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Résumé

Titre : Flow-shop avec temps de transport, modélisation linéaire et approches
de résolution exacte.

Dans le cadre de cette thèse, nous traitons le problème de flow-shop à deux
machines avec temps de transport où l’objectif consiste à minimiser le temps de
complétion maximal.

Dans un premier temps, nous nous sommes intéressés à la modélisation de ce
problème. Nous avons proposé plusieurs programmes linéaires en nombres entiers.
En particulier, nous avons introduit une formulation linéaire basée sur une général-
isation non triviale du modèle d’affectation pour le cas où les durées des opérations
sur une même machine sont identiques.

Dans un deuxième temps, nous avons élargi la portée de ces formulations math-
ématiques pour développer plusieurs bornes inférieures et un algorithme exact basé
sur la méthode de coupe et branchement (Branch-and-Cut). En effet, un ensem-
ble d’inégalités valides a été considéré afin d’améliorer la relaxation linéaire de ces
programmes et d’accélérer leur convergence. Ces inégalités sont basées sur la propo-
sition de nouvelles règles de dominance et l’identification de sous-instances faciles à
résoudre. L’identification de ces sous-instances revient à déterminer les cliques maxi-
males dans un graphe d’intervalles. En plus des inégalités valides, la méthode exacte
proposée inclut la considération d’une méthode heuristique et d’une procédure visant
à élaguer les noeuds.

Enfin, nous avons proposé un algorithme par séparation et évaluation (Branch-
and-Bound) pour lequel, nous avons introduit des règles de dominance et une méth-
ode heuristique basée sur la recherche locale.

Nos expérimentations montrent l’efficacité de nos approches qui dominent celles
de la littérature. Ces expérimentations ont été conduites sur plusieurs classes
d’instances qui incluent celles de la littérature, ainsi que des nouvelles classes
d’instances où les algorithmes de la littérature se sont montrés peu efficaces.

Mots Clés : recherche opérationnelle, flow-shop, temps de transport, program-
mation linéaire en nombres entiers, bornes inférieures, règles de dominance, heuris-
tiques, inégalités valides, branch-and-cut, branch-and-bound.

Directeurs de thèse : Aziz Moukrim et Mehdi Serairi
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Abstract

Title: Flow-shop with time delays, linear modeling and exact solution ap-
proaches.

In this thesis, we study the two-machine flow-shop problem with time delays
in order to minimize the makespan. First, we propose a set of Mixed Integer Pro-
gramming (MIP) formulations for the problem. In particular, we introduce a new
compact mathematical formulation for the case where operations are identical per
machine.

The proposed mathematical formulations are then used to develop lower bounds
and a branch-and-cut method. A set of valid inequalities is proposed in order to
improve the linear relaxation of the MIPs. These inequalities are based on proposing
new dominance rules and computing optimal solutions of polynomial-time-solvable
sub-instances. These sub-instances are extracted by computing all maximal cliques
on a particular Interval graph. In addition to the valid inequalities, the branch-and-
cut method includes the consideration of a heuristic method and a node pruning
procedure.

Finally, we propose a branch-and-bound method. For which, we introduce a local
search-based heuristic and dominance rules.

Experiments were conducted on a variety of classes of instances including both
literature and new proposed ones. These experiments show the efficiency of our ap-
proaches that outperform the leading methods published in the research literature.

Key Words: Operations Research, Flow-Shop, Time Delays, Integer Program-
ming, Lower Bounds, Dominance Rules, Heuristics, Valid Inequalities, Branch-and-
Bound, Branch-and-Cut.

Supervisors: Aziz Moukrim and Mehdi Serairi
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Introduction

Nowadays, methods of management and production have a large economic impact
on the competitiveness of the industries, and become essential for their survival.
However, previous studies suggest that management methods such as planning,
scheduling, staffing, directing and controlling are not done properly in many small
and medium industries ([Asil and Naralan, 2016]). On this basis, the challenge of
solving management problems is more and more attractive to researchers who try
to enhance the existing methods and models. Scheduling methods, in particular,
gain an increasing interest since they are widely used in a large number of
practical operations management software. In fact, scheduling can be defined as a
task that determines when each activity should start or end depending on many
constraints. These constraints may include the duration, predecessor activities,
resource availability and the objective of the project. Also, this task manages to
allocate resources over time to realize these activities. Depending on the nature of
the resources and the activities, scheduling problems cover a variety of application
areas. Some examples arise in project scheduling, personnel scheduling, timetabling
problems, etc..

Within all these categories of problems, the manufacturing environment stands
as the most common and attractive application area. Indeed, the resolution of such
problems in the manufacturing system can be included as frameworks in Decisions
Support Systems. These frameworks represent interesting tools to companies that
allow them to optimize their manufacturing processes. As a consequence, they yield
significant benefit by achieving solution at minimum total cost and time.

Among the manufacturing environments, the Flexible Manufacturing System
(FMS) has gained an increasing interest in the last decade. This system is a highly
automated manufacturing one. It is composed of a set of processing workstations,
interconnected by a material handling system that serves to optimize parts flow. It
is controlled by a computer which manages material movements and machine flow.
This system is called flexible for two reasons. First, the machine flexibility permits to
process different product types simultaneously, and can change the execution order
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of operations. Second, routing flexibility gives the ability to use multiple machines
to do the same job. In addition, the system is able to engage large-scale changes.

We are interested in proposing new approaches to solve scheduling problems in
the flexible manufacturing system. Precisely, we study two variants of the flow-shop
problem. In such a problem, we dispose of a set J = {1, ..., n} of n jobs to be executed
in the same order on a setM = {M1, ...,Mm} ofm machines. It is assumed that each
job has m operations and it never revisits any machine. Thus, each job of J has to
visit them in the numerical order. Precisely, each job has to be executed first on M1

during a certain amount of time, then on M2 and so forth until Mm. In the classic
flow-shop problem, it is assumed that once the execution of a job is accomplished
on a given machine, the job becomes instantaneously available for processing on the
next one. However, in many real applications, each job needs an intermediate delay
between each pair of machines. This delay can be due to transportation, cooling,
heating or drying activities. Depending on the characteristics of the product, a
variety of time delay values may be observed. The derived problem is called the
flow-shop problem with time delays. Note that the flow-shop problem can be solved
in O(n log n)-time for m = 2, and is NP-hard in the strong sense for m ≥ 3.
However, the two-machine flow-shop problem with time delays is NP-hard in the
strong sense even with unit-time operations. Thus, the investigation of exact and
heuristic methods is well justified.

In this dissertation, we introduce several methods to solve the two-machine flow-
shop problem with time delays. Precisely, we propose new lower bounds, heuristic
approaches, mixed integer programming models and a branch-and-bound method
to solve the no-restricted problem and a particular case. This thesis is organized
as follows. Chapter 1 provides, in the first part, an introduction to the different
optimization problems related to scheduling problems. The second part is concerned
with giving the reader a background on the typology of scheduling problems. We also
define the two-machine flow-shop problems and recall some known methods used to
solve them. Finally, we introduce the notation used and recall basic properties.

After the overview of the field of study, we propose in Chapter 2 an efficient
non trivial Integer Linear Programming (ILP) formulation for a specific case of
the two-machine flow-shop problem with time delays in order to minimize the
makespan. The particularity of this problem is that the processing times are identical
per machine. Moreover, we introduce a pre-processing procedure that aims at
reducing the number of decision variables of the mathematical formulation, and
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thus improving its performance. The computational results show that the proposed
approach outperforms the branch-and-bound method of [Moukrim et al., 2014] on
the unit-time operations’s variant of the problem.

In Chapter 3, we tackle the two-machine flow-shop problem with time delays
in order to minimize the makespan. First, we present a comprehensive theoretical
analysis of the different lower bounds in the literature and we elucidate dominance
relationships between them. Moreover, we provide several mathematical formula-
tions. We point out the good quality of the linear relaxation of a Mixed Integer
Linear Programming (MIP) formulation that is based on linear ordering variables.
A set of valid inequalities is proposed. In particular, we introduce clique-based valid
inequalities. These inequalities are based on computing optimal solutions on easy-to-
solve sub-instances. These sub-instances are identified after computing all maximal
cliques on a particular interval graph. Furthermore, three linear programming-based
lower bounds are introduced for the problem. The proposed approaches demonstrate
an excellent performance from both the point of view of effectiveness and efficiency.
Precisely, the derived lower bounds deliver the best lower bound value on all
literature instances.

In the continuity of Chapter 3, we investigate in Chapter 4 two exact methods
for the flow-shop scheduling problem with two machines and time delays with
respect to the makespan. First, we introduce a branch-and-cut algorithm based on
a linear ordering variable-based mathematical formulation. This method includes
the implementation of dominance rules and valid inequalities. Moreover, a critical
path-based branching scheme, a new heuristic method and a node pruning procedure
are considered. Then, we propose an exact algorithm based on a branch-and-bound
enumeration scheme, for which we introduce a heuristic method based on a local
search technique and three dominance rules. Finally, we present the results of
an extensive computational study that was carried out on a set of 480 instances
including new hard ones. Our exact methods outperform the exact method of
[Dell’Amico, 1996].

Finally, we provide a general conclusion that includes a synthesis of the
contributions presented in this thesis and some perspectives and future works.
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Field of Study
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1.3 Scheduling theory . . . . . . . . . . . . . . . . . . . . . . . 12
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1.3.2 Flow-shop problem . . . . . . . . . . . . . . . . . . . . . . 15

1.3.3 Preliminaries and basic properties for F2|lj |Cmax . . . . . 19

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Introduction

In this chapter, we introduce the combinatorial problem basics in general and the
scheduling ones in particular. First, we introduce the combinatorial problems and
their related terminologies. We then present a list of general resolution methods
for these problems. Next, an introduction to scheduling theory is given. We first
describe the typology of scheduling problems. After that, we introduce the flow-
shop problem. In particular, we study the two-machine flow-shop problem with time
delays. Furthermore, we provide the notation used and basic properties. Finally, the
chapter ends with a conclusion.

5
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1.2 Combinatorial Optimization

This section is organized as follows. First, we define the combinatorial optimization
problems. We then present notion, algorithms and complexity for this kind of prob-
lems. The main objective is to recall the main definitions and related terminologies.

1.2.1 Combinatorial Optimization Problems

The optimization problem is the problem of finding the best solution according to
an objective function from a set of feasible solutions, which are with respect to a set
of constraints. Two categories of optimization problems are identified depending on
whether the variables are continuous or discrete. If we dispose of discrete variables,
then the problem is known as a combinatorial optimization problem.

Definition 1.1. A combinatorial optimization problem Φ=(Ω,f) can be defined as
follows:

• A set of variables X={X1, ..., Xn}.

• Every variable Xk is associated to a domain Dk.

• A set of constraints that links the variables.

• An objective function either to minimize or to maximize: f : D1× ...×Dn −→
IR.

The set Ω stands for the search space. Given a feasible solution s to the problem
Φ, then it holds that s ∈ Ω such that:

s = {v1, ..., vn|vk ∈ Dk and all the constraints are verified}.

Solving the problem Φ with a minimization objective function (resp. maximization)
consists in finding a feasible solution s∗ such that f(s∗) ≤ f(s) (resp. f(s∗) ≥ f(s))
for all s in Ω.

1.2.2 Complexity Theory

The formal definition of an algorithm is introduced by [Turing, 1936]. This definition
is founded on the notion of a formal language using an abstract machine called the
Turing machine. In fact, an algorithm A consists of a finite series of well-defined
instructions that allow to solve a problem Φ. For example, in order to solve a
combinatorial optimization problem, the algorithm reports the different steps needed
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to obtain the optimal solution s∗. In case the algorithm is a heuristic approach, it
provides a solution s that is not guaranteed to be optimal but sufficient for the
immediate goals.

Many performance measures are used to analyze the quality of algorithms
including the computational time, the required memory, the quality of the solution
and the robustness. However, the time and space are the most well-known and
used complexity measures. Since the CPU time is related to the characteristics of
the machine that we use, it is commonly presented by the number of instructions
needed by the algorithm. It is assumed that each instruction is equivalent to a simple
elementary operation (Like: addition, multiplication,...).

Definition 1.2. We define the complexity CA of an algorithm A, which is introduced
to solve a problem Φ of size n, using the number of instructions required to solve
any instance of the problem Φ.

Using Landrau’s notation, an upper bound of CA is expressed asymptotically to
the size n using the notation O. An algorithm A is said to be of complexity O(g(n))

if there exist two parameters M > 0 and n0 such that ∀n ≥ n0, CA ≤ M × g(n).
Depending to g, the most known complexities are described as follows:

• O(1): constant complexity that is independent of the size of Ω.

• O(log n): logarithmic in the size of Ω.

• O(n): linear in the size of Ω.

• O(nk) (with k ≥ 2): polynomial in the size of Ω.

• O(an) (with a > 1): exponential in the size of Ω.

In some cases, the complexity of the algorithm can be related in the same time
to the problem size n and to some parameters of the problem, e.g. g(n) = np × vq

where v is a value of the input and q is a constant. In such a case, the algorithm is
called Pseudo-polynomial.

1.2.3 Problem complexity

Solving complex problems is very attractive to researchers especially with the recent
advance in computer performance. For some optimization problems, no polynomial-
time algorithm was found until now to solve them. For others, there exists a way to
solve them in a polynomial time. A classification of the problems can be given then
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according to the complexity of algorithms that solve them.

We identify two types of problems: optimization and decision problems. An
optimization problem consists in finding the best solution from all feasible ones
with the minimum or the maximum value of an objective function f . However, a
decision problem verifies the existence of a feasible solution with a given objective
value. Interestingly, for each optimization problem Φ = (Ω, f), we can derive an
equivalent decision problem. This decision problem is formulated as follows: given
k ∈ IN, does there exist a solution s where f(s) = k?

There is a variety of classes of decision problems:

Definition 1.3. A problem is in class P if a polynomial algorithm that can solve it
exists.

Definition 1.4. A decision problem is in class NP if it can be proven in a polynomial
time that a given solution is valid.

Definition 1.5. A decision problem is called NP-Complete if it is in class NP but
not in class P. Moreover, every NP problem can be reduced into this problem in
polynomial time.

Definition 1.6. An optimization problem is called NP-Hard if its equivalent decision
problem is NP-Complete.

Definition 1.7. An optimization problem (or decision) is NP-Hard (resp. NP-
Complete) in the ordinary sense if it is NP-Hard (resp. NP-Complete) and a pseudo-
polynomial algorithm that can solve the problem exists.

As a consequence, it holds that P ⊆ NP. However, the question if P ⊂ NP or
P = NP is not answered yet. Assuming that P = NP implies the existence of a
polynomial-time algorithm for each NP problem, and then the set NP-complete is
empty. For every NP-complete problem, no polynomial-time algorithm has yet been
found. Therefore, it is more likely that P 6= NP.

1.2.4 Solution approaches

In this section, we provide a general overview of the different methods used to
solve combinatorial optimization problems. There are two types of methods: exact
methods and approximation methods. However, before starting the resolution of
a combinatorial optimization problem, pre-processing methods can be applied in
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order to limit the size of the problem or to discover useful dependencies to make
the problem easier to solve. First, we present the pre-processing methods. We then
describe some exact methods including tree search and mixed integer programming
based ones. Finally, approximation methods are introduced.

1.2.4.1 Pre-processing

The pre-processing is a preliminary method performed on the problem in order
to make the resolution process easier. After analyzing the data and its nature,
this technique usually limits the search space of the problem. For example, after
analyzing the constraints of a combinatorial optimization problem Φ, we can fix a
set of variables Xi or we can reduce the size of Di. However, we should guarantee
that the optimal solution is not affected since the search space can be modified.

1.2.4.2 Exact algorithms

Exact algorithms are methods that compute optimal solutions and ensure their
optimality for every instance of a combinatorial optimization problem. Among these
methods, we find the branch-and-bound (B&B), the dynamic programming, the
lagrangian relaxation based methods, and the linear and integer programming based
methods such as branch-and-cut, branch-and-price and branch-price-and-cut. In
this section, we define the theoretical bounds and we present two general exact
approaches used to solve combinatorial optimization problems.

Theoretical Bounds: For combinatorial optimization problems, bounds define
boundaries on the search space that includes the optimal solution. The search for
methods of resolution is based on the possible improvements that can be applied to
their bounds. In practice, upper and lower bounds are always defined.

Definition 1.8. We define a lower bound LB (resp. an upper bound UB) on the
objective function of a combinatorial optimization problem Φ = (Ω, f) if for all s in
Ω, f(s) ≥ LB (resp. f(s) ≤ UB).

For a minimization problem, the upper bounds (UB) are obtained using heuristic
approaches and the lower bounds (LB) are determined after solving relaxed versions
of the problem. If it holds that LB = UB for an instance I, then I is solved to
optimality.

The branch-and-bound scheme: The branch-and-bound scheme is a system-
atic method that enumerates solutions by means of state space search. Applied
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on combinatorial optimization problem Φ = (Ω, f), the algorithm enumerates sub-
spaces (S1, ..., Sk) that are obtained after successive branching on Ω. These sub-
spaces are then bounded by calculating lower and upper bounds of Ω on every sub-
space. Depending on the bounds values, some sub-spaces can be discarded under
some conditions. For example, given a minimization problem, a sub-space Si can be
fathomed if LB(Si) ≥ UBbest, where UBbest stands for the best known upper bound
value. If we dispose of an efficient evaluation and pruning strategies, the branch-
and-bound usually becomes faster than the case where a complete enumeration of
all possible solutions is done.

The efficiency and the effectiveness of a branch-and-bound method in term of
CPU time depends on the following factors:

• Bounds: lower and upper bounds.

• Heuristic: a method that computes a feasible solution on the problem without
guarantying its optimality.

• Dominance rules: a set of constraints that are used to reduce the search space.
These constraints guarantee the respect of the optimal solution.

• Branching rule: the strategy adopted to generate sub-spaces for possible
exploration.

• Branching strategy: the strategy adopted to select a node on which we branch.

Linear Programming: A linear program is a continuous optimization problem
with linear constraints and objective function. This method is a special case of
mathematical optimization where the objective is to achieve the best outcome in a
mathematical model. The exact resolution of a linear program is done in polynomial
time using the ellipsoid method of [Khachiyan, 1980]. Many commercial softwares
are available to solve this kind of problem like: CPLEX, GUROBI, XPress and SCIP.
Most of these softwares use the simplex method despite that it is an exponential-time
algorithm.

We can generally model every combinatorial optimization problem using Mixed
Integer linear Programming. The fact of having integer variables makes the
resolution process harder. We present in Figure 1.1 the difference between a MIP and
an LP in term of solutions space. For the relaxed version of the model, we observe
that the LP solution does not belong to the convex hull of the strong formulation.
The bold dots stands for the ILP solutions that are determined after solving the MIP
problem. In order to solve MIPs, we identify efficient techniques that are based on the
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Figure 1.1 – Example of Mixed Integer Programming (MIP).

branch-and-bound scheme. In these techniques, we incorporate some mathematical
tools as cutting planes. In case the cutting planes are included in the branch-and-
bound algorithm, the algorithm is denoted branch-and-cut.

A combinatorial optimization problem can be modeled in several ways using
an LP or a MIP. We say that a model is strong in case the integrity constraint is
relaxed by the polyhedron. The fact of integrating cutting planes can strengthen
the model. However, in some problems, we can dispose of an exponential number
of variables and thus the search tree would be huge. In this case, we can efficiently
solve the problem using column generation of [Desaulniers et al., 2006]. Precisely,
we integrate the column generation in a branch-and-bound algorithm. The obtained
algorithm is called a branch-and-price algorithm ([Desaulniers et al., 2006]). This
latter disposes of a problem-dependent scheme.

The exact methods are often extremely time-consuming when solving real-
world problems (i.e. problems with large dimensions, hardly constrained problems,
multimodal and/or time-varying problems). In this case, the only possibility to
handle larger instances of problems is to trade optimality for run-time. As a
consequence, we use approximation algorithms.

1.2.4.3 Approximation algorithms

Heuristic and metaheuristic techniques are powerful and flexible search method-
ologies that have successfully tackled practical difficult problems. Heuristic and
metaheuristic algorithms seek to produce good-quality solutions in reasonable
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computation times and good enough for practical purposes. These exist two
categories of these methods: PTAS and non-PTAS. The first category involves
the algorithms with polynomial complexity that assure a certain distance from the
optimal solution in the worst case. These algorithms are called PTAS (Polynomial-
Time Approximation Scheme). For the second category, its algorithms generally
produce very good solutions in a short time. However, no distance from the optimal
solution is guaranteed. These algorithms are called non-PTAS (non Polynomial-Time
Approximation Scheme).

1.3 Scheduling theory

Scheduling theory is a research area that was introduced in 1950s. It often arises
when the availabilities of resources are critical for long time planning decision.
Scheduling consists in determining the starting times and the end times of a set
of tasks. It also manages to allocate resources over time to realize these tasks.

Scheduling theory has been the scope of a variety of investigations. Motivation for
scheduling problems comes from industrial applications, examples arise in workforce
scheduling, crew scheduling, tournament scheduling and timetabling.

In this section, we first describe the typology of scheduling problems. Then, we
study the flow-shop problem. In particular, we focus on the two-machine flow-shop
problem with time delays. Finally, the notation used and some basic properties are
given.

1.3.1 The typology of scheduling problems

A typology can be defined as a classification of problems depending to their nature.
For scheduling problems, it is based on the environment of machines and the
particularities of jobs. In order to point out a problem, the notation in scheduling
are usually founded on the existing typologies.

[Graham et al., 1979] introduced a short-hand notation that permits to specify
problems. The classification system is composed from three fields that are separated
by bars: α|β|γ.

The first field α stands for the shop environment. This field can be represented
by two sub-fields α = α1α2, one for the type and the other for the problem size. For
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example:

• α = 1: Single machine scheduling problem. It is widely used in computing to
schedule tasks on a single processor of a computer.

• α1 ∈ {P,Q,R}: Parallel machines scheduling problem. It can be considered as
an extension of the single machine environment, in which we dispose of a set
of m machines that are available to process all jobs. We identify three types
of this problem including: Identical parallel machines (α1 = P : the processing
time of every job is independent of the machine), Uniform parallel machines
(α1 = Q: the processing time of every job is dependent to the machine speed)
and Unrelated parallel machines (α1 = R: every machine has a different speed,
but this speed is dependent of the job).

• α1 = J : Job-shop problems. We dispose of a set of machines that are organized
in series. Every job has to be scheduled on every machine. The execution order
of every job is dependent to the job.

• α1 = F : Flow-shop problems. It is similar to the job-shop problem. Except
that the jobs have the same executing order.

• α1 = O: Open-shop problems. It is similar to the job-shop problem. However,
no restriction on the job routing is given.

An additional information about the problem is given by the field α2. For
example, α = F2 (i.e. α1 = F and α2 = 2) means that the problem is a two-
machine flow-shop.

The second field β is used to present the job characteristics. We provide the
following examples:

• rj: Release date. It is the date at which a job j arrives on a machine and
becomes ready for processing.

• dj: Due date. It is the date at which a job j should be finished.

• prec: Precedence relationships. There exist some precedence relationships
between jobs.

• perm: Permutation. In a flow-shop environment, this means that only permu-
tation schedules are considered: the schedules in which the same job order is
maintained at all machines.
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• pmtn: Preemption. The preemption of operations is allowed.

The third field γ stands for the optimality criterion. The most common criteria
are:

• Cmax: Makespan. Here we minimize the maximal completion time on all
machines.

•
∑
Cj (resp.

∑
wjCj): Total completion time (resp. Total weighted completion

time) of all jobs.

• Lmax: Maximum lateness (resp. Tmax: Maximum tardiness). We minimize the
worst violation of the due dates. The lateness (resp. the tardiness) of a job is
positive if it completes late and negative (resp. zero) otherwise.

•
∑
Tj (resp.

∑
wjTj): Total tardiness (resp. Total weighted tardiness) of all

jobs.

In some cases, we can dispose of more than one objective to achieve. Generally, we
cannot handle all objectives at the same time. However, it is possible to incorporate
all goals in the same objective. This kind of objective function is called multicriteria
objective. For the case of two objectives X and Y, we identify three ways to formulate
multicriteria objectives:

• multicriteria objective X|Y : optimize X subject to a constraint on Y . For
instance, we can minimize the total completion time of jobs with respect to
an upper bound value on the makespan (

∑
Cj|Cmax ≤ D).

• composite objective αX + βY : optimize a linear combination of the two
objectives using pre-specified weights α and β.

• bicriteria objective (X, Y ): determine the schedules that provide the best pairs
of values. Then, it is to the decision maker to select the best option.

Interestingly, [Pinedo, 2008] established a complexity hierarchy between a set of
well-known objective functions for scheduling problems. This complexity hierarchy
is illustrated by Figure 1.2. An outgoing arrow go from easy to harder problems.
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Figure 1.2 – Scheduling objectives hierarchy.

We observe that:

• Cmax can be reduced to Lmax by given the value zero to dj for each job j.

•
∑
Cj can be reduced to

∑
Tj by given the value zero to dj for each job j.

•
∑
Cj (resp.

∑
Tj) can be reduced to

∑
wjCj (resp.

∑
wjTj) by given the

value 1 to wj for each job j.

•
∑
wjCj can be reduced to

∑
wjTj by given the value zero to dj for each job

j.

1.3.2 Flow-shop problem

[Emmons and Vairaktarakis, 2013] define a flow-shop as a processing system in
which the task sequence of each job is fully specified, and all jobs visit the work
stations in the same order. Generally, each job must undergo several stages of work
at a series of work stations or machine groups. In most works, every stage can be
visited at most one time by a job. Each work station is identified by a unique number
from the set {1, ...,m}, where m is the number of stations. As a consequence, every
job is scheduled on the work stations in numerical order. In the case of a pure flow-
shop, every job consists of m tasks and needs to visit all stages. Thus, we assume
that a job cannot visit a stage i before visiting all stages j < i.

In this manuscript, we limit to a two-machine flow-shop environment. First, we
recall the main contributions for the classic two-machine flow-shop problem. Then,
we study the two-machine flow-shop problem with time delays.

A variety of two-machine flow-shop problems were studied in the litera-
ture. The well-known F2||Cmax problem was studied by [Johnson, 1954] where
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a O(n log n)-time exact method was proposed. [Lenstra et al., 1977] showed
that F2|(perm), rj|Cmax problem is ordinary NP-complete. Heuristics have
been proposed for this problem by [Potts, 1985]. Moreover, [Hall, 1994] and
[Kovalyov and Werner, 1997] proposed polynomial approximation schemes. Min-
imizing the total completion times in the two-machine flow-shop problem
F2|(perm)|

∑
Cj was proved to be NP-complete by [Garey et al., 1976] even though

an optimal permutation schedule exists ([Conway et al., 1967]). Some special cases
of F2|(perm)|

∑
Cj have simple polynomial solutions. For others, branch-and-

bound algorithms were developed and supported by lower bounding schemes
(see [Emmons and Vairaktarakis, 2013]). Moreover, [Allahverdi and Al-Anzi, 2002]
proposed a branch-and-bound method to solve the F2|(perm), sj|Lmax that is
equivalent to F2|(perm), sj|Tmax. The specificity of these two problems is that each
job has a separable and sequence-independent setup time sj on both machines, and
a due date dj, as well as processing times.

In the classic flow-shop problem, it is assumed that once the execution of a job
is accomplished on a given machine, the job instantaneously becomes available for
processing on the next one. However, in many real applications, each job needs a
certain delay between each pair of machines. Depending on the characteristics of
the product, a variety of time delay values may be observed. In some problems,
minimal and maximal time delays are considered between each pair of successive
operations. Minimal time delays are considered when waiting times are imposed
between each two successive operations of a job. These delays are commonly
encountered when an intermediate processing is needed, such as material handling
([Soukhal et al., 2005]), cooling activity ([Fondrevelle et al., 2006]), and chemical
reactions ([Chu and Proth, 1996]). Moreover, maximal time delays arise when the
waiting time between the two operations of the same job must not exceed a
certain duration. An example arises in the wafer fabrication process ([Su, 2003]).
After the operations in furnace tubes, the waiting time must not exceed a certain
duration in order to prevent the absorption of the particulates in air. Motivation for
maximal and minimal time delays comes from industrial applications. Examples
arise in Agribusiness ([Hodson et al., 1985]), the production of printed circuits
([Kim et al., 1996]), and in chemistry and biotechnology ([Nawaz et al., 1983]). We
identify four types of time delays:

• A start-start time delay: is the time delay that is required between the starting
time of a job j on the k-th work station and its starting time on the (k+ 1)-th
work station, k in {1, ...,m− 1}.
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• A finish-finish time delay: is the time delay that is required between the
completion time of a job j on the k-th work station and its completion time
on the (k + 1)-th work station, k in {1, ...,m− 1}.

• A start-finish time delay: is the time delay that is required between the starting
time of a job j on the k-th work station and its completion time on the (k+1)-
th work station, k in {1, ...,m− 1}.

• A finish-start time delay: is the time delay that is required between the
completion time of a job j on the k-th work station and its starting time
on the (k + 1)-th work station, k in {1, ...,m− 1}.

Interestingly, it not needed to work on all these time delays since each type can
be reduced to any other.

Many researches have been carried out on flow-shop problems with time delays
in order to minimize the makespan. [Fondrevelle et al., 2006] introduced an exact
method based an a branch-and-bound scheme for the m-machine permutation flow-
shop problem with minimal and maximal time lags. Moreover, [Ye et al., 2017]
proposed an iterated greedy heuristic for the non-permutation flow-shop scheduling
problems with maximal and minimal time lags. Contributions, where only maximal
time delays are considered, are identified. Several authors addressed numerous
variants of the problem by providing exact algorithms based on a branch-and-bound
scheme. A non-exhaustive list includes the two-machine permutation flow-shop with
limited waiting times ([Yang and Chern, 1995]) and the two-machine flows-shop
scheduling problem with limited waiting times and sequence-dependent setup times
([An et al., 2016]).

In this thesis, we study the two-machine flow-shop with minimal time delays in
order to minimize the makespan denoted by F2|lj|Cmax. Motivation for F2|lj|Cmax
comes from industrial applications, an example arises in the case of consolidators
([Emmons and Vairaktarakis, 2013]). These latter provide front-end support logistic
services to manufacturer, usually by supplying firms by raw materials or other orders,
which considered to be as the first operation. The industrial treatments make up the
time delay and the second operation consists in delivering goods to their destinations.

From complexity point of view, Fm|lj|Cmax is NP-hard in the strong sense
even with m = 2. At first, F2|lj|Cmax was shown to be NP-complete by
[Lawler et al., 1993]. Moreover, [Yu et al., 2004] strengthened this result after
showing that F2|pi,j = 1, lj|Cmax, which is a unit-time operations variant of
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F2|lj|Cmax, is NP-hard in the strong sense. Other special cases were identified
and proved to be NP-hard in the strong sense, e.g., F2|p1,j = p2,j, lj|Cmax
([Dell’Amico and Vaessens, 1996]) and F2|p1,j = p2,j, lj ∈ {0, 1}|Cmax ([Yu, 1996]).
Furthermore, [Dell’Amico, 1996] interested in the preemptive flow-shop problem
F2|pmtn, lj|Cmax, which allows the interruption and the switching of operations
being carried out in both machines. He showed that this problem is NP-hard in the
strong sense after proving that every F2|pmtn, lj|Cmax feasible schedule is equivalent
to a F2|lj|Cmax feasible one with the same makespan value. From the other hand,
[Yu, 1996] proposed an algorithm for F2|pi,j = 1, lj ∈ {0, T}|Cmax. This algorithm
can determine an optimal non-permutation solution in O(n log n)-time. Beside that,
[Mitten, 1959] interested in the F2π|lj|Cmax problem, in which the processing order
of jobs is the same on both machines (permutation schedule). He showed that this
problem is equivalent to F2||Cmax, therefore it is computed in O(n log n)-time using
the algorithm of [Johnson, 1954].

It is noteworthy to indicate that permutation schedules are not dominant for
F2|lj|Cmax. However, special cases exist where it is true. A permutation schedule
that is optimal exists for an instance I if all time delays are equal to a constant T .
This optimal solution is found by solving the classic F2||Cmax problem for I using
the algorithm of [Johnson, 1954] and then shifting the obtained makespan value by
T time units. Moreover, [Dell’Amico, 1996] mentioned that permutation schedules
are dominant if one of the following conditions holds:

n
max
j=1

(lj) ≤
n

min
j=1

(p1,j + lj) or n
max
j=1

(lj) ≤
n

min
j=1

(p2,j + lj). (1.1)

Interestingly, [Yu, 1996] extended this result after showing that permutation solu-
tions are dominant even when:

li ≤ lj +max(p1,j, p2,j), ∀i, j ∈ J. (1.2)

F2|lj|Cmax has been the scope of a variety of investigations. Lower bound
methods were proposed by [Dell’Amico, 1996] and [Yu, 1996]. Heuristic approaches
were also investigated by [Dell’Amico, 1996], [Karuno and Nagamochi, 2003]
and [Zhang and van de Velde, 2010]. Precisely, [Dell’Amico, 1996] developed a
set of 2-approximation constructive heuristics and a Tabu Search algorithm.
[Karuno and Nagamochi, 2003] introduced a 11/6-approximation algorithm that is
computed in O(n log n)−time. Moreover, a Polynomial-Time Approximation scheme
was introduced by [Zhang and van de Velde, 2010]. As far as we know, a unique
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exact method was implemented. [Dell’Amico, 1996] introduced an exact method
based on a branch-and-bound scheme to solve F2|lj|Cmax. He applied all of his
lower bounds and approximation procedures at the root node of the branch-and-
bound method.

1.3.3 Preliminaries and basic properties for F2|lj|Cmax

In this section, we introduce the notation used and we recall basic properties for
the F2|lj|Cmax problem. Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax, where
J = {1, 2, ..., n} is a set of n jobs, p1 and p2 are the vectors of processing times on
the first and the second machines. Moreover, l is the vector of the time delays. Each
job j has two operations, O1,j and O2,j. The first operation O1,j (resp. the second
operation O2,j) must be executed without preemption during p1,j (resp. p2,j) time
units on M1 (resp. M2). For each job j of J , a time delay of at minimum lj time
units must separate the end of the first operation and the start of the second one.
The objective is to find a feasible schedule that minimizes the completion time of
the last scheduled job on M2. A feasible schedule is such that at most one operation
is processed at a time on a given machine. In addition, the operations are executed
without preemption, where interruption and switching of operations are not allowed.

Considering the above definitions, we denote by:

• S: a valid schedule of an F2|lj|Cmax instance.

• Cmax(S) (resp. C∗max(I)): the makespan value (resp. the optimal makespan
value) of schedule S (resp. instance I).

• tm,j(S): the starting time of operation Om,j on Mm in schedule S, for all j in
J ; m in {1, 2}.

Given a job sequence σ, we define the following notation:

• Jσ: the set of jobs that constitute job sequence σ.

• Ωσ: the set of all schedules where job sequence σ is fixed first on M1.

• σ[k]: the job scheduled at the k-th position in σ.

• σ−1
j : the position where the job j is scheduled in σ.

Moreover, let us consider the following three observations.
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Observation 1.1. Let us consider a fixed job sequence σ of all jobs on M1. The
schedules of Ωσ where jobs are scheduled on M2 in the non-decreasing order of their
arrival times are dominant.

Observation 1.2. Consider a valid schedule S = (σ, π) of an instance I of
F2|lj|Cmax where σ (resp. π) is the job sequence on M1 (resp. M2). A valid schedule
S
′

= (σ
′
, π
′
) of I exists such that σ′ = σ, π′ = π and the jobs are continuously

handled on each machine in a way that Cmax(S
′
) = Cmax(S).

Let I = (J, p1, l, p2) and I ′ = (J ′, p′1, l
′, p′2) be two instances of F2|lj|Cmax, where

J ′ ⊂ J and for all j ∈ J ′, p′1,j ≤ p1,j, p
′
2,j ≤ p2,j and l′j ≤ lj. Given an optimal

schedule S∗ of instance I, we can determine a feasible schedule S ′ of instance I ′

from S∗ such that Cmax(S
′
) ≤ C∗max(I). Thus, the following observation holds.

Observation 1.3. Let us consider two instances I = (J, p1, l, p2) and I ′ =

(J ′, p′1, l
′, p′2) of F2|lj|Cmax, where J ′ ⊂ J and for all j ∈ J ′, p′1,j ≤ p1,j, p

′
2,j ≤ p2,j

and l′j ≤ lj. We observe that C∗max(I ′) ≤ C∗max(I). As a consequence, every lower
bound on the makespan of instance I ′ is also a valid lower bound on the makespan
of instance I.

1.4 Conclusion

In this chapter, we shortly introduced the combinatorial problems and presented
some of the resolution techniques used in the literature. Also, we described the
scheduling theory in general and we especially detailed the flow-shop problems that
are discussed in this thesis.

In the second chapter, we detail a compact mathematical formulation for the case
where the processing times are identical per machine. The third chapter presents
three lower bounds based on the linear programming for the general problem. Finally,
the fourth chapter provides two exact approaches including a branch-and-bound
method.
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2.1 Introduction

In this chapter, we investigate a particular case of the two-machine flow-shop
problem with time delays in order to minimize the makespan. The particularity
of this problem is that the processing time are machine-dependent, and thus
all jobs have the same processing time per machine. Using the notation of
[Graham et al., 1979], this problem is denoted by F2|p1,j = a, p2,j = b, lj|Cmax.

Few researches have been conducted on the F2|p1,j = a, p2,j = b, lj|Cmax
problem. We recall that [Ageev and Baburin, 2016] presented a 1.628-approximation
algorithm. However, various investigations have been carried out for particular cases

21
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of F2|p1,j = a, p2,j = b, lj|Cmax. Especially for the F2|pi,j = 1, lj|Cmax problem,
[Yu, 1996] proved that the problem is NP-hard in the strong sense and he proposed
a set of lower bounds. These latter were improved by [Moukrim et al., 2014] in the
case where a sub-sequence of jobs is fixed on the first machine. Moreover, two
approximation methods were investigated by [Rayward-Smith and Rebaine, 2008]
with a performance ratio of 2 − 3/(n + 2) and 4

3
− 2/(3n + 3), respectively. In

addition, [Moukrim et al., 2014] proposed an exact algorithm based on a branch-
and-bound scheme.

This chapter is organized as follows. First, we introduce a general assignment
problem and we show that this problem and the F2|p1,j = a, p2,j = b, lj|Cmax
problem are equivalent. Then, we provide an Integer Linear Programming (ILP)
formulation. A pre-processing procedure is also introduced in order to reduce the
number of decision variables of the proposed formulation. Moreover, we perform a
computer simulation on the instances of F2|pi,j = 1, lj|Cmax, where we compare
the performance of the ILP model to the literature exact method. Actually, the
ILP solves 1519 instances out of 1560 possible ones while the branch-and-bound of
[Moukrim et al., 2014] fails to solve 320 instances.

The remainder of this chapter is organized as follows. In Section 2.2, the general
assignment problem is described, and a proof that this problem and F2|p1,j =

a, p2,j = b, lj|Cmax are equivalent is given. In Section 2.3, we introduce an ILP
formulation to solve the general assignment problem. A pre-processing procedure is
also provided. Computational experiments on a set of randomly generated instances
are reported in Section 2.4. Finally, some concluding remarks are given in Section
2.5.

2.2 The general assignment problem

A general assignment problem GAss is a decision problem that can be defined as
follows. We dispose of a set J of n jobs to be handled by two sets of n agents each,
referred to as A1 and A2. Here, we assume that A1=A2={1, ..., n}. The aim is to
perform all jobs by assigning exactly a unique agent of A1 and a unique agent of A2

to each job in such a way that all jobs are assigned with respect to the capacities of
the selected agents. Precisely, each pair of agents (k1, k2), k1 in A1 and k2 in A2 can
be assigned to perform any job if k1 and k2 do not handle other jobs and the cost
of the job is less than or equal to capacity of (k1, k2).

An instance g = (J, d, w, C, a, b) of GAss can be defined as follows. J is a set
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of n jobs, d is the vector of the costs of jobs, w is the matrix of the capacities of
the agents and C, a and b are constant values used to compute the capacities. A
set of n2 pair of agents (k1, k2), k1 in A1 and k2 in A2 are available with capacities
wk1,k2 = C − a× k1 + b× (k2− n− 1). A feasible solution of g is constituted of a set
of n pairs of agents (kj1, k

j
2), j in J such that

kim 6= kjm, ∀i, j ∈ J i 6= j;m ∈ {1, 2}.

and
wkj1,k

j
2
≥ dj, ∀j ∈ J.

Let us first consider the following theorem.

Theorem 2.1. F2|p1,j = a, p2,j = b, lj|Cmax and GAss are equivalent.

Proof. First, let Ia,b = (J, l) be an instance of F2|p1,j = a, p2,j = b, lj|Cmax and C its
possible makespan value, where J is a set of n jobs and l is the vector of time delays.
We define an instance g = (J, d, w, C, a, b) of GAss with n jobs, dj = lj, for all j in
J and wk1,k2 = C−a× k1 + b× (k2−n− 1), k1 and k2 in {1, ..., n}. In this proof, we
proceed as follows. We prove that the two instances g and Ia,b are equivalent since
the solution to one quickly leads to a solution to the other, and vice versa.

Let us denote by (kj1, k
j
2), j in J a set of n selected pairs of agents that presents a

feasible solution to g. It is easy to observe that the solution obtained after scheduling
each job j ∈ J at the two positions kj1 and kj2 on M1 and M2, respectively is feasible
for Ia,b since kjm 6= kim, for all i and j in J i 6= j; m in {1, 2}. Moreover, it holds that:

wkj1,k
j
2

= C − a× kj1 + b× (kj2 − n− 1) ≥ dj, j ∈ J

≥ lj, j ∈ J.

Thus, we obtain:

C + b× (kj2 − n− 1) ≥ a× kj1 + lj,∀j ∈ J.

We observe that each job j of J is assigned to a unique position per machine and
at least lj time units separate the end of O1,j and the start of O2,j. Therefore, we
obtain a feasible schedule of Ia,b.

Let us consider now a feasible schedule S = (σ, τ) of Ia,b, where σ−1
j (resp. τ−1

j )
stands for the position of job j on M1 (resp. M2) in S. It is obvious that the set of n
pairs of agents (σ−1

j , τ−1
j ), j in J provides a solution with respect to the constraints

of g since σ−1
j 6= σ−1

i and τ−1
j 6= τ−1

i , for all i and j in J ; i 6= j. Moreover, for each
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valid schedule, a time delay must elapse between the completion time of a job on
M1 and its starting time on M2. Thus, we obtain:

C − a× σ−1
j + b× (τ−1

j − n− 1) ≥ lj, j ∈ J

≥ dj, j ∈ J.

We notice that each agent of A1 (resp. A2) is assigned to handle a unique job. We
also observe that the cost of each job is less than or equal to the capacity of the
selected pair of agents. Therefore, we obtain a feasible solution of g.

2.3 Solution approach

In this section, we introduce a new compact mathematical formulation for GAss.
Since GAss and F2|p1,j = a, p2,j = b, lj|Cmax are equivalent, the formulation is
described for the F2|p1,j = a, p2,j = b, lj|Cmax problem. We also present a pre-
processing procedure. Given an instance Ia,b = (J, l) of F2|p1,j = a, p2,j = b, lj|Cmax,
we introduce the following notation:

• C: the possible makespan value of Ia,b.

• dk1,k2 = C − a× k1 + b× (k2 − n− 1): the effective delay observed by a job if
it is processed at position k1 and k2 on M1 and M2, respectively.

• l̄1, l̄2, ..., l̄l, ..., l̄L: the distinct values of time delays. Moreover, we suppose that
l̄1 > l̄2 > ... > l̄l > ... > l̄L.

• nb(l̄l): the occurrence number of l̄l in the time delay vector.

2.3.1 ILP model

The ILP model is based on a non-trivial generalization of the assignment model. The
decision variables are defined in order to determine a set of n couples of positions
that are able to cover all time delay values without considering jobs. The decision
variables are defined as follows:

zk1,k2 =

1 if the couple of positions (k1, k2) is selected, ∀k1, k2 ∈ {1, ..., n}.

0 Otherwise.
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The ILP model ILPass is given by:

Find a set of n couples of positions: (k1, k2) (2.1)

s.t.
∑n

k2=1 zk1,k2 = 1, ∀k1 ∈ {1, ..., n} (2.2)∑n
k1=1 zk1,k2 = 1, ∀k2 ∈ {1, ..., n} (2.3)∑

(k1,k2):dk1,k2≥l̄l
zk1,k2 ≥

∑l
`=1 nb(l̄`), ∀l ∈ {1, ..., L} (2.4)

zk1,k2 ∈ {0, 1}, ∀k1, k2 ∈ {1, ..., n} (2.5)

Constraints (2.2) (resp. (2.3)) ensure that each position on the first (resp. second)
machine appears in a unique selected couple of positions. Constraints (2.4) guarantee
that each time delay value is covered. Precisely, we verify that there exists at least
a couple of positions for each time delay, such that its value is less than or equal to
effective delay observed between the two positions. Finally, constraints (2.5) specify
that the decision variables are boolean. The above model needs O(n2) variables and
O(n) constraints.

In order to reflect our optimization goal (minimizing the makespan), the
resolution scheme that we apply for ILPass on an instance Ia,b consists in invoking
the ILP model on a set of feasibility test problems. Starting from a makespan value
that we determine using the lower bounds of Section 3.2, we check out the existence
of a feasible solution with the given makespan value. In case of feasibility, we stop
the resolution of the instance. Otherwise, we repeat the same process after increasing
the makespan value. This process ends if we reach the value UB − 1, where UB is
an upper bound on the makespan value of instance Ia,b.

2.3.2 Pre-processing procedure

To improve the performance of the above ILP model, we introduce here a pre-
processing procedure. The aim of this procedure is to reduce the number of decision
variables and to discard partial solutions from additional expansions in order to
limit the computational burden of the proposed method.

Definition 2.1. Let Ia,b = (J, l) be an instance of F2|p1,j = a, p2,j = b, lj|Cmax. We
define for each job j of J a new delay referred to as the critical delay l̃j. Precisely,
l̃j presents the maximum time delay that a job j could observe without affecting the
existence of a feasible solution to Ia,b with C as a makespan value.
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To compute l̃j, we apply a lower bound of F2|lj|Cmax on Ia,b and we increment
the value of lj each time LB ≤ C. The critical delay of job j is equal to lj − 1 when
LB > C.

The pre-processing procedure is given in the following proposition.

Proposition 2.1. Let Ia,b = (J, l) be an instance of F2|p1,j = a, p2,j = b, lj|Cmax.
Let (k1, k2) be a pair of positions such that dk1,k2 > l̃j, k1 and k2 in {1, ..., n}. Then,
job j cannot be scheduled at positions k1 and k2 on M1 and M2, respectively.

Proof. Let (k1, k2) be a pair of positions, k1 and k2 in {1, ..., n}. If we consider a
job j of J such that the critical delay of j is less than dk1,k2 , then job j cannot be
scheduled at positions k1 and k2 on M1 and M2, respectively. Otherwise, there is no
feasible solution for Ia,b with C as a makespan value.

Corollary 2.1. Let j be a job and (k1, k2) a pair of positions, k1 and k2 in {1, ..., n}.
If it holds that dk1,k2 > l̃j, then each job i with li ≤ lj cannot be scheduled at positions
k1 and k2 on M1 and M2, respectively.

Proof. It is sufficient to note that for each job i with li ≤ lj, it holds that l̃i ≤ l̃j.

Corollary 2.2. Let j be a job such that for a pair of positions (k1, k2) it holds
that dk1,k2 > l̃j, k1 and k2 in {1, ..., n}. We define j∗ as a job of J such that j∗ =

argminl
j
′>lj(lj′ ). If it holds that dk1,k2 < lj′ , then no job can be scheduled at positions

k1 and k2 on M1 and M2, respectively.

Proof. As a consequence of Proposition 2.1, it holds that job j and the jobs with
a time delay less than or equal to lj cannot be scheduled at positions k1 and k2 on
M1 and M2, respectively. Moreover, since dk1,k2 < lj′ , the jobs with a time delay
greater than or equal to lj′ cannot be assigned to positions k1 and k2 onM1 andM2,
respectively. Therefore, there is no job that can be scheduled at positions k1 and k2

on M1 and M2, respectively.

Corollary 2.3. Given an integer p in {1, ..., L}, we denote by l̂p the critical delay
that can be observed by a job with the time delay l̄p. Moreover, let (k1, k2) be a pair
of positions such that l̂p < dk1,k2 < l̄p−1, k1 and k2 in {1, ..., n}. Then, the variable
zk1,k2 should be eliminated from the model.

Interestingly, we can reduce the computation burden of the pre-processing
procedure as follows:

Remark 2.1. If zk1,k2 should not be considered, then zk1+`,k2+` is also eliminated,
∀` ∈ {1, ..., n−max(k1, k2)}.
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Remark 2.2. If zk1,k2 should not be considered, and l̄p < dk1,k2+1 < l̄p−1, then
zk1,k2+1 should be eliminated.

Remark 2.3. If zk1,k2 should not be considered, then we can save the result of the
distance between the two positions (k1, k2) (i.e., k2 − k1) and the integer p, so that
we can avoid the computation of the lower bound for the same values when other
positions are considered.

2.4 Computational results

In this section, we report the results of a computational study that aims at
assessing the performance of the proposed ILP model. In fact, we only study the
F2|pi,j = 1, lj|Cmax problem since a dedicated exact method exists for the problem.
At first, we introduce two classic ILP models for comparison reasons. We then study
the impact of the pre-processing procedure on the performance of the three ILP
models. Moreover, we present the results of two comparisons in which we analyze
the influence of the problem size and the time delay distribution on the proposed
ILP model and the state of the art exact methods.

At first, we recall here two position variable-based models for F2|pi,j = 1, lj|Cmax.
These two ILP models are developed to solve a decision problem. Given a possible
makespan value C, we check out the existence of a feasible solution with that
makespan value. The first ILP model is based on determining separately the position
where a job j ∈ J is scheduled on the first machine and also its position on the second
machine. Let us define the following decision variables:

xkm,j =


1 if operation Om,j is processed at position k on machine Mm, ∀m ∈ {1, 2},

j ∈ J ; k ∈ {1, ..., n}.

0 Otherwise.

The ILP1 is given by:

Find a feasible schedule (2.6)

s.t.
∑n
k=1 x

k
m,j = 1, ∀m ∈ {1, 2}, j ∈ J (2.7)∑n

j=1 x
k
m,j = 1, ∀m ∈ {1, 2}, k ∈ {1, ..., n} (2.8)∑n

k=1 k.x
k
2,j −

∑n
k′=1 k

′
.xk

′

1,j ≥ lj + 1 + n− C, ∀j ∈ J (2.9)

xkm,j ∈ {0, 1}, ∀j ∈ J,m ∈ {1, 2}; k ∈ {1, ..., n}(2.10)

Constraints (2.7) ensure that each job j ∈ J has to be processed at only one position
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per machine. Constraints (2.8) specify that, at each position on M1 and M2, only
one operation can be processed. Constraints (2.9) ensure that each job j ∈ J has
to wait at least its time delay between its completion time on the first machine and
its starting time on the second. Finally, constraints (2.10) specify that the decision
variables are boolean. This formulation needs O(n2) variables and O(n) constraints.

The second ILP model is based on decision variables that determine jointly, on
both machines, the positions of a job j ∈ J . For the seek of clarity, let us define the
following two subsets:

• E1(j, k) = {k′ : C − n+ k − k′ − 1 ≥ lj}.

• E2(j, k) = {k′ : C − n+ k
′ − k − 1 ≥ lj}.

E1(j, k) (resp. E2(j, k)) is the set of the different allowed positions where job j ∈ J
can be processed on the first (resp. second) machine if it is scheduled at position k
on the second (resp. first) machine.

Let us define the following decision variables:

yj
k,k′

=


1 if operation O1,j and operation O2,j are processed at position k and k′

on M1 and M2, respectively, ∀k, k
′ ∈ {1, ..., n}, j ∈ J.

0 Otherwise.

The ILP2 is given by:

Find a feasible schedule (2.11)

s.t.
∑n

k=1

∑
k′∈E2(j,k) y

j

k,k′
= 1, ∀j ∈ J (2.12)∑n

j=1

∑
k′∈E2(j,k) y

j

k,k′
= 1, ∀k ∈ {1, ..., n} (2.13)∑n

j=1

∑
k∈E1(j,k′ ) y

j

k,k′
= 1, ∀k′ ∈ {1, ..., n} (2.14)

yj
k,k′
∈ {0, 1}, ∀j ∈ J, k ∈ {1, ..., n}; k′ ∈ E2(j, k) (2.15)

Constraints (2.12) ensure that each job j ∈ J is processed at a unique position
per machine. Constraints (2.13) (resp. (2.14)) specify that at a given position on the
first (resp. second) machine only one operation can be processed. Finally, constraints
(2.15) specify that the decision variables are boolean. The above model needs O(n3)

variables and O(n) constraints.

The following computational study is carried out between four exact methods:
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• ILPass: the proposed destructive exact method for F2|p1,j = a, p2,j =

b, lj|Cmax. We use the value of the lower bound of [Yu et al., 2004] as an intial
solution.

• ILP1, ILP2: the exact resolution of the proposed ILP models using CPLEX
12.6. In order to reflect our optimization goal (minimizing the makespan), the
resolution scheme that we apply for each ILP model on an instance I consists
in invoking the ILP model on a set of feasibility test problems. Starting from a
makespan value that we determine using the lower bound of [Yu et al., 2004],
we check out the existence of a feasible solution with the given makespan
value. In case of feasibility, we stop the resolution of the instance. Otherwise,
we repeat the same process after increasing the makespan value. This process
ends if we reach the value UB − 1, where UB is an upper bound.

• B&BM : the branch-and-bound method of [Moukrim et al., 2014].

To get a better picture of the performance of the exact methods, we provide the
following measures:

• USI: the number of unsolved instances.

• Time: the average computational time.

All the discussed ILP models were coded in C++ and compiled under CentOS
6.6. Moreover, we used CPLEX 12.6 to implement them. The experiments were
conducted on an Intel(R) Xeon(R) @ 2.67GHz processor where for each invoked
method, we set a time limit of 600 seconds.

The data set that we used in the experiments is composed from 1560 instances
that were introduced by [Moukrim et al., 2014]. Precisely, 13 classes of instances
were considered where the time delays were randomly generated between [0..dn

r
e],

with r ∈ {1
3
, 2

5
, 1

2
, 2

3
, 1, 3

2
, 2, 5

2
, 3, 7

2
, 4, 8, 16}. For each class, the different tested sizes

are n = 20, 40, 60, 80, 100, 120, 150, 160, 180, 200, 250 and 300. For each combination
of class and number of jobs, 10 instances were randomly generated.

2.4.1 The impact of the pre-processing procedure

In order to get a detailed image of the impact of the pre-processing technique, we
provide in Table 2.1 a comparison of performance between the three ILP models.
For each model, two versions were considered: the exact resolution of the model
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itself and the exact resolution of the model with the consideration of the processing
procedure.

Remark 2.4. The pre-processing procedure is applied on ILP1 and ILP2 in the
following way. Let j be a job and (k1,k2) a couple of positions with respect to
Proposition 2.1 conditions, k1 and k2 in {1, ..., n}. Then, it holds that:

• xk11,j + xk22,j ≤ 1 is a valid inequality for ILP1.

• The decision variable yjk1,k2 should be eliminated from ILP2.

Table 2.1 – Impact of the pre-processing procedure.

ILP1 ILP1pre ILP2 ILP2pre ILPass ILPass,pre
USI Time USI Time USI Time USI Time USI Time USI Time
1034 414.15 1017 412.77 820 354.72 710 311.35 72 52.38 41 41.88

From Table 2.1, we notice that:

• An improvement of performance is observed for all ILP models when we
incorporate the pre-processing method. Especially for ILPass and ILP2, the
total number of unsolved instances decreases from 72 (resp. 820) to 41 (resp.
710).

• ILPass provides a much better performance using the pre-processing procedure
on big size instances where the number of unsolved instances passes from 44

(resp. 24) to 28 (resp. 12) for n = 300 (resp. n = 250).

• For ILP1, we observe an improvement of performance since 17 new instances
were solved. Precisely, the evolution of the number of unsolved instances for
ILP1 significantly depends on the problem size. On one hand, ILP1 performs
better after solving 26 new instances including 17, three and one when n = 60,
80 and 150, respectively. However, nine instances are not solved anymore for
n = 40, 100, 160 and 300.

2.4.2 The impact of the problem size

We study here the impact of the problem size on the performance of the early
discussed methods. We provide in Figure 2.1 (resp. Figure 2.2) the evolution of
the number of unsolved instances (resp. the evolution of the average computational
time) in terms of n.

From Figure 2.1 and Figure 2.2, we make the following observations:
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Figure 2.1 – Total unsolved instances as a function of n.

Figure 2.2 – The average CPU time as a function of n.

• ILPass provides the best results while requiring a short time. Precisely, ILPass
solves all instances for n ≤ 180 and only one, 12 and 28 instances for n =

200, 250 and 300, respectively.

• B&BM gets competitive results in a good time. In fact, it got similar results to
ILPass when n ≤ 80 where it fails to solve three instances comparing to zero
unsolved instances for ILPass. Then, for n ≥ 100, its performance decreases.
Actually, the total number of unsolved instances for n ≥ 100 is equal to 314

instances out of 1040 possible ones.

• ILP1 and ILP2 yield the worst performance. In fact, their performances pass
with three phases. In the first phase, they yield a good performance where
the number of unsolved instances is equal to eight (resp. 16) when n ≤ 40

(resp. n ≤ 120) for ILP1 (resp. ILP2). In the second one, the number of
solved instances decreases rapidly for ILP1 (resp. ILP2) when 40 ≤ n ≤ 100



32 CHAPTER 2. AN EFFECTIVE COMPACT FORMULATION FOR
F2|P1,J = A,P2,J = B,LJ |CMAX

(resp.120 ≤ n ≤ 180). Finally, a partial stabilization of performance is seen
when n ≥ 100 (resp. n ≥ 180) where 106 ≤ USI ≤ 112 (resp. 122 ≤ USI ≤
124) for ILP1 (resp. ILP2).

A detailed version of the results is given in Table 2.2.

Table 2.2 – Impact of the problem size.

n B&BM ILP1 ILP2 ILPass
USI Node Time USI Node Time USI Node Time USI Node Time

20 0 18.73 0.00 0 106.69 0.43 0 0.00 0.07 0 0.00 0.02
40 0 131.84 0.00 8 15536.54 76.11 0 0.00 0.88 0 0.00 0.09
60 0 30404.93 0.06 48 32323.03 339.10 0 0.50 4.55 0 0.00 0.29
80 3 7535758.50 14.91 96 12381.48 469.75 1 1.85 27.30 0 0.00 0.77
100 10 20608064.00 51.71 106 3130.37 494.72 2 2.76 89.08 0 0.00 1.69
120 22 35646528.00 107.07 107 1921.88 495.01 13 1.11 241.32 0 0.03 3.18
150 35 50516908.00 167.28 108 1159.34 503.80 96 2.34 515.73 0 0.25 7.43
160 35 43327028.00 163.20 110 934.18 510.55 106 0.01 523.59 0 2.13 12.39
180 39 44737948.00 186.88 106 320.15 495.62 124 0.62 586.40 0 1.88 35.38
200 52 54876388.00 240.04 107 153.77 509.79 123 7.71 574.00 1 3.12 44.82
250 56 49176792.00 263.26 109 48.12 520.61 122 0.07 576.32 12 0.56 148.47
300 65 45889228.00 307.56 112 20.01 537.75 123 0.00 596.99 28 0.01 248.03

2.4.3 The influence of the time delay distribution

We provide here a comparison of performance between the three ILP models and
the literature exact method in terms of the parameter r. Recall that the time delays
were randomly generated between [0..dn

r
e]. Therefore, the size of the time delay

interval depends on the parameter r directly. If r ≤ 1, then the interval is large and
the possibilities to have different time delay values are high. Otherwise when r > 1,
the time delay interval becomes tight and the number of redundant jobs is high.
Therefore, when we increase the value of parameter r, the number of jobs with the
same time delay will increase to.

We present in Figure 2.3 (resp. Figure 2.4) the evolution of the number of
unsolved instances (resp. the evolution of the average computational time) in terms
of r.

The findings from the computations in Figure 2.3 and Figure 2.4 are summarized
below:

• We note that the performance of all methods significantly depends on the value
of r.

• Globally, ILPass exhibits the best performance in a short time on all classes,
except for r = 2/3 where B&BM slightly outperforms it by solving five more
instances.
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Figure 2.3 – Total unsolved instances as a function of r.

Figure 2.4 – The average CPU time as a function of r.

• Interestingly, we remark that the instances become harder to solve for all
methods when r ≥ 2/5. However, the difference between these methods resides
in the rapidity of recovery. The number of unsolved instances increases rapidly
when 2/5 ≤ r ≤ 2/3 (resp. 2/5 ≤ r ≤ 2) for ILPass (resp. B&BM). After that,
ILPass gains its effectiveness and manages to improve the results, where it
only fails to solve one instance when r ≥ 5/2. The same behaviour is observed
by B&BM when r ≥ 8. For ILP2, it yields a constant performance where
the number of unsolved instances varies between 49 and 62 for all values of r.
ILP1 yields the worst performance where the number of unsolved instances
and the CPU time increase rapidly when 2/5 ≤ r ≤ 1. For r ≥ 1, we observe
a partial stabilization of performance where 93 ≤ USI ≤ 100.

A detailed version of the results is given in Table 2.3.
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2.5 Conclusion

In this chapter, we addressed the two-machine flow-shop problem with time delays
and identical processing times per machine. We presented a new mathematical
approach to solve the problem. For which, we integrated a pre-processing procedure
to improve its performance. The conducted experiments show that the exact
resolution of the proposed ILP model with the consideration of the pre-processing
procedure outperform the literature exact method on the F2|pi,j = 1, lj|Cmax
instances.
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Table 2.3 – Performance by class.

B&BM ILP1 ILP2 ILPass

Class n USI Node Time USI Node Time USI Node Time USI Node Time

r = 1/3

20 0 9.40 0.00 0 0.00 0.03 0 0.00 0.05 0 0.00 0.01
40 0 62.40 0.00 0 39.90 0.47 0 0.00 0.58 0 0.00 0.07
60 0 113.50 0.00 0 0.00 0.55 0 0.00 5.49 0 0.00 0.25
80 0 235.40 0.00 0 35.00 1.60 0 0.00 23.48 0 0.00 0.62
100 0 357.80 0.00 0 94.10 4.23 1 0.00 159.87 0 0.00 1.54
120 0 412.90 0.00 0 0.00 2.96 4 0.00 391.87 0 0.00 2.46
150 0 885.70 0.00 0 112.20 11.78 7 0.00 424.69 0 0.00 5.93
160 0 1063.30 0.00 0 6.80 9.06 7 0.00 424.99 0 0.00 7.41
180 0 987.70 0.01 0 3.00 11.07 10 0.00 603.67 0 0.00 10.77
200 0 1286.00 0.01 0 3.00 17.34 8 0.00 487.78 0 0.00 14.69
250 0 2233.30 0.02 0 21.90 38.47 7 0.00 440.39 0 0.00 48.35
300 0 3521.40 0.04 0 15.50 84.94 5 0.00 347.50 0 0.00 89.65

r = 2/5

20 0 17.50 0.00 0 9.00 0.04 0 0.00 0.05 0 0.00 0.01
40 0 60.90 0.00 0 1.00 0.32 0 0.00 0.70 0 0.00 0.07
60 0 136.40 0.00 0 0.00 0.69 0 0.00 3.73 0 0.00 0.25
80 0 467.80 0.00 0 48.00 2.89 0 0.00 22.63 0 0.00 0.83
100 0 643.40 0.00 0 2061.20 63.91 0 0.00 181.33 0 0.00 1.64
120 0 1147.20 0.00 1 269.60 67.73 4 0.00 333.77 0 0.00 3.21
150 0 1452.80 0.01 1 160.40 71.11 9 0.00 542.91 0 3.00 6.69
160 0 1718.40 0.01 1 515.60 81.06 5 0.00 305.35 0 0.00 8.26
180 0 2117.80 0.01 0 77.80 28.47 9 0.00 543.24 0 0.00 12.32
200 0 2956.90 0.02 0 209.50 86.15 8 0.00 486.04 0 0.00 20.80
250 0 3885.40 0.03 0 150.30 90.93 5 0.00 321.51 0 0.00 44.95
300 0 6314.40 0.06 2 235.10 236.54 9 0.00 578.42 0 0.00 99.67

r = 1/2

20 0 41.30 0.00 0 4.60 0.17 0 0.00 0.08 0 0.00 0.01
40 0 172.60 0.00 0 315.20 2.19 0 0.00 1.74 0 0.00 0.11
60 0 455.40 0.00 1 7465.60 117.23 0 6.50 6.41 0 0.00 0.45
80 1 38014544.00 60.00 2 2896.80 188.87 0 0.00 20.92 0 0.00 1.22
100 1 38281052.00 60.01 6 4742.20 369.91 0 0.00 70.14 0 0.00 3.27
120 0 2234.20 0.01 6 1881.70 368.99 1 13.10 274.34 0 0.40 5.70
150 0 51761.20 0.10 7 1472.50 467.68 6 0.00 469.69 0 0.20 15.82
160 0 2070934.38 5.26 9 2080.00 548.03 10 0.00 600.92 0 0.00 12.36
180 0 5572.70 0.02 6 897.70 397.01 10 0.00 602.32 0 0.00 37.66
200 0 6535.00 0.03 7 692.20 511.05 10 52.20 604.48 0 0.00 83.48
250 0 144080.20 0.65 9 447.20 599.48 10 0.00 618.62 1 1.50 294.29
300 2 32318742.00 120.22 10 9.50 602.50 10 0.00 626.89 3 0.00 400.90

r = 2/3

20 0 21.70 0.00 0 33.90 0.27 0 0.00 0.07 0 0.00 0.02
40 0 227.80 0.00 0 8152.80 64.05 0 0.00 0.52 0 0.00 0.17
60 0 60108.60 0.09 3 38465.10 358.57 0 0.00 4.91 0 0.00 0.61
80 0 54577.20 0.09 10 9219.30 599.43 0 8.00 17.22 0 0.00 1.83
100 1 36692584.00 60.01 10 3841.70 599.20 0 19.90 107.14 0 0.00 3.45
120 0 34514.80 0.08 10 2512.40 599.33 0 1.00 153.47 0 0.00 7.97
150 1 25859770.00 60.04 10 1624.50 600.31 6 22.00 484.88 0 0.00 16.97
160 0 6102.30 0.03 10 1851.00 600.10 9 0.00 581.97 0 0.00 31.84
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Table 2.3 - Continued

B&BM ILP1 ILP2 ILPass

Class n USI Node Time USI Node Time USI Node Time USI Node Time
180 1 14685514.00 61.44 10 616.60 600.59 10 0.00 599.86 0 2.00 177.01
200 4 65784672.00 240.15 10 73.80 601.19 9 22.00 544.86 0 1.30 128.99
250 2 31849734.00 120.28 10 0.00 605.22 10 0.00 609.07 6 0.00 472.82
300 2 34235160.00 173.96 10 0.00 608.39 10 0.00 624.03 10 0.00 601.50

r = 1

20 0 9.70 0.00 0 47.40 0.37 0 0.00 0.07 0 0.00 0.03
40 0 269.90 0.00 0 16298.90 84.96 0 0.00 0.77 0 0.00 0.13
60 0 250.00 0.00 8 68079.50 512.02 0 0.00 4.40 0 0.00 0.50
80 0 392.90 0.00 10 19545.70 599.37 0 7.00 40.75 0 0.00 1.36
100 0 1282.20 0.01 10 3276.90 599.57 0 13.00 65.00 0 0.00 3.12
120 1 31017316.00 60.01 10 2617.90 599.76 1 0.20 201.97 0 0.00 6.22
150 3 63845940.00 195.00 10 1372.10 600.17 9 8.40 590.16 0 0.00 15.07
160 2 26668164.00 120.01 10 1460.20 599.80 8 0.00 541.56 0 0.00 48.72
180 1 15450182.00 60.03 10 655.00 599.87 10 0.00 601.09 0 2.40 104.12
200 2 26135882.00 120.08 10 455.00 600.39 10 0.00 602.27 1 0.80 111.80
250 4 55124960.00 241.28 10 0.00 604.35 10 0.00 614.90 4 0.00 376.30
300 2 20362310.00 144.61 10 0.00 605.93 10 0.00 620.57 8 0.00 523.06

r = 3/2

20 0 10.50 0.00 0 181.90 0.70 0 0.00 0.07 0 0.00 0.02
40 0 43.80 0.00 1 11143.10 79.66 0 0.00 1.12 0 0.00 0.11
60 0 2280.50 0.00 3 38954.70 360.69 0 0.00 5.10 0 0.00 0.38
80 0 245.40 0.00 9 17445.30 572.42 0 0.00 20.42 0 0.00 0.97
100 0 275803.69 0.60 10 3413.40 599.42 0 0.00 70.61 0 0.00 2.02
120 3 73684520.00 180.00 10 2694.90 599.56 1 0.10 363.89 0 0.00 4.04
150 7 154560112.00 420.00 10 1041.90 599.93 7 0.00 500.07 0 0.00 9.51
160 4 78485168.00 240.22 10 288.70 599.77 8 0.00 523.19 0 0.00 14.25
180 4 71497072.00 243.29 10 154.10 601.36 10 8.00 602.79 0 20.00 67.11
200 7 117519720.00 420.01 10 112.50 601.73 10 0.00 602.93 0 0.00 107.58
250 4 66774644.00 299.76 10 0.00 602.15 10 0.90 610.54 1 0.60 206.20
300 5 53465660.00 318.98 10 0.00 604.39 10 0.00 629.36 4 0.00 457.97

r = 2

20 0 20.00 0.00 0 143.60 0.57 0 0.00 0.07 0 0.00 0.02
40 0 47.30 0.00 0 11941.20 61.90 0 0.00 0.70 0 0.00 0.09
60 0 4580.70 0.01 5 24038.30 475.02 0 0.00 3.22 0 0.00 0.28
80 0 3647780.00 8.68 9 21978.70 595.10 0 0.00 25.36 0 0.00 0.74
100 3 60747032.00 184.56 10 3049.30 599.43 0 0.00 68.25 0 0.00 1.60
120 7 136552368.00 420.00 10 2180.80 599.65 0 0.00 199.54 0 0.00 3.09
150 7 128338560.00 420.20 10 870.80 600.31 6 0.00 410.43 0 0.00 7.49
160 6 112755312.00 360.06 10 1281.20 599.76 10 0.00 601.37 0 0.00 8.64
180 7 116000624.00 420.66 10 237.70 599.91 10 0.00 601.14 0 0.00 13.95
200 10 152842640.00 600.00 10 69.20 601.81 9 0.00 562.28 0 0.00 39.52
250 10 125323984.00 600.00 10 3.00 607.25 10 0.00 610.25 0 5.00 204.00
300 10 94691544.00 600.00 10 0.00 607.92 10 0.00 630.60 2 0.10 355.96
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Table 2.3 - Continued

B&BM ILP1 ILP2 ILPass

Class n USI Node Time USI Node Time USI Node Time USI Node Time

r = 5/2

20 0 9.90 0.00 0 226.90 0.77 0 0.00 0.08 0 0.00 0.02
40 0 111.20 0.00 0 15487.00 72.74 0 0.00 1.00 0 0.00 0.08
60 0 324996.69 0.66 4 59882.50 431.98 0 0.00 5.44 0 0.00 0.24
80 1 26107180.00 60.86 9 15014.40 582.29 0 0.00 21.83 0 0.00 0.60
100 2 65846484.00 185.43 10 2591.10 599.51 0 0.00 44.18 0 0.00 1.31
120 4 77985160.00 266.73 10 2134.60 599.74 0 0.00 195.48 0 0.00 2.43
150 6 103495216.00 419.26 10 1493.20 599.91 7 0.00 548.68 0 0.00 5.45
160 7 104424592.00 420.04 10 1072.70 600.06 9 0.10 555.49 0 27.70 12.80
180 7 102583232.00 466.75 10 246.60 600.61 10 0.00 603.72 0 0.00 11.24
200 7 90252784.00 420.08 10 50.50 601.90 9 26.00 552.44 0 38.40 35.61
250 10 102675896.00 600.00 10 2.90 604.27 10 0.00 610.07 0 0.00 127.10
300 10 76597360.00 600.00 10 0.00 603.92 10 0.00 630.16 0 0.00 188.54

r = 3

20 0 19.50 0.00 0 208.00 0.72 0 0.00 0.09 0 0.00 0.02
40 0 84.90 0.00 0 3226.30 28.07 0 0.00 0.92 0 0.00 0.08
60 0 1491.70 0.00 4 50367.30 374.74 0 0.00 4.93 0 0.00 0.24
80 0 8317.10 0.02 10 22905.10 599.01 1 5.40 76.87 0 0.00 0.53
100 1 20997100.00 61.55 10 3980.40 599.32 1 3.00 124.84 0 0.00 1.12
120 0 5070682.00 15.89 10 2607.60 599.44 2 0.00 332.05 0 0.00 2.08
150 4 64778904.00 240.01 10 1292.20 599.40 8 0.00 556.42 0 0.00 4.32
160 6 85876400.00 365.62 10 1082.00 599.39 10 0.00 602.12 0 0.00 5.39
180 6 80780360.00 360.02 10 173.90 600.98 10 0.00 602.59 0 0.00 9.48
200 8 91941744.00 480.02 10 63.80 602.96 10 0.00 603.11 0 0.00 16.34
250 10 91057376.00 600.00 10 0.00 603.10 10 0.00 609.77 0 0.00 65.04
300 10 87932392.00 600.00 10 0.00 604.08 10 0.00 633.68 0 0.00 166.03

r = 3.5

20 0 13.40 0.00 0 97.80 0.39 0 0.00 0.07 0 0.00 0.01
40 0 278.80 0.00 0 6694.60 40.90 0 0.00 0.88 0 0.00 0.07
60 0 166.80 0.00 5 45241.70 476.59 0 0.00 3.89 0 0.00 0.21
80 1 28328522.00 60.00 10 14100.00 599.45 0 0.00 17.23 0 0.00 0.45
100 2 45024280.00 120.00 10 3389.50 599.37 0 0.00 71.42 0 0.00 1.08
120 5 102619968.00 329.15 10 1839.10 599.35 0 0.00 148.80 0 0.00 1.61
150 4 67424000.00 240.01 10 1424.30 599.54 8 0.00 571.24 0 0.00 3.61
160 6 84042928.00 360.01 10 400.20 600.18 8 0.00 508.87 0 0.00 4.55
180 7 89209688.00 420.01 10 158.70 601.75 9 0.00 590.34 0 0.00 6.60
200 4 48943368.00 240.04 10 28.00 600.72 10 0.00 604.30 0 0.00 9.40
250 8 78488368.00 480.01 10 0.20 601.02 10 0.00 614.01 0 0.20 56.38
300 10 80311744.00 600.00 10 0.00 602.98 10 0.00 628.15 1 0.00 187.04

r = 4

20 0 18.90 0.00 0 75.50 0.41 0 0.00 0.08 0 0.00 0.01
40 0 88.70 0.00 0 4289.60 48.43 0 0.00 0.94 0 0.00 0.06
60 0 180.70 0.00 3 27487.70 341.55 0 0.00 4.93 0 0.00 0.19
80 0 1801581.25 4.13 7 14014.80 567.52 0 3.60 34.78 0 0.00 0.43
100 0 36699.00 0.10 10 3188.10 598.91 0 0.00 65.02 0 0.00 0.86
120 2 36434596.00 120.01 10 2371.40 599.49 0 0.00 244.58 0 0.00 1.43
150 3 48357520.00 180.01 10 1505.40 599.63 10 0.00 600.55 0 0.00 3.25
160 4 66386732.00 240.01 10 840.60 599.78 8 0.00 547.79 0 0.00 4.11
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Table 2.3 - Continued

B&BM ILP1 ILP2 ILPass

Class n USI Node Time USI Node Time USI Node Time USI Node Time
180 6 90663208.00 393.81 10 302.20 600.04 8 0.00 542.88 0 0.00 5.39
200 9 107839360.00 540.00 10 20.90 601.13 10 0.00 603.32 0 0.00 8.26
250 6 66231212.00 360.03 10 0.00 603.89 10 0.00 614.14 0 0.00 23.43
300 10 82813968.00 600.00 10 0.00 612.72 9 0.00 577.59 0 0.00 134.52

r = 8

20 0 33.70 0.00 0 291.90 0.73 0 0.00 0.08 0 0.00 0.01
40 0 134.70 0.00 4 50411.70 267.68 0 0.00 0.83 0 0.00 0.04
60 0 247.70 0.00 6 25767.60 483.00 0 0.00 3.06 0 0.00 0.09
80 0 459.90 0.00 10 14890.40 599.36 0 0.00 16.73 0 0.00 0.25
100 0 680.00 0.01 10 3852.00 599.17 0 0.00 82.48 0 0.00 0.66
120 0 712.70 0.01 10 2037.60 599.69 0 0.00 162.56 0 0.00 0.68
150 0 2334.80 0.02 10 1541.30 599.82 8 0.00 536.93 0 0.00 1.58
160 0 2530750.75 10.27 10 554.20 600.17 7 0.00 480.21 0 0.00 1.67
180 0 694541.12 3.25 10 479.00 600.18 10 0.00 601.19 0 0.00 2.88
200 1 12119745.00 60.04 10 166.00 600.84 10 0.00 602.76 0 0.00 4.03
250 2 21618662.00 120.20 10 0.00 604.49 10 0.00 606.89 0 0.00 7.73
300 4 33785748.00 240.10 10 0.00 607.98 10 0.00 613.35 0 0.00 13.69

r = 16

20 0 18.00 0.00 0 66.50 0.50 0 0.00 0.07 0 0.00 0.01
40 0 130.90 0.00 3 73973.70 238.09 0 0.00 0.68 0 0.00 0.03
60 0 255.40 0.00 6 34449.40 475.73 0 0.00 3.56 0 0.00 0.06
80 0 553.80 0.00 10 8865.80 599.38 0 0.00 16.75 0 0.00 0.14
100 0 754.90 0.00 10 3214.90 599.41 0 0.00 47.71 0 0.00 0.28
120 0 1040.30 0.01 10 1836.90 599.41 0 0.00 134.81 0 0.00 0.47
150 0 3265.50 0.02 10 1160.60 599.77 5 0.00 467.90 0 0.00 0.94
160 0 1741.70 0.02 10 711.20 599.99 7 0.00 532.80 0 0.00 1.08
180 0 20246.60 0.12 10 159.60 601.27 8 0.00 528.35 0 0.00 1.38
200 0 2268.90 0.04 10 54.60 600.08 10 0.00 605.45 0 0.00 2.12
250 0 3447.30 0.08 10 0.00 603.28 10 0.00 611.97 0 0.00 3.55
300 0 35653.00 0.36 10 0.00 608.43 10 0.00 620.59 0 0.00 5.91
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3.1 Introduction

In this chapter, we are interested in the two-machine flow-shop problem with time
delays with respect to the makespan. Compared the problem studied in Chapter 2,
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the processing times are here job-dependent and thus multiple processing values can
be observed per machine.

The main contributions of this chapter consist in:

• In term of theoretical approaches, we provide theoretical and experimental
analyses of the existing lower bounds. Precisely, we propose a new classification
scheme of the different lower bounds and we enhance a time delay-based one.
Then, we elucidate dominance relationships between them.

• In term of resolution approaches, we discuss some key challenges and
limitations of considering MIP-based procedures in order to solve the two-
machine flow-shop problem with time delays. In particular, we point out
the performance of a linear ordering variable-based model. Moreover, we
derive three relaxation schemes for F2|lj|Cmax. In the first scheme, we solve
the linear relaxation of the linear ordering variable-based model. This lower
bound includes the consideration of clique-based valid inequalities. These
inequalities consist in computing optimal solutions of polynomial-time-solvable
sub-instances, which are extracted from the original instance by computing all
maximal cliques on a particular Interval graph. The second and third scheme
are based on relaxing the F2|lj|Cmax to the F2|p1,j = a, p2,j = b, lj|Cmax
problem and to a particular assignment problem, respectively.

• In terms of computational results, extensive experiments carried out on the
different classes of instances, demonstrate the efficiency of the proposed lower
bounds. The lower bounds outperform the state of the art ones. In particular,
the linear relaxation of the linear ordering variable-based model together with
the consideration of the clique-based inequalities yields the best lower bound
value on all instances compared to the literature lower bounds.

The remainder of this chapter is organized as follows. In Section 3.2, we present
a new classification scheme of the state of the art lower bounds and we enhance a
time delay-based one. We also introduce dominance relationships between them. In
Section 3.3, we recall a set of MIP formulations for F2|lj|Cmax problem. We then
introduce linear programming-based lower bounds for F2|lj|Cmax in Section 3.4.
Computational experiments on a set of randomly generated instances are reported
in Section 3.5. Finally, some concluding remarks are given in Section 3.6.
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3.2 Combinatorial lower bounds for F2|lj|Cmax

Many works investigated lower bounds for F2|lj|Cmax. A survey on the F2|lj|Cmax
problem was done by [Emmons and Vairaktarakis, 2013], in which lower bound
methods were recalled. However, the major contribution of [Yu, 1996] was omitted.
The aim of this section is to classify the state of the art lower bounds according
to their relaxation scheme. Then, dominance relationships are elucidated between
them.

3.2.1 Lower bounds

To the best of our knowledge, the only contributions for F2|lj|Cmax lower bounds are
those of [Yu, 1996] and [Dell’Amico, 1996]. The proposed lower bounds are based on
three relaxation schemes, namely the resource constraint-based relaxation scheme,
the time delay-based relaxation scheme and the job splitting-based relaxation
scheme.

Basic bounds. To begin with, we recall two O(n) basic lower bounds. The first
lower bound LBbas,0 was proposed by [Dell’Amico, 1996] and is given by:

LBbas,0 = max
1≤j≤n

(p1,j + lj + p2,j). (3.1)

The second lower bound LBbas,1 was introduced by [Yu, 1996] and is given by
expression (3.2). Note that [Dell’Amico, 1996] proposed a similar lower bound that
is dominated by LBbas,1.

LBbas,1 = max(
n∑
j=1

p1,j + min
1≤j≤n

(lj + p2,j),
n∑
j=1

p2,j + min
1≤j≤n

(lj + p1,j)). (3.2)

Interestingly, [Yu, 1996] proposed an enhancement of LBbas,1 hereafter denoted by
LBbas,2. Let µ = (µ(1), . . . , µ(n)) (resp. η = (η(1), . . . , η(n))) be a job sequence such
that the jobs are sorted in a non-decreasing order of lj + p1,j (resp. lj + p2,j), for all
j in J . The O(n log n) lower bound LBbas,2 is given by expression (3.3).

LBbas,2 = max
1≤k≤n

(max(

n∑
k′=k

p1,η(k′ ) + lη(k) + p2,η(k),

n∑
k′=k

p2,µ(k′ ) + lµ(k) + p1,µ(k))). (3.3)

Example 3.1. Let us consider an F2|lj|Cmax instance with four jobs. We report in
Table 3.1 the characteristics of the instance.
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Jobs p1,j lj p2,j

1 2 2 3
2 4 3 1
3 5 1 2
4 2 1 2

Table 3.1 – F2|lj |Cmax instance.

The above lower bounds are computed as follows:

LBbas,0 = max(2 + 2 + 3, 4 + 3 + 1, 5 + 1 + 2, 2 + 1 + 2) = 8.

LBbas,1 = max(13+min(2+3, 3+1, 1+2, 1+2), 8+min(2+2, 4+3, 5+1, 2+1)) = 16.

For LBbas,2, we determine first the two job sequences µ = (µ(1), . . . , µ(4)) and
η = (η(1), . . . , η(4)), where µ(1) = 4, µ(2) = 1, µ(3) = 3 and µ(4) = 2 (resp.
η(1) = 4, η(2) = 3, η(3) = 2 and η(4) = 1). Then, we compute the lower bound as
it is given in expression 3.3:

LBbas,2 = max(max(13 + 1 + 2, 8 + 1 + 2),max(11 + 1 + 2, 6 + 2 + 2),max(6 + 3 +

1, 3 + 5 + 1),max(2 + 2 + 3, 1 + 4 + 3)) = 16.

Resource constraint-based lower bound. Let us consider I = (J, p1, l, p2) an
instance of F2|lj|Cmax and assume that the resource constraint of the first machine
is relaxed. This means that M1 can now process any number of jobs at the same
time. Therefore, we obtain an instance Ir of the 1|rj|Cmax problem with release dates
rj = p1,j + lj and processing times pj = p2,j, for all j in J . Thus, L1 = C∗max(Ir) is a
valid lower bound that can be obtained by scheduling jobs in a non-decreasing order
of rj. Similarly, by interchanging the roles ofM1 andM2, we can derive a symmetric
lower bound L2. This yields an O(n log n) lower bound given by expression (3.4).
This lower bound was proposed by [Dell’Amico, 1996].

LBres,1 = max(L1, L2). (3.4)

[Yu, 1996] proposed a lower bound that can be considered as the relaxation of
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the resource constraint on both machines. Let S∗ be an optimal schedule and pm,[`]
the processing time of the job scheduled at position ` on machine Mm, m in {1, 2}.
Moreover, let jm be the position of job j on Mm. Then, for each job j of J we have:

Cmax(S
∗) ≥

j1∑
`=1

p1,[`] + lj +
n∑

`=j2

p2,[`], ∀j ∈ {1, . . . , n} (3.5)

Let ρm,` be the sum of the ` smallest values in {pm,1, pm,2, . . . , pm,n}, m in {1, 2}.
We observe that:

∑j1

`=1 p1,[`] ≥ ρ1,j1 and
∑n

`=j2 p2,[`] ≥ ρ2,n+1−j2 . We thus obtain:

Cmax(S
∗) ≥ ρ1,j1 + lj + ρ2,n+1−j2 , ∀j ∈ {1, . . . , n}. (3.6)

Furthermore, by adding the above n equations together, it holds that:

n× Cmax(S∗) ≥
n∑
`=1

ρ1,` +
n∑
j=1

lj +
n∑
`=1

ρ2,n+1−`. (3.7)

By observing that the makespan is integral and that
∑n

`=1 ρ2,n+1−` =
∑n

`=1 ρ2,`, we
obtain the following lower bound that can be computed in O(n log n)-time:

Cmax(S
∗) ≥ LBres,2 =

⌈
(
n∑
j=1

lj +
n∑
`=1

ρ1,` +
n∑
`=1

ρ2,`)/n

⌉
. (3.8)

Example 3.2. Let us consider the same instance of Example 3.1. The computation
of LBres,1 and LBres,2 are given as follows.

For LBres,1, we start by sorting the jobs in a non-descending order of their release
dates r4 = 3, r1 = 4, r3 = 6, r2 = 7 (resp. in a non-increasing order of their delivery
dates q1 = 5, q2 = 4, q3 = 3, q4 = 3), and then we schedule them on M2 (resp. M1)
with respect to that order. Therefore, the job 4 (resp. 1) is the first to be assigned to
M2 (resp. M1) and so on until the job 2 (resp. 4), the lower bound value is given by:

LBres,1 = max(C∗max(R) = 11, C∗max(Q) = 16) = 16

Moreover, in order to compute LBres,2, we duplicate in Table 3.2 the needed
values. LBres,2 is computed as follows:

LBres,2 = d((2 + 3 + 1 + 1) + (2 + 4 + 8 + 13) + (1 + 3 + 5 + 8))/4e = 13.

Time delay-based relaxation scheme. The time delay-based relaxation scheme
assumes that either a part or all time delays are reduced or eliminated in order to
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Jobs p1,j lj p2,j ρ1,j ρ2,j

1 2 2 3 2 1
2 4 3 1 4 3
3 5 1 2 8 5
4 2 1 2 13 8

Table 3.2 – Computing LBres,2.

relax the problem. For F2|lj|Cmax, it is assumed that the time delays are reduced in
such a way that the permutation schedules become dominant. Let us consider I =

(J, p1, l, p2) as an instance of F2|lj|Cmax. [Dell’Amico, 1996] proves that permutation
schedules are dominant if:

lj ≤ min
1≤i≤n

(li + p1,i),∀j ∈ J. (3.9)

From instance I, a new instance Ī = (J, p1, l̄, p2) of F2|lj|Cmax is derived, where
l̄j = min(lj,min1≤i≤n(li + p1,i)), j in J . The optimal makespan value of instance Ī
can be computed in O(n log n)-time by using Mitten’s algorithm ([Mitten, 1959]). It
yields the lower bound:

LBtra,1 = C∗max(Ī). (3.10)

Moreover, we propose an enhancement to the above lower bound. The main idea
is to improve LBtra,1 by using the result of [Yu, 1996]. Yu proves that permutation
schedules are dominant if the following condition holds:

lj ≤ li + max(p1,i, p2,i), ∀j, i ∈ J. (3.11)

Let us consider an instance I = (J, p1, l, p2) of F2|lj|Cmax. From this instance, we
derive a new instance Ĩ(J, p1, l̃, p2), where l̃j = min(lj,min1≤i≤n(li + max(p1,i, p2,i))),
j in J . We observe that condition (3.11) holds for Ĩ. As a consequence, we obtain
an O(n log n) lower bound:

LBtra,2 = C∗max(Ĩ). (3.12)

Interestingly, this lower bound can be improved by considering subsets of jobs.
Let us consider ξ = (ξ(1), . . . , ξ(n)) a job sequence such that jobs are sorted in a
non-decreasing order of lj + max(p1,j, p2,j), j in J . Moreover, we define n instances
Ĩk = (J̃k, p̃k1, l̃

k, p̃k2), k in {1, . . . , n}, where J̃k = {j ∈ J : lj + max(p1,j, p2,j) ≥
lξ(k) + max(p1,ξ(k), p2,ξ(k))} and for all j in J̃k, p̃k1,j = p1,j, l̃

k
j = min(lj, lξ(k) +

max(p1,ξ(k), p2,ξ(k))) and p̃k2,j = p2,j. It is noteworthy to indicate that instance
Ĩk verifies (3.11), k in {1, ..., n}. As a consequence, an optimal schedule can be
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achieved using the algorithm of [Mitten, 1959]. From Observation 1.3, we obtain an
O(n2 log n) lower bound:

LBtra,3 = max
1≤k≤n

(C∗max(Ĩ
k)). (3.13)

Example 3.3. Applied on the same instance of Example 3.1, the above lower bounds
are computed as follows:

For LBtra,1 (resp. LBtra,2), we start by computing the value min1≤i≤4(li+p1,i) = 3

(resp. min1≤i≤4(li + max(p1,i, p2,i)) = 3). A new instance Ī = (J, p1, l̄, p2) (resp.
Ĩ = (p̃1,j, l̃j, p̃2,j)) is derived. On which, the algorithm of [Mitten, 1959] is applied.
We obtain that LBtra,1 = C∗max(Ī) = 16 (resp. LBtra,2 = C∗max(Ĩ) = 16). The details
of these computational steps are duplicated in Table 3.3.

Jobs p1,j lj p2,j lj + p1,j lj +max(p1,j, p2,j) l̄j l̃j
1 2 2 3 4 5 2 2
2 4 3 1 7 7 3 3
3 5 1 2 6 6 1 1
4 2 1 2 3 3 1 1

Table 3.3 – Computing time delay-based lower bounds.

Moreover, for LBtra,3, we determine first the job sequence ξ = (ξ(1), ..., ξ(4)),
where ξ(1) = 4, ξ(2) = 1, ξ(3) = 3 and ξ(4) = 2. Then, 4 instances Ĩk =

(J̃k, p̃k1, l̃
k, p̃k2), k in {1, . . . , 4}, are defined such that J̃1 = {1, 2, 3, 4}, J̃2 = {1, 2, 3},

J̃3 = {2, 3} and J̃4 = {2}. Using the algorithm of [Mitten, 1959], LBtra,3 is given
by max(C∗max(Ĩ

1) = 16, C∗max(Ĩ
2) = 14, C∗max(Ĩ

3) = 12, C∗max(Ĩ
4) = 8) = 16.

Job splitting-based relaxation scheme. Let us first recall [Yu et al., 2004]’s
lower bound for the F2|pi,j = 1, lj|Cmax problem. If we suppose that the time delays
are sorted in the non-decreasing order of lj, then a valid lower bound on the makespan
is given by:

LBuni = max
1≤k≤n

(⌈
k∑
j=1

lj/k

⌉
+ k + 1

)
(3.14)

A lower bound for F2|lj|Cmax can be derived by relaxing the constraint that
operations have to be processed without preemption on a given machine. [Yu, 1996]
considered the relaxed problem where operations can be split into unitary sub-
operations. Given an instance I = (J, p1, l, p2) of F2|lj|Cmax, we denote by aj =
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min(p1,j, p2,j) and bj = max(p1,j, p2,j), j in J . Every job j of J is divided into
aj unitary sub-jobs jk (k = 1, ..., aj), the eventually remaining processing time of
operation O1,j or O2,j is transformed to a time delay. We identify two cases:

Case 1: p1,j ≥ p2,j.

Figure 3.1 – Case 1: p1,j ≥ p2,j .

In this case, aj = p2,j and bj = p1,j. For each sub-job jk (k = 1, ..., aj), its first
operation on M1 takes the k-th time slot of job j, and its second operation takes
the k-th time slot of job j. These new sub-jobs have the same time delay:

lujk = (bj − k) + lj + (k − 1) = lj + bj − 1 (k = 1, ..., aj)

We provide in Figure 3.1 a graphical description of the splitting process of a job
with respect to Case 1.

Case 2: p1,j < p2,j.

In this case, aj = p1,j and bj = p2,j. For each sub-job jk (k = 1, ..., aj), its first
operation onM1 takes the k-th time slot of job j, and its second operation takes the
(bj − aj + k)-th time slot of job j. These new sub-jobs have the same time delay:

lujk = (aj − k) + lj + (bj − aj + k − 1) = lj + bj − 1 (k = 1, ..., aj)

We provide in Figure 3.2 a graphical description of the splitting process of a job
with respect to Case 2.
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Figure 3.2 – Case 2: p1,j < p2,j .

By applying LBuni on the new derived instance, we yields the O(n) lower bound:

LBsplit =

⌈
(
n∑
j=1

aj.l
u
j )/

n∑
j=1

aj

⌉
+ 1 +

n∑
j=1

aj (3.15)

Example 3.4. Applied on the same instance of Example 3.1, Table 3.4 gives all
needed values for LBsplit computation.

LBsplit = d(2×4+1×6+2×5+2×2)/(2+1+2+2))e+1+(2+1+2+2) = 12.

Jobs p1,j lj p2,j aj bj luj
1 2 2 3 2 3 4
2 4 3 1 1 4 6
3 5 1 2 2 5 5
4 2 1 2 2 2 2

Table 3.4 – Computing job splitting-based lower bound.

3.2.2 Dominance results

In this section, we elucidate dominance relationships between the different lower
bounds. We say that LBx dominates LBy if for every instance I of the F2|lj|Cmax
problem, LBx(I) ≥ LBy(I). For the sake of clarity, we recall the following notation:
µ = (µ(1), . . . , µ(n)), η = (η(1), . . . , η(n)) and ξ = (ξ(1), . . . , ξ(n)) are the job
sequences such that jobs are sorted in a non-decreasing order of lj + p1,j, lj + p2,j

and lj + max(p1,j, p2,j), respectively, j in J .
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It is noteworthy to mention that [Yu, 1996] proves that LBbas,2 dominates LBbas,1

and LBbas,0. Moreover, we provide the dominance relationships determined in the
following propositions.

Proposition 3.1. LBres,1 and LBbas,2 are equivalent.

Proof. Recall that, LBres,1 = max(L1, L2), where L1 = C∗max(Ir) (resp. L2 =

C∗max(Iq)) and Ir (resp. Iq) is an instance of the 1|rj|Cmax problem that is obtained
by relaxing the resource constraint of the first machine (resp. the second machine).
Since the optimal solution of instance Ir can be obtained by scheduling the jobs in
a non-decreasing order of their release dates (i.e., rj = p1,j + lj), we obtain:

L1 = max
1≤k≤n

(lµ(k) + p1,µ(k) +
n∑
`=k

p2,µ(`)).

In the same way, we prove that:

L2 = max
1≤k≤n

(lη(k) + p2,η(k) +
n∑
`=k

p1,η(`)).

Therefore,

LBres,1 = max(L1, L2)

= max
1≤k≤n

(max(lη(k) + p2,η(k) +
n∑
`=k

p1,η(`), lµ(k) + p1,µ(k) +
n∑
`=k

p2,µ(`)))

= LBbas,2.

Proposition 3.2. LBtra,2 dominates LBbas,1.

Proof. Let us consider the instance Ĩ = (J, p1, l̃, p2) defined earlier in the imple-
mentation of LBtra,2, where l̃j = min(lj,min1≤i≤n(li + max(p1,i, p2,i))), j in J . If we
denote the last scheduled job onM1 in an optimal schedule of Ĩ by jlast, the following
inequality holds:

C∗max(Ĩ) ≥
n∑
j=1

p1,j + l̃jlast + p2,jlast

≥
n∑
j=1

p1,j + min(ljlast , min
1≤i≤n

(li + max(p1,i, p2,i))) + p2,jlast .

We identify two cases:
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• ljlast ≤ min1≤i≤n(li+max(p1,i, p2,i)), then C∗max(Ĩ) ≥
∑n

j=1 p1,j+ljlast+p2,jlast ≥∑n
j=1 p1,j + min1≤i≤n(li + p2,i).

• Otherwise, it holds that C∗max(Ĩ) ≥
∑n

j=1 p1,j + min1≤i≤n(li + max(p1,i, p2,i)) +

p2,jlast ≥
∑n

j=1 p1,j + min1≤i≤n(li + p2,i).

By using the same arguments, it is true that C∗max(Ĩ) ≥
∑n

j=1 p2,j+min1≤i≤n(li+p1,i).
Thus,

LBtra,2 = C∗max(Ĩ) ≥ max(
n∑
j=1

p1,j + min
1≤i≤n

(li + p2,i),
n∑
j=1

p2,j + min
1≤i≤n

(li + p1,i))

≥ LBbas,1.

Proposition 3.3. LBtra,3 dominates LBtra,1 and LBtra,2.

Proof. Recall that LBtra,1 = C∗max(Ī), LBtra,2 = C∗max(Ĩ) and LBtra,3 = max
1≤k≤n

(C∗max(Ĩ
k)),

where Ī = (J, p1, l̄, p2) and Ĩ = Ĩ1 = (J, p1, l̃, p2) with l̄j = min(lj,min1≤i≤n(li+p1,i))

and l̃j = min(lj,min1≤i≤n(li + max(p1,i, p2,i))), j in J .

Note that since l̃j ≥ l̄j for all j in J , LBtra,3 ≥ C∗max(Ĩ
1) ≥ C∗max(Ĩ) ≥ C∗max(Ī).

Thus,
LBtra,3 ≥ LBtra,2 ≥ LBtra,1.

Proposition 3.4. LBtra,3 dominates LBbas,2.

Proof. Recall that LBtra,3 = max1≤k≤n(C∗max(Ĩ
k)), where Ĩk = (J̃k, p̃k1, l̃

k, p̃k2) is
an instance of F2|lj|Cmax and J̃k = {j ∈ J : lj + max(p1,j, p2,j) ≥ lξ(k) +

max(p1,ξ(k), p2,ξ(k))}, k in {1, ..., n}.
With respect to equation (3.3), let k0 be an integer in {1, ..., n} such that:

LBbas,2 = max(
n∑

k′=k0

p1,η(k′ ) + lη(k0) + p2,η(k0),

n∑
k′=k0

p2,µ(k′ ) + lµ(k0) + p1,µ(k0)).

In this proof, we show that instances of Ĩk, k in {1, ..., n} exist such that their
makespan values dominate

∑n
k′=k0

p1,η(k′ )+lη(k0)+p2,η(k0) and
∑n

k′=k0
p2,µ(k′ )+lµ(k0)+

p1,µ(k0)).
Let kmin be an integer such that kmin = arg mink≥k0(lµ(k) + max(p1,µ(k), p2,µ(k)))

and p the position of µ(kmin) in the job sequence (ξ(1), . . . , ξ(n)). Obviously, it holds
that:
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• lξ(p) + max(p1,ξ(p), p2,ξ(p)) ≥ lξ(p) + p1,ξ(p) ≥ lµ(k0) + p1,µ(k0) since ξ(p) = µ(kmin).

• ∀k ≥ k0, lµ(k) + max(p1,µ(k), p2,µ(k)) ≥ lξ(p) + max(p1,ξ(p), p2,ξ(p)). Therefore, for
all k ≥ k0, µ(k) belongs to J̃p.

Moreover, we observe that:

∀j ∈ J̃p, l̃j
p

= min(lj, lξ(p) + max(p1,ξ(p), p2,ξ(p))).

Thus,

∀µ(k) ∈ J̃p and k ≥ k0, l̃
p
µ(k) ≥ min(lµ(k), lµ(k0) + p1,µ(k0))

∀µ(k) ∈ J̃p and k ≥ k0, l̃
p
µ(k) + p1,µ(k) ≥ min(lµ(k) + p1,µ(k), lµ(k0) + p1,µ(k0) + p1,µ(k))

≥ lµ(k0) + p1,µ(k0).

It follows that
∑n

k′=k0
p2,µ(k′ ) + lµ(k0) + p1,µ(k0) is a valid lower bound of Ĩp.

By using the same arguments, we prove that an integer p′ in {1, ..., n} exists such
that

∑n
k′=k0

p1,η(k′ ) + lη(k0) + p2,η(k0) is a valid lower bound of instance Ĩp
′
. Finally,

we obtain:

LBtra,3 ≥ max(C∗max(Ĩ
p), C∗max(Ĩ

p
′

))

≥ max(
n∑

k′=k0

p1,η(k′ ) + lη(k0) + p2,η(k0),
n∑

k′=k0

p2,µ(k′ ) + lµ(k0) + p1,µ(k0))

≥ LBbas,2.

In order to obtain a complete picture of the dominance relationships between
the different lower bounds, we consider the F2|lj|Cmax instances I1, I2, I3 and I4.
The details of these instances are reported in Table 3.5. The results of the different
lower bounds on these instances are summarized in Table 3.6.

• On the basis of Instances I2, I3 and I4, no dominance relationship exists
between LBres,2 and the set of lower bounds: LBbas,0, LBbas,1, LBbas,2, LBres,1,
LBsplit, LBtra,1, LBtra,2 and LBtra,3.

• On the basis of Instances I3 and I4, no dominance relationship exists between
LBsplit and the set of lower bounds: LBbas,0, LBbas,1, LBbas,2, LBres,1, LBtra,1,
LBtra,2 and LBtra,3.

• On the basis of Instances I1 and I2, no dominance relationship exists between
LBbas,0 and the set of lower bounds: LBbas,1, LBtra,1 and LBtra,2.
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• On the basis of Instances I1 and I3, no dominance relationship exists between
LBbas,2, which is equivalent to LBres,1, and the set of lower bounds: LBtra,1

and LBtra,2.

• On the basis of Instances I2 and I3, no dominance relationship exists between
LBtra,1 and LBbas,1.

Table 3.5 – Details of instances I1, I2, I3 and I4.

Instance Job p1,j lj p2,j Instance Job p1,j lj p2,j

I1

1 1 10 3
I3

1 3 0 3
2 1 5 6 2 1 8 1
3 2 20 2 3 5 6 5

I2

1 27 100 71
I4

1 8 2 1
2 71 150 27 2 7 3 2
3 27 200 71 3 8 4 1
4 71 250 27

Table 3.6 – Lower bound results on Table 3.5 counter examples.

Instance LBbas,0 LBbas,1 LBbas,2 LBres,1 LBres,2 LBsplit LBtra,1 LBtra,2 LBtra,3
I1 24 18 24 24 21 21 18 18 24
I2 348 367 369 369 376 354 350 373 375
I3 16 12 16 16 14 18 17 17 17
I4 23 26 26 26 21 15 26 26 26

Before closing this section, the dominance relationships between the presented
lower bounds are illustrated in Figure 3.3, where each node represents a lower bound.
If a lower bound LBx dominates LBy, then an outgoing arc from the corresponding
node of LBy to that of LBx exists.

3.3 Mixed Integer Linear Programming models for

F2|lj|Cmax
Several mathematical formulations were proposed for scheduling problems
[Keha et al., 2009]. These formulations are based on different decision variables,
mainly, the time indexed-based variables, the completion time-based variables, the
assignment-based variables and the linear ordering-based variables.
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Figure 3.3 – Dominance relationships between the different lower bounds.

In this section, we study only three of the above mathematical formulations
for the F2|lj|Cmax problem. The time indexed variable-based formulation is not
considered since it has a pseudo-polynomial number of variables.

As a consequence of observation 1.2, we suppose in the proposed formulations
that the jobs are continuously processed on M1 and M2.

3.3.1 Position-based formulation

This formulation is based on binary decision variables Xm
j,k that determine the

positions of jobs on the two machines, j in J ,m in {1, 2} and k in {1, ..., n}. Precisely,
Xm
j,k = 1 if job j is scheduled at the k-th position onMm and 0 otherwise. Moreover,

Cm
[k] corresponds to the completion time of the job scheduled at position k on Mm.

The model constraints and objective function are described as follows:

min C2
[n] (3.16)

s.t.
∑n
k=1X

m
j,k = 1, ∀j ∈ J,m ∈ {1, 2} (3.17)∑

j∈J X
m
j,k = 1, ∀k ∈ {1, ..., n},m ∈ {1, 2} (3.18)

C1
[k] =

∑k
ν=1

∑
j∈J X

1
j,νp1,j , ∀k ∈ {1, ..., n} (3.19)

C2
[k] = C2

[n] −
∑n
ν=k+1

∑
j∈J X

2
j,νp2,j , ∀k ∈ {1, ..., n− 1} (3.20)

C2
[k] ≥ C

1
[ν] + lj + p2,j −M(2−X1

j,ν −X2
j,k), ∀j ∈ J ; k, ν ∈ {1, ..., n} (3.21)

Cm[k] ≥ 0, ∀k ∈ {1, ..., n},m ∈ {1, 2} (3.22)

Xm
j,k ∈ {0, 1}, ∀j ∈ J, k ∈ {1, ..., n};m ∈ {1, 2} (3.23)
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The objective function (3.16) aims to minimize C2
[n], which represents the completion

time of the last scheduled job on M2. Constraints (3.17) ensure that a job can only
be assigned to a unique position on each machine. Constraints (3.18) indicate that
at each position on the two machines only one job can be scheduled. Constraints
(3.19) and (3.20) give the completion time of the job scheduled at position k on M1

and M2, respectively. Constraints (3.21) state that each job after being executed on
the first machine has to wait at least its time delay to be assigned to the second
one. Constraints (3.22) and (3.23) impose integrity and non-negative conditions on
the problem variables. In this formulation, the value of M is taken to be equal to∑

j∈J p1,j + maxj∈J(p2,j+lj).

3.3.2 Job precedence-based formulation

We focus in this formulation on the local precedence relationships between all jobs.
The formulation is based on the following variables. Um

i,j is a binary decision variable
that takes the value 1 if job i locally precedes job j on Mm and 0 otherwise, m in
{1, 2}. Another decision variable µmj is defined in order to indicate the position of
job j on Mm. In addition, the completion time of job j on Mm is denoted by Cm,j
and the makespan is represented by Γ. The problem is modeled as follows:

min Γ (3.24)

s.t.
∑

i∈J∪{0} U
m
i,j = 1, ∀j ∈ J ;m ∈ {1, 2} (3.25)∑

j∈J∪{n+1} U
m
i,j = 1, ∀i ∈ J ;m ∈ {1, 2} (3.26)

µm0 − µmj + (n+ 1)Um0,j ≤ n, ∀j ∈ J ;m ∈ {1, 2} (3.27)

µmj − µmn+1 + (n+ 1)Umj,n+1 ≤ n, ∀j ∈ J ;m ∈ {1, 2} (3.28)

µmi − µmj + (n+ 1)Umi,j ≤ n, ∀i, j ∈ J ;m ∈ {1, 2} (3.29)

Cm,i ≥ Cm,j + pm,i −M
′
(1− Umj,i), ∀i, j ∈ J ;m ∈ {1, 2} (3.30)

C2,j ≥ C1,j + lj + p2,j , ∀j ∈ J (3.31)

Γ ≥ C2,j , ∀j ∈ J (3.32)

Cm,j ,Γ, µ
m
j ∈ N+ and Umi,j ∈ {0, 1}, ∀i, j ∈ J,m ∈ {1, 2} (3.33)

For the objective function (3.24), it aims to minimize the makespan value Γ.
Constraints (3.25) and (3.26) state that a job has one successor and one predecessor
after adding two fictive jobs (job 0 and job n + 1). Constraints (3.27), (3.28) and
(3.29) are the Miller-Tucker-Zemlin (MTZ) sub-tour elimination constraints (see
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[Miller et al., 1960]). They invoke the absence of cyclic relationships between jobs.
Constraints (3.30) allow us to compute the completion times of all jobs on the
two machines. Constraints (3.31) ensure that for each job its time delay must
elapse between the end of its first operation and the start of its second operation.
Constraints (3.32) specify that the value of variable Γ is grater than or equal to the
maximum completion time value on M2. Type and non-negative conditions on the
problem variables are given in constraints (3.33). The value of M ′ is calculated as
follows M ′

= n×maxj∈J(p1,j, p2,j).

3.3.3 Linear ordering-based formulation

The considered formulation is based on linear ordering-based variables. The decision
variables are defined for each pair of jobs (i, j) of J2, where Y m

i,j takes the value 1 if
i precedes j on Mm and 0 otherwise, m in {1, 2}. Furthermore, Cm,j represents the
completion time of job j on Mm and the makespan is denoted by Γ

′ . Using these
definitions, the model is given by:

min Γ
′ (3.34)

s.t. Y m
i,j + Y m

j,i = 1, ∀i, j ∈ J i 6= j;m ∈ {1, 2} (3.35)

Y m
i,j ≥ Y m

i,v + Y m
v,j − 1, ∀i, j, v ∈ J ;m ∈ {1, 2} (3.36)

C1,j =
∑n

i=1 Y
1
i,jp1,i + p1,j, ∀j ∈ J (3.37)

C2,j ≥ C1,j + lj + p2,j, ∀j ∈ J (3.38)

C2,j = Γ
′ −
∑n

i=1 Y
2
j,ip2,i, ∀j ∈ J (3.39)

Γ
′ ≥ 0, Cm,j ≥ 0, Y m

i,j ∈ {0, 1}, ∀i, j ∈ J, m ∈ {1, 2} (3.40)

The objective function (3.34) minimizes the makespan. Constraints (3.35) ensure
that for each pair of jobs, one of them has to precede the other on each machine.
Constraints (3.36) stand for the transitivity constraints that force a linear order
between each three jobs. Constraints (3.37) and (3.39) take into account the job
precedence and enforce them to be continuously processed without idle on M1

and M2, respectively. In addition, Constraints (3.38) ensure that a job after being
processed onM1 has to wait at least its time delay to be executed onM2. The nature
of decision variables Γ

′ , Cm,j and Y m
i,j is displayed by Constraints (3.40).
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Remark 3.1. From a complexity point of view, the three formulations have similar
number of variables and constraints. Precisely, all three admit O(n2) variables and
O(n3) constraints except for the job precedence-based formulation that has only O(n2)

constraints.

In our case, preliminary computational results conducted on the above for-
mulations show that the linear ordering-based formulation is the most promising
one. This observation can be explained by the fact that the first and the second
models can be considered as a big-M model that is known to be the hardest to solve
[Codato and Fischetti, 2006].

3.4 Linear programming-based lower bounds for

F2|lj|Cmax
In this section, we introduce three linear programming-based lower bounds for
F2|lj|Cmax. The first scheme is based on solving the linear relaxation of the linear
ordering variable-based model. In the second scheme, we first relax the F2|lj|Cmax
problem to the F2|p1,j = a, p2,j = b, lj|Cmax problem. We then apply the compact
ILP model proposed in Chapter 2 (see Section 2.3) on it. The third scheme consists
in introducing an assignment-based lower bound.

3.4.1 Linear ordering variable-based lower bound

We present here a lower bound for F2|lj|Cmax that is obtained after solving the LP
relaxation of the mathematical model (3.34)-(3.40). In order to strengthen the LP
relaxation of the model, we propose two valid inequalities.

The first valid inequality is based on the additional waiting time that a job has
to fulfill after being available for processing on M2. We recall that given a sequence
of jobs on M1, solutions in which the jobs are scheduled on M2 according to their
arrival times are dominant. Therefore, if a job j is preceded by a job i on M1, then
a lower bound on the minimum additional waiting time observed by job j or job i

is ωi,j, where ωi,j =

max(0, li + p2,i − p1,j − lj), if li ≤ p1,j + lj

max(0, p1,j + lj + p2,j − li), otherwise.

A lower bound on the total additional waiting time ∆ can be obtained by solving
the assignment problem where the assignment costs are δi,j, i, j ∈ {1, . . . , n}. In the
following, we describe how the assignment costs are computed. Note that the first
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scheduled job (resp. the last scheduled job) on M1 is assumed to be preceded (resp.
succeeded) by a dummy job (job 0, resp. job n + 1). Obviously, since job 0 cannot
precede job n + 1, and a job cannot precede itself, then we set δ0,n+1 = ∞ and
δj,j =∞, for all j in {1, . . . , n}.

Remark 3.2. Let I be an instance of F2|lj|Cmax and LB (resp. UB) a lower bound
(resp. an upper bound) on the the makespan of I. If a schedule of makespan LB

exists, then the jobs can be continuously processed without any idle time, from time
0 on M1 and from time (LB −

∑n
j=1 p2,j) on M2. Then, we obtain the following

assignment costs:

• for all i in {1, . . . , n}, δ0,i = max(0, LB −
∑n

j=1 p2,j − li − p1,i)

• for all i in {1, . . . , n}, if
∑n

j=1 p1,j + li + p2,i > UB, i cannot be processed at
the last position on M1, then δi,n+1 =∞. Otherwise δi,n+1 = 0

In order to set δi,j, for all i, j in {1, . . . , n}, i 6= j, we introduce in the following
lemma a new dominance rule.

Lemma 3.1. Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and i, j two jobs of
J such that p1,j + lj ≤ p1,i + li, li ≤ p2,j + lj and p1,j ≤ p2,j. For any schedule S of
I, if j and i are adjacent on M1 then j should precede i on M1.

Proof. Let σ1 be an arbitrary sub-sequence on M1 where Jσ1 ⊂ J . In this proof, we
show that we can construct a schedule S ′ of Ω(σ1⊕j⊕i) from an arbitrary schedule
S of Ω(σ1⊕i⊕j) in a way that Cmax(S

′
) = Cmax(S). For S ′ , the job sequence on

M1 is obtained by simply interchanging i and j and keeping the same executing
order for the rest of the jobs, like in S. Therefore, it holds that t1,j(S

′
) = t1,i(S),

t1,i(S
′
) + p1,i = t1,j(S) + p1,j and t1,v(S

′
) = t1,v(S) for all v in J\{i, j}. Moreover, we

identify two cases:

Case 1: j precedes i on M2.
The job sequence on M2 of S ′ is similar to that of S, where t2,v(S

′
) = t2,v(S), for

all v in J . Thus, each job of J\{i, j} is available on M2 before its starting time. In
addition, it holds that:

t1,j(S
′
) + p1,j + lj ≤ t1,j(S) + p1,j + lj

≤ t2,j(S)

≤ t2,j(S
′
)
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and

t1,i(S
′
) + p1,i + li = t1,j(S) + p1,j + li.

Since li ≤ lj + p2,j, we obtain:

t1,i(S
′
) + p1,i + li ≤ t1,j(S) + p1,j + lj + p2,j

≤ t2,j(S) + p2,j

≤ t2,i(S
′
).

On the basis of the above remarks, we conclude that all jobs are available for
processing on M2 before their starting times in S ′ .

Case 2: i precedes j on M2.
The job sequence on M2 of S ′ is derived from that of S by shifting left j on M2

to locally precede i in a way that t2,j(S
′
) = t2,i(S). Since t1,v(S

′
) = t1,v(S) and

t2,v(S
′
) ≥ t2,v(S) for all v in J\{i, j}, each job of J\{i, j} is available on M2 before

its starting time. We recall that:

t1,j(S
′
) + p1,j + lj = t1,i(S) + p1,j + lj.

Since p1,j + lj ≤ p1,i + li, it holds that:

t1,j(S
′
) + p1,j + lj ≤ t1,i(S) + p1,i + li

≤ t2,i(S)

≤ t2,j(S
′
).

Moreover, we have:

t1,i(S
′
) + p1,i + li = t1,j(S

′
) + p1,j + p1,i + li

= t1,i(S) + p1,j + p1,i + li

≤ t2,i(S) + p1,j.

Since p1,j ≤ p2,j, we obtain:

t1,i(S
′
) + p1,i + li ≤ t2,i(S) + p2,j

≤ t2,j(S
′
) + p2,j

≤ t2,i(S
′
).
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On the basis of the above remarks, we conclude that all jobs are available for
processing on M2 before their starting times in S ′ .

Corollary 3.1. Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and i, j two jobs
of J . If p1,j + lj ≤ p1,i + li, li ≤ p2,j + lj and p1,j ≤ p2,j, then δi,j = ∞. Otherwise
δi,j = ωi,j.

Similarly, by interchanging the role of M1 and M2, we obtain ∆
′ another lower

bound on the total additional waiting time. Therefore, the following valid inequality
holds:

n∑
j=1

C2,j ≥
n∑
j=1

C1,j +
n∑
j=1

(p2,j + lj) + max(∆,∆
′
). (3.41)

In the second valid inequality, we take advantage of the property of [Yu, 1996].
Recall that [Yu, 1996] proved that a permutation schedule that is optimal exists for
an instance I = (J, p1, l, p2) of F2|lj|Cmax if the processing times and the time delays
are with respect to

lj ≤ li + max(p1,i, p2,i), ∀i, j ∈ J.

Thus, an optimal permutation solution for I can be computed in a polynomial
time using the algorithm of [Mitten, 1959].

The second valid inequality consists in computing optimal solutions of
polynomial-time-solvable sub-instances. These latter are extracted from the original
instance by computing all maximal cliques on a particular Interval graph.

Definition 3.1. Let us consider two instances I = (J, p1, l, p2) and Is = (Js, p1, l, p2)

of F2|lj|Cmax where Js ⊂ J . Is is called a Permutation Sub-Instance (PSI) of I if
and only if it holds that:

lj ≤ li + max(p1,i, p2,i) and li ≤ lj + max(p1,j, p2,j), ∀i, j ∈ Js; i 6= j.

Observation 3.1. Let us consider two instances I = (J, p1, l, p2) and Is =

(Js, p1, l, p2) of F2|lj|Cmax. If Is is a PSI of I, then Is can be solved to optimality in
polynomial time.

Proof. It holds that lj ≤ li+max(p1,i, p2,i), ∀i, j ∈ Js. Thus, an optimal permutation
solution for Is can be determined in a polynomial time using the algorithm of
[Mitten, 1959].

Definition 3.2. Let us consider two instances I = (J, p1, l, p2) and Is = (Js, p1, l, p2)

of F2|lj|Cmax where Js ⊂ J . Is is called a Maximal Permutation Sub-Instance
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(MPSI) if and only if Is is PSI and there is no job j of J \ Js such that:

lj ≤ li + max(p1,i, p2,i) and li ≤ lj + max(p1,j, p2,j), ∀i ∈ Js.

In order to determine all MPSIs from an instance I = (J, p1, l, p2) of F2|lj|Cmax,
we define an undirected graph G = (V,E) for I, where V (resp. E) stands for the
set of vertex (resp. edges). The set V contains n vertex such that each job j of J is
presented using the vertex uj. Moreover, an edge of E exists between the two vertex
ui and uj if and only if

lj ≤ li + max(p1,i, p2,i) and li ≤ lj + max(p1,j, p2,j), i, j ∈ J.

Interestingly, determining all MPSIs of instance I and computing maximal
cliques in G are equivalent.

Proposition 3.5. Let us consider an instance I = (J, p1, l, p2) of F2|lj|Cmax. At
most, n MPSIs of I exist.

Proof. Let us consider an undirected graph G = (V,E) defined for I. Each vertex
uj of V is associated to an interval hj = [lj, lj + max(p1,j, p2,j)]. Every edge of E
that exists between the two vertex ui and uj of V can be given by a non-empty
intersection between the two intervals hi and hj. Precisely, if an edge exists between
ui and uj, then it holds that:

lj ≤ li + max(p1,i, p2,i) and li ≤ lj + max(p1,j, p2,j).

Thus, we obtain:
hi ∩ hj 6= ∅.

As a consequence, G is an interval graph. Thus, we can determine at most n
MPSIs of an instance I by simply determining all maximal cliques in G.

Corollary 3.2. Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and G = (V,E)

an interval graph of I. We can determine all MPSIs of I in O(n+ | E |)-time.

Corollary 3.3. Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and Is =

(Js, p1, l, p2) a MPSI of I. It holds that:

max
j∈Js

(C2,j)−min
j∈Js

(C1,j − p1,j) ≥ C∗max(Is). (3.42)

We can use the same reasoning to inject the value of the best combinatorial lower
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bound within our MIP model. Precisely, if we consider all jobs of J , it holds that:

max
j∈J

(C2,j)−min
j∈J

(C1,j − p1,j) ≥ LB(I).

As a result of Corollary 3.3, we provide in the following a linearization of the
second valid inequality. Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and Is =

(Js, p1, l, p2) a MPSI of I. At first, we define two fictive jobs called job is and job js in
a way that is (resp. js) must locally precede (resp. locally follow) the first scheduled
job (resp. the last scheduled job) of Js on M1 (resp. M2). We also define a set of
new variables. V 1

s,j (resp. V 2
s,j) is a binary decision variable that takes the value 1 if

job j is the first job (resp. last job) of Js to be executed on M1 (resp. M2). Using
these definitions, the valid inequality is given by:

∑
j∈Js

V m
s,j = 1, ∀m ∈ {1, 2} (3.43)

Y 1
v,is ≥

∑
j∈Js

Y 1
v,j− | Js | +1, ∀v ∈ J\{Js} (3.44)

Y 2
js,v ≥

∑
j∈Js

Y 2
j,v− | Js | +1, ∀v ∈ J\{Js} (3.45)

C1,is ≥
∑

v∈J\{Js}

Y 1
v,is .p1,v, (3.46)

C2,js ≤ Γ
′ −

∑
v∈J\{Js}

Y 2
js,v.p2,v, (3.47)

∑
j∈Js;j 6=i

Y 1
i,j ≥ (| Js | −1).V 1

s,i, ∀i ∈ Js (3.48)

∑
j∈Js;j 6=i

Y 2
j,i ≥ (| Js | −1).V 2

s,i, ∀i ∈ Js (3.49)

C2,js − C1,is ≥ C∗max(Is). (3.50)

Constraints (3.43) ensure that a unique job of Js precedes (resp. follows) the rest
of jobs of Js on M1 (resp. M2). Constraints (3.44) and (3.45) allow us to determine
the set of jobs of J\{Js} that precedes (resp. follows) job is (resp. job js) onM1 (resp.
M2). The completion time of job is on M1 (resp. job js on M2) is determined using
Constraint (3.46) (resp. Constraint (3.47)). Constraints (3.48) and (3.49) ensure the
respect of precedence relationships between the first scheduled job of Js onM1 (resp.
the last scheduled job of Js onM2) and the other jobs of Js. Finally, Constraint (3.50)
permits to inject the value of the optimal makespan value of instance Is.
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Hereafter, we define two versions of the lower bound: a version with all constraints
called LBN

1 and a version of LBN
1 without Constraints (3.36), which are the

transitivity constraints, called LBN
2 . Obviously, LBN

1 dominates LBN
2 . However,

LBN
1 admits O(n3) constraints of (3.36) that could affect the effectiveness and the

efficiency of the lower bound.

3.4.2 F2|p1,j = a, p2,j = b, lj|Cmax-based lower bound

We propose here a new lower bound for the F2|lj|Cmax problem. This lower bound is
obtained as follows. We first relax the F2|lj|Cmax problem to the F2|p1,j = a, p2,j =

b, lj|Cmax problem. We then apply ILPass (see Section 2.3) on the relaxed instance
of F2|p1,j = a, p2,j = b, lj|Cmax. The lower bound is described in the following
proposition.

Proposition 3.6. Let us consider an instance I = (J, p1, l, p2) of F2|lj|Cmax and
two integer a, b ∈ N+. From I, we derive an instance Ia,b = (J

′
, l
′
) of F2|p1,j =

a, p2,j = b, lj|Cmax after splitting each job j of J into ρ =
⌊
min(

p1,j

a
,
p2,j

b
)
⌋
sub-jobs

that are included in J ′. A new time delay is defined for each sub-job jk derived from
job j of J , k in {1, ..., ρ}:

l
′

jk = p1,j − k × a+ lj + p2,j − (ρ+ 1− k)× b.

Interestingly, applying ILPass on Ia,b, constitutes a valid lower bound on the
makespan of I. Hereafter, we denote the obtained lower bound by LBN

3 (a, b) =

ILPass(Ia,b).

Proof. Depending on the values of a and b, all jobs that verify that p1,j < a or
p2,j < b, j in J will be eliminated. Let Jr be the remaining set of jobs with respect
to the values of a and b. Taking the view point of job splitting, we consider that
each job j of Jr has ρ sub-jobs. We identify two cases:

Case 1:
p1,j

a
≤ p2,j

b
.

In this case, ρ =
⌊p1,j

a

⌋
. For k in {1, ..., ρ}, the first operation of jk is processed

at the (k− 1)× a+ 1-th time slot of job j on M1. Moreover, its second operation is
processed at the p2,j− b× (ρ−k+ 1) + 1-th time slot of job j on M2. These sub-jobs
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have a common delay:

l
′

jk = p1,j − k × a+ lj + p2,j − (ρ− k + 1)× b.

Case 2:
p1,j

a
>
p2,j

b
.

In this case, ρ =
⌊p2,j

b

⌋
. For k in {1, ..., ρ}, the first operation of jk is processed

at the (k− 1)× a+ 1-th time slot of job j on M1. Moreover, its second operation is
processed at the p2,j− b× (ρ−k+ 1) + 1-th time slot of job j on M2. These sub-jobs
have a common delay:

l
′

jk = p1,j − k × a+ lj + p2,j − (ρ− k + 1)× b.

We conclude that the sub-jobs are executed within the delays of the original job.
Thus, it holds that:

C∗max(I) ≥ C∗max(Ia,b).

Corollary 3.4. Let us consider an instance I = (J, p1, l, p2) of F2|lj|Cmax and the
parameters amax = maxj∈J(p1,j) and bmax = maxj∈J(p2,j). It holds that:

C∗max(I) ≥ LBN
3 = max

1≤a≤amax,1≤b≤bmax
(LBN

3 (a, b)).

Unfortunately, it is very difficult to compute LBN
3 in practice. In fact, there

exits a pseudo-polynomial number of sub-instances that can be derived, i.e.,
maxJ∈J(p1,j)×maxJ∈J(p2,j). Moreover, for each combination of a and b, a pseudo-
polynomial number of sub-jobs can be introduced. These reasons make the lower
bound LBN

3 to be sufficiency hard to solve. Therefore, we present a new lower bound
procedure that inherits the advantage of ILPass without having a pseudo-polynomial
number of jobs or instances to solve.

3.4.3 Assignment-based lower bound

In the following, we provide a lower bound by destructive improvement for
F2|lj|Cmax. First, we propose a relaxation to the F2|lj|Cmax problem. We then
introduce an ILP model that permits to solve the derived instance.

The destructive improvement technique used in this lower bound restricts a
problem by setting a possible objective function value C and try to contradict the
feasibility of this reduced problem. In case of feasibility, we stop the processing.
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Otherwise, we repeat the same process after increasing the value of C. As a start,
C is equal to the best lower bound value of Section 3.2.

At first, we provide some notation. Given an instance I = (J, p1, l, p2) of
F2|lj|Cmax, let %(1), ..., %(n) (resp. υ(1), ..., υ(n)) be a job sequence such that jobs
are sorted in a non-decreasing order (resp. non-increasing order) of p1,j (resp. p2,j),
for all j in J . For each pair of jobs (i, j), the notation j −→m i means that j
precedes i on Mm, m in {1, 2}. Moreover, we define the maximum effective delay
observed between the two positions k1 and k2 on M1 and M2 by ψ(k1, k2) =

C−
∑n

k=k2
p2,υ(k)−

∑k1
k=1 p1,%(k), k1 and k2 in {1, ..., n}. We denote the distinct values

of time delays by l̄1, l̄2, ..., l̄l, ..., l̄L and we suppose that l̄1 > l̄2 > ... > l̄l > ... > l̄L.
Finally, the occurrence number of l̄l in the time delay vector is given by nb(l̄l), l in
{1, ..., L}.

Proposition 3.7. Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and C a possible
makespan value of I. For each pair of positions k1 and k2 in {1, ..., n}, ψ(k1, k2)

represents an upper bound on the effective delay observed by a job if it is processed
at position k1 and k2 on M1 and M2, respectively.

Proof. Let S = (σ, τ) be a feasible schedule of I, where σ−1
j (resp. τ−1

j ) represents the
position of job j onM1 (resp.M2) in the feasible schedule S. The effective delay that
is observed by job j in S is equal to C−

∑
i∈J :j−→2i

p2,i−
∑

i∈J :i−→1j
p1,i− p1,j− p2,j.

We observe that:

∑
i∈J :j−→2i

p2,i + p2,j ≥
n∑

k=τ−1
j

p2,υ(k) and
∑

i∈J :i−→1j

p1,i + p1,j ≥
σ−1
j∑
k=1

p1,%(k).

Thus, we obtain:

C −
∑

i∈J :j−→2i

p2,i −
∑

i∈J :i−→1j

p1,i − p1,j − p2,j ≤ C −
n∑

k=τ−1
j

p2,υ(k) −
σ−1
j∑
k=1

p1,%(k)

≤ ψ(σ−1
j , τ−1

j ).

The new lower bound is based on the following reasoning. At each iteration,
we suppose that the processing times are relaxed. The aim of this lower bound is
to attribute each time delay value to a couple of positions without considering the
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processing time constraints of jobs. A time delay can be attributed to a couple of
positions (k1, k2) if and only if the effective delay that is observed between (k1, k2)

is greater than or equal to the time delay value, k1 and k2 in {1, ..., n}. To make
the resolution process easier, we suppose that the effective delay that is observed
between each couple of positions (k1, k2) is equal to ψ(k1, k2).

Let us define here an integer linear programming model called ILPlb to solve the
relaxed instance. ILPlb is based on a non-trivial generalization of the assignment
model. The decision variables are defined in order to determine a set of n couples of
positions that are able to cover all time delays without considering the processing
times of jobs. Precisely, ξk1,k2 = 1 if the couple of positions (k1, k2) is selected and 0

otherwise. The model constraints and objective function are described as follows:

Find a set of n couples of positions: (k1, k2) (3.51)

s.t.
∑n

k2=1 ξk1,k2 = 1, ∀k1 ∈ {1, ..., n} (3.52)∑n
k1=1 ξk1,k2 = 1, ∀k2 ∈ {1, ..., n} (3.53)∑

(k1,k2):ψ(k1,k2)≥l̄l ξk1,k2 ≥
∑l

`=1 nb(l̄`), ∀l ∈ {1, ..., L} (3.54)

ξk1,k2 ∈ {0, 1}, ∀k1, k2 ∈ {1, ..., n} (3.55)

Constraints (3.52) (resp. (3.53)) ensure that each position on the first (resp.
second) machine is only belong to one selected couple of positions. Constraints
(3.54) guarantee that each time delay value is covered. Precisely, we verify that
there exists at least a unique couple of positions for each time delay, such that its
value is less than or equal to effective delay observed between the two positions.
Finally, constraints (3.55) specify that the decision variables are boolean. The above
model needs O(n2) variables and O(n) constraints.

The new lower bound for F2|lj|Cmax is given in the following proposition.

Proposition 3.8. Let I = (J, p1, l, p2) be an instance of F2|lj|Cmax and Ir its
relaxed instance as it is described above. It holds that:

C∗max(I) ≥ ILPlb(I
r).

Therefore, LBN
4 = ILPlb(Ir) is a valid lower bound on I.
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3.5 Computational results

In this section, we report the results of a computational study that aims at assessing
the performance of the proposed lower bounds. First, we study the performance of
the combinatorial lower bounds. We then analyze the impact of the processing time
intervals on the performance of LBN

4 . Finally, we compare the best combinatorial
lower bound to the new linear-programming based lower bounds.

Note that all the discussed MIP and ILP models were coded in C++ and
compiled under CentOS 6.6. Moreover, we used CPLEX 12.6 to implement them.
The experiments were conducted on an Intel(R) Xeon(R) @ 2.67GHz processor.

We test all the discussed lower bounds on a set of six classes A-F that was
proposed by [Dell’Amico, 1996]. The details of these classes are given as follows:

• Class A: p1,j, p2,j and lj are randomly chosen in [1, . . . , 100].

• Class B: p1,j, p2,j are randomly chosen in [1, . . . , 100] and lj in [1, . . . , 200].

• Class C: p1,j, p2,j are randomly chosen in [1, . . . , 100] and lj in [1, . . . , 500].

• Class D: p1,j, p2,j are randomly chosen in [1, . . . , 200] and lj in [1, . . . , 100].

• Class E: p1,j, lj are randomly chosen in [1, . . . , 100] and p2,j in [1, . . . , 200].

• Class F: p2,j, lj are randomly chosen in [1, . . . , 100] and p1,j in [1, . . . , 200].

Furthermore, preliminary computational results conducted on the literature
classes show that previous lower bounds give poor performance when time delays
are very large compared to processing times. To that aim, we introduced two new
classes, 1 and 2 where the processing times on M1 and M2 and the time delays are
randomly generated between [1, ..., p1,max], [1, ..., p2,max] and [1, ..., lmax], respectively,
with p1,max = p2,max = 20 and lmax = n

2
10 (resp. p1,max = p2,max = 100 and

lmax = n
2
100) for Class 1 (resp. Class 2). For each class, the number of jobs is

n = 10, 30, 50, 100, 150 and 200. For each combination of class and number of
jobs, 10 instances were randomly generated.

3.5.1 Combinatorial lower bounds performance

In order to present a detailed image of the performance of the lower bounds described
in Section 3.2, a pairwise comparison between them is given in Table 3.7 and Table
3.8. In these two tables, we illustrate for each pair of lower bounds LBrow and LBcol,
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which are displayed in some given row and column, respectively, the percentage of
times where LBcol > LBrow. We observe on Classes A-F that LBtra,3 outperforms
LBbas,2 in 10.83% of instances and LBtra,1 in 26.39% of instances. In the same way,
on the new Classes 1-2, we notice that LBtra,3 provides a much better performance
than the rest, since it outperforms all of them on at least 52.5% of instances.

To get a better picture of the lower bounds performance, we provide in Table
3.10 the average percentage deviation (over the instances of each class) with respect
to the maximal lower bound value, that is delivered by the considered lower bounds.
Note that the average CPU time of all lower bounds is less than 10−2 seconds. From
Table 3.10, we observe that the average gap significantly depend on the classes. On
one hand, LBtra,3 exhibits a maximum average gap of 0.15% on all Classes A-F
and Class 1. However, for the instances of Class 2, its average gap jumps to 5.9%.
On the other hand, LBsplit and LBres,2 present a much better performance on the
new classes. Indeed, the average gap of LBsplit (resp. LBres,2) is equal to 8.94% and
2.36% (resp. 9.62% and 2.24%) on Class 1 and Class 2, respectively.

Hereafter, we denote the best combinatorial lower bound value of Section 3.2 by
LBbest = max(LBsplit, LBres,2, LBtra,3).

Table 3.7 – Pairwise comparison between lower bounds on Classes A-F.

LBbas,1 LBbas,2 LBsplit LBres,1 LBres,2 LBtra,1 LBtra,2 LBtra,3

LBbas,1 - 8.33 1.94 8.33 1.67 8.61 12.78 15.28
LBbas,2 0.00 - 0.56 0.00 0.28 3.33 6.11 10.83
LBsplit 98.06 99.44 - 99.44 63.33 98.06 98.06 99.44
LBres,1 0.00 0.00 0.56 - 0.28 3.33 6.11 10.83
LBres,2 98.33 99.72 36.67 99.72 - 98.33 98.33 99.72
LBtra,1 17.22 23.33 1.94 23.33 1.67 - 19.17 26.39
LBtra,2 0.28 7.22 1.94 7.22 1.67 0.00 - 9.44
LBtra,3 0.00 0.00 0.56 0.00 0.28 0.00 0.00 -

3.5.2 The impact of the processing time intervals on the

performance of LBN
4

In this phase, we focus our attention on LBN
4 . In fact, we performed an analysis

of its performance according to a parameter α ∈ [0, 1] that we used to fix the
processing time intervals while generating new instances. The values of α that we
tested are k×0.05, k in {0, ..., 20}. For each value of α, we derived from every instance
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Table 3.8 – Pairwise comparison between lower bounds on Classes 1-2.

LBbas,1 LBbas,2 LBsplit LBres,1 LBres,2 LBtra,1 LBtra,2 LBtra,3

LBbas,1 - 60.83 46.67 60.83 45.83 29.17 42.50 75.00
LBbas,2 0.00 - 39.17 0.00 38.33 7.50 10.00 52.50
LBsplit 52.50 60.83 - 60.83 46.67 52.50 53.33 61.67
LBres,1 0.00 0.00 39.17 - 38.33 7.50 10.00 52.50
LBres,2 54.17 61.67 50.00 61.67 - 54.17 54.17 61.67
LBtra,1 26.67 67.50 47.50 67.50 45.83 - 25.00 72.50
LBtra,2 13.33 60.00 46.67 60.00 45.83 0.00 - 65.00
LBtra,3 0.00 0.00 38.33 0.00 38.33 0.00 0.00 -

I = (J, p1, l, p2) of the early defined classes ten new instances where the precessing
times onM1 (resp. onM2) were randomly generated between [(1−α)

∑
j∈J(

p1,j
n

), (1+

α)
∑

j∈J(
p1,j
n

)] (resp. [(1 − α)
∑

j∈J(
p2,j
n

), (1 + α)
∑

j∈J(
p2,j
n

)]). Moreover, the time
delays were drawn within the same interval as in the original class of I. We provide
in Figure 3.4 the average percentage evolution of LB

N
4 −LBbest
LBN4

over the instances with
the same value of α referred to as GapLB. Recall that LBN

4 is a lower bound by
destructive improvement that uses the value of LBbest as a start solution.

Figure 3.4 – The evolution of GapLB according to α.

We notice from Figure 3.4 that the larger is the value of α, the lower is the
value of GapLB. Note that for α = 0, the processing times are constant on each
machine, and then LBN

4 is optimal in this case. However, when α > 0, the bigger is
α, the lower is the performance of LBN

4 . In fact, when the value of α increases, the
intervals of processing time are large and the performance of LBN

4 decreases. As a
consequence, LBN

4 yields a good performance when the intervals of processing time
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are small.

3.5.3 Linear programming-based lower bounds comparison

Here, we provide a comparison between six lower bounds including LBbest, LBN
1 ,

LBN
2 and LBN

4 that aims to evaluate their performance. The lower bound LBN
5

(resp. LBN
6 ) is obtained after solving the linear relaxation of the MIP model (3.16)-

(3.23) (resp. (3.24)-(3.33)). In Table 3.11, we provide for each lower bound the
following values:

• Gap: the average percentage deviation over the solved instances with the same
class and size with respect to the best lower bound value. The number between
parenthesis stands for the number of unsolved instances within the given 600

seconds.

• Time: the average computational time in seconds for the solved instances.

From Table 3.11, we make the following observations:

• LBN
2 exhibits good results within a short computational time on all classes.

• LBN
2 shows an excellent performance on Class 1 and Class 2, where it strictly

dominates LBbest and LBN
4 . Precisely, LBN

2 provides a Gap of 0.01% and
0.02% on Class 1 and Class 2 compared to 1.51% and 8.32% for LBbest,
respectively.

• LBN
2 offers a good trade-off between effectiveness and efficiency compared to

LBN
1 . In fact, for n < 100, LBN

2 achieves the same values as LBN
1 within a

very short time (0.03 seconds compared to 15.35 seconds), except on Classes
C, 1 and 2. In addition, LBN

1 fails to solve 232 instances out of 240 within 600

seconds when n ≥ 100, while LBN
2 solves all instances in an average time of

3.77 seconds.

• From the other hand, we remark that LBN
4 provides a good overall performance

compared to LBbest. TheGap of LBN
4 is better than LBbest’s one in 6 occasions

especially when n = 10 for Classes B, C and 2. Nevertheless, we observe that
LBN

4 fails to solve 12 instances within the given time limit.

From Table 3.11, we observe that all lower bounds exhibit poor results on the
new classes of instances (Class 1 and 2). This can be explained by the fact that
the time delays are very large compared to processing times. Before proceeding any
further, we define for each instance I of F2|lj|Cmax the following set of pairs of jobs
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θ(I) = {(i, j) ∈ J2; i < j | li ≤ lj + max(p1,j, p2,j) and li ≤ li + max(p1,i, p2,i)}.
Moreover, we denote by d(I) the density of the set θ(I) that is equal to d(I) = 2|θ(I)|

n(n−1)
.

Interestingly, we observe that the density d(I) is small on the two Classes 1-2.

In what follows, we present a study to detect the density values for which the
instances are hard to solve. We start by computing the average density value of each
class. We then present in Figure 3.5 the evolution of the average percentage deviation
of LBN

2 with respect to the best upper bound value of [Dell’Amico, 1996] over the
average density of each class referred to as GapUB. Thus, each class is represented
by a point that displays its average density and its average gap.

Figure 3.5 – The evolution of GapUB according to d.

From Figure 3.5, we notice the presence of three groups of classes:

• 0.08 ≤ d ≤ 0.25: These classes seem to be the hardest to solve. The average
gap is higher than 1% and reaches 3.84% and 3.16% for Class 1 and Class
2, respectively. From the lowest to the highest density, the three classes that
appear are Class 2, Class 1 and Class C. The common feature between these
classes is that the interval of the time delays is large compared to processing
ones.

• 0.25 < d < 0.85: only Class B appears in this interval. Its average gap is equal
to 0.44% and so it is easier to solve compared to the first group within an
average CPU time of 1.12 seconds.

• d ≥ 0.85: These classes are the easiest to solve. LBN
2 provides the optimal

solution in the majority of cases where the average gap is equal to 0.03%,
0.02%, 0.02% and 0.01% for Class E, Class F, Class D and Class A, respectively.
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In order to complete Figure 3.5, we derived four new classes of instances with
small density d ≤ 0.2. The details of these new classes are provided in Table 3.9.
Moreover, we present in Figure 3.6 the complete version of the results. The order of
classes according to the non-decreasing order of average density is 6, 5, 2, 4, 1, 3, C,
B, A, E, F and D.

Table 3.9 – Generation of new classes.

Class 3 4 5 6
p1,max 100 100 100 100
p2,max 100 100 100 100
lmax 50n

2
90n

2
120n

2
1000n

2

Figure 3.6 – The evolution of GapUB according to d.

From Figure 3.6, we observe that:

• The resulting graph has a Gaussian shape.

• The classes are easy to solve when d ' 0 and d ≥ 0.85.

• The hardest classes are those with 0.07 ≤ d ≤ 0.14.

3.6 Conclusion

In this paper, we addressed the two-machine flow-shop problem with time delays.
A theoretical analysis of the state of the art lower bounds was given. Precisely, we
proposed a new classification scheme of the different lower bounds and we enhanced
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a time delay-based one. Then, a set of dominance relationships between them was
proved. Moreover, we presented a set of mathematical formulations for F2|lj|Cmax.
Interestingly, we identified the good performance of a linear ordering variable-
based formulation. For which, we proposed a set of valid inequalities. Three linear
programming-based lower bounds were proposed for F2|lj|Cmax. The experimental
study shows the efficiency and the effectiveness of the proposed approaches. It is
interesting to notice the good performance of the new lower bounds that yield the
best values on all discussed instances.
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Table 3.10 – Combinatorial lower bounds performance per class.

LBbas,1 LBbas,2 LBsplit LBres,1 LBres,2 LBtra,1 LBtra,2 LBtra,3

Class n Gap Gap Gap Gap Gap Gap Gap Gap

A

10 0.24 0.24 20.41 0.24 22.75 1.42 0.18 0.00
30 0.04 0.04 28.13 0.04 28.24 0.33 0.00 0.00
50 0.04 0.00 30.71 0.00 30.73 0.03 0.03 0.00
100 0.04 0.00 33.89 0.00 33.99 0.04 0.04 0.00
150 0.00 0.00 32.59 0.00 32.05 0.01 0.00 0.00
200 0.00 0.00 33.70 0.00 33.81 0.02 0.00 0.00
AVG 0.06 0.05 29.91 0.05 30.26 0.31 0.04 0.00

B

10 0.39 0.16 14.62 0.16 17.32 1.50 0.32 0.00
30 0.09 0.05 24.88 0.05 25.25 0.19 0.04 0.00
50 0.13 0.05 29.02 0.05 29.02 0.10 0.07 0.00
100 0.01 0.01 33.02 0.01 33.11 0.07 0.00 0.00
150 0.00 0.00 31.98 0.00 31.46 0.04 0.00 0.00
200 0.00 0.00 33.21 0.00 33.33 0.00 0.00 0.00
AVG 0.11 0.04 27.79 0.04 28.25 0.32 0.07 0.00

C

10 11.48 2.08 6.95 2.08 8.42 11.88 11.69 0.93
30 0.28 0.01 18.60 0.01 18.10 0.39 0.27 0.00
50 0.10 0.06 23.59 0.06 23.78 0.13 0.05 0.00
100 0.01 0.01 30.10 0.01 30.23 0.06 0.00 0.00
150 0.00 0.00 29.98 0.00 29.44 0.03 0.00 0.00
200 0.01 0.00 31.78 0.00 31.88 0.01 0.01 0.00
AVG 1.98 0.36 23.50 0.36 23.64 2.08 2.00 0.15

D

10 0.26 0.26 26.58 0.26 26.28 0.03 0.00 0.00
30 0.03 0.01 31.13 0.01 32.34 0.12 0.03 0.00
50 0.04 0.00 32.48 0.00 32.73 0.05 0.04 0.00
100 0.00 0.00 34.41 0.00 33.51 0.00 0.00 0.00
150 0.00 0.00 35.16 0.00 35.04 0.02 0.00 0.00
200 0.00 0.00 33.73 0.00 33.88 0.00 0.00 0.00
AVG 0.06 0.04 32.25 0.04 32.30 0.04 0.01 0.00

E

10 0.04 0.02 47.85 0.02 39.82 0.01 0.00 0.00
30 0.05 0.00 49.13 0.00 43.32 0.05 0.05 0.00
50 0.05 0.00 56.28 0.00 47.87 0.05 0.04 0.00
100 0.02 0.00 56.75 0.00 48.49 0.02 0.02 0.00
150 0.00 0.00 55.81 0.00 48.69 0.00 0.00 0.00
200 0.00 0.00 57.95 0.00 49.39 0.00 0.00 0.00
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Table 3.10 - Continued

LBbas,1 LBbas,2 LBsplit LBres,1 LBres,2 LBtra,1 LBtra,2 LBtra,3

Class n Gap Gap Gap Gap Gap Gap Gap Gap
AVG 0.03 0.00 53.96 0.00 46.26 0.02 0.02 0.00

F

10 0.35 0.17 40.82 0.17 35.70 1.17 0.14 0.00
30 0.00 0.00 51.50 0.00 45.57 0.08 0.00 0.00
50 0.03 0.00 53.84 0.00 45.79 0.08 0.03 0.00
100 0.00 0.00 58.34 0.00 49.59 0.01 0.00 0.00
150 0.00 0.00 56.99 0.00 48.75 0.02 0.00 0.00
200 0.00 0.00 58.44 0.00 49.74 0.01 0.00 0.00
AVG 0.06 0.03 53.32 0.03 45.86 0.23 0.03 0.00

1

10 2.30 1.38 9.41 1.38 11.21 2.36 1.28 0.39
30 0.42 0.15 8.31 0.15 9.30 0.52 0.30 0.00
50 0.32 0.10 10.16 0.10 11.04 0.62 0.23 0.00
100 0.44 0.04 10.28 0.04 9.96 0.41 0.39 0.00
150 0.15 0.04 7.74 0.04 8.08 0.14 0.13 0.00
200 0.21 0.02 7.72 0.02 8.11 0.20 0.19 0.00
AVG 0.64 0.29 8.94 0.29 9.62 0.71 0.42 0.07

2

10 11.48 2.08 6.95 2.08 8.42 11.88 11.69 0.93
30 9.67 4.76 2.88 4.76 1.27 10.99 10.84 4.63
50 9.30 5.31 1.37 5.31 1.73 10.48 10.22 5.20
100 10.21 6.58 0.81 6.58 0.39 11.87 11.83 6.55
150 13.47 9.09 0.89 9.09 0.75 14.25 14.19 9.08
200 12.04 9.04 1.24 9.04 0.87 12.39 12.35 9.02
AVG 11.03 6.14 2.36 6.14 2.24 11.98 11.85 5.90
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Table 3.11 – Lower bounds performance.

LBbest LBN
1 LBN

2 LBN
4 LBN

5 LBN
6

Class n Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

Class A

10 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 26.23 0.01 71.81 0.00
30 0.00 0.00 0.00 1.73 0.00 0.01 0.00 0.02 13.41 1.58 89.01 0.02
50 0.00 0.00 0.00 20.35 0.00 0.05 0.00 0.06 5.73 (1) 104.40 93.05 0.07
100 0.00 0.00 - - 0.00 0.48 0.00 0.51 - - 96.30 0.40
150 0.00 0.00 - - 0.00 1.42 0.00 1.93 - - 97.54 1.43
200 0.00 0.00 - - 0.00 3.77 0.00 4.91 - - 98.13 3.91
AVG 0.00 0.00 0.00 7.36 0.00 0.95 0.00 1.24 15.45 32.95 90.98 0.97

Class B

10 0.15 0.00 0.00 0.01 0.00 0.00 0.13 0.00 27.71 0.01 61.05 0.01
30 0.00 0.00 0.00 3.18 0.00 0.02 0.00 0.02 13.28 1.92 83.50 0.03
50 0.00 0.00 0.00 41.54 0.00 0.06 0.00 0.07 5.59 44.65 89.51 0.06
100 0.00 0.00 - - 0.00 0.48 0.00 0.68 - - 94.55 0.43
150 0.00 0.00 - - 0.00 1.84 0.00 2.84 - - 96.26 0.99
200 0.00 0.00 - - 0.00 4.31 0.00 5.67 - - 97.19 2.40
AVG 0.03 0.00 0.00 14.91 0.00 1.12 0.02 1.55 15.53 15.53 87.01 0.65

Class C

10 3.51 0.00 0.00 0.01 0.09 0.00 3.35 0.01 42.38 0.02 31.65 0.01
30 0.00 0.00 0.00 3.19 0.00 0.03 0.00 0.03 15.62 1.59 67.52 0.03
50 0.00 0.00 0.00 108.75 0.00 0.10 0.00 0.10 6.28 (1) 44.56 79.00 0.08
100 0.00 0.00 - - 0.00 0.49 0.00 1.06 - - 88.79 0.45
150 0.00 0.00 - - 0.00 1.99 0.00 6.11 - - 92.45 0.78
200 0.00 0.00 - - 0.00 5.72 0.00 6.58 - - 94.30 2.08
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Table 3.11 - Continued

LBbest LBN
1 LBN

2 LBN
4 LBN

5 LBN
6

Class n Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time
AVG 0.58 0.00 0.00 37.32 0.02 1.39 0.56 2.32 21.95 14.38 75.62 0.57

Class D

10 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 24.06 0.01 76.76 0.00
30 0.00 0.00 0.00 1.21 0.00 0.01 0.00 0.02 13.05 1.48 91.40 0.03
50 0.00 0.00 0.00 18.30 0.00 0.03 0.00 0.09 7.91 109.06 94.84 0.07
100 0.00 0.00 0.00 (7) 548.68 0.00 0.17 0.00 0.55 - - 97.24 0.46
150 0.00 0.00 - - 0.00 0.69 0.00 2.04 - - 98.12 0.78
200 0.00 0.00 - - 0.00 1.55 0.00 4.06 - - 98.59 2.05
AVG 0.00 0.00 0.00 55.80 0.00 0.41 0.00 1.13 15.01 36.85 92.83 0.57

Class E

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 21.51 0.01 75.84 0.00
30 0.00 0.00 0.00 1.10 0.00 0.01 0.00 0.03 7.43 1.46 90.70 0.03
50 0.00 0.00 0.00 17.38 0.00 0.04 0.00 0.10 4.33 (1) 105.93 94.61 0.05
100 0.00 0.00 0.00 (9) 505.17 0.00 0.25 0.00 0.78 - - 97.21 0.34
150 0.00 0.00 - - 0.00 1.05 0.00 2.50 - - 98.03 0.91
200 0.00 0.00 - - 0.00 2.68 0.00 4.75 - - 98.56 1.90
AVG 0.00 0.00 0.00 22.26 0.00 0.67 0.00 1.36 11.32 33.38 92.49 0.54

Class F

10 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 54.06 0.01 80.81 0.03
30 0.00 0.00 0.00 1.37 0.00 0.01 0.00 0.04 52.77 1.49 93.67 1.38
50 0.00 0.00 0.00 9.78 0.00 0.04 0.00 0.10 50.68 77.66 96.25 3.04
100 0.00 0.00 0.00 (6) 404.65 0.00 0.25 0.00 0.69 - - 98.39 0.01
150 0.00 0.00 - - 0.00 1.01 0.00 2.46 - - 98.78 0.07
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Table 3.11 - Continued

LBbest LBN
1 LBN

2 LBN
4 LBN

5 LBN
6

Class n Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time
200 0.00 0.00 - - 0.00 2.62 0.00 4.13 - - 99.06 0.54
AVG 0.00 0.00 0.00 50.89 0.00 0.65 0.00 1.24 52.51 26.38 94.49 0.84

Class 1

10 0.84 0.00 0.00 0.01 0.00 0.00 0.84 0.01 34.39 0.01 51.03 0.00
30 1.30 0.00 0.00 3.62 0.03 0.04 1.30 0.02 14.32 22.55 54.04 0.02
50 1.38 0.00 0.00 62.99 0.02 0.14 1.38 0.09 11.60 50.59 50.07 0.06
100 0.98 0.00 - - 0.00 1.29 0.98 1.08 - - 52.76 0.34
150 2.17 0.00 - - 0.00 5.16 2.17 4.96 - - 52.13 0.91
200 2.37 0.00 - - 0.00 15.29 2.37 9.44 - - 52.35 2.20
AVG 1.51 0.00 0.00 22.21 0.01 3.65 1.51 2.60 20.10 24.38 52.06 0.59

Class 2

10 3.51 0.00 0.00 0.01 0.09 0.00 3.35 0.01 42.38 0.01 31.65 0.01
30 8.06 0.00 0.00 2.51 0.00 0.03 7.91 0.17 31.31 1.40 25.56 0.02
50 9.36 0.00 0.00 71.56 0.00 0.15 9.32 0.87 25.60 64.92 24.20 0.07
100 10.02 0.00 - - 0.00 1.65 10.00 36.93 - - 23.03 0.34
150 9.35 0.00 - - 0.00 7.97 8.99 (5) 15.38 - - 24.68 0.96
200 9.63 0.00 - - 0.00 28.47 9.15 (7) 69.06 - - 22.04 2.62
AVG 8.32 0.00 0.00 24.69 0.02 6.38 7.88 13.83 33.10 22.11 25.19 0.67
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4.1 Introduction

In this chapter, we investigate exact methods for the F2|lj|Cmax problem. As
far we know, a unique exact method based on the branch-and-bound scheme
was introduced for F2|lj|Cmax by [Dell’Amico, 1996]. Furthermore, several authors
addressed numerous variants of the problem by providing exact algorithms based on
a branch-and-bound scheme. A non-exhaustive list includes the two-machine flow-
shop problem with time delays and unit-time operations ([Moukrim et al., 2014]),
the problem of minimizing the total completion time in a two-machine permuta-
tion flow-shop environment with time delays ([Msakni et al., 2016]) and the m-
machine permutation flow-shop problem with minimal and maximal time lags
([Fondrevelle et al., 2006]). For more details, we refer the reader to a recent survey
of [Emmons and Vairaktarakis, 2013].

The contribution of this chapter consists in:

• Introducing a branch-and-cut algorithm based on a linear ordering variable-
based model. This method includes the consideration of a set of dominance
rules and clique-based valid inequalities. Moreover, a critical path-based
branching scheme is considered. We also apply a new heuristic method and a
node pruning procedure.

• Proposing a branch-and-bound algorithm. For which, we extend the best lower
bounds to be used inside the search tree and we introduce a local search-based
upper bound and three dominance rules. One of the dominance rules includes
the consideration of the no-good list technique of [Schiex and Verfaillie, 1993].

• Providing extensive experiments that were carried out on different classes
of instances. We present a comprehensive experimental analysis of the
combinatorial lower bounds within our branch-and-bound algorithm. We then
study the impact of the proposed components on the performance of the two
exact methods. Finally, a comparison with the literature exact method is given.

The remainder of this chapter is organized as follows. Section 4.2 provides a
representation of the problem as a disjunctive graph. We also present a set of
dominance rules. In Section 4.3, we introduce a linear programming-based exact
method. In Section 4.4, we provide a detailed description of the branch-and-bound
algorithm. Section 4.5 displays the results of a computational study that was carried
out on randomly generated instances. Finally, the last section provides concluding
remarks.
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4.2 Preliminaries

In this section, we represent the problem using a disjunctive graph. Then, we
introduce new dominance rules.

4.2.1 Problem representation

Here, we represent each instance of F2|lj|Cmax using a disjunctive graph model
of [Roy and Sussmann, ]. This graph is used to implement the critical path-
based branching scheme for our branch-and-cut algorithm. Given an instance
I = (J, p1, l, p2) of F2|lj|Cmax, we define by G = (V,C ∪ D) a disjunctive graph
on I as follows. The set V contains the nodes where each job is modeled using three
nodes:

• one node for each operation having a weight that is equal to the processing
time of the operation.

• one node for the time delay having a weight that is equal to the time delay
value.

In addition, two extra nodes are defined including a source and a sink. A weight
that is equal to zero is attributed to both extra nodes.

The set C contains the conjunctive arcs that reflect the executing order of
operations and time delay of the same job. The executing order of operations and
time delay of job j can be given by four conjunctive arcs:

• an arc from the source to O1,j’s node,

• an arc from O1,j’s node to the time delay node of j,

• an arc from the time delay node of j to O2,j’s node,

• finally an arc from O2,j’s node to the sink.

The set D contains the undirected arcs, referred to as disjunctive arcs. These
arcs link every pair of operations that are executed on the same machine. The
precedence relationships between operations on the same machine can be defined
using a selection of disjunctive arcs. If operation Om,j is processed before operation
Om,i onMm, then this can be done by transforming the undirected arc between Om,j

and Om,i into directed one, i and j in J ; m in {1, 2}. The set of all direct disjunctive
arcs are referred to as a selection.
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Every schedule S of F2|lj|Cmax can be given by a selection ϕ that is obtained
after turning the undirected arcs ofD into direct ones. This schedule is called feasible
if and only if all disjunctive arcs are fixed and the obtained graph G(S) = (V,C∪ϕ)

is acyclic. Moreover, the makespan value of S is given by the length of the path
with the highest cumulative weight from the source to the sink. This path is called
critical path.

4.2.2 Dominance rules

Hereafter, we present two dominance rules that allow to reduce the solution research
space. First, we recall a dominance rule that was presented in Chapter 3. We then
introduce a new one. The two dominance rules are given by the following two lemmas.

Lemma 4.1. Consider an instance I of F2|lj|Cmax and two jobs i and j where
p1,j + lj ≤ p1,i + li, li ≤ lj + p2,j and p1,j ≤ p2,j. If a schedule where i and j are
adjacent on M1 exists, then j must be executed first.

Proof. See Lemma 3.1.

Lemma 4.2. Consider two jobs i, j in J where p1,j ≤ p1,i, p2,i ≤ p2,j, p1,j + lj ≤
p1,i + li and p2,j + lj ≥ p2,i + li, then j must precede i on both machines.

Proof. Let σ1 be a sub-sequence onM1 (Jσ1 ⊂ J \{i, j}) and S an arbitrary schedule
of Ωσ1⊕(i) where job i is executed directly after σ1 on M1. On the basis of S, we can
derive a schedule S ′ of Ωσ1⊕(j) such that j precedes i on M2, without increasing the
makespan. For S ′ , the job sequence onM1 is obtained by simply interchanging i and
j and keeping the same executing order for the rest of the jobs, like in S. Therefore,
it holds that t1,j(S

′
) = t1,i(S) and t1,i(S

′
) + p1,i = t1,j(S) + p1,j. Since p1,j ≤ p1,i, we

have that t1,v(S
′
) ≤ t1,v(S), for all v in J\{i}. Moreover, we identify two cases:

Case 1: j precedes i on M2.

In this case, the job sequence onM2 of S ′ is similar to that of S, where t2,v(S
′
) =

t2,v(S), for all v in J . Since t1,v(S
′
) ≤ t1,v(S) for all v in J\{i}, v is at the disposal

of M2 before its starting time. Moreover, it holds that:

t1,i(S
′
) + p1,i + li = t1,j(S) + p1,j + li.
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Since li ≤ lj + p2,j, we obtain:

t1,i(S
′
) + p1,i + li ≤ t1,j(S) + p1,j + lj + p2,j

≤ t2,j(S) + p2,j

≤ t2,i(S
′
).

On the basis of the above remarks, we conclude that all jobs are available for
processing on M2 before their starting times in S ′ .

Case 2: i precedes j on M2.

In this case, the job sequence on M2 of S ′ is derived from that of S by simply
interchanging i and j on M2, where the same jobs are executed between i and j as
in S. Then, it holds that t2,j(S

′
) = t2,i(S) and t2,i(S

′
) + p2,i = t2,j(S) + p2,j. For

each job v in J\{i, j}, we observe that t1,v(S
′
) ≤ t1,v(S) and t2,v(S

′
) ≥ t2,v(S) since

p1,j ≤ p1,i and p2,j ≥ p2,i. Therefore, each job of J\{i, j} is available on M2 before
its starting time. We recall that:

t1,j(S
′
) + p1,j + lj = t1,i(S) + p1,j + lj.

Since p1,j + lj ≤ p1,i + li, it holds that:

t1,j(S
′
) + p1,j + lj ≤ t1,i(S) + p1,i + li

≤ t2,i(S)

≤ t2,j(S
′
).

Moreover, since li ≤ lj + p2,j − p2,i, we have:

t1,i(S
′
) + p1,i + li = t1,j(S) + p1,j + li

≤ t1,j(S) + p1,j + lj + p2,j − p2,i

≤ t2,j(S) + p2,j − p2,i

≤ t2,i(S
′
).

On the basis of the above remarks, we conclude that all jobs are available for
processing on M2 before their starting times in S ′ .
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4.2.3 Pre-processing procedure

In this section, we introduce a pre-processing procedure based on that of
[Carlier and Pinson, 1990]. This procedure is implemented in the two exact methods.
It aims at fixing additional precedence relationships between operations on the
two machines. The pre-processing procedure can play a key role in improving
the performance of the two exact methods. In fact, a quick increase of the fixed
precedence relationships is substantive for the two exact methods for many reasons.
First, we can reduce the search tree by pruning nodes that differ with at least one
of the determined precedence relationships. Moreover, the additional precedence
information can be used to enhance the lower bounds.

For each job j in J and m in {1, 2}, we introduce two sets of jobs ϕm,j and ψm,j.
The set ϕm,j (resp. ψm,j) contains the jobs of J that should be processed before
(resp. after) j on Mm.

The pre-processing method is given by the following lemma:

Lemma 4.3. ([Carlier and Pinson, 1990]) Let I be an instance of F2|lj|Cmax and
UB an upper bound on the makespan of I. For each pair of jobs i and j, if we have:∑

v∈ϕ1,j

p1,v + p1,j + lj + p2,j + p2,i +
∑
v∈ψ2,i

p2,v ≥ UB,

then i is a predecessor of j on M2. Moreover, if it holds that:∑
v∈ϕ1,i

p1,v + p1,i + p1,j + lj + p2,j +
∑
v∈ψ2,j

p2,v ≥ UB,

then j is a predecessor of i on M1.

4.3 Mixed Integer Linear Programming-based ex-

act method

In this section, we start by modeling our problem using a MIP formulation. Then,
we present the different components proposed for the branch-and-cut algorithm.

4.3.1 MIP formulation

Throughout this chapter, we use the linear ordering variable-based MIP formulation
that was proposed in Section 3.3. This choice can be explained by the absence of
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pseudo-polynomial number of variables in this model where it is equal to O(n2).
Moreover, we do not need to introduce big-M to model some constraints, which
decreases the relaxation quality. In addition, the number of required constraints is
polynomial in our case, where it is equal to O(n3).

For sake of clarity, we recall here the formulation. This formulation involves the
concept of precedence-flow decision variables. Precisely, the linear ordering variables
are defined for each pair of jobs i, j in J , where Xm

i,j takes the value 1 if i precedes
j on Mm, m in {1, 2} and 0 otherwise. Moreover, the completion time of job j on
M1 (resp. M2) is represented by a continuous variable C1,j (resp. C2,j). Finally, the
makespan is described by a continuous variable Z. The problem variables are linked
together view a set of constraints, which are presented as follows:

min Z (4.1)

s.t. Xm
i,j +Xm

j,i = 1, ∀i, j ∈ J i 6= j;m ∈ {1, 2} (4.2)

Xm
i,j ≥ Xm

i,v +Xm
v,j − 1, ∀i, j, v ∈ J ;m ∈ {1, 2} (4.3)

C1,j =
∑n

i=1 p1,i.X
1
i,j + p1,j, ∀j ∈ J (4.4)

C2,j ≥ C1,j + lj + p2,j, ∀j ∈ J (4.5)

C2,j = Z −
∑n

i=1 p2,i.X
2
j,i, ∀j ∈ J (4.6)

Z ≥ 0, Cm,j ≥ 0, ∀j ∈ J,m ∈ {1, 2} (4.7)

Xm
i,j ∈ {0, 1}, ∀i, j ∈ J,m ∈ {1, 2} (4.8)

4.3.2 Valid inequalities

To improve the MIP formulation, we proposed a set of valid inequalities to increase
its relaxation quality and to improve the convergence of the resolution process. The
basic idea of using dominance rules, within the framework of the linear programming,
is to be able to reduce the solution space (the variables domain) and to construct
optimal solutions directly. These rules can be easily added to the model by injecting
new constraints.

At first, we recall the two valid inequalities presented in Section 3.4.1. For the
first valid inequality, we take into consideration the extra time that a job has to
wait before being assigned to M1 or to M2. The second valid inequality consists in
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injecting partial optimal solutions into our model. We start by modeling the original
problem instance using an interval graph, and we compute maximal cliques on it.
A set of sub-instances is identified after considering the obtained maximal cliques.
These sub-instances are then optimally solved, and for each one of them, a set of
constraints is injected into the formulation.

Furthermore, we provide in the following proposition a new valid inequality.

Proposition 4.1. Let us consider an instance I = (J, p1, l, p2) of F2|lj|Cmax and two
jobs i, j ∈ J where p1,i ≤ p1,j, p1,i+li ≤ p1,j+lj, p2,i ≥ p2,j and p2,i+li ≥ p2,j+lj. As
a consequence of Lemma 4.2, i must precede j on the two machines. This constraint
can be given by: X1

i,j = X2
i,j = 1.

4.3.3 Branching scheme

During the exact resolution of our MIP formulation, we adopt three branching
schemes, namely, a critical path-based branching scheme, a dichotomic-based
branching scheme and a quaternary-based branching scheme.

Critical path-based branching scheme. This branching scheme is based on
the approach of [Grabowski et al., 1986]. We consider the disjunctive graph early
described in Section 4.2.1 referred to as G = (V ∪D). Given a feasible schedule S,
we define by G(S) the obtained graph after adding the appropriate selection and
by P the obtained critical path on G(S). On the basis of P , we define at most two
blocks of operations referred to as Bm, 0 ≤ m ≤ 2. Each block is constituted of the
maximum number of successive nodes (at least two nodes) that are assigned to the
same machine.

The branching scheme is based on the following theorem.

Theorem 4.1. ([Brucker et al., 1994]) Let I be an instance of F2|lj|Cmax and S a
valid schedule of I. If another feasible schedule S ′ exists for I such that Cmax(S

′
) <

Cmax(S), then at least one operation from one block Bm in G(S) is scheduled before
the first operation or after the last operation of Bm, 0 ≤ m ≤ 2.

Corollary 4.1. Given two valid schedules S and S ′ such that Cmax(S
′
) < Cmax(S),

at least one of the following two conditions holds:

• at least one operation of block Bm in G(S), which is different from the first
operation in Bm, has to precede all other operations of the same block in G(S

′
),

0 ≤ m ≤ 2.
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• at least one operation of block Bm in G(S), which is different from the last
operation in Bm, has to follow all other operations of the same block in G(S

′
),

0 ≤ m ≤ 2.

Let us consider a node N of the search tree of our branch-and-cut and a feasible
schedule S with respect to N . If we consider the critical path P computed on G(S),
we determine the blocks Bm on P , 0 ≤ m ≤ 2. Hereafter, we suppose that block Bm

is dedicated to the set of operations executed on Mm, m in {1, 2}. For each block
Bm, we introduce two sets of operations EB

m and EA
m where EB

m (resp. EA
m) contains

all operations of Bm except the first scheduled one (resp. the last scheduled one).
The branching scheme is described as follows. For each operation Om,j of EB

m

(resp. EA
m), a descendant node of N is generated where this operation is fixed before

(resp. after) the block EB
m (resp. EA

m) by fixing the variables Xm
j,i (resp. Xm

u,j) to 1,
for all Om,i ∈ EB

m \ {Om,j} (resp. Om,u ∈ EA
m \ {Om,j}).

Hereafter, we define by (E1, ..., E2m) a permutation of all sets EB
m and EA

m, 0 ≤
m ≤ 2. For the adopted branching strategy, we define a hypothetical branching
order. In which, a descendant node from N is not generated for O ∈ Ek unless all
operations of E1∪E2∪ ...∪Ek−1 are handled, k in {1, ..., 2m}. Therefore, additional
variables can be fixed in the node generated for O ∈ Ek:

• for all ` in {1, ..., k − 1}, if E` = EB
m and the operation Om,j is the first

scheduled operation of Bm, then we fix the set of variables Xm
j,i to 1 for all

Om,i ∈ EB
m \ {Om,j}.

• for all ` in {1, ..., k−1}, if E` = EA
m and the operation Om,j is the last scheduled

operation of Bm, then we fix the set of variable Xm
i,j to 1 for all Om,i ∈ EA

m \
{Om,j}.

As a consequence of the above Theorem and the arguments given above, all
possible solutions on node N are investigated in the descendant nodes. We also
observe that the intersection of solution spaces of each pair of descendant nodes of
N is empty.

In order to fix a large number of disjunctive arcs, the sets EA
m and EB

m are
ordered in the permutation (E1, ..., E2m) according to the non-increasing order of
their cardinality, 0 ≤ m ≤ 2.

Dichotomic-based branching scheme. In this branching scheme, we branch
on a unique decision variable at a time. Thus, two nodes are derived, for which the
decision variable is fixed to 1 for the first node and to 0 for the second.
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As a consequence of Observation 1.1, we enumerate job sequences on the first
machine. To do so, we determine the precedence relationships between all operations
on M1 by branching on the set of decision variables X1

i,j, (i, j) in J2. Precisely, we
branch on a unique variable of X1

i,j at a time, (i, j) in J2.

The branching strategy is described as follows. First, we sort all pairs of jobs in
a non-decreasing order of

min(lj − li −max(p1,i, p2,i), li − lj −max(p1,j, p2,j)), if lj > li + max(p1,i, p2,i) and

li > lj + max(p1,j, p2,j)

lj − li −max(p1,i, p2,i), if lj > li + max(p1,i, p2,i)

li − lj −max(p1,j, p2,j), otherwise.

Let ε = ((ε1
1, ε

2
1), ..., (ε1

n2−n, ε
2
n2−n)) be the obtained order. In our method, we define

a hypothetical order where we do not branch on the variable X1
ε1k,ε

2
k
until all variables

X1
ε11,ε

2
1
, ..., X1

ε1k−1,ε
2
k−1

are fixed.

Quaternary-based branching scheme. In this branching scheme, we branch
on two decision variables simultaneously. Thus, four nodes are derived at a time.

Here, we enumerate job sequences on the first and the second machines in the
same time. To that purpose, we determine the precedence relationships between
operations on the two machines by branching on the set of variables Xm

i,j, i, j in J
and m in {1, 2}. At a time, for a pair of jobs i, j in J , four descendant nodes are
derived as follows:

• The first node is obtained after fixing X1
i,j and X2

i,j to 1.

• The second node is obtained after fixing X1
i,j and X2

i,j to 0.

• The third node is obtained after fixing X1
i,j to 1 and X2

i,j to 0.

• The fourth node is obtained after fixing X1
i,j to 0 and X2

i,j to 1.

The Branching strategy is described as follows. We sort all pairs of jobs as it
is given in the dichotomic-branching scheme. Let ε = ((ε1

1, ε
2
1), ..., (ε1

n2−n, ε
2
n2−n)) be

the obtained order. We then define a hypothetical order where we do not branch on
a pair of jobs (ε1

k, ε
2
k) until we handle the pairs (ε1

1, ε
2
1), ..., (ε1

k−1, ε
2
k−1).



4.3. MIXED INTEGER LINEAR PROGRAMMING-BASED EXACT METHOD 87

4.3.4 Heuristic method

The quality of the upper bound plays a main role in improving the effectiveness
and the efficiency of the proposed branch-and-cut algorithm. Here, we introduce a
heuristic method that constructs step by step a solution and then applies a local
search procedure on it in order to improve its quality.

Applied on a node N , the heuristic method first determines a job sequence σ of
all jobs on M1. To do so, we provide in the following the different steps:

• Compute a set Π of operations on the disjunctive graph G = (V,C ∪ D)

obtained with respect to N . This set contains the operations on M1 with no
unscheduled predecessors.

• Let O1,j be an operation of Π with the minimal relaxation value of variable
C1,j, j in J .

• σ = σ ⊕ j.

• Remove O1,j from the set Π and investigate its successors for possible addition
to Π.

This process is iterated until we obtain a complete job sequence on M1.

On the basis of σ, we schedule the jobs on M2 according to the non-decreasing
order of their arrival times with respect to the fixed precedence relationships on
M2. Then by using the obtained job sequence on M2, σ is updated according to the
arrival times of jobs on M1 with respect to the fixed precedence relationships. This
process is iterated until no modification is observed on the job sequence σ between
two successive iterations or itermax iterations are performed.

4.3.5 Node pruning procedure

We apply on each node of the branch-and-cut algorithm a procedure that aims at
pruning nodes at early stage of the search tree. Let N be a node of the search
tree such that a fixed job sequence σ (resp. π) of all jobs on M1 (resp. M2) exists.
On the basis of Observation 1.1, we can stop branching on N . Although that some
decision variables are not fixed, we can already determine the optimal solution of
Ωσ (resp. Ωπ) in O(n log n)-time. As a consequence, we inject the feasible solution
before pruning the node.

The implementation of the node pruning procedure is described as follows.
Applied on a node N , an easy way to implement the procedure consists in verifying if
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one of the two sets of variablesX1
i,j orX2

i,j is fixed, for all i and j in J ; i 6= j. However,
this needs O(n2)-time. Interestingly, we implement this procedure in two steps that
require O(n log n)-time. First, we verify the existence of a total order on one of the
two machines using the relaxation values of variables Cm,j, m in {1, 2} and j in J .
Let σ (resp. π) be the obtained job sequence on M1 (resp. M2) after considering
the jobs according to the non-decreasing order (resp. non-increasing order) of the
relaxation values of variables C1,j (resp. C2,j), j in J . A total order exists on M1

(resp. M2) if and only if C1,σ[k] = C1,σ[k−1]
+ p1,σ[k] (resp. C2,π[k−1]

= C2,π[k] + p2,π[k−1]
)

for all k in {1, ..., n}. In case a total order exists on M1 (resp. M2), we ensure in the
second step that the set of variables X1

σ[k],σ[k+1]
(resp. X2

π[k+1],π[k]
) are fixed to 1 for

all k in {1, ..., n}. If it is the case, then the node N is pruned.

4.4 Branch-and-bound algorithm

In this section, we present an exact method for F2|lj|Cmax based on a branch-and-
bound enumeration scheme. We describe the considered branching scheme in detail
as well as the different components used to improve the efficiency and effectiveness
of the proposed method.

4.4.1 Branching scheme

As a consequence of Observation 1.1, the branching scheme consists in enumerating
job sequences on M1. Starting from the root node, where no job is scheduled yet,
a descendant node is derived for each job where it is processed at the first position
on M1. This process is iterated such that at a node Nσ1 with a level k, a partial job
sequence σ1 of k jobs is first fixed on M1. In order to discard nodes from the search
tree, we evaluate the node Nσ1 using the following features:

• A pre-processing procedure.

• A lower bound of F2|lj|Cmax.

• A local search-based heuristic.

• Dominance rules.

Note that we adopt the depth-first node selection strategy.

4.4.2 Lower bounds

We incorporate the most competitive lower bounds in the literature in our branch-
and-bound after considering the results of Section 3.2.2. However, in order to use
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them in an efficient way inside the search tree, we extend them after considering the
obtained partial schedules.

Before proceeding further, we consider the following notation. Let σ = σ1⊕σ2 be
a complete job sequence of all jobs onM1 that is composed from a fixed sub-sequence
σ1 and an arbitrary sub-sequence of J \ Jσ1 called σ2. Moreover, βj stands for the
starting time of job j of Jσ1 on M2. To compute βj for all j in Jσ1 , we suppose that
the jobs of Jσ1 are executed on M2, like in Observation 1.1.

Let us consider the following proposition.

Proposition 4.2. Given a node Nσ1 of the search tree, we define a new time delay
lσ1j for each job j of J . This time delay is given by:

lσ1j =

βj − t1,j(S)− p1,j, if j ∈ Jσ1 ;S ∈ Ωσ1

lj, otherwise.
(4.9)

Proof. Let us consider a node Nσ1 and a schedule S of Ωσ1 . Note that βj ≥ t1,j(S) +

p1,j + lj, j in Jσ1 . Moreover, if we schedule the jobs of J \ Jσ1 after σ1 on M1,
we observe that the arrival times of Jσ1 remain unchanged. However, their starting
times can only increase or remain the same since the jobs of J \ Jσ1 are processed
on M2 with respect to Observation 1.1. Consequently, it holds that t2,j(S) ≥ βj, for
all j in Jσ1 . Therefore, the time delay that is observed by job j of Jσ1 is at least
βj − t1,j(S)− p1,j.

As a consequence of Observation 1.1 and Proposition 4.2, we describe in the
following corollary and remark how the lower bounds of Section 3.2 are invoked in
the internal nodes of the branch-and-bound search tree.

Corollary 4.2. Given a node Nσ1 of the search tree, it follows that for each schedule
S of Ωσ1:

Cmax(S) ≥ max(LB(Iuσ1),
∑
j∈Jσ1

p1,j + LB(Irσ1)). (4.10)

where LB is a valid lower bound, Iuσ1 = (J, p1, l
σ1 , p2) and Irσ1 = (Jσ2 , p1, l, p2) are

two instances of F2|lj|Cmax.

Remark 4.1. Unfortunately, the relaxation scheme presented in (4.10) does not
allow us to fully exploit the benefits of the precedence relationships deduced from the
partial schedule. Indeed, consideration of these precedence relationships drastically
increases the computation burden of the lower bounds. Except for LBres,1, an
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extension of this lower bound referred to as LBres,3 can be computed by solving a
one machine scheduling problem with release dates and precedence constraints.

4.4.3 Upper bound

In this section, we describe a heuristic method that is intended to be used as an
upper bound on the makespan. This heuristic is based on a local search exploration
of a job sequence. At first, a job sequence σ of all jobs is determined on M1 using
the constructive heuristics of [Dell’Amico, 1996]. On the basis of σ, we schedule
the jobs on M2 according to the non-decreasing order of their arrival times, like
in Observation 1.1. Then, by considering the job sequence π obtained on M2, we
update σ according to the arrival times of jobs. We iterate this process until σ
is unchanged between two successive iterations or a certain number of iterations
itermax is performed.

Moreover, we apply a local search procedure on σ and π in which we use two
neighborhood operators:

• Shift operator: evaluates the job sequence that is obtained by removing a job j
from its current position and relocates it at another position in the sequence.

• Swap operator: evaluates the job sequence that is obtained by exchanging two
jobs i and j in the sequence.

The local search procedure randomly selects a neighborhood to be applied to
the permutation. If the obtained job sequence has a better makespan value, then
the procedure is iterated over the new job sequence. Otherwise, we repeat the
same processing until all neighborhoods are applied without an improvement. If we
consider all possible movements of the neighborhood operators, the computational
time will drastically increase. Thus, we limit the number of neighborhood operations
that occur per type to a certain number kls. We present a detailed description of
the procedure in Algorithm 4.1.

While handling internal nodes of the search tree, we adjust the heuristic method
to make it less time-consuming. First, the job sequence σ is now obtained as
follows. At a given node Nσ1 , we complete the fixed sub-sequence σ1 by applying
the constructive heuristics of [Dell’Amico, 1996] on the instance constituted of jobs
J\Jσ1 . Moreover, we do not use the local search procedure, and we change the stop
condition of the heuristic. In fact, the heuristic is terminated when no improvement
on the makespan is observed between two successive iterations.
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Algorithm 4.1: Local search exploration.
Result: UB
Using the heuristics of [Dell’Amico, 1996], determine a job sequence σ of J ;
With respect to σ, derive a job sequence π on M2 where jobs are scheduled
according to Observation 1.1. Let S = (σ, π) be the corresponding schedule;
UB ← Cmax(S);
iter ← 0;
repeat

iter ← iter + 1;
σ
′ ← σ;

Apply the two operators swap and shift on π;
Starting from π, update the job sequence σ by executing the jobs on M1

with respect to Observation 1.1;
Apply the two operators swap and shift on σ;
Starting from σ, update the job sequence π by executing the jobs on M2

with respect to Observation 1.1;
Update schedule S;
if UB > Cmax(S) then

UB ← Cmax(S);

until σ = σ
′ or iter ≥ itermax;

4.4.4 Dominance rules

Hereafter, we introduce three dominance rules that make it possible to reduce the
solution search space. The dominance rules are introduced in the following two
propositions and lemma.

Proposition 4.3. Consider an instance I of F2|lj|Cmax and a pair of jobs (i, j)

where p1,j + lj ≤ p1,i + li, li ≤ lj + p2,j and p1,j ≤ p2,j. If a node where j is directly
fixed after i on M1 exists, then this node can be fathomed.

Proof. This proposition is a direct consequence of Lemma 4.1.

Proposition 4.4. Consider a node Nσ1 of the search tree where the job sequence σ1

is fixed first on M1. If there are two jobs i in Jσ1 and j in J \ Jσ1 where p1,j ≤ p1,i,
p2,i ≤ p2,j, p1,j + lj ≤ p1,i + li and p2,j + lj ≥ p2,i + li, then Nσ1 can be fathomed.

Proof. This proposition is a direct consequence of Lemma 4.2.

Let us consider the following notation. We define ∆(S
′
, S, t1, t2) as the difference

between the idle time value observed on M2 in the interval [t1, t2] in S ′ and that in
S.
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Lemma 4.4. Let S and S ′ be two partial schedules obtained at two nodes Nσ1 and
Nσ
′
1
, respectively, such that Jσ1 = Jσ′1

. If it holds that:

∆(S
′
, S, t,∞) ≥ 0, ∀t ∈ [0,∞[, (4.11)

then we can discard the node Nσ1. We also say that σ′1 dominates σ1.

Proof. It should be noted that if (4.11) holds then Cmax(S
′
) ≤ Cmax(S). Otherwise,

it contradicts the assumption that ∆(S
′
, S, Cmax(S),∞) ≥ 0. In this proof, given

an arbitrary job sequence σ2 of J \ Jσ1 , we show that σ′1 ⊕ σ2 dominates σ1 ⊕ σ2.
To do so, we iteratively prove that for all k in {1, ..., |Jσ2|} σ

′
1 ⊕ σ2[1] ⊕ ... ⊕ σ2[k]

dominates σ1 ⊕ σ2[1] ⊕ ... ⊕ σ2[k]. For job j = σ2[1], let Sj (resp. S ′j) be a partial
schedule of Ωσ1⊕j (resp. Ωσ

′
1⊕j

). We denote the arrival time of job j on M2 by
γj = t1,j(Sj) + p1,j + lj = t1,j(S

′
j) + p1,j + lj, and τ (resp. τ ′) represents the minimal

time such that the total idle time observed between γj and τ (resp. τ ′) on M2 in
S (resp. S ′) is equal to p2,j. The job sequences on M2 of Sj and S

′
j are obtained as

follows. We start by removing all jobs that are scheduled between γj and τ (resp.
τ
′) on M2 in S (resp. S ′). Then, we continuously process j followed by the removed

jobs from S (resp. S ′) such that they end their processing at time τ (resp. τ ′) on
M2 in Sj (resp. S ′j). Since j is processed after γj on M2, we observe that the idle
time value of Sj (resp. S

′
j) is equal to the idle time value of S (resp. S ′) minus p2,j

time units. Therefore, Sj and S
′
j verify that:

∆(S
′

j, Sj, t,∞) = ∆(S
′
, S, t,∞) ≥ 0, ∀t ∈ [0, γj].

Moreover, we notice that the schedule is the same in Sj and in S (resp. in S
′
j

and in S ′) after the instant max(τ, τ
′
). Therefore, it holds that:

∆(S
′

j, Sj, t,∞) ≥ 0, ∀t ∈ [max(τ, τ
′
),∞[.

Interestingly, if the second machine for one of the two schedules S ′j and Sj is
not idle during an interval [t1, t2], then ∆(S

′
j, Sj, t,∞) consists in determining the

difference between a constant and a non-increasing value for all t in [t1, t2]. Therefore,
∆(S

′
j, Sj, t,∞) is monotonic in the interval [t1, t2]. For Sj (resp. S ′j), it holds that

M2 is not idle in the interval [γj, τ ] (resp. [γj, τ
′
]). Consequently, M2 is not idle

in the interval [γj,max(τ, τ
′
)] at least in one of the two schedules Sj and S

′
j.

Therefore, ∆(S
′
j, Sj, t,∞) is monotonic in the interval [γj,max(τ, τ

′
)]. In addition,

since ∆(S
′
j, Sj, γj,∞) ≥ 0 and ∆(S

′
j, Sj,max(τ, τ

′
),∞) ≥ 0, it holds that:

∆(S
′

j, Sj, t,∞) ≥ 0, ∀t ∈ [γj,max(τ, τ
′
)].
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This process is reiterated on job σ2[2] with σ1 = σ1 ⊕ j and σ
′
1 = σ

′
1 ⊕ j, and so

on.

We can apply the last dominance rule at every node Nσ with level k of the
search tree by searching for a dominant job sequence π with respect to the lemma
conditions. Clearly, an exponential number of permutations of Jσ exists. However, in
this work, we limit ourselves to a polynomial number of permutations obtained using
a neighborhood function. Applied on each node of the search tree, the neighborhood
function enumerates a set of permutations that are obtained as follows.

• The insertion of the job σ[k] in the `-th position of σ, ` in {1, ..., |σ| − 1}. We
obtain here |σ| − 1 partial job sequences.

• Switching the job σ[k] with every job σ[`], ` in {1, ..., |σ| − 1}. We obtain here
another |σ| − 1 partial job sequences.

If one of the obtained job sequences dominates σ, then the node Nσ can be
discarded.

As a consequence of the adopted branching scheme, we may visit different nodes
with the same set of fixed jobs. It is therefore interesting to check the validity of
the above dominance rule in this case. To do this, we use the no-good list technique
of [Schiex and Verfaillie, 1993]. While exploring the search tree, we record a sub-
sequence per set of jobs. This sub-sequence is updated each time a dominance
relationship occurs. A sub-sequence is characterized by three parameters:

• the set of scheduled jobs,

• the fixed sub-sequence,

• the idle time periods on M2.

If a new node Nσ is considered, we verify first the existence of a job sequence π
with the same set of jobs as σ in the no-good list. We identify two cases:

• In case no job sequence is found, we apply the neighborhood function on σ.
If one of the obtained job sequences σ′ dominates σ, then σ′ is stored in the
no-good list and Nσ is discarded. Otherwise, σ is stored in the no-good list
and Nσ is developed.

• In case π exists, we study the presence of a dominance relationship between σ
and π. Four cases are possible:
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� π = σ. In this case, the node Nσ is developed.

� σ is not dominated by π. In this case, we apply the neighborhood function
on σ. If one of the obtained job sequences σ′ dominates σ, then the node
Nσ is discarded and the dominance property between σ′ and π is checked
in order to update the no-good list. Otherwise, the node Nσ is developed.

� π dominates σ. In this case, Nσ is pruned.

� σ dominates π. In this case, we apply the neighborhood function on σ.
If one of the obtained job sequences σ′ dominates σ, then σ′ replaces π
in the no-good list and the node Nσ is discarded. Otherwise, the no-good
list is updated by replacing π by σ and Nσ is developed.

4.5 Computational results

In this section, we study the performance of the proposed approaches. First, we
report the results of the lower bounds within our branch-and-bound mehod. We
then show some parameter tunning for the upper bound. Moreover, we analyze the
impact of the proposed components on the performance of the two exact methods.
Finally, a comparison with the exact method of [Dell’Amico, 1996] is given.

The tests were carried out on a set of eight classes of instances including six
classes that were proposed by [Dell’Amico, 1996]. Moreover, two hard classes were
introduced by us. For each class, the processing times on M1 and M2 and the
time delays are generated between the intervals [1, ..., p1,max], [1, ..., p2,max] and
[1, ..., lmax], respectively. The values of p1,max, p2,max and lmax per class are given
in Table 4.1.

Table 4.1 – Classes generation.

[Dell’Amico, 1996] New classes
A B C D E F 1 2

p1,max 100 100 100 200 100 200 20 100
p2,max 100 100 100 200 200 100 20 100
lmax 100 200 500 100 100 100 n

2
10 n

2
100

The problem size n was chosen from the set {10, 30, 50, 100, 150, 200} (resp.
{10, 15, 20, 25, 30, 50}) for Classes A-F (resp. Classes 1-2). For each pair of class
and n, 10 instances were randomly generated. All algorithms were coded in C++
and compiled under CentOS 6.6. Moreover, we implemented the no-good list using
a hash table (code available at http://burtleburte.net/ bob/hash/doobs.html). The
experiments were conducted on an Intel(R) Xeon(R) @ 2.60GHz processor.
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4.5.1 Lower bounds performance

In Section 3.5.1, we provided a detailed image of the performance of the lower
bounds LBsplit, LBres,2, LBbas,2, LBtra,1 and LBtra,3 at the root node. However, to
better appraise the worth of these lower bounds, it is more interesting to study
their performance within an exact method. To that aim, we analyze the impact of
the incorporation of the lower bounds LBres,1, LBsplit, LBres,2, LBtra,2, LBtra,3 and
LBres,3 within our branch-and-bound method. We implemented six versions of our
branch-and-bound method for which a unique lower bound is activated per version.
We denote by B&B(LB) the branch-and-bound version of the lower bound LB. To
bring a better image of the quality of these lower bounds, we use neither of the
pre-processing procedure, the heuristic method and the dominance rules. A time
limit of 60 seconds is set to all versions. In Table 4.2, we provide for each version
the following measures:

• USI: the number of unsolved instances within the given time limit.

• Nodes: the average number of the explored nodes for the solved instances.

• Time: the average computational time in seconds for the solved instances.

From Table 4.2, we observe that:

• B&B(LBres,3) provides the best results with only 28 (resp. 79) unsolved
instances in an average time of 0.62 (resp. 5.73) seconds on Classes A-F (resp.
Classes 1-2).

• LBres,3 is more efficient than LBtra,3 within our branch-and-bound
method. Precisely, B&B(LBres,3) solves 51 additional instances compared to
B&B(LBtra,3). This fact may be due to the adapted branching scheme that
plays a main role in improving the performance of LBres,3.

• B&B(LBres,2) and B&B(LBsplit) exhibit a poor performance. Both of them
fail to solve 400 instances over 480 possible ones.

To conclude, we are confident that LBres,3 provides the best performance
from both effectiveness and efficiency viewpoints. Therefore, we assume in the
implementation of the branch-and-bound method that LBres,3 is invoked in each
internal node of the search tree.
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4.5.2 Parameter tuning for the upper bound

The aim of this section is to determine the couple of parameters (itermax, kls) that
offers a good trade-off between effectiveness and efficiency for the upper bound.
Thus, we performed an experiment in which we test the performance of the upper
bound for a variety of combinations between itermax and kls. The experiment was
conducted on the earlier described classes where we varied both itermax and kls in
the set of values {1, 5, 10, 15, 20, 30, 40}. In Figure 4.1, we present the evolution of
the average percentage deviation with respect to the maximal obtained upper bound
value and the average CPU time in terms of itermax and kls.

Figure 4.1 – Performance of the upper bound in terms of kls and itermax.

On the basis of Figure 4.1, we observe that:

• The couple of values (itermax = 15, kls = 40) provides the best average gap
with 0.03% while requiring a very short time that is equal to 0.02 seconds.

• For each value of itermax, the average gap value decreases when the value of kls
increases. This may be due to the intensive use of the neighborhood operators
that improves the quality of the permutation. Not surprisingly, this leads to
the increase of the CPU time.

• For itermax ≥ 15, the different versions of the upper bound exhibit the same
performance in terms of average gap. However, the versions with itermax = 15

are less time-consuming.

To conclude, we assume in our implementation that itermax = 15 and kls = 40.

4.5.3 Branch-and-bound performance

The aim of this section is to better appraise the worth of the proposed components
on the performance of our branch-and-bound method by analyzing the impact of
their incorporation within this method. For that purpose, we implemented three
versions of our branch-and-bound method:
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• B&Bv1: Only LBres,3 and the pre-processing procedure are applied.

• B&Bv2: The heuristic method, LBres,3 and the pre-processing procedure are
activated in each node.

• B&Bv3: The heuristic method, LBres,3, the pre-processing procedure and the
dominance rules are used.

In Table 4.3, we provide a comparison between the three versions of our branch-
and-bound method on all classes. For each version, we set a time limit of 60 seconds
and we provide the following values for each version: USI, Nodes and Time.

On the basis of Table 4.3, we make the following observations:

• Interestingly, B&Bv3 solves all the instances of Classes A-F in a very short
time.

• B&Bv3 exhibits better results while requiring less time than B&Bv1 and B&Bv2

with only 64 unsolved instances compared to 104 and 71 unsolved instances,
respectively.

• B&Bv2 outperforms B&Bv1. Indeed, the incorporation of the new heuristic
method enhances the results where 33 additional instances are solved for
Classes B, C, 1 and 2.

• An enhancement of performance is also observed when we incorporate
the dominance rules. Precisely, B&Bv3 exhibits a good performance and
outperforms B&Bv2. Actually, B&Bv3 solves seven new instances compared
to B&Bv2 including five instances for Class 1 and two instances for Class 2.

• For both Classes 1 and 2, we observe that B&Bv3 exhibits the best results
with only 64 unsolved instances compared to 75 and 71 unsolved instances for
B&Bv1 and B&Bv2, respectively.

• Unfortunately, for n > 30 (resp. n ≥ 25), the best version B&Bv3 fails to solve
all instances of Class 1 (resp. Class 2). This may be due to the fact that the
lower bounds perform poorly when the time delays are very large compared
to the processing times.

Pushing our analysis a step further, we compare the performance of the best
version B&Bv3 to the branch-and-bound algorithm of [Dell’Amico, 1996]. For equity
reason, we set a time limit of 4 seconds for the best version of our branch-and-
bound algorithm compared to 2000 seconds for B&BDell. Indeed, the experiments
of [Dell’Amico, 1996] were conducted on a PC486 with a clock at 33 Mhz. We used
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Super Pi, which is a single threaded program that calculates π using the Gauss-
Legendre algorithm, as a crude estimate of CPU speed of the processor used by
[Dell’Amico, 1996]. According to the scores available at [CPU, ], Super Pi takes 41
minutes for a similar processor of Dell’Amico but with a clock at 100 Mhz. The same
procedure needs 14.94 seconds on our machine. Therefore, a crude estimate is that
our machine is about 3× 2460/14.94 ' 492 times faster.

We report the results of this study in Table 4.4 and we observe the following
points:

• Interestingly, B&Bv3 solves all the state of the art instances except one
while requiring a very short computational time. Indeed, B&Bv3 outperforms
B&BDell after solving 359 literature instances out of 360 compared to four
unsolved instances for B&BDell.

• The two methods easily manage to solve Classes A, B, D, E and F, on which
they basically show a similar performance. However, on Class C, the instances
become harder to solve since B&BDell (resp. B&Bv3) fails to solve four instances
(resp. one instance). Moreover, Nodes and Time increase ten times for B&Bv3

compared to the other classes.

4.5.4 MIP model performance

We study here the impact of the incorporation of the different components on
the performance of our branch-and-cut method. First, we discuss the effect of the
branching scheme on the overall performance of our method. Then, we bring a more
detailed image of the impact of the proposed components.

We provide in Table 4.5 the results obtained by four versions of our branch-and-
cut method that are obtained after the exact resolution of the MIP model (4.1)-(4.8).
These version are presented as follows.

• MIPcritical: we adopt the critical path-based branching scheme.

• MIPbin: we adopt the dichotomic-based branching scheme.

• MIPbincplx: we adopt the standard branching scheme of CPLEX. CPLEX
determines the variable on which we are branching.

• MIPquat: we adopt the quaternary-based branching scheme.
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We illustrate for each version the following measures: the number of unsolved
instances (USI) within the time limit, the average number of explored nodes (Nodes)
and the average CPU time in seconds (Time). Note that Nodes and CPU are only
computed on the solved instances. A time limit of 2000 seconds is set to each version.

From Table 4.5, we made the following observations:

• MIPcritical provides the best results with only 78 unsolved instances compared
to 123, 133 and 125 for MIPbin, MIPbincplx and MIPquat, respectively.

• In term of CPU time and average number of explored nodes, MIPcritical
dominates the other versions on all classes. Except on Class 2, MIPbincplx solves
the same number of instances as MIPcritical while exploring less nodes in a
shorter time. Note that for some classes the comparison seems to be irrelevant
since MIPcritical solves more instances.

As a consequence, we adopt the critical path-based branching scheme.

In Table 4.6, we report the results of an analysis where we study the impact
of the valid inequalities, the pre-processing method, the heuristic method and the
node pruning procedure on the performance of our MIP model. We implemented
the following four versions of our branch-and-cut method:

• MIPv0: The exact resolution of the MIP model (4.1)-(4.8).

• MIPv1: The exact resolution of the MIP model (4.1)-(4.8) after adding the
valid inequalities of Section 4.3.2.

• MIPv2: The exact resolution of the MIP model (4.1)-(4.8) after adding the
valid inequalities of Section 4.3.2 and the pre-processing method.

• MIPv3: The exact resolution of the MIP model (4.1)-(4.8) after adding the
valid inequalities of Section 4.3.2, the pre-processing method, the heuristic
method, and the node-pruning procedure.

In Table 4.6, we see that:

• MIPv3 exhibits the best results in term of unsolved instances with only 45

compared to 78, 74 and 51 for MIPv0, MIPv1 and MIPv2, respectively.

• MIPv1 outperforms MIPv0. The incorporation of the valid inequalities allows
us to solve four additional instances. Precisely, one, four and one additional
instances are solved for Class C, Class 1 and 2, respectively. However, two
instances (n ∈ {50, 150}) of Class C become unsolved by MIPv1.
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• MIPv2 outperforms MIPv1. Indeed, MIPv2 provides a better performance after
solving all instances of the literature comparing to seven unsolved instances
for MIPv1. In addition, MIPv2 manages to solve eight additional instances per
class for Classes 1-2.

• MIPv3 outperforms MIPv2. An enhancement of performance is observed when
we incorporate the heuristic method and the node pruning procedure. The two
methods show basically the same performance on Classes A-F. However, on
Class 1 and 2, MIPv3 solves four and two new instances respectively compared
to MIPv2.

4.5.5 MIP and B&B comparison

Finally, we exhibit a comparison between the two best versions of the proposed
branch-and-bound method and the MIP model on the early discussed classes. A
time limit of 2000 seconds is set to each method. We provide the results of this
study in Table 4.7.

We notice that MIPv3 exhibits better results than B&Bv3 with only 45 unsolved
instances compared to 54 ones. On the Classes A-F, the two methods manage to solve
all instances with an advantage to B&Bv3 in term of average number of nodes. On
Class 1, the two methods exhibit the same performance with 19 unsolved instances.
However, we observe a difference of performance per size where for n = 30, B&Bv3

solves two additional instances compared to MIPv3. From the other hand, for n = 50,
MIPv3 solves more two instances than B&Bv3. Nevertheless, MIPv3 yields the best
results on Class 2 after solving nine additional instances compared to B&Bv3.

4.6 Conclusion

This chapter addressed the two-machine flow-shop problem with time delays. We
introduced two exact methods for F2|lj|Cmax. The first method consists of a
branch-and-cut method. This method includes the consideration of a critical path-
based branching scheme, a pre-processing procedure, a heuristic method and a
node pruning procedure. Moreover, we presented a branch-and-bound algorithm
for F2|lj|Cmax. For which, we introduced a new heuristic method and proposed
three dominance rules. A computational study, which was carried out on a set
of 480 instances, shows that our approaches outperform the exact method of
[Dell’Amico, 1996].
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Table 4.2 – Lower bound performance comparison within a branch-and-bound method.

Classes A-F
B&B(LBres,1) B&B(LBres,2) B&B(LBsplit) B&B(LBtra,2) B&B(LBtra,3) B&B(LBres,3)

Size USI Nodes Time USI Nodes Time USI Nodes Time USI Nodes Time USI Nodes Time USI Nodes Time
10 0 249435.34 1.49 0 1774908.12 7.55 0 2997781.75 10.98 0 133903.45 0.93 0 69410.40 0.77 0 637.33 0.01
30 14 0.00 0.00 60 - - 60 - - 13 0.00 0.00 12 0.00 0.00 7 3108.49 0.47
50 16 0.00 0.00 60 - - 60 - - 18 0.00 0.00 16 0.00 0.00 6 3139.02 1.48
100 14 0.00 0.01 60 - - 60 - - 15 0.00 0.01 13 0.00 0.00 4 364.14 0.84
150 11 0.00 0.02 60 - - 60 - - 10 0.00 0.01 10 0.00 0.02 8 213.17 0.80
200 8 0.00 0.03 60 - - 60 - - 9 0.00 0.03 8 0.00 0.03 3 17.96 0.20

AVG 63 50390.98 0.31 300 1774908.12 7.55 300 2997781.75 10.98 65 27234.60 0.20 59 13835.96 0.16 28 1219.87 0.62
Classes 1-2

10 0 410746.25 3.06 0 39186.60 0.59 0 492281.44 3.30 0 255899.75 2.36 0 193775.45 2.36 0 1968.45 0.04
15 20 - - 20 - - 20 - - 19 0.00 0.00 19 0.00 0.00 6 278261.72 12.06
20 20 - - 20 - - 20 - - 20 - - 20 - - 14 156988.83 10.60
25 20 - - 20 - - 20 - - 20 - - 20 - - 19 19099.00 1.90
30 20 - - 20 - - 20 - - 20 - - 20 - - 20 - -
50 20 - - 20 - - 20 - - 20 - - 20 - - 20 - -

AVG 100 410746.25 3.06 100 39186.60 0.59 100 492281.44 3.30 99 243714.05 2.25 99 184548.05 2.24 79 119416.22 5.73
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Table 4.3 – The branch-and-bound algorithm performance t=60s.

B&Bv1 B&Bv2 B&Bv3

Class Size USI Nodes Time USI Nodes Time USI Nodes Time

Class A

10 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
30 0 0.00 0.00 0 0.00 0.01 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.01 0 0.00 0.01
100 0 0.00 0.01 0 0.00 0.02 0 0.00 0.02
150 0 0.00 0.02 0 0.00 0.04 0 0.00 0.04
200 0 0.00 0.04 0 0.00 0.08 0 0.00 0.08
AVG 0 0.00 0.01 0 0.00 0.03 0 0.00 0.02

Class B

10 0 65.90 0.01 0 56.00 0.01 0 13.40 0.00
30 0 622.60 0.70 0 0.00 0.00 0 0.00 0.00
50 0 34.80 0.03 0 0.00 0.01 0 0.00 0.01
100 1 137.44 0.82 0 0.00 0.03 0 0.00 0.03
150 2 0.00 0.02 0 0.00 0.05 0 0.00 0.05
200 0 0.00 0.06 0 0.00 0.10 0 0.00 0.10
AVG 3 148.60 0.27 0 9.33 0.04 0 2.23 0.03

Class C

10 0 98.80 0.01 0 50.00 0.01 0 33.40 0.01
30 6 3039.75 6.05 0 158.20 0.22 0 17.00 0.02
50 6 2266.50 14.74 0 85.80 0.30 0 24.00 0.08
100 3 1400.29 9.41 0 0.30 0.04 0 0.00 0.03
150 8 0.00 0.03 0 0.00 0.07 0 0.00 0.07
200 3 113.57 6.00 0 9.40 0.84 0 8.90 0.85
AVG 26 965.00 5.62 0 50.62 0.25 0 13.88 0.18

Class D

10 0 1.00 0.00 0 0.10 0.00 0 0.10 0.00
30 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.01 0 0.00 0.01
100 0 29.60 0.16 0 0.00 0.02 0 0.00 0.02
150 0 0.00 0.01 0 0.00 0.03 0 0.00 0.03
200 0 0.00 0.01 0 0.00 0.04 0 0.00 0.04
AVG 0 5.10 0.03 0 0.02 0.02 0 0.02 0.02

Class E

10 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
30 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 9.80 0.01 0 0.00 0.01 0 0.00 0.01
100 0 0.00 0.01 0 0.00 0.02 0 0.00 0.02
150 0 0.00 0.01 0 0.00 0.04 0 0.00 0.04
200 0 0.00 0.02 0 0.00 0.05 0 0.00 0.06
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Table 4.3 - Continued.

B&Bv1 B&Bv2 B&Bv3

Class Size USI Nodes Time USI Nodes Time USI Nodes Time
AVG 0 1.63 0.01 0 0.00 0.02 0 0.00 0.02

Class F

10 0 2.30 0.00 0 0.30 0.00 0 0.30 0.00
30 0 0.00 0.00 0 0.00 0.01 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.01 0 0.00 0.01
100 0 0.00 0.00 0 0.00 0.02 0 0.00 0.02
150 0 0.00 0.01 0 0.00 0.04 0 0.00 0.04
200 0 0.00 0.03 0 0.00 0.06 0 0.00 0.06
AVG 0 0.38 0.01 0 0.05 0.02 0 0.05 0.02

Class 1

10 0 69.50 0.01 0 55.60 0.01 0 31.20 0.01
15 0 793.50 0.30 0 606.20 0.23 0 144.90 0.07
20 4 4955.67 3.08 4 3197.17 2.23 1 5558.56 5.01
25 9 1096.00 1.38 7 2.00 0.00 6 2782.00 4.74
30 10 - - 9 11271.00 29.76 8 2277.50 4.97
50 10 - - 10 - - 10 - -
AVG 33 1461.48 0.85 30 1235.93 1.52 25 1927.74 2.14

Class 2

10 0 98.80 0.01 0 50.00 0.01 0 33.40 0.01
15 2 3253.75 1.27 1 14455.11 7.11 0 7197.80 4.54
20 10 - - 10 - - 9 30577.00 28.98
25 10 - - 10 - - 10 - -
30 10 - - 10 - - 10 - -
50 10 - - 10 - - 10 - -
AVG 42 1501.00 0.57 41 6873.47 3.37 39 4899.29 3.55
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Table 4.4 – Comparison with the state of the art exact method.

B&BDell B&Bv3

time limit=4 seconds time limit=60 seconds
Class Size USI Nodes Time USI Nodes Time USI Nodes Time

Class A

10 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
30 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 1.00 0.05 0 0.00 0.01 0 0.00 0.01
100 0 1.00 0.11 0 0.00 0.02 0 0.00 0.02
150 0 0.00 0.01 0 0.00 0.04 0 0.00 0.04
200 0 0.00 0.02 0 0.00 0.08 0 0.00 0.08
AVG 0 0.33 0.03 0 0.00 0.02 0 0.00 0.02

Class B

10 0 8.40 0.02 0 13.40 0.00 0 13.40 0.00
30 0 1.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 1.00 0.02 0 0.00 0.01 0 0.00 0.01
100 0 1.00 0.09 0 0.00 0.03 0 0.00 0.03
150 0 1.00 0.67 0 0.00 0.05 0 0.00 0.05
200 0 1.00 1.41 0 0.00 0.10 0 0.00 0.10
AVG 0 2.23 0.37 0 2.23 0.03 0 2.23 0.03

Class C

10 0 10.20 0.01 0 33.40 0.01 0 33.40 0.01
30 2 23.60 0.04 0 17.00 0.02 0 17.00 0.02
50 1 1.00 0.01 0 24.00 0.08 0 24.00 0.08
100 0 3.10 0.28 0 0.00 0.03 0 0.00 0.03
150 0 1.00 0.57 0 0.00 0.07 0 0.00 0.07
200 1 1.00 1.86 1 0.00 0.13 0 8.90 0.85
AVG 4 6.65 0.46 1 12.61 0.06 0 13.88 0.18

Class D

10 0 0.00 0.00 0 0.10 0.00 0 0.10 0.00
30 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.01 0 0.00 0.01
100 0 0.00 0.00 0 0.00 0.02 0 0.00 0.02
150 0 0.00 0.00 0 0.00 0.03 0 0.00 0.03
200 0 1.00 1.32 0 0.00 0.04 0 0.00 0.04
AVG 0 0.17 0.22 0 0.02 0.02 0 0.02 0.02

Class E

10 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
30 0 1.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.01 0 0.00 0.01
100 0 0.00 0.00 0 0.00 0.02 0 0.00 0.02
150 0 0.00 0.00 0 0.00 0.04 0 0.00 0.04
200 0 1.00 1.14 0 0.00 0.06 0 0.00 0.06
AVG 0 0.33 0.19 0 0.00 0.02 0 0.00 0.02

Class F

10 0 0.00 0.00 0 0.30 0.00 0 0.30 0.00
30 0 1.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.01 0 0.00 0.01
100 0 0.00 0.00 0 0.00 0.02 0 0.00 0.02
150 0 0.00 0.00 0 0.00 0.04 0 0.00 0.04
200 0 0.00 0.06 0 0.00 0.06 0 0.00 0.06
AVG 0 0.17 0.01 0 0.05 0.02 0 0.05 0.02
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Table 4.5 – The branching scheme influence on the MIP model performance t=2000s.

MIPCritical MIPbin MIPbincplx MIPquat
Class Size USI Nodes Time USI Nodes Time USI Nodes Time USI Nodes Time

Class A

10 0 2.30 0.00 0 8044.20 2.83 0 98.20 0.15 0 4204.10 1.34
30 0 6007.40 4.57 1 0.00 0.00 1 0.00 0.00 1 0.00 0.00
50 0 0.20 0.03 1 0.00 0.00 1 0.00 0.00 1 0.00 0.00
100 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
150 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
200 0 216.50 22.96 1 0.00 0.00 1 0.00 0.00 1 0.00 0.00
AVG 0 1037.73 4.59 3 1411.26 0.50 3 17.23 0.03 3 737.56 0.24

Class B

10 0 645.70 0.12 0 21768.40 7.11 0 279.30 0.45 0 34685.10 11.56
30 0 26.40 0.05 1 1357.44 2.54 4 0.00 0.00 1 2239.22 3.23
50 0 1636.80 3.87 4 0.00 0.00 4 0.00 0.00 4 0.00 0.00
100 0 119.50 2.32 2 0.75 3.22 4 0.00 0.00 2 0.75 2.23
150 0 127.50 7.17 1 0.00 0.00 1 0.00 0.00 1 0.00 0.00
200 0 0.40 1.85 1 0.00 0.00 1 0.00 0.00 1 0.00 0.00
AVG 0 426.05 2.57 9 4507.98 2.35 14 60.72 0.10 9 7196.27 3.18

Class C

10 0 488.00 0.11 0 11819.70 4.17 0 557.00 0.85 0 69500.80 22.97
30 3 16.00 0.07 3 86463.00 188.39 8 0.00 0.00 3 1480.71 3.31
50 3 14.57 0.25 6 1056.75 7.49 9 0.00 0.00 6 44.25 1.36
100 0 43.90 1.70 2 1.12 3.39 5 0.00 0.00 2 1.12 3.37
150 0 15.60 6.01 0 899.20 125.09 8 0.00 0.00 1 2.33 17.04
200 0 1063.30 106.50 3 1.71 32.71 7 0.00 0.00 3 1.71 28.69
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Table 4.5 - Continued.

MIPCritical MIPbin MIPbincplx MIPquat
Class Size USI Nodes Time USI Nodes Time USI Nodes Time USI Nodes Time

AVG 6 302.26 21.21 14 16014.74 62.99 37 242.17 0.37 15 15679.82 14.21

Class D

10 0 6.40 0.00 0 11718.50 3.11 0 97.40 0.15 0 3574.80 1.21
30 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
100 0 0.40 0.19 1 0.00 0.00 1 0.00 0.00 1 0.00 0.00
150 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
200 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
AVG 0 1.13 0.03 1 1986.19 0.53 1 16.51 0.03 1 605.90 0.20

Class E

10 0 0.20 0.00 0 51074.90 17.82 0 167.40 0.23 0 6.20 0.00
30 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 3.50 0.07 2 0.00 0.00 2 0.00 0.00 2 0.00 0.00
100 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
150 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
200 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
AVG 0 0.62 0.01 2 8806.02 3.07 2 28.86 0.04 2 1.07 0.00

Class F

10 0 39.20 0.01 0 54718.70 18.80 0 362.00 0.38 0 84962.10 33.69
30 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
100 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
150 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
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Table 4.5 - Continued.

MIPCritical MIPbin MIPbincplx MIPquat
Class Size USI Nodes Time USI Nodes Time USI Nodes Time USI Nodes Time

200 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
AVG 0 6.53 0.00 0 9119.78 3.13 0 60.33 0.06 0 14160.35 5.61

Class 1

10 0 691.30 0.14 0 18460.70 5.93 0 608.90 1.06 0 140281.80 50.46
30 0 21834.70 6.40 6 269943.25 213.51 0 15003.00 118.03 7 6363.33 3.40
50 6 1160784.00 482.25 9 481.00 0.64 9 25077.00 993.13 9 245.00 0.32
100 9 3.00 0.05 9 5.00 0.86 10 - - 9 5.00 0.59
150 10 - - 10 - - 10 - - 10 - -
200 10 - - 10 - - 10 - - 10 - -
AVG 35 194735.95 79.78 44 79054.12 57.18 39 8628.38 104.00 45 94810.53 34.38

Class 2

10 0 488.00 0.11 0 11819.70 3.88 0 557.00 0.77 0 69500.80 22.55
15 0 69238.50 21.75 10 - - 0 4485.70 40.50 10 - -
20 7 2498106.25 1137.00 10 - - 7 16586.33 809.07 10 - -
25 10 - - 10 - - 10 - - 10 - -
30 10 - - 10 - - 10 - - 10 - -
50 10 - - 10 - - 10 - - 10 - -
AVG 37 356155.81 157.81 50 11819.70 3.88 37 4355.91 123.48 50 69500.80 22.55
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Table 4.6 – The MIP model performance t=2000s.

MIPv0 MIPv1 MIPv2 MIPv3

Class Size USI Nodes Time USI Nodes Time USI Nodes Time USI Nodes Time

Class A

10 0 2.30 0.00 0 1.10 0.00 0 0.00 0.00 0 0.00 0.00
30 0 6007.40 4.57 0 10.60 0.02 0 3.70 0.02 0 3.70 0.02
50 0 0.20 0.03 0 0.20 0.04 0 0.00 0.00 0 0.00 0.00
100 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
150 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
200 0 216.50 22.96 0 10.70 6.07 0 0.00 0.00 0 0.00 0.00
AVG 0 1037.73 4.59 0 3.77 1.02 0 0.62 0.00 0 0.62 0.00

Class B

10 0 645.70 0.12 0 276.90 0.08 0 37.40 0.02 0 44.40 0.03
30 0 26.40 0.05 0 1.30 0.05 0 0.00 0.01 0 0.00 0.01
50 0 1636.80 3.87 0 3.90 0.20 0 0.00 0.02 0 0.00 0.02
100 0 119.50 2.32 0 20.50 1.82 0 0.30 0.34 0 0.30 0.32
150 0 127.50 7.17 0 51.10 7.16 0 0.00 0.00 0 0.00 0.00
200 0 0.40 1.85 0 0.30 1.84 0 0.00 0.00 0 0.00 0.00
AVG 0 426.05 2.57 0 59.00 1.86 0 6.28 0.06 0 7.45 0.06

Class C

10 0 488.00 0.11 0 326.40 0.12 0 38.70 0.03 0 39.50 0.04
30 3 16.00 0.07 2 10642.38 19.14 0 111.40 0.29 0 115.10 0.31
50 3 14.57 0.25 4 7.33 0.39 0 49.40 0.69 0 253.30 2.06
100 0 43.90 1.70 0 5.60 1.34 0 1.10 0.78 0 1.10 0.79
150 0 15.60 6.01 1 1.78 4.81 0 1.00 4.11 0 1.00 4.35
200 0 1063.30 106.50 0 22.60 19.75 0 1.80 7.73 0 1.80 7.92
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Table 4.6 - Continued.

MIPv0 MIPv1 MIPv2 MIPv3

Class Size USI Nodes Time USI Nodes Time USI Nodes Time USI Nodes Time
AVG 6 302.26 21.21 7 1674.43 7.75 0 33.90 2.27 0 68.63 2.58

Class D

10 0 6.40 0.00 0 3.30 0.00 0 1.30 0.00 0 1.30 0.00
30 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
100 0 0.40 0.19 0 0.20 0.26 0 0.00 0.18 0 0.00 0.18
150 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
200 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
AVG 0 1.13 0.03 0 0.58 0.04 0 0.22 0.03 0 0.22 0.03

Class E

10 0 0.20 0.00 0 0.20 0.00 0 0.00 0.00 0 0.00 0.00
30 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 3.50 0.07 0 1.80 0.06 0 0.00 0.02 0 0.00 0.02
100 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
150 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
200 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
AVG 0 0.62 0.01 0 0.33 0.01 0 0.00 0.00 0 0.00 0.00

Class F

10 0 39.20 0.01 0 2.00 0.00 0 0.60 0.00 0 1.10 0.00
30 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
100 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
150 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
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Table 4.6 - Continued.

MIPv0 MIPv1 MIPv2 MIPv3

Class Size USI Nodes Time USI Nodes Time USI Nodes Time USI Nodes Time
200 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00
AVG 0 6.53 0.00 0 0.33 0.00 0 0.10 0.00 0 0.18 0.00

Class 1

10 0 691.30 0.14 0 326.60 0.10 0 42.00 0.03 0 42.20 0.04
15 0 21834.70 6.40 0 5822.60 3.15 0 180.30 0.15 0 188.10 0.16
20 6 1160784.00 482.25 3 620112.44 546.23 1 13694.00 12.93 1 11883.33 10.63
25 9 3.00 0.05 8 122820.00 153.13 4 333702.34 471.09 3 413291.84 493.65
30 10 - - 10 - - 9 732074.00 1429.39 7 627044.69 1116.12
50 10 - - 10 - - 9 3036.00 10.80 8 8716.00 39.68
AVG 35 194735.95 79.78 31 160273.06 143.53 23 77372.78 118.51 19 119533.22 170.27

Class 2

10 0 488.00 0.11 0 326.40 0.11 0 38.70 0.03 0 39.50 0.03
15 0 69238.50 21.75 0 32701.40 20.74 0 1902.40 1.33 0 1546.60 1.03
20 7 2498106.25 1137.00 6 1490245.25 1315.35 0 225193.70 233.21 0 106274.70 93.04
25 10 - - 10 - - 8 608800.50 860.58 6 1092271.25 1119.21
30 10 - - 10 - - 10 - - 10 - -
50 10 - - 10 - - 10 - - 10 - -
AVG 37 356155.81 157.81 36 262135.80 227.91 28 109029.66 127.09 26 160226.27 159.35
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Table 4.7 – Comparison between the B&B method and the MIP model.

B&Bv3 MIPv3

Class Size USI Nodes Time USI Nodes Time

Class A

10 0 0.00 0.00 0 0.00 0.00
30 0 0.00 0.00 0 3.70 0.02
50 0 0.00 0.00 0 0.00 0.00
100 0 0.00 0.01 0 0.00 0.00
150 0 0.00 0.02 0 0.00 0.00
200 0 0.00 0.05 0 0.00 0.00
AVG 0 0.00 0.01 0 0.62 0.00

Class B

10 0 13.40 0.00 0 44.40 0.03
30 0 0.40 0.00 0 0.00 0.01
50 0 0.00 0.00 0 0.00 0.02
100 0 0.00 0.01 0 0.30 0.32
150 0 0.00 0.03 0 0.00 0.00
200 0 0.00 0.06 0 0.00 0.00
AVG 0 2.30 0.02 0 7.45 0.06

Class C

10 0 33.40 0.00 0 39.50 0.04
30 0 64.10 0.09 0 115.10 0.31
50 0 33.50 0.11 0 253.30 2.06
100 0 0.20 0.01 0 1.10 0.79
150 0 0.00 0.04 0 1.00 4.35
200 0 15.00 1.23 0 1.80 7.92
AVG 0 24.37 0.25 0 68.63 2.58

Class D

10 0 0.10 0.00 0 1.30 0.00
30 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.00
100 0 0.10 0.01 0 0.00 0.18
150 0 0.00 0.01 0 0.00 0.00
200 0 0.00 0.02 0 0.00 0.00
AVG 0 0.03 0.01 0 0.22 0.03

Class E

10 0 0.00 0.00 0 0.00 0.00
30 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.02
100 0 0.00 0.01 0 0.00 0.00
150 0 0.00 0.02 0 0.00 0.00
200 0 0.00 0.03 0 0.00 0.00
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Table 4.7 - Continued.

B&Bv3 MIPv3

Class Size USI Nodes Time USI Nodes Timee
AVG 0 0.00 0.01 0 0.00 0.00

Class F

10 0 0.30 0.00 0 1.10 0.00
30 0 0.00 0.00 0 0.00 0.00
50 0 0.00 0.00 0 0.00 0.00
100 0 0.00 0.01 0 0.00 0.00
150 0 0.00 0.02 0 0.00 0.00
200 0 0.00 0.03 0 0.00 0.00
AVG 0 0.05 0.01 0 0.18 0.00

Class 1

10 0 31.20 0.00 0 42.20 0.04
15 0 134.60 0.06 0 188.10 0.16
20 1 5662.44 4.89 1 11883.33 10.63
25 3 192723.58 256.00 3 413291.84 493.65
30 5 217680.00 567.01 7 627044.69 1116.12
50 10 - - 8 8716.00 39.68
AVG 19 60733.78 113.95 19 119533.22 170.27

Class 2

10 0 33.40 0.01 0 39.50 0.03
15 0 7796.00 4.57 0 1546.60 1.03
20 5 431107.19 552.06 0 106274.70 93.04
25 10 - - 6 1092271.25 1119.21
30 10 - - 10 - -
50 10 - - 10 - -
AVG 35 89353.20 112.24 26 160226.27 159.35



Conclusion and future works

In this dissertation, we introduced several methods and strategies to solve two
variants of the flow-shop scheduling problem. The solution approaches was based
on:

• Introducing an efficient non trivial Integer Linear Programming (ILP) formu-
lation for F2|p1,j = a, p2,j = b, lj|Cmax. We also presented a pre-processing
procedure that aims at reducing the number of decision variables of the
proposed formulation.

• Providing theoretical and experimental analyses of the lower bounds of the
literature. We presented a new classification scheme of the different lower
bounds and we enhanced a time delay-based one. Finally, we elucidated
dominance relationships between them.

• Covering three integer programming-based lower bounds for F2|lj|Cmax. The
first scheme was obtained after solving the LP relaxation of a linear ordering
variable-based formulation with the consideration of clique-based inequalities.
In the second and the third scheme, we relaxed the F2|lj|Cmax to F2|p1,j =

a, p2,j = b, lj|Cmax and to a particular assignment problem, respectively. Then,
we applied an ILP formulation on the two relaxed instances.

• Investigating two exact methods for F2|lj|Cmax. First, we introduced a
linear programming-based exact method that includes the consideration of
dominance rules, valid inequalities, a critical path-based branching scheme,
a new heuristic method, and a node pruning procedure. Then, we proposed
an exact algorithm based on a branch-and-bound enumeration scheme. To
improve its performance, we introduced a heuristic method based on a local
search technique and three dominance rules.

Moreover, we provided extensive experimentations and comparisons with the
state of the art best methods. We retained the following observations:

113
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• On the F2|pi,j = 1, lj|Cmax instances, the exact resolution of the ILP model
solves 279 more instances while requiring less time than the branch-and-bound
method of [Moukrim et al., 2014].

• On the F2|lj|Cmax instances, the linear relaxation of the linear ordering
variable-based model together with the consideration of clique-based inequal-
ities exhibits good results. Precisely, it yields the best lower bound value on
all instances compared to the literature lower bounds.

• Our branch-and-bound outperforms the exact method of [Dell’Amico, 1996]
on the literature instances. Moreover, we introduce new hard classes, on which
our branch-and-cut method yields the best results.

Future Work

On the basis of the observations made in this thesis, we hereafter outline some
directions for further research developments.

The 2-machine flow-shop problem with time delays. Future research
can be focused on improving the proposed approaches for the 2-machine flow-shop
problem with time delays. An interesting perspective consists in investigating new
dominance properties and developing lower bound methods for the case where the
time delays are very large comparing to processing times.

An interesting issue that deserves investigation is the 2-machine flow-shop
problem with maximal and minimal time delays. In addition to the time delays
(minimal delays) studied in this thesis, maximal time delays are considered. The
maximal time delays arise when the waiting time between the two operations of the
same job must not exceed a certain duration. A possible start would be trying to
adapt the proposed MIP formulation of Chapter 4 to model this problem. Heuristic
approaches may also be investigated.

Furthermore, the case where m > 2 machines are available can be studied. New
dominance properties, lower bounds and advanced heuristic are needed.

The integrated scheduling problem of container handling system in a
maritime terminal. A promising avenue for future research consists in studying the
integrated scheduling problem of container handling system in a maritime terminal.
In such a problem, we dispose of a set of n containers to be loaded or unloaded from
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or onto a ship. The loading (resp. unloading) activity is constituted of three steps.
The first step consists in unloading containers from the ship (resp. the storage yard)
using Quay Cranes (resp. Yard Cranes). The second step ensures the transfer of
containers to the storage yard (resp. quayside) using Yard Vehicles. Finally, the last
step is to store (resp. load) containers in the yard (resp. onto the ship) using Yard
Cranes (resp. Quay Cranes). The objective is to minimize the time it takes to serve
n containers in the maritime terminal.





Bibliography

[CPU, ] Cpu speed of pc486. http://hwbot.org/benchmark/superpi_-_1m/

rankings?hardwareTypeId=processor_4138&cores=1#start=0#interval=20.

[Ageev and Baburin, 2016] Ageev, A. A. and Baburin, A. E. (2016). Approximating
two-machine flow shop problem with delays when processing times depend only
on machines. In DOOR.

[Allahverdi and Al-Anzi, 2002] Allahverdi, A. and Al-Anzi, F. S. (2002). Using two-
machine flowshop with maximum lateness objective to model multimedia data
objects scheduling problem for WWW applications. Computers & OR, 29(8):971–
994.

[An et al., 2016] An, Y.-J., Kim, Y.-D., and Choi, S.-W. (2016). Minimizing
makespan in a two-machine flowshop with a limited waiting time constraint and
sequence-dependent setup times. Computers & Operations Research, 71(Supple-
ment C):127 – 136.

[Asil and Naralan, 2016] Asil, H. and Naralan, A. (2016). Impact of information
technology on management in small and medium industries. Journal of Telecom-
munications System & Management, 5(3):1–3.

[Brucker et al., 1994] Brucker, P., Jurisch, B., and Sievers, B. (1994). A branch
and bound algorithm for the job-shop scheduling problem. Discrete Applied
Mathematics, 49(1):107 – 127.

[Carlier and Pinson, 1990] Carlier, J. and Pinson, E. (1990). A practical use of
jackson’s preemptive schedule for solving the job shop problem. Annals of
Operations Research, 26(1-4):269 – 287.

[Chu and Proth, 1996] Chu, C. and Proth, J. (1996). Single machine scheduling
with chain structured precedence constraints and separation time windows. IEEE
Transactions on Robotics and Automation, 12:835âĂŞ843.

117

http://hwbot.org/benchmark/superpi_-_1m/rankings ?hardwareTypeId=processor_4138& cores=1#start=0#interval=20
http://hwbot.org/benchmark/superpi_-_1m/rankings ?hardwareTypeId=processor_4138& cores=1#start=0#interval=20


118 Bibliography

[Codato and Fischetti, 2006] Codato, G. and Fischetti, M. (2006). Combinatorial
benders’ cuts for mixed-integer linear programming. Operations Research,
54(4):756–766.

[Conway et al., 1967] Conway, R., Maxwell, W., and Miller, L. (1967). Theory of
Scheduling. Addison-Wesley Publishing Company.

[Dell’Amico, 1996] Dell’Amico, M. (1996). Shop problems with two machines and
time lags. Operations Research, 44(5):777–787.

[Dell’Amico and Vaessens, 1996] Dell’Amico, M. and Vaessens, R. (1996). In Flow
and open shop scheduling on two machines with transportation times and machine-
independant processing times is NP-hard. Dipartimento di Economia politica,
Università di Modena.

[Desaulniers et al., 2006] Desaulniers, G., Desrosiers, J., and Solomon, M. M.
(2006). Column generation.

[Emmons and Vairaktarakis, 2013] Emmons, H. and Vairaktarakis, G. (2013). Flow
Shop Scheduling, volume 182. Springer US.

[Fondrevelle et al., 2006] Fondrevelle, J., Oulamara, A., and Portmann, M. (2006).
Permutation flowshop scheduling problems with maximal and minimal time lags.
Computers & Operations Research, 33(6):1540 – 1556.

[Garey et al., 1976] Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The
complexity of flowshop and jobshop scheduling. Mathematics of Operations
Research, 1(2):117–129.

[Grabowski et al., 1986] Grabowski, J., Nowicki, E., and ZdrzaÅĆka, S. (1986). A
block approach for single-machine scheduling with release dates and due dates.
European Journal of Operational Research, 26(2):278 – 285.

[Graham et al., 1979] Graham, R., Lawler, E., Lenstra, J., and Kan, A. (1979).
Optimization and approximation in deterministic sequencing and scheduling: a
survey. In P.L. Hammer, E. J. and Korte, B., editors, Discrete Optimization II,
volume 5 of Annals of Discrete Mathematics, pages 287 – 326. Elsevier.



Bibliography 119

[Hall, 1994] Hall, L. A. (1994). A polynomial approximation scheme for a con-
strained flow-shop scheduling problem. Mathematics of Operations Research,
19(1):68–85.

[Hodson et al., 1985] Hodson, A., Muhlemann, A. P., and Price, D. H. R. (1985). A
microcomputer based solution to a practical scheduling problem. The Journal of
the Operational Research Society, 36(10):903–914.

[Johnson, 1954] Johnson, S. M. (1954). Optimal two- and three-stage production
schedules with setup times included. Naval Research Logistics Quarterly, 1(1):61–
68.

[Karuno and Nagamochi, 2003] Karuno, Y. and Nagamochi, H. (2003). A better
approximation for the two-machine flowshop scheduling problem with time lags.
In Algorithms and Computation, 14th International Symposium, ISAAC 2003,
Kyoto, Japan, December 15-17, 2003, Proceedings, pages 309–318.

[Keha et al., 2009] Keha, A., Khowala, K., and Fowler, J. (2009). Mixed integer
programming formulations for single machine scheduling problems. Computers &
Industrial Engineering, 56(1):357 – 367.

[Khachiyan, 1980] Khachiyan, L. (1980). Polynomial algorithms in linear program-
ming. USSR Computational Mathematics and Mathematical Physics, 20(1):53 –
72.

[Kim et al., 1996] Kim, Y.-D., Lim, H.-G., and Park, M.-W. (1996). Search
heuristics for a flowshop scheduling problem in a printed circuit board assembly
process. European Journal of Operational Research, 91(1):124 – 143.

[Kovalyov and Werner, 1997] Kovalyov, M. Y. and Werner, F. (1997). A polynomial
approximation scheme for problem f2/rj/cmax. Oper. Res. Lett., 20(2):75–79.

[Lawler et al., 1993] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and
Shmoys, D. B. (1993). Sequencing and scheduling: Algorithms and complexity.
Handbooks in operations research and management science, 4:445–522.

[Lenstra et al., 1977] Lenstra, J., Kan, A. R., and Brucker, P. (1977). Complexity
of machine scheduling problems. Annals of Discrete Mathematics, 1:343 – 362.
Studies in Integer Programming.



120 Bibliography

[Miller et al., 1960] Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer
programming formulation of traveling salesman problems. J. ACM, 7(4):326–329.

[Mitten, 1959] Mitten, L. (1959). Sequencing n jobs on two machines with arbitrary
time lags. Management Science, 5(3):293–298.

[Mkadem et al., 2016a] Mkadem, M. A., Moukrim, A., and Serairi, M. (2016a).
Lower bounds for the two-machine flow shop problem with time delays. In Annual
International Conference of the German Operations Research Society, Hambourg,
Germany.

[Mkadem et al., 2016b] Mkadem, M. A., Moukrim, A., and Serairi, M. (2016b).
Le problème flow-shop à deux machines avec temps de transport. In Roadef,
Compiègne, France.

[Mkadem et al., 2017a] Mkadem, M. A., Moukrim, A., and Serairi, M. (2017a). An
exact method for solving the two-machine flow-shop problem with time delays.
In The 13th Workshop on Models and Algorithms for Planning and Scheduling
Problems (MAPSP 2017) , Proceedings of the 13th Workshop on Models and
Algorithms for Planning and Scheduling Problems, pages 175–176, Seeon Abbey,
Germany.

[Mkadem et al., 2017b] Mkadem, M. A., Moukrim, A., and Serairi, M. (2017b). A
branch-and-bound algorithm for the two-machine flow-shop problem with time
delays. In 2017 International Conference on Control, Decision and Information
Technologies (CoDIT).

[Mkadem et al., 2018] Mkadem, M. A., Moukrim, A., and Serairi, M. (2018). Lower
Bounds for the Two-Machine Flow Shop Problem with Time Delays, pages 527–
533. Springer International Publishing, Cham.

[Moukrim et al., 2014] Moukrim, A., Rebaine, D., and Serairi, M. (2014). A branch
and bound algorithm for the two-machine flowshop problem with unit-time
operations and time delays. RAIRO - Operations Research, 48(2):235–254.

[Msakni et al., 2016] Msakni, M., Khallouli, W., Al-Salem, M., and Ladhari, T.
(2016). Minimizing the total completion time in a two-machine flowshop problem
with time delays. Engineering Optimization, 48(7):1164–1181.



Bibliography 121

[Nawaz et al., 1983] Nawaz, M., Enscore, J., and Ham, I. (1983). A heuristic
algorithm for the n-job, m-machine sequencing problem. Management Science,
16/B:630âĂŞ637.

[Pinedo, 2008] Pinedo, M. L. (2008). Scheduling: Theory, Algorithms, and Systems.
Springer Publishing Company, Incorporated, 3rd edition.

[Potts, 1985] Potts, C. N. (1985). Analysis of heuristics for two-machine flow-
shop sequencing subject to release dates. Mathematics of Operations Research,
10(4):576–584.

[Rayward-Smith and Rebaine, 2008] Rayward-Smith, V. and Rebaine, D. (2008).
Analysis of heuristics for the uet two-machine flow shop problem with time delays.
Computers & Operations Research, 35(10):3298 – 3310. Part Special Issue: Search-
based Software Engineering.

[Roy and Sussmann, ] Roy, D. and Sussmann, B. les problèmes d’ordonnancement
avec contraintes disjonctives. Note Ds no. 9 bis.

[Schiex and Verfaillie, 1993] Schiex, T. and Verfaillie, G. (1993). Nogood recording
for static and dynamic constraint satisfaction problems. In Proceedings of 1993
IEEE Conference on Tools with Al (TAI-93), pages 48–55.

[Soukhal et al., 2005] Soukhal, A., Oulamara, A., and Martineau, P. (2005). Com-
plexity of flow shop scheduling problems with transportation constraints. Euro-
pean Journal of Operational Research, 161(1):32 – 41. IEPM: Focus on Scheduling.

[Su, 2003] Su, L.-H. (2003). A hybrid two-stage flowshop with limited waiting time
constraints. Computers & Industrial Engineering, 44(3):409 – 424.

[Turing, 1936] Turing, A. (1936). On computable numbers with an application to the
âĂİ EntscheidungsproblemâĂİ. Proceeding of the London Mathematical Society.

[Yang and Chern, 1995] Yang, D.-L. and Chern, M.-S. (1995). A two-machine
flowshop sequencing problem with limited waiting time constraints. Computers
& Industrial Engineering, 28(1):63 – 70.

[Ye et al., 2017] Ye, S., Zhao, N., Li, K., and Lei, C. (2017). Efficient heuristic
for solving non-permutation flow-shop scheduling problems with maximal and



122 Bibliography

minimal time lags. Computers & Industrial Engineering, 113(Supplement C):160
– 184.

[Yu, 1996] Yu, W. (1996). The two-machine flow shop problem and the one-machine
total tardiness problem. PhD thesis, Eindhoven University of Technology, The
Netherlands.

[Yu et al., 2004] Yu, W., Hoogeveen, H., and Lenstra, J. (2004). Minimizing
makespan in a two-machine flow shop with delays and unit-time operations is
np-hard. Journal of Scheduling, 7(5):333 – 348.

[Zhang and van de Velde, 2010] Zhang, X. and van de Velde, S. (2010). Polynomial-
time approximation schemes for scheduling problems with time lags. Journal of
Scheduling, 13(5):553–559.




	PDT MKADEM
	MKADEM(page de garde)
	thesis
	Acknowledgements
	Contents
	List of figures
	List of tables
	List of algorithms
	Publications
	Introduction
	 Field of Study
	Introduction
	Combinatorial Optimization
	Combinatorial Optimization Problems
	Complexity Theory
	Problem complexity
	Solution approaches
	Pre-processing
	Exact algorithms
	Approximation algorithms


	Scheduling theory
	The typology of scheduling problems
	Flow-shop problem
	Preliminaries and basic properties for F2|lj|Cmax

	Conclusion

	An effective compact formulation for F2|p1,j=a,p2,j=b,lj|Cmax
	Introduction
	The general assignment problem
	Solution approach
	ILP model
	Pre-processing procedure

	Computational results
	The impact of the pre-processing procedure
	The impact of the problem size
	The influence of the time delay distribution

	Conclusion

	 Lower bounds for F2|lj|Cmax
	Introduction
	Combinatorial lower bounds for F2|lj|Cmax
	Lower bounds
	Dominance results

	Mixed Integer Linear Programming models for F2|lj|Cmax
	Position-based formulation
	Job precedence-based formulation
	Linear ordering-based formulation

	Linear programming-based lower bounds for F2|lj|Cmax
	Linear ordering variable-based lower bound
	F2|p1,j=a,p2,j=b,lj|Cmax-based lower bound
	Assignment-based lower bound

	Computational results
	Combinatorial lower bounds performance
	The impact of the processing time intervals on the performance of LB4N
	Linear programming-based lower bounds comparison

	Conclusion

	Exact methods for F2|lj|Cmax
	Introduction
	Preliminaries 
	Problem representation
	Dominance rules
	Pre-processing procedure

	Mixed Integer Linear Programming-based exact method
	MIP formulation
	Valid inequalities
	Branching scheme
	Heuristic method
	Node pruning procedure

	Branch-and-bound algorithm
	Branching scheme
	Lower bounds
	Upper bound
	Dominance rules

	Computational results
	Lower bounds performance
	Parameter tuning for the upper bound 
	Branch-and-bound performance
	MIP model performance
	MIP and B&B comparison 

	Conclusion

	Conclusion and future works
	Bibliography




