M. E. Creusen and J. P. Schoormans, The dierent roles of product appearance in consumer choice*, Journal of Product Innovation Management, vol.22, issue.1, p.6381, 2005.

M. Holweg, The Evolution of Competition in the Automotive Industry, p.1334, 2008.
DOI : 10.4159/harvard.9780674593695

R. Bingham and Z. Zhang, The Economies Of Central City Neighborhoods

X. Bai, The eects of the 2007-2009 economic crisis on global automobile industry, Ph.D. dissertation, Applied Economics Thesis at Department of Economics and Finance

J. Juran and A. Godfrey, Juran's Quality Handbook, ser. JURAN'S QUALITY HANDBOOK Available: https, 1999.

D. Rollinson, Organisational Behaviour and Analysis: An Integrated Approach Available: https://books.google. fr/books?id=BzJtQr3Rdp0C, 2008.

A. Feigenbaum, Total Quality Control, ser. Industrial engineering series

. Mcgraw-hill, Available: https://books.google.fr/books?id=, B9FTAAAAMAAJ, 1991.

P. R. Raju, B. Satyanarayana, K. Ramji, and K. S. Babu, Evaluation of fatigue life of aluminium alloy wheels under bending loads, Fatigue and Fracture of Engineering Materials and Structures, p.119126, 2009.

L. Wang, Y. Chen, C. Wang, and Q. Wang, Fatigue life analysis of aluminum wheels by simulation of rotary fatigue test, Strojni?ki vestnik, Journal of Mechanical Engineering, vol.57, issue.1, 2011.
DOI : 10.5545/sv-jme.2009.046

URL : http://doi.org/10.5545/sv-jme.2009.046

D. Stamatis, Failure Mode and Eect Analysis: FMEA from Theory to Execution

A. S. Guerra, M. Pillet, and J. Maire, Control of variability for man measurement, in 12th IMEKO TC1-TC7 joint Symposium on Man Available: https://hal.archives-ouvertes, Science and Measurement, p.344007, 2008.

J. Maire, M. Pillet, and N. Baudet, Gage r2&e2: an eective tool to improve the visual control of products Available: https://doi.org/10, International Journal of Quality & Reliability Management, vol.30, issue.2, p.16117602656711311293571, 1108.
DOI : 10.1108/02656711311293571

P. Kopardekar, A. Mital, and S. Anand, Manual, hybrid and automated inspection literature and current research Available: https, Integrated Manufacturing Systems, vol.4, issue.1, p.1829, 1993.
DOI : 10.1108/09576069310023838

C. Hellier, Handbook of Nondestructive Evaluation, Second Edition, ser. Mechanical Engineering

]. J. Mcgraw-hill-education and . Dumont-fillon, Available: https://books.google.fr/books?id=TjKNY_gCmIkC (Cited on pages 17, 24 and 26.) [20, Contrôle non destructif (cnd), Techniques de l'ingénieur CND : méthodes globales et volumiques, 2012.

B. Mehta, Surface and subsurface crack analysis in carbon steel samples using magnetic particle testing and liquid penetrant testing, Materials Evaluation, vol.73, issue.4, 2015.

H. Fischer, F. Karaca, and R. Marx, Detection of microscopic cracks in dental ceramic materials by uorescent penetrant method, Journal of Biomedical Materials Research, vol.61, issue.1, p.153158, 2002.
DOI : 10.1002/jbm.10148.abs

S. Ranganayakulu, A. Kucheludu, R. Gowtham, and B. R. Kumar, Inspection on aluminum plates by implementation of ndt techniques, J. Pure Appl. Ultrson, vol.37, pp.5761-2015

K. Imieli-?-ska, M. Castaings, R. Wojtyra, J. Haras, E. L. Clezio et al., Air-coupled ultrasonic c-scan technique in impact response testing of carbon bre and hybrid: glass, carbon and kevlar/epoxy composites, Mechanical and Materials Engineering Conference. [Online]. Available, pp.513-522, 2004.

F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, and N. Pugno, Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair, Progress in Materials Science, vol.83, pp.536-573, 2016.
DOI : 10.1016/j.pmatsci.2016.07.007

R. Gardner and H. Pincus, Fluorescent dye penetrants applied to rock fractures, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol.5, issue.2, pp.155-1560148906268900314, 1968.
DOI : 10.1016/0148-9062(68)90031-4

X. Guirong, G. Xuesong, Q. Yuliang, and G. Yan, Analysis and Innovation for Penetrant Testing for Airplane Parts, Procedia Engineering Asia-Pacic International Symposium on Aerospace Technology, p.1877705814037989, 2014.
DOI : 10.1016/j.proeng.2014.12.681

URL : https://doi.org/10.1016/j.proeng.2014.12.681

J. Zheng, W. F. Xie, M. Viens, L. Birglen, and I. Mantegh, Design of an advanced automatic inspection system for aircraft parts based on uorescent penetrant inspection analysis, Insight -Non-Destructive Testing and Condition Monitoring, pp.1834-1839, 2015.

T. Vetterlein, M. Wagener, H. Rongen, and C. Sampson, Automated dye penetrant systems with process control and documentation in the aerospace industry, Insight -Non-Destructive Testing and Condition Monitoring, pp.171173-171182, 2006.
DOI : 10.1784/insi.2006.48.3.171

M. Schröder, C. Biedermann, and R. Vilbrandt, On the applicability of dye penetrant tests on vacuum components: Allowed or forbidden?, Fusion Engineering and Design, vol.88, issue.9-10
DOI : 10.1016/j.fusengdes.2012.11.019

B. Liège, Available: http://www.sciencedirect.com/science, p.0920379612005352, 2012.

N. P. Migoun and N. V. Delenkovsky, The ways of penetrant testing applicability for rough surfaces, Proceedings of 17th World Conf. on NDT, p.2528, 2008.

D. Popescu, F. Anania, C. Cotet, and C. Amza, Fully-Automated Liquid Penetrant Inspection Line Simulation Model for Increasing Productivity, International Journal of Simulation Modelling, vol.12, issue.2, pp.8293-2013
DOI : 10.2507/IJSIMM12(2)2.225

URL : http://doi.org/10.2507/ijsimm12(2)2.225

B. L. Luk and A. H. Chan, Ergonomics, safety and health issues in magnetic particles inspection and dye penetrant inspection, IMECS, 2007.

T. Vetterlein, Application of magnetic particle inspection in the eld of the automotive industry, Abstracts of 17th World Conference on Non- Destructive Testing, 2008.

M. Maass, W. A. Deutsch, and F. Bartholomai, State of the art mt and ut test stations in the german automotive industry, Fall Conference & Quality Testing Show 2012, p.26, 2012.

M. Hentschel, A. Erhard, J. Goebbels, H. Hanselka, J. Nuer et al., Performance Control and Condition Monitoring

T. Nishimine, O. Tsuyama, T. Tanaka, and H. Fujiwara, Automatic magnetic particle testing system for square billets, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting, p.15851590, 1995.
DOI : 10.1109/IAS.1995.530493

J. Luo, Z. Tian, and J. Yang, Fluorescent magnetic particle inspection device based on digital image processing, Proceeding of the 11th World Congress on Intelligent Control and Automation, p.56775681, 2014.

D. Lovejoy, Health and safety in magnetic particle inspection
DOI : 10.1007/978-94-011-1536-0_15

W. C. Roentgen, Ueber eine neue art von strahlung., aus den sitzungsberichten der wuerzburger physik, Medic. Gesellschaft, p.1895

R. Bossi, F. Iddings, and G. Wheeler, Radiographic testing, ser. Nondestructive testing handbook, 2002.

H. Boerner and H. Strecker, Automated X-ray inspection of aluminum castings, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.1, p.7991, 1988.
DOI : 10.1109/34.3869

L. Pizarro, D. Mery, R. Delpiano, and M. Carrasco, Robust automated multiple view inspection, Pattern Analysis and Applications, pp.2132-10044, 2008.
DOI : 10.1007/s10044-007-0075-9

M. Carrasco and D. Mery, Automatic multiple view inspection using geometrical tracking and feature analysis in aluminum wheels, Machine Vision and Applications, vol.15, issue.2
DOI : 10.1109/34.192485

V. D. Nguyen, A. Noble, J. Mundy, J. Janning, and J. Ross, Exhaustive detection of manufacturing aws as abnormalities, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231), p.945952, 1998.
DOI : 10.1109/cvpr.1998.698718

J. Shao, H. Shi, D. Du, L. Wang, and H. Cao, Automatic weld defect detection in real-time X-ray images based on support vector machine, 2011 4th International Congress on Image and Signal Processing, p.18421846, 2011.
DOI : 10.1109/CISP.2011.6100637

M. Malarvel, G. Sethumadhavan, P. C. Bhagi, S. Kar, T. Saravanan et al., Anisotropic diffusion based denoising on X-radiography images to detect weld defects, Digital Signal Processing, vol.68, pp.112-126, 2017.
DOI : 10.1016/j.dsp.2017.05.014

G. Chen, J. Turner, D. Nisius, K. Holt, and A. Brooks, Linatron Mi6, the X-Ray Source for Cargo Inspection, the 23rd International Conference on the Application of Accelerators in Research and Industry -CAARI 2014. [Online]. Available, pp.68-74, 2015.
DOI : 10.1016/j.phpro.2015.05.011

URL : https://doi.org/10.1016/j.phpro.2015.05.011

M. Abdolshah, M. Teimouri, and R. Rahmani, Classification of X-Ray images of shipping containers, Expert Systems with Applications, vol.77, pp.57-65, 2017.
DOI : 10.1016/j.eswa.2017.01.030

A. Mazoochi, F. Rahmani, F. A. Davani, and R. Ghaderi, A novel numerical method to eliminate thickness eect in dual energy x-ray imaging used in baggage inspection, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.538-542, 2014.
DOI : 10.1016/j.nima.2014.06.078

Y. Wang, M. Wang, and Z. Zhang, Microfocus X-ray printed circuit board inspection system, Optik - International Journal for Light and Electron Optics, vol.125, issue.17, pp.4929-4931, 2014.
DOI : 10.1016/j.ijleo.2014.04.027

D. Mery, X-ray testing by computer vision, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.360-367, 2013.
DOI : 10.1109/cvprw.2013.61

J. Rowlands, The physics of computed radiography, Physics in medicine and biology, p.123, 2002.

G. Theis and T. Kahrs, Fully automatic x-ray inspection of aluminium wheels, 8th European Conference on Non-Destructive Testing, 2002.

F. Herold, S. Frantz, K. Bavendiek, and R. Grigat, Building blocks of thirdgeneration automatic defect recognition system, 9th European Conference on NDT, 2006.

F. Herold, Automatic wheel inspection using building blocks, 9th European Conference on NDT, 2006.

P. Moore, A. S. For-nondestructive, and . Testing, Visual Testing, ser. Nondestructive testing handbook, 2010.

P. Kopardekar, A. Mital, and S. Anand, Manual, Hybrid and Automated Inspection Literature and Current Research, Integrated Manufacturing Systems, vol.25, issue.6, p.1829, 1993.
DOI : 10.1016/0031-3203(81)90009-1

B. G. Batchelor, Selecting cameras for machine vision Available: https://doi.org/10, Machine Vision Handbook, pp.477506978-477506979, 2012.
DOI : 10.1007/978-1-84996-169-1_11

J. L. Sanz and D. Petkovic, Machine vision algorithms for automated inspection thin-lm disk heads, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.6, p.830848, 1988.
DOI : 10.1109/34.9106

B. You, Y. S. Oh, and Z. Bien, A vision system for an automatic assembly machine of electronic components, IEEE Transactions on Industrial Electronics, vol.37, issue.5, p.349357, 1990.

K. Hanbay, M. F. Talu, and Ö. Faruk-Özgüven, Fabric defect detection systems and methods???A systematic literature review, Optik - International Journal for Light and Electron Optics, vol.127, issue.24
DOI : 10.1016/j.ijleo.2016.09.110

G. Elmasry, S. Cubero, E. Moltó, and J. Blasco, In-line sorting of irregular potatoes by using automated computer-based machine vision system, Journal of Food Engineering, vol.112, issue.1-2, pp.60-68, 2012.
DOI : 10.1016/j.jfoodeng.2012.03.027

M. Sofu, O. Er, M. Kayacan, B. Ceti, and . Li, Design of an automatic apple sorting system using machine vision, Computers and Electronics in Agriculture, vol.127, pp.395-405, 2016.
DOI : 10.1016/j.compag.2016.06.030

E. Davies, 6 -computer vision for automatic sorting in the food industry, in Computer Vision Technology in the Food and Beverage Industries, ser, Series in Food Science, p.150, 2012.

]. Online, Available: http://www.sciencedirect.com/science, p.9780857090362500065

P. Nerakae, P. Uangpairoj, and K. Chamniprasart, Using machine vision for exible automatic assembly system, Procedia Computer ScienceBased and Intelligent Information and Engineering Systems: Proceedings of the 20th International Conference KES- 2016. [Online]. Available, pp.428-435
DOI : 10.1016/j.procs.2016.08.090

W. Wu, M. J. Wang, and C. Liu, Automated inspection of printed circuit boards through machine vision, Computers in Industry, vol.28, issue.2, p.0166361595000631, 1996.
DOI : 10.1016/0166-3615(95)00063-1

H. Golnabi and A. Asadpour, Design and application of industrial machine vision systems, 16th International Conference on Flexible Automation and Intelligent Manufacturing, pp.630-637, 2007.
DOI : 10.1016/j.rcim.2007.02.005

E. N. Malamas, E. G. Petrakis, M. Zervakis, L. Petit, and J. Legat, A survey on industrial vision systems, applications and tools, Image and Vision Computing, vol.21, issue.2, pp.171-188, 2003.
DOI : 10.1016/S0262-8856(02)00152-X

M. Moganti, F. Ercal, C. H. Dagli, and S. Tsunekawa, Automatic PCB Inspection Algorithms: A Survey, Computer Vision and Image Understanding, vol.63, issue.2, pp.287-313, 1996.
DOI : 10.1006/cviu.1996.0020

A. Jiménez, A. Jain, R. Ceres, and J. Pons, Automatic fruit recognition: a survey and new results using Range/Attenuation images, Pattern Recognition, vol.32, issue.10, pp.1719-1736, 1999.
DOI : 10.1016/S0031-3203(98)00170-8

B. Zhang, W. Huang, J. Li, C. Zhao, S. Fan et al., Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review, Food Research International, vol.62, pp.326-343, 2014.
DOI : 10.1016/j.foodres.2014.03.012

N. Neogi, D. K. Mohanta, and P. K. Dutta, Review of vision-based steel surface inspection systems Available: https://doi.org/10, EURASIP Journal on Image and Video Processing, vol.2014, issue.1, pp.501687-5281, 1186.
DOI : 10.1186/1687-5281-2014-50

Y. Shi and F. D. , Smart Cameras: Fundamentals and Classification
DOI : 10.1007/978-1-4419-0953-4_2

H. Y. Ngan, G. K. Pang, and N. H. Yung, Automated fabric defect detection???A review, Image and Vision Computing, vol.29, issue.7, p.442458, 2011.
DOI : 10.1016/j.imavis.2011.02.002

K. Hanbay, M. F. Talu, and Ö. F. Özgüven, Fabric defect detection systems and methods???A systematic literature review, Optik - International Journal for Light and Electron Optics, vol.127, issue.24, pp.11-96011
DOI : 10.1016/j.ijleo.2016.09.110

L. Norton-wayne, M. Bradshaw, and A. Jewell, Machine vision inspection of web textile fabric, BMVC92
DOI : 10.5244/c.6.23

M. Bradshaw, The application of machine vision to the automated inspection of knitted fabrics, Mechatronics, vol.5, issue.2-3, p.233243, 1995.
DOI : 10.1016/0957-4158(95)00004-O

C. Cho, B. Chung, and M. Park, Development of real-time visionbased fabric inspection system, IEEE Transactions on Industrial Electronics, vol.52, issue.4, p.10731079, 2005.
DOI : 10.1109/tie.2005.851648

Y. Yang, C. Miao, X. Li, and X. Mei, On-line conveyor belts inspection based on machine vision, Optik - International Journal for Light and Electron Optics, vol.125, issue.19, pp.58035807-2014
DOI : 10.1016/j.ijleo.2014.07.070

T. Wei, Research on detection technology for cracks of coal conveyor belt, p.4849, 2010.

N. Neogi, D. K. Mohanta, and P. K. Dutta, Review of vision-based steel surface inspection systems, EURASIP Journal on Image and Video Processing, vol.32, issue.2, pp.50-2014
DOI : 10.1109/41.222644

URL : http://doi.org/10.1186/1687-5281-2014-50

T. S. Nguyen, M. Avila, and S. Begot, Automatic detection and classication of defect on road pavement using anisotropy measure, 17th European Signal Processing Conference, p.617621, 2009.

S. Yu, J. Jang, and C. Han, Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel, Automation in Construction, vol.16, issue.3, p.255261, 2007.
DOI : 10.1016/j.autcon.2006.05.003

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, Review of CMOS image sensors, Microelectronics Journal, vol.37, issue.5, pp.433-451, 2006.
DOI : 10.1016/j.mejo.2005.07.002

URL : http://eia.udg.es/~qsalvi/papers/2006-MJ.pdf

S. Kempainen, Cmos image sensors: eclipsing ccds in visual information? EDN, p.101120, 1997.

M. Hillebrand, N. Stevanovic, B. J. Hosticka, J. E. Conde, A. Teuner et al., High speed camera system using a CMOS image sensor, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511), p.656661, 2000.
DOI : 10.1109/IVS.2000.898423

N. Instruments, A practical guide to machine vision lighting [Online; accessed 9, pp.50-51, 2017.

B. G. Batchelor, Lighting-viewing methods, Machine Vision Handbook
DOI : 10.1007/978-1-84996-169-1_8

K. G. Harding, Machine vision lighting. in Encyclopedia of Optical Engineering, p.12271336, 2003.

B. G. Batchelor, Lighting-viewing methods, Machine Vision Handbook
DOI : 10.1007/978-1-84996-169-1_8

T. Bergin, J. Cusack, and K. Desmet, Advantages of led lighting in vision inspection systems, 2010.

N. Narendran and Y. Gu, Life of LED-Based White Light Sources, Journal of Display Technology, vol.1, issue.1, pp.167-54, 2005.
DOI : 10.1109/JDT.2005.852510

P. D. Michailidis and K. G. Margaritis, Scientic computations on multi-core systems using dierent programming frameworks, Applied Numerical Mathematics, vol.104, p.016892741400213, 2016.
DOI : 10.1016/j.apnum.2014.12.008

M. Birk, M. Zapf, M. Balzer, N. Ruiter, and J. Becker, A comprehensive comparison of gpu-and fpga-based acceleration of reection image reconstruction for 3d ultrasound computer tomography, Journal of Real- Time Image Processing, vol.9, issue.1, p.159170, 2014.

J. A. Gomez-pulido, M. A. Vega-rodriguez, J. M. Sanchez-perez, S. Priem-mendes, and V. Carreira, Accelerating oating-point tness functions in evolutionary algorithms: a fpga-cpu-gpu performance comparison Available: https://doi.org/10, Genetic Programming and Evolvable Machines, pp.403427-10710, 1007.
DOI : 10.1007/s10710-011-9137-2

D. Zou, Y. Dou, and F. Xia, Optimization schemes and performance evaluation of smith?waterman algorithm on cpu, gpu and fpga, Concurrency and Computation: Practice and Experience, p.16251644, 1913.
DOI : 10.1002/cpe.1913

. Gpus, Hands-On Experience with a Sorting Application Available: https://doi.org/10, pp.105117978-105117981, 2010.

T. Instruments, Multicore socs stay a step ahead of soc fpgas, 2016, [Online; accessed 11, 2017.

D. Pascale, Rgb coordinates of the macbeth colorchecker, The BabelColor Company, p.116, 2006.

A. Kumar, Computer-Vision-Based Fabric Defect Detection: A Survey, IEEE Transactions on Industrial Electronics, vol.55, issue.1, pp.348363-61, 2008.
DOI : 10.1109/TIE.1930.896476

URL : http://web.iitd.ac.in/~ajaykr/tie08.pdf

R. Cogranne and F. Retraint, Statistical detection of defects in radiographic images using an adaptive parametric model, Signal Processing, vol.96, issue.100, pp.173-189, 2014.
DOI : 10.1016/j.sigpro.2013.09.016

D. Mery, T. Jaeger, and D. Filbert, A review of methods for automated recognition of casting defects, INSIGHT-WIGSTON THEN NORTHAMPTON, vol.44, issue.62, pp.428436-61, 2002.

N. Neogi, D. K. Mohanta, and P. K. Dutta, Review of vision-based steel surface inspection systems, EURASIP Journal on Image and Video Processing, vol.32, issue.2, pp.50-61, 2014.
DOI : 10.1109/41.222644

URL : http://doi.org/10.1186/1687-5281-2014-50

H. Barrett and K. Myers, Foundations of image science, ser. Wiley series in pure and applied optics
DOI : 10.1117/1.1905634

. Wiley-interscience, Available: https://books.google.fr/books?id=pHBTAAAAMAAJ, 2004.

Y. Zhang, Z. Lu, and J. Li, Fabric Defect Detection and Classication Using Gabor Filters and Gaussian Mixture Model
DOI : 10.1007/978-3-642-12304-7_60

W. Li, C. Lu, and J. Zhang, A local annular contrast based real-time inspection algorithm for steel bar surface defects, Applied Surface Science, vol.258, issue.16, pp.6080-6086, 2012.
DOI : 10.1016/j.apsusc.2012.03.007

R. Alaknanda, P. Anand, and . Kumar, Flaw detection in radiographic weld images using morphological approach, NDT & E International, vol.39, issue.1, pp.29-33, 2006.
DOI : 10.1016/j.ndteint.2005.05.005

J. Martens, Adaptive contrast enhancement through residue-image processing, Signal Processing, p.0165168495000112, 1995.
DOI : 10.1016/0165-1684(95)00011-2

H. Boerner and H. Strecker, Automated X-ray inspection of aluminum castings, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.1, p.7991, 1988.
DOI : 10.1109/34.3869

T. Liao and J. Ni, An automated radiographic NDT system for weld inspection: Part I ??? Weld extraction, NDT & E International, vol.29, issue.3, pp.157-1620963869596000096, 1996.
DOI : 10.1016/0963-8695(96)00009-6

H. Jia, Y. L. Murphey, J. Shi, and T. Chang, An intelligent real-time vision system for surface defect detection, Proceedings of the 17th International Conference on Pattern Recognition, p.239242, 2004.

D. Naso, B. Turchiano, and P. Pantaleo, A Fuzzy-Logic Based Optical Sensor for Online Weld Defect-Detection, IEEE Transactions on Industrial Informatics, vol.1, issue.4, p.259273, 2005.
DOI : 10.1109/TII.2005.857617

J. Blackledge and D. Dubovitskiy, A surface inspection machine vision system that includes fractal texture analysis, p.7689, 2008.

R. N. Strickland and H. I. Hahn, Wavelet transform methods for object detection and recovery, IEEE Transactions on Image Processing, vol.6, issue.5, p.724735, 1997.
DOI : 10.1109/83.568929

H. Y. Liao and G. Sapiro, Sparse representations for limited data tomography, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, p.13751378, 2008.
DOI : 10.1109/ISBI.2008.4541261

URL : http://www.ima.umn.edu/preprints/nov2007/2182.pdf

E. Konuko, B. Lu, and . Acar, Hdf: Heat diusion elds for polyp detection in ct colonography, Signal Processing, vol.87, issue.10, p.2407

P. Campadelli, E. Casiraghi, and D. Artioli, A Fully Automated Method for Lung Nodule Detection From Postero-Anterior Chest Radiographs, IEEE Transactions on Medical Imaging, vol.25, issue.12, p.15881603, 2006.
DOI : 10.1109/TMI.2006.884198

G. Wang and T. Liao, Automatic identification of different types of welding defects in radiographic images, NDT & E International, vol.35, issue.8, pp.519-528, 2002.
DOI : 10.1016/S0963-8695(02)00025-7

R. R. Da-silva, L. P. Calôba, M. H. Siqueira, and J. M. Rebello, Pattern recognition of weld defects detected by radiographic test, NDT & E International, vol.37, issue.6, pp.461-0963869503001786, 2004.
DOI : 10.1016/j.ndteint.2003.12.004

H. Strecker, A local feature method for the detection of flaws in automated X-ray inspection of castings, Signal Processing, vol.5, issue.5, pp.423-431, 1983.
DOI : 10.1016/0165-1684(83)90005-1

M. Haindl and S. Mike², Model-Based Texture Segmentation, p.306313, 2004.
DOI : 10.1007/978-3-540-30126-4_38

D. Mery and O. Medina, Automated Visual Inspection of Glass Bottles Using Adapted Median Filtering
DOI : 10.1007/978-3-540-30126-4_99

URL : http://web.ing.puc.cl/%7Edmery/Prints/ISI-Journals/2004-LNCS-c.pdf

C. H. Chen, Handbook of Pattern Recognition and Computer Vision, 2010.
DOI : 10.1142/5711

C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, and P. Fieguth, A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure, Advanced Engineering Informatics, vol.29, issue.2, p.1474034615000208, 2015.
DOI : 10.1016/j.aei.2015.01.008

URL : http://eprints.nottingham.ac.uk/31986/1/Manuscript_KochEtAl_2015_accepted.pdf

R. Cogranne and F. Retraint, An Asymptotically Uniformly Most Powerful Test for LSB Matching Detection, IEEE Transactions on Information Forensics and Security, vol.8, issue.3, pp.464476-63, 2013.
DOI : 10.1109/TIFS.2013.2238232

R. Cogranne, C. Zitzmann, F. Retraint, I. V. Nikiforov, P. Cornu et al., A local adaptive model of natural images for almost optimal detection of hidden data, Signal Processing, vol.100, issue.68, pp.169-185, 2014.
DOI : 10.1016/j.sigpro.2014.01.027

URL : https://hal.archives-ouvertes.fr/hal-01303044

A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, Practical poissoniangaussian noise modeling and tting for single-image raw-data, IEEE Transactions on Image Processing, vol.17, issue.65, pp.17371754-64, 2008.
DOI : 10.1109/tip.2008.2001399

URL : http://www.cs.tut.fi/~foi/papers/Foi-PoissonianGaussianClippedRaw-2007-IEEE_TIP.pdf

V. Sedighi, R. Cogranne, and J. Fridrich, Content-Adaptive Steganography by Minimizing Statistical Detectability, IEEE Transactions on Information Forensics and Security, vol.11, issue.2, pp.221234-67, 2016.
DOI : 10.1109/TIFS.2015.2486744

H. Yin, C. Lin, B. Sebastien, B. Li, and G. Min, Network trac prediction based on a new time series model, International Journal of Communication Systems, vol.18, issue.8, p.711729721, 2005.

T. N. Nguyen, R. Cogranne, G. Doyen, and F. Retraint, Detection of interest ooding attacks in named data networking using hypothesis testing, 2015 IEEE International Workshop on Information Forensics and Security (WIFS), p.16, 2015.

I. Tosic and P. Frossard, Dictionary Learning, IEEE Signal Processing Magazine, vol.28, issue.2, p.2738, 2011.
DOI : 10.1109/MSP.2010.939537

M. Basseville and I. Nikiforov, Fault isolation for diagnosis: Nuisance rejection and multiple hypotheses testing, Annual Reviews in Control, vol.26, issue.2, pp.189-202, 2002.
DOI : 10.1016/S1367-5788(02)00029-9

URL : https://hal.archives-ouvertes.fr/inria-00072150

R. Shukla, P. L. Dragotti, M. N. Do, and M. Vetterli, Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images, IEEE Transactions on Image Processing, vol.14, issue.3, p.343359, 2005.
DOI : 10.1109/TIP.2004.840710

URL : https://infoscience.epfl.ch/record/33817/files/ShuklaDDV05j-1.pdf

R. Kazinnik, S. Dekel, and N. Dyn, Low Bit-Rate Image Coding Using Adaptive Geometric Piecewise Polynomial Approximation, IEEE Transactions on Image Processing, vol.16, issue.9, p.22252233, 2007.
DOI : 10.1109/TIP.2007.903250

URL : http://ieeexplore.ieee.org/iel5/83/4286981/04286994.pdf

S. H. Hanzaei, A. Afshar, and F. Barazandeh, Automatic detection and classification of the ceramic tiles??? surface defects, Pattern Recognition, vol.66, pp.174-189, 2017.
DOI : 10.1016/j.patcog.2016.11.021

T. H. Thai, R. Cogranne, and F. Retraint, Statistical model of quantized dct coecients: Application in the steganalysis of jsteg algorithm, IEEE Transactions on Image Processing, vol.23, issue.152, p.70, 2014.

T. H. Thai, F. Retraint, and R. Cogranne, Statistical detection of data hidden in least signicant bits of clipped images, Signal Processing, vol.98, p.0165168413004635, 2014.

Y. Wang, C. Xu, C. Xu, and D. Tao, Beyond rpca: Flattening complex noise in the frequency domain, p.2017

Q. Zhao, D. Meng, Z. Xu, W. Zuo, and L. Zhang, Robust principal component analysis with complex noise, Proceedings of the 31st International Conference on International Conference on Machine Learning, p.14

M. Fouladirad, L. Freitag, and I. Nikiforov, Optimal fault detection with nuisance parameters and a general covariance matrix, International Journal of Adaptive Control and Signal Processing, vol.55, issue.5, pp.431439976-73, 2008.
DOI : 10.1007/978-3-662-03976-2

R. Cogranne and F. Retraint, A new tomography model for almost optimal detection of anomalies, 2013 IEEE International Conference on Image Processing, pp.14611465-73, 2013.
DOI : 10.1109/ICIP.2013.6738300

J. Illingworth and J. Kittler, A survey of the hough transform, Computer Vision, Graphics, and Image Processing, pp.734189-88800331, 1988.

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models Available: https://doi.org/10, International Journal of Computer Vision, vol.1, issue.4, pp.321331-00133570, 1007.
DOI : 10.1007/bf00133570

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.5318

S. Lankton and A. Tannenbaum, Localizing Region-Based Active Contours, IEEE Transactions on Image Processing, vol.17, issue.11, p.20292039, 2008.
DOI : 10.1109/TIP.2008.2004611

URL : http://www.shawnlankton.com/wp-content/uploads/articles/lankton-lrbac-TIP-2008.pdf

J. Choi and C. Kim, Unsupervised detection of surface defects: A two-step approach, 2012 19th IEEE International Conference on Image Processing, pp.10371040-86, 2012.
DOI : 10.1109/ICIP.2012.6467040

D. Tsai, M. Chen, W. Li, and W. Chiu, A fast regularity measure for surface defect detection Available: https, Machine Vision and Applications, p.869886, 2012.
DOI : 10.1007/s00138-011-0403-3

F. G. Bulnes, D. F. García, F. J. De-la-calle, R. Usamentiaga, and J. Molleda, A Non-Invasive Technique for Online Defect Detection on Steel Strip Surfaces, Journal of Nondestructive Evaluation, vol.125, issue.126, p.54, 2016.
DOI : 10.1016/j.eswa.2010.11.030

J. Reeves, J. Chen, X. L. Wang, R. Lund, and Q. Q. Lu, A Review and Comparison of Changepoint Detection Techniques for Climate Data, Journal of Applied Meteorology and Climatology, vol.46, issue.6, p.900915, 2007.
DOI : 10.1175/JAM2493.1

G. E. Evans, G. Y. Sofronov, J. M. Keith, and D. P. Kroese, Estimating change-points in biological sequences via??the??cross-entropy method, Annals of Operations Research, vol.401, issue.5740, p.155165, 2011.
DOI : 10.1038/44853

URL : http://www.maths.uq.edu.au/~kroese/ps/cechangepoint.pdf

T. Polushina and G. Sofronov, A Cross-Entropy method for change-point detection in four-letter DNA sequences, 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), p.16, 2016.
DOI : 10.1109/CIBCB.2016.7758099

J. Chen and A. K. Gupta, Testing and Locating Variance Changepoints with Application to Stock Prices, Journal of the American Statistical Association, vol.74, issue.438, p.739747, 1997.
DOI : 10.2307/2347232

A. Aprem and V. Krishnamurthy, Utility Change Point Detection in Online Social Media: A Revealed Preference Framework, IEEE Transactions on Signal Processing, vol.65, issue.7, p.18691880, 2017.
DOI : 10.1109/TSP.2016.2646667

URL : http://arxiv.org/pdf/1612.05368

L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault detection and diagnosis in industrial systems
DOI : 10.1007/978-1-4471-0347-9

A. Tartakovsky, I. Nikiforov, and M. Basseville, Sequential Analysis: Hypothesis Testing and Changepoint Detection, ser. Chapman & Hall/CRC Monographs on Statistics & Applied Probability

H. V. Poor and O. Hadjiliadis, Quickest detection, 2009.
DOI : 10.1017/CBO9780511754678

E. S. Page, Continuous inspection schemes, Biometrika, vol.41, issue.103, pp.100115-98, 1954.
DOI : 10.2307/2333009

G. Lorden, Procedures for Reacting to a Change in Distribution, The Annals of Mathematical Statistics, vol.42, issue.6, p.18971908, 1971.
DOI : 10.1214/aoms/1177693055

URL : http://doi.org/10.1214/aoms/1177693055

G. V. Moustakides, Optimal stopping times for detecting changes in distributions, The Annals of Statistics, pp.137913872241476-99, 1986.

Y. Ritov, Decision Theoretic Optimality of the Cusum Procedure, The Annals of Statistics, vol.18, issue.3, pp.14641469-99, 1990.
DOI : 10.1214/aos/1176347761

URL : http://doi.org/10.1214/aos/1176347761

V. Sedighi, R. Cogranne, and J. Fridrich, Content-Adaptive Steganography by Minimizing Statistical Detectability, IEEE Transactions on Information Forensics and Security, vol.11, issue.2, p.221234, 2016.
DOI : 10.1109/TIFS.2015.2486744

R. Cogranne, A sequential method for online steganalysis, 2015 IEEE International Workshop on Information Forensics and Security (WIFS), p.16, 2015.
DOI : 10.1109/WIFS.2015.7368596

B. K. Guépié, L. Fillatre, and I. Nikiforov, Sequential detection of transient changes, Sequential Analysis, vol.31, issue.4, pp.528547-2012

A. Shiryaev, The problem of the most rapid detection of a disturbance in a stationary process, Soviet Math. Dokl, pp.795-799, 1961.

K. W. Kemp, The average run length of the cumulative sum chart when a v-mask is used, Journal of the Royal Statistical Society. Series B (Methodological), vol.23, issue.1, p.1491532983850, 1961.

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler et al., Evolution of the Automotive Body Coating Process???A Review, Coatings, vol.2, issue.2, pp.24-107, 2016.
DOI : 10.1016/S0079-6700(96)00019-6

N. K. Akafuah, Automotive Paint Spray Characterization and Visualization Available: https://doi.org/10, pp.121165-107, 2013.
DOI : 10.1007/978-94-007-5095-1_5

M. Ottavian, M. Barolo, and S. García-muñoz, Maintenance of Machine Vision Systems for Product Quality Assessment. Part I. Addressing Changes in Lighting Conditions, Industrial & Engineering Chemistry Research, vol.52, issue.35, pp.12-30912, 2013.
DOI : 10.1021/ie303295t

K. Chang, D. Das, P. Varde, and M. Pecht, (Cited on pages 121 and 161.) [183] M 782, 2012, reliability of High-Power LED Packaging and Assembly, Light emitting diodes reliability review, Microelectronics Reliability, pp.73203-762, 2007.

J. Fan, K. C. Yung, and M. Pecht, Lifetime Estimation of High-Power White LED Using Degradation-Data-Driven Method, IEEE Transactions on Device and Materials Reliability, vol.12, issue.2, p.470477, 2012.
DOI : 10.1109/TDMR.2012.2190415

URL : http://hdl.handle.net/10397/17644

B. Hamon and W. Van-driel, Led degradation: From component to system Microelectronics Reliability Failure Physics and Analysis, proceedings of the 27th European Symposium on Reliability of Electron Devices, pp.599-604, 2016.
DOI : 10.1016/j.microrel.2016.07.014

W. Van-driel, M. Schuld, B. Jacobs, F. Commissaris, J. Van-der-eyden et al., Lumen maintenance predictions for led packages, Microelectronics Reliability, pp.39-44, 2016.

S. H. Park and J. H. Kim, Lifetime estimation of led lamp using gamma process model, Microelectronics Reliability, pp.71-78, 2016.
DOI : 10.1016/j.microrel.2015.12.006

R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew, Color image processing pipeline, IEEE Signal Processing Magazine, vol.22, issue.1, p.3443, 2005.
DOI : 10.1109/MSP.2005.1407713

T. Mitsunaga and S. K. Nayar, Radiometric self calibration, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), p.380, 1999.
DOI : 10.1109/CVPR.1999.786966

M. D. Grossberg and S. K. Nayar, Determining the camera response from images: What is knowable?, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.11
DOI : 10.1109/TPAMI.2003.1240119

Y. W. Tai, X. Chen, S. Kim, S. J. Kim, F. Li et al., Nonlinear camera response functions and image deblurring: Theoretical analysis and practice, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.10, p.24982512, 2013.

G. Jore, W. Puech, F. Comby, and J. Jore, High dynamic range images from digital cameras raw data, ACM SIGGRAPH 2005 Posters, ser. SIGGRAPH '05, 2005.

H. Farid, Blind inverse gamma correction, IEEE Transactions on Image Processing, vol.10, issue.10, p.14281433, 2001.
DOI : 10.1109/83.951529

URL : http://www.cs.dartmouth.edu/~farid/publications/ip01.ps.gz

Y. Tsin, V. Ramesh, and T. Kanade, Statistical calibration of CCD imaging process, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, p.480487, 2001.
DOI : 10.1109/ICCV.2001.937555

URL : http://www.ri.cmu.edu/pub_files/pub3/tsin_yanghai_2001_3/tsin_yanghai_2001_3.pdf

C. Ding, An ecient algorithm for computing the noncentrality parameters of chi-squared tests, Communications in Statistics -Simulation
DOI : 10.1080/03610919408813204

J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, Deep learning for smart manufacturing: Methods and applications, Journal of Manufacturing Systems, p.0278612518300037, 2018.
DOI : 10.1016/j.jmsy.2018.01.003