ dm(oWimWatmlon) + .
1

ﬁ/to dT<¢n\WI(T>|¢g>—%/t()drl /t drz;wnwwz(ﬂ)|¢m><¢m|Wz(Tz>!¢g>+---

= Gy —
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1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

Now, (dn|Wi(T)|dm) = (@n|e™ ™MW (7)e=Hom/R| gy = (¢ |W (T)|pr)e'Fn = Em)7/M therefore the
probability of transition to the state n # g to second order in perturbation theory is:

1 t '
Py(t) = ?’/t d7<¢n]W(T)|¢g>ezAEngT/h

7 t T1 A A 9
_ ﬁ/ dTl/ dro Z<¢H|W(ﬁ)|¢m><¢n’W(T2)|¢g>ezAEnmn/h+zAEmm/h .
to to m
where AEZJ = Ez — Ej.

If one considers a monochromatic perturbation: W (t) = We %!,

/ dr (G| W (7)[g) e 2T/ = (6| W |y) / dr &/ AEng—he)7/h

to to

i(AEng—hw)(t+to) /2R 2isin((AE,, — hw)(t — to)/2h)
i(AE,, — hw)/h '

= (¢n|Wlgg)e
. 2
At first order, P,,(t) = #\(gﬁnﬂ/lf](bg)]z(w) , with a = (AE,; — hw)/2h. The transition
rate, that is the probability of transition per unit of time:

. Pt 2w
wig(t) = im 20 26 4w ) B3 A B — ) (1.3
This formula due to Dirac was called the Golden Rule by Fermi. It is the formula that is usually

used to derive absorption cross sections [Brouder, 1990].

1.3 One-body Foldy-Wouthuysen Hamiltonian and transi-
tion rate

Including relativistic effects in a semi-relativistic way has two advantages. The first one is
that it permits to have a good physical insight on the origin of the relativistic phenomenon. The
second one is that, in most solid state calculations, two-component wave functions are used and
thus a semi-relativistic description can be more widely implemented. The Foldy-Wouthuysen
(FW) transformation is widely used in particle physics but also in molecular and condensed
matter physics |[Ceresoli et al., 2010, Pickard and Mauri, 2001| to describe relativistic effects.
After introducing the principle of this transformation, we discuss in this section the use of the
FW Hamiltonian in perturbation theory.

1.3.1 One-body Foldy-Wouthuysen transformation and Hamiltonian
Time-independent case

In the Dirac theory, the state of the particles is described by four-component wave functions

Uy = <§<<1) . The two spinors that compose these wavefunctions, y; and y», are called upper
2

and lower components.

For positive energy states, the upper component is called the large component and the lower
component is called the small component. In the non relativistic limit (¢ — 00), the small (i.e.
lower) component vanishes. For negative energy states, on the other hand, it is the upper
component that vanishes.
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1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

Hy Hip
Hy  Ha
a 2x2 matrix. The idea of the Foldy-Wouthuysen (FW) transformation is to apply a unitary
operator Uy such that, even for finite velocity of light, the upper and lower components of
Yrw = UgWp are decoupled. In other words, the transformed Hamiltonian H™W = UyHPU!
must be block diagonal.

The Dirac Hamiltonian H” has the form H” = mc?8 + ( ) , where each H;; is

For a one-body system, the Dirac matrix § = (1) _01 allows defining odd and even
vectors in the space of spinors: a vector |U) is said to be even if 5|U) = |¥) and it is said
to be odd if f|W) = —|¥). Odd and even operators are defined by the way they transform

vectors: an operator is said to be even if it transforms an even state into an even state and
an odd state into an odd state (in other words it does not change parity). An odd operator,
on the other hand, transforms an even state into an odd state and an odd state into an even
state. An odd operator O verifies SO = —O and an even operator & verifies €S = £. In
a one-body system, even/odd components correspond to upper/lower components so a block
diagonal Hamiltonian is even.

HP can be written HP? = mc?8 + £ + O, where its even part is mc?S + £ with £ =

( Hi 0 ) and its odd part is O = ( 0 . A block diagonal representation of H?

0 Hy Hy 0
was obtained with a step-by-step method in 1950 [Foldy and Wouthuysen, 1950] and corrected
in 1952 [Foldy, 1952| by L.L. Foldy and S. A. Wouthuysen by applying successive transforma-
tions of the form e™». The successive steps are detailed in |Greiner, 2000, p285].

In 1958, E. Eriksen proposed a criteria to define a F'W operator |[Eriksen, 1958|:

Uo = BUSB. (1.4)

The transformation e*1¢*2..¢** used by Foldy and Wouthuysen does not satisfy Eriksen’s
condition [Silenko, 2016].!
Eriksen proposed another operator [Eriksen, 1958| that verifies condition (1.4) and that is

linked to the operator sign of HP through the relation:
UlBUy = A = signHP. (1.5)

Thanks to this relation, the FW transformed wave functions of positive (negative) energy
Dirac wavefunctions only have upper (lower) components. Indeed, it implies that 5Uy = UpA.
Therefore, |Ypw), defined as |[Ypw) = Up|¥p), is even (B|vrpw) = |Yrw)) if |¥p) is a positive
energy state (A\|Wp) = |¥p)). Therefore, only the upper components of the FW transform of
a positive energy Dirac state are non-zero. Likewise, the F'W transform of a negative energy
state is odd, i.e. only its lower components are non-zero. In practice, these statements are
exact up to the order to which the FW transformation is performed.

Eriksen, as Foldy and Wouthuysen, used m~! as expansion parameter and stopped at order
m~2. At this order, both approaches yield the same transformed Hamiltonian H*W. Indeed, the

1 At each step, S, writes as a function of the odd part of the Hamiltonian:

—1

P Ome2 BOp.

. , , ‘ k
The operator U, = €' verifies U, = SUJS. Indeed, U} = e™*r = 3, (_kl!)k (50”) , 50 as B(BO,)FB =

2mc?

(b’ﬂ(’)pﬁ)k = (—1)’“(501))’“, e~ 3 = ', However, ﬁ(U1U2...Un)T5 = U,...UUy # U1U,...U,.
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1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

correction to the operator proposed by Foldy and Wouthuysen for it to verify Eriksen’s condition
(Eq. (1.4)) is of order m~3¢™* [Silenko, 2016, Eq.(31)]. The corresponding Hamiltonian is:

1
HYW = S i(’)2 — 0,[0,£&]].
The odd and even operators for the Dirac Hamiltonian are:
O =ca-(p—-eA)and £ =epyl. (1.6)
It leads, for positive energy states, to [Strange, 1998|:
o2 2
FW eh eh eh
H™Y = mc? +2—+e¢0—%a B — m(a-(EXﬂ')—a-(ﬂ'xE)) 8m202v E (1.7)

where m = p — eA. It is the sum of six terms:
(i) the rest energy of positive-energy eigenstates,

(1) the kinetic energy of the electron,
(ii1) the Coulomb interaction of the electron with the nuclei and the other electrons,
(iv) the Zeeman interaction with magnetic field,
(v) the spin-orbit interaction (for a spherical potential ¢y and a static vector potential A,
o-(Exp)==%%0 (rxp)=7%0-L),
(m) the Darwin term
In the time-independent case, which is the object of this section, Exp+pxE = —ihAVxE =0

(Maxwell-Faraday equation) so the writing of the spin-orbit part of H¥W could be simplified
by replacing the term in parenthesis by 2o - (E x 7).

Textbooks [Bjorken and Drell, 1965, Itzykson and Zuber, 1980| often derive a FW Hamil-
tonian HTFW with expansion parameter ¢! up to order ¢=2 which is the same as H¥W except
that 7 is replaced by p in the spin-orbit term. Because of the presence of 7, the Hamiltonian
H™W is often considered to be a gauge invariant Hamiltonian contrary to H™"W. However,
we will see in Section 1.4 that the concept of gauge invariance of transition probability is
not straightforward. A mass-velocity term —(p-p)?/8m3c? is also often added in textbooks
[Itzykson and Zuber, 1980].

Time-dependent case

If HP is explicitly time dependent, its FW transformation writes [Foldy and Wouthuysen, 1950]:

H™W = UHPUT - thai (1.8)
ot

in order for the time-dependent Schrodinger equation to remain valid. Note that the expression
of H*W remains formally the same as in Eq (1.7) but the part —ihU 2= is responsible for the
92 term that appears in E = —V¢y — 2 [Goldman, 1977].

1.3.2 Naive application to absorption cross section calculation
Calculation from H'W

In this section, we consider that the material is described by the FW Hamiltonian and we
are going to use perturbation theory at first order to compute the absorption cross section. We

18



1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

split the FW Hamiltonian between a static part, Hy, that describes the material in the absence
of the electromagnetic wave and a time dependent part, W, that describes the interaction
between the electron and the incident wave, which can be treated as a perturbation. The total
vector potential A and fields E and B are decomposed as sums A = Ay +a, E = Ej + e,
B = By + b of their static part (letters with index 0) plus their dynamical part representing
the incident electromagnetic wave (lowercase letters). We use Coulomb gauge (V-a = 0) and
we choose the potential associated to the wave to be zero. The static Hamiltonian writes:

1 eh eh eh?
FW __ 2 2
HO = mc +%7TO+€¢0(I‘)—%U-B0—WU'(EQX?To)—Fm(Agbo)

where wg = p — eAy, and the perturbation writes:

w(t)=H™ — Hg™
—e eh eh

= —a-my——0-b————0-(exmy— 1y xe—2E; x a).
m 2m 8m2c? ( )

We have used Maxwell’s equation in vacuum V -e = 0, we neglected the term proportional to
a? because it gives a negligible contribution for available x-rays sources as was evaluated in

[Brouder, 1990| and we have used the fact that in the Coulomb gauge a x p = —p X a.
We consider a monochromatic plane wave: a=Aee’®*~“) b=V xa=ikxa and e:—%:iwa.
To develop further, it is useful to notice that the commutator of the static Hamiltonian with r

is:?

—1ih eh
[HE™ x] = — = + 5 (ih) (o x B).
Thus W (t) = We ™! where,
€ €2h eh
W = Ea [ng,r] — Wa (O’ X Eo) — %ZO" (k X a)
ehiw e2h
— —8m2020'- (a X g — T X a) + WU (EO X a), (19)

In Eq. (1.9), the second term, which arises from the commutator of H}"V with r, cancels out
the last term that arises from the spin-orbit term in H*W. This fact is not simply anecdotal
because, would one of these terms remain, it would be identical or opposite to the last ¢=2 term
in the absorption case (which as we will see in the following, is responsible for a significant term
that is called spin-position).?

2 Using the derivation chain rule, VZr|¥) = V(rV|¥) + V(r)|¥)) = V|¥) + V|¥) + rV?|¥), that is to say
2 .
[V2,r] = 2V. Therefore [52,r] = =% m,. Now,

2m? m

[0 (Eg X mg),r] = (0 (Eg X 7g))r —r(0- (Eq X m0)) = ((00 X Eqg) - 7g)r —r((0 X Eg) - mp)

The projection of this quantity on any axis i:

[0’ . (EO X TI'()),I‘]Z' = Z(O’ X Eo)j(ﬂ'ojri — I'ﬂToj) = Z(O’ X Eo)j(—ih)(sij = (—zh)(a X Eo)z

2

3 Using the relation [p, ¢g] = iV ¢y, the electric field in matter writes at zeroth order in ¢~2 as a function

of the commutator of g with Hy:

—1
E() = —VEO = 5[7707H0]~

In the case of absorption, the commutator transforms into a factor —AEy, = —hw in the cross section so that
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1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

This expression of W can be used to determine the transition rate from the Golden Rule
(Eq (1.3)). The absorption cross section is the ratio between the rate at which energy is removed
from the photon beam (hw Zf wy, where the sum runs over unoccupied states f) and the rate at
which energy in the photon beam crosses a unit area perpendicular to its propagation direction
(I(w)): oS

w w
% 21 412
o(hw) = ——————— where [(w) = 2¢pcw”| A|".

As the core wavefunction is very localized (the evaluation of kr for several edges will be
given in the next chapter), we use the quadrupole approximation e’ '* ~ 1 +ik - r except in the
c¢~2 term for which we use the dipole approximation ¢’*'* ~ 1. In this term the commutator at
zeroth order [H§W r] = %hﬂ'o is sufficient to preserve the ¢=2 approximation.

Finaly, the semi-relativistic absorption cross section can be written with four operators:*

o) = OB S e 1 Lenen)

f lectric dipol
FeCHe AIpose electric quadrupole
h thw

magneﬁg dipole spin-position

where A =1 X wy = L — er X ag is sometimes named the moment of mechanical momentum
[Cohen-Tannoudji et al., 1987]. A can be understood as a gauge invariant angular momentum.
The first two operators are the usual electric dipole and electric quadrupole operators. The
third one is the magnetic-dipole operator [Brouder, 1990] but with A instead of the L that
usually enters it through the total angular momentum of the electron (ho + L). We name the
c? term spin-position because it is proportional to o - (r X €) = €+ (o X r).

A similar calculation was carried out in 2009 by Christos Gougoussis [Gougoussis, 2009,
Chap. 3| in his PhD thesis. However, he obtained an additional contribution that he named
SO1 and that wrote %0 -[V¢o X €]. In our calculation, it cancels out with the ¢™* term
when 7 is written as a function of the commutator of HJW with r. This term was not de-
veloped in C. Gougoussis’ thesis but it yields the same contribution as the spin-position term

the term that cancels out would lead to the same contribution to the matrix element as the remaining ¢~2 term:

—iehw

WU' (a X 71'0).

4 The rewriting of a-[HEW, r] within the quadrupole approximation requires a little trick:
- () [ 1] = (k- 1) HEW (1) — (k) (e ) HE™
1 1 1
= PN (er)kom)] — LHEY (e )0 1) L (O m) Y ()

1 F 1 F
- §(€'r)(k'r)H0W + §(k-r)H0W(e-r)

1
= S (IHFY (e ) 0)] + (v (e [HF ™, x]) = (k- [HEWY . x]) (ev))
1
= 3 (Y (e )k )] + (€ x W) - ([HFY ] x 1) ).
In this term, as it is proportional to k, the commutator at zeroth order in ¢=2: [HEW r] = _Tzfﬂ'(), is also
sufficient. Therefore, (e x k) - ([H§W,r] x ) = £ (e x k) - (r x 7).
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1.3. One-body Foldy-Wouthuysen Hamiltonian and transition rate

(see footnote 3), called SO2 in his thesis. This illustrates the importance of a derivation of the
commutator that is consistent in order of ¢=2 with the rest of the development. Here, it is partic-
ularly treacherous because, working in the Heisenberg picture, we could think that [HFW r] =
—ihdr = _—mp, as it is used for example in [Takahashi and Hiraoka, 2015, Joly et al., 2012].
However the relation m—r = p is not valid. Indeed, m%r = =2[Hy,r] is equal to p only if
Hy =2 + V(r). If Hy= 2= —|— V(r), mir = 7 and if the Hamiltonian includes the spin-orbit

mteractlon proportional to E x p+pxE, m$ d T =T — 4eh (o x E).

Calculation from HT¥W

Surprisingly, if the same calculation is carried out from the FW Hamiltonian H™*W defined
p. 18, the result is not the same.

The fact that 7 is replaced by p in the spin-orbit term is quite important. Indeed, it leads
to the absence of the term o - (Ey x a) in W in Eq. (1.9). The consequence is that there is
no spin-position contribution to absorption cross section because it is cancelled out by the ¢ =2
term arising from the commutator [Hj™ W, r].

The additional mass-velocity term —(p - p)?/8m?c? does not contribute to W but it is present
in Hi"™W. Tt leads to an additional contribution to the commutator [HiW, r]: m2(p_3p2)p It is
small compared to %p if the order of magnitude of the kinetic energy of the core state satisfies
E), < mc? so we could neglect it here.

As the main difference is due to the replacement of 7w by p, it seems to be related to a
problem of gauge invariance. Indeed, it is often said that H™*W is the gauge invariant version
of FW Hamilonian. It is not true that using H™*W provides gauge invariance. The difficulties
related to gauge invariance in transition probabilities calculations will be detailed in Section 1.4.
Before that, we explain why the derivations presented in this section are, in any cases, invalid
because there is a conflict between FW and time-dependent perturbation theory.

1.3.3 Subtleties in the application of time-dependent Foldy-Wouthuysen
transformation to transition rate calculation

It was noticed by Nieto as early as 1977 [Nieto, 1977, Goldman, 1977| that the FW Hamil-
tonian must not be used to calculate the Hamiltonian matrix elements. Indeed, as HP =
HP(A,V) is explicitly time dependent, its FW transformation [Foldy and Wouthuysen, 1950]
writes:

H™W = UHPUT - tha&it (1.11)

in order for the time-dependent Schrodinger equation to remain valid for |[Ypw) = U|¥p).
Therefore, (Pp|HP |V p) = (¢ppw|UHP U |¢ppw) # (dpw|H"W|1rpw). The case of the transition
probabilities yields another subtlety: the FW operator U corresponding to H” is different from
the FW operator U, corresponding to HY = HP(Ay, ¢o). The transition probability,

{@BIWn(0)) P = {tw|UoU [trw () * # [(Spw [vrw ()] (1.12)

Therefore, the usual formula of perturbation theory cannot be used with FW transformed
quantities. Tricks like transforming (®7| with U instead of U, are not an option because it
would make (¢ | time dependent so that it would not be an eigenstate of HW.

This illustrates that the straightforward way to obtain semi-relativistic cross sections (that
consists in considering that the system is described by a FW Hamiltonian and computing the
transition probabilities between eigenstates of this Hamiltonian) is, in fact, not valid.
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We propose an alternative approach in which we start from the fully-relativistic cross sec-
tions and we apply a FW transformation to the wave functions. In order for this approach to
be correct, it is important to check its gauge invariance.

1.4 Gauge Invariance

The principle of gauge invariance has become a cornerstone of particle physics. Since general
relativity can also be considered as a gauge theory [Blagojevi¢ and Hehl, 2013], it may be safely
said that gauge invariance was the guiding principle of most of the fundamental physics of the
twentieth century. Therefore, we need to check that the cross section formulas are gauge
invariant to ensure their true physical nature.

1.4.1 Principle of gauge invariance in classical electrodynamics

Maxwell’s equation V - B = 0 has for a consequence that B locally admits a vector potential
A such that B = V x A. The magnetic field is unchanged if one adds the gradient of any
continuously differentiable scalar function A to A: A’ = A + VA(r,t). Similarly Maxwell’s
equation V x E = —%—]f that rewrites V x (E + %) = 0 leads to the local existence of a scalar
potential V' such that E+ % = —VV. The electric field remains unchanged if A is changed to
A’ and the time derivative of A is subtracted to V: V' =V — %. In classical electrodynamics
gauge tnvariance means that the physics must remain the same when a gauge transformation

is applied to the potentials.

Particle in a field

The force F exerted on a particle of charge ¢ and mass m in an electromagnetic field is
the Lorentz force: F = ¢(E(r,t) + v(r,t) x B(r,t)). Newton’s law m%r(t) = F governs the
movement of this particle: in this formalism, the problem of gauge invariance does not arise.

However, the motion of this particle can also be described [Cohen-Tannoudji et al., 1987]
by the Lagrangian:

L(v,r 1) = %m\ﬁ g (V(r,t) —v-A(r,1)

The canonical momentum p = V,L(v,r,t) = mv+¢qA(r,t). The position r and the velocity v,
that are driven by Newton’s law, are independent of the gauge. Therefore p — qA(r,t) = mv
is independent of the gauge but p is not. The corresponding Hamiltonian is given by,

1
H ,I,t) = ’LZ_L ia'i:_ _A>t2 V>t
(p.rt) =D pidi = L(gi. 6) = 5~ (P — gA(r,1)* + gV (r,1)
If the gauge is changed, H is changed to H' = ’H—q% due to the presence of the scalar potential
V' in its expression. It can however be checked that the equations of motion associated to this
Hamiltonian lead to Newton’s law. Similarly, the Lagrangian is transformed under a gauge
transformation to

L’:L+q(%—?+v-VA> (1.13)

so it differs only by a total time derivative % and the equations of motion remain the same. In

conclusion, the quantities used to describe the physics are not necessarily physical quantities
in the sense that physical quantities must be gauge invariant.
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1.4.2 Gauge invariance in quantum mechanics

In quantum mechanics, gauge change consists in both a change of the potentials and a
change of the phase of the wavefunctions:

A — AV =V and ¢(r,t) — Mp(r,t) (1.14)
where, My = e s a unitary operator.
By definition [Cohen-Tannoudji et al., 1973| an observable O describes a true physical quan-
tity if it verifies M{OyMy = Oy for every function A(r,t). A Hamiltonian H(A,V) =
f(p —eA) + eV where f is some function, is not such a gauge invariant operator:

o2\

H(A', V') = M\H(A,V)M] — ey

(the % arises because of the potential). The time-dependent Schrédinger and Dirac equations
are, however, invariant under gauge transformation:

M} (ihd, — H(A', V")) My = ihd, — H(A, V).

So if v is solution of ihdyp = H(A, V) then ¢ = My is solution of ihdy) = H(A', V') .

1.4.3 Gauge invariance of transition probabilities

Let us first consider the question of gauge invariance of the matrix element entering the
Golden Rule Eq. (1.3). In the calculation presented in section 1.3.2, we separated the static
field in the absence of perturbation (Ag, V5) from the incident electromagnetic wave field (a, v).
When a gauge change transforms the static potentials Ay and V{, the interaction W is changed
to MAWM/T\ and the static eigenstates are transformed to M,|W,). As a consequence, the
matrix element (U”|W/[U") is conserved under a gauge transformation for the static field.
The gauge function A must however be time independent in order for Hy to remain a static
Hamiltonian.

Now, if the gauge for the incident electromagnetic wave is changed, W is transformed
whereas the eigenstates are unchanged. In general,

(W™ H' — Ho|W") # (U™|H — Ho| V™).

In order to determine when gauge invariance can still be achieved we compute the difference
between these two quantities:

A
(O™ H' — H|U") = (O™ |MyHM| — H — eaa—tmﬂl).

Using Baker-Campbell-Hausdorff formula,

tel\ 1 {zeA [ieA
MAHM} = H+ |— H| + = |—, |=—, H| | + ...
ik = | [ [0
If one considers W and A as perturbations, at first order

eA
MyHM] ~ H + {%7&]}
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so that [Kazes et al., 1982, Feuchtwang et al., 1986|:

E - E;

(U — H|W") e~

(U™ AT —e<\pf\%—/;\qf">. (1.15)
Note that the equality is exact in the case of the Dirac Hamiltonian, with no need to make any
approximation on the order of magnitude of the perturbation or the gauge because H'” — HP =
ca-VA+ 2 and ca- VA = (i/h)[HP, Al

During the absorption process, energy conservation implies that Fy = E; + hw, thus if A ver-
ifies 2 = —iwA then (U™|H' — H|U") = 0. This explains the fact that derivations that
have been performed with several different gauges (for example in [Yang, 1988]) lead to con-
sistent results when E; — F; = hw. This condition is however not met in scattering experi-
ments [Yang, 1988, Stokes, 2013] and, even for absorption, the restriction to gauges that verify

%—ft\ = —iwA\ is not enough to provide gauge invariance.
The right term in Eq. (1.15) is also zero in the elastic case (E; = Ef) with time-independent
gauge transformations (%—/t\ = 0 ) which is also a very narrow restriction.

In conclusion, in the semi-classical approach, where the photon is represented by an external
field, the matrix elements of W are not gauge-invariant. Given the remark of the first paragraph,
that these matrix elements are invariant under a gauge transformation of Ay and Vj, it could
be tempting to apply a method that would consist in subtracting A from Ay and Vj instead
of a and v. This would, indeed, have the same effect on the total field. This method, that
was proposed in [Forney et al., 1977, Epstein, 1979] is questionable for a time-dependent gauge
change because it requires to define 'time-dependent eigenvectors’ |¢)) = Ma|¢,) which is
not consistent with perturbation theory as presented in Section 1.2. The problem for time-
independent gauge changes is subtle and was noticed by Yang [Yang, 1982|. If one decides to
apply all the gauge changes to Ay and Vj, it means that the gauge is fixed for a and v. In
other words, it requires to arbitrary define the "good gauge" for a and v which is in conflict
with gauge invariance.

More generally, to check if this problem of gauge invariance is not related to the order of
approximation in perturbation theory, we can check whether the transition probability P,
is gauge invariant. For a matter of simplicity, we use Schrodinger representation instead of
the interaction representation. In the Schrodinger representation, the time evolution oper-
ator obeys iho,V (t,tg) = H(t)V(t,ty) and under a gauge transformation of a, it becomes
[Kobe and Yang, 1985]:

V/(t, o) = P OMY (3 4)e—ieAt)/n

(the proof is given in [Kobe and Yang, 1985] paragraph V).
The transition probability P, (t) = [(¢n|V (,t0)|}4)|* becomes

PT/Lg (t) _ |<¢n’ei6A(t)/hV(t, to)efieA(to)/h’qbg) |2 — |<¢n’ei6/hﬁo 0l7'/.\(’f)-i-ieA(750)/hv(t7 to)efieA(to)/h|¢g> ’2

The two probabilities are equal if A(t) = 0 and [A(ty), V] = 0 but in general P, (t) # Poy(t)
which is alarming. Many papers describe the discrepancy between the probability calculated
in two different gauges, which can be large [W. E. Lamb, 1952, Stokes, 2013, for example].

The fact that the right term of Eq. (1.15) is zero in the elastic case with time-independent
gauge transformations, suggests that gauge invariance could be achieved in a framework where
the states described both the electronic system and the photons so that the final and initial
energy are always equal. Such a framework is provided by quantum electrodynamics (QED)
which is a quantized theory of light interacting with matter.
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1.5. Relativistic absorption and scattering cross sections

1.4.4 Gauge invariance in QED

In QED, the electromagnetic field is quantized and the photons are excitations of the quan-
tized field. A scattering experiment is described by the transition from an initial state involving
both the electronic system in its ground state and the incident photon, to a final state involving
both the electronic system in its (possibly) excited state and the scattered photon. The transi-
tion probabilities are now described through the so-called S-matrix. In the Schrodinger picture,
the gauge transformation can be expressed in terms of time-independent operators so both con-
ditions that are sufficient for (U/|H’ — H|¥?) (Eq. (1.15)) to be zero seem to be met. This is a
hand-waving argument that suggests that gauge invariance could be satisfied. However, a review
of the literature on quantum electrodynamics is rather confusing. For standard textbooks “the
S-matrix is gauge invariant by construction”|[Peskin and Schroeder, 1995]. For mathematically-
minded authors, “an even approximately complete solution [of the gauge invariance problem]
does not exist”[Steinmann, 2000]. The difficulty comes from the fact that the state spaces have
different natures depending on the gauge (Coulomb and Lorenz gauge are a very common il-
lustration of this problem: in the Lorenz gauge there are four polarization vectors whereas in
the Coulomb gauge there are two polarization vectors [Cohen-Tannoudji et al., 1997]).

The gauge invariance of the renormalized S-matrix is however established for infinitesi-
mal gauge transformations [Weinberg, 1995, Hollands, 2008] and for reasonably large classes of
gauges [Haller and Sohn, 1979, Matsuda and Kubo, 1980, Voronov et al., 1982, Manoukian, 1988,
Haller and Lim-Lombridas, 1994, Lenz et al., 1994, Kashiwa and Tanimura, 1997, Grigore, 2001,
Das et al., 2013]. In other words, it is proved at a reasonable level of rigour for a physicist.

The most studied gauges are the Lorenz and Coulomb gauges. In the Coulomb gauge, the
physical degrees of freedom are manifest: the photon states form a Fock space built by acting
on the vacuum with creation operators of left and right polarized photons. Coulomb gauge
is used in most of the low-energy many-body calculations and, in this gauge, the Coulomb
interaction is exactly accounted for. For these reasons, we will use the Coulomb gauge in the
following derivation of the cross section.

1.5 Relativistic absorption and scattering cross sections

Cross sections are expressed in terms of the S-matrix and 7-matrix elements. We present
their calculation in a fully relativistic QED framework in the Coulomb gauge.

1.5.1 Photon matter interaction and S-matrix

The quantum field Hamiltonian describing the interaction of light with matter in the
Coulomb gauge is [Greiner and Reinhardt, 1996, Cohen-Tannoudji et al., 1997|:

H = H.+H,+H,,

The electron Hamiltonian is

H. = /der(r)(ca-(—ihV — eAg) + Bmc® + ed)Y(r) + /drd o)

8meplr — 1’|’
where ¢ is a time-independent scalar external potential (for instance the nuclear potential),

Ay is a time-independent vector potential (describing an external magnetic field) and ¢ are
fermion field operators. The photon Hamiltonian is

€
H, = ;/dr]e >+ c*le|* = Zhwklaklakl,
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1.5. Relativistic absorption and scattering cross sections

where [ stands for the polarization of a mode (there are two independent directions for a given
wavevector k). Finally, the photon-matter interaction is described by:

He, = —ec/der(r)a-a(r)zﬁ(r).
The S-matrix is

S = lim (e Helt)dty, (1.16)

e—0

where H,(t) = e~“ltleiflot j_ e=Hot The adiabatic switching factor e~ enables us to describe
physical processes as matrix elements of S between eigenstates of Hy = H. + H,.
In the non-covariant approach [Heitler, 1984], using matrix elements of H.(t) between eigen-

states of Hy, cross sections are expressed in terms of the S-matrix and 7-matrix elements related
by:

(m|S|n) = Omn — 2im0(em — €,){(m|T|n).
Up to second order,

m|He, |p) (p|Hey 1)
ep — €p + 1Y

(I T = (] ool + 37 & (1.17)

where |m), |p) and |n) are eigenstates of H, with energy e,,, e, and e,, respectively. The term
iy was added as a heuristic way to avoid divergence at resonance (i.e. when e, = e,). In this
approach, the operators are independent of time (Schrédinger picture).

1.5.2 Matrix-elements of H,.,, multipole expansion

In the Schrédinger picture, the expression for the photon field is [Strange, 1998|:

[ h , .

k'r * T —ik-r
a(r) = E <eklakleZ + €5 ,a, e )
( ) — 2€O‘f K ’ ’ k,l k,l

We denote |n) = aLl]OH‘IJn) an eigenstate of Hy where one photon is present in mode k, [
and the electrons are in state |V,,) with energy E,,. The energy of |n) is e, = hwy,; + E,,. The
interaction Hamiltonian H., is linear in A which is linear in photon creation and annihilation
operators so that only one-photon transitions are possible. From now on, we denote w = wy,
€ = €k, w’ = Wk I’ and € = Ex/ 1.

The state |n) can make transitions to |a) = |0)|V,,) by absorption and to |e) = aLlaLl,\O) U,

by emission. The corresponding matrix elements are:

h _
(@l ) = —ec\[5t—e (] [ Wlmavipe arl,),
h e
() = —ecy[ 5 (0] [l aw(e)e ™ Tarlw,).
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1.5. Relativistic absorption and scattering cross sections

To carry the multipole expansion we use the following result:
let F = [7(r)f(r)y(r)dr, where f is some function of r then,’

[Ho, F] = —ihc/wT(r)aw(r)~Vf(r)dr. (1.18)

When expanding to first order e™® T ~ 1 + ik -r, we apply Eq. (1.18) with f(r) = €-r and
f(ry=€e-rk-r:

[H.,¢te-ry] = —ihcdlan)-e
[H.,¢le-rk-r] = —ihc'arp-(ek-r+ke-r)

where we removed the integral signs for notational convenience. The second relation leads to
2¢te-a k-rip = L[H., ¢le-r k-r¢] — (€ x k) - (r x a)y. This leads to:

(@l o) = S [ ) [T @ v,), (1.19)

where

‘ h
T(r):e-r—l—ze-rk-r— ¢

5 2AEcm(exk)-(rxoz).

The first term of 7" is the usual electric-dipole operator, the second one is the electric-quadrupole
operator and the third one will turn to be the magnetic-dipole operator (see Section 1.6).
Similarly for emission,

(eltoln) = S s Wl [T @] v,), (1.20)

where

T'(r)=¢€"r— Tk ot

5 M; (€ xK)-(rx a).

1.5.3 Fully relativistic absorption and scattering cross section

The transition probability per unit time from state m to state n is related to the 7-matrix
elements by [Walecka, 2010]:

2 2
w = ﬁémn Im(m|T|m) + %5
5 To obtain this, we go to the interaction picture and define Fj(t) = e!ot/h pe=tHot/h  Then, the time-
derivative F; of Fy is given by —ihFy(t) = [Ho, F;(t)]. Now, we notice that F' is related to the density operator
p(r) = t(r)y(r) by F = [ p(r)f(r)dr. Thus, —ifiFy(t) = —ih [ p(r,t) f(r)dr = [Ho, F;(t)]. If Hy conserves the
electric charge, the continuity equation ep(r) = —V - j holds, where j is the electric current operator. By taking
t = 0 to recover the operators in the Schrédinger picture, we obtain:

(em — en)|[{m|T|n)|?. (1.21)

HoF] = [ smrmie =" @) e

Finally, j(r) = ect)’(r)a)(r) leads to Eq. (1.18).
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1.5. Relativistic absorption and scattering cross sections

Absorption cross section

The absorption cross section is derived by assuming that initially the electrons are in state
|I) with energy F; and that a photon k, €, w is present. In the final state, there is no photon and
the electrons are in state |F'). The transition rate must be divided by ¢/V (rate at which the
photon crosses a unit of surface) to obtain the cross section. Since we consider real transitions
(i.e. m # n), only the second term in Eq. (1.21) is present. From Eq. (1.19) the absorption
cross section is:

2 AE]%i 2
0 = dr’ag— ; (F|T|I)*6(E; — E; — hw)
= draghw Y _ [(F|T|1)*6(Ef — E; — hw). (1.22)
!

In a many-body formalism, T" writes as a sum over the electrons labeled n:

) h
T:zn:e-rn+%e-rnk-rn—Tzﬁ(exk)-(rn X Q).

Scattering cross section

The scattering cross section is derived by assuming that initially the electrons are in state
|I) with energy E; and that a photon k;, €;,w; is present. In the final state, a photon ky, €7, wy
is present and the electrons are in state |F). We do not consider the special case when
ki, Eiikf, Er.

The scattering cross section is related to w by [Als-Nielsen and McMorrow, 2000, p.265]:

d*o ||

dQdw;  (2n)3 Tt

As only one-photon processes are possible, there can not be a contribution from (m|H.,|n) in
Eq. (1.17) and the transition rate writes as a sum over intermediate states that contain either
no photon (k;, €; absorbed) or two photons (ky, €7 emitted).

Without carrying the multipole expansion:

d*c 9o WF
s = (reme”) = Z5(Ef + hwy — E; — hw;)
vt F
5 LT G, o)
T EZ—El+th+Z’}/
F eki'Tney b LY (L R AT A MNP
RG> LS, P 4
Ei — El — ﬁwf

where r, is the classical electron radius.

In this expression, the sum over |L) involves a complete set of states, with positive and
negative energies. If |L) is a positive energy state, only the first sum can be resonant. Indeed
as |I) is the ground state E; — E; < 0 can not be equal to hwy. If |L) is a negative energy
state, none of the two sums can be resonant. Indeed, E; — E; ~ 2mc?* (the transition from L to
I corresponds to the emission of an electron positron pair) can not be equal to hw in standard
experimental conditions.
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1.6. Many-body Foldy-Wouthuysen transformation

1.6 Many-body Foldy-Wouthuysen transformation

For the semi-relativistic expansion, we have seen in Section 1.3 that it was not correct to
start from FW Hamiltonians to determine the cross sections. However, now that we have
the expression for the cross sections in a fully-relativistic framework, we can apply a time-
independent FW transformation to the wave functions:

(M|T|N) = (m|UsTUj|n) (1.24)

where m and n are the FW transform of M and N and Uj is the time-independent FW operator.
The static FW operator Uy is known for one-body systems but not for many-body ones.
Therefore, we derive a many-body version of FW transformation here.

1.6.1 Time-independent many-body Foldy-Wouthuysen transforma-
tion

In the literature, the Foldy-Wouthuysen transformation was studied for two-body Hamilto-
nians [Chraplyvy, 1953, Eriksen, 1958|, but the results were rather complicated and not easy
to extend to many bodies.

Here, our aim is to obtain wave functions that are even or odd. The generalization of 3 for
a many-body systems is 7 = 5, @ - -- ® 3, that verifies nf = 1 and 1?> = 1 which is enough to
define parity.°

For many-body systems, even or odd wave functions do not correspond to wave functions
with only lower or upper components.’

The many-body Dirac Hamiltonian:

N
Hze = Z [ﬁnmCQ + ego(ry,) + cay, - (P — eAo(ry)) + Z eV (ry, — I'n)}
=t m#n

where V(r) = g is the Coulomb potential and ¢o(r) describes the Coulomb interaction of

the electron with the nuclei. The even and odd part of HE are therefore 25:1 Bamc? + € and

6 Let’s consider a self-adjoint operator n such that n? = 1. It can be used to define projectors B+ = (1+n)/2.
It is clear that B, + B_ = 1, B2 = By, Bl = By and B{B_ = B_B, = 0. A vector |¢) is said to be even
(odd) if n|y) = |¥) (n|v) = —|¥)). Then, any vector |¢) can be written as the sum of its even part B |y)
and its odd part B_|¢). An operator H is said to be even (odd) if it transforms an even state into an even
(odd) state and an odd state into an odd (even) state. An operator O is even (odd) if and only if nOn = O
(nOn = —0). Any operator H can be written as the sum of its even part ByOB, + B_OB_ and its odd part
B.OB_ + B_OB,.

" For example, for a two body system, if [1)p) = ( f;l ) ® ( 32 ) )
1 2

Then, the even part of |¢p) is

while its odd part is
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1.6. Many-body Foldy-Wouthuysen transformation

O with: .
—ez¢0 r, —|—eZV m —Ty) and O = ann T, = ZO”
m##n n=1 n=1

where 7, = p, — eAq(r,).

In analogy with the one-body case, at the first order in ¢, the operator is Uy = eis?

where

S

is chosen as the Foldy-Wouthuysen operator. Indeed, when expanding H¥W®) = ¢i5® fyDg=is®)

using Baker-Campbell-Hausdorf formula:
2
HPYO = R 4 i, 1)+ SISO, (S0, HE)) +

the term i[SM, > B,mc?] compensates exactly for O. Moreover, the conditions SWf = 5
and nSWn = —SW are satisfied.®

From this point, the FW transformation can be carried as in [Greiner, 2000, p285| and we
find:

1 1
Hy™ = ) B 5000+ (22 8:0m €l = 55 D a0
~ 2mc ~ ~ 8m?sc "
In the double commutator, the two cases m = n and m # n can be separated which leads
to:
;N
FW _
Ho _;B” Imc? ;5” e 8m2c4 Z nlOn, €]+ o5 477;%571 O, €]
1 4
~ g 20
Using the formula for O and &:°
N
HW =Y " HY + Hyy (1.26)
n=1
8 The commutator,
EiR Zﬁnmc Zﬁn OnBnr = B O = —( > BubBuOn = B Bn O + Z 2on)

n#n'
=10

because [8,/, 8n] = 0.
¥ The double commutator [O,,[O,,, £]] rewrites:
(04[O, €] = €[On[On, Y d0(xp)]] + €[On[On, > V(rg—1)]
P D7D
In this expression,

[On;s do(rp)] = —ihc[an - Vi, ¢o(rp)] = —ilicOpnoy - [V, o(rp)] = —ihcdpnary - Vo (ry),
[0, V(rg —1p)] = —ihcop noy, - VV (rp — 1g) + thedg nog - VV (r, —1y).
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1.6. Many-body Foldy-Wouthuysen transformation

where HE'W are the usual one-body FW Hamiltonians:

72 eh

FW __ 2 _n __ _—
H" = B,mc” + epo(ry,) + e%‘/(rm r,) + ﬂn 2m ZmCE -Bo(r,)
2 . 2
N GBy(rn) + =S, (1 x Eolra) — Bo(ra) x ) — BT )

8m2c? 8m2c?

with Bo(r,) = V x Ag(r,), Eo(ra) = —Veo(rn) — 2, ., VV (1, —1,) and 2, = (“O” UO )

The other term HLY arises because V(r, —r,) is a two-body operator:

eh? eh
HiY = Z ——AV(r, —r,) — WEn -(mw, x VV(r,, —1r,) — VV(r, —r,) X 7,)

eh?
+ W Z 6n5m(am ' v)<an ' V)V(rn - rm)‘
n,m#n

The first line in this expression is due to the factor of 2 in front of VV in [O,, ] (Eq. (1.25))
and the second line is due to the sum over m # n in the expression of Hi ™.

As 32, VV(r, —rg) = =3, VV(r, —r,) due to the fact that VV is a odd function,

[0, &] = —iehc(an - Vo (ry) + 2 Z o, - VV(r, —1,)). (1.25)
qFn

We must therefore calculate two commutators for which we use the formula in Appendix B.4:
o [On> (877 VQSO(I'H)} - C[an T, Oyt VQSO(I'TL”
=Y [mni, Vigo(rn)] +icS - (mn x Vo (rn) — Veo(rn) x 7,)

%

= —ithcApo(ry) +icX - (mn X Vo(ry) — Vo(ryn) X m,)

o (O, Z a, -VV(r, —ry)] = CZ [ap T, 0y - VV (1, —1g)]
q#n q#n
=Y —iheAV(r, —1g) +icE - (mn x VV(rn —14) = VV (£, — 1) X 7,)
q#n

The second double commutator with m # n:

Bmﬂn[om; [Ona 5}] = 6771671[Om7 *ieﬁc(an . V¢O(rn) +2 Z Oy - VV(I‘n - rq))]
q#n

As a,, - Vo (r,) commutes with O,,, only the second term in [O,,, €] must be considered:

o [0, Z a, -VV(r, —ry)] = CZ (@ - Ty @ - VV (v, — 1g)]

qF#n q#n
= cZZa ol [Tmis ViV (rn, —1g)]
q#n ij
= —zhcz Z Q0 Og (Vi V;V(ry, — 1))
q#n ij

= ihc(ouy, - V) (o - V)V (r, — 1)
The expression for O2 and O} can be found in [Strange, 1998, p.220].
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1.7. Semi-relativistic absorption cross sections

1.6.2 Properties of this transformation

At the first step, the FW operator, Uy = ¢S is a tensor product of one-body FW operators:

Uy = eist” R ... ¢SV, At the next step, however, U, can not be written as a tensor product
because S contains two-body operators. With expansion parameter m~2, in analogy with
the formula in |Eriksen, 1958|, Uy writes:

1 1 2 1
Us =145 BOn= 5= (D 8:00) + 1 2 5| D BuOi€|  (127)

and it obeys Uy = nUln. Also, if HE is changed to —HPE,' then UlnU, = nUZ is changed to
—Ug'r]UO. This property is required to prove that

UlnUy = signHE = A (1.28)

which is the many-body version of Eq. (1.5) (see the paper in Appendix F).

As in the one-body case, this relation implies that the transform of a wave function corre-
sponding to a positive energy state is even and the transform of a wave function corresponding
to a negative energy state is odd.

1.7 Semi-relativistic absorption cross sections

As the transition operator T in Eq. (1.22) is of order 0 in ¢, we can use Uy = e to
compute UyTU] at order ¢=2. Indeed, S oc 4.

_ n n } _ isV iV
As T =3 T" where T™ are one-body operators and Uy = €1 ® ... ® e~ ,

UTU = e e (1.29)

In other words, the action of Uy can be calculated for each variable independently. We present
the derivation in the one-body case omitting the index n that will be restored at the end of the
calculation.

1.7.1 Derivation of the transform of 7' in the one-body case
Using Baker-Campbell-Hausdorff formula,

1
2mc?

1)

UeTUS = " Te " =T 4

50, 7] + ¢—510,[7, 0] (1.30)

m?2c
For the electric dipole term, we stop the development at order ¢~2 and for the term proportional
to k, at order ¢*. Moreover, as FW wave functions are even (|F) and |I) in Eq. (1.22) are
positive energy states), all the odd operators in Eq. (1.30) have a zero contribution to the matrix
elements. This is the case for the operators [5O, € -r,[5O, (e-r)(k-r)] and (e x k)(r x o). We

do not consider them so that,

1 i he 1
UTU; = -1+ osgl0:[e-r Ol + e kor — 5oy

10 Formally, to mimic a change HY — —HZL, we change all 3, to —f,, O to —O and £ to —& in the formula
for Uy Eq. (1.27).

8O, (e x k)(r x a)].
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1.7. Semi-relativistic absorption cross sections

Using the canonical commutation relation and the properties of Dirac alpha matrix, we obtain:!!
(O, [e-1,0]] = —2hc*(p — eAy) - (€ x ).
As {B,a} = 0, the other commutator writes as a sum of anticommutators:
8O, (e xk)(r x a)] = cf{a-p, (e xk)(r x o)} —e{a- Ay, (e x k)(r X o) })

The two anticommutators rewrite:'?

S~—
—
|

2(e xk)- (hX +r x p)
2(e x k) - (r x Ay).

{a-p, (e xk)(r x a
and {a- Ay, (e X k)(r X a

~—
——

Finally,

(exk)- (hX4+A) — ——=7- (e x X).

)
UOTUJ:e-r+§(e-r)(k-r)— Y

2mAFE

where 1 = p —eAgand A =r x (p—eAy) = L —er x Ay is the moment of mechanical
momentum [Cohen-Tannoudji et al., 1973].

1.7.2 Many-body semi-relativistic absorption cross section

Using Eq. (1.29) and Eq. (1.22) and the formula for ¢i" T7e=S% the absorption cross
section can be expressed in terms of the many-body FW wave-functions |i) and |f):

47r2a0(AEfi)2

o(hw) = T

D | Tewli) PO(AES; — hw) (1.31)
!

1 The commutator [e -1, 0] = cle-r,a - p]—ecle-T,a- Ag] = CZ’L‘J (e5rjapi—oupi€;r;) = CZM ai€ilry, pi] =
ihca - € so that using the formula in Appendix B.4:
[0, [e-1,0]] = ihc*[a- (p — eAy), - €] = ihcz(Z[(p —eAp)i, 6] +iX-((p—eAp) x €)

= —2hc?T - ((p — eAy) X €)

12 The first anticommutator:
{a-p,(e xk)(rxa)} = ZO@I%(E x k)jeimrray + (€ X k) jejurroqoup; = Z k(€ X k) j(aoupiry + ripicqoy)
ijkl ijkl
= Zﬁjkz(e x k) j(zoupiry, + (ihdix + piry)oucy;)
ijkl
= ihZejkl(e x k) oo + Zejkl(e x k) ;pirk (00 + o)
Jkl ijkl
= ZTLZEJ'M(E X k)j(élk +1 qumEm) + Z ejkl(e X k)jpﬂ’kQCSil
Jkl m ijkl
=ih Y —2i(e xk);3; + (e x k) - (r x p) = 2(€ x k) - (h2 + L).
J

To obtain the last line, we used two properties of Levi-Civita symbols: €;; =0 and )", €x15€kim = 20jm.-
The second anticommutator requires less steps:

{a-Ag, (e xK)(rx @)} =Y eirle x K)iAgjri{aj, i} =2 ein(e x k) Agri = 2(e x k) - (r x Ag)
ijkl ikl
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1.7. Semi-relativistic absorption cross sections

where

hBn

1
TFW:ZG'rn+§(€’rn)(k'rn)—m

n

(e x k) (A%, + Ap) (€ x Xp).

 4m2c2 o

The first two operators are the usual electric-dipole and electric-quadrupole operators. The
third one is the magnetic-dipole operator but with A,, = L, — er,, x Ag(r,) instead of the
L, that usually enters it through the total angular momentum of the electron (A3, + L,).
The amplitude of the —eA part of this term depends on the choice of the space origin in the
Coulomb gauge for Ay but it does not make the cross section gauge dependent. Indeed, when
choosing the origin of the gauge, the states are changed accordingly (see Section 1.4). If the
origin of the gauge is chosen at the atom position (which is the usual choice), fields way beyond
laboratory accessible values (larger than 10° T) are required for this term to be significant. We
rewrite the last term using 7, = (m/ih)[r,, HW] 4+ O(c?):

(= g (€ x Ba)li) = (7|02

4m2e2 "

T2 3 (€ X 1,)]d).

We call spin-position operator the operator X, - (€ X r,).
In the one-body case, we find the same cross section as the one obtained from the naive

calculation in Subsection 1.3.2 (Eq. (1.10)) by projection of Trw on large components:

(e xk)-(ho+A)—

TFW,p:er—i—%(er)(km)— (e X 0).

2mAEy; 4m?2c?

With our method, we eliminated the uncertainty related to the choice of the starting Hamil-
tonian. We intentionally decided not to use the fact that AE;; = hw in the expressions for
the cross section to highlight the fact that the spin-position operator obtained from a fully-
relativistic calculation differs from the spin-position operator obtained from a naive calculation
by a factor 2Efi wwhich is equal to 1 in the case of absorption but not in other kind of experiments

hw
like scattering.

1.7.3 Rewriting the cross section with large components of Dirac wave
functions for the core state

As this subsection concerns a problem related to numerical implementation, we use the
one-body cross section. For practical implementation, it can be useful to consider a different
situation: the use of FW wave function for the final states and large components of the Dirac
wave function for the initial (core) state. In practice, this difference in treatment is linked to
the fact that the core wave function can be determined from a relativistic atomic code whereas
the unoccupied states are often calculated with a semi-relativistic condensed-matter code.

We note ¢; and x; the large and small components of |I). The order of magnitude of the ratio
between small and large components is v/c where v is the velocity of the particle.[Strange, 1998]
Up to order ¢!, the small component writes [Strange, 1998, van Lenthe et al., 1996]:

1

Xi = 2_mca - (p — eag) ;. (1.32)

We remind, that at order ¢=2, the FW operator is:
15} 1

Uy=1 —
0 + 2mc? 8m?2ct

02, (1.33)
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1.8. Semi-relativistic scattering cross section

Only the second term in U, couples the small and the large components. From Eqs (1.32)
and (1.33), the large component of the FW transformed wave function can be expressed as a

function of the large components of Dirac wave functions up to order ¢~2,

V=1~

1
e [0%],) i + mopa - (p — eag) ;.

[0?], is the projection of O? on large components|Strange, 1998]: [0?%], = *(p — eag)? —
c*eho By and O, = co.(p — eay) is the projection of SO on the upper right components.
The fact that cO,0 - (p — eag) = [0?], leads to:

wa = (1 + [Oz]p)¢z

8m2ct

From this relation, the cross section obtained in the previous subsection can be adapted to the
case that we consider here:

o(hw) = 4m’aghw Y (7Y | Tiw |00 (B — Ei — hw) (1.34)
f

where: Tlé‘W = TFW,p(l + ﬁ[OQ]Zﬂ = TFW,p(l + ﬁ((p - 63.0)2 — GFLG'.BO)).
The expansion for Trw , was made to order ¢ 2 for the dipole contribution and to order kr

and ¢® for multipole contributions. At the same order,

1
——((p — eag)? — eho.By).

TﬁW,p =Trw,p + 8m?2c

This formula is the one used in our numerical implementation presented in the next chapter. In
this chapter, we will also study the relative order of magnitude of the different terms in Txy; .

1.8 Semi-relativistic scattering cross section

The fully relativistic scattering cross section Eq. (1.23) can be written:

& = ( Q)QﬂZWJ + hws — E; — hw;)|S< + S :
deWf = (remnc w5 — f Wf 7 Wi < >
where
(FI 32, ™ oy, - ;| L)(L] 3, e e, - €|
S</>: Z !

E;, — B+ hw; + iy

| (FIS, e e | L) (L] T, e e, - )
Ei — El — hCUf

L,El</>0

We have separated the sum over intermediate state of positive energy from the sum over over
intermediate state of negative energy and we are going to treat them separately.
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1.8. Semi-relativistic scattering cross section

1.8.1 Many-body semi-relativistic scattering cross section
Positive energy intermediate states

When E; > 0, some of the matrix elements are the same as in the absorption case. The
others correspond to emission and, as illustrated by Eq. (1.20), they are formally very close to
the absorption ones but with € — €”* and k — —k’. Therefore,

5= Y ABAE (<f|T93v<ef>|1><eré@v<ei>|¢> N <frT£év<ei>|l><l|T#ev<ef>|z'>) 15

150 h202 Ez — El + hwi + ’l’}/ E@ — El — h(.Uf
with
T]Z (&) Z €T, + el r, k;,-r, — h—ﬁn(eZ x ki) (hE, + A,) — Lﬂ'n (€, x 2)
FwW 2 2mAEJ2 4m2c?

and

/’L h/B * h *
Tid (e) Zef r, — ef r, kyr, + ——— S AL (€7 x ky)- (3, + A,,) — T2 (€7 x 3p).

Negative energy intermediate states

If |L) is a negative energy state, F; — E; + hw = 2mc® + E! + E] + hw with E! + E] < 2mc?.
None of the two terms in S. can be resonant. Their denominators write:

1 1 hw

~ (1F

. 1.36
E,—E +hw 2mc? ) ( )

mc?

We can therefore apply the completeness relation on the sum over states of negative energy
that involves the projector onto the space of negative energy I'_:

S 1—A:1—UgnU0
L,E;<0 2

the last equality being a consequence of Eq. (1.28). If P and Q are odd operators,

PT_Q = %(PQ — PUInUQ) = %(PQ +nPUSQ)

If one performs the semi-relativistic expansion with the principle of Eq. (1.24):
1
UoPT-QUS = 5 (UoPQUS +nUS PUFQUY).

This expansion is made easier by the fact that we stop the development at order ¢=2 and the
energy denominator is already of this order. It is therefore enough to consider Uy = 1 so that

> (IPILLIQIF) = (11"

L,E;<0

PQLS) = (lPQLf) (1.37)

because i) is even (|I) is a positive energy state), that is to say n|i) = |i).
With P =Y e* ™a, -eand Q = e ¥ "mq,, . €*, the product PQ is:

. i(k—K') -
PQ:§ :GI*'G—F’LEH'(EXGI*)GZ(I{ k') T E Q, € Q,, - e/*ezk rn—ik’ - Tm

n,m#En
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1.8. Semi-relativistic scattering cross section

So that, using Eq. (1.36) and Eq. (1.37) in both parts of the sum constituting S, it rewrites:

2mc

1 iK.ry, * ih *
Sc=——{/l > e (eiff + 55 (Wi +wp) B (e ¥ ef)>

h(ws — w; K1 ik -
+ Z (1+—(wf u))>0¢n-ei am-e’}e’ki ik trm|gy - (1.38)

2mc?
n,m#n

where K = k; — ky.

1.8.2 Comparison with the results from one-body semi-relativistic
Hamiltonians

There are two important differences between the usual scattering cross section [Blume, 1985]
and the one obtained here : the spin-position operators in S and the two-body term in S..

Comments on the spin-position operator

The additional spin-position operator 7, - (€; X %,,) in S~ does not appear in [Blume, 1985,
Eq.(13)]. However, if one starts the calculation from the Hamiltonian that Blume proposed
[Blume, 1985, Eq.(1)] and if one does the same kind of calculation as in Subsection 1.3.2 but
for the scattering case, terms similar to the spin-position terms appear in the matrix elements.
Indeed, Blume’s Hamiltonian H? present only two differences with H"W:

(i) Blume omitted the term V-E that does not contribute to the perturbation W in the
Coulomb gauge,

(ii) he assumed that E commuted with ¢ which is generally not true in the time-dependent
case. However, in the dipole approximation E is uniform so that, within the approximation
made in the calculation, it has no impact on the result.

However, as was mentioned in subsection 1.7.2, there is a factor AE/hw between the spin-
position term obtained from H™W or H® and the one obtained from our semi-relativistic ex-
pansion of the fully-relativistic cross section. The spin-position terms obtained from HP are,
therefore, not the correct ones. Anyway, these terms were neglected by Blume because he con-
sidered them to be small. Indeed, Blume neglected the terms proportional to ¢~2 in the second
order part of the Kramers-Heisenberg formula.

Comments on S_

The terms on the first line of Eq. (1.38) describe usual Thomson scattering and non-resonant
magnetic scattering. In usual calculations, they arise from terms proportional to a? and d,a x a
in the perturbation |[Joly et al., 2012, Eq. (3) and (4)|. Here, the physical picture is completely
changed because H., is linear in a and these terms arise from the sum over negative energy
intermediate states. This was already noticed by Strange [Strange, 1998, p.525]. However,
Strange did not obtain the two-body term that appears in our calculation because the indexes
of the a matrices (that label the electrons) are omitted in the book which prevents from getting
it.

This two-body term must be computed in order to evaluate its order of magnitude and if
there exists conditions where it could be measured experimentally. In any case, we can already
stress its conceptual importance. Such a two-body term could not arise from an a? term in the
perturbation because a? becomes a one-body operator. Therefore it can not be present in a

37



1.9. Conclusion

calculation starting from a semi-relativistic Hamiltonian. It is a relativistic many-body effect
the physical interpretation of which is not straightforward but that could lead to new kinds of
phenomena.

1.9 Conclusion

After presenting the two problems that arise from semi-relativistic calculations of transition
probabilities, we proposed a method which consists in performing the semi-relativistic expan-
sion of the wave-functions in the fully-relativistic matrix elements. We took great care of the
formalism that we used in order to insure gauge invariance and, for this, we worked in a quan-
tum electrodynamic (QED) framework. The results that we obtained for the cross sections
present several differences with the usual ones. The most noticeable ones are a relativistic term
in the transition operator for absorption that we called spin-position, that is evaluated in the
next chapter, and a two-body term for scattering that needs to be evaluated in the future.
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2.1 Introduction

X-ray spectroscopy is a tangible example of a field where the developments of theory
and experiment are performed in conjunction with a constant mutual enrichment. Several
well-established codes [Haverkort et al., 2012, Ebert et al., 2011, Laskowski and Blaha, 2010a,
Rehr et al., 2010, Bunau and Joly, 2009, Taillefumier et al., 2002, for selected examples| aim
at reproducing X-ray absorption spectra in order to analyze in detail the experimental data.
Indeed, in calculations effects can be turned on or off selectively (for example, calculations can
be performed with or without the electric quadrupole transition or with or without spin-orbit
coupling) and calculations also permit a comparison of the spectra with quantities that are
computed otherwise (projected densities of states for example) in order to propose a physi-
cal interpretation to the observed features. The experimental developments (such as increase
in brilliance and energy resolution or progress in beam stability) that lead to an increasing
precision and also to new possibilities in the way that the sample is probed, challenge the
theoreticians to improve their tools in order to include finer effects.

X-ray magnetic circular dichroism (XMCD) at K-edge is a good example of an effect that
requires the crucial support of theoretical calculations for its analysis. XMCD is a powerful
tool for the study of the magnetic structure of complex systems as it provides element- and
orbital-specific information. The well-established magneto-optical sum-rules allow to obtain
the orbital and spin (up to another term called T,) contribution to the magnetic moment di-
rectly from the integral of the spectra [Thole et al., 1992, Carra et al., 1993, Altarelli, 1993],
see also [de Groot and Kotani, 2008, Section 7.3]. These sum-rules are widely and success-
fully applied at spin-orbit split Ly g-edges of transition metals [Vogel et al., 1997, Stohr, 1999,
Edmonds et al., 2005, Prado et al., 2013] and M, 5-edges of rare earths [Schillé et al., 1994]
and actinides [Wilhelm et al., 2013]. In the absence of spin-orbit splitting of the core state (as
for K- and Li-edges), only the orbital magnetization sum-rule [Thole et al., 1992, Altarelli, 1993]
can apply. This sum-rule relates the integral of the XMCD spectrum at the K-edge to the orbital
magnetic moment of occupied p states. The practical application of this sum-rule is however
difficult (see section 3.4.1) and it provides only indirect information on the magnetic properties
of the sample that are mainly governed by d or f electrons. In this context, calculations of the
spectra could be very useful for interpreting experimental data beyond the fingerprint approach
which consists in comparing spectra recorded in different samples or under several conditions
and deducing similarities or differences in the nature of the sample.

There exist, at the present time, at least two very different codes available to the public
that include calculation of K-edge XMCD spectra in the near-edge region.

e The first code is SPR-KKR [SPRKKR, site|] developed by the group of Hubert Ebert
in Miinchen. It is based on the fully relativistic Korringa-Kohn-Rostoker (KKR) band
structure method. In this method, the electronic structure is represented in terms of
the single particle Green’s function of the Kohn-Sham equation. This Green’s function
is expressed within the multiple scattering formalism in terms of scattering path. The
expression for the absorption cross section in this formalism is given in [Ebert, 1996, Eq.
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2.1. Introduction

(77)]. Two approaches are implemented: (i) a real space approach in which the caleula-
tions are performed for a finite cluster centred on the absorbing atom and (%) a reciprocal
space approach in which a system with periodic boundary conditions is considered. The
published results of calculated XMCT) spectra based on this method are obtained without
core hole on the absorbing atom (for example, [Sipr and Ebert, 2005]).

Fig. 2.1: Tlustration of the muffin-tin approxima-

tion in the case of SrTiO3. Within this approxima-

tion, the material is separated in different regions.
Full In spheres around the atoms, the potential is spher-
ical and in the interstitial region it is constant. Fig-
ure is taken from [Schwarz, 2015].

potential

Muffin tin

approximation

The main limitation of this approach is the use of muffin-tin potentials (see Fig. 2.1).
This is a significant approximation on the shape of the potential and its influence on the
spectra cannot really be controlled. The fact that it deals with Green’s functions makes
it, however, a method of choice to study disordered materials [Ebert et al., 2011]. As it
is a fully relativistic method, there is no semi-relativistic approximation in the treatment
of the Dirac equation contrary to the other codes.

The second code is FDMNES [FDMNES, site| developed by the team of Yves Joly
(Institut Néel - Grenoble) and it is a free open source code. The conceptual basis of this
¢1(r)
¢, (r)

a 3D grid of points. The unknowns are, therefore, a set of valies of the wave function on
each point: ¢; = ¢(r;) and these values are used directly to compute the cross-section. The
volume of the calculation, called cluster, is a sphere around the absorbing atom. The shape
of the potential is free. To determine ¢;, a semi-relativistic Schrodinger-like equation is
solved using the finite difference method. This equation is the one derived by Wood
and Boring [Wood and Boring, 1978| which is a two-component relativistic equation that
improves Pauli equation by adding 1/c* terms:

code is the following: the real-space basis wave functions ¢(r) = < ) are compiited on

2 2
[— V24 V(r) - E - %(V(r) _E)? - %Bwb (W(r) "V +io(VV % V))} (r) = 0
-1
with By, = ( — %g(V(r) — E)) . This is an equation for the large components of Dirac
wave-functions.
Vi(r)

The shape of the potential V (r) = ( > that enters this equation can be determined

Vi(r)
a priori (in a first step) self-consistently with a method based on multiple scattering
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2.2. X-ray Circular Dichroism cross section

[Bunau and Joly, 2009|. The main difficulty in the practical use of this method is that
the calculated spectra depend on the size of the clusters used to perform the self-consistent
calculation (first step) and the finite difference method calculation (second step).

Here, we present a new method to compute XMCD in which the calculations are performed
in reciprocal space using plane waves and pseudopotentials. The method has been implemented
within a highly efficient solid-state code so that it can be applied to a large range of systems.

2.2 X-ray Circular Dichroism cross section

X-ray circular dichroism describes the dependence of the absorption cross section on the
state of circularly-polarized light (left/right polarization). In the case of XMCD at the K-edge
of 3d transition elements, the asymmetry in absorption is, at most, of the order 10~ compared
to the edge jump. To compute XMCD spectra, it is therefore mandatory to compute the
absorption cross sections for right and left circular polarization very accurately. This is the
reason why we start from the semi-relativistic absorption cross section obtained in the previous
Chapter in Section 1.7.

Our numerical calculations are based on a monoelectronic framework with 2-components
wave functions. More precisely, for the core state (initial state) we compute the large com-
ponents of Dirac wave function whereas for the unoccupied states (final states) we compute

the Foldy-Wouthuysen wave functions. In other words, we are in the situation described in
Subsection 1.7.3.

2.2.1 Order of magnitude of the terms in the absorption cross-section

The formula obtained in Subsection 1.7.3 Eq. (1.34) for the absorption cross section is:

o(hw) = 4 aghw Z (7| T + Tq + Tap + Ta, + Tsp + T¢|¢3) [*6(Ey — E; — hw).  (2.1)
!

In this expression we simply named the operators constituting Tgyy . These operators are
detailed hereafter.

As the core wave function is very localized, we can have an idea of the relative order of
magnitude of the operators in this cross-section by evaluating them at the radius corresponding
to the core state. We give these evaluations in Table 2.1 by taking as a reference the order of
magnitude of the dominant operator that is the electric dipole operator (usually called E1):

b =€-r.
The second column of the table gives the formula used to determine these orders of magnitude.

The electric quadrupole operator (usually called E2) writes:
T ! k
=—e-rk-r.
@79
Its order of magnitude compared to Tp is given by kr./2 where k is the norm of the incident
wave vector (the incident electromagnetic wave is described by a plane wave e’ ') and r. the

mean radius of the core orbital. It is related to the spatial inhomogeneity of the x-ray elec-
tric field at the scale of the core state radius. Working in the electric-dipole approximation
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2.2. X-ray Circular Dichroism cross section

Table 2.1: Orders of magnitude of the operators in Eq. (2.1) evaluated at the core state radius r. with
respect to the electric dipole operator. The mean radius of core orbitals is deduced from the effective

nuclear charge: r. = %Z(:(;f [Clementi and Raimondi, 1963, Clementi et al., 1967|. In the table, By has

been fixed to 2x10* T (1.2eV) which is two orders of magnitude larger than the exchange splitting

calculated for Fe K-edge. The Coulomb potential is V = ng({ fce and the core state energy E; is
evaluated in a planetary model F; = _8%57{,/;52'
Edge LIZ Fe (L;fi Bi 0 - Fe
Energy  (keV) 5.19 0.72 7.898 15.71 0.53 7.11
Zeff 39.067 22.089 29.8527 39.2335 7.6579 25.381
Te (ap) 0.038 0.068 0.050 0.038 0.20 0.059
To/Tp % 2.7x1072  6.6x1073 53x107% 81x107? 1.4x107% 57x1072
Ta,/Tp % 6.0x107%  1.1x107° 7.8x107% 6.0x107% 3.0x10° 9.2x10°°
Tsp/Tp 4:;“22 2.6x107%  35x107% 3.9x1073 7.7x1073 2.6x107* 3.5x1073
Te/Tp  E=SX 6.7x107% 22x107% 3.9x107%  6.8x107%  2.6x107* 2.8x1073

corresponds to considering that the x-ray electric field is spatially constant at the scale of the
wave function of the core electron. In the quadrupole approximation (e’*'* ~ 1 + ik -r), one
partially takes into account the spatial variation of the x-ray electric field. Given the order of
magnitude of kr. (see Table 2.1), it is a good approximation in XAS.

The magnetic dipole operator Typ (usually called M1) is:

(e xk)-(ho +L).

Tup =
mw

It is proportional to the total magnetic moment operator (ho + L) = (2S + L) where S is
the spin operator. Typ is also present in common non-relativistic derivations [Brouder, 1990,
Di Matteo et al., 2005]. This operator does not incorporate the radial variable r and it con-
serves the orbital angular momentum. Its selection rules are therefore |Brouder, 1990]:' 1=l
and n;=ny. It vanishes in the X-ray energy range because the states involved in the transitions
have different principal quantum numbers. Note that the argument to justify the selection
rules of Typ is not rigorous. In a monoelectronic framework where we consider that |f) is a
stationary state in the presence of the core-hole (so it is not exactly an eigenstate of the same
Hamiltonian as |7)), the proof does not apply. In a many-body framework, the matrix elements
of the magnetic dipole operator write as sums of one-body matrix elements to which the selec-
tion rules apply. However, it is not sure that a transition that obeys [;=[; and n;=n; can not
occur. Finally, the picture is further complicated in a relativistic framework in which [ is not a
good quantum number.? In fact, the electric dipole-magnetic dipole contribution is very small

!The initial state writes as the product of a radial function by a sum of the product of spherical harmonics
and of spinors: [i) = Rp,1, (1) Y, < Cm.s|lim)|s). As the MD operator does not act on the radial part and
does not change I;, Tupli) = Ru,1,(r) > mr.s Cmr s [lim/)]s"). The final state writes as a linear combination of
|9£) = Ryt (1) 2o s Cmosllym)]s), Tupli) and [¢y) are orthogonal except if I; = I (otherwise the angular
parts are orthogonal) and n, = ny (otherwise the radial parts are orthogonal).

2For example, in a relativistic framework there is some p character in the core wave function (see
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2.2. X-ray Circular Dichroism cross section

but non zero. Such a contribution to the XNCD has, for example, been measured at the Ni
K-edge in a-NiSO, x 6H,O [Rogalev et al., 2010] and it reaches 3 x 107° of the absorption edge
jump. As it is small, we neglect this term in all this thesis. It is absent in Table 2.1 because
no evaluation a priori of the operator can be given.

The correction to magnetic dipole term due to the external static potential Ay is:

T, = (e x k) (r x Ayp).

2mw
This operator is evaluated using Ag = %r x By and considering a magnetic field By = 2 x 10* T
so that ugBy =1.16 eV. The exchange splitting calculated at the 1s state of Fe is 0.015 eV [Y.
Joly private communication, 2016]. The chosen value is, therefore, larger than the exchange
magnetic field in matter and it is also way larger than accessible values in laboratory for a
magnetic field (which reaches several 100 T for pulsed magnetic field).

The spin-position transition operator writes:
thw
4mc?

It is proportional to the ratio between the energy of the incident photons and the rest energy of

the electron: 4. As mc? = 511 keV, {2 can reach 107 only if the incident energy is larger

than few keV. ‘

Tsp =

o-(exr).

Finally, the extra operator that is related to the use of large components of the Dirac
operator for the core state writes:

T€

(e-r H) —ee-r V(r))

4mc?

where H) = W +eV(r) — Lo - By. At zero order in ¢2, the states [¢5V) and |¢;) are
both eigenstates of HY. Moreover the potential felt by the core electron is spherical (the core
states are almost unaffected by the chemical environment). The matrix element of 7 therefore

rewrites: .

(O ITe60) = (0 e (B = V(1))|60).
This operator concerns transitions to the same orbitals as the electric dipole operator, it has
the same angular dependency and it does not incorporate a spin variable. For this reason, even
in XMCD, it will only yield a very small correction (see the order of magnitude in Table 2.1)
to the electric dipole term.
When expanding the square modulus of the matrix elements in Eq. (2.1), we keep the terms
with contributions higher than 10~ compared to the dominant electric dipole term (except

T for the reason mentioned above). Altogether, four terms remain that are listed in the next
subsection (D-D, Q-Q, D-Q and D-SP).

2.2.2 Terms implemented

The electric dipole-electric dipole (D-D) term is:
op—p(hw) = 4m’aghw > " |(fle- r|i)|*6(Ef — E; — hw). (2.2)
f

[Thaller, 1992, p.126]).
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2.3. Method

It is usually the only term that is taken into account in the calculation of XAS and XMCD
spectra at the Ly s-edges and it is also sometimes the only term that is taken into account in
the calculations at the K-edge [Natoli et al., 1980, Brouder et al., 1996, Rehr and Albers, 2000,
Fujikawa and Nagamatsu, 2003].

The electric quadrupole-electric quadrupole (Q-Q) term is:

ooqfw) = waghw S [(FI(k-v)(e 1)) ?6(Ey — E; — huw). (2.3)
!

At the K-edge, it can reach a few percent of op_p in amplitude (square of the value for Ty
in Table 2.1). Its contribution is mainly significant in the pre-edge region of the absorption
spectra where the D-D contribution is small or nonexistent. It is sometimes included in X-ray
absorption calculations |Taillefumier et al., 2002, Bundu and Joly, 2009].

If the orbital parts of the wave functions can be chosen real (no spin-orbit coupling or applied
magnetic field)? in the terms D-D and Q-Q, o(€) = o(€*), which leads to a zero contribution
to circular dichroism. For this reason it is crucial to take into account the spin orbit coupling
effects in the wave functions calculation in order to compute XMCD.

On the other hand, the two following terms can give a non vanishing contribution to the
circular dichroism cross section even when the orbital parts of the wave functions are real.

The electric dipole-electric quadrupole cross term (D-Q) is:

op_q(hw) = —47r20z0hwz Im[(f|(k-r)(e-x)|i)(i|e"-r|f)]6(Ef — E; — hw). (2.4)
!

If |i) and |f) are parity invariant (i.e. if inversion r — —r is a symmetry of the system) then
op—q = 0. It is however this term that is responsible for XNCD [Natoli et al., 1998| because
the electric dipole-magnetic dipole term (that is responsible for optical activity in the optical
range) is very small in the X-ray range.

The electric dipole-spin-position (D-SP) cross term is:

_27r :réLoCz w Zlm[(ﬂa (e xr)|i)(i|le*-r|f)|]0(Ef — E; — hw). (2.5)
f

op—sp(hw) =
It can exist only in materials that exhibit a spin polarization. Like the spin-orbit coupling term
in the FW Hamiltonian, it arises from the coupling of the small components of the Dirac wave
functions. To our knowledge, it has never been evaluated before our work. We will show in
section 3.2 of the next chapter that, despite the small prefactor of this term, its contribution
to XMCD at the K-edge of 3d metals can account for up to one third of the XMCD intensity
near the edge.

2.3 Method

In order to compute the contribution of each of the previously listed terms to the total cross
section, we have modified the code XSpectra |Gougoussis et al., 2009] of the suite QUANTUM
ESPRESSO |Giannozzi et al., 2009].

3The orbital parts of the wave-functions can be chosen real if the states £m; are equivalent. We will see
in Section 3.2.1 of the next chapter that the separation of the state +£m; occurs in the presence of spin-orbit
coupling and magnetic ordering but also if an external magnetic field is applied (Zeeman effect). This second
phenomenon is however too weak to contribute significantly to a XMCD of the order 10~2 the edge jump.
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2.3. Method

The idea of the method is to proceed in two steps:

(1) Determine the electron density of the material using an approximation of Density Func-
tional Theory (DFT) with a self-consistent field (scf) method. For this, we use a semi-relativistic
version of the code pwsct.

(2) Compute all the contributions to the absorption cross section for given € and k.

2.3.1 DFT self-consistent field calculation
pwscf code

The code pwscf [Giannozzi et al., 2009] is based on density-functional theory, plane waves,
and pseudopotentials and allows performing self-consistent field calculations. In this thesis, we
give only an overview of the principle of the method which is otherwise developed in several
textbooks. For example in the book by R.M. Martin [Martin, 2004], chapters 6 and 7 present
the foundations of DFT and of the Kohn-Sham ansatz. In chapter 9, a description of the self-
consistent solving of the Kohn-Sham equation can be found and chapter 11 is dedicated to the
topic of pseudopotentials.

The principle behind density functional theory is that the energy of a system of elec-
trons (many-body system) can be viewed as a functional of the ground state density ng(r)
[Hohenberg and Kohn, 1964]. In principle, a functional E[n| for the total energy could be de-
fined and ng(r) could be found by minimizing this total energy. Nevertheless, in practice the
direct minimization of E[n] is impracticable because the functional E[n| is not known explicitly.
The success of DET is due to the Kohn-Sham (KS) approach [Kohn and Sham, 1965] that pro-
vides a powerful method for electronic structure calculation. In this approach, the many-body
system of interacting electrons is replaced by an auxiliary system of independent electrons. The
ground state energy functional writes in the form [Martin, 2004, p.137|:

Exs = Tuln] + / AV (£)1() + Etartreeln] + Erp + Exelrl

where T} is the independent-particle kinetic energy, V.,; is the external potential due to the
nuclei and external fields, Frq iree is the classical Coulomb interaction of the electron density
n(r) with itself, E;; is the interaction between the nuclei and E,. is called the ezchange-
correlation energy. F,. is the difference of the sum of the kinetic energy plus the internal
energy of the interacting system and Ti[n] + Epgriree|n] (sum of the kinetic energy and of the
Hartree energy for the fictitious non-interacting system). In other words, all many body effects
are grouped into F,.[n] . If E,.[n| was known exactly, the exact ground state energy and density
of the interacting system could be obtained from the study of the Kohn-Sham auxiliary system.
In practice it must be approximated and this is what is called choice of the functional. Then,
the energy can be determined numerically by iterations with the scf method [Martin, 2004,
p.173].

In the Kohn-Sham approach, the kinetic energy of the auxiliary system is treated in terms

of orbitals:
Z Z 71V 7).

where 107 are the eigenvectors with lowest elgenvalues of the Hamiltonian of the system of
independent particles. The density of the auxiliary system in the ground state is given by:

SICAUL

o
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2.3. Method

In order to solve the KS equation, the wavefunctions must be expanded in a basis set. Plane
waves are particularly appropriate for periodic crystals that can be represented by a cell with
periodic boundary conditions.
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Fig. 2.2: FExample of norm-congerving pseudopo-
tentials and pseudofunctions for the element Mo.
Figure is taken from [Martin, 2004].

Top: All-electron valence radial functions (dashed
lines) and norm-conserving pseudofunctions (solid
lines). These wavefunctions coincide for radius
larger than the cut-off radius: r > R..

Bottom: Pseudopotential V}”*(r) in Rydbergs for
angular momentum [ = 0, 1, 2 compared to @
(dashed). Note that the pseudopotential is a non-
local operator that can be written in a semilo-
cal form (non local in angular variables and lo-
cal in radial variable): VP* = Y, VP(r)o(r —
)Yi (£) Yy (r'). The components V*(r) represent
how it acts on [-symmetry valence electrons. Each
potential V°(r) behaves as =Zien for r — oo.
Traditionally pseudopotentials are split into a I-
independent (local) long range part behaving as
@ for r — 0o and a short-ranged semilocal part
(see [Martin, 2004, p.235]).

In pseudopotential-based methods the strong Coulomb potential near the nuclei and the
core-electrons is replaced by a fictitious smooth potential (see Figure 2.2). The underlying idea
is that the core electrons do not participate in bonding. Therefore, an atomic calculation is
sufficient to determine their wavefunctions and, to study the materials, they can be replaced
by an effective potential. The valence electrons wave functions are replaced by pseudo-wave-
functions that are exempt from the rapid oscillations near the core which are otherwise required
to provide orthogonality. The size of the plane-waves basis set needed to describe the system
is therefore considerably lowered which leads to a better computational efficiency compared to
an all-electron approach.
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2.3. Method

Spin-orbit coupling within PAW formalism

Inclusion of the spin orbit coupling (SOC) in the wave functions calculation plays a crucial
role for the evaluation of XMCD spectra. For this, we use an approach |Gerstmann et al., 2014]
where the spin orbit interaction term of H*W (Eq. (1.7)) is implemented through Projector
Augmented Wave (PAW) formalism.

In the PAW formalism, as described by Bléchl [Bléchl, 1994|, the physical valence wave
functions |¥) can be reconstructed from the pseudo-wave-functions |¥) as they are related
through a linear operator 7:

) = T|¥) (2.6)

This linear transformation is chosen to differ from identity only by a sum of local, atom-centered
operators Tr (R : atomic positions):

T=1+Y Tr.
R

Each local operator 7A‘R acts only in an augmentation region surrounding the atom. Outside
the augmentation regions, all-electron and pseudo-wave-functions coincide.

Around each atom located at R, a partial wave basis {|¢r ,)} is built* (in our case, |¢r ) are
solutions of the Dirac equation for the isolated atom within a scalar relativistic approximation
[Koelling and Harmon, 1977]). For each partial wave, a pseudo partial wave |q~5R7n>, that is
identical to |¢r.,) outside the augmentation region, is chosen. These pseudo-partial-waves
form a complete set of functions within the augmentation region. Then, the local reconstruction
operators Tgr are defined by the fact that |¢r,) is the target function of |<;~§R7n) i.e. |prn) =

(1+ 7A’R)|¢~5Rm) The transformation operator consequently writes:’

T=1+ Z(|¢R,n> - |§Z~5R,n>)<ﬁR,n|‘ (2~7)
Rn

where the (pr,| form a complete set of projector functions.
The pseudo-Hamiltonian is given by [Ceresoli et al., 2010]:
p?

 / loc nl )/
Ho = o + evps (r) + §6VR + Hso

4 The index n refers to the angular momentum quantum number (/,m) and to an additional number, ¢, used
to label different partial waves for the same site and angular momentum (if there is more than one projector
per channel).

® Within the augmentation region, one can expand any pseudo wave-function into pseudo partial waves :

B) = 3" caldrn).

n

Since [¢r,n) = TIdRr.n), [¥) = TIW) = 3, caldrn) = 3, calR,n) + [¥) = 3, caldr,n)-
For the transformation 7 to be linear, the coefficients ¢,, must be linear functionals of the pseudo-wave-function.
We call projector functions the functions (pr | such that ¢, = (Pr.n|¥).

For the relationship |¥) = Y, (pR|U)|#R) to be true within the augmentation region, the projector functions

must fulfill the condition T = 3, |¢R)(pR| within the augmentation region. This implies that:

<251R|<l~3?,> = 0; jORR/-

In practice, the projectors are determined iteratively from an initial guess to fulfill this condition
(See [Blochl, 1994, Sec. VI C.]). As there is no restriction outside the augmentation spheres, the projector
functions are chosen to be zero.
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2.3. Method

Fig. 2.3: Schematic drawing of the augmenta-

Interstitial tion region defined as sphere around the atoms in

region the PAW framework. Qutside the augmentation

regions, psendo wave functions coincide with all-
electron wave functions.

Augmentation

— regions

where Vggc and V' are the local part and the nonlocal part in separable form of the pseudopo-

tential. Hgo is the pseudo-Hamiltonian corresponding to the time independent spin-orbit term
in the Foldy-Wouthuysen transformed Hamiltonian:

oo =T (15 (VW00 ) T= 5 (a (VY ()xp) + ZF{%) @8

The expression for Fg' is given in Ref. [Pickard and Mauri, 2002, Eq. (11)]:

an{l = Z ’~R gﬁRn‘VUae( )Xp‘¢R,n> <¢R n|vvloc( )Xp‘(;R,n>)<ﬁ7P:7:‘

where v,. and vl"” are the atomic all-electron and local pseudopotentials respectively. As these
potentials are spherical, Fal rewrites:

8 ae 8 i)OSC ~
A= L) & ({9rn - T Lo ) — (Granl -2 Lir)) (]

In Eq. (2.8), the local potential is the sum of the atomic local potentials:

V() = 3 i)

R

As iav;o; decreases as 1/r3, the action of the operator VVI};’“(I') X p in the augmentation region
is, at first order, the same as the action of Vvl"‘( )xp (in other words, in a given augmentation
region, the contributions of the neighboring atoms to the sum in V;¢(r) is small). In the
augmentation region, the pseudo-wave-function can be expanded according to:

U) = > |6nr) (Pr D).

n

Therefore, the term proportional to 'Ul"”

and the term proportional to V0 in Eq. (2.8)
partially compensate each other so that the dominant contribution to Hgo arises from the

following term (Term 1 on Fig. (2.4)):

1c%ae .
m2 2 Z g | ¢Rn| L|¢Rm><p%|

nRm
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2.3. Method

' i — ' ' ' ' Fig. 2.4: Computed XMCD spectrum (test calcu-
1| — Total 1+2+3 . . . .
e eTerm1 lation for a bee-Fe structure) by considering either
4 — Term2 ~ the total Hgo or each term constituting it sepa-
- Term 3 ratly.

In Rydberg atomic units, with e included in the
potentials (i.e. the way it is in the code) the terms
A are:

! ~ 1 Ovae ~
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:; 2) OITZ Zan o- |an> <¢R,n|; 6;; L|¢R,m><pg

’ 3) Fo - (VVp(r)xp)

We see that, as expected, Term 2 and Term 3 al-
1 v most compensate each other.
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Fig. 2.4 illustrates this point but it also shows that it would be a rather rough approximation
to consider only this term in the calculation. Therefore, even if it would represent a substantial
gain in computing time, we do not use this approach and we keep all three terms in Hso.

Our calculations are, however, performed with collinear spins along one direction (named z)
and within the diagonal spin-orbit coupling approximation: only o.e, is considered in o which
allows to conserve the decoupling into two equations (one for spin up and one for spin down)
of the Kohn-Sham equation.

2.3.2 Cross-section calculation

We have adapted the XSPECTRA code of QUANTUM ESPRESSO [Gougoussis et al., 2009]
for the calculation of XMCD and XNCD spectra.

Principle of the XSpectra code

The main features of the code XSpectra are presented in |Taillefumier et al., 2002]. We
briefly recall them here.
The aim is to compute the contribution of a given operator O to the absorption cross-section:

o(w) = 4n’aghw > " [(f|Ofi)*6(Ey — E; — hw).
f

The core state |i) (for example, at K-edge, the 1s state) is determined from an all-electron
isolated atom calculation because the core states are almost unaffected by the chemical bond
(this is called the frozen core approximation).

The operators O are known. We give the expression of the spin-position operator - in the
collinear spin and diagonal spin-orbit coupling case- in the next subsection and the expression
of all operators in terms of spherical harmonics in Appendix D.2.

The scf calculation described in the previous subsection aims at determining the wave func-
tions of the empty states |f) but there are two problems:

(i) the scf calculation is pseudopotential-based so that pseudo-wave-functions |f) are deter-
mined instead of |f). They are not suitable to compute the matrix elements.
(71) the calculation of empty states by DFT is computationally expensive and it would require

54



2.3. Method

huge resources to compute the empty states in a supercell (which is needed when including the
core-hole, see Section 2.5).

The first problem is addressed by using PAW reconstruction as presented in the previous
subsection. In the PAW formalism, the matrix elements can be rewritten:®

(f101i) = (f1¢ro) with |Pro) Z!NRO Yo |Ol).

In addition to the initial state wave function and to the operator, the vector ¢gr, contains
quantities related to the PAW reconstruction, [p°) and |[¢R°), which can be read in the pseu-
dopotential file. At this point, the cross section can be rewritten as a sum over |f):

0(w) = An’aohw(Pr| | Y 1NO(E; — E; = hw){[] | ro),
f
which solves problem (3).

The second problem is addressed by a recursion method so that the cross section can be
determined without having to compute any empty state. Using the Sokhotski—Plemelj theorem,

lim ! — =P (1) Fimd(2)
2

y—0t+ 2 £y

(where P is the Cauchy principal value). Therefore,

S 1HO(Ey — By — hw)( :——Z\f L (A= LlmGm)
f

Ei—l—hw—Ef+w T

where G(F) is the Green’s operator associated with the pseudo-Hamiltonian H:

G(E)=(E — Ho + iy)~" and the energy E = E; + hw. Note that, here, the Green’s function
is used only as a convenient way to write the invert of a matrix element. With this rewriting,
we transformed the problem of a sum over empty states into a problem of large matrix inver-
sion. In order to proceed to this inversion in a reasonable amount of time, Lanczos algorithm
[Lanczos, 1952] is used to make #, tridiagonal with a; on the main diagonal and b; on the first

6 Using Eq. (2.6) and Eq. (2.7),

(f10li) = (f10i) +Zf| WOl = D (1) (5 [Old)

R,j

As the initial wave-function (r|é) is localized around the absorbing atom Ry, we consider that it is zero outside
the augmentation region (2r, so that only R = Ry have to be considered in the previous expression. Moreover,
(r|O|i) can be expanded on the |¢gr ;) basis:

=D |6nro ) (ProONi).
The first and the last terms in (f|O[i) cancel each other, which leads to:

(f10li) f|Z|~R0 (¢R0]0l3).
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diagonals:”

ap b 0 0 . .. 0

bl aq b2 0 .. .- 0

B 0 b2 a9 bg 0 . 0
Ho =

0 .. . 0 by ap1 b,

o . . . 0 b, a,

The inversion leads to a form in continued fraction of the matrix elements:

(PRo|PRo)

(Brol(Ho — E — i7) | ry) = b2
1

= <95R0 |(,5RO>COHt(E, a, b)

ag— E — iy — 72
By

We define this way cont(F, a,b) where a and b are vectors of components a; and b; respectively.
Finally, the contribution of O to the absorption cross section is computed as:

0(E) = draphw(Pr, | PR, ycont(E, a, b).

In the code, for each k-point, |Pr,) is determined for the chosen operator with the formula
given in Appendix D.3. Then, the Lanczos procedure is applied to determine the vectors a and
b, and a spectrum is calculated. The total spectrum is obtained as a sum over the k-points of
these spectra. If the calculation is spin-polarized the number of k-points is multiplied by two
so that each k-point is associated to a given spin. This allows to obtain spin-up and spin-down
spectra by summing over the corresponding k-points.

Details related to the cross terms
(i) SP operator in the case of collinear spins

In order to compute the D-SP cross term, the calculation must be spin-polarized. The only
case implemented, for now, is that of collinear spins and diagonal SOC (¢ is replaced by o.e,).
In the code pwscf spin channels remain independent because spin-up and spin-down electronic
states are solutions of separate Kohn-Sham equations. We consider that the collinear spins are

. . . . . 1
along z. The spin part of the wave functions |s) can either be the spin up spinor | 1) = (O)’

or the spin down spinor | |) = ((1))

" The Lanczos basis can be determined recursively as it obeys :

lu—1) =0
|PRrg)

[wo) = im

Holus) = ailui) + big1|wir) + bilui_1)

In practice, at each iteration, |t) = 7—~£0|ui> — bi|u;—1), that is equal to b;y1|u;y1) + a;|u;), is computed. Then,
a; = (t|u;) can be determined and [t') = |t) — a;|u;) is computed. Then b;y; is equal to the norm of |¢'):
biv1 = /({|t") and |u;41) = % Note that in the code, the indexes for a; start from 1 whereas, in our
notation they start from 0. This only implies a shift of 1 in the index of a; in each formula.
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The D-SP term is a cross term between the electric dipole and the spin-position operator.
Spin does not appear in the electric dipole operator, so it is diagonal in spin

<¢i5|6* : r|¢f8/> - <¢i|€* ' r‘¢f>5ss’~

This imposes s’ = s. On the other hand, the vector of Pauli matrices o appears explicitly in
the Spin-Position operator:

(dislo - (€ x1)|dys) = (¢il(€ x 1)[dy) - (slo]s).

As (s|og|s) = (s|oy|s) = 0, we can exclude a priori the terms that are proportional to o, and
oy in the Spin-Position operator. In that case the spin position operator rewrites:

SPei(€) =0.(e XT) =0,(e,y — €,7).

Its expression in spherical harmonics, as it is implemented in the code, is presented in Ap-
pendix D.2.

(ii) Calculation of the cross terms

To compute the D-Q and D-SP cross terms, we cannot simply apply the procedure presented
above (p. 54) because they do not write as square modulus. Let us consider the electric dipole
operator D and another operator B, which is either the electric quadrupole ) or the spin-
position SP,, operator. We want to compute:

In_g =Y Im[(f|B|i)(i| D*|f)]6(E — E; — hw).
f

Two calculations are performed in order to obtain: I = 73, [(f|D +iBli)[?0(Ef — E; — hw)
and Iy = m ) [(f|D — iB|i)[?0(Ey — E; — hw). The difference of I, and I, is proportional to
]D—B:
I — I, = —4Ip .

The prefactors implemented in the code in order to obtain from [; and I, the contribution of
the cross terms to the absorption cross section are given in Appendix D.4. The fact that two
Lanczos procedures are needed to determine the cross terms means that they require twice as
much computing time as the other terms.

(iii) Alternative way to compute the term D-SP

If one considers full circular polarization such that k is along the quantisation axis z, there
is an alternative way to compute the D-SP term. This case corresponds to the calculation of
XMCD. Indeed, in XMCD experiments a magnetic field is usually applied parallel to the beam,
which justifies to consider k parallel to the quantisation axis.

The calculation must be performed with left-handed and right-handed polarization:

e X (1
€] = €y = E i| and eg = €] = € = E —i (2.9)
0 0

Using BEq. (D.2), as Y] *(€1) =0, Y] H(e2) = +/3/4rm, Y (e1) = Y(€2) = 0,
Yi(€) = —/3/4m and Y}!(e2) = 0:

4
SPeol(€1) =4/ %TYfl(ur)az = 0.i€.T
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2.3. Method

Hence,
huw
op-sp(€1) = _W(UIT)—D(Gl) - Uinfn(fl))
huw
on-sp(€2) = 5 (0h_p(e2) — b _p(e2)) (2.10)
with

o}y ple) = An’aghw Y [(f*|e-x|i*)[*5(Ey — E; — hw)
/
where s =71 or |. Therefore, in the collinear case, the D-SP term can be computed from the D-D
cross section for the up and down spin channels. In other words, the calculation of the spin-
dependent D-D term is sufficient to obtain the D-SP term without requiring more computing
time. We have checked that this approach gives the same result as the double Lanczos procedure
described in paragraph (ii).

2.3.3 Discussion on the necessity to include spin orbit coupling in the
scf calculation

4 T T T 40

—— scf relaxation with SOC
scf relaxation without SOC

< scf relaxation with SOC
scf relaxation without SOC

N
o
1

XMCD (arb. u.)

DL

XMCD (arb. u.)
o

204

-10 0 10 20 30 -10 0 10 20 30
E-Eg (eV) E-Eg (eV)

Fig. 2.5: Comparison of the D-D contribution to the spectra (test calculation for a bee Fe structure)
obtained by including (red) or not (green) spin-orbit coupling in the first step of the method (i.e. the
self-consistent field calculation). On the left, spectra are convoluted by a Lorentzian of width at half
maximum 1.6 eV and on the right, by a Lorentzian of width at half maximum 0.2 eV. In both cases,
red and green curves are the same.

Due to the rewriting of the sum over |f) with the delta function in terms of (E—Ho+iv) ™,

in our method, the aim of the scf calculation is only to determine the electron wave functions to
be able to compute Hy in the second step of our calculation. In order to better understand the
effect of spin orbit coupling (SOC) in the XMCD effect, we tried to perform this scf calculation,
that is to say the electron relaxation, without SOC. We included it, however, in the H, used
by XSpectra (otherwise no D-D or Q-Q XMCD could be computed).

The result of this test is shown in Figure 2.5 and it is quite surprising at first sight: the
result is exactly the same if SOC is included or not in the scf relaxation.
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2.4. Convergence with calculation parameters
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This is in fact understandable by considering the p-projected density of states in bec Fe
(Fig. 2.6). From this plot, we can evaluate the order of magnitude of the value of the spin
orbit splitting of the 4p states in Fe: it is at most a few meV which is smaller than the energy
resolution needed for the calculation of the spectra (for the examples of Figure 2.5, the spacing
between points is AE = 0.06 €V which is enough even with a 0.2eV broadening).

In other words, it seems that, as long as the spin orbit splitting of the probed states is
small with respect to the energy resolution, the electron relaxation can be performed without
including spin orbit coupling. This represents a significant gain in computing time.

2.4 Convergence with calculation parameters: example of
Fe

When running the two steps of a cross-section calculation, several parameters must be set
in inputs. Computation time and required memory depend on these parameters which limit
their accessible values. For this reason, it is important to find the values that allow convergence
of the properties we are interested in. This convergence must be checked for any system under
study. Here, to have an idea of the dependence of the spectra on these parameters, we have
checked in the case of bee-Fe the convergence of the D-D XAS spectrum and of the XMCD
corresponding to the terms D-D, D-SP and Q-Q.

The correspondence between the quantities defined in Subsection 2.2.2 and the quantities

plotted below (in this chapter only - in other chapters XAS spectrum will be the sum of several
terms) are:

XAS" op_n(€1)

"D-D XMCD"  op_p(€s)-op_ple) | e St
with €5 = v K and €; = Vol B

"Q-Q XMCD"  0q-q(€2)-0q-q(€1) 0 0

"D-SP XMCD"  op_gp(€2)-0p_gp(€1)

2.4.1 Parameters of the scf calculation

In this section, calculations for a unitary bee Fe cell (without core hole) with the experimental
lattice parameter ap, = 2.87 A are presented as a test example. All parameters are varied
independently while others are kept fixed.
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2.4. Convergence with calculation parameters

When relevant, the convergence of the total energy, the absolute magnetization and the
total magnetization at the end of the self-consistent field calculation is plotted. The total
magnetization is the integral of the magnetization in the cell and the absolute magnetization
is the integral of the absolute value of the magnetization in the cell.

A norm-conserving pseudopotential with GGA-PBE functional is used (see Appendix E).
The values chosen as references for the parameters are: a Methfessel-Paxton smearing of 0.01
Ry, a 10x10x10 uniform k-point grid, an energy cut-off E.,.;y = 180 Ry and a conver-
gence threshold set to 107 Ry. For the spectra, the reference calculation is performed with a
20x20x 20 uniform k-point grid and a convergence error set to 5.1074,

Spectra are convolved with a Lorentzian broadening function with full width at half maxi-
mum set to 0.8 eV.

k-points sampling

260 ' ' L) -247.194 Fig. 2.7: Absolute magnetiza-
] —w— absolute_magnetization . 1 . . lef
055 ] — 4 total_magnetization tion, total magnetization (left
—e—total energy Y-axis) and total energy (right

250 1 ~ -247.195
: Y-axis, red) for a unitary bcc-

Fe cell as a function of the size
of the k-point grid in each di-
rection. The smearing is of
Methfessel-Paxton type with a
spreading o = 0.01 Ry.
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N,=N,=N,

We consider a crystal whose translations write T = nja; + noas + nzas (where ny, no, ng
are integers) and we name 2 the volume of the cell defined by a;, a; and az. We note G the
reciprocal lattice vectors (G = niby + ngby + nsbs with b;-a; = 2md;;). In the presence of
a periodic potential, V(r + T) = V/(r), Bloch’s theorem states that the eigenfunctions can be
written in the form:

Pix(r) = €™ Tuyp(r)

where u; x has the periodicity of the crystal and writes:

_ L s eiG'r
u;x(r) = \/ﬁg x(G) :

The Hamiltonian is block diagonal in k such that a Schrodinger equation can be written and
must be solved for any k. As 1); 1 (r) is the same as ¢; x(r), a restriction to the first Brillouin
zone (BZ - primitive cell in reciprocal space that contain the points closer to the origin) is
possible. In practice a finite number of k-points in the first Brillouin zone is used. To choose
these points, the most widely used scheme is the method proposed by Monkhorst and Pack
[Monkhorst and Pack, 1976 which consists in building a uniform set of points in each direction

of the reciprocal lattice:
kn17n27n3 = E IN. bl (2'11)

7
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2.4. Convergence with calculation parameters
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Fig. 2.8: Calculated XAS and XMCD spectra for a unitary bee-Fe cell with different k-point grids,
all other parameters being equal to the reference values. The smearing is of type Methfessel-Paxton
with a spreading ¢ = 0.01 Ry. In inset: zoom near the extrema of the spectra.

with n; = 1,2, ...N; where Ny, Ny, N3 are chosen in input. It is called a N7 x Ny x N3 uniform
grid. A sum over these points exactly integrates a periodic function that has Fourier components
that extend to N;b; in each direction [Martin, 2004, p.93].

Symmetry can be used to reduce the calculation to the irreducible Brillouin zone (IBZ).
The weight wy of the remaining k-points is defined by the ratio of the total number of k-points
related by symmetry to the given k-point divided by the total number of k-points Ny. The
average value per cell for a general function f(k) is:

F= Ni S )= Y wef (k).

keBZ kelBZ

Note that in this thesis the k-point grid dimensions are given for the full Brillouin zone, as it
is customary.

Fig 2.7, the total energy, total magnetization and absolute magnetization at the end of the
scf calculation are plotted as a function of the size of the k-point grid. The total magnetization
is defined as Mo, = [, (p"(r)—p*(r))dr and the absolute magnetization as Maps = [, [p"(r)—
p*(r)|dr. The fact that they are almost equal indicates that bee-Fe is ferromagnetic.
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2.4. Convergence with calculation parameters

The convergence is not monotonous and the relative variation of the magnetization is still
rather large (= 4%) with dense k-point grids for which the total energy is converged with a
precision of the order of 1073 Ry. For a metal, convergence with the k-point mesh must be
checked together with the convergence with the spreading corresponding to the chosen smearing
(see Subsection 2.4.1). A combined test can be done by increasing the number of k-points with
several chosen values of smearing and then determine the smearing and k-point grid that allow
to obtain the desired precision on the total energy and magnetization.

Fig. 2.8 shows that the calculated XAS spectrum is not sensitive to the size of the k-point
grid in the chosen interval. The three contributions to XMCD depend more strongly on this
parameter. For the D-D contribution it results only in a small variation of the intensity of the
signal but for the D-SP and the Q-Q contributions, the shape of the spectra very close to the
Fermi level depends on the number of k-points Ny used in the calculation. The convergence of
the XMCD spectra, like the convergence of magnetization, is not monotonous when increasing
Ng.

Energy cut-off

° ' A —— Fig. 2.9: Absolute magnetiza-
tion, total magnetization (left
1 2466 Y-axis) and total energy (right
Y-axis, red) for a unitary bcc-
Fe cell as a function of the en-
ergy cut-off.
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cutoff

The number of plane waves used to describe the wave functions is limited by the available
computing resources. Therefore the sum over G is restrained to the reciprocal lattice vectors
such that |G| < Gax (sphere in the reciprocal space) where G« is indirectly chosen in input
through the choice of the cut-off energy.

The kinetic energy associated with a plane wave ¢pg =

1 Li(k+G) o1 .
\/ﬁe 1S:

-1 1 1
By = 7V2¢k7g(1‘) = §|k + G]2¢k7g(r) ~ §|G|2¢kvg(r) for |G| large enough.
Therefore, the restriction |G| < Guayx leads to Ex < % The cut-off energy is defined as:

G2

max

2

Ecutoff =

For a given cut-off energy, the number of plane waves is N, ~ #QEZ?O”. In other words, the
size of the basis set used to describe the wave functions depends on the cut-off energy and on
the volume of the cell.
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2.4. Convergence with calculation parameters
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Fig. 2.10: Calculated XAS and XMCD spectra for a unitary bee-Fe cell with different cut-off energies,
all other parameters being equal to the reference values.

The kinetic energy cut-off for the charge density (that writes as sum of squared modulus of
wave functions) is set t0 4Eey0ps.°

The total energy has a monotonous behaviour with E..,rs (see Fig 2.9) which makes the
convergence with respect to this parameter easier than for the k-point grid size. The combina-
tion of Fig. 2.10 and Fig 2.9 illustrates the fact that, in the case considered here, a precision of
1072 Ry, which corresponds to a relative error of 4.107° on the total energy, is enough for all
spectra to be well converged.

Smearing

If the material under study is metallic, the quantities to be integrated over the first Brillouin
zone are multiplied by a sharp function equal to 1 if F < Er and equal to 0 if £ > Er. This
discontinuity at the Fermi level is problematic because a very dense k-point grid would be
required to get an acceptable precision on the calculated values. Such a problem does not arise
in the case of insulators because the density of states cancels smoothly before the gap. The
practical solution in the case of metals is to replace the step function by a smoother function

81f ultrasoft pseudopotentials were used instead of norm-conserving ones it should be set to a higher value.
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2.4. Convergence with calculation parameters

> wif(k)O(E(k) — Er) with O(z) :{ (1) i i i 8

— S s (FE).

A gaussian smearing corresponds to the choice 5(z) = § (1 — erf(x)) where erf(z) = \/%7 Iy e~ dt.
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In the more sophisticated Methfessel-Paxton scheme [Methfessel and Paxton, 1989], the
function [ is obtained recursively as it writes as a function of Hermite-polynomials:

1

Bo(x) = 5 (1 —erf(z))

- (=1)"
Bn(x) = Bolz) + E Aann,l(x)e*"’“"2 with A, =
n=1

— nldn\/m
and Hy(z) =1, Hy(x) = 2z, H, 1 (x) = 22H,(x) — 2nH,,_1(x)
These (,, functions have the interesting property that:

[ aEs©) (@) - [ apsEreE - Er)

if f is a polynomial of 2N — th or smaller degree. In the code pwscf, this scheme is used at
first order.

A spreading o that is too large can result in a wrong total energy and a wrong magnetization
but the smaller the spreading is, the larger the k-point grid must be.

To be rigorous, the convergence of the calculation when decreasing the spreading must be
checked together with the choice of the k-point grid (the same plot as in Fig. 2.11 should be
plotted with other grids). Our point here is to show the impact of each parameter on the
spectra, hence we only make o vary.

As illustrated in Fig. 2.12, the calculated XAS spectrum does not depend much on o whereas
the three contributions to XMCD depend a little more appreciably on this parameter. For the
D-D and D-SP contribution it results mostly in a small variation of the intensity of the signal
but for the Q-Q contribution, the shape of the spectra very close to the Fermi level changes
when o is changed.
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Fig. 2.12: Calculated XAS and XMCD spectra for a unitary bee-Fe cell with different spreading o,
all other parameters being equal to the reference values.

Convergence threshold

During the scf calculation, a numerical iterative procedure is used, which changes succes-
sively the effective potential V. ;¢ and the density n. The flow chart shown in Fig 2.13 illustrates

the idea of this procedure.

The convergence threshold for self-consistency set in input of pwscf corresponds to the limit
on the error on the total energy at the end of the cycle. It is the criterion that puts an end to
the cycle (box "Self-consistent 7" in Fig 2.13).

The calculated spectra are insensitive to a change in convergence threshold if it is smaller
than 107° Ry as illustrated in Fig. 2.14. This corresponds to a relative error on the total energy

that is smaller than 4.1078.

Note that, as the total energy is extensive, to obtain the same

relative error on a system that would contain more Fe atoms, a smaller convergence threshold

would be required.
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Fig. 2.14: Calculated XAS and XMCD spectra for a unitary bcce-Fe cell with different convergence
threshold, all other parameters being equal to the reference values.
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2.4. Convergence with calculation parameters

2.4.2 Parameters of XSpectra

Here, we study the effect of two parameters that can be set in the input of the code XSpectra:
the number of k-points and the convergence error parameter.
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Fig. 2.15: Calculated XAS and XMCD spectra for a unitary bce-Fe cell with different k-point grids
for the cross section calculation (input of XSpectra).

In XSpectra, the k-point mesh is of type Monkhorst-Pack (i.e. the k-points are distributed
homogeneously in the Brillouin zone) and the number of k-points is not reduced by symmetry.
In other words, the calculation is performed for all k-points of the mesh and not for the non-
symmetry-equivalent k-points only.

The number of k-points used to compute the absorption cross section has a strong impact
on the result as visible in Fig. 2.15. If the k-point grid is not dense enough, there is a lot of
numerical noise in the XAS spectra, which results in lots of spurious peaks in XMCD. As a
convolution of the spectra with a larger broadening at high energy would smooth them, the fact
that the calculation is not converged might go unnoticed if the calculation is directly performed
with a too large broadening.

67



2.4. Convergence with calculation parameters

Convergence error

1.0x10°® ——— 77— 4.0x10° — 71—
xerror
xerror » 1X10'2
" —1x103 5x10°
< 5x10° 3
X 3 . 1x10
1x104 2.0x10° 5x10° |
—— 5x10° -4
1x10
: —— 1x10"* a ‘
5.0x10™ A @)
=
o 004
a |
v \
-2.0x10° 1 % /p\ b
0.0 4 ()
T T T T T T T T T T
-10 0 10 20 30 40 50 -10 0 10 20 30 40 50
E-E, (eV) E-E, (eV)
T T T T T T T T T T T
xerror
1x10?
3 ®
1.0x10° - 100 g
1x10 3
5x10™
xerror 4
s 1x10°7 a —— 1x10
O -3 Q
s 5x10 =
% 3 x
1x10 o
@ -4 @
o —5x10 A
\\ 1x10™ 0.0
-2.0x107 = /
I N\
T T T T T T T T T T
-10 0 10 20 30 40 50 -10 0 10 20 30 40 50
E-E_(eV) E-E. (eV)

Fig. 2.16: Calculated XAS and XMCD spectra for a unitary bee-Fe cell with different values for the
convergence error parameter set in input of XSpectra.

For each k-point, when H, is made tridiagonal with Lanczos algorithm, a spectrum is
periodically computed and compared to the spectrum obtained at the previous iteration in order
to determine if the calculation is converged or not. The number of iterations that separates two
checks of this kind can be set in input (keyword: xcheck_conv). The error (keyword: xerror)
corresponds to the criterion for the spectra to be considered as converged: for a given k-point,
at step [, the spectrum is considered as converged if the relation

ZE |COl’1t(E, ay, bl) — COHt(E, alfxcheck_conw blfxcheck_conv)|
> plcont(E, a;, by)|

< xerror

is verified.

As visible in Fig. 2.16, XMCD spectra are more sensitive to this parameter than XAS

spectra. If xerror is set to a too large value, peaks at high energy appear, especially in the
D-D contribution to XMCD.
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Fig. 2.17: Example of a 3x3x3 supercell of the
bee Fe cubic cell (conventional cell). With this cell,
periodically reproduced (due to periodic boundary
conditions) atoms with a core hole are 8.61 A away
from each other.

2.5 Inclusion of the core hole

In X-ray absorption experiments, a core-hole is created by excitation of a core electron. The
spectra can be strongly affected by core-hole effects (see for example [Taillefumier et al., 2002],
Fig.4 or |Cabaret et al., 2010]). It is therefore important to calculate the screened core-hole
potential that is experienced by an excited electron.

2.5.1 Principle

In the framework of the final state rule [von Barth and Grossmann, 1982| the final states | f)
that enter the cross section formula Eq. (2.1) are stationary unoccupied states in the presence
of a static core hole whereas |i) is the core state without core hole.

We therefore run the scf calculation with one electron missing in the core state (and a
background charge to insure electrical neutrality). In practice, a core electron is removed from
the pseudopotential of the absorbing atom. For example for Fe, the pseudopotential for the
absorbing Fe is generated with the configuration 1s' 25 2p° 3s% 3p® 3d° (with the 3s, 3p, 3d
electrons in valence).

The response of the electrons to the presence of the core is therefore considered at all
orders. In other words, we do not use linear-response theory to determine the core-hole
screening as it is done within the random-phase approximation (RPA) [Shirley et al., 2005]
but we compute it self-consistently. This independent particle approximation has proven
successful to compute K-edge XAS spectra but it fails to reproduce L,z edges for 3d el-
ements |Laskowski and Blaha, 2010b| because the effects related to the electron-hole inter-
actions are strong. A comparison of the calculation using the final-state rule with an ap-
proach using Bethe-Salpeter equation to describe the electron-hole interaction is carried out

in Ref. [Rehr et al., 2005|. In this paper, a close connection between the two approaches is
established.

2.5.2 Supercell

The core-hole lifetime 7 in XAS is of the order of several 1071° s = 1 fs. In XAS experiments,
the created core-holes are too distant to interact with each other.’

%For example, at the Fe K-edge the lifetime broadening is I' = 1.25 eV which corresponds to 7 =~
20 fs ('t = h/2). The absorption cross section above the edge (7113 eV) is ¢ ~ 38000 barns/atom
[database CXRO, site]. On ODE beamline at Soleil synchrotron, the photon flux on the sample at 7 keV
is f = 4 x 10?2 photons.m~2.s~' = 4 x 10~% photons.barns~'.s~!. The number of photons absorbed per second

per atom, nyps = o f. For the mean number of absorbed photons during time 7 to be equal to 1, there must be
a total of N = —1— ~ 3 x 10™ atoms. It means, that, on average the core hole are N'/3 ~ 10° atoms away

NabsT
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Fig. 2.18: XAS and XMCD spectra calculated with an absorbing atom containing a core-hole (ch)

in bee-Fe cells of different sizes. The distance between periodically reproduced core-holes ranges from
5.73 t0 9.96 A.

When including a core-hole in the cell used to describe the material, it is important, that
the periodically repeated core holes (due to periodic boundary conditions) do not interact with
each other. A supercell that contains a large number of atoms, among which one atom with
a core-hole, must therefore be built. The k-point grid can be reduced accordingly (xn in
real space corresponds to x1/n in reciprocal space). To verify that core-holes do not interact
with each other, one must check that the spectra do not change when the supercell size is
increased. Previous works demonstrated that a distance between core-holes of 8 to 10 A is
usually enough to reach convergence of the XAS spectrum [Cabaret et al., 2010] and that this
distance is material dependent. One sees, in the example of bee-Fe (Fig. 2.18), that the XMCD
spectra are more sensitive to the interaction between core-holes than the XAS spectrum. A
distance between core-holes of approximatively 10 A is, however, enough to obtain converged
spectra.

one from each other. With an interatomic distance d = 2 A, it corresponds to a distance between core holes of
approximatively 10 um. Therefore, the core holes do not interact with each other.
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2.6 Conclusion

In this chapter, we have presented the significant terms of the absorption cross section and
the method that we use to compute them. To summarize, the cross section is computed in the
presence of a static core-hole with a full relaxation of the valence electrons. For this, we work
in a DFT framework with plane-waves and pseudopotentials. For XMCD, the calculation must
be spin-polarized and include spin-orbit coupling. We consider collinear spins and the spin-
orbit coupling is accounted for within a diagonal spin-orbit coupling approximation. The cross
section is computed using a recursion method that avoids the heavy workload of computing
empty states by DFT.

The effect of several parameters that can be set in input of the calculation on the obtained
spectra has been discussed.

The results for model systems are presented in the next chapter.
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Calculation of XMCD and XNCD:
application to the 3d ferromagnetic metals
and to a-LilOj
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3.1 Introduction

The application of the method presented in the previous chapter to well-known systems
was required to serve several purposes. The first objective was to calculate the terms listed in
section 2.2 in order to evaluate their relative contribution to absorption and circular dichroism.
Another goal was to assess the capability of the DFT-based method to reproduce the complex
phenomena that are XMCD and XNCD and to try to get a good understanding of its limits.
Finally, the studies presented in this chapter serve to clarify the physical content of the mag-
netic and natural circular dichroism spectra.

The outline of the chapter is the following:

e In section 3.2, after the origin of the XMCD phenomenon is recalled, the calculated
contributions to XAS and XMCD spectra at the K-edge for Fe, Co and Ni are detailed.
Then the calculated and experimental spectra are compared and several features of the
method are discussed.

e Section 3.3 is dedicated to the calculation of XAS and XNCD at the L;-edge of iodine in
LilO3. The effect of the core-hole on XNCD is specifically discussed.

e Finally, in section 3.4 the sum-rules for all the terms are derived in order to get an insight
into their physical content. This allows, in particular, to understand the importance of
the D-SP term that was presented in Chapter 2.

3.2 XMCD at K-edge in Fe, Co and Ni

Early spin-polarized DFT-based calculations found accurately that the ferromagnetic state
of Fe, Co and Ni was more stable than the non-magnetic one (by comparison with non-spin-
polarized calculation) and gave values for the spin magnetic moment in agreement with exper-
iment (see for example [Moruzzi et al., 1978, p.161-185]). Here, we try to compute the XMCD
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spectra with the DFT-based method presented in the previous chapter. XMCD is a good way
to test the validity of the modelling of magnetic materials because the calculation of a spectrum
is more challenging than the calculation of a magnetic moment.

3.2.1 XMCD phenomenon

In XMCD experiments, the absorption by a magnetic sample of right- and left-circularly
polarized X-rays is successively measured and circular dichroism corresponds to the difference
between them. Generally, an external magnetic field is applied parallel to the direction of
propagation of the incident beam in order to maximize the signal. In a centrosymetric system,
the terms that, a priori, can contribute to XMCD are those that were named D-D, Q-Q and
D-SP. The selection rules for the operators constituting these terms are given in Table 3.1. At
the K-edge, the D-D term and the D-SP term probe the p (I = 1) final states whereas the Q-Q
term probes the d (I = 2) final states.

Table 3.1: Selection rules in absorption of the operators electric dipole, electric quadrupole and
spin-position.

Operator Selection rule K-edge final states
electric dipole D Al =41 Amg =0 p states
electric quadrupole Q Al =42 Amy, =0 d states
spin-position SP Al=+1 Am,=+1,0 p states

Among the three terms, D-SP has the characteristic that the spin is explicitly included in
the transition operator. For this reason, the XMCD related to this term has not the same origin
as the two other terms.

As will be mathematically found in section 3.4, when the core state is not spin-orbit split (s
state), the right-handed photons (that carry a helicity —h) probe the final states with orbital
magnetic quantum number m = —1 and the left-handed photons (that carry a helicity +h)
probe the final states with m = 1. For the contributions D-D and Q-Q to exhibit circular
dichroism there must be a difference in occupation between the states m = 1 and m = —1.
Such a difference can only happen when time-reversal symmetry is broken.! There are two
main phenomena that can lead to the splitting of the states m = 1 and m = —1: the Zeeman
effect and spin-orbit coupling in the presence of a spin magnetic moment.

The Zeeman effect occurs in the presence of an external magnetic field and it is related to the
presence of a term H; = 2By - L in the Hamiltonian (that arises from the term 5= (p—eAg)?).?
The Bohr magneton pp = 5% ~ 5.8x107° eV.T~! so that for m = +1, the order of magnitude
of the Zeeman term with an external magnetic field By = 2T, (Hz)(By = 2T") ~ 0.1 meV.

To evaluate the order of magnitude of the XMCD effect that would be induced by the
Zeeman effect, we consider that the transition towards the state m = +1 and the state m = —1
yield two identical XAS spectra only shifted by AE,; = 0.2 meV. The difference between the

In quantum mechanics, time-reversal is related to complex conjugation: if ¢ (z,t) is solution of the

Schrodinger equation ih%—f = (% + V)1, then ¢*(x, —t) is also a solution. If a system obeys time-reversal

symmetry, the wave-functions to describe it can be chosen real and the wavefunction R, ;(7) ", ¢, Y 1" (6, ¢)
is real if ¢, = (—1)™c_m.

’In the radiation gauge, Ay = B9XT Jeads to (p —eAg)?> = p? —e(Bg xr)-p+ %(Bo xr)? =p?—eBy-L+

2m

e By xr)2. The term proportional to Bg - L is called the Zeeman term or paramagnetic term and the last term
64 g

is called the diamagnetic term. In general the diamagnetic term is substantially smaller than the paramagnetic
term (but exceptions exist).
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3.2. XMCD at K-edge in Fe, Co and Ni

Fig. 3.1: Diagram illustrative of the degeneracy

m= lifting due to Zeeman effect on a p state.
=1 P
—_— m=0
B,=0
m=-1

B, #0

two spectra (that is XMCD) is given by their derivative multiplied by AFEz. In the case of
Fe, for example, the maximum of derivative of the normalized XAS is approximately 1.6x107*
eV~! 50 the Zeeman effect would induce a XMCD of magnitude of 3x107°. This corresponds
approximately to the limit of detection of the most precise existing XMCD beamlines and it
can not explain the large XMCD observed in Fe. More generally, in the examples considered
in this chapter, for which the XMCD amplitude reaches several 1073 compared to the main
edge jump, the Zeeman effect cannot be the origin of the m= =+ 1 splitting that induces circular
dichroism. However, on beamlines that combine a very high signal to noise ratio with a strong
magnetic field the measurement of a XMCD signal entirely due to Zeeman effect is possible
(for example, with a 7 T magnet, AE; = 0.8 meV which can lead to a XMCD amplitude of
several 107* which is measurable [Sessoli et al., 2015]).

Fig. 3.2: Diagram illustrative of the degeneracy
j=3/2  lifting due to spin-orbit coupling (SOC) on a p
state.

I=1,5=1/2
j=1/2
with SOC

Spin-orbit coupling (SOC) is a relativistic effect that, in a one-electron description, is often
described by a model term in the Hamiltonian: AS:-L where A is positive and increases with
atomic number Z. In the presence of spin-orbit coupling, m and m, are no longer good quantum
numbers. In the absence of magnetic field,® the appropriate quantum numbers to describe the
eigenstates of the Hamiltonian are j,m;, [, s (j and m; are the eigenvalues of J* and J, where J is
the operator for total angular momentum J = L+ S). Spin-orbit coupling induces a degeneracy
lifting on the j (see Fig.3.2 for an illustration). The relation between the states |lsjm;) and
the states |lmsmy) is known and tabulated under the name of Clebsh-Gordan coefficients.
From the table in Fig. 3.3 we deduce, for example, that || = 1,s = %,j = %,mj = %> writes
V2V ) =Y ).

In the presence of spin-orbit coupling, a spin polarization (difference between spin-up and
spin-down) induces an orbital polarization (difference between m = 1 and m = —1) which is
responsible for the XMCD of the terms D-D and Q-Q.

Note that, for the D-SP term, due to the expression of the transition operator o - (€ X r)
left-circularly polarized X-rays probe the difference of the densities of state for spin-up and spin-
down (p' — p*) of the p states, whereas right-circularly polarized X-rays probe its opposite (see

5

*In a N-electrons framework, the spin-orbit coupling term is proportional to the sum over electrons: »_.1; -s;.
AsL-S # ), 1;-s;, the [, s states are coupled (see [Cowan, 1981, p.335]).
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3.2. XMCD at K-edge in Fe, Co and Ni

Y Fig. 3.3: Table of Clebsch-
Notation: | . Gordan coeflicients for [ = 1
1
/ & — and s = 5 |Group, |.
1x1/2 | 3/2 Lo .
+3/2] 3/2 1/2 Coefficients
|+'I +1/2 11/2 +1/2 2 ; with implicit
w1213 273372 12| - - |V
0+1/2| 2/3 =-1/3-1/2-1/2 - -

0-1/2| 2/3 1/3] 3/2
-1+1/2| 1/3-2/3}-3/2

[-1-172] 1

section 3.4). For this reason, XMCD for this term is not related to a difference of population
between m=1 and m= — 1 states but directly to a difference between spins up and spins down.

Calculation of XMCD spectra in the near-edge region requires that the density of spin and
orbital polarization for each energy above the Fermi level up to several 10 eV is well described.
This is a task that goes way beyond the usual magnetic calculations performed with DFT which
are often limited to the determination of the spin magnetization of the ground state.

3.2.2 Calculations and experiments

The K-edge XMCD in metallic Fe is the first XMCD signal that was experimentally
recorded in 1987 [Schiitz et al., 1987|. Ever since, a large number of calculations have been
reported for the XMCD spectra at Fe K-edge in bce Fe in the near-edge region, for ex-
ample in [Gotsis and Strange, 1994, Tgarashi and Hirai, 1994, Brouder et al., 1996, Guo, 1996,
Ebert, 1996, Fujikawa and Nagamatsu, 2003, éipr and Ebert, 2005, Dixit and Alouani, 2016].
Calculations of XMCD at the K-edge in fee Ni and hep Co are fewer [Tgarashi and Hirai, 1994,
Igarashi and Hirai, 1996, Guo, 1996, Torchio et al., 2011| and they are not really conclusive.
These calculations have been performed with various methods, often within the electric dipole
approximation and with muffin-tin potentials.

In this section, we will present and discuss the results of ab-initio caleulations of K-edge
XMCD for the three 3d ferromagnetic metals: Fe, Co and Ni. We present the calculation of
the three terms (D-D, Q-Q and D-SP) that are likely to contribute to the XMCD cross-section
using the method presented in the previous chapter, which is not based on the muffin-tin
approximation.

Structures

Fe, Co and Ni crystallize respectively in body-centered cubic (bee), hexagonal close-packed
(hep) and face-centered cubic (fec, which is also a close-packed arrangement) structures. The
three metals exhibit a long-range ferromagnetic ordering and a significant XMCD (with ampli-
tude larger than 1073 of the edge jump) at K-edge.

Details about the calculations

For the calculation, the following experimental lattice parameters were used: a = 2.87 A
for bee-Fe, a = 3.52 A for fee-Ni and a = 2.51 A and ¢ = 4.07 A for hep-Co. The number of
atoms per supercell was 64 atoms for Fe and Ni and 96 atoms for Co, so the smallest distance
between the periodically repeated core-holes was 9.84 A in Fe, 9.97 A in Ni and 10.03 A in
Co. A Methfessel-Paxton smearing of 0.14 eV (0.01 Ry) and a DI-centered 2x2x2 k-point
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3.2. XMCD at K-edge in Fe, Co and Ni

grid were used for the self-consistent charge density calculation. The spectra calculation was
performed with a 6x6x6 grid for Fe and Co and a 8x8x8 grid for Ni. PBE norm-conserving
pseudopotentials (parameters detailed in Appendix E) were used with cutoff energies 180 Ry
for Fe, 200 Ry for Co and 190 Ry for Ni.

These calculations were performed with collinear spins along the easy axis of the crystal, that
is to say |001] for bee-Fe and hep-Co and [111] for fee-Ni [O’Handley, 1999] and the wavevector
k was set along the same axis.

The spectra were convolved with a Lorentzian broadening function to simulate the effect
of the finite lifetime of the core-hole (constant in energy) and of the inelastic scattering of the
photoelectron (additional energy-dependent broadening). The exact energy dependence of this
broadening is governed by the imaginary part of the self-energy (see subsection 3.2.3) which is a
many-body effect that can not be modeled within our DF'T approach. In this work, we chose the
values for I' published in [Miiller et al., 1982| and depicted in Fig. 3.4. No additional Gaussian
broadening was added to account for the experimental resolution, so that the calculations can
be compared with experimental data measured on various beamlines.

Fig. 3.4: Energy-dependent half energy-width
I'(E) =T'. + I'yrp(E) where T'. accounts for the
core-hole lifetime [Fuggle and Inglesfield, 1992]
and T'ypp(F) is related to the mean-free
path A of the photoelectron [Miiller et al., 1982]:

FMFP(E) = 2h+/ 2E/m)\_1(E).

Half energy width T (eV)

0 T T T T T
-10 0 10 20 30 40 50

Energy (eV)

The calculated spectra are normalized such that the edge jump in absorption is equal to 1.

Calculated absorption cross-section

The different terms of the absorption cross-section listed in section 2.2.2, except the cross
term electric dipole-electric quadrupole (D-Q), were computed with two different polarization
vectors corresponding to left-handed (e;) and right-handed (€;) circularly polarized light:

1 (1 1 (1!

e&c=— i) and e =€ =— | —¢

V2 g Vil

where the easy axis of the considered crystal defines the z axis. The cross term D-Q was not
computed because it is known to be zero in centrosymmetric systems (systems for which the
inversion r — —r is a symmetry) which is the case for all three considered structures.

The calculation of the electric quadrupole-electric quadrupole (Q-Q) terms requires the
definition of k which is the direction of the wave vector. It was set along z.

In the calculation, the zero of energy is set to the Fermi level. The occupied states, that
do not contribute to the absorption cross section, are cut according to the method described
in paragraph III-B of [Brouder et al., 1996].
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Fig. 3.5: Calculated contributions to the K-edge absorption for bce-Fe and hep-Co and fee-Ni. For
each term (D-D, Q-Q, D-SP), the spectrum calculated with the polarization vector €1 is represented
in solid line and the one calculated with the polarization vector € is represented in dashed line. Inset:
zoom in the vertical direction near zero to better see the small contributions.

The calculated contributions to XAS are plotted in Fig. 3.5. The fact that magnetic circular
dichroism is a very small effect at K-edge results in an impossibility to visually distinguish the
spectra for left-handed and right-handed circular light without zooming in. The electric dipole-
electric dipole term (D-D) is clearly prevailing. For example in Co, the maximum of the Q-Q
term reaches barely 3 % of the D-D term at the same energy. The D-SP term is even one order
of magnitude smaller than the Q-Q term.

We observe that the D-SP term is almost entirely circular-dichroic in the sense that it is
opposite for left- and right-handed polarization (as it does not write as a square modulus, the
D-SP term can be negative). If the sum of the spectra for both polarizations would be computed
(5(0(€1)+0(es)) - which is roughly the isotropic spectrum in cubic symmetry), the contribution
of the D-SP term would be almost exactly zero. The equality op_gp(€1) = —op_gsp(€2) is exact
if the orbital parts of the wave functions can be chosen real. Indeed, if the orbital parts of |i)
and |f) are real, as

2 2,2
7o-se(€) = — T2 S (o (e x 1) il 1Oy — B — ),
!
then UD—SP(G*) = —O'D_SP(E).
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Fig. 3.6: Calculated contributions to the K-edge XMCD for bce-Fe and hep-Co and fee-Ni. For each
term (D-D, Q-Q, D-SP), the spectrum is calculated as the difference o(e2) — o(€1).

Calculated XMCD

The contributions to XMCD (Fig. 3.6) are given by the difference of the XAS spectra
obtained with left- and right-handed circular polarization.

The contribution of the Q-Q term to XMCD is small but not negligible. In Fe, it presents a
maximum that has almost the same energy as the maximum of the D-D term. At this energy,
the Q-Q contribution reaches 17% of the D-D XMCD contribution.

As the D-SP term is almost entirely circular-dichroic, its contribution to the XMCD spectra
is significant: it reaches 40% of the D-D term in amplitude. This can also be understood
considering the sum-rules (see Section 3.4): in the XMCD cross-section, the D-SP term probes
the spin polarization of the p states whereas the D-D term probes their orbital polarization.
In [Igarashi and Hirai, 1996] the 4p orbital magnetic moment in Co, Fe and Ni is evaluated to
a few 107 up (Fe: 5x107*up, Co: 16x107*up, Ni: 6x107*up) and in [Chen et al., 1995] the
4p spin magnetic moment in Fe and Co is evaluated to several 10~ 2up (Fe: 5x10~2up, Co:
6x1072up) in the opposite direction. This difference in orders of magnitude compensates for
the smallness of the prefactor (hw/4mc?) of the D-SP term.

To compute XMCD at the K-edge, it is required to compute all three contributions D-D,
Q-Q and D-SP as none of them is negligible. For comparing the result of the calculations with
experimental spectra, sums of the contributions presented above are calculated.?

4The D-SP contribution is negligible in XAS so, in practice, it can be omitted. Also, as XMCD is a very small

84



3.2. XMCD at K-edge in Fe, Co and Ni

A rigid shift in energy is applied to all the calculated spectra to make the maxima of the
calculated XAS correspond to the maxima of the experimental spectra.

Comparison with experimental spectra
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Fig. 3.7: Comparison between the experimental XAS and XMCD spectra for Fe, Co and Ni and the
total calculated spectra. The experimental spectra were recorded on ODE beamline (SOLEIL). They
are corrected for the rate of circular polarization P. = 0.7. For the calculation, the wave vector and

the magnetization axis were set to the easy axis of the crystals. The calculated spectra were shifted in
energy by 7113 eV for Fe, 7712 eV for Co and 8333.5 eV for Ni.

The experimental XAS and XMCD spectra for Fe, Co and Ni polycrystalline metallic foils

effect the absorption of left- and right-circular polarization are almost equal so that op_p(€e1)+oq_q(€1) +

O'D—SP(El) ~ %(O'D—D(El) + O'Q_Q(El) + O'D_Sp((-il) + O'D_D(EQ) + O'Q_Q(EQ) + O'D_SP(EQ)). In other words,
the average of the spectra for both polarizations is almost identical to the spectrum corresponding to one
polarization.
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3.2. XMCD at K-edge in Fe, Co and Ni

were recorded on ODE beamline at SOLEIL (see Section 4.2) with a Si(311) crystal polychro-
mator which corresponds to an energy resolution AE/E ~ 4.107°. The tabulated edge energy
for the elements Fe, Co and Ni are:

Element K-edge
Fe 7.1120 keV
Co 7.7089 keV
Ni 8.3328 keV.

The foils were tilted by 45 ° compared to the direction of propagation of the beam which was also
the direction of the 2.1T applied magnetic field. The experimental spectra, as the calculated
spectra, are normalized such that the absorption edge jump far from the edge is equal to 1.

The calculated and experimental spectra are depicted in Fig. 3.7. The agreement between
the calculated and the experimental XAS spectra (top panels Fig. 3.7) is fair: all the features
of the experimental spectra are reproduced by the calculations.

The shape of XMCD (bottom panels in Fig. 3.7) near the edge is also well reproduced: a
positive peak followed by a negative peak for Fe and a main negative peak for Co and Ni. All
the secondary peaks in Fe also exhibit a good agreement between experiment and calculation.
For Co and Ni, however, some secondary peaks that appear in the calculation do not seem to
correspond to experimental features. In all three compounds, a positive peak around 10 eV
above the edge (at 7122 eV for Fe, 7722 eV for Co and 8340 eV for Ni) appears in the calculation
that overestimates an experimental feature. Another discrepancy between the calculated and
experimental spectra is the amplitude of the XMCD effect: the calculated XMCD amplitude
is too large for Fe and too small for Ni.

In order to narrow down the possible causes of discrepancies between the calculated and
the experimental spectra, we discuss several elements of the method in the next subsection.

3.2.3 Discussion on the calculated spectra
Effect of the core-hole

To model the absorption process, the calculation presented above was performed in the pres-
ence of a core-hole and the electronic response to this core-hole was determined self-consistently.

In order to have an idea of the effect of the core-hole on the calculated spectra, the com-
parison of the spectra with and without core-hole is shown in Fig. 3.8. For the case without
core-hole, the self-consistent calculation is performed without a core-hole but all the parameters
of the spectra calculation remain the same. In particular, the core-hole lifetime broadening is
still included. For a given element, the same rigid shift in energy was applied to all the calcu-
lated spectra. The multiplication factor to obtain an edge-jump equal to 1, on the other hand,
is different for each spectra (e.g. for Co: 820 without core hole and 950 with core-hole).

For Fe and Co K-edges, the presence of the core-hole has a weak effect on the XAS spectra
which means that the core-hole is efficiently screened by the electrons. Yet, the XMCD is visibly
impacted by the presence of the core-hole, in particular in the case of Fe. On the right panel
of Fig. 3.8, we see that the Q-Q contribution to XMCD, that probes the orbital polarization
of the empty d states is shifted to lower energy in the presence of the core-hole (by about
0.5 - 0.7 V). On the other hand, the energy positions of the D-D contribution in the case of
Co and of the D-SP contributions in both cases, are almost unmoved by the presence of the
core-hole (for the D-D contribution of Fe, the situation is not so clear). As these contributions
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Fig. 3.8: Comparison of the calculated XAS and XMCD spectra obtained in the presence of a 1s
core-hole (solid line) and of the spectra obtained without core-hole (dashed line) at Fe and Co K-edge.
For XMCD, the experimental spectra multiplied by 1600 for Fe and 1100 for Co are plotted in light
gray whereas the calculated spectra are multiplied by 1000. On the right-hand side: detail of the
different terms composing the XMCD spectra.

probe the properties of empty p states, this is in agreement with the idea that the core-hole is
more screened for the p states than for the d states. We see also that the shape of the D-D
contribution is quite different in the presence or in the absence of the core-hole contrary to the
D-SP contribution that is almost unaffected. It means, that the orbital polarization is more
sensitive than the spin polarization to the core-hole-induced perturbation. For this reason, it
is crucial to include the core-hole in the calculations for XMCD even in cases where the XAS
seems well described in the absence of core-hole.

Comparison with FDMNES

To check possible numerical problems, in particular for the newly discovered D-SP term,

Yves Joly performed the same calculations using the FDMNES code [Bundu and Joly, 2009] in
which he implemented this term. Preliminary results at Ni K-edge are depicted in Fig.3.9.
In FDMNES;, the calculation is performed in real space for a cluster of atoms and the potential
is not pseudized. Despite a significant difference in method, the result is very similar to the
one obtained with XSpectra, in particular for the shape and relative amplitude of the D-SP
contribution.

This calculation allowed us to assess the possible impact of several approximations of our

method, detailed below, that were otherwise difficult to check.
One questionable approximation in our method is the diagonal spin-orbit coupling approxima-
tion (see p. 54). The fact that with an implementation that includes full spin-orbit coupling,
the result is consistent with ours implies that this approximation is reasonable in the cases
considered here.
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Fig. 3.9: Preliminary calculation for Ni K-edge with FDMNES. Energy is relative to Fermi level.
Figure provided by Yves Joly.

Another question concerned the spin-polarization of the core state: in the 1s state there is a
splitting between the spin up and the spin down band that has been evaluated by Yves Joly to
approximatively 0.015 eV in Fe. Calculations with FDMNES showed that the influence of this
splitting on the spectra is negligible at the K-edge in the considered 3d metals.

Finally, the terms up to the octupole approximation (e’ '™ = 1+ik - r—@) were implemented
in FDMNES. It allowed Yves Joly to check that the electric octupole term was negligible in
accordance with the assumption made in our derivation of the cross-section where we neglected

all k? terms.

Discussion on the amplitude of XMCD

From the bottom parts of Fig. 3.7, we see that the amplitude of the XMCD effect is not well
reproduced by the calculation. The amplitude of the calculated XMCD for Fe is approximately
170% the amplitude of the experimental spectrum, for Ni it is 74%. We show in the following
that the fact that the experimental conditions are quite different from the case treated in the
calculation cannot explain these differences.

In the calculations, the rate of circular polarization of the light is P. = 1. Experimentally,
the circular polarized light is obtained by selecting a portion of beam below the orbit plane
of the radiation emitted by a bending magnet. The rate of circular polarization depends on
the position and on the size of the slit used to select this portion. P, is then modified by
the optics following this selector and this modification is difficult to quantify. For this reason,
the experimental P, is not known exactly. It is however evaluated to approximately 0.7 in
the considered energy range. The experimental XMCD spectra plotted Fig. 3.7 are already
multiplied by 1/0.7 to account for P.. Despite this, the calculated amplitude of XMCD for Fe
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is largely overestimated whereas for Ni it is underestimated.
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Fig. 3.10: Top: crystal structures showing easy and hard magnetization directions for (a) Fe, (b) Ni
and (¢) Co. Bottom: Respective magnetization curves. Figure extracted from [O'Handley, 1999]. For
cobalt, the field required to reach saturation in the basal plane is more than one order of magnitude
larger than along the easy axis (whereas anisotropy in iron and nickel is very weak).

Besides the rate of circular polarization, another difference between the experimental con-
ditions and the calculated case is the fact that experiments are performed with polycrystalline
metal foils under an applied magnetic field whereas calculations are performed for a single crys-
tal with full 3d spin polarization. According to the magnetization curves shown in Fig. 3.10,
saturation is fully reached with the 2.1 T (21 kOe) applied magnetic field in the three con-
sidered ferromagnetic metals. The fact that the measured samples are foils could result in a
greater difficulty to fully polarize them perpendicularly (along the thin direction). That is one
of the reasons why experimentally the foils are tilted at 45 ° with respect to the direction of the
magnetic field that corresponds to the direction of the beam (the other reason is to increase
the path length of the beam through the sample). Given the order of magnitude of the field
required to reach saturation in iron and nickel (respectively 0.06 T and 0.03 T) it seems unlikely
that the material is not fully polarized under a 2.1 T applied field. For cobalt, the saturating
field is mnuch higher (1T) than in Fe and Ni. We observed experimentally that the XMCD
amplitude is 16 % larger with a 2.1 T field than with a 1.3 T field (see Fig. 3.11, left). Tt seems,
however, reasonable to consider that 2.1 T is enough to reach saturation.

Another specificity of Co compared to Fe and Ni is that it does not crystallize in a cubic
symmetry (see Table 3.2). For this reason, the absorption of linear polarized light by a crystal of
Co depends on the angle between the polarization vector and the symmetry axis of the crystal.
In cobalt, the angular dependence of the electric dipolar absorption of linear polarization is
dichroic. The spectra calculated with €; or ey correspond (up to circular dichroism which
is very small) to o, (see section 3.4 p.106). The isotropic spectrum (spectrum measured on
a powder) is given by o = (0 + 20.). For this reason, we calculated the spectra for two
directions of magnetization: along the axis [001] and along the axis [100],% with k parallel to

°In terms of Bravais Miller indices, the Miller direction [001] corresponds to [0001] and [100] to [2110].
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Fig. 3.11: XMCD spectra recorded on ODE beamline (SOLEIL) at Co K-edge in a Co foil. Left:
spectra acquired with two different applied magnetic field at room temperature on a foil positionned
at 45 ° . Right: spectra acquired at room temperature and T=4K on a foil positioned perpendicular to
the beam with a 1.3T field.

Table 3.2: Space groups and point groups of the bee-Fe, hep-Co and fee-Ni crystals. The point groups
are given with their short Hermann-Mauguin symbols and the point groups with their Schoenflies
symbols. Angular dependence of electric dipole absorption were determined in the case of a linear
polarization in [Brouder, 1990]. For cubic symmetries, the absorption cross section is isotropic whereas
in the hexagonal case it is dichroic (o (€) = o sin® @ 4 o cos? § where 6 is the angle between € and the
6-fold rotation axis.).

Space group  Point group of the crystal Angular dependence of elect-
ric dipolar absorption [Brouder, 1990]
bee-Fe  Im3m (229) O, Isotropy
hep-Co - P63/mme (194) Dey, Dichroism
fee-Ni Fm3m (225) Oy, Isotropy

the magnetization axis. In practice, the crystal cell used in input of the calculation is rotated
so that the axis [001] or [100] corresponds to the z axis. In both cases, the total magnetization
obtained at the end of the calculation is 1.665 pp per atom. The results are depicted in Fig. 3.12.
As expected, the XAS and XMCD spectra are not the same for both directions. This angular
dependence affects the positions of the peaks but it impacts very weakly the XMCD amplitude.

Another difference is that the calculations are performed for the ground state (at T=0K)
whereas the experimental spectra are acquired at room temperature. We observed experimen-
tally that the effect of temperature on the amplitude of the experimental XMCD spectra at Co
K-edge is very weak (7 % variation - see Fig. 3.11 Right).

Finally, none of the above mentioned differences between the conditions in which the cal-
culation is performed and the experimental conditions seems to explain the differences of the
XMCD amplitude between our calculations and experiments. Note that the broadening applied
to the spectra, discussed below, can also influence the calculated amplitude.
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Fig. 3.12: Calculated XAS and XMCD spectra at the Co K-edge without core-hole for two directions
of magnetization: along the axis [001] and along the axis [100] in both cases with k parallel to the
magnetization axis (in practice, for the [100] axis, crystal rotated by 90 °is used and the calculation is
again performed with z as quantization axis and €; and €y as polarization vectors).

Comparison to a quasi-particle approach

Kohn-Sham density functional theory describes the ground-state properties of an interacting-
electron system. The final states in X-ray absorption are excited states so, in principle, they
would require the use of a many-body method to treat them. DFT is still widely used to com-
pute XAS at K-edge because it is successful to reproduce the experimental spectra in a large
number of cases [Cabaret et al., 2010, Bordage et al., 2010, Ducher et al., 2016, for example|.

To be more accurate and still keep one electron equations, the self-energy ¥ (complex
quantity) can be introduced to include many-body effects and losses during the propagation of
the photoelectron. Within the quasi-particle theory, the final states |f) are eigenstates of the
equation [Rehr and Ankudinov, 2005]:

P
[+ Vi + S(B)|15) = BIf)

where V , is the Coulomb potential in the presence of the core-hole. This equation is formally
similar to a DFT Schrédinger equation but contrary to the exchange-correlation potential of
DFT, the self-energy is non local and energy dependent. The self-energy can be computed
within the GW approximation as, for example, in [Kas et al., 2007] however the calculations
are time consuming [Rehr and Albers, 2000] (in practice, it is more convenient to use an analytic
representation of Hedin-Lunquvist self-energy [Mustre de Leon et al., 1991]).

Note that this approach does not include all many-body effects. For example, the treat-
ment of the electron-hole interaction would require the use of two-body operators. Bethe-
Salpeter equation, that links the interacting polarization propagator to the independent-particle
propagator is an appropriate tool for that. Also the losses due to the excitations in the
medium that arise from the sudden creation of the core-hole, which are called intrinsic losses
in [Kas et al., 2007], are not taken into account.

As illustrated by the case of Cu that was studied in [Kas et al., 2007] the real and imaginary
part of the self-energy X(F) vary by several eV over a XAS spectrum. The imaginary part of
the self-energy is negative (it describes losses).

The fact that the real part of the self-energy depends on energy results for the XAS spectra
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Fig. 3.13: Quasiparticle self-energy for Cu. Figure taken from |[Kas et al., 2007].

in a deformation of the energy axis: the energy-dependent shift is given by A(E) = Re[X%(F) —
Y(Ey)] |Kas et al., 2009|. From Fig. 3.13, we see that it is positive (which means that, in DFT
calculations, the peaks are calculated at an energy which is too low, namely the energy axis
is compressed) and that, overall, it increases with energy. In the XANES region, the variation
of Re[X(FE)] is small and it is the reason why it is usually not taken into account. Tn the
EXAFS region, however, it is important to rescale the energy axis in order to obtain accurate
peak positions. As Re[X(F)] is nearly linear in this region, a simplified solution to apply
this correction is a phenomenological linear rescaling as proposed in [Materlik et al., 1983] and
discussed in [Mustre de Leon et al., 1991].

The energy dependence of the imaginary part of the self-energy results in an energy depen-
dent Lorentzian broadening of half width at half maximum I'(E) = — Im[3(FE)] [Kas et al., 2009].
In our method it is taken into account by applying the broadening depicted in Fig. 3.4. The
convolution of the spectra with a Lorentzian function with an energy dependent width results in
the modification of the amplitude for the calculated peaks, while their areas remain the same.
The fact that I' increases with energy and that, a few 10 €V above the edge, it reaches several
eV, is a life-saver from a numerical point of view. Indeed, as illustrated in the previous chap-
ter, if the calculation parameters are not completely converged, spurious peaks appear at high
energies. These spurious peaks all disappear when applying the energy-dependent broadening.

As a conclusion, we included by hand the main effect of energy dependence of the self-
energy which is the energy-dependent broadening. Thus, our method gives very similar results
compared to a quasi-particle approach. Contrary to some existing studies in which I'(E) is
calculated [Sainctavit et al., 1989, Mustre de Leon et al., 1991], here T'(F) is a parameter of
the caleulation. We must either arbitrarily define its shape (in a reasonable manner, that is
to say with a curve similar to the one in Fig. 3.13) or use existing calculations for the system
under study. Such calculations are quite rare so the first solution is almost always used. Our
method is, therefore, not entirely parameter-free.
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Exchange-correlation functional

Density functional theory calculations would be exact for the ground state energy if the
exchange-correlation functional E,.[n] introduced in section 2.3.1 was known exactly. The in-
terest of separating out the independent-particle kinetic energy and the Hartree terms from the
energy of the interacting system is that the remaining E,.[n] can reasonably be approximated
as a local or nearly local functional of the density.

In the calculations presented above we use the form of the functional proposed by Perdew,
Burken and Enzerhof [Perdew et al., 1996] called PBE. This functional belongs to the family of
Generalized-Gradient Approximations (GGA). It means that it writes as an integral over space
of a function of the local density and of its gradient:

Bt [ng,ny] = / drn(r)e " (n' (r), n*(r), Val (r), Vn'(r))

where n = n' + nt.
This is an improved functional compared to LSDA (local spin density approximation) that
was already introduced in the paper by Kohn and Sham [Kohn and Sham, 1965]:

B my] = [ den(e)es o o), o)

where ¢ is the exchange-correlation energy per electron of a uniform electron gas. The

analytic form of the exchange part of this energy is known [Martin, 2004, p.106| and the cor-
relation part has been calculated with Monte-Carlo methods so that e (n' n¥) is considered
a known function. In the seminal paper on PBE, the enhancement factor F,. defined by

ePBE(nT nt, Vnl, Vnt) = F,.(n',n*, Vn', Vnt)emif(nT nt) is depicted and not directly eZBE.

PBE 4
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Fig. 3.14: Total calculated bce-Fe K-edge XMCD spectra without core hole using PBE and LDA

functionals (all other technical parameters identical). Here, the broadening was taken constant (0.8
eV) along the whole energy range.

In practice, the form of the functional used in our calculation is chosen when generating the
pseudopotential files (the same functional must be used for all atoms in the structure). Fig. 3.14
shows a comparison between the spectra obtained with PBE and LSDA exchange-correlation
functional in a unit cell of bce-Fe. All other parameters in the pseudopotential generation, in
the scf calculation and in the spectra calculations are the same. We observe that the choice of
the functional does not really affect the position or sign of the peaks that appear in the XMCD
spectra but it affects their amplitude. In particular, the positive peak around 10 eV above the
edge, which is overestimated in our calculation, compared to experiment (see Fig.3.7), is even
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more enhanced with LSDA. We can therefore suggest that the overestimation of this peak is
linked to approximations made in the exchange-correlation functional.

XMCD calculation requires a very good modeling of magnetism and this study illustrates
that the usual functionals used in solid-state DFT are not sufficient to precisely describe such
a fine and complex phenomenon.

Finally, all the cross-checks presented in this section allow to narrow down the origin of the
failure of our method to reproduce detailed features of the XMCD spectra - even if their overall
shape is correctly described - to inherent limitations of Kohn-Sham DFT. In the next section,
we will see that XNCD, on the other hand, is well described. This illustrates that efforts should
be pursued to improve the description of magnetism in matter.

3.3 XNCD in o-LilO;

3.3.1 XNCD effect

In non-centrosymmetric crystals, the breaking of inversion symmetry permits the existence
of X-ray Natural Circular Dichroism. In the domain of molecular magnetism, a renewed interest
for this technique has recently grown [Train et al., 2008, Sessoli et al., 2015 with the emergence
of new materials that are both chiral and magnetic.

In the X-ray range, where magnetic dipole transitions are negligible, a single mechanism
largely dominates in the natural circular dichroism phenomenon: the interference of electric
dipole and electric quadrupole transitions [Rogalev et al., 2010, Natoli et al., 1998|. At the L;-
edge, XNCD is an element-specific measurement of the mixing between p and d states (see
subsection 3.4.3). It is a parity-odd property in the sense that no such mixing can exist in
centrosymmetric systems. There are 13 crystal classes that may exhibit XNCD associated with
the term D-Q, they are listed in [Rogalev et al., 2010, Table 6.1] and are boxed among the
other crystal classes in Appendix C of this thesis. The point group to be considered is the
point group resulting from the space group of the crystal structure. Note that there exist non-
centrosymetric point groups (no inversion center) that are not chiral (a chiral point group has
no rotoinversion). Among these groups, several may exhibit XNCD (see Appendix C) so that
XNCD can exist in some non-chiral materials.

The first XNCD spectra were recorded at the ESRF ten years after G. Schiitz et al. recorded
the first XMCD spectrum. In 1997, XNCD was measured in a stereogenic organometallic
complex [Alagna et al., 1998] and in the inorganic crystal a-1ilO3 [Goulon et al., 1998]. «-
LiTO3 belongs to the crystal class "6" so that XNCD associated to the D-Q term is possible.
The average of the term D-() over all directions is zero, so XNCD must be measured on a single
crystal and this is what has been done for the experiments reported in [Goulon et al., 1998].

3.3.2 Calculations of the spectra

Previous calculations [Natoli et al., 1998, Goulon et al., 1998, Ankudinov and Rehr, 2000]
were able to reproduce the overall peak positions and intensities of XNCD (see Fig. 3.15 as an
example) by computing the interference of electric dipole and electric quadrupole transitions.
The agreement is however not entirely satisfactory for the absorption spectra. This discrepancy
has been attributed to the use of muffin-tin potentials [Ankudinov and Rehr, 2000].

The method presented in the previous chapter, that does not rely on the muffin-tin ap-
proximation, was applied to compute the XAS and XNCD spectra for a-LilO3. Since a-LilO3
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Fig. 3.15: Figure from |[Natoli et al., 1998]. Ex-
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Exp. Abs sorption and XNCD spectra at the Li-edge of io-
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is diamagnetic, the calculation is not spin-polarized and the Hamiltonian without spin-orbit
coupling is used for the self-consistent field electron relaxation.

Structure of a-LilO;

a) | b) Fig. 3.16: Top: Hexagonal «-LilOj
.'% - . - unit cell for a) A and b) A enantiomers
: [Goulon et al., 1998]. Bottom: top view

L 4
of the cells (projection on (001)).

"’“L"';
"f;;, ‘1’_;.,

The A enantiomer of a-LilOj crystallizes [Svensson et al., 1983] in the hexagonal space
group P63 (173). The lattice parameters are a = 5.48 A and ¢ = 5.17 A. The atomic positions
[Goulon et al., 1998] are Li 2(a) (0,0,0.076), T 2(b) (1/3,2/3,0) and O 6(c) (0.247,0.342,0.838).
The A enantiomer is the mirror image of the A one (see Fig. 3.16) and it belongs to the
same space group. As was done in [Stadnicka et al., 1985], it is possible to draw a helix of

alternating T and O atoms. Tn Fig. 3.16 the sense of the helices is denoted by arrows with the
convention that the helices come toward the reader (to make the construction, we simply sort
the four concerned atoms by order of z coordinates and draw an arrow from the smallest z to
the largest z).

The absolute configuration of a LilOj3 crystal can be resolved using anomalous scattering
effect [Stadnicka et al., 1985]. Tt was not done for the crystal studied in [Gonlon et al., 1998|
so the determination of which enantiomer was used must be done by calculating the XNCD
spectra.
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Details about the calculation

The experimental structure was used in the calculation. A 2x2x2 supercell (80 atoms)
with one atom containing a core-hole (2s for Li-edge or 1s for K-edge) was used so that the
smallest distance between a core-hole and its periodic image is 10.344 A. We used Gamma-
centered k-point grids, 3x3x3 for the self-consistent charge density calculation and 9x9x9 for
the spectra calculation. A constant Lorentzian broadening, with full width at half maximum
set to the core-hole lifetime broadening 3.46 eV [Fuggle and Inglesfield, 1992|, was applied.

Calculated spectra were normalized such that the edge jump in absorption is equal to 1 as
it is the case for experimental spectra.

During the calculation of the spectra the origin of energy is set to the energy of the highest
occupied level that we note E},. For the spectra to be compared with experiment, a rigid shift
in energy was applied to all the calculated spectra to make the maxima of the calculated XAS
correspond to the maxima of the experimental spectra. In the plots for I L;-edge, the origin of
energy Fj is therefore the one chosen in [Goulon et al., 1998|.

Results at I L,-edge

Fig. 3.17: Calculated contributions to the XAS

5 eLilo, 00 f;%tht 1 at I Lyj-edge in a-LilO3. For the D-Q term, the
| —DQ | spectrum calculated with the polarization vector
4r o102 : : : : 7 €1 is in solid line and the one calculated with €3 in
[ N ZOOM . .
I [ ! o\ - 1 dashed line (for the terms D-D and Q-Q, there is
9 3r m OW' only one spectrum because these terms do not ex-
X} |t N 1 hibit any natural circular dichroism). Inset: zoom
E 2t °© 10 20 30 4 2 in the vertical direction near zero.
1L _/ e
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The calculated contributions of the D-D, Q-Q and D-Q terms (as the calculation is not
spin-polarized, there is no contribution from the D-SP term) to the absorption at I L;-edge in
a-LilOj3 are shown in Fig. 3.17. The absorption is largely dominated by the D-D term.

For the terms D-D and Q-Q, the spectra obtained with right-circular polarization (€;) and
the spectra obtained with left-circular polarization (€;) are exactly the same. In other words, in
accordance with theory, these terms do not contribute to XNCD. The D-Q term, on the other
hand is entirely circular-dichroic. This was also expected because |i) and |f) can be chosen real
so that:

op_q = —Am’aohw > Im[(f|(k-1)(€-r)[i)(i|€* - x| f)]6(Es — E; — hw).
f

obeys op_q(€*) = —op_q(€).

The calculated XAS is mostly composed of the D-D contribution and the XNCD is entirely
due to the D-Q term. In [Goulon et al., 1998] oXN¢P = ¢ — gL where o' and ol are the
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spectra obtained with right- and left-circularly polarized X-rays so the spectra that we compare
with experiment are:

XA86 O'D,D(Gl) =+ O'Q,Q(F,l) L 1 1 1
withes=—=—= (7] and e = == | —¢
XNCD  op_q(€1) — op_q(€2) v 0 v 0
a) |
4 -
2 2
X
£
O 0 7]
z —— Calc. (A)-LiIO3 - = Calc. (/\)-LiIOs_
[a)]
(@)
Z
X -
£
5-
Pz
T T T T T
0 10 20 30 40 50
E-EO (eV)

Fig. 3.18: Comparison of experimental [Goulon et al., 1998 and calculated XAS and XNCD spectra
at the L;-edge of iodine in LilO3. The calculation was performed for both enantiomers with k parallel to
c. Dashed black line: calculation for the A enantiomer. Solid black line: calculation for A enantiomer.
The calculated XAS spectrum is the same for both enantiomers.

As illustrated in Fig. 3.18, both the calculated XAS and XNCD spectra at the L;-edge
of iodine are in good agreement with experiment. However, the amplitude of the calculated
XNCD is 4x1072 of the edge jump (set to 1) while the amplitude of the experimental spec-
tra is 6x1072. Such an underestimation of the XNCD spectrum by the calculation was ob-
served in [Natoli et al., 1998] within a multiple-scattering approach (though to a lesser ex-
tent). The sign of the calculated XNCD for A enantiomer is also in agreement with the
result of [Natoli et al., 1998|. Finally, the main difference between the result obtained with our
pseudopotentials-based DFT method and those obtained with a multiple-scattering muffin-tin
calculation in [Natoli et al., 1998] is that the XAS spectrum is better described in our calcula-
tion.

In Fig. 3.18, we see that the XNCD spectra for both enantiomers are opposite. Indeed, it
has the same effect for XNCD to change an enantiomer for the other (A <+ A) as for XMCD
to change the sign of the magnetic field (B «+» —B).

6Note that this is exactly equal to the average of the XAS spectra for left- and right-circular polarization:
3(op-p(e1) + oq_q(e1) + op_qle1) + op-p(e2) + oq-q(e2) + op_q(€2)) = op-p(e1) + oq-q(e1) because
op-p(€1) = op-p(€2), 0q-q(€1) = 0q-q(€2) and op_q(€1) = —op_q(€2)-
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Angular dependence
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Fig. 3.19: Angular dependence of the calculated XAS (on the left-hand side) and XNCD (on the
right-hand side) at the I L;-edge in LilO3. In inset: XNCD amplitude as a function of the angle
following the law 3 cos? § — 1 where 6 is the angle between ¢ and the incident wave-vector k.

The angular dependence of the calculated XAS and XNCD spectra is shown in Fig. 3.19
and the amplitude of the XNCD is plotted in inset as a function of 8, the angle between k and
the c-axis of the crystal. This amplitude varies as 3 cos?6 — 1. This dependence is consistent
with the formula derived in |[Natoli et al., 1998 for point group Cs (point group of the space
group of the crystal). The amplitude of XNCD is maximal in the case k || ¢ (# = 0) and
decreases to reach zero when 6 = cos™'(1/+/3) = 54.74°. This angle is sometimes named the
magic angle (note that for XNCD it corresponds to the angle between k and ¢ whereas for
XNLD the magic angle corresponds to an angle between € and c). If the angle between k and
c is further increased, the XNCD amplitude rises again but the sign of the signal is opposite
compared to the case 6 < cos™(1/v/3).

Note that, as €; and €, are kept perpendicular to k and Cj is a dichroic point group for the
electric dipole transition [Brouder, 1990], the XAS spectra also present an angular dependence.
Nevertheless, it does not prevent a direct comparison of the amplitude of the XNCD spectra
because the edge jump of the isotropic spectra remains unchanged.

3.3.3 Effect of the core-hole on XNCD

It is known that the presence of the core-hole affects differently the p and d states. As XNCD
probes the mixed p-d states, the presence of the core-hole is expected to lead to important
changes in the XNCD spectra. In Fig. 3.20 the contributions to the XAS at the L;-edge of
iodine with and without core-hole are shown. Note that, as op_q is entirely circular dichroic,
gD = op-q(€1) — op_q(€2) = 20p_q(€1).

The D-D contribution probes the empty p states, the Q-Q contribution probes the empty
d states and the D-Q contribution probes the mixed p — d states. Yet, Fig. 3.20 illustrates
that the D-Q contribution is not some product of the D-D and of the Q-Q contribution. The
maximum of the XNCD effect does not correspond in energy to the main peak of the XAS
(white line) but it lies approximately 15 eV higher in energy.

A comparison of the two plots from Fig. 3.20 shows that, as usual, in the calculation
without core-hole the white line is less intense than with a core-hole. We see also that the Q-Q
contribution is larger in the absence of a core-hole. Finally, the XNCD is totally different: with
core-hole, the main peak is positive whereas it is negative without core-hole.
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Fig. 3.20: Contributions to the absorption of right-handed polarized light (€1) at the L;-edge of
iodine in the A enantiomer of a-LilO3. On the left-hand side: in the presence of a 2s core-hole. On
the right-hand side: without core-hole.

When the pseudopotential for the absorbing atom in the presence of a core-hole is generated,
it is possible to include fractions of core-hole instead of a full core-hole: one uses 2s* in the
configuration for the atom with, for example, x=1.5 for 0.5 core-hole, x=1.25 for 0.75 core-hole
and x=1.1 for 0.9 core-hole. Fractions of core-hole allows to some extent to check the influence
of the strength of the core-hole screening but the exact physical meaning is not so clear.
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Fig. 3.21: Calculated XAS and XNCD at the I L;-edge in the A enantiomer of a-LilO3 with different
fractions of core-hole.

The XNCD spectra obtained with different fractions of core-hole are presented in Fig. 3.21.
The XAS spectra for fractions of core-hole larger than 0.5 are very similar one to each other and
they are quite different from the spectrum without core-hole. On the other hand, the XNCD
spectra with 0.5 core-hole is almost the same as the spectrum without core-hole. When the
fraction of core-hole is increased the amplitude of XNCD decreases and then increases back with
an opposite sign for the main peak. This illustrates the fact that the sign and the amplitude
of the XNCD effect is highly dependent on slight changes in the electronic structure.

In order to better understand the core-hole effect, we computed the spectra at the I K-edge.
It corresponds to an energy hw = 33.2 keV (for the L;-edge iw = 5.2 keV) and no experimental
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Fig. 3.22: Comparison of the calculated spectra with (solid line) or without core-hole (dashed line)
at the I L;- (top) and K- (bottom) edge in the A enantiomer of a-LilOs.

data are available for this edge. The motivation for this calculation is to see if the XNCD
spectra would be less sensitive to a deeper core-hole. As the aim is to compare the calculated
spectra at the L;- and K-edges, the same broadening is applied to the spectra at the K-edge as
to the spectra at the L;-edge (3.46 eV) even if the 1s core-hole lifetime broadening is 10.6 eV
(which would result in a more broadened spectra). In Fig. 3.22, for both edges, the same rigid
2.8 eV horizontal shift to the left was applied to the XAS and XNCD spectra without core-hole
in order to make the XAS maxima coincide.
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3.4. Sum-rules at K- and L;-edge

electronic structure), XNCD spectra at K- and L;-edges are opposite. The only thing that
differs between these two calculations is the core wavefunction |i) used in the cross-section
calculation that is a 1s atomic wavefunction in one case and a 2s atomic wavefunction in the
other case. It results in an opposite sign of the quadrupole radial integral (Q - see Eq. (3.12))
whereas the dipole radial integral (D - see Eq. (3.3)) has the same sign in both cases. Now, the
D-Q term is proportional to the product DQ of these two values (see Table 3.5). The difference
in the sign of Q is due to the fact that the 2s radial part is negative in the region where the d
radial part is significant whereas the 1s radial wave function is always positive (see Fig. 3.23).
This explains why the XNCD is opposite at the K-edge compared to the L;-edge despite the
fact that they probe the same valence properties.

Otherwise, the effect of a 1s core-hole is as spectacular as the effect of a 2s core-hole. As
visible in Fig. 3.23, the 1s and 2s states are spatially very localized near the nucleus: f—; =5
with Z = 43 = r ~ 0.05 A which is very small compared to the interatomic distances (the
distance -O di_o = 1.8 A). From the point of view of the valence electrons, removing a
1s or a 2s electron is therefore roughly equivalent to adding a proton on the nucleus (Z-+1
approximation). We observe however in Fig. 3.22 that the XNCD amplitude in the presence of
the core hole is significantly smaller at the K-edge than at the L;-edge, which highlights the
limitation of this Z-+1 approximation that would result in identical spectra. By comparison
with Fig. 3.21, we see that the fraction of 2s core hole that would correspond to the effect of the
1s core hole lies between 0.9 and 1. This might suggest that a 1s core hole is more efficiently
screened than a 2s core hole.

The sensitivity of the XNCD to the core hole relaxation creates a possibility for it to be
used as a benchmark to test relaxation processes.

3.4 Sum-rules at K- and L;-edge

A sum-rule is a formula in which the integral of the circular dichroism spectrum due to a
given term of the cross-section is expressed as a function of the ground state expectation value
of some operator. The circular dichroism sum-rules for the dipole-dipole term at L, s-edges
are well established [Thole et al., 1992, Carra et al., 1993, Wu et al., 1993, Chen et al., 1995]
and are widely used to extract quantitative magnetic ground state properties. At spin-orbit
split edges, two magneto optical sum-rules exist: an orbital sum-rule that links the integral
of the spectra to the ground-state expectation value of (L.) and a spin sum-rule that links
the difference of the integrals corresponding to the contribution from each spin-orbit split core
levels, to the ground-state expectation value of (S.) up to a (7) value that can be significant
[Wu and Freeman, 1994].

At K-edge or Ly-edge, only the orbital magnetization sum-rule can apply. This sum rule was
originally derived by B. T. Thole [Thole et al., 1992| using a graphical method but Altarelli
[Altarelli, 1993] proposed later a "physically transparent" proof by expressing the electronic
states in a basis of wave-functions that are eigenstates of L,. These derivations are based on
several approximations among which the fact that the radial integrals are spin independent and
energy independent [Altarelli, 1998].

Here, we use a second quantization formalism to retrieve this sum-rule at the K- and L;-edge
and we do not try to express the result in terms of spherical tensors. For a matter of simplicity,
the circular dichroism sum-rules for the terms Q-Q, D-Q and D-SP are presented in the case
we considered in the calculation, that is to say with k parallel to the axis z and full circular
polarization and, for D-SP, diagonal spin-orbit coupling.
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3.4. Sum-rules at K- and L;-edge

In this section, we use many-body wave functions: |G) for the ground state and |F') for the
final state. The operators in the cross section are replaced by many-body operators that write
as sums of one-body operators:

D=> e,
Q=73>(er)(k 1)
SP=>",0,(e x1;)

As the derivation is very similar for the four terms (D-D, Q-Q, D-Q and D-SP terms), the
details of the calculations and the main ideas are given for the D-D term whereas, for the other
terms, only the most important results are given.

3.4.1 Sum-rules for the D-D term

As the spin does not appear explicitly in the electric dipole operator, it will be omitted in
the notations for the derivation of the sum-rule for the D-D term and it will be reintroduced
at the end of the derivation.

XAS sum-rule

Using the expression of the electric dipole operator of Appendix D.2, the contribution to
the cross section of the D-D term writes:

A=1
4
op-le) = Araohiw Y 1(GI Y T D (=Y (€N ) [F)PO(Ey — B, — )
F % A=-—1

= drlaghw Y YNV (€)(-1)V N

where

AN (47f)

="y —(~1 W’Z G|Zn (uy,)|F) F|Zn N GYO(Ef — E, — hw). (3.1)

Note that in this expression the final state is in the ket and the ground state is in the bra which
is not the same convention as the one used in Eq. 2.2. To be consistent the operator €-r is
transformed into €* - r.

The operators >, r; Y (uy,) are one-body operators in the sense that they have the form

0= >, 0li]. Such operators, in the language of second quantization, take the form:
0 => (alo|8)alas
a?/B

where («|0|3) are the matrix elements of the single-particle operator in a complete single-
particle basis set. We choose a basis of eigenstates of L, and L? to make this expansion:’

S ) = Y ( / drY,;“O*<ur>Rl*0<r>rmur>nm<ur>3l<r>) .

7 Imlomg

"Note that this is not a complete basis set because the quantum number n is missing. We could justify it by
the fact that, at a specific edge, the transition occurs from a given ng to a given n. At K-edge, it is however not
true that the transition occurs to a given n. This is related to the problem on the upper limit of the integral
that we describe below.

102



3.4. Sum-rules at K- and L;-edge

where m and [ are the usual quantum numbers. Using the formula for the integral of the
product of three spherical harmonics (Appendix D.1):

25+1)
G\Zr,w u)F) = > o )(1Ol0|l00)(L\lm\lomg)<G|a}07moalvm|F>Dlovl

Imlgmg

where Dy, = [drr®R; (r)Ry(r). The experimental procedure (choice of the edge) enables to
obtain the signal corresponding to a specific [y so the sum over [y can be removed. At K- and
Li-edges, [ = 0 and mgy = 0.

The first Clebsch-Gordan coefficient, (1000/00) = &1(—1)/v2l+1 = &.1(—1)/+/3, there-
fore, consistently with the selection rules of the dipole operator, only [ = 1 will give non-zero
contributions to the sum. The second Clebsch—Gordan coeflicient with [ = 1, (1A1m]|00) =

Sx—m(—=1)'"2/4/3. So that,
F) = FU\/%(G!CLE,OGLA\F)D (3.2)

(G 3y u)
D="D,, = / rRE(r)Ry(r) dr. (3.3)

where

This leads to:

’ 47
(ol = 9 = > (Glagoar,»F){Fla] _ya00|G)3(Ef — E, — hw)|DJ. (3.4)
F

The next step towards the derivation of a sum rule is to integrate Cg’fD over hw. The
quantity <G|a$70a17_,\|F> is zero if the state {Il = 1,m = —\} is fully occupied in |G) but also if
it is fully empty in |F'). Therefore, it is equivalent to integrate the spectra from 0 or from an
energy Fj that represents the minimal energy for the level {1, —A} to be populated:

C%ADth—/ C%ADdhw
Eo

This is due to the fact that a given [y was chosen for the core state. It is equivalent to what
is done experimentally: the experimental spectra for a given edge exhibit interesting features
starting from a given energy that corresponds more or less to the edge energy. The baseline
below this energy is set to zero.

To derive the integral over the energy, we use the completeness relation:

/ ZyF (F|6(E; — E, — E)dE =1 — |G)(G]. (3.5)
o+
So that the integral of C%’le writes:

’ 47
popdE = —<G|a$70a17,,\| (1 = |G){(G]) |a],_a0,0/G) DI

47r
9

Eo

((Glafoar-xa] _a001G) = (Glad gar, AIGY(Gla] _ya00]G)) DI
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3.4. Sum-rules at K- and L;-edge

The second term is zero because, using fermionic anticommutation relations, (Gla} ya1 _x|G) =

—<G|a17_,\a$70|G> and the core shell is full in the ground state so a}y|G) = 0. The use of the
anticommutation relations in the first term leads to:

o0 ’ 4:7T
¢ pdE = 3(G\alfwi_xa&%da\D\Q
Ey

_47r

9
4dm
= - (Glas el [G)ID.

(Glar-xal _y (1 — ao0a4,)|G)DJ

Finally, the absorption sum-rule for the D-D term is:

* op_ple 1673 ! , ,
[T D = B0y S DR N (@Gl ] G| (36)

By, T 9 s=T b AN =—1

where we reintroduced the spin in the notations.

In Table 3.3 the results for several remarkable polarization vectors are presented. It shows
that the right-handed circular light probes the p states with m= — 1 and the left-handed
circular light probes the p states with m=1. This is in accordance with the fact that the
angular momentum along z of the photons is either —A in the case of a right-handed circular
polarization or +7 for a left-handed circular polarization [Stohr and Siegmann, 2006, p.151]®
and with the fact that the total angular momentum is conserved during the transition.

Table 3.3: Electric dipole XAS sum-rule at the K and Lj-edges for five remarkable polarization
vectors.

Type of polarization Polarization vector I} gj UDEL—E(e) dhw
1
Right-Handed € = % —OZ %&o!D\2<G’CL1,—1GL_1|G>
1
. 2
Left-Handed € = \% 8 4%@0’2)‘2<G’@1,1GJ{,1|G>
0
Linear along z e=10 4%040’D|2<G’CL1,OCLI,0|G>
1
1 22 00| D2 ((Glar,—1a] _|G)
Linear along x e =10 + (G|a11a11|G> - (G|a17_1a}1|G>
0 2 — (Glarial ,|G))
0 22 00| D2 ((Glar,—1a] _|G)
Linear along y €, =11 + <G|6L116L;1|G> + <G|a17_1a;1|G>
0

+(Glay al_4|G))

8We use the convention for right and left polarization that is used in the optics community and that consists
in defining the sense of circular polarization "from the sample point of view". In [Stohr and Siegmann, 2006]
they use the other convention (see p.149).
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3.4. Sum-rules at K- and L;-edge

Link with the number of holes The ground state writes: |G) = ), ¢xIIy where II;, =
[T a}im|0> corresponds to a Slater determinant. The quantity (G!a17,,\a17_/\|G> is zero if the
state {1, —A} is fully occupied in |G) that is to say if all II; include the operator aL_/\. It is
one if no I include this operator, that is to say if the state {1, —A} is fully empty in |G). In
the general case:

(Glar,-aa] _,|G) = fexf?

k
with k& such that
IIx does not contain aJ{ _x

This quantity represents the number of holes in the level {1, —A} in the ground state. For
example, the integral of the XAS spectrum for €; is proportional to the number of holes in states
[=1,m=—1. Here, we immediately see a problem related to the upper limit of the integral:
if we integrate up to infinity, the number of holes would be infinite so the integral must be
restricted to a given n. For 3d transition elements, it would be interesting to restrict it to the
4p states in order to "count" the number of {4p, m=—1} holes but it is impossible in practice
because the 4p states are in the continuum.

Link with the partial densities of states If we denote £ = E;, + hw, Eq. 3.4 writes:
/ 47T
pop(B) = 5 1PF > [Gladgar A F)*6(Ef — E).
F

We define DosféA(E) = >l F)|?0(E; — E). It corresponds to a G-conditioned
partial density of states (in states/eV) in the presence of a core-hole because it counts in an
energy interval the number of states in which the level {1,—\} is occupied and the core level
{0,0} is unoccupied and that are compatible with |G).?

The contribution to the spectra from the D-D term now writes:

op-p(E) _ ao‘p| Z Y, (€)* Dos ;M (B). (3.7)

hw
A=—1

It means that the electric dipole-electric dipole XAS probes the density of empty states with
[=1.

A natural definition of the partial density of states in the presence of a core-hole would be:
S p(Flal yao0ad ga1 A|F)0(E; — E) whereas here we have Y p(Fla] ,a00|G)(Gla ga1 | F)6(Ef — E). If |G)
writes as II where IT =[], a;rym|0> and |F) =37, filly where Il =[], aim|0> then

(F\a{ 200, 0|G><G|a?J 0@ | F) = | fr|? where k is such that II; = ao,oa'{’AH
<F|a1 200, 0(10 001, AME) = ZU‘I@‘Q

with k %uch that
II; does not contain ag 0

i

and contains a; a

Hence, the difference between a partial density of states in the presence of a core-hole and Dosllc‘;\(E) is that
the final states must be related to the ground state by a one-body transition. In the following, the mention
"conditioned to |G)" will be left implicit when mentioning density of states.
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3.4. Sum-rules at K- and L;-edge

Isotropic spectrum To get the expression for the isotropic spectrum, we consider an
arbitrary linear polarization vector:

sin @ cos ¢
€ = | sinfsin¢
cos 0

If this polarization vector is used in the sum-rule of Eq.(3.6) and the integration is performed
over § € [0,7] and ¢ € [0,27], the result is:*

* op_ 167°
A° :/ (/ ”D—Mdhw> sinfdf do = 9” ao|DI*(Glaipal o + arral; + ar—1al 1 |G).
67¢

o hw
This yields the sum-rule for the isotropic spectrum:

< oY) A° 42 47
/EO %dhw = m = ?OJO‘ID|2<G‘(ILOCLJ{’O + al’lah + CL17_1CL];771|G> = TO&O"DPhP

The integral from Ej of the isotropic spectrum is proportional to the total number of holes
in the occupied p states h,. In practice, it is difficult to apply this sum-rule because of the
uncertainty on the upper limit of the integral already mentioned above. However, a similar
sum-rule at the L 3-edges has been successtully used to compare the occupation of d states in
a material compared to a reference (AusMn compared to Au in [Rogalev et al., 2006, p.93] or
Mo!V compared to Mo" in |Arrio et al., 2010]).

The spectrum itself is a representation of the total density of empty p states (see previous
paragraph).

From the equality of the sum-rules we can deduce that:

Ul%fD = 3 (op-p(€o) + op_p(€2) + op_p(€1))

In other words, in the general case, the isotropic spectrum (that corresponds to the spectrum
measured on a powder sample) is obtained by computing three different spectra and taking the
average.

Linear dichroism If one consider a non magnetic crystal with a rotation axis of order
strictly higher than two, it is known that the angular dependence of the spectra is [Brouder, 1990]:

op_p(€) = cos? Oo| + sin? 6o |

with o the spectra obtained with a linear polarization vector along the direction of the rotation
axis and o the spectra obtained with a polarization vector perpendicular to the rotation axis.
Here we find the same result by considering that (Glai_xal_,,|G) = dax(Glai_xal_,|G): this
is the condition to remove all azimuthal angular dependence. In this case if one defines

o — O'D,D<€m) = O'D,D(Ey) = O’D,D(El) = O'D,D(EQ) and O'H = O'D,D(Eo),

the isotropic spectrum writes: o p = %(QO'L—FO'H). Linear dichroism is defined as the difference

between o and o .
Note that if the symmetry of the crystal is cubic, the op_p spectrum presents no angu-
lar dependence (so no linear dichroism) and the isotropic spectrum is 0% = op_p(€g) =

O'DfD(el) = UDfD(GZ)-

10The calculation was done with Mathematica. Note that, with an arbitrary linear polarization, the sum-rule
presents both polar- and azimuthal-angle dependence and it contains 9 terms (all the combinations of A and
X’). This complexity can be reduced by considering the symmetry of the system as done in [Brouder, 1990].
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3.4. Sum-rules at K- and L;-edge

XMCD sum-rule

The sum-rule for circular dichroism can be deduced from the XAS sum-rule (Eq. (3.6)):

/EOOUDD(E)h(jD p(e )dh

O 32 (1Y (@Y (6 - ¥ @Y (€) (Glar a6,

AN =—1

The quantity (Y; *(€*)Y;"(€) — Y; *(€)Y" (¢*)) depends on the rate of circular polarization
defined by:

ex e =iPk (3.8)
where k is the direction of the wave vector (it is a vector of norm 1).
The formula [Natoli et al., 1998]

YA e (e) = Vi M ey (e \/7 Z (VT = AlLp) Y (k)

allows to compute (—1) 4%V (€)Y}¥ (€) — Y, ()Y (€* )) for each A and X. The Clebsh
Gordan coefficient is non zero when p = X — X and A\ # —\"

AN -1 0 1

-1 ~Pk. — 5 Peliky + kz) o

0 T5Pe(iky — k) 0 o —\A%Pc(iky + k)
Therefore,

00 B o B * 4 2 R
/ Jp D(E) (%)) D(E ) dhw = ia0|D|2Pc(k:z<G|a1,_1aI - al,lai 1|G>
o hw 3 ’ ’

~ 1
+k‘yﬁ<G|aLoah a 1a10+a10a§ -1 a17_1a§70|G>

.1
+ ky—=(Glarpal ; + arial g+ arpal | + a17_1a10|G>>.

V2

We can apply the anti commutation relation to the pairs of fermion operators which only add
a minus sign, even in the term proportional to k, because:

(Glal \a1x — al ,a1,,|G) = (G|1 — aypal , — 1+ a1,a] ,|G) = —(Glaaal, — a1,a] ,|G).

Using the matrix elements for the angular momentum given in Appendix B.2, we define the

components Lz, Ly; , and Lzj_; of the operator contribution to the orbital polarization of
the p states as:

1
s _ E T
Lzl:l - hmal,m,sal,m,s

m=—1

h
s _ f f f f
Ly, = Z.\/5(611,1,561170,8 = Q10401,1,s T 01 _1 401,0,s — al,o,sal,—l,s)

h
s T T i T
Lxj_y = _\/§<a1,1,sa1,0:5 +a105011,s T Ay 1 Q105+ A 501,-1,)-
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3.4. Sum-rules at K- and L;-edge

The XMCD sum-rule for the electric dipole term writes as a function of the ground state
expectation value of the angular momentum along the direction of propagation of the incident
beam:

* op-p(€) —op-p(e) . s12p
| — S X IPPR(GIk- Lia(6)

If the radial matrix element is assumed to be spin-independent (D' = D) and with L = LT+ 1L+,

hw

/ O'D—D(e) — UD—D(G ) dhw = 47T OCO‘DP <G|k L, 1’G> (39)
Eo

This corresponds to the sum-rule that has been derived by several authors [Thole et al., 1992,
Ankudinov and Rehr, 1995, Carra et al., 1993, Altarelli, 1993] and that is called the orbital
sum-rule. It can be normalized with the sum-rule obtained for the isotropic spectrum:

gz op-n(€ );J’D () qhw B 3PC<G|R'Ll:1’G>

foo UD D Jhw hhp

hw

Full circular polarization case In the case of a fully circularly polarized light with k
along z, the sum-rule for o3MSP = op_p(€2) — op_p(€r) is (P. = —1):

oo XMCD 4
/ D gy = AT 0 S (D PIGILL )

B, Tw 3h =
47
=57 % D D HGlal a1 — al a1 -14]G)

s=t{

This result can also be deduced directly from the XAS sum-rule for €; and ey displayed in
Table 3.3.

The spectrum is a representation of the orbital angular momentum density of the empty p
states, that is to say

AMP(E) = T 1D FOY(E) + [DYOY(E) (3.10)

with O (E) = Dos|1Gl(E) DosiG_l(E) where the Dos|1’GA(E) are defined p. 105. In other words
it probes the difference between the densities of the levels {{=1,m=1} and {/=1, m= — 1}.

Difficulties to apply this sum-rule This sum rule is impossible to apply in practice
at the K-edge of 3d transition elements. The first difficulty, as in the XAS case, is that the
upper limit of the integral is not well defined. Moreover, the 4p states are almost unoccupied
so that (Lzj—1) = (G|Lz=1|G) is very small and it does not contribute to the total magnetic
moment of the material. In other words, this sum-rule relates the integral of the XMCD spectra
to a quantity that is considered zero in most of the models for magnetism. Yet, even if the
quantitative measurement of (Lz—;) is of moderate interest in itself, the orbital polarization
of the p states carries information on the magnetic structure of the material in its whole which
justifies the great interest for XMCD at K-edge beyond the applicability of the sum-rules.
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3.4. Sum-rules at K- and L;-edge

3.4.2 Sum-rules for the Q-Q term
XAS sum-rule

Using the expression of the electric quadrupole operator of Appendix D.2; the contribution
to the cross section of the Q-Q term writes:

1

2 ’ !
va_q(€, k) = maghw (%) S (DY (IALI2A + ) (IN 12X + i)

XN gl =—1

YN Y ()Y ()Y (k)66

. ’ l 47'(' 4 3 ’ /
with G5 = (?) Tog DTG D i ()
F i

(FI D073 ()" |G)O( By — By — ).

F)

As in the previous section we can rewrite the operator within the second quantization formalism:

52041
G]ZTQY”“ u)|F) = ) ey ))(QOZOIZOO)(QA+ulm]lomo)<G|a}07m0al,m\F)Qlo,l
0

Imlomg

with Q. = [drr Ry (r)R(r ) Again, we only consider K- and L;-edges where o = 0 and

moy = 0. As (20[0’00) = (Slgm = 512\[ and (2)\ —+ ulm|00) _ 5>\+M7_m(_1)2\;g(x+u),
1
G 2y (. — (—1)2"O+w) Glat a 311
< ‘;Tz 2 (u 1)‘f> ( ) \/E< ‘a070a2, (>\+u)‘f>Q ( )
with
Q= Q2= /T4R6(T)R2(T) dr. (3.12)

Making the spin explicit:

[ o) - (1) <m) >
k Y (k

(=DM (INL2X + ) AN 12N + 1)

) <G’a2 (M) sa; (N +up), ’GHQS‘Z (313)

In Table 3.4 the results for right-handed and left-handed circularly polarized light are pre-
sented. It shows that the right-handed circular light probes the d states with m = —1 and the
left-handed circular light probes the d states with m = 1. This is, as in the electric dipole case,
in accordance with what is expected from the fact that the angular momentum along z of the
photons is either —h in the case of a right-handed circular polarization or A for a left-handed
circular polarization.
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3.4. Sum-rules at K- and L;-edge

Table 3.4: Electric quadrupole XAS sum-rule at the K- and Lj-edges for left and right circularly
polarized X-rays with k along z.

Wave vector Polarization vector gj U%WQ dhw
0 1
k= {0 el (15285 ) 1 (Glaz 1} |G
1 0
1
622\% é (1;;;00 ) QO (G|a21a21|G)

Isotropic spectrum To get the expression for the isotropic spectrum, we consider, as in
[Brouder, 1990|, an arbitrary linear polarization vector (both angles 6 and ¢ are needed) and a
wave vector that is perpendicular to the polarization vector (one extra angle 1 is needed):

sin 0 cos ¢ ) cos 6 cos ¢ cos P — sin ¢ sin )
€, = | sinfsing | and k = | cosfsin ¢ cos) + cos ¢ sin
cos 6 — sin 6 cos Y

The integral over 0 in [0, 7] and ¢ and 1 in [0, 27] of the XAS sum-rule (Eq. (3.13)) yields:

/ / / sin(0)dfdpdy EOO "QU;LQ—LG);’k) dhiw

T 47\* 1 9
- (hc)o2 (?> 1020<G|a20a20—|—a21a21+a2_1a£71+a22a22+a2 —aab_,|G)| QP

As [[[ sin(f)dfd¢pdy = 87°, this means that the isotropic spectrum o@, g is such that:

00 082 Q 2
— dhw =
/Eo (hw)? (
The integral of the isotropic spectrum is proportional to the total number of holes in the

occupied d states hy. The spectrum itself, Ung(E), probes the total d density of empty states
in the presence of the core-hole.

te] Z 2, b, | G) = ( ) (3.14)

m=—2

Interpretation of XAS pre-edge The electric quadrupole contribution can be signif-
icant in the pre-edge region of the spectrum. In this case, it can be useful to compare the
spectra with the p and d partial density of unoccupied states in the presence of a core-hole in
order to assign the peaks either to electric dipole or to electric quadrupole transition. Indeed,
the spectra recorded on powders (isotropic spectra) are proportional to this density of states
up to the radial matrix element. The relative order of magnitude of the two contributions can

be roughly evaluated by multiplying the d density of state by ;2 T K2 1%"2 0.03k? }%2 The
122

DE is r2 where . is the core state radius.

order of magnitude of

XMCD sum-rule

We explore the XMCD sum-rule for the Q-Q term. In order to get an understandable sum-
rule, the result presented here is limited to the case considered in our numerical calculation:
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3.4. Sum-rules at K- and L;-edge

k along z and a full circular polarization. The general XMCD sum-rule would be obtained by
taking the difference of the sum-rule Eq. (3.13) with € and €*. This sum-rule can be found in
[Brouder, 1994].

The sum-rule for o5M§" =
presented in Table 3.4:

00 UéMSD 7T2a0
/EO (hw)3 dhe = (15(71) >’Q| (Glazaal, — az-1a}_4|G) (3.15)

= 0q-q(€2) — 0g—_q(€1) can be directly deduced from the results

Now, we define the operator I-partial contribution to the orbital polarization along z of the
d stales as:

1
o= Z magma@,m. (3.16)

m=—1

After restoration of the spin indices, the XMCD sum-rule for the Q-Q term writes:

/oo U(é;;i%m T < T2 ) Z |Q°1(G| L3]G, (3.17)

Eo

Since the Q-Q term is almost always smaller than an accompanying D-D term, this sum-rule
cannot be easily applied to experimental spectra. When applied to calculated spectra, it can
however yield valuable physical information.

3.4.3 Sum-rules for the D-Q term
XAS sum-rule

The expression of the contribution to the cross section of the cross term D-Q is:

(FI D _((eeri) (€ -x))|G) G|Z 1| F)

Using the expression for the electric dipole and the electric quadrupole operators in terms of
spherical harmonics (Appendix D.2), op_q rewrites:

op_q(€, k) = —4naphw Z Im Ef—E;, — hw).
F

1

op_q=—Ar"hagwk »  Im [Z(Mlu\%Jru)(YlA(e*)Yl“(R))*Yl”( e
a

Av,u=—1

S(E;—E,—hw)

where

47\ ° 3 *
Ap,v_ A v 2y A+ v
(o = (g) ST (v () 1G)(E) D ()| F)O(Ey By =)
Using Eq. (3.2) and (3.11), we obtain:

47T 1
)\+MV *
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3.4. Sum-rules at K- and L;-edge

So that,
1
* op—q(€) (4m)° >
I gy = U 1, IML[2A + ) (— 1)
/Eo (7w)? 9v30the M%::_f Hl2x+ w)=1)

I [V ()Y} ()Y, (€)(Glar-a}_y,,) /) Q"D

What is noticeable about this sum-rule is that the right term is non zero only if there exist
in |G) mixed states [ = 1 and [ = 2, that is to say mixed p — d states. These kind of states can
exist only in non-centrosymmetric systems. The result for circular polarization and k along z
is given in table 3.5.

Table 3.5: Cross term electric dipole-electric quadrupole XAS sum-rule at the K- and Li-edges for
left and right circularly polarized X-rays with k along z.

Wave vector Polarization vector | on .- Q ) dhw
/0 I 2
k=10 e1=J5 | —i S & m[(Glar a6} ,|G)Q D]
1 0
1
€ = \/Lg é ;il}rg hie [(G|a11a2l|G>Q*D]

XNCD sum-rule

As for the Q-Q term, the result presented here will be limited to the case k along z,
therefore, no study on the angular dependence of the spectra is possible. The sum-rule for a
general wave vector is treated in [Natoli et al., 1998] in the case where the wave functions |F)
and |G) are real. Here, |F) and |G) are any wave functions but it is important to remind that,
if they cannot be chosen real, circular dichroism can be a combination of XMCD and XNCD
[Sessoli et al., 2015].

The sum-rule for o5NGP = op_q(€2) — op_q(€1) can be directly deduced from the results
presented in Table 3.5:
s ~XNCD 2
IH-q —Ar” i i .
dhw = ———Im[(G —ay_ G)Q'D
/Eo (hw) w 3\/5 he m[< |a11a21 ai 1CL2_1| >Q ]

If the wave functions can be chosen real, it can be seen that: CDA o (CH“’ ) SO

that the quantities (Glai_1a} ,|G) and (G|ajial,|G) are complex conjugate. The sum-rule for
XNCD becomes:!!

0o ~XNCD

9D-Q 47 « ;

dhw = G _ GYOD|. 3.18
/Eo (hw)? w=1 \/_h< |a11a21 ar—1ay_4|G)Q ( )

Therefore, XNCD probes the difference of occupation between the mixed p — d states with
m = 1 and the mixed p — d states with m = —1 in the ground state which is a pure imaginary

quantity. Contrary to the case of the Q-Q term, this sum-rule for the D-Q term can be applied
to experimental XNCD spectra in which this term is the only contribution.

LTf 2* is the complex conjugate of z, Im[zr — x*] = —i(x — x*).
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3.4. Sum-rules at K- and L;-edge

3.4.4 Sum-rules for the D-SP term

Here we derive the sum-rule for the new relativistic term of the cross section electric dipole-
spin-position in the case of collinear spins and diagonal spin orbit coupling. In that case, the
spin is conserved during the transition (see subsection SP operator p.56) and we can use the
collinear spin-position operator:

SP.(€) = 0.(e,y — €,).

XAS sum-rule

Using the expression for SP,, given in Appendix D.2,2

272h2a0w? O v — —1v
op-sp(€) = TQO Z Re[Y;™"(€") (Y11<€) 1137—SP — Y7 ' (e) D}SP)]
v=—1

with
» L (AT 2
S SP _( 1) (?) Z F|Z UzszYA ur |G G|Zrz ur |F (Ef - Eg — hw)
F

With the spin made explicit, Eq. (3.2) rewrites:

G|me u,)|F) = ,/ > (Glad a1, F)0s5,D°

880 =M

Similarly to what has been done to obtain Eq. (3.2), we obtain:

O o @)y = 3 {shlonls) () Clag qoraa YDEE - (319)
s',s0="T,
Now, (sp|o.|s') = (s'|o.|s")ds ¢ Where (s'|0.]s') = 1if ' =1 and (s'|o.|s") = =1 if s =].

Using the same method to integrate over the energy as for the D-D term, the sum-rule for
the term D-SP is:!3

J,, S e

ST Y lenls) Re [V (€) (VHOGlar voal 1, |G) — ¥ (€)(Glor ol |G ) 1D

9mc?
v=-—1 S:TML

!

With this formula, it is possible to determine the sum-rule for any polarization. The results
for pure circularly polarized light are reported in table 3.6.

2Here, we used the fact that Im[(iz)*] = — Re[z*].
I3Note that a 0s,s» appears in the calculation because aao’sa(),oys/ =055 — a(),().,s’azr),o,s-
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3.4. Sum-rules at K- and L;-edge

Table 3.6: Sum-rule for the cross term D-SP at the K- and Lj-edges for fully circular polarized light
with k along z.

Polarization vector J. ];: = ip(e) dhw
1
&= | ~38(Clar-yal_y|G)D'? — (Glar-val_,,|G)ID'P)
o
1
e2=75 | i 29 ((Glarsal,, |G)|D' P = (Glan,al, | G) DY)
0

XMCD sum-rule
The sum-rule for o5MSP = op_gp(€2) — op_q(€1) can be directly deduced from the results

presented in table 3.6:

/°° op MED A 27T o
B, (hw)? ~ 3me?

—— ((Glawraly, + ar-npal_|G) DT — (Glawyyal,, + ai-1yal_y||G) DY)

Therefore, the XMCD spectrum due to this term is related to the difference of density of
states between up and down spins.
If one defines the operator partial spin magnetization of the p states as:

1,—1
Sz = Z aim¢a1m¢—aImTa1mT. (3.20)

m=-—1,1

Under the hypothesis that |DT| = |D¥|:

oo CD
Op_— SP( ) 2 1,—-1 2
—_— = D 3.21
[ e dne = - TGl G DR (3.21)

From this sum-rule, we can understand why despite its small prefactor, the D-SP term
contributes significantly to XMCD: Sz;;_ll has a priori an average on the ground state that is
notably larger than (Lz;—;) as it is the case for Fe, Co and Ni (see p.84).

This sum-rule is impossible to apply to experimental spectra, not only because of uncertainty
on the upper limit of the integral (due to the fact that the 4p states are in the continuum), but
mainly because experimentally this term is always accompanied by the D-D contribution.

Total dipole XMCD sum-rule

If we consider the sum of the D-D and the D-SP contribution to XMCD: oA MEP = gXMOD 4

XMCD
oh sp, then

% _XMCD 2

oh (€) e hw 11 9
—————dhw=——— Ly + —=S5,2, ||D 3.22
/Eo (hw) “ 3 ( =t 2me? =l Dl ( )

This total sum-rule could be applied to measured XMCD spectra at the K-edge if the
following hypothesis was realized:

e The contribution of the Q-Q term is negligible (else its contribution must be taken into
account)
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3.4. Sum-rules at K- and L;-edge

e /w is approximately constant over the energy range we integrate on (this is the case when
we consider a few 10 eV over the edge and the edge energy is a few keV).

e The radial integral is spin-independent (|D'| = |D¥|).

e The transition occurs from a given ng to a given n.

It is particularly difficult to make a general statement on the validity of the two last hypothesis.

3.4.5 Partial density of states and spectra in the case of Fe and Ni

As explained and illustrated in |[Cabaret, 2006, section 4|, the comparison of the spectra
with calculated projected density of states must be done with caution. Indeed, the definition
of the partial density of states is not unique and the choice of the method used to perform the
projection of the density of states on atomic orbitals has a big influence on the final result.

1" -

s’f /\\\\ 1 fce-Ni

{bcc-Fe .
\ f1
|

% v N 0
o} 1 \ p-DOS o)
2 . ' \V\/\ P
-g- ! ! VA > g-
c | 1 / A\ 1 c
] 0\ ]
0 \ 1 /,//’\7—\4// \ 1%
< 1/ Ny 74 <
X /1 \ S x
Q /1 it a
e \,,// Calc. 1 ©
/ T D-D XAS
spin-up spin-up
- - spin-down _ - - spin-down i
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E-E_ (eV) E-E_ (eV)

Fig. 3.24: p-projected density of states and K-edge D-D contribution to the XAS in Fe (on the left)
and Ni (on the right) without core-hole for both spin channels (spin up: solid line, spin down: dashed
line). This figure is an illustration of Eq. 3.6.

In the PAW formalism presented in section 2.3, it is easy to identify the partial density of
states: if one consider that there is only one projector per channel the cross-section writes as a
sum over n where the index n refers to quantum numbers for the angular momentum (I, m):

o(w) = 4m’aphw Z Z [(FI5R°)PO(Es — Ei — hw) (95| Oli)]*.
nof

In this expression, we can identify |(f|pR)[26(Ef — E; — hw) as being the n-partial density
of empty states. The remaining matrix element [(¢R0|O]i)|? is weakly energy-dependent as
shown in [Cabaret, 2006]. For this reason, the DOS calculated with QUANTUM ESPRESSO
are very similar to the spectra. This is confirmed by the comparison of the p-density of states
with the calculated contribution to the XAS due to the D-D term depicted in Fig. 3.24 (the
full width at half maximum of the broadening applied to the DOS is 1.6 eV and whereas it is
0.8 eV for the the spectra).

In Fig. 3.25, the D-D contribution to XMCD is compared to the density of orbital polariza-
tion of the empty p states and the D-SP contribution to XMCD is compared to the partial spin

polarization Sz 7' (E). It illustrates the validity of the sum rules (Eq. 3.9 and 3.21) at energies
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Fig. 3.25: Comparison of Lz,(F) (top) and Szll,’_l(E) (bottom) obtained from p-projected densities
of states with the K-edge D-D (top) and D-SP (bottom) contributions to the XAS in Fe (on the left)
and Ni (on the right) without core-hole. These figures are illustrations of Eq. 3.9 and 3.21. Lz,(FE)

have been multiplied by the same factor as the p density of states in Fig. 3.24 and Sz;’_l(E) spectra

by this factor times an“;Q.

higher than 10 eV. However, near the edge, the D-D contribution to XMCD and Lz (F)
are completely different. This leads to the conclusion that, even with a method to compute
the projected density of states that induces weak energy-dependence of the matrix elements, a
calculation of the orbital polarization is not a good way to obtain the signature of the XMCD
spectra at K-edge. The spectrum calculation must be performed. With the method presented

in the previous chapter, the spectra calculations require less computer resources than DOS
calculations.

3.5 Conclusion

In this chapter we presented the results of DFT ab-initio calculations of K-edge XAS and
XMCD in Fe, Co and Ni and L;-edge XAS and XNCD in LilOj.

The main result of this chapter is the significance of the new D-SP term in XMCD. We
explained it by deriving a sum-rule for this new term. We showed that it probes the spin
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3.5. Conclusion

polarization of the p states whereas the D-D term probes their orbital polarization.

The overall agreement of the calculated spectra with the experimental one is fair. For
XMCD, however, the secondary peaks are not always well reproduced. Given the complexity
of the XMCD phenomenon (compared to the magnetic properties that are usually studied by
DFT), it is a unique way to evaluate the precision of the modeling of magnetic systems. We
tested the effect on the spectra of a large number of assumptions and approximations and came
to the conclusion that Kohn-Sham DFT is unable to capture the complexity of the spin and
orbital polarization of empty states.

The fact that the overall shape of the spectra is well described still opens perspectives for
the interpretation of various experiments. This is the subject of the next chapter.
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4.1 Introduction

Experimental studies under pressure are very important in the field of earth sciences and
they also are of several fundamental interests. The main effect of pressure is to reduce the
interatomic distances which can lead to new properties (for example photomagnetic properties
in Prussian blue analogues |Cafun et al., 2013|). Pressure is widely used in condensed matter
physics to uncover new properties (a well known example is high T, superconductivity). Also,
in the context of combined experimental and numerical studies, pressure is a very good way to
put calculations to the test. Indeed, pressure modifies the interactions between the atoms and
only a robust method can model it correctly.

In Section 4.2, we present the experimental set-up for acquisition of XAS and XMCD spectra
under pressure on the dispersive beamline ODE in SOLEIL synchrotron (synchrotron facility
situated in Gif-sur-Yvette, France). In Section 4.3, we discuss the way of introducing pressure
in our DFT calculations. Sections 4.4 and 4.5 are dedicated respectively to the study of the
iron hydride FeH and of the transition metal oxide CrOs.

Interest for iron hydrides is important because they are model objects for the study of
transition metal hydrides [Antonov et al., 2002]. XAS and XMCD experiments on Fe under Hy
atmosphere are presented in Section 4.4. Calculations give a rich insight into the transitions
that occur under pressure and into the magnetic structure of the formed compound, FeH.

Transition metal oxides are strongly correlated materials which exhibit a wealth of phenom-
ena, so that they have a lot of potential (see for example [Tokura, 2003]). Their theoretical
study is one of the challenges to modern condensed matter physics. Among them Chromium
dioxide is a particularly interesting case because it belongs to the class of half-metallic fer-
romagnets. A RIXS experiment and an XAS and XMCD study under pressure of CrO, are
presented in Section 4.5. Preliminary calculations show promising results.
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4.2 Experimental method: XMCD under pressure on a dis-
persive beamline

4.2.1 High-pressure cell

Principle Diamond anvil cells (DAC) are the most used devices to generate static high
pressures. They are very portable devices (a whole DAC can be held in the palm of a hand)
that allow to reach very high pressures (studies up to 320 GPa |Loubeyrel et al., 2002| have
been reported ). The working principle is illustrated in Fig. 4.1: the sample is positioned
between two diamond anvils on which a force is applied. Each diamond anvil has two flat
surfaces: a surface on which the force is applied and a smaller surface (typically several 100 gm
in diameter) where the anvil puts force on the sample. The pressure transferred to the sample
is proportional to the applied force and also to the ratio of the two surfaces of the anvils (the
smaller the surface in contact with the sample, the larger the pressure). A pressure transmitting
medium is added with the sample that is positioned in the hole of a gasket. This gasket is a
thin metal foil (typically 300 pm thick). The gasket is prepared by pressing it between the two
anvils, reducing locally its thickness to 15-50 pum. Then, a hole is drilled by electrical discharge
or laser machining at the center of the obtained indentation.

Force Fig. 4.1: Principle of a diamond anvil cell. The
sample is positioned in the hole in the gasket be-
tween the two anvils.

Diamond anvil

e

The role of the transmitting medium, as its name suggests, is to transmit pressure to the
sample. The aim is that the sample stays in hydrostatic conditions, that is to say that it is
not submitted to a pressure gradient. In the Refs. |Klotz et al., 2009, Miletich et al., 2000],
the maximum pressure that ensures hydrostaticity is given for several usual media. The paper
by Miletich et al. also contains a lot of information on the practical aspects of diamond anvil
cells.

Application of the force The two diamond anvils are only a small part of the entire
DAC: the cell design must allow a precise positioning of the diamonds and include a pressurizing
mechanism. For the experiments presented in this thesis, we used membrane diamond anvil
cells designed by J.C. Chervin |Chervin et al., 1995]: the force on the diamonds is generated by
deformation of a membrane by effect of a Helium gas (one diamond is fixed and the other is on
a piston that is pushed by the membrane). The magnitude of the applied force can be tuned
by changing the gas pressure on the membrane, P,,. During an experiment, P, can be safely
increased up to the value that was used to indent the gasket. Beyond this value, a continuous
monitoring of the diameter of the hole in the gasket (that must not vary) is required to avoid
a collapse of the diamonds on each other, which would result in their destruction. It is also
needed to plot the curve representing the pressure inside the cell vs the applied pressure on the
membrane, because a change of its slope is an indication that the gasket hole is about to open.
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Pressure measuring It is not possible to compnte the pressure inside the cell as a func-
tion of the force applied on the external surface of the anvil because some force is dissipated, for
example in the gasket, and it is impossible to know a priori how much. Therefore a pressure
probe must be positioned in the gasket hole in order to monitor the pressure on the sam-
ple during the experiment. The first possible method is to add a material whose equation of
states is known and to rely on the measurement of its lattice parameter to determine the pres-
sure. It is done for example with gold [Pépin et al., 2014|, copper or silver [Mao et al., 1986].
This method can, however, only be used during diffraction experiments. The second possi-
ble method is to rely on the measurement of the fluorescence line of a chemically inert lu-
minescent compounds. The most widely used pressure calibrant is ruby even if others exist
[Hess and Exarhos, 1989, Datchi et al., 1997]. Small rubies (5-10 pum) for the purpose of pres-
sire monitoring are commercially available. Before the experiments, a few rubies are positioned
along with the sample (if possible, two rubies in separate positions in order to be able to evaluate
if there is a pressure gradient).

Fig. 4.2: FExample of the ruby fluorescence
spectrum at several pressures (figure taken from
[Jephcoat et al., 1986]). Note that the spectrum
are shifted in the horizontal direction. The wave-
length position of peak R; is indicated for each
pressure.

71964 R, P=744GPa

70754 R, P=374 GPa

Intensity (arbirary unas)

Atmosphenc, 69428 A

Wavelength, A

The pressure measurement is performed by irradiating the sample with a blue laser and by
analyzing the fluorescence of a ruby with a spectrometer. The position of the main peak of this
fluorescence shifts to higher wavelengths (see Fig 4.2) when pressure increases. The relation
between this peak position and pressure is calibrated [Syassen, 2008| which allows to deduce
the pressure from the measured peak position. As shown in Fig 4.2 the fluorescence spectrum
is broadened at high pressure, which reduces the accuracy of the measurement.

In practice, the sample pressure is measured before (just after the membrane pressure is
changed) and after the recording of the spectra because pressure sometimes changes during the
acquisition time. Despite the precise calibration of the ruby line, the uncertainty on the pressure
is quite high because of this drift and also because the sample and the ruby may not be exposed
to the same stress field. The precision depends on many factors (size of the diamonds, type of
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gasket, size of the hole...) but it seems reasonable to consider that the uncertainty is ~ 0.5 GPa
for pressures up to 10 GPa and ~ 1 GPa for pressures up to 30 GPa. For the experiments
presented in this chapter, the pressure is never higher than 30 GPa but much higher pressures
can be reached in DAC: pressures up to 100 GPa are available on ODE beamline at SOLETL..

4.2.2 XAS and XMCD on the dispersive beamline ODE at SOLEIL

SOLEIL is a synchrotron radiation facility situated 30 kilometers south of Paris. The prin-
ciple of such facility is to use the radiation (called synchrotron radiation) emitted by electrons
moving at relativistic velocity in magnetic fields that curve their trajectory. The main compo-
nents of the facility are depicted in Fig. 4.3.

Fig. 4.3: Tllustration of the main components
of SOLEIL synchrotron radiation facility: 1) the
linac, a 16 meter long linear accelator 2) the
booster, a circular accelerator which brings the
energy level up to 2.75 GeV (SOLEIL operating
value) 3) the storage ring (354 meter circumfer-
ence) in which the electrons circulate for sev-
eral hours after being injected from the booster
4) magnetic devices that control the trajectory
of the electrons or make them oscillate (bend-
ing magnets or insertion devices) which results
in the emission of synchrotron light 5) radiofre-
quency cavities to compensate for the energy
lost by radiation 6) optic systems to select and
shape the synchrotron radiation for the use of
the beamlines.

Picture is taken from [Soleil, site]

The storage ring is composed of a combination of magnetic field devices (to change the
electron beam’s direction and produce the radiation) and electric field devices (to compensate
for energy losses of the electrons and accelerate them). The beamlines are situated tangentially
of this storage ring at the level of a magnetic device in order to collect the emitted light.

In SOLEIL the beamline ODE is a hard X-ray (3.5-25 keV) beamline for XAS and XMCD.
The acronym ODE stands for "Optique Dispersive EXAFS" (Dispersive optics EXAFS).

Source The source of ODE is a bending magnet. It is a dipole magnet whose purpose is
to bend the trajectory of the electrons (see Fig. 4.4).

Fig. 4.4: Bending magnet. Picture is taken from

\ [Desy, site].

w .

On its horizontal plane, the emitted radiation is linearly polarized. Above and below this
plane, it is respectively elliptically right and left polarized [Wiedemann, 2007, p.852]. To per-
form XMCD experiments, a portion of this beam above or below the plane is selected and the
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rate of circular polarization depends on the position and on the size of the slit used for this
purpose.

Dispersive setup ODE is a dispersive beamline, it means that polychromatic X-rays are
used which allows for the instant recording of the whole spectra. The principle is illustrated in
Fig. 4.5. The X-rays provided by the source are focused by a bent monochromator so that all
the diffracted beam converges to the same point (focal point, where the sample is positioned).
This crystal is called polychromator because as the incident angle varies along the crystal, the
diffracted wavelength also varies. This causes a spatial separation of the wavelength (hence the
designation dispersive) and all the diffracted X-rays converge to the sample but with different
angles depending on their energy.

polychromator

focal spot -
sample position

source position sensitive

{;? detector

intensity

pixel number

Fig. 4.5: Principle of the energy dispersive EXAFS setup. The sample is positioned between the
polychromator and the detector (red circle). Picture is taken from [Diamond, site].

The spatial separation of the energies after the light is transmitted through the sample
permits to measure simultaneously the transmitted intensity [ for all energies using a CCD
detector that is position sensitive. The reference intensity [y is measured in the absence of
sample and the absorption spectrum is:

I (pixel
XAS(pixel number) oc — log (pixel number)

Io(pixel number)’

To calibrate the link between the pixel number and the energy of the X-rays the spectrum
XAS(pixel number) of a metal foil or another reference sample is measured at the beginning of
each experiment. Then this spectrum is fitted with tabulated data.

In addition to the elements depicted in Fig. 4.5, there is also a bent mirror before the
polychromator and another plane mirror between the sample and the CCD for vertical focal-
ization and harmonic rejections respectively. To set-up the beamline to the energy edge of a
specific element, the whole bench of experiment (that carries the sample and the detector) is
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rotated to be placed in the approximate angle corresponding to the chosen edge. After that,
fine adjustments of the mirror and polychromator curvatures are required.

On ODE beamline, after a precise setting up of the beamline, the size of the focal spot is
approximately 35 pum in diameter (full width at half maximum). As there are no mechanical
movements of the polychromator, the position of the focal point is very stable in time so that
very small samples (70 pm) can be studied. This is particularly interesting for high-pressure
measurements because the smaller samples, the higher the pressure that can be reached.

Another advantage of the dispersive set-up is that the acquisition time of a XAS is very
short, which offers perspective to study fast processes over time. Such time resolved experiments
(with a few dozen s resolution) are possible on ODE beamline.

Magnetic field and XMCD experiments The polarization of the light cannot be
changed from right- to left-circularly polarized during the experiment: it would require a com-
plete set up of the beamline each time it is done. For this reason, the applied magnetic field is
flipped instead.

The magnetic field is generated by a big electromagnet (weighing several 100 kilograms) and
can reach 2.1 T with a small air gap. When the sample is in the cryostat the air gap cannot
be smaller than 46 mm and the maximum magnetic field is 1.3 T. The direction of the field is
flipped by changing the sense of the current in the coils.

XAS spectra are alternatively measured with a magnetic field applied in one direction or
the other:

magnetic field direction + - + - ..+
spectrum Iy I L. I

The aim of the iteration 0 is to cancel the possible linear derivation € due to beam variations :
log % = XMCD + ¢
log % = —XMCD + ¢

After N iterations, the saved XMCD is:

1100 0l _
= ;5 log (?1,)12 = XMCD

1 ()% (15 )y
XMCDy = ——1
N ON T )R (I )

It has become less useful in SOLEIL (compared to previous generation synchrotron facilities)
because the beam does not drift.

Low temperature A cryostat designed to receive diamond anvil cells is available on ODE
beamline. The sample is cooled thanks to a flow of Helium and the temperature is controlled
by a heater. Temperatures down to 5K are accessible.

4.2.3 Data analysis

One drawback of performing experiments with a dispersive set-up is that the data processing
can be complicated by the fact that the baseline of the data is not necessarily flat.
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Manual processing

Processing with Athena
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Fig. 4.6: Comparison of two types of processing for an experimental XAS with a non-straight baseline.
On the left-hand side, the base line is determined manually (by comparison with another spectrum
whose baseline was straight). The obtained spectrum is depicted in black in the last figure. On the
right hand side, the software Athena [Ravel and Newville, 2005] is used with an order 2 polynomial for
the post-edge and application of the flattening algorithm. In both cases, the pre-edge baseline is set
to a straight line and the edge step is determined to be 1.71. The spectrum used as example is one of
the gpectra acquired during the experiments described section 4.4.1.
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The required steps for data analysis are however the same as for any XAS and XMCD experi-
ments:

set the pre-edge of the XAS spectrum to zero (substract the pre-edge baseline)
flatten the post-edge region of the XAS

normalize the XAS so that the edge jump far from the edge is equal to 1
multiply the XMCD signal by the same factor to obtain the normalized XMCD.

A software called Athena [Ravel and Newville, 2005] is available that facilitates the analysis
of XAS spectra. The pre-edge baseline is treated as a straight line (see Fig. 4.6 top right). The
order of the polynomial used to describe the post-edge baseline can be chosen between 1 and
3. Athena includes a flattening algorithm that aims at pushing the oscillation of the post-edge
part along the y =1 line.

Fig. 4.6 illustrates the processing of a XAS spectrum of which the post-edge baseline
is not flat. Two methods are compared. The first method ("Manual processing") consists
in determining the baseline by visual evaluation and substrating it with a data processing
software (here, OriginPro was used). A comparison with a similar spectrum that serves as
reference can be useful to set the baseline. The second method relies on Athena algorithm.
The main advantage of this second method is its reproducibility associated to its automatic
nature. However, it does not exempt from visually inspecting the spectrum as the algorithm
might, in some situations, lead to inconsistent baselines.

The processing of XMCD spectra acquired on dispersive beamlines also requires to subtract
the baseline. A software that would allow an automatic subtraction of the baseline for XMCD
is currently being developped by Karine Provost at ICMPE. The great difficulty of the task is
linked to the fact that the XMCD spectra can not be treated as oscillations of zero mean-value.
It prevents the use of the algorithms that were developed to treat XAS spectra. We must
therefore rely on the manual processing of the spectra. An example of such a processing is
shown Fig 4.7. Such a treatment was applied to the XMCD spectra acquired on ODE beamline
that are presented later in this chapter.

T T T T T T T T T 0,002 T T T T T T
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o IH o 00014 L 4
: . i
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Fig. 4.7: Example of the normalization and removal of a non-straight baseline of a XMCD spectrum
(one of the spectra acquired during the experiments described section 4.4.1).
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4.3 Introduction of pressure in the calculation: example of
bcc-Fe

4.3.1 Lattice parameter

In the calculation, the effect of pressure is taken into account simply by reducing the lattice
parameters of the crystal considered in the self-consistent calculation. There are two ways of
determining the pressure for a given lattice parameter from the calculations. The first way
is two compute the forces in the cell; there is a keyword of the input of pw.x that allows to
do so (tprnfor). The second method consists in plotting the total energy at the end of the
self-consistent calculation E as a function of the lattice parameter a. Then, if we denote V' the
volume of the cell (in the case of bec-Fe V = a?), the pressure writes

The equation of states depicted in Fig. 4.8 on the left-hand side in pink was obtained by
performing scf calculations for each lattice parameter. Then, E(V) was fitted with Murnaghan
[Murnaghan, 1944] equation of states E(V') using the tool ev.x of QUANTUM ESPRESSO:

TATAN
— 20 +1
B, —1\V

where Vy and Ej are the equilibrium volume and energy at zero pressure. By = —%3—5 is the
equilibrium bulk modulus and By is its first derivative with respect to pressure. The fitted
parameters are: Vj = 22.5 A (which corresponds to ag = 2.82 A), By = 180 GPa and B} = 7.
Then the pressure for a given lattice parameter can be computed with the formula:

_B(j
(vy " 1] |
Vo

The relation P(a) obtained with this method is reproduced in the right panel of Fig. 4.8
(purple line). On this same plot, the pressures obtained by force calculation (with tprnfor)
are represented as diamond scatters. We observe that these two methods give slightly different
results.

The blue dots in Fig. 4.8, right correspond to the points P(a) obtained experimentally

[Mao et al., 1967, Jephcoat et al., 1986] by performing X-ray diffraction experiments in DAC.
The experimental points are fitted with Vinet exponential equation of state:!

s (%)/ [1 - (;)/ 2By 1) [1 - (;y

and the obtained parameters are: Vp = 23.64° (ap = 2.87 A),By = 150 GPa,B}, = 6.5. We
observe a 2 % underestimation of the equilibrium lattice parameter by the calculation which is

ByV
By

_ BV
B, —1

E(V) = Ey+ (4.1)

P(V) = B

exp

] (4.2)

!Several forms (Murnaghan, third-order Birch-Murnaghan, Vinet...) have been proposed as universal equa-
tions of state. The choices made here of Murnaghan and Vinet E.of S. were only driven by the fact that they
are commonly used.
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Fig. 4.8: On the left: Calculated equation of states (E. of S.) energy vs lattice parameter for bce-
Fe and pressure deduced from this E. of S. On the right: Comparison of the curves pressure wvs
lattice parameters obtained experimentally ( [Jephcoat et al., 1986, Mao et al., 1967| fitted with Vinet
equation) in blue, from the calculated F. of S. in purple and from the calculation of the force in the
cell (diamond scatters).

consistent with the usual order of magnitude of the error on the ag obtained by DFT calculations
with PBE functionnal (see for example |Haas et al., 2009]).

From Fig. 4.8 we see that, to describe a given pressure P we have two choices of lattice
parameter: dey,(P) that corresponds to the experimental lattice parameter (blue curve) and
acalc(P) that corresponds to the calculated one (purple curve).

In the following, for all the systems, we will use the experimental equation of state dex,(P).
The main reason of this choice is heuristic: as we want to reproduce the experimental spectra,
it seems reasonable to consider the experimental lattice parameter and not a calculated lattice
parameter that depends on the used functional. According to our observations, the effect of this
choice on the spectra consists mainly in a slight change of the amplitude of the main XMCD
peaks (of the order of 10%).

4.3.2 Evolution of the spectra with pressure

As a pressure-induced bee to hep transition occurs in iron between 14 and 16 GPa, the range
in which the effect of pressure of the hce phase can be experimentally studied is limited.

When pressure is applied on an iron foil in a diamond anvil cell, the experiments by Mathon
et al. [Mathon et al., 2004, Baudelet et al., 2005] illustrate that the XAS spectrum shows little
changes up to 14 GPa: its features are only slightly shifted to higher energies (see Fig. 4.9) due
to the reduction of interatomic distances. In the range of pressure where the structure is still
bee (information provided by the XAS) the amplitude of the XMCD spectra is almost constant
with pressure (see Fig. 4.10 circles).

In Fig. 4.10, the calculated total magnetization in a unit cell of bcc-Fe is also plotted as
a function of pressure (the computational details of the self-consistent calculations are given
in the next section p.135). This total magnetization does not vary much in the range 3 GPa-
14 GPa in accordance with the conclusion drawn in [Baudelet et al., 2005] from the fact that
XMCD amplitude is almost constant.

There is no point for the experimental XMCD amplitude at 0 GPa in the figure from which
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Fig. 4.9: Experimental XAS (left) and XMCD (right) spectra for Fe at ambient pressure (red curve)
and 10 GPa (blue curve) from [Baudelet et al., 2005].

the circles of Fig. 4.10 are extracted [Mathon et al., 2004|. It is somewhat unfortunate because
the main variation of the calculated total magnetization occurs between 0 and 3 GPa but it is
probably linked to a problem inherent to experiments with diamond anvil cells: when a DAC
is loaded with a pressure medium, merely closing it is sufficient for the pressure applied on the
sample to be non zero. To record the spectra below 3 GPa, experiments with larger diamonds
or an other type of pressure cell should be undertaken.

T T T T T T T T T T I T I T I T I
® Amplitude of exp. XMCD
[Mathon,2004] arb. un.
mm Calc. total magnetization
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Fig. 4.10: Calculated total magnetic moment in a unit bcc Fe cell (squares) and amplitude of the
experimental XMCD for bec-Fe (circles). The points for the amplitude of XMCD are taken from
[Mathon et al., 2004, Fig. 2| in the range in which the fraction of the bcc phase is 100% (i.e. before
the beginning of the bece/hep phase transition). Error bars for the calculated total magnetization are
not displayed because they are difficult to estimate.

By the mean of calculation, larger pressures can be set by decreasing the lattice parameter
to values that are not accessible experimentally. The only limit is the point where the scf
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4.3. Pressure in the calculation: Fe

calculation can not converge because the forces in the cell are too large. At 42 GPa, the
calculated total magnetization is 94% of the total magnetization at ambient pressure (pink
squares in Fig. 4.10).

The calculated XAS and XMCD spectra at the Fe K-edge (with a 1s core hole in a supercell)
for several pressures are shown in Fig. 4.11. The consequence of the increase in pressure on
the XAS is a shift of the features above the edge toward higher energies. The same trend
is seen on the XMCD spectra. Except for P=10 GPa, the main other effect of pressure on
XMCD is a decrease of the amplitude of the main negative peak. The total amplitude of the
XMCD spectra at 42 GPa is 89 % of the amplitude at ambient pressure. At P=10 GPa, a small
negative peak near the edge appears that seems to correspond to a negative feature present on
the experimental spectra (Fig. 4.9- right part). The level of noise on the experimental spectra
is high and this negative peak never appeared on any other experimental spectra, so the peak
that appears in the calculations is probably a numerical artifact.
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Fig. 4.11: Calculated XMCD and XAS spectra at K-edge in bce-Fe with different lattice parameters:
2.87 A (ambient pressure), 2.814 A (P=10 GPa) and 2.71 A (P=42 GPa from extrapolation of the
equation of state). The calculation has been performed in the presence of a core-hole with technical
parameters identical to the one used for Fe in the previous chapter.

4.3.3 Effect of pressure on the density of states

Computational details The densities of states (DOS) were computed with the regular
code pw.x of QUANTUM ESPRESSO [Giannozzi et al., 2009] in a unit cell of bee-Fe with the
same norm-conserving PBE pseudopotentials used for spectra calculation. The cut-off energy
was set to Eeuorr = 180 Ry. The self-consistent calculation was performed using a I'-centered
16x16x16 k-point grid for the unit cell that contains one atom. To compute the densities
of states a second calculation including the unoccupied bands is performed starting from the
already converged electron density. This non-self-consistent calculation was performed using
a I'-centered 40x40x40 k-point grid. The partial density of states are obtained by projecting
wave functions onto orthogonalized atomic wave functions |Giannozzi et al., 2009|. The lattice
parameter was set to a = 2.87 A for ambient pressure, a = 2.814 A for P=10 GPa and
a = 2.71 A for P=42 GPa. This last value was obtained from extrapolation of the experimental
equation of state (in reality, at P=42 GPa, bee-Fe is not stable). Collinear spins along [001]
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were considered. Spin-up (1) denotes the majority spin and spin-down () the minority spin.
The zero energy is taken at the Fermi level.

Stoner criterion The simplest model of itinerant magnetism is Hubbard model within
the mean field approximation. The Hubbard Hamiltonian in second quantization formalism

writes:
H=—t Z ClSCH_(;s + UZn (4.3)
1,0,s=1,

with nj = c;sci,s. i labels the sites and 7 + d are the sites surrounding ¢, n; is the occupation of
a site. t is called the hopping integral and describes the ability of an electron to hop from one
site to another one and U describes the intra-site Coulomlg interaction. The local electronic
density is n; = n + n and the local spin density is m; = %

The Stoner criterion is a criterion for the ferromagnetic state to be stable that is to say
for an unbalance between spin-up and spin-down to be energetically favourable. As illustrated
Fig. 4.12 a, in the case where U = 0, if nT > nt, it has an energetic cost because higher energy
levels are occupied. For example, if n' = n* + on, the cost in energy AK = @(5E)2 where
p(Ey) is the total density at the Fermi level and JE = —2~. In the case U = 0, the material

4 ] P(Ef)
remalins paramagnetic.

1‘\ E AE

Fig. 4.12: Band ferromagnetism: schematic representation of the spin-up and spin-down density of
states in a) the paramagnetic case, b the ferromagnetic case.

Now, if U # 0, an imbalance between spin-up and spin-down induces a Coulomb gain in
the Hamiltonian of Eq.(4.3)

n  on n  on nn on
AH - - - —_ — — — —_ = —
v U(2+2)(2 2) Y33 U<2>
The criterion for ferromagnetism to exist in a given material at 7' = 0K is therefore:

AHy| > AK=U > ——
Ay (B

A ferromagnetic instability is therefore expected in materials with a high density of states at
Fermi level and large electron interactions. Due to the Coulomb energy, the minority-spin band
shifts upward whereas the majority-spin band shifts downward as illustrated in Fig. 4.12 b).
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Fig. 4.13: Partial densities of state of bce-Fe with different lattice parameter: 2.87 A (ambient
pressure), 2.814 A (P=10 GPa) and 2.71 A (P=42 GPa from extrapolation of the equation of state).
Top half of the graphs: spin-up DOS; lower half of the graphs: the opposite of the spin-down DOS.

Density of states The partial DOS of bee-Fe with several lattice parameters are depicted
in Fig. 4.13. The DOS of bec-Fe is dominated by d electrons. There is a spontaneous spin split
of the bands that is associated to the existence of a spin density. When the lattice parameter is
decreased, the DOS widens which results in a decrease of the density at the Fermi level p(Er).
This decrease is consistent with the decrease of the magnetic moment described in the previous
subsection according to the Stoner criterion (see below). This qualitative interpretation is to
be pursued with caution because U can a prior: depend on the lattice parameters but it gives
an idea of the mechanism at work when pressure increases: due to the DOS broadening the
product Up(Ey) decreases which leads to a progressive cancellation of the Curie temperature
which tends to zero when $Up(E;) = 1 [du Trémolet de Lacheisserie et al., 2005]. According
to this mechanism, the magnetic moment of all materials tends to vanish at high pressure.
In practice, as in the case of Fe, a structural transition often happens before the magnetic
moment reaches zero. In Ni no structural transition occurs and ferromagnetism has been
shown to maintain up to 200 GPa [Torchio et al., 2011|, so an even higher pressure would be
required to reach the disappearance of magnetism.
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4.4. Iron hydride

4.4 Iron hydride

The study of the combination of iron and hydrogen under pressure presents a strong geo-
physical interest. Iron is the main constituent of the Earth’s core but, according to seismic
models, the density of the core is several percent lower than the density of pure iron. This
density deficit is attributed to the dissolution of light elements such as silicon, sulfur, oxygen,
hydrogen, and carbon [Birch, 1952]. Hydrogen has become one of the major candidates for the
light element in the Earth’s core with the observation of its solubility in Fe under high pressure
conditions [Sakamaki et al., 2009].

The understanding of iron hydrides is also essential for studying the behaviour of hydrogen
in transition metals. Interest for this question has grown because the absorption of hydrogen
by metals or alloys is a promising solution to address the problem of storage of hydrogen. This
is crucial to allow its use as fuel [Schlapbach and Zuttel, 2001].

4.4.1 Fe under a Hy, atmosphere: experiment

A tiny foil of Fe was loaded in a diamond anvil cell with hydrogen (Hs) as a pressure
medium.? The XAS and XMCD spectra at the Fe K-edge were measured simultaneously for
several pressures from 2.7 GPa to 28 GPa and back to 2.9 GPa. Pressure was measured using
the fluorescence line of a ruby.

Evolution of the spectrum up to 4 GPa Fig. 4.14 shows the measured absorption
spectra up to 4 GPa. The low pressure spectrum corresponds to the XAS of bee-Fe. We observe
a drastic change of the spectrum around 3 GPa. The spectra for P > 3 GPa are completely
different from the spectra for P < 3 GPa at high energy (above 7.14 keV i.e. 30 eV above the
edge) and also near the edge. The main changes near the edge are a decrease of shoulders at
7115 eV and 7125 eV (a and b in Fig.4.14) and a shift to lower energy (= 1eV) of the maximum
at 7131 eV accompanied by an enhancement of this maximum (c in Fig.4.14).

Fig. 4.14: Experimental XAS spectra
at the Fe K-edge for Fe under Hy atmo-
sphere of increasing pressure up to 4 GPa.
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The measured XMCD (Fig. 4.15) also exhibits a transition around 3GPa with more gradual
changes than the XAS. The main positive peak (« in Fig. 4.15) decreases in amplitude. The
amplitude of the main negative peak (8 in Fig. 4.15), on the other hand, increases and it

becomes sharper. Peak [ is also clearly shifted to lower energies (from 7118.5 eV at 2.7 GPa to
7116 eV at 4 GPa) while the energy position of peak a barely varies (from 7113 eV to 7112.5 eV).

2When H, is compressed, it remains fluid only up to P=5.7 GPa, yet hydrostaticity is preserved up to 177
GPa [Miletich et al., 2000, Table 1]
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The pressure at which the changes are observed corresponds to the pressure of a transition re-
ported in the literature from bee-Fe to iron hydride FeH, [Badding et al., 1991, Choe et al., 1991]:
hydrogen can be absorbed into the iron lattice by application of a 3.5 GPa pressure in a Hs
environment. In the experiment presented here, the Hy fluid is, therefore, a source of hydrogen
in addition to be a pressure-transmitting medium. The fraction of H atoms in the obtained
hydride was estimated by outgassing to be x &~ 1 [Schneider et al., 1991]. Magnetometry on
samples of FeH, obtained by hydrogenation of Fe at high temperature (T=523 K) and high
H, pressure (P=6.7 GPa) quenched to 95 K showed that, as bce-Fe, it is a ferromagnet with a
magnetic moment of approximately 2.2 up per Fe atom [Antonov et al., 1981].2

Evolution of the spectra in the range 4 GPa - 28 GPa After the transition was
achieved, the pressure on the sample was further increased in order to study the effect of
pressure on iron hydride. Above 4 GPa, the only change on the XAS spectra is a progressive
shift of the features to higher energies as the sample is compressed (see Fig. 4.16). The spectra
at 28 GPa is different: the shoulders a and b are enhanced and the maximum c is reduced. In
the literature, no change of the H content nor of the structure of the iron hydride was observed
by XRD with compression up to 136 GPa [Pépin et al., 2014] of Fe under Hy atmosphere.

The main effect of pressure on the XMCD spectrum is a slight decrease in amplitude (see
Fig. 4.16). The maximum of the effect is also progressively shifted to higher energies. XMCD
vanishes between 23 and 28 GPa, which is consistent with the observation made by Mdssbauer
spectroscopy [Mitsui and Hi, 2010] and previous XMCD experiments [Ishimatsu et al., 2012]
that magnetic ordering vanishes at pressures higher than approximately 27 GPa.

Reversibility of the transition When the pressure is decreased, the spectra corre-
sponding to bce-Fe are recovered between 4 and 2.5 GPa. In other words, the pressure-induced
transition that has been observed is reversible and the transition pressure is approximately the
same in both ways (when the pressure is decreased as when the pressure is increased).

3Note that the stoichiometry of the quenched samples in the study [Antonov et al., 1981] - = ~ 0.8 - is
different from the stoichiometry evaluated for the sample under pressure probably due to hydrogen losses
during manipulations.
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4.4.2 Structure of FeH

Fig. 4.17: Crystal structure of dhep-FeH

A '&"'"Jhﬁ_‘ Fe [Antonov et al., 1998]. The iron atoms are de-
/|~ picted in two different colors to emphasize the fact

(‘ |‘ Fe that they occupy non-equivalent sites. The arrows

| ' | on the H atoms represent the direction of their
s R e displacement with respect to the center of the oc-
3’_"”’ tahedral site. The letters A, B and C are the usual

» | notations for close-packed layers in compact struc-

| /
B /* } fures.

FeH has a double hep lattice (dhep) |Badding et al., 1991, Antonov et al., 1998|. The stack-
ing sequence of closest packed layers follows the pattern ABAC (see Fig. 4.17) where A, B and
C are the usual letters to represent the three possible orientations of the layers. There are two
non equivalent crystallographic sites that contain Fe atoms. The symmetry of one of these sites
is trigonal ((2a): 3m) and the symmetry of the other site is hexagonal ((2¢): 6m2). H atoms
are positioned in the interlayer. There is no symmetry constraint on the z-coordinates of the
H atoms and, because of the low scattering cross section of H, it is not possible to determine
the exact position of the H atoms using XRD. Neutron diffraction experiments on quenched
iron deuterides (FeD) samples [Antonov et al., 1998| showed that the D atoms are not exactly
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positioned in the octahedral sites. Their displacement with respect to to the center of the site
is represented by arrows in Fig. 4.17. The lattice parameters, atomic coordinates and bond
length of dhep-FeH at low pressure (3 GPa) are summarized in Table 4.1.

Table 4.1: dhcp-FeH lattice parameters and atomic positions. The position of the hydrogen atoms
is given in three cases: exactly at the center of the octahedral site ("Oct. site"), at the position
determined experimentally in FeD samples ("Exp. [Antonov et al., 1998]") and at the position obtained
from structural relaxation ("Calc.", see section 4.4.5). The corresponding Fe-H bond length is given
in these three cases.

dhep-FeH P63/mmc, 3 GPa

Lattice parameters [Badding et al., 1991|
a (A) 2.68
¢ (A) 8.76
Volume (A%)  54.50

Atomic coordinates

T Yy z
Fe (2a) 0 0 0
Fe (2¢) 1/3 2/3 1/4
Oct. site  Exp.|Antonov et al., 1998]  Calc.
H 1/3 2/3 0.875 0.882 0.880

Bond length (A)

Oct. site  Exp. Calc.
Fe(2a)-H 1.89 1.86 1.87
Fe(2¢)-H 1.89 1.93 1.92

The volume of the cell as a function of pressure was determined experimentally in 1991
[Badding et al., 1991] and fitted with the Vinet equation of state (Eq.4.2 p.132). The obtained
parameters were: Vy = 55.6 AS, By = 121 GPa and B{ = 5.31. This relationship is plotted in
Fig. 4.18 in comparison with the equation of state of bce-Fe. The volume expansion due to the
internalization of the H atoms is clearly visible on this figure. It amounts to 17% of the initial
volume of iron.

Fig. 4.18: Relation between volume and pressure
| for dhep-FeH (black curve) determined from the fit
of experimental point [Badding et al., 1991]. For
comparison the volume of bce-Fe (see Fig. 4.8) was
reproduced multiplied by two because the num-

Lattice parameter a (A)
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to 2x1.637

2.60
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_§ be_Fe is four in the dhcp cell. Inset: Lattice parame-
> (2cells)y  dnhcp-FeH ter a as a function of pressure in dhcp-FeH de-
57 [Badding etal., 1991] 1  termined from the experimental equation of state
|Badding et al., 1991] by setting the ratio c¢/a to
35 GPa 2 x 1.637 [Antonov et al., 1998|.
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From the equation of state of [Badding et al., 1991| and by setting the ratio ¢/a to 2 x 1.637
[Antonov et al., 1998], we obtain the lattice parameter a as a function of the pressure (the

volume of the dhcp cell V = @) which is plotted in inset in Fig. 4.18.

4.4.3 FeH: Calculated XAS and XMCD spectra

Computational details

For the calculation, the experimental lattice parameters listed in Table 4.1 were used. The
H atoms were positioned exactly at the center of the octahedral sites (see Section 4.4.5 for a
discussion on this approximation).

A 1s static core hole was included in the pseudopotential for the absorbing Fe atom. A
3x3x1 supercell was built (72 atoms in the supercell among which 36 Fe atoms) so that the
distance between periodically repeated core-holes was 8.0 A. PBE norm-conserving pseudopo-
tentials (parameters detailed in Appendix E) were used with a cutoff energy of 180 Ry. A
Methfessel-Paxton smearing of 0.14 eV (0.01 Ry) and a I'-centered 4x4x4 k-point grid were
used for the self-consistent charge density calculation. A 9x9x9 k-point grid was used for
spectra calculations. The spectra for the absorbing atom in site (2a) and (2¢) were calculated.

Calculations were performed with collinear spins along the axis [001] (z in Fig. 4.17) within
the diagonal spin-orbit coupling approximation (see p. 54). The wavevector k was also set along
the axis z.

The spectra were convolved with the same Lorentzian broadening function that was used
for metal Fe (depicted in Fig. 3.4). No additional Gaussian broadening was added to account
for the experimental resolution. The calculated spectra were normalized such that the edge
jump in absorption is equal to 1.

Results

The self-consistent calculation converges to a ferromagnetic structure with a total magneti-
zation of 80 uB per supercell, i.e. 2.2 uB per Fe atom, which is consistent with the magnetom-
etry experiments [Antonov et al., 1981].

In Fig 4.19, the calculated XAS and XMCD spectra in FeH at the K-edge of Fe with the
absorbing atom either on site (2a) or on site (2¢) are depicted. The spectra for the two sites
are very different. In particular the XMCD signal is mainly composed of two negative peaks for
site (2a) and of a positive peak followed by a negative peak for the site (2¢) . On the right side
of Fig 4.19, the contributions to XMCD of the terms listed in Section 2.2 are plotted. In both
cases, the electric dipole-electric dipole term (D-D) dominates and the electric quadrupole-
electric quadrupole term (Q-Q) is negligible. The electric dipole-spin position term (D-SP) is
significant though way smaller than the D-D term. In XAS, as for the metals presented in the
previous chapter, only the D-D term is significant. The total spectrum to be compared with
experiment is the average of the spectra for each site (average of the two curves of Fig. 4.19
corresponding of each site ).

Confirmation of the observed transition

In the right panel of Fig. 4.20, the calculated XAS and XMCD spectra at the Fe K-edge
in dhep-FeH is plotted along with the spectra obtained for bce-Fe in the previous chapter.
Experimental XAS and XMCD spectra chosen before and after the observed pressure-induced
transition are depicted on the left part of this figure.
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Fig. 4.19: Left: Calculated contributions of the two crystallographic sites to the XAS and XMCD
spectra at the K-edge of Fe in dhcp-FeH (sum of the three contributions D-D, Q-Q and D-SP with the
absorbing atom in one site or the other). Right: Detail of the contribution of each term of the cross
section (listed in Section 2.2) to the XMCD of each site.
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Fig. 4.20: Left: Experimental XAS and XMCD spectra at the Fe K-edge of a Fe foil under Hy
atmosphere before (blue) and after (green) the observed pressure induced transition. Right: Calculated
XAS and XMCD spectra at the Fe K-edge in bce-Fe (blue) and dhep-FeH (green). The experimental
XMCD spectra were not corrected for the circular polarization rate of the light which only partially
explain the difference of amplitude between calculation and experiment (see the discussion on the

amplitude Sec. 3.2.3).
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The experimental spectra before and after the transition are very similar respectively to the
spectra for bee-Fe and for dhep-FeH. The changes described in Section 4.4.1 are also all present
when comparing the calculated spectra for Fe and FeH. We can therefore safely assert, that
during the experiment, hydrogen went into the Fe lattice and a double hexagonal iron hydride
formed. Consequently, the further increase of pressure was, as intended, a way of studying the
compression of dhep-FeH.

We see that the absorption of H atoms into the Fe lattice has a big impact on the XMCD
spectra. It is very much likely because of the new structure that it permits to stabilize. In
other words, it is possible that a dhcp Fe crystal with Fe atoms positioned as they are in the
dhcep-FeH structure would yield the same XMCD. Such a structure is not stable so that it is
difficult to achieve convergence of the self-consistent charge calculation that would allow to test
this hypothesis.

It is striking that despite the similarity of the magnetic moment of Fe and FeH, their XMCD
spectra are very different. It illustrates the fact that the link between XMCD at K-edge and
magnetic moment is not straightforward.

Table 4.2: Comparison of the integral of the experimental XMCD spectrum for bce-Fe and dhep-
FeH in the range 7105 eV - 7145eV. These integrals are very different despite the fact that the total
magnetization in the cell divided by the number of Fe atoms is the same.

total magnetization per Fe atom  Integral of the exp. XMCD spectrum

dhep-FeH 2.2 g -6.6 x1073
bee-Fe 2.2 up -6.5 x10~*

4.4.4 Effect of the core-hole
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4.4. Iron hydride

To study the effect of the core hole on the calculated spectra, we computed the spectra
without core hole in the simple 8 atom cell with a I'-centered 12x12x4 k-point grid for the scf
calculation and a 20x20x7 grid for the spectra calculation.

The presence of the core hole in the calculation does not affect the calculated absolute and
total magnetization at the end of the s¢f loop. However, as illustrated in Fig. 4.21, both the
XAS and XMCD spectra are impacted. The energy positions and the sign of the features of
the spectra are the same with and without core hole but there relative intensities are different.

Calculations without core-hole were used for the studies presented below because they re-
quire far less computer resources. The spectra are not intended to be compared with experi-
mental spectra and the absence of core hole does not prevent to discuss variations of the spectra
with respect to parameters of interest.

4.4.5 Effect of the position of the H atoms

As mentioned above, due to the low X-ray scattering power of H, it is not possible to
determine the exact position of the H atoms by XRD. For a matter of simplicity, calculations
presented in Fig. 4.20 and Fig. 4.19 were performed with the H atoms positioned exactly at
the center of the octahedral sites. Yet, neutron powder diffraction experiments performed on
quenched FeD samples showed that the D atoms were positioned slightly off the site centers
(their vertical displacement are illustrated by arrows on Fig. 4.17 p. 140). We see below that
the impact of this vertical displacement on XAS and XMCD spectra is tiny. The main interest
for numerically moving the H atoms is to better understand the magnetic structure of FeH.

Relaxation of the position of H

As the vertical position of the atoms H was only measured in quenched FeD samples, we
decided to perform an atomic relaxation in order to determine numerically this position for
each pressure.

T T T T T T

i Numerical relaxation of atomic positions
T dhcp-FeH
c
=
6 0.885 .
o
o
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= |
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Fig. 4.22: Vertical position of the H atom in dhcp-FeH obtained by structural relaxation of the atomic

lattice parameter a (A)

positions with the code pw of QuaNTUM ESPRESSO.
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4.4. Iron hydride

The principle of this relaxation is simply to allow for the atoms to move in the cell without
changing the lattice parameter and to look for the lowest energy structure obtained at the end
of a self consistent calculation. The choice of keeping the lattice parameters fixed was driven
by the need to model FeH under high pressure. As explained in Section 4.3, the experimental
volume is used to model a given pressure.

In practice, the relaxation of the atomic positions was performed by setting relax as type
of calculation in input of the code pw.x of QUANTUM ESPRESSO. As a starting point, the
H atoms were positioned at the center of the octahedral sites in a simple dhcep cell (8 atoms)
using a 10x10x10 k-point grid. PBE norm-conserving pseudopotentials with a cutoff energy
of 180 Ry (parameters detailed in Appendix E) were used. The calculations were spin po-
larized with spins along the axis [001]. Damped dynamics was used for structural relaxation
|Giannozzi et al., 2009).

The relative position of the atom H for several lattice parameters, i.e. for several pressures,
is presented in Fig. 4.22. The reduced coordinate is always in the interval 0.880 + 0.015.
The result of the relaxation is, therefore, very close to the experimental value that was 0.882
[Antonov et al., 1998|.

Effect on the XAS and XMCD spectra

We performed calculations of the XAS and XMCD spectra without core-hole with the H
atom either in the center of the octahedral site or in the relaxed position (positions denominated
Oct. site and Calc. in Table 4.1). The lattice parameters were set to a—2.68A and c/a—2 x
1.637, which corresponds experimentally to a pressure of 3 GPa.

PBE norm-conserving pseudopotentials (parameters detailed in Appendix E) were used with
cutoff energies 160 Ry. The calculations were spin polarized with spins along the axis [001]. A
Methfessel-Paxton smearing of 0.14 €V (0.01 Ry) and a T'-centered 12x12x4 k-point grid were
used for the self-consistent charge density calculation. A 20x20x7 grid was used for spectra
calculations and a constant Lorentzian broadening, with full width at half maximum set to 1.6
eV was applied. The wavevector k was set along the axis [001].

The XMCD spectra obtained for both positions of H atoms are plotted in Fig. 4.23. The
top line of this figure shows the electric dipole-electric dipole (D-D) contribution and the bot-
tom line the electric dipole-spin-position (D-SP) contribution. The electric quadrupole-electric
quadrupole term, the contribution of which to XMCD is negligible, has not been studied here.
Note that the scale used to display the different terms is not the same and the D-SP term is
notably smaller than the D-D term.

Visually, the spectra seem almost unaffected by the vertical displacement of the H atoms:
it is very difficult to distinguish the dashed lines from the solid lines. Yet, if one computes the
integrals of the spectra (shown in the right in Fig. 4.23), an interesting trend emerges. The
integrals of the D-SP spectra are almost exactly equal for both Fe sites when the H atoms are
positioned in the center of the octahedral site whereas the integrals of the D-D spectra are
different for both sites. For both terms, the absolute value of the integral of the contributions
due to the site (2a) decreases when H is moved vertically and for the contributions due to the
site (2¢), it increases. In the previous chapter (Section 3.4), we demonstrated that the D-SP
spectra is related to the partial spin magnetization of the occupied p states Sz}; and that the
corresponding sum-rule is reliable. We can therefore deduce that the spin magnetization of the
p states is the same for both Fe atoms when the H atoms are positioned at the center of the
octahedral site but it is different when, as observed experimentally, they are vertically shifted.
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Fig. 4.23: Left: Contribution to the XMCD due to the D-D term (top) and to the D-SP term (bottom)
of the cross section to the total calculated XMCD of dhcp-FeH with either the H atoms in the center of
the octahedral site (solid lines) or in the position obtained by atomic relaxation (dashed lines). Right:
Integral of this spectra plotted as a function of the z reduced coordinate of the H atom. The integral
of the D-D term has been multiplied by -1 in order to have it positive.

The sign of the integral of the D-D term is opposite to the one of the D-SP term. This is
consistent with Hund’s rules that implies that for an orbital that is less than half-filled (that is
the case of the 4p shell), the spin and orbital angular momentum are anti parallel.

The trend (increasing/decreasing of the absolute value) is the same for the D-D term as
for the D-SP term which suggests that the sum-rule for the D-D term could be reliable for
qualitative interpretation of small variations of the spectra.

Projected density of states and magnetic moment per site

The magnetic moment of FeH is mainly due to the d electrons of Fe.* The magnetic moment
carried by the d electrons can be obtained from the d-projected densities of states (DOS) that
are plotted on the left side of Fig. 4.24. These DOS present the expected spin split associated
to ferromagnetism.

The curves corresponding to the two different positions for the hydrogen atoms are visually
almost indistinguishable. The d-projected spin polarization 25¢ (right side of Fig. 4.24) is
obtained by computing the difference of the DOS for spin up with the DOS for spin down and
integrating over unoccupied states from -10 eV to the Fermi level.

The magnetic moment associated to this projected spin momentum is given by —gS%ug
where ¢ is the gyromagnetic factor. As g ~ 2 for the electron, the absolute value of the
magnetic moment per atom due to the d electrons can be read directly on the right pannel of

4By integration of the projected DOS, we evaluated the magnetic moment per atom due to the Fe p states
to -0.05 pp, that due to the Fe s states to -0.002 pp and that due to H s states to -0.03 pp. We do not have
an evaluation of the orbital magnetic moment.
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Fig. 4.24: Effect of the position of H on the d projected density of states. Left: Projected d DOS
with the H atoms either in the center of the octahedral site (solid lines) or in the position obtained by
atomic relaxation (dashed lines) for both sites. The upper part of each plot corresponds to the DOS
for spin up (majority spins) and the lower part to the DOS for spin down (minority spins). Right:
d-projected spin polarization per Fe atom.

Fig. 4.24. We see that the position of the hydrogen atoms impacts the division of the magnetic
moment between the two sites without changing its total value. The magnetic moment of the
Fe atoms closer to the H interlayers is smaller while the magnetic moment of the Fe atoms
further to the H interlayer is larger.

4.4.6 Magnetic structure of FeH

Using the tool pp.x of QUANTUM ESPRESSO, it is possible to extract the electron density
from the output of the scf calculation and to plot it. We used this tool and the software
XCrySDen [Kokalj, 2003] to plot the spin density depicted in Fig. 4.25.

We see that, unsurprisingly, most of the spin density is located on the Fe atoms: the region
between the Fe atoms seems uniformly orange on the plane in the left side of Fig. 4.25. With
a more appropriate scale is used (right side of Fig. 4.25), we see that the H atoms carry a
negative spin polarization. It explains why the magnetic moment of the Fe atoms closer to the
H interlayers is smaller.

It also sheds light on the reason why the magnetic moment per Fe atom in dhcp-FeH is
the same as in bce-Fe despite the fact that the Fe atoms are more distant one from each
other in dhep-FeH (2.68 A whereas they are distant of 2.486 A in bee-Fe). This difference in
distance suggests that the magnetic moment could be larger in dhcp-FeH (the magnetic moment
decreases under pressure). From Fig. 4.25, we understand that the spin-density around the Fe
atoms is, indeed, larger than in bcc-Fe but it is compensated by a negative moment on the H
atoms which leads to the same total magnetic moment.
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Fig. 4.25: Spin density (p" — p*) calculated on the plane [110] which contains Fe(2a), Fe(2¢) and H
atoms. Left: Plane [110]| depicted in the 3D structure. The full range of the spin density (-0.015 to
0.697) is included in the color scale. The region between the Fe atoms seems uniformly orange on the
plane in the left side because most of the spin density is located on the Fe atoms. Right: Spin density
in the plane [110]. A limited range of spin density (-0.015 to 0.015) is plotted in order to have the
contributions of the H atoms to be visible.

4.4.7 Increasing pressure in the calculation

Application of pressure is a way of experimentally changing the interatomic distances.

Disappearance of ferromagnetism under pressure

Experimentally, we observe that XMCD vanishes between 23 and 28 GPa. This indicates
that ferromagnetism disappears under pressure. As the Mdssbauer spectrum of FeH (that
is a sextet at 3 GPa) becomes a single line between 25 and 28 GPa (at room temperature)
[Mitsui and Hi, 2010]), we deduce that the transition occurs toward a paramagnetic state. In-
deed, MGssbauer spectroscopy probes the energy levels of the nuclei which are sensitive to its
electronic environment. Under a magnetic field, the nuclear levels split into (2I+1) components
and the allowed transitions (Am; = 0, £1) between the ground and excited levels lead to a
sextet whereas in the absence of magnetic field this hyperfine spectrum collapses.

It is possible to run non magnetic self consistent field calculations which means that the
DFT calculations are performed without spin (the density for spin up and for spin down are
the same). The states obtained this way are usually referred to as non magnetic states. We will
use this denomination in the following because it corresponds to the way the system is treated
numerically. The proper way of modelling a paramagnetic state would require a random distri-
bution of localized magnetic moments as it is done in [Mankovsky et al., 2013| using SPR-KKR
method. This is however, to the best of our knowledge, computationally insurmountable with
plane-waves DFT codes of the kind of QUANTUM ESPRESSO. It is therefore very common
to describe paramagnetic states with non magnetic calculations.
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Fig. 4.26: Calculated total energy as a function of the volume of the dhcp-FeH cell. Red squares

correspond to non magnetic calculations and black circles to spin-polarized calculations that converged
into a ferromagnetic structure. Both curves are fitted with Murnaghan equation of state (Eq. (4.1)

p. 132). The fitted paramaters are V = 49 AB, By = 263 GPa and B{, = 3.8 for the non magnetic
state and Vj = 53 Ag, By = 166 GPa and Bj, = 4.4 for the ferromagnetic state.

The total energy of the non magnetic and ferromagnetic states of dhep-FeH is plotted in
Fig. 4.26. For a volume V=40 AB, the non magnetic state becomes more stable. This is close to
the result obtained by LMTO-ASA calculations [Elsésser et al., 1998] that showed a magnetic
transition between 75 and 80 Bohr?® (44 - 47 A?)). This volume corresponds experimentally to
the pressure P=92 GPa [Badding et al., 1991]. Using Murnagham equation of state with the
calculated parameters we can also obtain the calculated pressure (derivative of the energy with
respect to the volume): P=94 GPa. The calculations are performed at low temperature (0 K)
S0 it is not surprising to find a transition pressure larger than the one measured at room temper-
ature. The uncertainty on the calculated transition pressure is very large (several tens of GPa)
due to the fact that pressure varies quickly with volume in the range 40 - 45 A’ (the volume
V=45 A’ corresponds to a pressure P=40 GPa) and a small error on the lattice parameter a
results in a significant error on the volume.® For this reason, it is likely that, if experiments at
low temperature were to be performed, the calculated value would also be off .

Calculated spectra under pressure

The XAS and XMCD spectra without core hole of the ferromagnetic state of FeH were
computed with several lattice parameters and the XAS spectra of the non magnetic state was
computed with the lattice parameter corresponding to P=40 GPa (see inset of Fig 4.18 for
the relationship between the lattice parameter a and the pressure). PBE norm-conserving
pseudopotentials (parameters detailed in Appendix E) were used with a cutoff energy 160 Ry.
Except for 40 GPa, the calculations were spin polarized with spins along the axis [001]. A
Methfessel-Paxton smearing of 0.14 eV (0.01 Ry) and a I'-centered 12x12x4 k-point grid were
used for the self-consistent charge density calculation. A 20x20x7 grid was used for spectra

5For example, for a = 2.5A with the uncertainty da=0.1A, the uncertainty on the volume is dv=2.34"
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calculations and a constant Lorentzian broadening, with full width at half maximum set to
1.6 eV was applied. The wavevector k was set along the axis [001].

By comparison with Fig 4.16 p. 140, we see that our calculations reproduce very well the
effect of pressure on the spectra. The effect of pressure on the XAS spectra of ferromagnetic
FeH is to push the peaks at higher energies as the distances are reduced. The amplitude of
XMCD decreases slowly without change of its shape. The similarity between the calculated
XAS spectra for the non magnetic state (in purple in Fig. 4.27) and the XAS spectra at 28 GPa
(in red in Fig. 4.16) that corresponds to the pressure when XMCD vanishes is also striking: the
shoulders a and b are enhanced while the maximum c decreases in amplitude. We can therefore
deduce that the evolution of the shape of the experimental XAS spectra at 28 GPa is a marker
of the transition from ferromagnetic FeH to paramagnetic FeH that is not accompanied by any
structural transition. We see that spectra calculations can also be a useful tool to determine if
changes observed on spectra under pressure are accompanied by a structural transition. This
not obvious when, as in the case presented here, pressure induces not only the expected stretch
of the energies due to distances contraction, but also a variation of the intensities of the peaks.

4.4.8 Conclusion

In this study, calculations helped identifying two transitions that occurred when Fe was
compressed under Hy atmosphere.

The first transition corresponds to the absorption of H atoms into the bec-Fe lattice which
leads to the creation of dhep-FeH. The calculated spectra for bec-Fe and dhep-FeH are in good
agreement with experimental ones. The example of Fe and FeH is perfect to illustrate that a
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quick interpretation of XMCD at K-edge saying that the integral of the spectra is proportional
to the magnetic moment is not valid. Here, the magnetic moment in the cell divided by the
number of Fe atoms is the same in bee-Fe and dhep-FeH but the integral of the XMCD spectra
at the K-edge of Fe is completely different. The fact that the XAS and XMCD spectra are well
reproduced by the calculations means that the materials under study are well simulated by our
numerical method which allowed to draw conclusions on the magnetic structure of FeH based
on the output of the calculations.

The second transition is a purely magnetic transition from a ferromagnetic state to para-
magnetic state. The existence of this pressure-induced transition, that was inferred from the
observation of the XMCD spectra, was confirmed by the calculation. The pressure of transi-
tion can, however, not be determined accurately from the calculation because of the enormous
uncertainty on the obtained pressure.

From a methodological point of view, this study is an example of the possibilities that our
method opens as soon as the spectra are well reproduced which ensures that the material is
correctly simulated.

4.5 Chromium Dioxide

The time of glory of chromium dioxide seemed over with the gradual decline of the magnetic
recording cassette tapes in which it had been used along with Fe;O3. Yet, it has been attracting
a renewed interest in recent years. It is a particularly interesting transition metal oxide because
it belongs to the class of half-metallic ferromagnets: the Fermi level crosses a metallic band
for one spin channel while it lies in a gap for the other spin channel. This property makes it a
good candidate for spintronic applications (for example as a source of spin polarized electrons)
especially because it has a rutile structure like several other MO, oxides, where M is a transition
metal (e.g. Ti, Mo, Ru). These oxides have various properties (e.g. TiO, is a diamagnetic
semiconductor and RuOs is a paramagnetic metal [Rao and Gopalakrishnan, 1997, Table 6.4])
so their combination in layered devices is promising.

4.5.1 Electronic properties of CrO,

The interest for the electronic and magnetic properties of CrOs from a fundamental point
of view is strong. Despite a large number of studies, it is clearly stated in the review by
Katsnelson et al. [Katsnelson et al., 2008], that the intrinsic correlated electronic structure
that induces both ferromagnetism and metallicity remains to be understood. Yet, interesting
lines of explanation can be found in the literature.

Lattice

CrO, crystallizes in the tetragonal P4,/mnm (136) space group |Thamer et al., 1957]. Tt
has a rutile structure, that is represented in Fig. 4.28. The Cr'** ions form a body-center
tetragonal lattice and are surrounded by octahedra of oxygen atoms. The structure can be
viewed as ribbons along c-axis of edge sharing octahedra joined together by corners (each
oxygen is shared by three octahedra). The orientation of the octahedra in adjacent ribbons
differs by a 90°rotation about the c-axis.

In CrO,, the octahedra are axially compressed: the Cr-O length in the apical direction is
1.89 A whereas in the equatorial directions it is 1.91 A. Moreover, the arrangement of the
four O is rectangular (instead of square in a perfect octahedra) so that when we define the local
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Fig. 4.28: Left: CrO; structure (Figure from |Yamasaki et al., 2006]). We define the local coordinate
systems with z; o pointing exactly to an O atom and xi 2 almost pointing to an O atom. Right: the
unit cell in the local coordinates of the octahedron around Crl.

coordinates in the octahedra, x and y can not both point toward a ligand (see Fig 4.28, right).
The lattice parameters of CrOs are listed in Table 4.3.

Table 4.3: CrO; lattice parameters and atomic positions. As u < 0.304, the CrOg octahedra are
axially compressed.

CrOs P45 /mnm

Lattice parameters [P.Porta et al., 1972]

a (A) 4.42
c (A) 2.92
Volume (Ag) 56.9
Atomic coordinates
r oy oz
Cr (2a) 0 0 0
O(4f) u u 0 where u=0.303 [P.Porta et al., 1972]
Bond length (A)
Cr-O apical 1.89 (two bonds)
Cr-O equatorial  1.91 (four bonds)

Simplified crystal field picture

The half metallic behaviour of CrO, can be understood in simplified terms using the crystal-
field model [Katsnelson et al., 2008]. In an octahedron, the d-orbitals are split into two sets of
levels: the ty, orbitals and the e, orbitals. In CrO,, the minority spin states are at significant
higher energy compared to the majority spin states (see diagram Fig. 4.29). In Cr**, the ta, of
up spins are 2/3 filled. For spins down, on the other hand, the Fermi level lies in a band gap
between the occupied O p and the unoccupied Cr d states so that CrO, is a half metal.

Yet, generally, two 3d electrons in the ty, orbitals would make a Mott insulator with S=1
local moments and antiferromagnetic ordering but this seems to be about as far from the actual
observed properties as one can get [Korotin et al., 1998|.
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Fig. 4.29: Simplified diagram representing the
energies of the orbitals of the ion Cr** in ferro-
magnetic CrOz. The to, - €4 splitting is due to the
spin up ligand in octahedral symmetry. In a ferromagnetic
material, the minority spin states are at higher en-
g ergy compared to the majority spin states. The
3 convention chosen here is that up spins are major-
ity spins.

Partial densities of states

To better understand the electronic properties of CrOs, the projected densities of states in
CrOy shown in Fig. 4.30 can be useful.

These DOS illustrate the half-metallic property CrOs: the Fermi level intersects the majority
spin bands (spin up in Fig. 4.30) and it is in a gap of the minority spin states. It results in
a complete spin polarization at the Fermi level which is consistent with observations made by
Andreev spectroscopy [Soulen et al., 1998|. The total spin moment is precisely equal to 2.0 ug
per Cr atom due to this gap.

The Cr d density of states (third panel) is consistent with the simplified crystal-field picture
of Fig. 4.29. Due to the distortions of the CrOg octahedra, this crystal-field description is
however more complicated than depicted in Fig. 4.29. As was pointed out by Korotin et
al. [Korotin et al., 1998, the to, orbital is split because of the compression of the octahedra
between the d,, orbital at lower energy and the d., and d., orbitals at higher energy. We see
at the bottom of Fig. 4.30, that the d,, orbital is localized in energy. We deduce that it is not
part of the continuum which means that it is also localized in real space contrary to the d.,
and d, orbitals which are more itinerant. The latter strongly hybridize with O p states.

Double exchange mechanism

Ferromagnetism in CrO, has been attributed to a specific double exchange mechanism
between Cr atoms in which the splitting of the to, orbital plays a crucial role [Schlottmann, 2003,
Schlottmann, 2004, Korotin et al., 1998|.

All Cr atoms in the structure have the same oxidation state so ferromagnetism can not be
described exactly within Zener double exchange model but it has been explained in the same
terms. According to this model, one electron on each site occupies the localized d,, orbital
(which is lower in energy than d,, and d,, due to the compression of the octahedra) and the
other electron is able to hop from one site to the other (¢ term in the Hubbard model). Hund’s
rule couples the spins of the localized electrons with the spin of the itinerant electrons so that
the hopping depends on the relative z projections of the spins. The presence of the hopping
electrons lower the total energy of the system so that, in the ground state, the system favours
ferromagnetic coupling. Note that the hopping between the Cr atoms is mediated by the O
p-states and is not direct. It has been shown that, if the three orbitals were itinerant, an
antiferromagnetic coupling would be favoured [Schlottmann, 2004] which led to the conclusion
that the distortion of the octahedra is crucial to explain ferromagnetism.
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Fig. 4.30: Projected Cr p, O p and Cr d density of states of CrOz for both spins and to, density
of states near the Fermi level. The z direction is the apical direction of the CrOg octahedron.PBE
norm-conserving pseudopotentials (parameters detailed in Appendix E) were used with a cutoff energy
180 Ry. The calculations were spin polarized with spins along the axis [001]. A Methfessel-Paxton
smearing of 0.14 eV (0.01 Ry) and a I'-centered 6 x 6 x 9 k-point grid was used for the self consistent
calculation in the conventional cell that contains two Cr and one O. The non-self-consistent part of
the calculation was performed with a 12 x 12 x 18 k-point grid.

Yet, the double exchange model proposed by P. Schlottmann requires high Coulomb inter-
action and, therefore corresponds to an insulator (Mott-Hubard limit) [Schlottmann, 2004]. As
he himself states, the fact that the ligands are not included in the model Hamiltonians that P.
Schlottmann considered is likely the origin of this problem. Yet, it indicates that the success
of the proposed exchange mechanism is questionable.

In this context, a study of the effect of pressure on magnetism in CrO, could be very
interesting to get new insight on the possible exchange between Cr atoms. Indeed, applica-
tion of pressure changes the local environment of CrO, [Maddox et al., 2006] which is of great
importance in the proposed mechanism.

Correlations effect in CrQO,

No Hubbard U term [Cococcioni and de Gironcoli, 2005] was included in the DOS calcu-
lation presented above. The importance of the on-site Coulomb repulsion in CrQO, is still a
subject of active research. Mazin et al. [Mazin et al., 1999] showed that LDA calculations of
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optical conductivity in CrO, are sufficient to interpret the experimental data and deduced that
there 1s no experimental smoking gun in reqard to strong correlations related exotic phenomena
in CrOy. Contrary to this result, photoemission spectra are better fitted if the Hubbard U
correction is included [Laad et al., 2001| which seems to indicate that electronic localization is
important. Another study by Toropova et al. [Toropova et al., 2005] compared results from
LDA and LDA+U calculations to various experimental data, including Ls 3 x-ray absorption
spectra. They observed that LDA calculations better explain experimental data. The question
of the existence of strong correlations in CrOy remains rather unclear.

We saw above that simple PBE (GGA) calculations are sufficient to obtain half-metallic
ferromagnetism in chromium dioxide. It is a little bit surprising because we could have expected
that strong correlations would be required for the double exchange described above.

To pursue further the investigation of the properties of CrO,, it is important to check if we
can model correctly its electronic and magnetic structure. For this purpose, confrontation with
XAS and XMCD experiments can be a valuable asset.

4.5.2 Pre-edge structure

The X-ray absorption spectra of CrO, at K-edge of Cr measured on ODE beamline is shown
in Fig. 4.31. There is a peak in the pre-edge but the signal to noise ratio is not sufficient to
study its structure. Therefore, for the pre-edge structure, we are going to use the integrated
data from a 152p Resonant Inelastic X-ray Scattering (RIXS) experiment that we performed
on Galaxies beamline at SOLEIL. All the details of this RIXS-MCD experiments are given in
the paper by Patric Zimmermann et al. [Zimmermann et al., 2017] attached in Appendix F of
this thesis. By integration of the RIXS map over the full K, emission energy, we can obtain a
fluorescence spectrum. It is similar to a TFY spectrum © as can be measured on certain XAS
beamlines but with a slightly narrower emission energy range.
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To interpret the experimental spectra, we computed the densities of state in the presence
of a 1s core hole (see Section 2.5 p.69) which required the use of a supercell. It is possible to
perform such calculations for the interpretation of the K pre-edge because the needed energy
range is small. When the energy range increases, it becomes computationally more and more
expensive and therefore intractable (hence, the use of the method presented in Chap. 2 to
compute XAS spectra).

STFY spectra are usually assimilated to absorption spectra despite the fact that they can be distorted
compared to XAS. [de Groot and Kotani, 2008, de Groot et al., 1994, Eisebitt et al., 1993]
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A 2 x 2 x 3 supercell was used so that the distance between core-holes is 8.4 A and the
k-point grid was reduced accordingly. The densities of states were computed up to 6 eV above
the Fermi level which already requires the inclusion of 220 bands in the non self consistent part
of the calculation.

The p and d density of states projected on the Cr atom with a core-hole and on a neighboring
Cr are plotted at the bottom of Figure 4.32.
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Fig. 4.32: Top: Experimental absorption spectra (obtained from the integration of the RIXS plane
over emission energy) and projected density of states in the presence of a 1s core hole on the Cr atom
with a broadening of 0.3 eV. The p density of states is multiplied by 400 (the prefactors for terms D-D
and Q-Q are different). The DOS have been shifted by 5996.5 eV in energy to match the experimental
spectra. Bottom: Projected Cr p, O p and Cr d density of states of CrO» for both spins near the Fermi
level with and without core-hole. Cr* corresponds to projections around the chromium atom with a
1s core-hole and Cr around a neighboring chromium.

The main effect of the core hole on the DOS is to shift them to lower energies: it is visible
on the d-projected DOS (on top of the bottom panel of Fig. 4.32). The energy position of p
DOS, on the other hand, is almost unaffected by the core-hole. This leads to the conclusion
that the p density of states in the pre-edge range is due to the hybridization of the p states of
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the absorbing atom with the d states of the neighboring Cr atoms. This hybridization results in
several peaks in the Cr p density of states just above the Fermi level (note that, as the Cr site
is centrosymmetric, on-site p-d hybridization is forbidden by symmetry so these peaks could
not have been due to on-site hybridization). This hybridization is likely mediated by the O p
states because the Cr-Cr distance is 3.45 A which is too large to allow a direct hybridization.
The energy position of these p features just above the Fermi level are not affected by the core
hole because they lie at the energy of the d states of the neighboring Cr which has no core hole.
The main effect of the core hole is, therefore, to separate the d and p features in the pre-edge
range. The diagram Fig. 4.33 is an attempt to illustrate this point.

Fig. 4.33: Diagram to qualitatively illustrate the
effect of the 1s core hole on the p and d densities
of states just above the edge. The absorbing atom,
with a core hole, is labelled Cr*.

mixing

- o

Surrounding Cr Cr*

The experimental absorption spectra in the pre-edge is shown on top of Fig. 4.32. We know
that the electric dipole - electric dipole (D-D) transition probes the empty p states whereas the
electric quadrupole - electric quadrupole (Q-Q) transition probes the empty d states. The p
and d densities of state are therefore plotted on the same graph as the experimental spectra.
From this graph, we can infer that there is a significant D-D contribution in the pre-edge and
a Q-Q contribution at lower energy that seems to appear as a shoulder in the experimental
spectra.”

It is known that the energy position of the unoccupied d states near the Fermi level is very
sensitive to core hole effects and that, when including a static 1s core-hole with full relaxation
of the electronic structure as we do, it is usually calculated at a too high energy with respect
to the edge (the 1s core hole is overscreened) [Cabaret et al., 2010]. The combined effect of the
Hubbard U correction and of a core hole is, a priori, not predictable. In a different study at the
Co K-edge in LiCoOs [Juhin et al., 2010| the effect of the Hubbard U correction in the presence
of a core hole was to increase the splitting between the D-D and the Q-Q contributions. Here,

" The attribution of features of the RIXS map to transitions toward d or p states is important for the
further study of the RIXS and RIXS-MCD maps. Indeed, DFT-based calculation (which are monoelec-
tronic calculations) can not accurately reproduce 1s — 3d transitions when there is a strong 3d-3d repul-
sion. An adequate theory to perform RIXS calculations in that case is ligand field multiplet (LFM) theory
[Stavitski and de Groot, 2010]. In LFM calculations, only the absorbing atom with its ligands are considered
so that only the localized states are accounted for but the big advantage is that it is a multielectronic method
so that the 3d-3d repulsion can be included. LFM calculations are parametrized so that it is important to
know a priori which region of the map is to be computed. Such calculations are presented in the paper
[Zimmermann et al., 2017] reproduced in Appendix F of this thesis.
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the splitting seems correctly computed so that the inclusion of the Hubbard U correction does
not seem to be necessary. For this reason, we decided to pursue the interpretation of the edge
features without U correction.

4.5.3 Magnetism under pressure in CrO, studied by XMCD at the
Cr K-edge

We measured XAS and XMCD spectra under pressure at the Cr K-edge on ODE beam-
line at SOLEIL. The interest of performing experiments at the K-edge is twofold here: (i) the
surface of the CrOy grains can be reduced to CryO3 so it is important to probe the bulk and
not the surface and (ii) it permits the application of pressure. The application of a hydrostatic
pressure to CrOs changes the local octahedral environment of Cr: X-ray diffraction measure-
ments [Maddox et al., 2006] revealed that the degree of distortion of the octahedra increases
upon application of pressure. Pressure is, therefore, expected to influence the possible double-
exchange mechanism which is related to the distortion of the octahedra and hence the magnetic
state of CrOs.

Experimental details

Sample We used a commercial CrO, powder sold by Sigma-Aldrich under the name
Magtrieve(TM). We grinded it mechanically to get grains of a size less than 10um. We per-
formed X-ray diffraction of the obtained powder to check that CrOy had not been reduced to
Cry03. Indeed, CrO, is metastable and the stable Chromium oxide at ambient conditions is
Cry0O3. The diffraction pattern, shown in Fig. 4.34, shows no other peaks than the rutile CrO,
ones.
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Fig. 4.34: XRD pattern of the finely grinded CrO2 powder fitted with the standard pattern of CrOq
in rutile phase.

Synchrotron experiments under pressure XAS and XMCD spectra under pressure
at the Cr K-edge were acquired with a Si (111) polychromator. A portion of the beam below
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the plane of the radiation emitted by the bending magnet was selected to obtain circularly
polarized X-rays.

The K-edge of Cr lies relatively low in energy (5989 eV) so we had to use perforated
diamond anvils [Dadashev et al., 2001] to apply pressure because full diamond would have
absorbed too many X-rays. Silicon oil was used as pressure-transmitting medium. A hole with
diameter around 100 ym was drilled in a rhenium gasket of local thickness 20 um (obtained by
indentation). Cr K-edge XAS spectra were measured in transmission within a 1.3 T magnetic
field whether parallel or antiparallel to the direction of propagation of the magnetic field.
XMCD was recorded according to the procedure described p. 129 and the sign was set to
correspond to the conventional way of displaying XMCD spectra [Baudelet et al., 1991].

XAS and XMCD at the Cr K-edge

The XAS and XMCD spectra at the Cr K-edge as a function of pressure at two differ-
ent temperatures (room temperature and T=15K) are shown in Fig. 4.35. The amplitude of
the XMCD on the edge reaches 3 x1072 of the edge jump at low temperature. The XMCD
spectra at ambient conditions that we measured is similar to the XMCD spectrum at the
Cr K-edge in CrOy (recorded only up to 20 eV above the edge) that was published in 1997
[Attenkofer, K. and Schiitz, G., 1997].

An isolated positive peak appears in the XMCD spectra approximately 46 eV above the edge.
This feature is very similar to the evidences of multielectron excitations that were reported
in XMCD of rare earth coumponds in [Dartyge et al., 1992|. This peak is likely due to the
existence of a double excitation, that is to say an excitation of two electrons: a 1s electron and
a 3p electron. Indeed, the binding energy of the 3p electrons (M3 edges) of Mn is 47.2 eV
which corresponds to the energy position of the peak above the edge. We consider the binding
energy in atom Mn (Z+1 compared to Cr) because the Z+1 atom qualitatively mimics the 1s
core hole [Dartyge et al., 1992]. Dartyge et al. explain that the double excitation is due to
electric dipole transitions because they checked the angular dependence. It is difficult to say if
it is due to the D-D or the D-SP operator because our monoelectronic method for calculation
is unable to model a double excitation.

At room temperature, on the right panel of Fig. 4.35, we observe that the XMCD amplitude
decreases rapidly under pressure. In particular, there is a sudden decrease of the XMCD between
9 and 12 GPa accompanied by a slight deformation of the spectrum. The shape of the absorption
spectrum also changes between 9 and 12 GPa. Surprisingly, almost no changes occur in the
near-edge region but they start 40 eV above the edge. In the literature, a structural transition
from rutile structure (P42/mnm) to an orthorhombic CaClsy-like structure (Pnnm, also a sixfold
coordinated structure) is reported to occur at 124+3 GPa [Maddox et al., 2006]. It is likely that
the observed changes of the spectra are due to this transition. The fact that the amplitude of
the XMCD amplitude decreases rapidly with pressure is not in favor of the simplified picture
in terms of double-exchange because the basis of this mechanism that is the distortion of the
octahedra is enhanced by pressure. We can deduce that double exchange probably competes
with one or several other mechanisms that lead to the progressive disappearance of magnetism
under pressure.

On the left panel of Fig. 4.35, we see that the impact of pressure on the XMCD spectrum
at low temperature is mainly a small decrease of its amplitude. Between 11 GPa and 15 GPa,
the main positive peak of the XMCD spectrum is slightly shifted to higher energies. The
corresponding XAS (15 GPa) exhibit several differences with the spectra at lower pressure but
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Fig. 4.35: Experimental XAS and XMCD spectra for CrOs for several values of increasing pressure
at two temperatures: T=15K for the left panel and room temperature for the right panel. The
experimental XMCD spectra were not corrected for the circular polarization rate of the light P. < 1.

it is not similar to the room temperature-high pressure spectra. The fact that the magnetism
at low temperature is more robust with pressure is interesting because it indicates that CrO,
remains ferromagnetic at high pressure but with a lower Curie temperature. This could be
the sign of a competition between super-exchange (that favors antiferromagnetic ordering) and
double exchange |Loh, 2011].

It is clear that calculations would be very useful to distinguish the changes due to a possible
structural phase transitions from the changes related to the impact of pressure on the electronic
and magnetic structure of CrOs.

Preliminary calculations

For the preliminary calculations presented in this section, the experimental lattice parame-
ters of Table 4.3 were used. The same pseudopotentials (parameters detailed in Appendix E) as
for the DOS calculations were used. A static 1s core hole was included in the pseudopotential
for the absorbing Cr atom. A 4x4x4 k-point grid was used for the scf calculation within
a 2x2x3 supercell (72 atoms, distance between core holes: 8.42A) with a Methfessel-Paxton
smearing of 0.14 eV (0.01 Ry).

Calculations were performed with collinear spins along the axis [001] (c-axis in Fig. 4.28)
within the diagonal spin-orbit coupling approximation (see p. 54). The wavevector k was also
set along the c-axis.

The results of the calculation are shown in the right panel of Fig. 4.36 next to the experi-
mental spectra. Visually, it is striking that, despite the fact that the X-ray absorption spectra is
well reproduced by the calculation, the calculated XMCD spectrum seems completely different
than the experimental XMCD. Yet, with a closer look, we see that, except in the pre-edge range,
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Fig. 4.36: Left: Experimental XAS and XMCD spectra at the Cr K-edge in powder CrO, at ambient
pressure and low temperature (T=4K). The experimental XMCD spectra were not corrected for the
circular polarization rate of the light P, ~ 0.7. Right: Calculated XAS and XMCD spectra at the Cr
K-edge in CrO9 with k along the c-axis. In both cases, the XMCD spectrum was multiplied by 200.

the peaks positions and sign are in good agreement with experiment. The relative intensity, on
the other hand, is completely off which gives the visual impression of a totally different spectra.

The contributions to the calculated XMCD of the three terms D-D, D-SP and Q-Q are
shown in Fig. 4.37. We see that, in the pre-edge region, all three contributions are more or less
equally significant whereas at higher energies, the Q-Q term is negligible.
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The calculation was performed with only one direction of k-vector so the calculated spectrum
depicted in Fig. 4.36 is not the isotropic spectrum (which is in principle the spectrum to be
compared with the experimental spectrum acquired on powder). This is expected to have a
strong impact in the pre-edge range because the three terms are angular dependent.

The angular dependence of the the D-D and D-SP term are more simple than that of Q-Q
and we checked by sampling three directions and calculating the spectra without core-hole,
that angular dependency can not explain the discrepancy of the XMCD spectra in the range
6000 eV - 6040 eV.

The fact that the XMCD spectra is not well reproduced by the calculation is a warning
sign that indicates that the method does not fully capture the complex magnetic structure of
CrO,. In particular, the D-SP contribution does not improve the agreement with experiment.
It could be related to a bad modeling of the spin-density close to the nucleus.
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4.5.4 Conclusion

CrOs is a particularly interesting transition metal oxide because it is a half metallic ferro-
magnet. The fundamental electronic properties of CrO; remain to be understood. The study
of the impact of pressure on magnetism in CrOs is a very promising way to shed a new light
on the issues that are discussed and in particular on the double exchange mechanism that was
proposed to explain ferromagnetism in CrOs. Indeed, the distortion of the octahedra of the
rutile structure plays a crucial role in this mechanism and the application of pressure changes
the local environment of Cr. Combined XAS and XMCD experiments at the K-edge of Cr are
the method of choice to undertake this study.

Experimentally we observed several variations of the XAS and XMCD spectra which still
need to be interpreted. Preliminary calculations were not able to reproduce the experimental
XMCD spectrum even if the calculated XAS spectrum is in good agreement with experiment.
Further calculations, which include the Hubbard U correction and the intra-atomic exchange J
(which are not implemented yet) should be performed in order to see if the agreement between
calculated and experimental spectra is improved.
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Conclusion and Outlook

The main purpose of this thesis was to compute X-ray magnetic circular dichroism spectra
at K-edge in order to provide a tool to interpret the, so far very puzzling, experimental spectra.

In order to be able to compute the XMCD signal, we first derived the semi-relativistic ab-
sorption cross section. For this, we determined the relativistic cross section from the quantum
electrodynamic photon-matter Hamiltonian and then we performed the semi relativistic expan-
sion of the fully relativistic states that appear in this cross section. We obtained a result with
only even states (which are 2-components states in a mono-electronic system). This is method-
ologically very important because if the derivation would be performed the other way around
(semi-relativistic expansion of the Hamiltonian to deduce the cross section), the obtained result
would not be correct. We applied this method to derive the semi-relativistic X-ray absorption
and scattering cross sections at order ¢=2 but the same derivation could be extended up to any
order.

The most noticeable novelties of our theoretical results are a transition operator that we
named spin-position and a two-body term in the scattering cross section that has, to our
knowledge, never been reported. The spin-position operator has been studied at length in
the rest of this thesis but the importance of the two-body term in scattering is still an open
question.

We then implemented the significant terms of the absorption cross section into the existing
code XSpectra of the DFT suite QUANTUM ESPRESSO. The package uses a basis of plane
waves and pseudopotentials, and calculations are performed for a crystal with periodic boundary
conditions. Spectra calculations are performed after a full self consistent relaxation of the
valence electrons in the presence of a core hole. To compute XMCD spectra, spin-orbit coupling
must be included in the DFT Hamiltonian used to compute the sum over unoccupied states.
We used an existing implementation which relies on the approximation of a diagonal spin-orbit
coupling, which seems quite rough at first sight. Yet, by comparison with results from the code
FDMNES in which spin-orbit coupling is fully implemented, we verified that this approximation
does not impact significantly the calculated spectra. Also we showed that the inclusion of spin-
orbit coupling in the self-consistent calculation is not needed to obtain XMCD spectra. The
spin-orbit coupling should be accounted in the self-consistent part of the calculation only in
materials exhibiting strong spin-orbit coupling (e.g. iridates). It would not be computationally
expensive to use full spin-orbit coupling in the second part of the calculation (that consists in
determining the sum over unoccupied states) so that it would be a useful implementation to
make.

With this code, we computed X-ray absorption and X-ray natural circular dichroism at
the L, edge of LilO3. The calculated spectra are in good agreement with experiment and we
numerically recovered the expected angular dependence. The study of LilO3 made us appreciate
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Conclusion

the considerable impact of the core hole on the XNCD phenomenon: the calculated spectra
with or without core hole are completely different. Hence, in addition to be a way to study
the chirality of materials, XNCD could be used as a benchmark to understand the process of
relaxation in the presence of a core hole.

To pursue the test of the code, we also calculated XAS and XMCD spectra at the K-edge
in Fe, Co and Ni. These calculations showed that the electric dipole - spin position term is very
important in XMCD. We explained it by deriving a sum-rule for this new term: it probes the
spin polarization of the p states whereas the electric dipole-electric dipole term probes their
orbital polarization. The overall agreement of the calculated spectra with the experimental one
is fair but the secondary peaks are not always well reproduced. Also, the electric dipole-spin
position term, whose existence is prescribed by the theory, does not improve the agreement
between the calculated and the experimental spectra. We tested the effect on the spectra of
a large number of assumptions and approximations of our method to better understand the
origin of this discrepancy. We could narrow it down to intrinsic limitations of the spin-polarized
Kohn-Sham DFT which is unable to capture the complexity of the spin and orbital polarization
of the unoccupied states near the nucleus. Despite the fact that Kohn-Sham DFT is deemed
not to be appropriate for excited states, it was surprisingly successful to compute XAS spectra.
It is, therefore, possible that improvements of the way spin-polarized systems are treated could
improve the modeling of XMCD.

The fact that the overall shape of the spectra is well described by our numerical method
still makes it a useful tool for the interpretation of experiments. In this thesis we presented
two examples that concern materials of technological interest: FeH and CrOs.

The study on FeH turned out to be very illustrative of the point that motivated this PhD
work, namely that a quick interpretation of XMCD spectra by computing their integral and
interpreting it as being proportional to the total magnetic moment is not valid at K-edge. The
XMCD spectra at the Fe K-edge in Fe and FeH are very different despite the similarity of the
total magnetic moment in the cells. Our method was successful to reproduce the experimental

spectra and we were able to investigate the magnetic structure of FeH with the various tools
included in QUANTUM ESPRESSO.

The study on CrO, is an example of the possibility of enrichment of theory by experiment.
The literature on the electronic properties of CrO, is very rich but also rather contradictory.
A mechanism has been proposed to explain the origin of ferromagnetism but no general agree-
ment has been reached on the way the material can be numerically modeled. In this context,
confrontation of the numerical results with XAS and XMCD experiments under pressure is a
valuable asset. Indeed, pressure is a unique way to change the local environment of the Cr
atoms and the understanding of the impact of pressure on the electronic and magnetic struc-
ture of CrOy could give precious clues on the interactions involved. Calculations without the
Hubbard U correction were sufficient to reproduce the half-metallic behaviour of CrO4 and to
infer the presence of a strong electric dipole - electric dipole contribution in the XAS pre-edge.
However, the XMCD spectra was not accurately reproduced by these preliminary calculations.
Further calculations must be pursued before drawing any conclusion but it is possible that
DFT+U is required to model CrOs correctly.
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My PhD work raised many questions and we answered some important ones but, unfortu-
nately, there was not enough time to address them all.

In particular, we did not study further the consequences of Chapter 1 on the X-ray scattering
cross section. Yet, the result that we obtained could have lots of ramifications. First of all,
the spin-position operator, whose significance in XMCD has been proven in this thesis, could
also have an impact on magnetic scattering. This needs to be examined with the support of
numerical calculations. Secondly, the fact that Thomson scattering and non-resonant scattering
arise from the existence of negative energy intermediate states, despite not being a novelty, was
not investigated in detail. It changes the physical picture of these processes. And, finally,
the new two-body term, also arising from the negative energy states, remains entirely to be
investigated. The evaluation of this term is being undertaken in collaboration with Yves Joly
(Institut Néel, Grenoble). In particular, we are investigating the possibility of an experimental
situation in which this term could be distinguished from the other contributions to the cross
section.

In this thesis, I demonstrated that the calculation of XMCD is a challenge to theoreticians.
It is far more complex to compute a spectra than to obtain the total magnetic moment of a
material. In particular, it is absolutely impossible to apply the same procedure that is often
used to get the right magnetic moment with DFT-based calculations, that is to say change the
input until the convergence occurs toward the expected moment. We have seen that there is
still a long way to go before being able to capture all the complexity of the XMCD spectra by
Kohn-Sham DFT. Among the large number of existing functionals, we tested only LDA and
PBE. Tt could be interesting to try using other functionals but it is difficult to know a prior: if
one could be appropriate to model correctly XMCD. Full modeling of XMCD is an ambitious
objective that requires further development of spin-polarized DFT.

Now, being able to reproduce the experiment is not an end in itself. It is very important that
new information can be extracted from the calculation. It is, for example, very common to relate
peaks in the absorption spectra to transitions toward specific orbitals as was done in this thesis
for CrO,. We can also determine if changes of the spectra observed experimentally are related
to a given structural phase transition or to a magnetic phase transition as was done in this thesis
for FeH. It is also practicable, but not easy, to extract crystal field parameters from a calculated
band structure by projecting the Bloch states onto Wannier functions.® These parameters can
then be used in multiplet calculations which allow to include multielectronic effects. However,
in regards to long-range magnetism, DFT calculations do not provide the amplitude of the
interactions involved. Yet, the knowledge of the relative importance of the different exchange
interactions in a given magnetic system is very important to get a picture of the physics involved.
For this purpose, model Hamiltonians, in which one can tune the interactions, are precious. It
could be useful to develop bridges between both kinds of approaches.

The numerical method presented in this thesis could be used to study a large variety of
systems. For example, we performed experiments of XAS and XMCD in two Co'! based molec-
ular compounds that undergo a pressure-induced spin cross over (SCO) transition at room
temperature. One of them also undergoes a temperature-induced SCO transition at ambient
pressure. The most common SCO systems are Fe!! based and the transition occurs between a

8M. W. Haverkort, M. Zwierzycki, and O. K. Andersen (2012). Multiplet ligand-field theory using Wannier
orbitals. Phys. Rev. B, 85:165113
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diamagnetic state (Fe!! in low spin configuration i.e. with S=0) and a paramagnetic state (Fe'l
in high spin configuration i.e. with S=2). In that case, the magnetic signature of the transition
can be addressed unambiguously by conventional magnetic measurements (SQUID or VSM
magnetometers). In the case of divalent cobalt, the SCO transition corresponds to a transition
between two paramagnetic states so that spectroscopic methods are required to determine the
exact nature of the electronic states involved in the SCO transition. We followed the pressure-
induced transition in both compounds and the temperature-induced transition of the compound
that transit at low temperature during two beamtimes. It is necessary to separate the study
of the pre-edge (that requires a multielectronic treatment) from the study of the edge. On the
edge, preliminary calculations of XAS with our DFT based method are promising and we will
pursue this study in order to compare the electronic structure of the low-spin and high-spin
configurations. The multiplet calculations of the pre-edge spectra are tricky because the sym-
metry of the Co site in the structures is low and, therefore, many crystal-field parameters must
be set in input. To obtain ab initio computed values for these parameters CASSSCF/CASPT2
calculations have been undertaken by a collaborating team in Toulouse (Laboratoire de chimie
et physique quantique). We see that, a combination of several theoretical methods is required
for the quantitative interpretation of the electronic and magnetic properties of the compounds.

The numerical method presented in this thesis could also be applied, with only minor
adjustments, to another advanced spectroscopy: X-ray magneto chiral dichroism (XMyD) that
occurs when inversion symmetry and time-reversal symmetry are both broken. XMyD is the
difference of absorption, by a material that is both chiral and magnetic, of non-polarized light
depending on the direction of the magnetization. XMyD is a quite recent method: the first
ever spectra was recorded in 2002 and, until recent years it was limited to a very few number of
compounds. The development of new systems that exhibit molecular magnetism and which are
both chiral and magnetic has recently raised a new interest for this technique.” Indeed, it exists
only when magnetic properties are combined with the breaking of inversion symmetry and this
combination is expected to play an important role in many phenomena as multiferroicity. The
fact that both XNCD and XMCD can be computed with our method suggests that magneto
chiral calculations could be possible.

9R. Sessoli, M.-E. Boulon, A. Caneschi, M. Mannini, L. Poggini, F. Wilhelm and Andrei Rogalev (2015).
Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nature Physics,
11:69-74
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Appendix A

Abbreviations and Notations

Abbreviations
bee body-centered cubic (crystal system)
CD Circular Dichroism
ch core hole
D-D electric Dipole - electric Dipole
DFT Density Functional Theory
D-Q electric Dipole - electric Quadrupole
D-SP electric Dipole - Spin Position
dhcp double hexagonal close packed (crystal system)
DOS Density Of States
ESRF European Synchrotron Radiation Facility
EXAFS Extended X-ray Absorption Fine Structure
fee face-centered cubic (crystal system)
FDMNES  Finite Difference Method for Near-Edge Structure (code)
FW Foldy-Wouthuysen
GGA Generalized Gradient Approximation
hep hexagonal close packed (crystal system)
IMPMC Institut de Minéralogie de Physique des matériaux et de cosmochimie
KS Kohn—Sham
LDA Local-Density Approximation (DFT functional)
LSDA Local-Spin-Density Approximation (DFT functional)
LFM Ligand Field Multiplet
ODE Optique Dispersive EXAFS (beamline)
PAW Projector Augmented Wave (method)
PBE Perdew Burke Ernzerhof (DFT functional)
Q-Q electric Quadrupole - electric Quadrupole
QED Quantum ElectroDynamics
RIXS Resonant Inelastic X-ray Scattering
scf self consistent field
SOC Spin-Orbit Coupling
SPR-KKR Spin Polarized Relativistic Korringa-Kohn-Rostoker
TFY Total Fluorescence Yield
XAS X-ray Absorption Spectroscopy
XANES X-ray Absorption Near-Edge Structure
XMCD X-ray Magnetic Circular Dichroism
XNCD X-ray Natural Circular Dichroism
XRD X-ray Diffraction

174



Appendix

Notations

Matrix and operators

P momentum operator p = —ihV
™ P — ¢A mechanical momentum
L angular momentum

I Identity matrix

€kl Levi-Civita symbols

o; Pauli matrices

g and a« Standard Dirac matrices
Constants

e charge of the electron

c speed of light in vacuum

m electron mass

h reduced Planck constant

€0 vacuum permittivity

Qp fine structure constant

Te classical electron radius

ao Bohr radius

1B Bohr magneton

Electromagnetic wave
magnetic field
electric field
vector potential
scalar potential
wave vector
polarization vector

fOF<SPEHE
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Appendix B

Definitions and useful formula
B.1 Pauli Matrices

The Pauli matrices are dimensionless operators:

() e(3) () e

They possess the following property, which can easily be verified from their explicit form:

00 = iZEjklUl +5]k1: (BQ)
l

The vector o = (04, 0,,0,) is often used to designate the set of three Pauli matrices. For a
spin 1/2 particle, the spin operator writes

h

The eigenvectors of o, are noted |1) and |]) where the spin up spinor is |1) = (1) and the

0

spin down spinor is ||) = (O

1). The application of o, of o, on [1) changes it in ||) and vice

versa: a. =1 olt)=id) )=
o) ==l oyld) = —ilt) ald) =11 (B.4)

So that if, |g) = /1) + f2l4) then
2Re(f} f2)

(9lelg) = | 2Im(f{f2) (B.5)
[fil? =1 fol?

B.2 Angular Momentum matrix for (=1

In the basis |lm) = |1 — 1),|10),|11), the components of the angular momentum operator
write as 3x3 matrices. As (Im/|L.|[lm) = mhd,m,

0
0

1
L.=nh10
0 -1

o O O
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As (Im/|Lillm) = \/I(1 + 1) — m(m £+ 1)i8m,

0 V2 0 0O 0 0
Li=h|0 0 V2| andL_=h[+v2 0 0
0 0 0 0 V2 0
This leads to
010
1 1
Ly==(L,+L)=—1|[1 01
2" V2 \g 1 g
and
0 1 0
1 i
L,=—(L,~L)=—1[-1 0 1

B.3 Dirac Matrices

We note 8 and o = (a, ay, @) the standard Dirac matrices:

o= (é —Oi) and o= (f %) (B.6)

Some of their basic properties are:!

B =1 (B.7)
{Oéj, Oék} = dek (Bg)
[Ctj, Oék] = 2(CKjOék — 5jk) =2 Z Ejkmzm (BlO)
a0 = O0jk + ZZ ejkmEm (Bll)

om 0
0 o,

Ba = (_Oa g) (B.12)

and from (B.8), we see that aff = —fa.

In the two last equations X, = ( ) We also define the vector ¥ as (X,,%,,%,).

The product Sa is:

B.4 Commutators

e The canonical commutation relation writes [r;, p;| = ihd;;.

!B. Thaller, The Dirac Equation, Springer-Verlag Berlin Heidelger (1992) p. 37
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e If a and b are vectors that commut