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Abstract

By means of taylor series expansion, a general analytic formula is derived to characterise

the uncertainty propagation from input variables to the model response, in assuming

input independence. By using power-law and exponential functions, it is shown that

the widely used approximation considering only the �rst order contribution of input

uncertainty is su�ciently good only when the input uncertainty i s negligible or the

underlying model is almost linear. The method is then applied to apower grid system

and the EOQ model.

The method is also extended to correlated case. With the extendedmethod, it is s-

traightforward to identify the importance of input correlations in the model response.

This allows one to determine whether or not the input correlations should be considered

in practical applications. Numerical examples suggest the e�ectiveness and validation

of our method for general models, as well as speci�c ones such as the deterministic HIV

model.

Our method is then compared to Sobol's one which is implemented with sampling based

strategy. Results show that, compared to our method, it may overvalue the roles of

individual input factors but underestimate those of their interact ion e�ects when there

are nonlinear coupling terms of input factors. A modi�cation is then in troduced, helping

understand the di�erence between our method and Sobol's one.

Finally, a numerical model is designed based on a virtual gambling mechanism, regarding

the formation of opinion dynamics. Theoretical analysis is proposed by theuse of one-at-

a-time method. Sampling-based method provides a global analysis of output uncertainty

and sensitivity.

Keywords : Uncertainty analysis, Sensitivity analysis, Variance decomposition, Sam-

pling, Correlation, Sensitivity measure, Opinion dynamics
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R�esum�e

Par un d�eveloppement en s�erie de Taylor, une relation analytique g�en�erale est �etablie

pour calculer la propagation des incertitudes des variables d'entr�ee sur la r�eponse du

mod�ele, en assumant l'ind�ependance des entr�ees. En utilisant des relations puissances

et des relations exponentielles, il est d�emontr�e que l'approximation souvent utilis�ee con-

sistant �a ne consid�erer que la contribution du premier ordre sur l'incertitude d'entr�ee

permet d'�evaluer de mani�ere satisfaisante l'incertitude sur la r�eponse du mod�ele pourvu

que l'incertitude d'entr�ee soit n�egligeable ou que le mod�ele soit presque lin�eaire. La

m�ethode est appliqu�ee �a l'�etude d'un r�eseau de distribut ion �electrique et �a un mod�ele

d'ordre �economique.

La m�ethode est �etendue aux cas o�u les variables d'entr�ee sont corr�el�ees. Avec la

m�ethode g�en�eralis�ee, on peux d�eterminer si les corr�elati ons d'entr�ee doivent ou non

être consid�er�ees pour des applications pratiques. Des exemples num�eriques montrent

l'e�cacit�e et la validation de notre m�ethode dans l'analyse des mod �eles tant g�en�eraux

que sp�eci�ques tels que le mod�ele d�eterministe du VIH.

La m�ethode est ensuite compar�ee �a celle de sobol. Les r�esultats montrent que la m�ethode

de sobol peut sur�evaluer l'incidence des divers facteurs, mais sous-estimer ceux de leurs

interactions dans le cas d'interactions non lin�eaires entre les param�etres d'entr�ee. Une

modi�cation est alors introduite, aidant �a comprendre la di��eren ce entre notre m�ethode

et celle de sobol.

En�n, un mod�ele num�erique est �etabli dans le cas d'un jeu virt uel prenant en compte

la formation de la dynamique de l'opinion publique. L'analyse th�eorique �a l'aide de la

m�ethode de modi�cation d'un param�etre �a la fois. La m�ethode bas� ee sur l'�echantillonnage

fournit une analyse globale de l'incertitude et de la sensibilit�e des observations.

Mots-cl�es : Analyse d'incertitude, Analyse de sensibilit�e, D�ecomposition de variance,

Echantillonnage, Corr�elation, Mesure de sensibilit�e, Dynamique d'opinion
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General introduction

The concept of global uncertainty and sensitivity analysis has proposed for a long time.

It attracts the considerations of a large number of researchers from various of areas. The

global uncertainty and sensitivity analysis aims at analysing the uncertainties of output

variables (also called observations or model responses) according to the uncertainties in

input variables (or named factors, parameters, covariates), and the sensitivity of each

output variable with respect to individual input parameters, as well as to their inter-

actions. Undoubtedly, global uncertainty and sensitivity analysis is advantageous for

gaining insight into how input variables should be ranked according totheir importance

in establishing the uncertainties in di�erent output variables. While the strategies for

uncertainty and sensitivity analysis are quite extensive, a general analytic method is still

limited, especially for models of present input correlations. In this dissertation, we main-

ly focus on the establishment of a general theoretical framework for globaluncertainty

and sensitivity analysis in the modelling of complex systems.

Mathematical models have a wide range of applications in diverse disciplines. They can

help explain a system by visualized data and/or �gures and analyse the possible e�ects

of di�erent parameters, and also, if necessary, make predictions about the underlying

behaviour. With a deterministic mathematical model of general form y = f (x ) with

y denoting the output vector and x indicating the input vector. When y is calculated

from x through a speci�ed function or some natural or arti�cial rules connecting y and

x , uncertainties in the elements of input vector, if exist, will propagate through the

calculation to the members of output vector y dependent onx [1, 2]. This process is

called variance propagation (or uncertainty propagation). Variance propagation, often

regarded as the fundamental ingredient of sensitivity analysis for complex models, mainly

considers the determination of output's variance via uncertaintiesin input factors [3, 4].

At present, many strategies have been built for the determination ofvariance propa-

gation, such as simulation-based methods[5, 6], most probable point-based methods[7,

8], functional expansion-based methods[9], numerical integration-based methods[10{ 13].

Simulation-based methods, also called sampling-based methods, are regarded as both

1



General introduction 2

e�ective and widely used, especially for those models with the functional relationship

connecting y and x absent [14{ 16]. These brie
y mentioned strategies, however, are

computationally expensive, especially in the presence of a high number of input vari-

ables. For a general model with given functional form, the procedure will be much easier

and numerically cheaper for determining the output's variance if an analytic formula as-

sociated with variance propagation can be provided. More information associated with

other methods for variance propagation can be found in some reviewed papers[17{ 19].

A simple analytic formula has been appeared since 1953. It approximately computes

the variance of the product of two independent random variables [20]. In 1966, this

approximation was extended by engineers and experimentalists to more general multi-

variate cases [21]. This formula, also called Taylor series approximation, restricted to

the �rst-order terms [ 22], has gained a wide applications thanks to its simplicity and

convenience [23]. However, it can satisfactorily estimate the output's variance only when

the functional relationship between output and input variables is almost linear or the

uncertainty of each input variable is negligible [17]. For most models, y highly nonlin-

early depends onx having large uncertainties. This suggests the necessity of an exact

analytic formula in calculating the output's variance and evaluating it s sensitivities with

respect to individual input factors, as well as to their interactions.

Furthermore, many methods have also been designed for performing sensitivity analy-

sis, including the traditional approach of changing one factor at a time [24, 25], local

method [26], regression analysis [27], variance-based method [28], etc. Among the vari-

ous available strategies, variance-based sensitivity analysis has been assessed as versatile

and e�ective for uncertainty and sensitivity analysis of model response. The considera-

tion of variance-based importance measures can be traced back to over twenty years ago

when Sobol characterised the �rst-order sensitivity measures on the basis of deposing the

variance in model response into di�erent partial contributions attr ibutable to individual

input variables and to their combinations (called variance decomposition) [29]. Then

extensive relevant investigations are carried out around this Sobol's work, boiling down

to the improvements in analysis strategies and to their applicationsto the sensitivity

and reliability analysis of complex systems [30, 31]. However, these frameworks, as well

as above mentioned strategies for the determination of variance propagation,are often

proposed when the input variables are assumed to be statistically independent.

Recently, the interest in extending sensitivity analysis strategies from uncorrelated case

to the correlated one is increasing as correlated factors are often happened in practical

applications. Previous investigations about sensitivity analysis of models in the presence

of input correlations only provided overall sensitivity indices with respect to individual

input factors. However, the correlated and independent variance contributions were
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absent [32]. In practical applications, the distinction between independent and correlated

contributions is quite important. It allows one to decide whether or not the correlations

among input factors should be considered.

Both correlated and independent variance contributions were �rstly considered by C.

Xu et al [33]. They proposed a regression-based strategy to decompose partial variance

contributions into independent and correlated parts by assuming approximate linear

dependence between model response and input variables. To overcome the limitation

of their method, many frameworks on sensitivity analysis are recently developed in

the presence of input correlations, contraposing the investigation of more e�ective and

universal technics for sensitivity analysis in general correlated situations [34{ 36]. Still,

a theoretical framework of the determination of partial variance contributions and of

relative correlated and independent e�ects is limited, especially when a single input is

correlated with many others simultaneously.

Consequently, in this dissertation, we mainly focus on the establishment of a theoretical

framework for uncertainty and sensitivity analysis. The applications of sampling-based

method are also proposed to the uncertainty and sensitivity analysisof epidemic spread-

ing and opinion formation systems.

The manuscript is organised as follows. The �rst chapter introducesin detail the back-

ground of uncertainty and sensitivity analysis of complex systems. Italso provides the

implementation of uncertainty and sensitivity analysis by using di�erent strategies. In

the second chapter, a systematic theoretical framework is established for the uncertainty

and sensitivity analysis of general models with given functional forms, by assuming that

input factors are statistically independent of each other. In the third chapter, the the-

oretical method for uncertainty and sensitivity analysis is generalised to more universal

models of input correlations. The fourth chapter concerns the di�erence of our method

from Sobol's one. A rough sampling-based approach that is coincident with ouranalyt-

ic method is then established by introducing a modi�cation to th e Sobol's method, in

assuming input independence. A systematic framework on uncertainty and sensitivity

analysis of a numerical model is described in chapter 5. This model considers the for-

mation of public opinion dynamics based on a virtual gambling mechanism. Finally, a

general conclusion and future work plan are given.



Chapter 1

Introduction

Mathematical models are of great importance in the natural sciences. They have been

di�usely utilized in many disciplines as diverse as mathematics [37, 38], physics [24, 25,

39{ 42], chemistry [43], etc. With mathematical models, one can explicate a system in

mathematical language, analyse the roles of linked factors by physical methods, and then

make reasonable predictions of underlying behaviors. In general a model contains three

major elements: the input vector, the output vector, and associations between them. In

practical applications, the elements of input vectors are rarely deterministic but contain

uncertainty following some distribution laws [44, 45]. Consequently, the determination

of the variations in input variables, the investigation of their propagatin g through the

model, as well as the quanti�cation of the sensitivities of model outputs with respect

to input variables are of crucial importance for establishing reliableand robust models

[3, 33, 46, 47]. The implementation of these procedures is known as uncertaintyand

sensitivity analysis.

A view of modeling that may help illustrate the role of uncertainty an d sensitivity

analysis in the scienti�c process is o�ered in Fig. 1.1, taken from the work of Robert

Rosen, an American theoretical biologist [48]. The �gure shows two systems, a natural

system N which forms the subject under investigation, and a formal systemF which

indicates the modeling of this subsect. Each system has its own internal entailment

structures and the two systems are connected by the encoding and decoding processes.

The uncertainty under discussion here is often referred to as epistemic uncertainty (also

known as systematic uncertainty). Epistemic uncertainty derives from a lack of infor-

mation or non-accuracy in measurement about the appropriate value used for specifying

a quantity that is assumed to be constant in the context of the analysis for a particular

problem. In the conceptual and computational designation of an analysis, epistemic

uncertainty is regarded in general to be distinct from aleatory uncertainty, which, also

4
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Figure 1.1: Modeling after Rosen (1991)

known as statistical uncertainty, arises from an inherent randomnessin the behavior of

the system under study.

Uncertainty and sensitivity analysis are essential parts of analyses forcomplex systems.

Speci�cally, sensitivity analysis considers the determination ofvariance contributions of

individual input variables to the elements of output vectors [49]. Uncertainty analysis,

preceding sensitivity analysis, mainly focuses on the determination of the uncertainties

in output variables that derive from uncertainties in input factors. Conceptually, un-

certainty and sensitivity analyses should be run in tandem. They work together to help

determine:

(1) Which input factors contribute most to the variation of model output .

(2) Which parameters are signi�cant and which ones can be eliminated fromthe model;

(3) How to e�ciently reduce the uncertainty in model output by str engthening the

knowledge base concerning input parameters.

Quantifying the impact of a variable under sensitivity analysis could be useful for a

series of purposes, such as deep understanding of the relationshipsbetween input and

output variables in a system or model, �xing model inputs that have no e�ect on the

output, identifying and removing redundant parts of the model structure, and avoiding

useless time consumption on non-sensitive variables in models of a large number of

parameters. In models consisting of a large number of input variables,sensitivity analysis

constitutes essential ingredient of model building and quality assurance. Sensitivity

analysis has also extended its application to national and international agencies involved

in impact assessment studies, including the European Commission [50, 51], Australian

pathology laboratories [52], the Intergovernmental Panel on Climate Change [53], and

US Environmental Protection Agency's modelling guidelines [54].

The framework of uncertainty and sensitivity analysis is easily performed when only a

single input factor is involved in the model under discussion, which is known as uni-

variate situation. It requires a straightforward one-dimensional analysis by presenting

results in �gures in a two-dimensional space. When two or more input factors are under
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assessment, however, the problem is much more complicated, especially if input factors

do not have a separable monotonic e�ect on the output variable of interest.

The early framework of sensitivity analysis for multivariate models was established by

using local analysis. Local sensitivity analysis aims at assessing thelocal e�ects of

uncertainties in individual input factors on output variables, by con centrating on the

sensitivity in vicinity of a set of special factor values [55]. Such sensitivity is usually

evaluated by the use of gradients or partial derivatives of functions connecting output and

input vectors at these special factor values. This means the values of the rest factors are

�xed while studying the local sensitivity of model response with respect to a single factor.

Local sensitivity analysis is most frequently employed for the analysis of complex models,

especially when a large number of input factors are involved. This is common because of

the simplicity and low computational cost in its implementation. However, it abortively

quanti�es the global impact of individual input factors and of their inte ractions on output

variables. Of importance to a part of model analysis practitioners (mostly working in the

�elds of statistics, risk and safety assessment, and reliability detection) is understanding

the sensitivity of an output variable with respect to simultaneous variations of several

input factors [47, 56]. The global uncertainty and sensitivity analysis provides such

sensitivity information. It evaluates the in
uence of individual i nput factors by looking

at the entire input space rather than at a speci�ed point.

Generally, the process of global uncertainty and sensitivity analysis can be decomposed

into: ( a) specifying the model under study and de�ning its input and output variables;

(b) characterising the uncertainty in input variables; ( c) determining the uncertainty in

model output; and (d) quantifying the importance of individual input variables in the

estimation of output variables. In establishing the framework of sensitivity analysis for

a given model with de�ned input and output variables, the main goal is to handle the

remaining procedures.

1.1 Characterisation of uncertainty in model input

Quite often, some or all of the model inputs are subject to sources of uncertainty, includ-

ing errors of measurement in experiments, absence of information and poor or partial

understanding of the driving forces and mechanisms. The most essential practice in

uncertainty and sensitivity analysis is to characterise the uncertainty in input variables.

The de�nition of model input, however, depends upon the particular model under in-

vestigation.
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A model can be stated as diagnostic or prognostic. Diagnostic models are usedfor under-

standing a law. They are often built by wild speculations applied toplay what-if games,

such as models designed to study the emergence of an agreement in a population [57{ 59],

models used to investigate organizational change, etc. In the investigation of organiza-

tional change, as an example, three diagnostic models are high potential candidates to

highlight the problem areas and provide structure for solution development. The �rst

one is an analytic model, also known as the di�erence-integration model. It focuses

on thorough analytical diagnosis as the foundation for organisational change [60]. The

second one is the force-�eld analysis model, originally developed by Kurt Lewin in the

early 1950s. It regards the organisation as the result of internal forces that drive change

or maintain the current status [61]. The third one is developed on the bases of cause

maps and social network analysis. It provides a mathematical approach to organisation

diagnosis [62]. Regarding diagnostic models, input variables are pre-de�ned by model

designers and often assumed to follow particular distribution laws in �xed real ranges

(e.g. uniform and Gaussian distributions). Prognostic models can be viewed as accurate

and trusted predictors of a system. They mainly focus on the estimation (prediction)

of the probability that a particular event or outcome will happen. Prognost ic models

are often developed for the clinical practice, where the risk of disease development or

disease outcome (e.g. recovery from a speci�c disease) can be calculated for individuals

by combining information across patients. In the clinical practice, prognostic models

can be presented in the form of a clinical prediction rule [63{ 66]. Prognostic models also

�nd their applications in other �elds, such as risk and safety evaluation in engineering

[67, 68], problems solving of water dynamics in estuaries [69]. It is often preferable that

input variables in prognostic models, in contrast to those in diagnosticmodels, are easily

determined by social experience or practical examples for ensuring the applicability of

a prognostic model in practical applications.

Furthermore, models can also be classi�ed as data-driven or law-driven. A data-driven

(or inverse) model tries to derive properties statistically by empirical study. Advocates

of data-driven models like to describe social behaviours with a minimum of adjustable

parameters, for instance, models helping understand the spreading of really happened

epidemics [70{ 73], models designed for explaining the generation of tra�c jams [74,

75], and models proposed to describe �nancial time series [76, 77]. Law-driven (or

forward) models, on the other hand, aim at employing appropriate laws which have

been attributed to the system to predict its behaviour. For example, people can use

Darcy's and Fick's laws to understand the motion of a solute in water 
owing through

a porous medium [78, 79]. In building design, as another example, building energy

simulation models are generally classi�ed as prognostic law-driven models by which the

behaviour of a complex system can be predicted in terms of a set of well-de�ned laws
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Figure 1.2: Uncertainty characterisation of independent input variables. (a): an example of
given distribution laws of input variables: input 1 is uniformly distributed in the real range
[0, 1]; input 2 follows the standard normal distribution ( � = 0, � = 1). ( b): an example
of deterministic input variables: input 1 is speci�ed at 1; inp ut 2 is �xed at 0.5. Their

uncertainties are represented by changing 50% around their normative values.

(e.g., mass balance, energy balance, conductivity, and heat transfer, etc.) [80]. In data-

driven models, input parameters are introduced based on special situations, which could

be deterministic and attached with an arti�cially de�ned uncertain ty. For law-driven

models, input factors are often imported by the laws we employed. Characterising the

uncertainty in input factors is also dependent upon the situation under analysis.

With given distribution laws, the uncertainty in input variables can be speci�ed by their

mean values (e.g., arithmetic mean or mathematical expectation, geometric mean, medi-

an), standard deviations, PDFs, CDFs and CCDFs. Particularly, when input variables

are deterministic (often happening in agent-based systems where input parameters can

be determined based on practical experience), their uncertainties are frequently repre-

sented by arti�cially introducing �xed variation around their normat ive values or few

typical scenarios (e.g., scenarios corresponding to any possible combinations of speci�ed

low, medium, high values of input factors) for performing the uncertainty and sensitivity

analysis of the system under discussion [16, 81{ 84]. The analysis framework of determin-

istic situations is often designed according to the variation in modeloutput driven from

the independent variation in each input factor. This method is known as one-at-a-time

method and will be discussed below in detail. Examples, as shown in Fig. 1.2, present

the characterisation of uncertainties in input factors for both kinds of situations, in the

absence of input correlations.

1.2 Presentation of uncertainty in model output

As already mentioned at the beginning of this chapter, uncertainty and sensitivity anal-

ysis should be run in series, with uncertainty analysis preceding in current practice.

Uncertainty analysis is, through a certain way, to determine the uncertainty in model

output based on the uncertainty in model input.
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One popular way of establishing uncertainty analysis is dependent upon the computer,

which is also known as Monte Carlo (MC) method. Consider a general model of the

form y = f (x ) with x = ( x1; x2; � � � ; xn )T indicating an input vector of n-dimensional

variables. All elements of input vector are assumed to be independent of each other.

By given PDFs of individual input factors, a sample of sizeM , indicated by an M � n

matrix, can be generated as

2

6
6
6
6
6
6
6
6
4

x1
1 x2

1 � � � xn� 1
1 xn

1

x1
2 x2

2 � � � xn� 1
2 xn

2
...

...
...

...
...

x1
M � 1 x2

M � 1 � � � xn� 1
M � 1 xn

M � 1

x1
M x2

M � � � xn� 1
M xn

M

3

7
7
7
7
7
7
7
7
5

: (1.1)

Run independently the model for all points that are sampled in n-dimensional input

space. A set of values of the model outputy are then generated accordingly:

y = ( y1; y2; � � � ; yM )T : (1.2)

It is straightforward to state the uncertainty in output y according to its values presented

in Eq. (1.2).

Presentation formats of the uncertainty in model output include mathematical expec-

tation, standard deviation, the percentiles of its distribution, con�dence bounds, PDF,

CDF, CCDF and box plot [ 85{ 89]. In general, the last four presentation patterns are

usually preferable to the �rst several indices which will make large amount of uncertainty

information neglected in implementation. Furthermore, box plot is de�nitely bene�cial

for displaying the uncertainty in model output with normative inp ut factors and com-

paring the uncertainties in a number of related variables. The box plot is a standardised

way of displaying the distribution of data. It is often generated by a box and whisker

plots. The bottom and top of the box are, in general, the �rst and third quar tiles of

all of the data. The band inside the box is always the second quartile (the median).

The ends of the whiskers can represent several possible alternative values including: the

minimum and maximum of all of the data, the 9th percentile and the 91st percentile,

the 2nd percentile and the 98th percentile [90, 91]. Figure 1.3(a) exhibits an example of

uncertainty analysis of a simple model with functional form given by

y = x2
1 + x2

2: (1.3)

The uncertainties in input factors are de�ned by Fig. 1.2(a), that is, x1 follows a uniform

distribution in the real range [0, 1] and x2 the standard normal distribution. Box plot, as
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Figure 1.3: Representation of uncertainty in model output. ( a): uncertainty analysis for the
model presented in Eq. (1.3) whose input uncertainty is de�ned by Fig. 1.2(a). ( b): box plot
for the normalized susceptible and recovered agents at equilibrium state of SIR model with
input factors assumed to be uniformly distributed between 0 and 1. Bars show the full range
of the ensemble distribution of values; boxes show the range encompassed by the 25th and
75th percentiles; the horizontal line and square within each box show the median and mean,

respectively.

Figure 1.4: Progression of population for SIR model.

another example, for the equilibrium state of SIR model is presented in Fig. 1.3(b) where

the normalized susceptible and recovered agents are analysed. Threeinput factors: s(0)

(initial proportion of susceptible agents), 
 (recovered rate) and� (infectious probability)

are assumed to be uniformly distributed between 0 and 1 [92, 93]. SIR model is one of the

compartmental models in epidemiology, serving as a base mathematical framework for

understanding the complex dynamics of the disease spread. The model consists of three

compartments: susceptible agents, infectious agents, and recovered (or immune) agents.

Each member of the population typically progresses from susceptible to infectious to

recovered, as shown in Fig.1.4.

In practical applications, the model output is not always a scalar but could also be a

function. For example, in the investigation of epidemic spreading, the system of interest

is time-dependent. Uncertainty in input factors will be propagated to the uncertainty

in the dependence of model output upon the time parameter. For such situations, an

e�ective presentation format of the uncertainty in model output is t o use two graphical

frames, with �rst one displaying any possible dependence of modeloutput upon a rele-

vant parameter and second one presenting statistical results for the outcomes in the �rst

one [30]. Figure 1.5 displays the uncertainty analysis for the normalized infected agents

in SIR model. Three input factors of SIR model: s(0) (initial proportion of susceptible

agents), 
 (recovered rate) and� (infectious probability) are assumed to be uniformly

distributed between 0 and 1. Having performed uncertainty analysiswe can then move

on to the sensitivity analysis. Sensitivity analysis allows one to understand how un-

certainty in the model output can be attributed to di�erent source s of uncertainties in
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Figure 1.5: Representation of uncertainty in model output which acts a func tion of time
parameter. Analysis of the time-dependent normalized number o f infected agents generated
in SIR model is presented as a particular example. Three involved input factors are assumed

to be uniformly distributed between 0 and 1.

input factors.

1.3 Methods of sensitivity analysis

Sensitivity analysis is a primary part of model development. It involves importance

evaluation of input parameters in the estimation of the model output. At present,

a large number of approaches have been built for performing the sensitivity analysis.

Regarding the complexity of models, many methods are developed to address one or

more constrains. For example, most common sensitivity analysis methods assume input

factors are independent of each other [30, 94]; approaches based on linear regression are

valid only for linear models; virtually all sensitivity analysis met hods consider a single

univariate model output, by which sensitivity measures are hard to be interpreted for

models with correlated outputs.

Methods of sensitivity analysis can be classi�ed based on the methodology as mathe-

matical, statistical or graphical [95]. Mathematical methods evaluate the sensitivity of

model output with respect to the range of variation of each input factor. Typically,

they involve the calculation of output variable according to a few valuesof each factor

that represent the possible variation range of the factor. Mathematical methods can

identify the in
uences of individual factors in their variation range s on an output vari-

able. However, they do not indicate the variance of output variable propagated from

the uncertainties in input factors but represent, for example, the sensitivity of model

output as the magnitude of percentage change compared to its nominal value. In some

cases, especially when input factors are almost deterministic, mathematical methods

are helpful in recognising the most important factors [81, 96]. One-at-a-time method

(discussed below) is one of most widely used mathematical methods.Statistical meth-

ods assess the variance contribution of input factors to the output variable with given
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probability distributions related to input factors. By employing statistical methods, the

variation of one or more input factors can be considered simultaneously. This allows one

to identify the interaction e�ects among multiple input factors on t he uncertainty in out-

put variable. Some statistical methods often considered are introduced here, including

di�erential-based method, response surface method, regression analysis, variance-based

analysis, and sampling-based method. Graphical methods, in general, mainly focus on

the representation of sensitivity analysis results in the form of graphs, charts, or surfaces.

They provide a visual understanding of how an output variable is a�ected by the varia-

tion in input factors. Graphical methods can be used to complement the analysis results

of mathematical and statistical methods in establishing systematicalframework of sen-

sitivity analysis. Some other classi�cations of sensitivity analysismethods may focus on

the capability of a speci�c technique, which aids in understanding the applicability of a

speci�c method to a particular model and analysis objective [97].

1.3.1 One-at-a-time method

One-at-a-time method for sensitivity analysis, also known as nominalrange sensitivity

analysis, local sensitivity analysis or threshold sensitivity analysis, is one of the simplest

and most widely used approaches. This method is individually varying only one of

the model inputs across its entire range of plausible values at a time while �xing the

others at their base-case or mean values, to see what e�ect this exertson the model

output. The sensitivity of the model output with respect to a part icular input variable

can be identi�ed by the di�erence in the model output contribute d by the variation

of the variable. Regarding deterministic models, sensitivity measures can be typically

represented as a positive or negative percentage change of the output variable compared

to its normative value.

For linear models, one-at-a-time analysis is advantageous for recognising the most im-

portant factors because of its simplicity and low computational cost in implementation.

This approach, however, does not consider the simultaneous variation ofinput variables.

This makes it fail in identifying the impacts of interaction e�ects among multiple input

factors on the uncertainty in an output variable. Accordingly, the analysis results of

one-at-a-time strategy are potentially misleading for models other thanlinear ones.

One-at-a-time method is quite often used for sensitivity analysisof models with a large

number of input variables (e.g., climate models, contagious disease spreading models)

since it is easily operated, by only repeating sensitivity analysisprocess for any number

of individual model inputs [81, 98{ 100]. Murphy et al, for example, applied the method

to address the range of climate changes resulted from the variation of input factors [101].
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With one-at-a-time strategy, they obtained statistical predictions of climate prediction

and sensitivity indices in assuming that the e�ects of perturbations of 32 input parame-

ters combine linearly and independently. In a deterministic HIV model with 20 uncertain

input parameters involved and supposed to be independent of each other, Blower and

Dowlatabadi employed PRCC to assess the statistical relationship between each input

parameter and the outcome variable while �xing the remaining input factors at their

nominal values [3].

Regarding one-at-a-time method for sensitivity analysis, one often considers the Morris

method [102]. Morris method is stated as e�ective to screen a few important input factors

from a large number controlling a model. In this method, the input space (for simplicity,

de�ned as an n-dimensional unit hypercube) is discretized ton-dimensionalp-level grid.

Each input x i may take values from a sequencef 0; 1=(p � 1); 2=(p � 1); � � � ; 1g. For a

given value of input vector x , the elementary e�ect of the i th input factor is de�ned

based on Morris method as

di (x ) =
f (x + ei �) � f (x )

�
=

@f
@xi

; (1.4)

where � is a predetermined multiple of 1 =(p � 1), and ei a column vector where thei th

entry is set to 1 and the rest ones are set to zero. The �nite distribution of elementary

e�ects is estimated by randomly sampling di�erent x from input space. For input x i ,

the distribution is denoted by Fi . The mean valueui and standard deviation � i of the

distribution Fi are then estimated. ui characterises the e�ect of input x i on the model

output and � i the nonlinear e�ect of x i as well as the interaction e�ects associated with

x i :

ui =
Z

@f
@xi

dx ; � i =

" Z �
@f
@xi

� ui

� 2

dx

#1=2

: (1.5)

When the model under discussion is non-monotonic, distributionFi contains positive

and negative elements. Averaging rule may cancel some e�ects so as to make u very

small or even zero. For this reason, an improved sensitivity measure is considered by

Campolongo et al, called u� , which is de�ned as the mean of the distribution of the

absolute values of the elementary e�ects [103, 104]:

u� =
Z �

�
�
�

@f
@xi

�
�
�
� dx : (1.6)

Measureu� can help identify out the input factors of important overall in
uence on the

model output.
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1.3.2 Regression analysis method

Regression analysis is a statistical process for providing an algebraicrepresentation of

the relationship between output variable and one or more of input parameters [105]. It

allows one to understand how the output variable changes when any one of the input

factors is varied while the remaining factors are �xed.

The earliest form of the regression was the method of least squares, which was consid-

ered by Legendre in 1805 [106] and also by Gauss in 1809 [107]. However, the term

"regression" was proposed by Francis Galton in the late of nineteenth century, with

which, a biological system was described [108]. It was later extended by Udny Yule and

Karl Pearson to a more general statistical context [109].

In the context of sensitivity analysis, regression analysis usually involves the construction

of linear relationship connecting output variable and input parameters. The standard-

ized regression coe�cients are then directly used for assessing the sensitivity of model

output with respect to individual input factors. Regression analysis contains three group-

s of variables: the unknown regression coe�cients, denoted asbi with i = 0 ; 1; � � � ; n,

the input factors x i with i = 1 ; 2; � � � ; n, and the model output y. y could be a vector.

But for simplicity, we consider y as a scalar.

Regression analysis is most properly performed by independent randomsamples which

constitute the mapping from input factors to the output variable. By l inear regression,

the model under study is approximated as

ŷ = b0 +
nX

i =1

bi x i ; (1.7)

wherebi is the regression coe�cient for input x i , which can be interpreted as the change

in output y when the input factor x i increases by one unit in keeping the remaining

factors constant [110]; ŷ denotes the predicted value of output variable for a given point

in the n-dimensional input space when regression coe�cients are determined. The coef-

�cients bi are determined by least squares: minimizing the sum of squares of deviation

from the true values:

MX

j =1

(yj � ŷj )2 =
MX

j =1

"

yj �

 

b0 +
nX

i =1

bi x i
j

!# 2

; (1.8)

where M is the number of samples (experimental points),yj the j th output data point

given by the j th n-dimensional input data point, x i
j the j th sampled value of input x i

[111]. The deviation of the prediction of the regression model (Eq. (1.7)) from the exact
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values given by the original model can be evaluated as

R2 =
MX

j =1

(ŷj � �y)2

,
MX

j =1

(yj � �y)2; (1.9)

which provides a measure of the amount of uncertainty in output variable explained by

linear regression model [112, 113]. Particularly, R2 ! 1 indicates that the developed

regression model accounts for most of the uncertainty in output variable. Converse-

ly, R2 ! 0 means that the regression model is not satis�ed in explaining the output

uncertainty [30].

To some degree, the regression coe�cients can re
ect the sensitivity of model output to

input factors. If a coe�cient bi is close to 0, then there is not a statistically signi�cant

linear relationship between input x i and the output y. Conversely, if bi is signi�cantly

di�erent from 0, then the output y can be regarded as being sensitive tox i . However,

bi is in
uenced by the units of x i . To reduce the dimensional e�ects of input factors,

the regression model represented by Eq. (1.7) is commonly standardised to make the

variance of output and input variables equal to 1:

(ŷ � �y)=�̂ =
nX

i =1

(bi �̂ i =�̂ )(x i � � i )�̂ i ; (1.10)

where

�̂ =

2

4 1
M

MX

j =1

(yj � �y)2

3

5

1=2

; (1.11)

�̂ i =

2

4 1
M

MX

j =1

(x i
j � � i )2

3

5

1=2

; (1.12)

and

�y =
1

M

MX

j =1

yj ; (1.13)

� i =
1

M

MX

j =1

x i
j : (1.14)

The coe�cients bi �̂ i =�̂ are referred to as standardised coe�cients, taking values between

-1 and 1. The standardised coe�cients are helpful in identifying which of input param-

eters have greater e�ects on the output variable when the input variables are measured

in di�erent units of measurement [114]. Linear regression analysis is most suitable when
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the model of interest is in fact linear as it is di�cult to interpre t the standardised co-

e�cients when nonlinear regression analysis is involved. In some analyses, nonlinear

regression provides an alternative to linear regression for more accurate estimation of

the relationship between output and input variables [115, 116].

Because of simplicity and low computational cost, regression analysis as astrategy of

sensitivity analysis has been adopted by many researchers from variousof �elds, such

as medical science [117, 118], bioscience [119], human science [120], and food science

[121, 122].

1.3.3 Response surface method

Response surface method consists of a group of mathematical and statistical techniques

used in the development of an adequate model function connecting an output variable

and a number of input parameters. With the established functional relationship, re-

sponse surface method can identify curvature in the response surface by accounting for

high-order e�ects produced by input parameters. The method was introduced by Box

and Wilson in 1951 [123]. The main idea of this approach is to use a sequence of designed

experiments to obtain an optimal response. Considering the complexity in implemen-

tation, response surface method, therefore, is commonly used for theanalysis of models

with limited number of input factors.

In general, the functional relationship between model output and input parameters is

unknown but can be approximated by a low-degree polynomial model of the form

y = f T (x )� + �; (1.15)

where x = ( x1; x2; � � � ; xn )T , the input vector of n-dimensional variables; f T (x ) is a

vector function of a group of elements, consisting of powers and cross-products of powers

of individual input parameters up to a certain degreed (� 1); � is a vector of unknown

constant coe�cients; � is a random experimental error and assumed to have a zero mean

[124].

Currently two important models are used in response surface method, with one being

linear and the other, nonlinear. The linear one is also classi�ed as the �rst-degree model

(d=1) constructed in terms of the �rst-order terms of input parameters :

y = � 0 +
nX

i =1

� i x i + �: (1.16)
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The nonlinear one is classi�ed as the second-degree model (d=2), which still involves

second-order e�ects of input parameters, except for �rst-order ones:

y = � 0 +
nX

i =1

� i x i +
nX

i

nX

j>i

� ij x i x j +
nX

i =1

� ii x2
i + �: (1.17)

The application of response surface method to sensitivity analysis ofmodels can be

concluded as three procedures:

(1) To approximately establish the functional relationship connecting output variable

and input factors.

(2) To quantify, through hypothesis testing, importance of individual factors.

(3) To determine the optimum settings of input factors that result in the maximum or

minimum output value over a certain range of interest.

In general, the �rst-degree model is su�cient to determine which of input factors a�ect

the model output of interest most. For a deep understanding of the e�ects produced

by input factors on the model output, however, a more complicated design should be

implemented to estimate a second-degree polynomial model.

A series of experiments should be �rst designed to perform response surface analysis,

helping generate the mapping from input factors to the output variable. The design,

denoted by D , can be represented by anM � n matrix, as displayed in Eq. (1.1),

where M is the number of experiments (the size of a design) andn the number of input

variables. Each row ofD represents a point in then-dimensional input space. Designs

used for estimating the �rst-degree model are usually referred toas �rst-order designs

and those used for estimating the second-degree model, second-orderdesigns.

In the estimation of the �rst-degree model, an easy but most common design is 2n

factorial design [125]. In a 2n factorial design, each input variable is measured at two

levels which are commonly coded as -1 for the low level and +1 for the high level. A

factorial design consists of all possible combinations of previously de�ned levels ofn

input factors. In practical applications, the points in a two-level factorial design are

frequently represented by plus and minus signs, conventionally,� for the �rst (or low)

level, and + for the second (or high) level. Take the case of three inputfactors as an

example. The corresponding 23 design is a 8� 3 matrix of the form

D =

2

6
6
4

� � � + � + + +

� � + � + � + +

� + � � + + � +

3

7
7
5

T

: (1.18)
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If n is large, a large number of points will be introduced by the 2n factorial design,

thereby high cost is required in the computer simulation. For this case, fractions (e.g.,

one-half fraction, one-fourth fraction) of a 2n design are often considered to reduce the

cost of computer simulations in the estimation of the �rst-degree model. In general, a

2� m th fraction of a 2n design contains 2n� m points of a 2n design. Herem is an integer

number such that 2n� m � n +1 for guaranteeing all n +1 parameters (elements of vector

� ) included in the �rst-degree model (Eq. (1.16)) can be estimated. Particular manners

for the construction of fractions of a 2n design can be found in Refs. [126, 127]. Some

other commonly discussed designs for �tting the �rst-degree modelare Plackett-Burman

design [128, 129] and simplex design [130]. The Plackett-Burman design allows two levels

of each input factor, analogous to the 2n factorial design, but requires a much smaller

number of design points, especially for largen. The number of design points required by

the Plackett-Burman design is equal to the number of parameters (=n + 1) in the �rst-

degree model. Speci�cally, this design can be employed only when the number of input

variables, n, is a multiple of 4 [128]. The simplex design also containsn +1 experimental

points. These points are located at the nodes of ann-dimensional regular-sided �gure

[131, 132].

In the �tting of the second-degree model, one of the most frequentlydiscussed designs is

the 3n factorial design [133]. A 3n factorial design is formed from all possible combina-

tions of the levels of all n input variables. Each input variable has three levels that are

commonly coded as -1 for the low level, 0 for the intermediate level,and +1 for the high

level. In practice, the matrix of a 3n factorial design simply consists of plus and minus

signs, and also 0. Analogously, the number of experimental points for this design (=3n )

will be very large when a large number of input factors are involved intothe original

model. Following the phenomenon, fractions of a 3n factorial design are often employed

to save the cost of computer simulations. In the construction of fractions, the number

of experimental points must at leat equal the number of parameters (=2n+1+n(n-1)/2,

the number of elements of vector� ) included in the second-degree model (Eq. (1.17))

[127, 134]. Another most widely used second-order design is the central composite de-

sign. It is stated as the most popular design for building a second-degree model. The

central composite design was �rst introduced by A. I. Khuri in 1988 [135], consisting of

three distinct sets of experimental runs:

(1) A full (or a fraction of) 2 n factorial design. This is called the factorial portion. Two

levels of each input factor are coded as -1 and +1. They are often simpli�ed as plus and

minus signs in design matrix.

(2) n0 central points. Central point, commonly coded as 0, is the median of the values

of each factor used in the factorial portion. n0 replications of central point is used to
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improve the precision of the experiment.

(3) 2n axial points. Two points are taken on the axis of each input variable at a distance

of � from the center of the variable.

The number of experimental runs (design points) in a central composite design is (2n +
2n + n0). The design matrix of a simple case withn = 3 and n0 = 4 is formed as follows:

D =

2

6
6
4

� � � + � + + + � � � 0 0 0 0 0 0 0 0

� � + � + � + + 0 0 � � � 0 0 0 0 0 0

� + � � + + � + 0 0 0 0 � � � 0 0 0 0

3

7
7
5

T

: (1.19)

Many strategies have been developed to select a useful value of the axial parameter � .

Let F denote the number of points in the factorial portion and T = 2n + n0. Two

common values are

� = ( Q � F=4)1=4 (1.20)

with Q = (
p

F + T �
p

F )2, which makes the central composite design orthogonal, and

� = F 1=4 (1.21)

which makes the design rotatable [136]. The value ofn0 is often assigned in terms of some

certain desirable properties of the central composite design. For example, n0 can be set

to a value that makes a rotatable central composite design hold orthogonality property

or the uniform precision property [130, 137]. The other most frequently used second-

order design is the Box-Behnken design devised by G. E. P. Box and D. Behnken in 1960

[133]. In this design, three levels (equally spaced) of each input factorare considered.

A Box-Behnken design is formed from a particular subset of the full 3n factorial design

[138, 139]. Some other second-order designs are available in Refs. [140{ 143].

A representative strategy to develop the expression of Eq. (1.15) is using a least squares

repression method to �t a standardized �rst- or second-order equation to the data ob-

tained from the original model. MC methods are typically borrowed to produce multiple

values of each input factor, thereby to calculate corresponding valuesof model output.

Other techniques such as rank-based or nonparametric approaches are alsooccasionally

considered in employing the response surface method to establish the framework of sen-

sitivity analysis [ 130, 144]. The precision and accuracy of analysis results provided by

the response surface method can be evaluated by comparing the predictions provided

by the method to the output values of the original model generated by the same values

of input parameters. If the precision and accuracy are not satisfactory, animproved �t

might be obtained by iterating on values of parameters [145].
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Time-consuming and e�ort requirement in applying response surface approach typically

rely on the number of input parameters included and the type of response structure

required. Hence, mainly focusing on the e�ects of those input factors that have been

identi�ed as quite important through a screening sensitivity analysis method (e.g., one-

at-a-time method) may be advantageous to reduce the complexity and di�culty in the

implementation of response surface strategy.

A key advantage of the response surface method is that one can save computational

time in computationally intensive model run by simplifying the f orm of the model under

discussion. Furthermore, the functional form of the model that is established by the

response surface method and the values of the coe�cients includedin the form can

provide a fruitful information for quantifying the sensitivity of model output with respect

to individual parameters. However, most frameworks established by the response surface

method only consider the e�ects of some but not all of the input factors contained in the

original model. This may result in absent or non-accurate global sensitivity measures in

sensitivity analysis.

1.3.4 Di�erential-based method

Di�erential techniques for sensitivity analysis, also referred to as the direct or local

methods, involve partial derivatives of output variable with respect to input parame-

ters. In sensitivity analysis, one of the most used di�erential-based strategies is the

�rst-order Taylor series approximation. It was discussed since 1966 by engineers and

experimentalists [21].

Recall a generic model of the formy = f (x ) with x = ( x1; x2; � � � ; xn )T labeling the

input vector of n-dimensional variables. By employing the �rst-order Taylor series ap-

proximation, the variance of output y, denoted asV(y), is calculated as

V (y) =
nX

i =1

�
@y
@xi

� 2

X 0

V(x i ); (1.22)

where the subscript X 0 indicates that the derivative is taken at a �xed point (often

indicated by the central point) in the space of input variables, andV(x i ) the variance of

input x i . The sensitivity coe�cient, denoted by si , interprets the importance of input

x i in establishing the uncertainty of output y. si is determined by (see [146])

si =
�

@y
@xi

� 2

X 0

V(x i )

,

V (y): (1.23)
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This calculation is performed under the assumption that high-order (� 2) partial di�er-

entials are negligible and input parameters are independent of each other. Consequently,

the �rst-order Taylor series approximation can provide accurate and reliable analysis re-

sults only when the model under study is almost linear or the uncertainty in input

parameters is negligible [17, 147].

Sensitivity analysis proposed by the di�erential-based technique is computationally e�-

cient but bound with intensive e�ort requirement in solving di� erential equations. When

an explicit algebraic equation describes the relationship connecting model output and

input parameters, it is straightforward to evaluate sensitivity measures by the use of

di�erential-based strategy. If a large set of equations are involved with the model under

discussion, the �rst-order partial derivative can be approximated as a �nite variation

in output values driven from a small change in the input parameter [148, 149]. By

neglecting non-linearities of models, the sensitivity of model output with respect to an

arbitrary input parameter x i can be approximated as

si =
%� y
%� x i

=
[f (x + � i ) � f (x )] =f (x )

[x i � � i ] =xi
; (1.24)

where (x +� i ) = ( x1; � � � ; x i +� i ; � � � ; xn ), and � i is a small change introduced to input

x i .

A derivative-based global sensitivity method has also been proposed by Sobol and

Kucherenko, by averaging the square of local derivatives [150, 151]. In this method,

the global sensitivity measures are de�ned as

vi =
Z

Cn

�
@f
@xi

� 2

dx ; (1.25)

where Cn = ( x j0 � x i � 1; i = 1 ; 2; � � � ; n), the n-dimensional unite hypercube. vi can

be regarded as an improvement of the importance criterionu� (see Eq. (1.6)). The above

de�nition is motivated by the fact that a high value of the derivative of m odel output

with respect to an input variable indicates a robust in
uence of the input variable on

the model output [152]. It is proved that

sT i �
vi

� 2V(y)
; (1.26)

wheresT i are the one-dimensional total sensitivity indices (see Eq. (1.38)) and V(y) the

total variance of output y. This states that small vi imply small sT i . Unessential input

parameters then can be identi�ed out based on computed values ofvi (i = 1 ; 2; � � � ; n).

For highly nonlinear functions, however, the ranking of in
uential p arameters in terms

of the importance criterion vi may suggest false conclusions [150].
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The di�erential-based strategy is usually more demanding than other methods in the

sensitivity analysis of complex models. It requires of model designers to explicitly cal-

culate the �rst-order partial derivatives of output variable with res pect to individual

parameters, and yet provides only comparable but not accurate results,especially for

nonlinear models.

1.3.5 Variance-based methods

Variance-based techniques have a long history in the aspect of sensitivity analysis. They

are often used for determining whether an output variable is statistically associated with

one or more input factors, and whether the values of model output vary in astatistically

signi�cant manner with the variation in values of one or more input variables. In the

seventies, Cukier �rstly established variance-based sensitivity analysis of multi-variate

systems by Fourier implementation [153]. While the complete variance decomposition

strategy was �rstly developed by Sobol in 1993 [29]. In 1994, Jansenet al introduced

an e�cient method relying on random sampling to evaluate the partial contributions

from input variables of uncertainty to the predicted variance in output variable [154]. A

similar strategy was developed by Homma and Saltelli[155] in 1996 to determine global

sensitivity measures that quantify the global importance of individual input variables

in the estimation of model response. In spite of time consuming in computation, the

instrument of complete variance decomposition is known to be usefuland informative

for uncertainty and sensitivity analysis of complex nonlinear systems [156].

Variance-based sensitivity analysis, often referred to as the Sobol method or Sobol in-

dices, speci�es the uncertainty in input and output variables through probability dis-

tributions. Working within a probabilistic framework, it decompose s the variance of

model output into di�erent partial contributions attributable to i ndividual input vari-

ables and to their combinations. By computing the percentage of each partial variance

contribution in the global variance of output variable, sensitivity measures are directly

interpreted for individual factors and also for their interaction e�e cts. Variance-based

sensitivity analysis methods are attractive and widely used because they allow full ex-

ploration of input space, analysis of nonlinear models, and consideration ofinteractions

between di�erent input variables.

Without any assumption regarding the type of the model under discussion, variance-

based approaches �nd broad applications across various �elds, including scienti�c models

evaluation [49], risk assessment [157], importance assessment [158], economic system

analysis [28], behaviour prediction in forest systems [159], etc.
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Recall the generic model of the formy = f (x ) with x = ( x1; x2; � � � ; xn )T labeling the

input vector of n-dimensional variables. The model is de�ned overCn , the n-dimensional

unit hypercube, as de�ned before. Recalling the classical Hoe�ding decomposition [29,

160{ 163], the output variable can be expanded as

y = f 0 +
nX

i =1

f i (x i ) +
nX

i =1

nX

j>i

f ij (x i ; x j ) + � � � + f 12��� n (x1; x2; � � � ; xn ); (1.27)

where f 0 is a constant, f i a function of x i , f ij a function of x i and x j , and so on up

to the last term a function involving all input variables. Each term i s square integrable

over Cn . Summands presented in Eq. (1.27) must satisfy

Z 1

0
f i 1 i 2 ��� i s (x i 1 ; x i 2 ; � � � ; x i s )dx i k = 0 ; (1.28)

where 1� i 1 < i 2 < � � � < i s � n and i k 2 f i 1; i 2; � � � ; i sg. This condition drives

f 0 =
Z

Cn
f (x )dx ; (1.29)

f i (x i ) =
Z 1

0
� � �

Z 1

0
f (x )dx =dx i � f 0; (1.30)

f ij (x i ; x j ) =
Z 1

0
� � �

Z 1

0
f (x )dx =dx i dx j � f 0 � f i (x i ) � f j (x j ); (1.31)

...

where dx =dx i is the product of all the dx j except dx i , similar to dx =dx i dx j which

indicates the integration with respect to all input variables, except x i and x j . By

assumingf (x ) is square-integrable, the variance of model output can be expressedas

V(y) =
Z 1

0
� � �

Z 1

0

"
nX

s=1

nX

i 1< ��� <i s

f 2
i 1 ;��� ;i s

(x i 1 ; x i 2 ; � � � ; x i s )dx i 1 � � � x i s

#

: (1.32)

Expanding the above equation yields

V (y) =
nX

i =1

Vi +
nX

i =1

nX

j>i

Vij + � � � + V12��� n ; (1.33)

where

Vi =
Z 1

0
f 2

i (x i )dx i ; (1.34)

Vij =
Z 1

0

Z 1

0
f 2

ij (x i ; x j )dx i dx j ; (1.35)

...
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are in sequence explaining the variances contributed byx i alone, by the interaction be-

tween x i and x j , etc. Equation (1.33) is known as the complete variance decomposition,

deduced by Sobol in 1993. It shows how the variance of a model output can be decom-

posed into terms that are attributable to individual input factors and to their interaction

e�ects [29]. Following the concept of Sobol's variance decomposition, sensitivity mea-

sures are de�ned by

si = Vi / V (y); (1.36)

sij = Vij / V (y); (1.37)

...

sT i =

0

@Vi +
nX

j =1; j 6= i

Vij + � � � + V12��� n

1

A

,

V (y); (1.38)

wheresi is often called the �rst-order sensitivity index or the main e�ect index, labeling

the fraction of V (y) contributed by x i alone; sij the second-order sensitivity index,

indicating the fraction of V (y) contributed by the interaction between x i and x j ; and so

on up to the last label sT i the total sensitivity index, quantifying the fraction of V (y)

contributed by x i alone and also by interactions ofx i with the remaining factors. They

satisfy

nX

i =1

si +
nX

i =1

nX

j>i

sij + � � � + s12��� n = 1 ; (1.39)

nX

i =1

sT i � 1: (1.40)

The equal sign in Eq. (1.40) holds i� the model under analysis is purely additive.

Theoretically, the determination of sensitivity measures depends upon multidimensional

integrals. In practice, sampling-based strategies are often employedto carry out this

mission. It can become computationally expensive when there are a largenumber of

input variables.

Sobol's de�nitions of the second and higher order partial variance contributions in Eq.

(1.33) hold if input factors are independent of each other. In the presenceof input

correlations, however, partial variance contributions with dimensionality larger than

1 are contributed not only by the coupling items presented in the functional form of

the model under discussion (for independent case), but also by the input correlations.

Recently, the interest in extending sensitivity analysis strategies from uncorrelated case

to the correlated one is increasing as correlated input variables are of frequent occurrence

in practical applications [164, 165]. In general, variance-based sensitivity analysis in the
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presence of correlated inputs is carried out by using linear correlation model which

regards the correlation part of an arbitrary variable as a linear combination of the rest

variables [34{ 36, 166].

1.3.6 Moment independent method

The moment independent method looks at the in
uence of input uncertainty on the

entire output distribution without reference to a speci�c moment of the output. The

moment independent importance indicator was �rst introduced by Chun et al [167].

They quanti�ed the entire change of CDFs in terms of the normalised Euclidean metric

distance between two CDFs. The metric distance (Minkowski distance) of order a be-

tween two points X 1 = ( x1
1; x2

1; � � � ; xn
1 ) and X 2 = ( x1

2; x2
2; � � � ; xn

2 ) is in general de�ned

by

D =

 
nX

i =1

jx i
1 � x i

2ja
! 1=a

; (1.41)

wherea is a number no less than 1. The metric distance is typically used with a being 1 or

2, which correspond to the Manhattan distance and the Euclidean distance, respectively.

The measure of uncertainty importance is then de�ned by

MD( i : o) =
� Z 1

0
[Y i

j � Y o
j ]2dj

� 1=2
,

E (yo); (1.42)

whereY o
j is the j th percentile of the output CDF for the base case,Y i

j the j the percentile

of the output CDF after introducing a change to input x i , and E(yo) the mean value of

output y for the base case. The base case refers to the case where an output distribution

is obtained by setting all input distributions to their nominal ones . It is stated that a

larger value of MD(i : o) implies a more important parameter x i , compared to other

input parameters. However, the value of MD(i : o) depends on the hypothesised change

introduced to parameter x i .

Another moment independent importance measure was presented by Borgonovo, which

does not require one pre-suppose any changes associated with input parameters [168].

It follows from his concept that the global sensitivity index of parameter x i , denoted by

� i , with respect to the output y is represented by

� i =
1
2

Z
P(x i )

� Z
jPy(y) � Pyjx i (y)jdy

�
dx i ; (1.43)

whereP(x i ) =
R

� � �
R

P(x )
Q

j 6= i dx j the marginal density (PDF) of input x i , P(y) is the

PDF of output y, and PY jx i (y) indicates the conditional PDF of y by assuming that the

input parameter x i is �xed at a constant value. It is proved that � i holds some properties,
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such asa) 0 � � i � 1; b) � i = 0 if the output y is independent ofx i ; c) � 1;2;��� ;n = 1 (the

importance of all input parameters equals one); etc [169]. The indicator � helps identify

out input parameters that a�ect output uncertainty the most. In ident ifying the less

relevant parameters with respect to the model output, � agrees with Sobol's variance-

based method. However, discrepancy between two evaluations exists in ranking relevant

parameters.

Regarding the di�culty in deriving the PDFS of output variable, a ne w moment inde-

pendent measure was recently proposed, called the PAWN index, with the conditional

and unconditional distributions characterised by their CDFs [170]. The Kolmogorove-

Smirnov statistic ([ 171]) is employed to measure the distance between conditional and

unconditional CDFs:

KS (x i ) = max
y

jFy(y) � Fyjx i (y)j; (1.44)

where Fy(y) is the unconditional CDF of output y, Fyjx i (y) the conditional CDF when

the input x i is �xed. As KS (x i ) depends on the value at whichx i is �xed, the PAWN

index, denoted byTi , is then de�ned by considering a statistic (e.g. maximum or median)

over all possible values ofx i :

Ti = stat
x i

f KS (x i )g: (1.45)

The PAWN index Ti is a global, quantitative and model independent sensitivity in-

dex, varying between 0 and 1 (the higher the value, the more in
uential x i ). Ti

(i = 1 ; 2; � � � ; n) can be used for ranking input parameters according to their con-

tributions to the output uncertainty, so as to identify which of in put parameters are

in
uential, and which are non-in
uential. Compared to other moment in dependent sen-

sitivity indices, the PAWN index has the advantage of being very easyto implement

and interpret [170]. Regarding the convergence rate and screening of non-in
uential pa-

rameters, the PAWN method is in good agreement with Sobol's variance-based method.

However, the PAWN method is better than Sobol's one in quantifying the di�erence

between relative importance of in
uential parameters [172].

1.3.7 Sampling-based method

In the implementation of uncertainty and sensitivity analysis, the sampling-based (al-

so known as MC) approach has been classi�ed as both e�ective and widely used. In

carrying out the sampling-based approach, what is the most fundamental andcritical

is to generate and explore the mapping from uncertain input variables to the uncertain

model response. In exploration and generation of the underlying mapping, two basic

components should be previously considered. The �rst one is the de�nition of proba-

bility distributions P1; P2; � � � ; Pn that characterise uncertainties in input variables in
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Figure 1.6: Example of random sampling to generate a sample of sizeM = 20 from x =
(x1 ; x2) with x1 uniformly distributed and x2 normally distributed, de�ned by Fig. 1.2(a). First
two panels illustrate sampling of values for x1 and x2 , respectively, and the last panel presents
a random pairing of the sampled values osx1 and x2 in the construction of a random sampling.

the absence of input correlations. The second one is the generation of sample points in

n-dimensional input space according to the previously de�ned distributions of individual

input variables. Diversi�ed sampling procedures have been designed. In this section,

we discuss some frequently considered sampling strategies: randomsampling, sampling

for iterated fractional factorial design (IFFD), importance sampling, Lati n Hypercube

sampling (LHS), and Quasi Monte Carlo (QMC) sampling.

Random sampling

Sample points provided by random sampling are generated by pseudo-random numbers.

Values of single uncertain input variables are chosen randomly and entirely by chance

from their real ranges, independent of their PDFs [173]. It is stated that random sam-

pling is prone to clustering that yields wanted sample points and empty areas in input

space because each new sample is selected randomly without minding the gaps between

already generated sample values [174, 175]. Figure 1.6 presents an example of random

samples of sizeM = 20 generated from x = ( x1; x2). x1 is uniformly distributed in the

real range [0, 1] andx2 follows the standard normal distribution (Fig. 1.2(a)). Clustering

e�ect and empty areas are evident in the distribution of sample points. The uniformity

of sample points in input space directly determines the accuracy of analysis results when

the number of sample points is �nite.

IFFD

The factorial sampling and fractional factorial sampling have been brie
y mentioned

before. They are widely considered in the response surface method. Sampling for IFFD

was also proposed as a direct tool for sensitivity analysis [176, 177]. In this sampling,

input variables are sampled at discrete levels. This is the main di�erence from other

sampling strategies where each input variable is sampled at a continuous interval. IFFD

was built to identify a few robust parameters within batches of a largenumber of fragile
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ones [177]. Investigation indicates that the sensitivity measure based on IFFD is ex-

tremely reproducible, and more robust than rank regression coe�cient in that it can

also identify quadratic e�ects of individual parameters, except for linear ones [178].

Speci�cally, IFFD is generated by multiple iterations of a basic orthogonal fractional

factorial design. Given a basic fractional factorial design, three stepsof randomization

control the generation of a sampling for IFFD:

(1) Parameters are randomly assigned to columns of the basic fractional factorial design.

(2) Each parameter is randomly oriented in considering two orientations: positive one

and negative one. Parameters with a positive orientation will copy their values from

the associated column of the basic design, and those with a negative one will take the

opposite values from the associated column of the basic design.

(3) The orientation value of each parameter is randomly set to zero in a previously

de�ned proportion of the total iterations.

The �rst two randomization steps are carried out independently for each iteration, and

the third one is performed within the whole set of iterations. Each iteration of an IFFD is

analysed separately. The obtained results are then combined together for the sensitivity

analysis of the system under discussion. Denote the value of the output variable in the

i th simulation of the mth iteration by ym [i ], and the input parameter that copies values

from the j th column of the basic design byzj . The main e�ect in the mth iteration of

parameter zj on the output variable is given by

ME m (zj ; ym ) =
1
n

2nX

i =1

Jn [i; j ] � ym [i ]; (1.46)

where n is the number of input parameters, Jn the basic fractional factorial design of

sizen � n, and Jn [i; j ] the (i; j )th position in matrix Jn . ME m (zj ; ym ) is a linear e�ect

as it calculates the di�erence in average response between two levels (low and high) of

zj . The main e�ect of a parameter x throughout the entire design of M iterations is

given by

ME (x; y) =

P M
m=1 Sm

x � ME (zcm
x

; ym )
P M

m=1 jSm
x j

; (1.47)

whereSm
x is the orientation value of parameterx in the mth iteration, cm

x (taking a value

from 1 to n) the randomly chosen column associated with parameterx. The quadratic

e�ect of parameter x can also be de�ned by

QE (x; y) =
P M

m=1 (1 � j Sm
x j)

P 2n
i =1 ym [i ]

2n
P M

m=1 (1 � j Sm
x j)

�
P M

m=1 jSm
x j

P 2n
i =1 ym [i ]

2n
P M

m=1 jSm
x j

: (1.48)
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Importance sampling

In statistics, importance sampling is a well-known technique forestimating properties of

a particular distribution, by using samples generated from a di�erent distribution than

the distribution of interest. It is often used for the estimate of rare event probability

[179, 180]. Consider a general univariate functionf (x). x is a random variable from a

previously de�ned distribution of density P(x). One wishes to estimate the expected

value of f (x) under P(x), denoted asE(f ; P). A MC estimate of E(f ; P) is

Ê (f ; P) =
Z

f (x)P(x)dx

=
1

M

MX

j =1

f (x j )
(1.49)

where M denotes the sample size. The precision of this estimate depends upon the

variance of f (x):

V (Ê (f ); P) = V (f; P )=M: (1.50)

The basic idea of importance sampling is to reduceV(Ê (f ); P) for a given sample size

by using samples from a di�erent distribution. The principle of i mportance sampling is

Ê (f ; P) =
Z

f (x)P(x)dx =
Z

f (x)
P(x)
G(x)

G(x)dx; (1.51)

where the newly introduced distribution G(x) should have the same support asP(x).

Apparently, sampling x from a distribution P(x) is equivalent to sampling x � w(x) from

the new distribution G(x), with importance sampling weight:

w(x) �
P(x)
G(x)

: (1.52)

The object in importance sampling is to concentrate the distribution of the sample points

in the parts of interval of most importance (e.g. the interval [0, 1] that we discussed in

the example) instead of spreading them over the whole region [181]. A good importance

sampling function G(x) should hold the following properties [182]

(1) G(x) > 0 wheneverf (x) 6= 0;

(2) G(x) should be most closely the shape off (x) and makesf (x) � P(x)=G(x) bounded;

(3) It should be easy to simulate values fromG(x);

(4) It should be easy to compute the densityG(x) for any values of x that one might

realize.
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Table 1.1: Estimated mean value and its standard deviation based on MC and importance
sampling (denoted by IS). Results are obtained by N independent simulations of sample size

100.

N Simulation Ê (f ; P ) � (Ê (f ); P )

100
MC 0.459 0.051
IS 0.460 0.020

1000
MC 0.459 0.048
IS 0.461 0.021

100000
MC 0.460 0.049
IS 0.460 0.022

Consider a simple example off (x) = x with x following a standard normal distribution:

x � N (0; 1). One wants to evaluate the mean off in the region [0, 1] of x. By MC

sampling, a sequence valuesx j (j = 1 ; � � � ; M ) of x can be generated fromN (0; 1). The

mean value off (x) is then calculated by

Ê (f ; P) =

P M
j =1 cj � x j
P M

j =1 cj
; (1.53)

with

cj =

(
1 0 � x j � 1;

0 otherwise:
(1.54)

In importance sampling, we setG(x) = 1 for x 2 [0; 1]. M sampled values ofx then can

be obtained from a uniform distribution in the region [0, 1]. For each sampled valuex j ,

the importance weight is

w(x j ) =
P(x j )

R1
0 P(z)dz

: (1.55)

where P(�) is the standard normal distribution. The mean value of f (x) based on

importance sampling is then calculated by

Ê (f ; P) =
1

M

MX

j =1

x j � w(x j ): (1.56)

A comparison between MC and importance sampling is presented in table1.1. Results

display that the variance of the mean value off (x) is reduced by introducing importance

sampling.

LHS

LHS is a kind of strati�ed sampling strategy. It is widely regarded as one of the most

popular variance reduction techniques that can be employed to increase the analysis

e�ciency so as to more possibly achieve the desired accuracy. The LHS was �rstly
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Figure 1.7: Example of LHS to generate a sample of sizeM = 20 from x = ( x1 ; x2) with
x1 uniformly distributed and x2 normally distributed, de�ned by Fig. 1.2(a). First two panels
illustrate sampling of values for x1 and x2 , respectively, and the last one a random pairing of

sampled values ofx1 and x2 in the construction of a LHS.

designed by McKayet al in 1979 for numerically evaluating a multiple integral [174]. It

was further elaborated by Iman et al in 1981 [183].

Sample points provided by LHS are generated in terms of PDFs of individual input

variables, namely P1; P2; � � � ; Pn . Divide the range of x1 into M (the size of sample)

adjacent intervals with equal probability provided by P1. One point is selected at random

from each interval to construct a sequence ofM points f x1
j g, j = 1 ; 2; � � � ; M . Another

sequence,f x2
j g, j = 1 ; 2; � � � ; M , can be formed similarly but independently for x2. The

two generated sequences are then randomly paired without replacement to constitute an

M � 2 matrix. These M pairs are continuously randomly combined without replacement

with M points in the sequencef x3
j g, j = 1 ; 2; � � � ; M , to form an M � 3 matrix, and so

on until an M � n matrix is constructed:

x j = [ x1
j ; x2

j ; � � � ; xn
j ]; j = 1 ; 2; � � � ; M: (1.57)

Figure 1.7 presents an example of LHS of size 20 for a special two-variate situation

x = ( x1; x2). x1 is uniformly distributed between 0 and 1 and x2 follows the standard

normal distribution, as de�ned in Fig. 1.2(a).

The above generated LHS is known as standard LHS (or randomly generated LHS). It

can be quite structured: the variables may be highly correlated or the sampled values

may not have good uniformity of distribution in the space of input vari ables. Conse-

quently, some optimal criteria are proposed to avoid these problems and to obtain an

optimal sampling which achieves the space-�lling property of input factors.

An often considered optimization is designed based on the maximin distance criterion

[184]. For an established sampling designD (an M � n matrix), the iner-site distance

between any twon-dimensional sample points (two rows in theM � n matrix, as displayed

in Eq. (1.57)) is de�ned by

d(x t ; x s) =

"
nX

i =1

(x i
t � x i

s) �

#1=�

; (1.58)
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where � takes two values: 1 (corresponding to the rectangular distance) or 2 (related to

the Euclidean distance). The �rst built maximin distance criter ion aims at maximizing

the minimum inter-site distance:

min
1� t;s � M ;t6= s

d(x t ; x s): (1.59)

Later on, an intuitively appealing extension of the maximin distance criterion was intro-

duced by Morris and Mitchell [185]. For a designed samplingD , they de�ned a distance

list: ( d1; d2; � � � ; dm ) where the elements are the distinct values of iner-site distances and

sorted with d1 < d 2 < � � � < d m . Obviously, m, labeling the number of distinct distance

values, can be as large as
� M

2

�
(the iner-site distances between any two sampling items

are unique) and as small as 1 (the iner-site distances between any twosampling items

are consistent). Continuously, an index list was accordingly de�ned: (J1; J2; � � � ; Jm )

in which an element Jk counts the number of pairs of sites in the designed sampling

separated by dk . The maximin distance design criterion tends to make the minimum

distance maximal. This implies a sampling driven by this criterion must follow the prop-

erty: (1) d1 is maximized; (2) J1 is minimized. To construct an optimal sampling that

satis�es this property, an evaluation function was then introduced:

� p(D ) =

"
mX

k=1

Jkd� �
k

#1=�

; (1.60)

where � is a positive integer and D a designed sampling. An optimal sampling is

generated by minimising Eq. (1.60) [185].

The Shannon information entropy de�ned by Shannon in 1948 was also applied tothe

optimisation of LHS, known as the entropy criterion [186]. Shannon demonstrated that

the lower the information entropy, the more precise the knowledge is. It has been further

illustrated that the entropy criterion is equivalent to minimizi ng the quantity:

� log jR j; (1.61)

where R is the correlation matrix of the designed sampling with elements given by

r ts = exp

"
nX

i =1

ci jx i
t � x i

sj �
#

; 1 � t; s � M ; 1 � � � 2; (1.62)

in which ci (i = 1 ; 2; � � � ; n) are correlation coe�cients [ 187]. The entropy criterion can

help design an optimal sampling that minimizes correlations among inputfactors.
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In experimental design, L 2 discrepancy is most frequently used in solving the non-

uniformity problem. The centered L 2-discrepancy (CL2) criterion was developed to

optimise both random sampling and LHS [188]. According to this criterion, a constructed

sampling D (an M � n matrix) is optimal (having space-�lling property) if it minimize s

the centeredL 2 discrepancy given by

CL2(X ) =
�

13
12

� 2

�
2

M

MX

j =1

nY

i =1

�
1 +

1
2

jx i
j � 0:5j �

1
2

jx i
j � 0:5j2

�

+
1

M 2

MX

j =1

MX

k=1

nY

i =1

�
1 +

1
2

jx i
j � 0:5j +

1
2

jx i
k � 0:5j �

1
2

jx i
j � x i

k j
�

:

(1.63)

Some other early developed algorithms also exist in constructing optimal LHSs. They

have been shown to have a good space-�lling property, including,for example, the row-

wise element exchange algorithm [189], the columnwise-pairwise algorithm [190], and the

threshold accepting algorithm [191]. Considering the requirement of highly computa-

tional cost in the implementation of these algorithms, Jin et al developed an e�cient and


exible method for constructing optimal samplings, by the use of enchanced stochastic

evolutionary algorithm and the employment of e�cient evaluating strate gies of the op-

timality criteria [ 192]. Some recently introduced methods for optimising the strategy of

LHS can be found in Refs. [193{ 195].

QMC sampling

QMC method is speci�cally designed by using low-discrepancy sequences (also called

quasi-random sequences or sub-random sequences) to place sampled values as uniformly

as possible. This is in contrast to the regular MC method (random sampling) consist-

ing of sequences of pseudo-random numbers. MC and QMC methods are stated in a

similar way. The problem is to approximate the integral of a function as the average

of the function evaluated at a set of sampled values. The di�erence between QMC and

MC methods is the way sampled values are generated. There are a few well-known and

commonly used low-discrepancy sequences, including Halton sequences [196], Sobol se-

quences [197], and Faure sequences [198]. Sobol low-discrepancy sequences are identi�ed

in many aspects as the superior one, compared to other sequences.

Sobol sequences (also called LP� sequences or (t; s) sequences in base 2) were �rst intro-

duced by Sobol in 1967 [199]. De�ne a real integrable function f over Cn (n-dimensional

unit hypercube). The original motivation of Sobol was to generate a sequence x j in Cn
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Figure 1.8: An example of QMC sampling based on Sobol sequences. The sample size:
M = 20. x1 is uniformly distributed and x2 normally distributed, de�ned by Fig. 1.2(a).
The �rst two panels illustrate sampled values of x1 and x2 , respectively, and last one the

distribution of sampled values in the construction of QMC samp ling.

so that

lim
M !1

1
M

MX

j =1

f (x j ) =
Z

Cn
f (x )dx ; (1.64)

and the convergence is as fast as possible.

Sample values of QMC sampling by using Sobol sequences are uniformly placed in input

space, even for rather small sample size. Additional conditions, knownas property A

and A', were also introduced by Sobol in 1975 to make sample values perfectly uniformly

distributed in input space [200]:

De�nition : A low-discrepancy sequence is said to satisfyProperty A if for any binary

segment (not an arbitrary subset) of the n-dimensional sequence of length 2n there

is exactly one point in each 2n hyper-octant that results from subdividing the unit

hypercube along each of its length extensions into half.

De�nition : A low-discrepancy sequence is said to satisfyProperty A' if for any

binary segment (not an arbitrary subset) of the n-dimensional sequence of length 4n

there is exactly one point in each 4n hyper-octant that results from subdividing the unit

hypercube along each of its length extensions into four equal parts.

QMC method recently attracts much interest from researchers working in the �eld of

mathematical �nance or computational �nance. In these �elds, high-dime nsional nu-

merical integrals in hundreds or thousands of variables are frequentlyevaluated within a

previously de�ned threshold. Hence, QMC method is widely used in the �nancial sector,

helping value �nancial derivatives [201, 202].

The detailed generation process of Sobol sequences can be found in Ref.[203]. An

example of Sobol sequences-based QMC sampling is presented in Fig.1.8. A sample of

sizeM = 20 is generated fromx = ( x1; x2). x1 is assumed to be uniformly distributed

between 0 and 1, andx2 normally distributed (Fig. 1.2(a)).

A qualitative comparison is also presented in Fig. 1.9 for the uniformity of sampled

values provided by di�erent sampling strategies, including random sampling, standard



Introduction 35

LHS, LHS with the use of maximin distance criterion, LHS with the use ofCL2 criterion,

and QMC sampling based on Sobol sequences. A situation of 2-dimensional input vector

is exempli�ed. Two kinds of sample size: M = 16 and M = 100 are considered,

respectively. Results suggest a higher uniformity of sampled values provided by Sobol

sequences-based QMC sampling, compared to those given by random sampling and

LHSs. Furthermore, the optimised LHS is superior to the standard LHS which precedes

random sampling in constructing uniformly distributed sample values, especially when

a large number of input factors are included. Some other newly introduced sampling

strategies could be found in Refs. [204, 205].

1.4 Determination of analysis results

In the determination of uncertainty and sensitivity analysis results, the most funda-

mental task is to actually explore the mapping from input vector to output variables:

[x j ; y (x j )], j = 1 ; 2; � � � ; M . y labels the output vector. It may contain several inde-

pendent or correlated observations. For simplicity in statement, wejust consider an

arbitrary element in y , denoted by y. The mapping from input vector to the model

output can be analytically obtained if the functional form of the model under study is

previously provided. With this kind of situation, optionally, the m apping of interest

can also be constructed by computational strategies (sampling-based methods) which

are most frequently used since their implementations do not require the form of model

function to be given at �rst. In the following, several representations of analysis results

are introduced by the use of sampling-based methods.

1.4.1 Scatter plots

Scatter plots-based representation is a natural starting point in the uncertainty and

sensitivity analysis of complex systems. It provides an intuitive visual indication of

the dependence of output variable upon individual input factors. Furthermore, it is

de�nitely advantageous for directly understanding the impact of uncertainties in input

factors on the uncertainty in model output. Scatter plots of two two-var iate simple

models are presented as examples: one is constructed in the absenceof coupling items

between input factors (Fig. 1.10) and the other is designed in the presence of coupling

items. Input factors are assumed to be independent of each other and tobe uniformly

distributed in the real range [0, 1]. The scatter plots generated by thestandard LHS and

by the one-at-a-time method are considered, respectively. For sampling-based methods,

the dependence of outputy versus a single input factor is plotted in keeping values of the

rest factors arbitrary. Regarding one-at-a-time method, however, the relationship of y
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(a) Sampled values based on random sampling.

 

 

  

 

(b) Sampled values based on standard LHS.
 

 

 

 

(c) Sampled values based on LHS with the use of maximin distance criterion.

 

 

 

 

(d) Sampled values based on LHS with the use ofCL2 criterion.

 

 

 

 

(e) Sampled values of QMC sampling based on Sobol sequences.

Figure 1.9: Distribution of sampled values in a 2-dimensional input space . Input factors are
assumed to be uniformly distributed in [0, 1]. ( a): sampled values are generated by employing
random sampling based on pseudo-random numbers. (b): sampled values are generated by
applying the standard LHS. ( c): sampled values are generated based on LHS which is optimised
by the maximin distance criterion. ( d): sample values are generated based on LHS which is
optimised by CL 2 criterion ( e): sampled values are generated by Sobol sequences-based QMC
sampling. From left to right, the size of sample M = 16 and M = 100, respectively. The unit

square is divided into 64 (on the left) and 256 (on the right) squa res.
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(a) Sampling-based method.
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(b) One-at-a-time method.

Figure 1.10: (Model 1) Examples of scatter plots-based representation for t he uncertainty
and sensitivity analysis of model: y = 4 x1 + 2 x2

2 . The input factors are assumed to be
independent of each other and to be uniformly distributed in the real range [0, 1]. Panel (a)
presents the plots generated by standard LHS. Panel (b) illustrates the plots obtained in terms

of one-at-a-time method.

with a single input factor is presented while �xing the rest factors (often constant at their

mathematical expectation values). It is straightforward to qualitative ly state that the

factor x1 is more important than x2 in establishing the uncertainty in y for both models,

according to the sampling-based scatter plots. For the model with absent coupling

items between input factors, one-at-a-time method is superior to sampling-based ones

in displaying the qualitative relationship between output variabl e and individual input

factors (Fig. 1.10). However, when coupling items between input factors are involved,

one-at-a-time method can just present local dependence of output variable upon a single

factor by neglecting the interaction e�ects between di�erent inp ut factors (introduced

by coupling items) (Fig. 1.11(b)). Moreover, analysis results associated with each single

factor rely on the previously assumed values of the remaining factors. This implies

sampling-based scatter plots are de�nitely bene�cial for displaying the global dependence

of output variable upon input factors, regarding models involving coupling terms (Fig.

1.11(a)).
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(a) Sampling-based method.
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(b) One-at-a-time method.

Figure 1.11: (Model 2) Examples of scatter plots-based representation for t he uncertainty
and sensitivity analysis of model: y = 4 x1 + 2 x2

2 � 4x1x2 . The input factors are assumed to
be independent of each other and to be uniformly distributed in t he real range [0, 1]. Panel
(a) presents the plots generated by standard LHS. Panel (b) illustrates the plots obtained in

terms of one-at-a-time method.
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(a) Sampling-based method.
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(b) One-at-a-time method.

Figure 1.12: (SIR model) Examples of scatter plots-based representation for the uncertainty
and sensitivity analysis of SIR model. The input factors � (infectious probability), 
 (recovered
rate), and s(0) (initial proportion of susceptible agents) are assumed to b e independent of each
other and uniformly distributed in the real range [0, 1]. Panel ( a) presents the plots generated
by standard LHS. Panel ( b) illustrates the plots obtained in terms of one-at-a-time met hod.
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1.4.2 Correlation measures

Correlation indices quantify the correlation and independence between two or more

values in fundamental statistics. One of the most often considered correlation indices is

Pearson correlation coe�cient (CC). The CC was introduced by Pearson in the 1880s,

following a related idea of Galton [206{ 208]. It provides a measure of the strength of

linear correlation between individual input factor and the output vari able. The CC

between two variables has values between -1 and 1. Three particular values -1, 0, and

1 separately correspond to the total negative linear correlation, no linear correlation,

and total linear correlation. Speci�cally, the CC between an input factor x i and output

variable y, denoted by � (x i ; y), is de�ned by

� (x i ; y) =
1

M

P M
j =1 (x i

j � � i )(yj � E (y))

� i � y
; (1.65)

where � i denotes the mathematical expectation of input x i , E (y) the mathematical

expectation of output y, � i the standard deviation of x i , and � y the standard deviation

of y. They are determined by

� i =
1

M

MX

j =1

x i
j ; E (y) =

1
M

MX

j =1

yj ; (1.66)

� i =

2

4 1
M

MX

j =1

(x i
j � � i )2

3

5

1=2

; � y =

2

4 1
M

MX

j =1

(yj � E (y))2

3

5

1=2

: (1.67)

The absolute value of� (x i ; y), between 0 and 1, corresponds to a trend from no linear

relationship to an exact linear relationship betweenx i and y. Typically, for linear (purely

additive) models, the sum of squared pairwise CCs between each of the input factors

and output variable is 1 in the absence of correlations among input factors:

nX

i =1

� 2(x i ; y) = 1 : (1.68)

As an example, the CCs are shown in table1.2 for two two-variate nonlinear models and

SIR model. Their scatter plots are presented in Figs.1.10, 1.11 and 1.12, by the use of

LHS-based method and one-at-a-time method.

The partial correlation coe�cient (PCC) provides a measure to characterise the degree

of association between a single factorx i and an output variable y with the e�ects of the

remaining elements ofx removed. By the use of linear regression model, a new variable
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Table 1.2: The CCs for two-variate nonlinear models and SIR model with sca tter plots
presented in Figs. 1.10, 1.11 and 1.12. For SIR model, x1 denotes the parameter � , x2 the

parameter 
 , x3 the parameter s(0), and y the output variable s.

CC
sampling-based method one-at-a-time method

model 1 model 2 SIR model model 1 model 2 SIR model
(Fig. 1.10 ( a)) (Fig. 1.11 ( a)) (Fig. 1.12 ( a)) (Fig. 1.10 ( b)) (Fig. 1.11 ( b)) (Fig. 1.12 ( b))

� (x1 ; y) 0.89 0.84 -0.35 1 1 -0.96
� (x2 ; y) 0.44 -0.03 0.53 0.97 0.00 0.61
� (x3 ; y) { { 0.62 { { 1.00

is introduced based on the elements ofx except x i :

x̂ i = c0 +
nX

j =1 ;j 6= i

cj x j (1.69)

And the e�ects of the remaining elements ofx on y are represented as

ŷ = b0 +
nX

j =1 ;j 6= i

bj x j : (1.70)

The PCC between x i and y is de�ned as the CC between (x i � x̂ i ) and (y � ŷ). An

example of the PCCs for nonlinear models will be presented later, together with a similar

measure: the partial rank correlation coe�cient.

Spearman's rank correlation coe�cient (RCC), named after Charles Spearman, char-

acterises the statistical association between the ranking of two variables of interest.

It quanti�es how well the dependence between two variables can beexplained by a

monotonic function. The RCC between x i and y is de�ned as the CC between their

corresponding ranks. Consider a size of sampleM . The values ofx i and y are replaced

by their rank numbers, positive integers between 1 andM , in the sorting of x i and y

from the smallest to the largest, namelyrx i and ry , respectively. The RCC betweenx i

and y is then given by

� (x i ; y) =

P M
j =1 (rx i

j � rx i )( ry j � ry )
hP M

j =1 (rx i
j � rx i )2

i 1=2 hP M
j =1 (ry j � ry )2

i 1=2
: (1.71)

When M rank numbers (integers from 1 toM ) are distinct from each other for both x i

and y, the mathematical expectation and statistical variance of rank transformed data

is calculated as

rx i = ry =
M + 1

2
; V (rx i ) = V (ry ) =

M 2 � 1
12

; (1.72)
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Table 1.3: RCCs for two-variate nonlinear models and SIR model with scatt er plots presented
in Figs. 1.10, 1.11 and 1.12. In SIR model, x1 denotes the parameter � , x2 the parameter 
 ,

x3 the parameter s(0), and y the output variable s.

RCC
sampling-based method one-at-a-time method

model 1 model 2 SIR model model 1 model 2 SIR model
(Fig. 1.10 ( a)) (Fig. 1.11 ( a)) (Fig. 1.12 ( a)) (Fig. 1.10 ( b)) (Fig. 1.11 ( b)) (Fig. 1.12 ( b))

� (x1 ; y) 0.89 0.89 -0.38 1 1 -1
� (x2 ; y) 0.41 0.06 0.63 1 0.00 1
� (x3 ; y) { { 0.58 { { 1

where the formula
P M

j =1 j 2 = M (2M + 1)( M + 1) =6 was used. The RCC betweenx i

and y then can be simpli�ed as

� (x i ; y) = 1 �
6

P M
j =1 (rx i

j � ry j )2

M (M 2 � 1)
: (1.73)

The RCC between x i and y has values between -1 and 1, analogous to the CC, with

positive values corresponding to the increase or decrease ofx i and y along the same

direction and negative values corresponding to the increase or decrease of x i and y along

opposite directions. A RCC of zero value indicates an obvious non-monotonic relation-

ship betweenx i and y. The larger the RCC in magnitude, the closer the relationship

betweenx i and y gets to be monotonic. The RCCs are displayed in table1.3 for three

models with scatter plots presented in Figs.1.10, 1.11and 1.12, by the use of LHS-based

method and one-at-a-time method.

Another rank correlation coe�cient is the Kendall rank correlation coe� cient(KRCC),

commonly referred to as Kendall's� coe�cient. The KRCC was developed by Kendall in

1938 [209]. It measures the ordinal association between two variables under study. The

KRCC between x i and y is also de�ned based on their rank numbers in the sorting from

the smallest to the largest. It has values between -1 and 1, with high values indicating

a similar (or identical when the coe�cient is 1) rank between x i and y and low values

labeling a dissimilar (or fully di�erent when the coe�cient is - 1) rank between them.

A KRCC of zero value betweenx i and y corresponds to the independent relationship

between them. For a size of sampleM , an arbitrary pair of mappings from x i to y:

[x i
j ; yj ], [x i

k ; yk ], j 6= k and j; k = 1 ; 2; � � � ; M , is said to be concordant if the ranks for

both elements follow the same direction, that is, if both x i
j > x i

k and yj > y k or if

both x i
j < x i

k and yj < y k . It is said to be discordant if the ranks for both elements

follow opposite directions, that is, if x i
j > x i

k and yj < y k or if x i
j < x i

k and yj > y k .

When x i
j = x i

k or yj = yk , the correspond pair of mappings is neither concordant nor

discordant. The de�nition of KRCC is given by

� (x i ; y) =
2 [(number of concordant pairs)-(number of discordant pairs)]

M (M � 1)
: (1.74)
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Table 1.4: KRCCs for two-variate nonlinear models and SIR model with scat ter plots
presented in Figs. 1.10, 1.11 and 1.12. For SIR model, x1 denotes the parameter � , x2 the

parameter 
 , x3 the parameter s(0), and y the output variable s.

KRCC
sampling-based method one-at-a-time method

model 1 model 2 SIR model model 1 model 2 SIR model
(Fig. 1.10 ( a)) (Fig. 1.11 ( a)) (Fig. 1.12 ( a)) (Fig. 1.10 ( b)) (Fig. 1.11 ( b)) (Fig. 1.12 ( b))

� (x1 ; y) 0.71 0.73 -0.27 1 1 -1
� (x2 ; y) 0.29 0.05 0.46 1 0.00 1
� (x3 ; y) { { 0.45 { { 1

Table 1.5: The PCCs and PRCCs for two-variate nonlinear models and SIR mod el with
scatter plots presented in Figs. 1.10(a) (model 1), 1.11(a) (model 2) and 1.12(a) (SIR model).
For SIR model, x1 denotes the parameter � , x2 the parameter 
 , x3 the parameter s(0), and

y the output variable s.

measures
PCC PRCC

model 1 model 2 SIR model model 1 model 2 SIR model
� (x1 ; y) 0.99 0.83 -0.57 0.98 0.90 -0.68
� (x2 ; y) 0.97 -0.02 0.64 0.92 0.17 0.78
� (x3 ; y) { { 0.73 { { 0.76

As an example, the KRCCs are exhibited in table1.4 for the models with scatter plots

presented in Figs. 1.10, 1.11 and 1.12, by the use of LHS-based method and one-at-a-

time method.

Similar to PCC, the partial rank correlation coe�cient (PRCC) perfor ms a partial cor-

relation on rank-transformed data: rx i and ry by the use of linear regression models

described by Eqs. (1.69) and (1.70). The PRCC provides a robust sensitivity measure

for nonlinear but monotonic relationships betweenx i and y in the absence of input cor-

relations. The PCCs and PRCCs are presented in table1.5 for nonlinear models with

scatter plots illustrated in Figs. 1.10(a) (model 1), 1.11(a) (model 2) and 1.12 (SIR

model), by the use of LHS-based method.

In the absence of coupling terms involving di�erent input factors, rank correlation co-

e�cients, including RCC and KRCC, based on one-at-a-time method is equivalent to

the PCC and PRCC based on sampling strategies. They all provide reliable measures

in quantifying the monotonic relationship between each individual input factor and the

output variable. However, in the presence of coupling items, the PRCC is superior to any

other correlation coe�cient in assessing how well the relationshipbetween an individual

input factor and the output variable can be described by a monotonic function.

Occasionally, multiple correlation is also of interest to be considered. The coe�cient of

multiple correlation, denoted as R in general, assesses how well a given output variable

can be predicted using a linear function of a set of input variables [210]. It provides

a global measure of the strength of the association between input variables and the

output variable. The coe�cient of multiple correlation takes values b etween 0 and 1. A

higher value indicates a stronger linear association connecting inputfactors and output
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variable. A value of zero suggests the absence of linear relationship between input factors

and output variable. Unlike the previously introduced correlation coe�cients which o�er

both the strength and direction of the underlying association connecting input factors

and the output varaible, the coe�cient of multiple correlation tells only the strength

of the association. Regarding a general model of two input factors, the coe�cient of

multiple correlation is de�ned by

R =
�

� 2(x1; y) + � 2(x2; y) � 2� (x1; y)� (x2; y)� (x1; x2)
1 � � 2(x1; x2)

� 1=2

; (1.75)

where� indicates the pairwise CC (Eq. (1.65)) between involved variables. By assuming

input variables to be independent of each other, the above expression can be simpli�ed

as

R =
�
� 2(x1; y) + � 2(x2; y)

� 1=2
; (1.76)

which is naturally extended to a general situation of n input factors of absent input

correlations:

R =

"
nX

i =1

� 2(x i ; y)

#1=2

: (1.77)

The multiple correlation coe�cient is 0.99 for model 1 (Fig. 1.10(a)), 0.84 for model 2

(Fig. 1.11(a)) and 0.89 for SIR model (Fig. 1.12(a))

1.4.3 Sensitivity indices

The sensitivity indices (or measures), also called importance indices (measures), of out-

put variables with respect to input factors are often de�ned by variance-based methods.

One commonly considered variance-based method is the Sobol's variancedecomposi-

tion [29]. Following his concept, the determination of sensitivity indices depends upon

multidimensional integrals, as introduced in Section 1.3. Considering the complexity

in evaluating multidimensional integrals, the sampling-based method is frequently ap-

plied to the calculation of sensitivity indices in practice. With sampling-based method,

the sensitivity indices of di�erent orders are evaluated by usingtwo independently con-

structed samplings, namelyA and B , which are M � n matrices. The mathematical

expectation and statistical variance of output y are approximated by any of the con-

structed samplings, for instance,A , as

E(y) =
1

M

MX

j =1

f (A ) j ; (1.78)

V (y) =
1

M

MX

j =1

f 2(A ) j � E 2(y): (1.79)
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Table 1.6: An example of construction of both A ( i )
B and B ( i )

A matrices with sample size
M = 5 and number of input variables n = 3. Matrices A and B are generated by the use of
standard LHS. Three input variables are independently and uniform ly distributed in the range

[0, 1].

A =

2

6
6
6
4

0:747 0 :359 0 :098
0:053 0 :783 0 :955
0:325 0 :098 0 :453
0:899 0 :936 0 :220
0:519 0 :549 0 :618

3

7
7
7
5

; B =

2

6
6
6
4

0:760 0 :806 0 :381
0:524 0 :755 0 :422
0:342 0 :194 0 :180
0:949 0 :400 0 :746
0:062 0 :480 0 :958

3

7
7
7
5

:

A (1)
B =

2

6
6
6
4

0:760 0:359 0 :098
0:524 0:783 0 :955
0:342 0:098 0 :453
0:949 0:936 0 :220
0:062 0:549 0 :618

3

7
7
7
5

; B (1)
A =

2

6
6
6
4

0:747 0:806 0 :381
0:053 0:755 0 :422
0:325 0:194 0 :180
0:899 0:400 0 :746
0:519 0:480 0 :958

3

7
7
7
5

;

A (2)
B =

2

6
6
6
4

0:747 0:806 0:098
0:053 0:755 0:955
0:325 0:194 0:453
0:899 0:400 0:220
0:519 0:480 0:618

3

7
7
7
5

; B (2)
A =

2

6
6
6
4

0:760 0:359 0:381
0:524 0:783 0:422
0:342 0:098 0:180
0:949 0:936 0:746
0:062 0:549 0:958

3

7
7
7
5

;

A (3)
B =

2

6
6
6
4

0:747 0 :359 0:381
0:053 0 :783 0:422
0:325 0 :098 0:180
0:899 0 :936 0:746
0:519 0 :549 0:958

3

7
7
7
5

; B (3)
A =

2

6
6
6
4

0:760 0 :806 0:098
0:524 0 :755 0:955
0:342 0 :194 0:453
0:949 0 :400 0:220
0:062 0 :480 0:618

3

7
7
7
5

:

Following the concept of Sobol's variance decomposition, the �rst-order and total sensi-

tivity indices are estimated, respectively, by

si =

2

4 1
M

MX

j =1

f (A ) j f (B (i )
A ) j � E 2(y)

3

5

,

V (y); (1.80)

sT i =

2

4 1
M

MX

j =1

f (A ) j

�
f (A ) j � f (A (i )

B ) j

�
3

5

,

V (y); (1.81)

whereA (i )
B is a matrix with column i in A substituted by the i th column in B , and vice

versa for matrix B (i )
A whose columni comes from matrix A and the remaining (n � 1)

columns come from matrix B [156]. An example of construction of both A (i )
B and B (i )

A

matrices is presented in table1.6 with sample size M = 5 and three input variables

considered. They are assumed to be independently and uniformly distributed in the real

range [0, 1].

Analogously, the second- and higher-order sensitivity indices are determined by

si 1 i 2 =

2

4 1
M

MX

j =1

f (A ) j f (B (i 1 i 2 )
A ) j � E 2(y)

3

5

,

V (y) � si 1 � si 2 ; (1.82)

si 1 i 2 i 3 =

2

4 1
M

MX

j =1

f (A ) j f (B (i 1 i 2 i 3 )
A ) j � E 2(y)

3

5

,

V (y) � si 1 � si 2 (1.83)

� si 3 � si 1 i 2 � si 1 i 3 � si 2 i 3 ; (1.84)

...
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where the �rst two indices separately quantify the fraction of total v ariance of output y

that is contributed by the interaction e�ect between x i 1 and x i 2 , and by the interaction

e�ect involving x i 1 , x i 2 and x i 3 .

Alternative formulas for the determination of the �rst-order and total se nsitivity indices

are o�ered by Jansen in 1999 [154, 211], which are expressed as

si = 1 �

2

4 1
2M

MX

j =1

�
f (B ) j � f (A (i )

B ) j

� 2

3

5

,

V (y); (1.85)

sT i =

2

4 1
2M

MX

j =1

�
f (A ) j � f (A (i )

B ) j

� 2

3

5

,

V (y): (1.86)

By employing a large set of test functions involving di�erent degrees of linearity, addi-

tivity and e�ective dimension, it is stated that Jansen's method i s more e�cient than

Sobol's one in evaluating sensitivity indices [156]. The sensitivity indices of three exem-

pli�ed models are presented, as examples, in tables1.7, 1.8, and 1.9, accompanying with

a comparison of Sobol's and Jansen's methods. When the size of sample is large enough,

Sobol's and Jansen's methods both o�er perfect sensitivity indices. However, Jansen's

method is more e�cient than Sobol's one as it requires less computational cost in imple-

mentation. Both the standard LHS and QMC sampling are performed to carry out the

analysis process in considering the e�ect of sample size. QMC sampling can be seen as

a deterministic algorithm as the low discrepancy sequence used forthe construction of

sampling is not random, but deterministic. Speci�cally, in the im plementation of QMC

sampling, matrices A and B of size M � n, used for the determination of sensitivity

analysis results, should be constructed from a quasi-random sequence of sizeM � 2n. A

is generated by the left half part of the sequence, andB by the rest half part, as shown

in table 1.10. Regarding sampling strategies, average over independent constructions of

LHS is of necessity in obtaining accurate sensitivity measures. Thisstates again that

QMC sampling is much more e�cient for sensitivity analysis of models. It provides ac-

curate analysis results by using a small number of sampled points and also avoids highly

computational cost in performing con�guration average.
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Table 1.7: Variance-based sensitivity analysis results for the model of form y = 4 x1 +
2x2

2 . The standard LHS and QMC sampling are used, with the e�ect of sa mple size M
considered. Both Sobol's (Eqs. (1.80)-( 1.81)) and Jansen's (Eqs. (1.85)-( 1.86)) methods are
employed to the evaluation of sensitivity indices. For LHS, analysis results are averaged over
100 independent con�gurations, with standard deviations dis played in parentheses. QMC
sampling, generated based on Sobol sequences, is deterministic and numbers in parentheses

indicate the thousandth and ten-thousandth digits.

sampling M method E ( y ) V ( y ) s1 s2 sT 1 sT 2

LHS

102 Sobol' 2.67(.00) 1.69(.15) 0.79(.05) 0.21(.08) 0.79(.08) 0.21(.05)
Jansen 2.67(.00) 1.70(.15) 0.79(.03) 0.22(.11) 0.78(.11) 0.21(.03)

104 Sobol' 2.67(.00) 1.69(.01) 0.79(.00) 0.21(.01) 0.79(.01) 0.21(.00)
Jansen 2.67(.00) 1.69(.01) 0.79(.00) 0.21(.01) 0.79(.01) 0.21(.00)

QMC

102 Sobol' 2.66(72) 1.67(50) 0.79(63) 0.21(41) 0.78(60) 0.20( 37)
Jansen 2.66(72) 1.67(50) 0.77(61) 0.22(85) 0.77(15) 0.22( 40)

104 Sobol' 2.66(67) 1.68(89) 0.78(90) 0.21(05) 0.78(95) 0.21( 10)
Jansen 2.66(67) 1.68(89) 0.78(95) 0.21(06) 0.78(95) 0.21( 05)

3 � 104 Sobol' 2.66(66) 1.68(88) 0.78(97) 0.21(03) 0.78(97) 0.21( 04)
Jansen 2.66(66) 1.68(88) 0.78(95) 0.21(05) 0.78(95) 0.21( 05)

Table 1.8: Variance-based sensitivity analysis results for the model of form y = 4 x1 +
2x2

2 � 4x1x2 . The standard LHS and QMC sampling are used, with the e�ect of sa mple size
M considered. Both Sobol's (Eqs. (1.80)-( 1.81)) and Jansen's (Eqs. (1.85)-( 1.86)) methods
are employed to the evaluation of sensitivity indices. For LH S, analysis results are averaged
over 100 independent con�gurations, with standard deviation s displayed in parentheses. QMC
sampling, generated based on Sobol sequences, is deterministic and numbers in parentheses

indicate the thousandth and ten-thousandth digits.

sampling M method E ( y ) V ( y ) s1 s2 sT 1 sT 2

LHS

102 Sobol' 1.67(.04) 0.46(.04) 0.71(.19) 0.03(.21) 0.97(.21) 0.29(.19)
Jansen 1.67(.03) 0.47(.04) 0.72(.05) 0.04(.14) 0.96(.12) 0.29(.04)

104 Sobol' 1.67(.00) 0.47(.00) 0.72(.02) 0.05(.02) 0.95(.02) 0.28(.02)
Jansen 1.67(.00) 0.47(.00) 0.72(.00) 0.05(.02) 0.95(.01) 0.28(.00)

QMC

102 Sobol' 1.67(46) 0.48(74) 0.67(71) 0.08(13) 0.91(87) 0.32( 29)
Jansen 1.67(46) 0.48(74) 0.72(51) 0.09(33) 0.85(59) 0.26( 22)

104 Sobol' 1.66(67) 0.46(65) 0.71(46) 0.04(78) 0.95(22) 0.28( 54)
Jansen 1.66(67) 0.46(65) 0.71(41) 0.04(73) 0.95(24) 0.28( 60)

3 � 104 Sobol' 1.66(67) 0.46(68) 0.71(41) 0.04(72) 0.95(28) 0.28( 59)
Jansen 1.66(67) 0.46(68) 0.71(43) 0.04(77) 0.95(25) 0.28( 57)

Table 1.9: Variance-based sensitivity analysis results for SIR model. Th e standard LHS
and QMC sampling are used, with the e�ect of sample size M considered. Both Sobol's (Eqs.
(1.80)-( 1.81)) and Jansen's (Eqs. (1.85)-( 1.86)) methods are employed to the evaluation of
sensitivity indices. For LHS, analysis results are averaged over 100 independent con�gura-
tions, with standard deviations displayed in parentheses. QM C sampling, generated based
on Sobol sequences, is deterministic and numbers in parentheses indicate the thousandth and

ten-thousandth digits.

sampling M method E ( y ) V ( y ) s � s 
 ss (0) sT � sT 
 sT s (0)

LHS

102 Sobol' 0.24(.01) 0.07(.01) 0.19(.14) 0.20(.12) 0.43(.15) 0.30(.09) 0.33(.12) 0.59(.13)
Jansen 0.25(.01) 0.07(.01) 0.19(.12) 0.19(.13) 0.42(.10) 0.31(.07) 0.33(.08) 0.60(.09)

104 Sobol' 0.24(.00) 0.07(.00) 0.19(.01) 0.18(.01) 0.42(.01) 0.31(.01) 0.34(.01) 0.59(.01)
Jansen 0.24(.00) 0.07(.00) 0.19(.01) 0.19(.01) 0.42(.01) 0.31(.01) 0.34(.01) 0.59(.01)

QMC

102 Sobol' 0.23(83) 0.07(30) 0.23(21) 0.23(95) 0.31(50) 0.34( 66) 0.50(42) 0.54(42)
Jansen 0.23(83) 0.07(30) 0.31(77) 0.36(61) 0.41(09) 0.32( 83) 0.41(59) 0.56(16)

104 Sobol' 0.24(19) 0.07(14) 0.18(56) 0.18(11) 0.41(54) 0.30( 97) 0.33(99) 0.59(45)
Jansen 0.24(19) 0.07(14) 0.18(30) 0.18(08) 0.41(36) 0.30( 99) 0.33(97) 0.59(50)

3 � 104 Sobol' 0.24(19) 0.07(14) 0.18(61) 0.18(15) 0.41(51) 0.30( 82) 0.34(13) 0.59(53)
Jansen 0.24(19) 0.07(14) 0.18(75) 0.18(30) 0.41(59) 0.30( 81) 0.34(08) 0.59(55)
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Table 1.10: An example of the construction of two independent QMC samplin gs with sample
size M = 10 and number of input variables n = 3. Three input variables are independently

and uniformly distributed in the real range [0, 1].

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

0:09375 0 :46875 0 :84375 0:40625 0 :28125 0 :34375
0:59375 0 :96875 0 :34375 0:90625 0 :78125 0 :84375
0:84375 0 :21875 0 :09375 0:15625 0 :53125 0 :09375
0:34375 0 :71875 0 :59375 0:65625 0 :03125 0 :59375
0:46875 0 :09375 0 :46875 0:28125 0 :65625 0 :71875
0:96875 0 :59375 0 :96875 0:78125 0 :15625 0 :21875
0:71875 0 :34375 0 :71875 0:03125 0 :40625 0 :96875
0:21875 0 :84375 0 :21875 0:53125 0 :90625 0 :46875
0:15625 0 :15625 0 :53125 0:84375 0 :84375 0 :40625
0:65625 0 :65625 0 :03125 0:34375 0 :34375 0 :90625

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

;

A =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

0:09375 0 :46875 0 :84375
0:59375 0 :96875 0 :34375
0:84375 0 :21875 0 :09375
0:34375 0 :71875 0 :59375
0:46875 0 :09375 0 :46875
0:96875 0 :59375 0 :96875
0:71875 0 :34375 0 :71875
0:21875 0 :84375 0 :21875
0:15625 0 :15625 0 :53125
0:65625 0 :65625 0 :03125

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

: B =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

0:40625 0 :28125 0 :34375
0:90625 0 :78125 0 :84375
0:15625 0 :53125 0 :09375
0:65625 0 :03125 0 :59375
0:28125 0 :65625 0 :71875
0:78125 0 :15625 0 :21875
0:03125 0 :40625 0 :96875
0:53125 0 :90625 0 :46875
0:84375 0 :84375 0 :40625
0:34375 0 :34375 0 :90625

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

:



Chapter 2

The analytic analysis for models

with independent input variables

Any operations that we perform on a model response dependent upon a number of in-

put variables of uncertainty require us to identify the response uncertainty based on the

uncertainty in input variables. The propagation of variance, characterising the e�ect of

input uncertainty on the uncertainty of model response, constitutes the essential ingre-

dient of uncertainty and sensitivity analysis of complex systems. In the present chapter,

an analytic formula is derived by using Taylor series to specify the variance propagation

from input variables to the model response in the absence of input correlations. With

the formula, we can exactly calculate the uncertainty of model response. Furthermore,

it also allows one to quantify the partial variance contributions of di�e rent orders from

input variables to the output one, whereby input variables can be ranked according to

their importance in explaining the uncertainty of the output variabl e.

2.1 Taylor series

The concept of a Taylor series was formulated by a Scottish mathematician James Gre-

gory and formally introduced by an English mathematician Brook Taylor in 1715. In

mathematics, a Taylor series is a representation of a function as an in�nite sum of terms

that are evaluated from the values of the function's derivatives at a single point [212].

In general, a function can be approximated as the sum of a �nite number ofterms con-

stituting of function's derivatives of di�erent orders by using T aylor series of neglecting

higher-order terms.

48
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Taylor series is widely used for the expansion of functions only dependent upon one

single variable. Regarding a general univariate function of the formy = f (x), its Taylor

series at a pointx = a is given by

1X

i =0

f (i ) (a)
i !

(x � a) i ; (2.1)

wherei ! denotes the factorial ofi , and f (i ) (a) the i th derivative of f evaluated at point a.

The zeroth-order derivative of f is de�ned as f itself and 0!=1. If a = 0, the expansion is

known as a Maclaurin series, named after the Scottish mathematician Colin Maclaurin

who introduced extensive use of this special case of Taylor seriesin the 18th century

[213].

The Taylor series can also be generalised to functions of more than one input variable

[214]. For a real function of the form y = f (x ) with x = ( x1; x2; � � � ; xn )T labeling

the input vector of n-dimensional variables, its Taylor series at a speci�ed pointx =

(a1; a2; � � � ; an )T is represented as

1X

i 1=0

� � �
1X

i n =0

(x1 � a1) i 1 � � � (xn � an ) i n

i 1! � � � i n !

 
@i 1+ ��� + i n f

@xi 1
1 � � � @xi n

n

!

(a1; � � � ; an ): (2.2)

2.2 Variance propagation for univariate case

Beginning with the univariate function y = f (x), it can be expanded by the use of Taylor

series at the central point of x as

y = f (� ) +
1X

i =1

1
i !

 
di f
dxi

�
�
�
�
x= �

!

(x � � ) i ; (2.3)

in which � indicates the mathematical expectation of x. Taking the average of both

sides of Eq.(2.3) yields

E(y) = f (� ) +
1X

i =1

1
i !

 
di f
dxi

�
�
�
�
x= �

!

M i (x); (2.4)

where M i (x) is the i th central moment of variable x, given by

M i (x) =
Z

(x � � ) i P(x)dx: (2.5)
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P(x), as stated in Chapter 1, denotes the PDF ofx and characterises the epistemic

uncertainty in x. The variance of y, namely V (y), is de�ned in mathematics by

V (y) =
Z

y2P(x)dx � E 2(y): (2.6)

Substituting Eqs. (2.3) and (2.4) into Eq. ( 2.6) provides

V (y) =
Z "

f (� ) +
1X

i =1

1
i !

 
di f
dxi

�
�
�
�
x= �

!

(x � � ) i

#2

P(x)dx

�

"

f (� ) +
1X

i =1

1
i !

 
di f
dxi

�
�
�
�
x= �

!

M i (x)

#2

= f 2(� ) +
1X

i;j =1

1
i ! � j !

 
di f
dxi

�
�
�
�
x= �

�
dj f
dxj

�
�
�
�
x= �

! Z
(x � � ) i + j P(x)dx

+ 2 f (� )
1X

i =1

1
i !

 
di f
dxi

�
�
�
�
x= �

! Z
(x � � ) i P(x)dx � 2f (� )

1X

i =1

1
i !

 
di f
dxi

�
�
�
�
x= �

!

M i (x)

�
1X

i;j =1

1
i ! � j !

 
di f
dxi

�
�
�
�
x= �

�
dj f
dxj

�
�
�
�
x= �

!

M i (x)M j (x) � f 2(� )

=
1X

i;j =1

1
i ! � j !

 
di f
dxi

�
�
�
�
x= �

�
dj f
dxj

�
�
�
�
x= �

!

[M i + j (x) � M i (x)M j (x)] ;

(2.7)

which is equivalent to

V (y) =
1X

i;j =0

1
i ! � j !

 
di f
dxi

�
�
�
�
x= �

�
dj f
dxj

�
�
�
�
x= �

!

[M i + j (x) � M i (x)M j (x)] ; (2.8)

sinceM 0(x) = 1. This analytic expression mathematically explains the output vari ance

propagated from the uncertainty in input variable through the functional relationship

connecting y and x. Furthermore, it can also help identify the partial variance contri-

butions of di�erent orders of x, embodied by the derivatives of di�erent orders of f . If

one just considers the �rst-order variance contribution of x, Eq. (2.8) is then simpli�ed

as

V(y) �

 
df
dx

�
�
�
�
x= �

! 2

V(x); (2.9)

where M 1 = 0 and M 2 = V(x) have been used, andV(x) labels the variance of x.

Equation (2.9), called the general Taylor series expansion truncated to the �rst order, is

most widely used for the estimation of the uncertainty in y in terms of the uncertainty

in x. This approximation, however, is satisfactory for the uncertainty analysis of highly

nonlinear models only when the uncertainty in input variable is negligible [17], as stated
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in the �rst chapter.

To identify the partial variance contributions of di�erent orders fr om input x, a new

quantity of interest is proposed, labeled as R
v . It is de�ned as the ratio of V (y) con-

tributed by �rst 
 orders of uncertainty in x to its exact value:

R

v =

V
 (y)
VT (y)

; (2.10)

where V
 (y) is calculated with Eq. (2.8) under the condition i + j � 2
 and VT (y) the

theoretical value of V (y) obtained from the below integral:

VT (y) =
Z

y2P(x)dx � E 2(y);

=
Z

f 2(x)P(x)dx �
� Z

f (x)P(x)dx
� 2

:
(2.11)

The analytic formula previously deduced (Eq. (2.8)) speci�es the variance propagation

from input variable to the model output. With this formula, it is natu ral to quantify

the importance of partial variance contributions of di�erent orders from input x in the

estimation of uncertainty in output y. In the following, higher-order contributions of

input uncertainty to the uncertainty of output y are evaluated for highly nonlinear

models, by using the analytic formula. Two widely discussed distribution laws: uniform

distribution and normal distribution, as examples, specify the uncertainty in input x.

2.2.1 Uniform distribution

We �rst suppose x is uniformly distributed. Its PDF is given by

P(x) =

8
>><

>>:

0; x < x 0;
1

xm � x0
; x0 � x � xm ;

0; x > x m :

(2.12)

Uniform distribution provides the mathematical expectation of x: � = xm + x0
2 and its

central moments:

M k (x) =

(
0; k is odd;
3k= 2

k+1 � k ; k is even;
(2.13)

wherek is a positive integer; � labels the standard deviation ofx; x0 and xm denote the

lower and upper bounds ofx, respectively. Detailed derivation of M k (x) is presented in

Appendix A. Inserting the expression of central moments (Eq. (2.13)) into Eq. ( 2.8)
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(a) Distributions for power-law function
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(b) Distributions for exponential function

Figure 2.1: Distributions of the observation R 

v with di�erent parameters for power-law

function: y = x � (panel (a)) and exponential function: y = e�x (panel (b)) by assuming input
variable is uniformly distributed; To the left in both panels is th e distribution of R 


v versus the
order index 
 for two kinds of nonlinear relationship connecting y and x with constant values
of parameter � ; to the middle is the dependence of R


v on the parameter � in considering
di�erent order contributions of uncertainty in x; to the right is the association of R 


v with the
distribution parameter of variable x by setting � = 4 for both panels. For a function with
speci�ed parameter � , the observation R 


v only depends upon the ratio of � to � (power-law
function) or � (exponential function) for each speci�ed 
 . In the left and middle plots, �=� = 2

in panel (a) and � 2 = 0 :5 in panel (b).

yields

V (y) =
1X

i =1

1X

j = i
j = j +2

Cij

 
di f
dxi

�
�
�
�
x= �

�
dj f
dxj

�
�
�
�
x= �

!

� i + j ; (2.14)

where j is summed with an increment of 2 andCij is de�ned as follows.

If i = j

Cij =

8
><

>:

3( i + j ) =2

(i + j +1) �i !�j ! ; i and j are odd;

3( i + j ) =2 �i �j
( i + j +1) �(i +1)! �(j +1)! ; i and j are even:

(2.15)

Else

Cij =

8
><

>:

2�3( i + j ) =2

(i + j +1) �i !�j ! ; i and j are odd;

2�3( i + j ) =2 �i �j
( i + j +1) �(i +1)! �(j +1)! ; i and j are even:

(2.16)

The underlying results of R

v are displayed in Fig. 2.1, for two widely discussed nonlinear

functions: power-law function and exponential function. It is noticed that R

v will be

close to one while
 is large enough for both kinds of functions with di�erent parameters,

see left plots in both panels.
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By inserting the functions under discussion: y = x � and y = e�x , equation (2.14) can

be separately updated by

1X

i =1

1X

j = i
j = j +2

Cij (� !)2

(� � i )! � (� � j )!
� 2� (

�
�

) i + j ; (2.17)

and
1X

i =1

1X

j = i
j = j +2

e2�� Cij (�� ) i + j ; (2.18)

which demonstrate that, for speci�ed 
 (thereby both i and j are speci�ed) and � , the

contribution of uncertainty in input x to the observation R

v is embodied in the ratio

of � to � for power-law relationships connectingy and x and in � for exponential rela-

tionships. In Fig. 2.1, middle plots of both panels display the distribution of R

v versus

exponent � under speci�ed �=� (for power-law function) and �xed � (for exponential

function), by considering di�erent order contributions of uncert ainty in x. Right ones

illustrate the dependence of R

v on �=� (1=� ) for power-law function (exponential func-

tion) by, particularly, setting � = 4. Regarding power-law function, 
 should be large

for large j� � 1j if �=� is constant, or for small �=� if � is constant, in order to make

R

v more closer to 1, i.e., to make the estimated variance in model output more closer

to its exact value. For example, the contribution of uncertainty in x should be consid-

ered until up to the 6th order (to ensure R

v > 0:98) in regions of � < 0:1 and � > 8.

For the exponential relationship connecting y and x, R

v is symmetric with respect to

� = 0. The contributions of higher orders of input uncertainty are non-ignorable when

the functional form deviates from linear law and also� is non-negligible. The statement

is visually veri�ed that the original approximation presented in Eq. (2.9), by only con-

sidering the contribution of the �rst order of input uncertainty, c an successfully estimate

the uncertainty in output variable only when the input uncertainty is negligible or the

model under discussion is almost linear. The contributions of higherorder(
 � 2) of

input uncertainty, however, are non-ignorable for models behavingnon-linearly in the

neighbourhood of input variable when� (for the exponential association connecting in-

put and output variables) or �=� (for the power-law association connecting input and

output variables) is non-negligible.

2.2.2 Normal distribution

Optionally, specify the uncertainty in x by normal (Gaussian) distribution. Its PDF is

given by

P(xj�; � ) =
1

�
p

2�
e� ( x � � ) 2

2� 2 ; x 2 (�1 ; + 1 ); (2.19)
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(a) Distributions for power-law function
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(b) Distributions for exponential function

Figure 2.2: Distributions of the observation R 

v versus di�erent parameters for power-law

function: y = x � (panel (a)) and exponential function: y = e�x (panel (b)) by assuming input
variable is normally distributed; To the left in both panels is th e distribution of R 


v with order
index 
 for two kinds of functional form connecting y and x, by considering di�erent values
of parameter � ; to the middle is the association of R 


v with parameter � under considering
di�erent order contributions of uncertainty in x; to the right is the dependence of R


v upon
the distribution parameter of variable x by setting � = 5 in panel ( a) and � = 1 in panel ( b),
respectively. For a function with speci�ed � , the observation R 


v correlates with the ratio of
� to � (power-law function) or with � (exponential function) for each �xed 
 . In the left and

middle plots, �=� = 2 in panel ( a) and � = 1 in panel ( b).

which provides

M k (x) =

(
0; k is odd;

� k (k � 1)!!; k is even;
(2.20)

where (?)!! is the double factorial with de�nition given by

(?)!! =

8
>><

>>:

? � (? � 2) � (? � 4) � � � 5 � 3 � 1; ? > 0 odd;

? � (? � 2) � (? � 4) � � � 6 � 4 � 2; ? > 0 even;

1; ? = � 1; 0:

(2.21)

Associations of the observation R

v with order index 
 , exponent parameter � , as well

as the input uncertainty that is speci�ed by � and � , are presented in Fig. 2.2. Panel

(a) illustrates the data for the power-law relationship connecting y and x. Panel (b)

displays the results for the exponential relationship. The observation R 

v will be close

to one when
 is large enough for each constant� , see left plots in both panels. We can

notice from the middle plots that the contributions of higher orders of input uncertainty

should be considered for highly nonlinear functions. Right plots in both panels suggest

that R 

v of 
 = 1 can reach 1 only when the ratio of � to � is very large for power-law

function (y = x5 as an example) or� is very small for exponential function (y = ex as

an example). Typically, when the input variable is normally distrib uted, parameter �
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Figure 2.3: Results associated with the observation R

v for exponential relationship connect-

ing y and x: y = e�x by assuming input x is uniformly and normally distributed, respectively.
To the left is the distribution of R 


v versus order index 
 by keeping � = � = 1; To the middle
denotes the dependence of R
v upon parameter � in �xing 
 = � = 1; To the right is the

correlation between R

v and � by setting 
 = � = 1.

of power-law function should be a positive integer to enable the meanand variance of

output y calculable.

To understand the in
uence of di�erent distribution laws speci fying the uncertainty in

input variable on the estimation of output variance, a comparison of uniformand normal

distributions is provided for the observation R

v by keeping both � and � the same for

two kinds of law, see Fig.2.3. The exponential relationship connectingy and x: y = e�x ,

as an example, is discussed here. Results suggest that, when both� and � are speci�ed,

uniformly distributed input variable will drive the evaluated out put uncertainty more

close to its exact value, compared to normally distributed one, in considering variance

contributions of the same order.

2.3 Generalisation of the analytic formula

The analytic formula Eq. ( 2.8) for variance propagation is valid only for the model of

a single input variable. However, in mathematical modeling, the output quantity often

depends upon two or more input variables of uncertainty. In the following, the analytic

formula is generalised to the general case of more than one input variable.Recall the

real model ofn independent input variables of the form

y = f (x ) = f (x1; x2; � � � ; xn ): (2.22)
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By the use of multi-variate Taylor series, the model responsey can be expanded at the

central point ( f � g) = ( � 1; � 2; � � � ; � n ) of input vector as

y = f (f � g) +
nX

t=1

1X

i =1

(x t � � t ) i

i !
(
@i f
@xit

)( f � g) +
nX

t;s=1
t<s

1X

i t ;i s =1

(x t � � t ) i t (xs � � s) i s

i t ! � i s!

� (
@i t + i s f

@xi t
t @xi s

s
)( f � g) + � � � +

1X

i 1 ;��� ;i n =1

(x1 � � 1) i 1 � � � (xn � � n ) i n

i 1! � � � i n !
(

@i 1+ ��� + i n f

@xi 1
1 � � � @xi n

n
)( f � g);

(2.23)

where � i denotes the mathematical expectation of input x i , as before. Reviewing the

mathematical de�nition of variance, V (y) is analogously calculated as

V (y) =
1X

i 1 ��� i n =0
j 1 ��� j n =0

F(x1 ) i 1 j 1 ��� (xn ) i n j n

A(i 1; � � � ; i n ; j 1; � � � ; j n )

 
@i 1+ ��� + i n f

@xi 1
1 � � � @xi n

n
�

@j 1+ ��� + j n f

@xj 1
1 � � � @xj n

n

!

(f � g); (2.24)

with

A(� � � ) = i 1! � � � i n ! � j 1! � � � j n !; (2.25)

and

F(x1 ) i 1 j 1 ��� (xn ) i n j n = M i 1+ j 1 (x1) � � � M i n + j n (xn ) � M i 1 (x1)M j 1 (x1) � � � M i n (xn )M j n (xn ):

(2.26)

Equation (2.24) speci�es the variance propagation from input variables to the output

one for a general model, by assuming input variables are statistically independent of

each other.

2.4 Applications to the analysis of complex systems

The power grid system and economic system are considered in this section as examples

of the application of our generalised analytic formula, Eq. (2.24), in the uncertainty and

sensitivity analysis of complex systems. These two systems playextremely important

roles in modern society. Their reliability analyses have attracted many researchers'

interest.

Concerning the topic of sensitivity analysis, someone is of most interest to the sensitivity

indices. They allow one to quantitatively interpret the importanc e of individual factors

and of their interaction e�ects in the estimation of model response. Recalling the analytic

formula of variance propagation in general models (see Eq. (2.24)), partial variance
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contributions of di�erent dimensionality in Eq. ( 1.33) can be computed through

Vt =
1X

i;j =0

F(x t ) ij

A(i; j )
(
@i f
@xit

�
@j f

@xjt
)( f � g); (2.27)

Vts =
1X

i;j;k;l =0

F(x t ) ij (xs )kl

A(i; j; k; l )

 
@i + k f

@xit @xks
�

@j + l f

@xjt @xls

!

(f � g) � Vt � Vs; (2.28)

Vtsu =
1X

i;j;k;l;p;q =0

F(x t ) ij (xs )kl (xu )pq

A(i; j; k; l; p; q )

 
@i + k+ pf

@xit @xks@xpu
�

@j + l+ qf

@xjt @xls@xqu

!

(f � g)

� Vt � Vs � Vu � Vts � Vtu � Vsu; (2.29)

...

The sensitivity indices of di�erent orders are then quanti�ed accordingly by

st =
Vt

V(y)
; sts =

Vts

V(y)
; stsu =

Vtsu

V(y)
; � � � ;

sT t = st +
nX

s=1; s6= t

sts +
nX

s;k=1; s>k ;s;k6= t

stsk + � � � : (2.30)

2.4.1 Power grid system

In our daily life, the main form of energy that we think of is the power from electricity.

Typically, a complex distribution system used for the transmission of electric power

is called the power grid. The electricity power grid is a physicalsystem that delivers

electricity from the place where it is generated to the site whereit is used. Consequently,

a power grid system can be segmented into three sections: electric power generation,

supply, and transmission, which work together to meet the basic electricity demand of

ordinary people. Uncertainty and reliability analysis of the power grid system has been

carried out since 1994 by using MC methods [215]. In general, the assessment of power

grid system reliability is divided into two aspects: system adequacy and system security

which are, respectively, related to the steady-state operation of system and to the ability

of system to withstand sudden natural disturbances or to avoid attack.

Facing the increased global energy consumption, electric utility companies are striving to

generate wind power to meet the growing electricity demand. Windpower, as a typical

example of renewable energy sources, is plentiful, widely distributed, clean, produces

no greenhouse gas emissions during operation, consumes no water, and uses little land

[216]. In this part, a framework on the uncertainty and sensitivity analys is of the actual

wind power output, denoted asPd, is established by using the above established analytic

method.
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In theory, the wind output power of the wind turbine generator is always the same

when the wind speed is speci�ed. In reality, however, the output power for a 
eet wind

turbine generator of the same type exhibits considerable variations even when they are

operating at the same wind speed [217, 218]. Consequently,Pd is often considered as a

random variable that is characterised by two parameters:x and " through a functional

relationship:

Pd(x) = f (x) + "; (2.31)

where x indicates the wind speed,f (x) the deterministic power output from a wind

turbine generator, which acts as a function of the wind speed:

f (x) =

8
>>>>>>><

>>>>>>>:

0; 0 � x � vci;

(A + Bx + cx2) � Pr ; vci � x � vr ;

Pr ; vr � x � vco;

0; x � vco;

(2.32)

and " the variation of the power output, obeying normal distribution with � = 0 and

� = 0 :1Pr [219{ 222]. vci is called the cut-in wind speed at which the turbine �rst starts

to rotate and generate power,vr the rated wind speed at which the rated powerPr (the

power output limit that the electrical generator is capable of) is reached, and vco the

cut-out wind speed at which the wind turbine generator is shut downfor safety reasons,

as shown in Fig. 2.4. Following the reference [222], vci = 3ms� 1 and vr = 12ms� 1. The

constants A, B , and C are determined byvci and vr through equations [219]

A =
1

(vci � vr )2

"

vci(vci + vr ) � 4vcivr

�
vci + vr

2vr

� 3
#

; (2.33)

B =
1

(vci � vr )2

"

4(vci + vr )
�

vci + vr

2vr

� 3

� (3vci + vr )

#

; (2.34)

C =
1

(vci � vr )2

"

2 � 4
�

vci + vr

2vr

� 3
#

: (2.35)

Substituting the values of vci and vr , we get A = 0 :1215,B = � 0:0784 andC = 0 :0126.

A systematic framework on reliability evaluation of Pd is performed by limiting x to the

closed interval [vci, vr ]. With Eq. ( 2.32), the actual power output can be updated as

Pd(x) = ( A + Bx + cx2)Pr + ": (2.36)
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Figure 2.4: Typical wind turbine power output with steady wind speed.
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Figure 2.5: The probability density distribution of wind speed for di�erent combinations of
parameters c and k.

Table 2.1: Parameters associated with the uncertainty in wind speed x.

� x V (x) M 3(x) M 4(x)

c = 4, k = 2 4.79 1.97 3.03 16.09
c = 4, k = 4 4.1 0.5 0.21 0.73
c = 10, k = 2 7.47 6.03 0.37 69.63

In the power grid system, the uncertainty of the wind speedx is often represented by a

Weibull distribution of two parameters as

P(x) =
k
c

(
x
c

)k� 1e� ( x
c )k

; (k > 0; x > 0; c > 1); (2.37)

where c and k are the scale parameter and the shape parameter, respectively, [223].

Three di�erent combinations of c and k are considered here. The underlying proba-

bility density function of the wind speed is displayed in Fig. 2.5. In our analysis, the

wind speedx is limited to the real range [3m/s, 12m/s]. Parameters characterising the

uncertainty in x are displayed in table2.1.
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Table 2.2: Analysis results of the power grid system in considering di�eren t values of 
 (the
highest order of Taylor expansion considered in our method).


 V (Pd )=P2
r sx s" sx"

c = 4, k = 2
1 0.01(35) 0.26(07) 0.73(93) 0
2 0.01(87) 0.46(51) 0.53(49) 0

c = 4, k = 4
1 0.01(03) 0.03(01) 0.96(99) 0
2 0.01(05) 0.04(93) 0.95(07) 0

c = 10, k = 2
1 0.08(28) 0.87(92) 0.12(08) 0
2 0.08(91) 0.88(77) 0.11(23) 0
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Figure 2.6: A comparison of our method with Sobol's one. Sobol's values are obtained by
random sampling-based strategy (sample size: M = 10000), with error bars indicating the

standard deviation of 100 runs.

The underlying results of uncertainty and sensitivity analysis are presented in table2.2,

by considering di�erent values of the order index 
 . Analysis results of 
 = 2 also

represent the exact values of our method as the highest order is two inthe functional

form. The obtained values suggest that, the uncertainty of model output Pd and its

sensitivity with respect to individual input variables robustl y depend upon the values

of c and k. c and k work together to control the uncertainty in input x, thus directly

in
uence the analysis results. For example, in the �rst case ofc = 4 and k = 2, the

second-order variance contribution ofx plays a robust role in establishing the uncertainty

in output Pd. While in the second case ofc = 4 and k = 4, and also the third one of

c = 10 and k = 2, the second-order variance contribution of x is ignorable. sx" = 0

indicates a vanishing interaction e�ect associated with x and " . This is because the

combination term between input variables is absent in the form of model function, see

Eq. (2.36). A comparison of our method with Sobol's one is also presented in Fig.2.6.

The exact values obtained by our method are in good agreement with those provided

by Sobol's method. This implies our method is equivalent to Sobol'sone in the analysis

of the model under consideration.
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2.4.2 Economic system

Regarding the economic system, one of the oldest classic production scheduling models

is the EOQ model. This model was developed by Harris in 1913 [224]. It aims at

determining the economic order quantity that minimizes the total system cost. Some

analyses about the uncertainty and sensitivity of this model have been proposed in

Refs.[19, 168, 225]. However, the discussion of its reliability to each input parameter,

especially to the interaction e�ects between di�erent parameters, is still limited.

This subsection builds an intuitive insight into the uncertaint y and reliability of EOQ

model in terms of the analytic formula deduced before. In EOQ model, three types of

cost are accounted: purchase cost, holding cost and ordering cost. The purchase cost

is the variable cost of goods, equaling the product of the price of the units themselves,

denoted asP, and the annual demand quantity, denoted asD. The price of the units

themselves is assumed to be �xed, regardless of the number of demandquantity. The

holding cost indicates the cost of holding units in inventory (management's cost of capital

invested in the units, the cost of the space consumed by the units,taxes of insurance,

etc). It is expressed as the product of the cost of holding unit, denoted as h, and the

average quantity in inventory (between fully replenished and empty), denoted asQ=2. Q

is the order quantity. The ordering cost represents all the costs associated with placing

orders excluding the purchase cost. Suppose each order has a �xed costK . The number

of orders we need to make per year isD=Q. Hence the ordering cost isK � D=Q. The

total system cost in EOQ model can then be represented as

TC = PD +
DK
Q

+
hQ
2

: (2.38)

EOQ is the order quantity that minimizes the total system cost. It is easy to obtain the

value of Q which determines the minimum point of TC, that is

Q� =

r
2DK

h
: (2.39)

The uncertainty of Q� , as well as its sensitivity with respect to independent input vari-

ablesD , K , h and to their interactions, is quanti�ed in this part by using our analy tic

method.
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Table 2.3: Analysis results for the EOQ model while considering di�erent va lues of 
 .


 = V (Q� ) sD sK sh sDK sDh sKh sDKh

1 2119 0.385 0.307 0.307 0 0 0 0
2 2192 0.377 0.300 0.314 -0.002 0.006 0.005 0

Input variables are assumed to be independently and uniformly distributed in real ranges

as follows [225]:

900� D � 1600 unit per year;

$75� K � $125 per order;

$1:5 � h � $2:5 per order and per year;

(2.40)

which yields

� D = 1250; � K = 100; � h = 2 ;

V (D) = 40833:333; V (K ) = 208:333; V (h) = 0 :083: (2.41)

Substituting the functional form and distribution laws of model in puts into Eq. ( 2.11)

gives the exact value of output uncertainty: V (Q� ) = 2195. The exact values of sensi-

tivity analysis are determined as

sD = 0 :377; sK = 0 :300; sh = 0 :314;

sDK = � 0:002; sDh = 0 :006; sKh = 0 :005; sDKh = 0 :000: (2.42)

Sensitivity analysis results are listed in table2.3 for di�erent values of 
 . While 
 = 2,

the analysis results are almost equal to the exact values. This suggeststhat the contri-

butions of input uncertainty of third- or higher-order can be neglected and the analysis

results of 
 = 2 can truly represent the reliability of EOQ model. Results state that

all three parameters are important in establishing the uncertainty in model response.

Furthermore, the interaction e�ect between each two parameters also contributes a small

part to the uncertainty in response Q� . sDK = � 0:002 says that the interaction e�ect

between D and K will result in a small decrease in the variance of model response.

A comparison of our analysis results with Sobol's values is shown in Fig.2.7. The

convergent results of our method are almost the same as Sobol's numbers.
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Figure 2.7: A comparison of our method with Sobol's one. Sobol's values are obtained by
random sampling-based strategy (sample size: M = 10000), with error bars indicating the

standard deviation of 100 runs.



Chapter 3

The analytic analysis for models

with correlated input variables

Over the past few decades, the uncertainty and sensitivity analysis of models is mainly

performed by assuming that input variables are independent of each other. A problem

is often arisen in the development of the methodology for sensitivityanalysis: how to

interpret the sensitivity measures when input variables are non-independent? Recently,

the interest in uncertainty and sensitivity analysis is increasing in the presence of corre-

lated input variables, facing the existence of correlated factors in practical applications.

In this chapter, we focus on the extension of the analytic framework established in the

previous chapter. The extended framework allows one to understand,from a theoretical

point of view, the variance propagation from correlated input variables to the model

response and also the sensitivity of model response with respect to input independence

and correlations.

3.1 Variance propagation

Analogously, consider a general model of the formy = f (x ) with x = ( x1; x2; � � � ; xn )T

labeling the input vector of n-dimensional variables. Recalling the multi-variate Taylor

series at the central point of input vector, presented in Eq. (2.23), the mathematical

expectation of the model response can be represented in the presence of input correlations

64
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as

E(y) = f (f � g) +
nX

t=1

1X

i t =1

M i t (x t )
A(i t )

(
@i t f

@xi t
t

)( f � g) +
nX

t;s=1
t<s

1X

i t ;i s =1

M i t ;i s (x i t
t ; x i s

s )
A(i t ; i s)

(
@i t + i s f

@xi t
t @xi s

s
)( f � g)

+ � � � +
1X

i 1 ;��� ;i n =1

M i 1 ;��� ;i n (x i 1
1 ; � � � ; x i n

n )
A(i 1; � � � ; i n )

(
@i 1+ ��� + i n f

@xi 1
1 � � � @xi n

n
)( f � g)

=
1X

i 1 ;��� ;i n =0

M i 1 ;��� ;i n (x i 1
1 ; � � � ; x i n

n )
A(i 1; � � � ; i n )

(
@i 1+ ��� + i n f

@xi 1
1 � � � @xi n

n
)( f � g);

(3.1)

whereA(� � � ) is de�ned by Eq. ( 2.25), f � g the central point in input space, and M i 1 ;��� ;i n

the multivariate central moment with n di�erent variables. Mathematically, the multi-

variate central moment is de�ned as

M i 1 ;��� ;i n (x i 1
1 ; � � � ; x i n

n ) = E
�
(x1 � � 1) i 1 � � � (xn � � n ) i n

�

=
Z

(x1 � � 1) i 1 � � � (xn � � n ) i n P(x )dx ;
(3.2)

with P(x ) indicating the joint PDF of x . In the absence of input correlations,P(x ) is

simpli�ed as

P(x ) =
nY

i =1

Pi ; (3.3)

wherePi denotes the PDF of input x i , as before. In the existence of correlations among

input variables, the variance of model response is derived by the use of Eqs. (2.23) and

(3.1) as

V (y) =
1X

i 1 ;��� ;i n =0
j 1 ;��� ;j n =0

1
A(i 1; � � � ; i n ; j 1; � � � ; j n )

 
@i 1+ ��� + i n f

@xi 1
1 � � � @xi n

n
�

@j 1+ ��� + j n f

@xj 1
1 � � � @xj n

n

!

(f � g)

�
h
M i 1+ j 1 ;��� ;i n + j n (x i 1+ j 1

1 ; � � � ; x i n + j n
n ) � M i 1 ;��� ;i n (x i 1

1 ; � � � ; x i n
n )M j 1 ;��� ;j n (x j 1

1 ; � � � ; x j n
n )

i
:

(3.4)

Apparently, in the absence of input correlations, the above equation iscoincident with

Eq. (2.24) that explains the variance propagation from independent input variables to

the model response.

The concept of complete variance decomposition, presented in Eq. (1.33), is proposed

by assuming input independence. Its form is also valid for the correlated case. In

the presence of correlated input variables, however, partial variance contributions with

dimensionality larger than 1 are contributed not only by the coupling it ems presented in

the functional form of the model under discussion (for independentcase), but also by the
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input correlations. Regarding the situation of correlated inputs, the impact of a single

variable can be represented as the sum of contributions provided by its correlations with

the remaining variables and by its independence, respectively.Based on the description,

each fractional variance contribution included in the original variance decomposition can

be divided into three sections: independent variance contribution (labeled by superscript

U), correlated variance contribution (labeled by superscript C), and coupling variance

contribution (labeled by superscript UC). Mathematically, the outp ut variance can be

decomposed in the presence of input correlations as

V (y) =
nX

i =1

(V U
i + V C

i + V UC
i )+

nX

i;j =1
i<j

(V Up
ij + V Cp

ij + V UCp
ij )+ � � � + ( V Uq

12��� n + V Cq
12��� n + V UCq

12��� n );

(3.5)

where p 2 f i; j g, q 2 f 1; 2; � � � ; ng, and

Vi = V U
i + V C

i + V UC
i ; (3.6)

Vij = V Up
ij + V Cp

ij + V UCp
ij ; (3.7)

...

V12��� n = V Uq
12��� n + V Cq

12��� n + V UCq
12��� n : (3.8)

V U
i (V C

i ) is the variance contribution produced by the independent (correlated) section

of x i alone, V U i
ij (V Ci

ij ) the contribution of the interaction between x j and the inde-

pendent (correlated) section ofx i , and so on up to V Uq
12��� n (V Cq

12��� n ) the contribution of

the interaction associated with the independent (correlated) section of xq and the rest

variables. Coupling variance contributions are produced by the coupling e�ects between

independent and correlated sections for individual input variables.

3.2 Estimation of sensitivity indices

Working within a probabilistic framework, variance-based sensitivity measures are de-

�ned on the bases of partial contributions presented in the variance decomposition of

model response. In the determination of each partial variance contribution, higher-order

covariance embodied in the analytic formula Eq. (3.4) should be concerned for nonlinear

models. Consequently, it is necessary to specify the correlatedand independent sections

of single input variables for the con�rmation of fractions contained in Eq. (3.5), whereby

the importance of the independent section, correlated section and their coupling e�ect

can be quanti�ed for each individual input variable, in establishing the uncertainty of

model response.
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3.2.1 Generation of correlated variables

In probabilistic models the dependency between input variablesis often represented by

the CC that is de�ned as

� (x i ; x j ) =
E [(x i � � i )(x j � � j )]

� i � j
; (3.9)

whereE[� ] is the expectation operation by returning the average value of� . Eq. (3.9) is

equivalent to Eq. (1.65) which de�nes the CC between an arbitrary input variable and

the model response. For the sake of simplicity in writing,� (x i ; x j ) is simpli�ed as � ij in

the following discussion.

In the presence of correlations, an arbitrary variable can be represented as the sum of a

correlated section and an independent section. Based on the description, we can rewrite

the input vector as

x = x C + x U (3.10)

= ( xC
1 ; xC

2 ; � � � ; xC
n )T + ( xU

1 ; xU
2 ; � � � ; xU

n )T : (3.11)

The correlated sectionsxC
i with i = 1 ; 2; � � � ; n indicate the correlations of x i with the

remaining variables. By using the linear correlation model (Eq. (3.9)), x C can be

generated as

x C = Ax ; (3.12)

where A is an n � n nonsymmetric hollow matrix (diagonal elements are all equal to

zero). The independent sectionsxU
i with i = 1 ; 2; � � � ; n denote the independence ofx i .

They are often represented by newly introduced random variables.x U can be expressed

as

x U = Cr ; (3.13)

where C is an n � n diagonal matrix and r = ( r1; r2; � � � ; rn )T an n-dimensional vector

of random variables. r must follow the same type distributions asx and also satisfy

� (r ) = C � 1(� � A� ); (3.14)

and

� (r ) = � ; (3.15)

in which, C � 1 is the inverse of matrix C , � (r ) = ( � (r1); � (r2); � � � ; � (rn ))T the mean

vector of newly introduced random variables,� = ( � 1; � 2; � � � ; � n )T the mean vector of

input variables, and similarly for � (r ) and � the vectors of standard deviations. Entries

in matrices A and C : f aij ; cii ; i; j = 1 ; 2; � � � ; ng are called coe�cients that specify the
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correlated and independent sections of input variables. They are determined by given

pairwise correlations through equations

aij =
� i

� j

2

6
6
41 �

X

k<l;
k;l 6= i

� 2
kl (1 �

X

h<q;
h>k ;h;q6= i;l

� 2
hq) + 2

X

k<l<h;
k;l;h 6= i

� kl � kh (� lh �
X

q6= i;l;h ;q>k

� lq � hq)

3

7
7
5

� 1

�

2

6
6
4� ij (1 �

X

k<l;
k;l 6= i;j

� 2
kl + 2

X

k<l<h;
k;l;h 6= i;j

� kl � kh � lh ) �
X

k6= i;j

� ik � jk (1 �
X

h<q;
h;q6= i;j;k

� 2
hq)

+
X

k<l;
k;l 6= i;j

(� ik � jl + � il � jk )( � kl �
X

h6= i;j;k;l

� kh � lh )

3

7
7
5 ; (3.16)

and

cii =

2

6
6
41 �

X

k<l;
k;l 6= i

� 2
kl (1 �

X

h<q;
h>k ;h;q6= i;l

� 2
hq) + 2

X

k<l<h;
k;l;h 6= i

� kl � kh (� lh �
X

q6= i;l;h ;q>k

� lq � hq)

3

7
7
5

� 1=2

�

2

6
6
41 �

X

k<l

� 2
kl (1 �

X

h<q;
h>k ;h;q6= l

� 2
hq) + 2

X

k<l<h

� kl � kh (� lh �
X

q6= l;h ;q>k

� lq � hq)

3

7
7
5

1
2

; (3.17)

where the �fth- and higher-order terms are neglected. The above expressions, derived

according to the analysis of simple cases as shown in AppendixB, constitute essen-

tial ingredients of quantifying sensitivity measures associated with correlated section,

independent section, and their coupling e�ect, for each single input variable.

If two variables, say x i and x j , simultaneously correlate with a third variable, say xk ,

the correlation betweenx i and x j is then not arbitrary assigned. With given correlation

coe�cients � ik and � jk , x i and x j then can be formulated based onxk as

x i = � ik
� i

� k
xk +

q
1 � � 2

ik ui ; (3.18)

and

x j = � jk
� j

� k
xk +

q
1 � � 2

jk uj ; (3.19)

where ui and uj are newly introduced variables that are independent ofxk . Inserting

the above formulations into Eq. (3.9) yields

� ij = � ik � jk +
q

(1 � � 2
ik )(1 � � 2

jk )� (ui ; uj ): (3.20)
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In statistics, � (ui ; uj ), labeling the linear correlation between variablesui and uj , can be

as large as 1 (total positive correlation) and as small as -1 (total negative correlation).

This implies the correlation � ij betweenx i and x j will be limited to the range

h
� ik � jk �

q
(1 � � 2

ik )(1 � � 2
jk ); � ik � jk +

q
(1 � � 2

ik )(1 � � 2
jk )

i
(3.21)

when the correlations of them with a third variable xk are speci�ed. The relationship

� ij = � ik � jk holds i� the newly introduced variables ui and uj are set to be independent

of each other.

3.2.2 Sensitivity indices

With help of the analytic formula ( 3.4) that explains the variance propagation in the

presence of input correlations, the partial variance contributions of di�erent dimension-

ality can be calculated by

Vi =
1X

k;l =0

1
k! � l !

(
@k f
xk

i
�

@l f
@xli

)( f � g) � [M k+ l (x i ) � M k (x i )M l (x i )] ; (3.22)

Vij =
1X

k;l;p;q=0

1
k! � l ! � p! � q!

(
@k+ pf
xk

i xp
j

�
@l+ qf
@xli x

q
j
)( f � g)

h
M k+ l;p+ q(xk+ l

i ; xp+ q
j )�

M k;p(xk
i ; xp

j )M l;q(x l
i ; xq

j )
i

� Vi � Vj ; (3.23)

...

where multivariate central moments with di�erent variables are inv olved. The (k; l )

central moment with any two di�erent variables, say x i and x j , is de�ned as (simpli�ed

from Eq. (3.2))

M k;l (xk
i ; x l

j ) = E
h
(x i � � i )k (x j � � j ) l

i
: (3.24)

It can be derived analytically by formulating one variable on the basis of another:

x i = � ij
� i

� j
x j +

q
1 � � 2

ij ui ; (3.25)

or

x j = � ij
� j

� i
x i +

q
1 � � 2

ij uj ; (3.26)

with ui (uj ) independent of x j (x i ) and taking the same standard deviation asx i (x j ). If

k 6= l, the above two formulating strategies are equivalent in determining M k;l (xk
i ; x l

j )

only when x i and x j are normally distributed and hold the same standard deviation.
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The kth-order central moment of x is given by

M k1 ;��� ;km (x ) = E

"
mY

i =1

(x i � � i )k i

#

; (3.27)

where k1 + k2 + � � � + km = k. For normal distribution, we have

M k1 ;��� ;km (x � � ) =

(
0; k is odd;
P

(� ij � lh � � � ); k is even;
(3.28)

where the sum is taken over all allocations of the setf 1; 2; � � � ; kg into k=2 pairs, and � ij

the covariance ofx i and x j . For example, for the fourth-order central moment (k = 4)

with four di�erent variables (calculated in detail in Appendix D), one sums the products

of any two covariances:

E

"
4Y

i =1

(x i � � i )

#

= � 12� 34 + � 13� 24 + � 14� 23: (3.29)

This yields (k � 1)!! (double factorial) terms in the sum. When nonlinear terms of a

variable are contained in the central moments, like (x i � � i )k in Eq. (3.24), one can

expand it as the product of k variables and uses� ii = � 2
i . Consequently, for normally

distributed x i and x j with � i = � j , M k;l (xk
i ; x l

j ) is invariant in exchanging x i and x j ,

that is

M k;l (xk
i ; x l

j ) = M l;k (x l
i ; xk

j ): (3.30)

This property (invariant in exchanging any two variables) could go for any order central

moments with any number of di�erent variables that follow a normal dist ribution and

have the same standard deviation.

For uniformly distributed variables, however, the fourth-order central moment with four

di�erent variables is calculated as

E

"
4Y

i =1

(x i � � i )

#

= � 12� 34 + � 13� 24 + � 14� 23 �
6
5

� ; (3.31)

where � is a product of three covariances, dependent upon how to choose a variable

to be unformulated in the calculating process. For example, whenx2 is selected to be

unformulated, we will get

� = � 12� 23� 24: (3.32)

Furthermore, if one focuses on the correlated, independent and coupling e�ects contained

in a high-order covariance, see Eq. (3.24), x i (x j ) should be formulated on the bases of

all the remaining input parameters, as discussed before.
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The total contributions to the variance of model response, provided by the independence,

correlation, and their coupling e�ect are represented, for an arbitrary variable x i , as

V TU
i = V U

i +
nX

j 6= i

V U i
ij + � � � + V U i

12��� n ; (3.33)

V TC
i = V C

i +
nX

j 6= i

V Ci
ij + � � � + V Ci

12��� n ; (3.34)

V TUC
i = V UC

i +
nX

j 6= i

V UC i
ij + � � � + V UC i

12��� n : (3.35)

The sensitivity (or importance) measures can then be determined by

sU
i =

V U
i

V(y)
; sC

i =
V C

i

V(y)
; sUC

i =
V UC

i

V(y)
;

sTU
i =

V TU
i

V(y)
; sTC

i =
V TC

i

V(y)
; sTUC

i =
V TUC

i

V(y)
: (3.36)

The �rst three measures are called the main sensitivity indices which, separately, denote

the importance of the independent section, correlated section, and their coupling e�ect,

by neglecting the interaction e�ects among input parameters. The last three measures

are called the total sensitivity indices which denote the importance of each corresponding

part in considering the interaction e�ects of x i with the remaining inputs. Similar to

Sobol's indices, the main and total sensitivity indices are de�ned as

si =
Vi

V(y)
= sU

i + sC
i + sUC

i ; (3.37)

ST i =

0

@Vi +
X

j 6= i

Vij + � � �

1

A

,

V (y) = sTU
i + sTC

i + sTUC
i ; (3.38)

which evaluate the importance of individual input parameters x i before and after con-

sidering the interaction e�ects among di�erent input parameters, respectively.

With given correlation coe�cients between any two input parameters , our method allows

one to evaluate the importance of individual input parameters in the estimation of model

output in both the absence and presence of input correlations. The newly introduced

sensitivity indices also quantify the importance of input independence and correlations,

allowing one to determine whether or not the input correlations should be considered in

practice. Quite recently the original Sobol's sensitivity indices are generalised to deal

with correlated inputs, by using hierarchically orthogonal functional decomposition [226,

227]. Compared to the generalised Sobol's indices, our indices are easierto understand

and interpret.
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3.3 Numerical examples and a practical application

In this section, analytic polynomial models, including one purely additive and three

nonlinear ones, are taken as examples to illustrate the e�ectivenessand validation of our

established analytic framework. A practical application of the method is also proposed

to a deterministic HIV model. Ten involved parameters are then ranked according to

their importance in establishing the uncertainty of the basic reproduction number R0.

3.3.1 Additive linear model

In the �rst example a purely additive model is investigated, with functional form given

by

y = 2x1 + x2 + x3; (3.39)

where (x1; x2; x3) � N (� ; �) with mean vector � = (0 ; 0; 0)T and covariance matrix

� =

0

B
B
@

1 � 12 2� 13

� 12 1 2� 23

2� 13 2� 23 4

1

C
C
A : (3.40)

By the use of Eq. (3.4), we get the exact expression of the variance of model response:

V (y) = 9 + 4 � 12 + 8 � 13 + 4 � 23; (3.41)

which is constituted of the following fractional contributions of di� erent dimensionality:

V1 = 4 ; V2 = 1 ; V3 = 4 ; V12 = 4 � 12;

V13 = 8 � 13; V23 = 4 � 23; V123 = 0 : (3.42)

The vanishing nonlinear problem in the model function suggests the absence of coupling

variance contributions but the presence of independent and correlated ones:

V U
i = c2

ii Vi ; V U j
12 = 0 ; V Uk

13 = 0 ; V U l
23 = 0 ;

V C
i = (1 � c2

ii )Vi ; V Cj
12 = V12; V Ck

13 = V13; V Cl
23 = V23;

V U i
123 = V Ci

123 = 0 ; (3.43)
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Table 3.1: Uncertainty and sensitivity analysis results for linear addit ive model by assuming
di�erent correlations between input variables.

� V (y) x s i sU
i sC

i sUC
i sT i sTU

i sTC
i sTUC

i

� = 0 9
x1 0.444 0.444 0.0 0.0 0.444 0.444 0.0 0.0
x2 0.111 0.111 0.0 0.0 0.111 0.111 0.0 0.0
x3 0.444 0.444 0.0 0.0 0.444 0.444 0.0 0.0

� 12 = 0 :8 12.2
x1 0.328 0.118 0.210 0.0 0.590 0.118 0.472 0.0
x2 0.082 0.030 0.052 0.0 0.344 0.030 0.314 0.0
x3 0.328 0.328 0.0 0.0 0.328 0.328 0.0 0.0

� 12 = � 0:8 5.8
x1 0.690 0.248 0.442 0.0 0.138 0.248 -0.110 0.0
x2 0.172 0.062 0.110 0.0 -0.379 0.062 -0.441 0.0
x3 0.690 0.690 0.0 0.0 0.690 0.690 0.0 0.0

� 12 = 0 :8
17.8

x1 0.225 0.072 0.152 0.0 0.629 0.072 0.557 0.0
� 13 = 0 :5 x2 0.056 0.020 0.036 0.0 0.326 0.020 0.306 0.0
� 23 = 0 :4 x3 0.225 0.169 0.056 0.0 0.539 0.169 0.371 0.0

where i 2 f 1; 2; 3g, j 2 f 1; 2g, k 2 f 1; 3g, l 2 f 2; 3g, and cii , specifying the independence

of variable x i , are determined via Eq. (3.17) as

c11 = (1 � � 2
23) � 1=2(1 � � 2

12 � � 2
13 � � 2

23 + 2 � 12� 13� 23)1=2; (3.44)

c22 = (1 � � 2
13) � 1=2(1 � � 2

12 � � 2
13 � � 2

23 + 2 � 12� 13� 23)1=2; (3.45)

c33 = (1 � � 2
12) � 1=2(1 � � 2

12 � � 2
13 � � 2

23 + 2 � 12� 13� 23)1=2; (3.46)

in which f � 2
12; � 2

13; � 2
23g 6= 1.

The underlying sensitivity measures are provided in table3.1 under considering di�erent

correlations between input variables. Results indicate the vanishing sensitivity indices

associated with the coupling e�ect between input independenceand correlations. In the

absence of correlated input variables (� = 0), the main sensitivity indices sum up to one.

By introducing input correlations, however, this summation could be smaller than one

(with positive correlations) or larger than one (with negative correlations), contrary to

the sum of the total sensitivity indices. A negative sensitivity index explains a negative

partial variance contribution produced by the negative input correlat ion.

3.3.2 Nonlinear models

Trivariate model

In the second example a trivariate nonlinear model is considered, containing the linear,

quadratic, and interaction terms:

y = 2x1 + x2
2 + 4x2

1x2 + x1x3; (3.47)
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where (x1; x2; x3) � N (� ; �) with mean vector � = (0 ; 0; 0)T and covariance matrix

� =

0

B
B
@

1 � 12 � 13

� 12 1 � 23

� 13 � 23 1

1

C
C
A : (3.48)

The variance V(y) of model response can be similarly computed by the use of Eq. (3.4)

as

V (y) = 55 + 48 � 12 + 2 � 12� 23 + 192� 2
12 + � 2

13; (3.49)

which is generated by the partial variance contributions involving

V1 = 4 ; V2 = 2 ; V3 = 0 ;

V12 = 48(1 + 4 � 2
12 + � 12); V13 = 1 + � 2

13; V23 = 0 ;

V123 = 2 � 12� 23: (3.50)

The independent, correlated and coupling variance contributions divided from the main

variance contributions V1 and V2 are stated as

V U
1 = 4c2

11; V C
1 = 4(1 � c2

11); V UC
1 = 0 ;

V U
2 = 2c4

22; V C
2 = 2(1 � c2

22)2; V UC
2 = 4c2

22(1 � c2
22): (3.51)

Regarding the existent higher-order partial variance contributions, we have

V U1
12 = 48c4

11; V U2
12 = 48c2

22;

V C1
12 = 48(1 � c2

11)(1 � c2
11 + � 12 + 4 � 2

12); V C2
12 = 48(1 + 4 � 2

12 + � 12 � c2
22);

V UC1
12 = 48(2 + � 12 + 4 � 2

12 � 2c2
11)c2

11; V UC2
12 = 0 ;

V U i
13 = c2

ii ; V Ci
13 = 1 + � 2

13 � c2
ii ; V UC i

13 = 0 ;

V U j
123 = 0 ; V Cj

123 = 2 � 12� 23; V UC j
123 = 0 ; (3.52)

where i 2 f 1; 3g, j 2 f 1; 2; 3g and ci are determined with Eq. (3.17). A detailed

calculation process for the above items are presented in AppendixC. In table 3.2, the

exact sensitivity indices are listed, showing a dominated in
uence of the interaction

e�ect between x1 and x2 in the absence of input correlations. In the presence of input

correlations, the independent, correlated and coupling e�ects provided by x1 and x2 are

all signi�cant in establishing the uncertainty of model response. The convergence of our

analysis results with the order of Taylor expansion is also presentedin Fig. 3.1. 
 is

the highest-order of Taylor expansion that is considered in our method. Analysis results

are convergent at 
 = 3 (the highest-order of Taylor expansion of the model output),

implying the e�ects of any possible orders of Taylor expansion of the model output are
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Table 3.2: Exact analytic results for uncertainty and sensitivity analys is of the �rst nonlinear
model with di�erent input correlations.

� V (y) x s i sU
i sC

i sUC
i sT i sTU

i sTC
i sTUC

i

� = 0 55
x1 0.073 0.073 0.0 0.0 0.964 0.964 0.0 0.0
x2 0.036 0.036 0.0 0.0 0.909 0.909 0.0 0.0
x3 0.0 0.0 0.0 0.0 0.018 0.018 0.0 0.0

� 12 = 0 :5 127
x1 0.031 0.024 0.007 0.0 0.984 0.242 0.175 0.567
x2 0.016 0.009 0.001 0.006 0.960 0.292 0.662 0.006
x3 0.0 0.0 0.0 0.0 0.008 0.008 0.0 0.0

� 12 = � 0:5
79.36

x1 0.050 0.020 0.03 0.0 0.975 0.117 0.452 0.406
� 13 = 0 :6 x2 0.025 0.009 0.004 0.012 0.932 0.382 0.538 0.012

x3 0.0 0.0 0.0 0.0 0.017 0.007 0.010 0.0

� 12 = 0 :4
105.81

x1 0.038 0.028 0.01 0.0 0.981 0.291 0.166 0.524
� 13 = 0 :5 x2 0.019 0.002 0.008 0.009 0.950 0.167 0.774 0.009
� 23 = 0 :8 x3 0.0 0.0 0.0 0.0 0.018 0.003 0.015 0.0
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Figure 3.1: The convergence of analysis results with the order of Taylor expansion.

in
uential.

Fourvariate model

Another nonlinear model is designed based on four input variables as

y = x1x3 + x2x4; (3.53)
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where (x1; x2; x3; x4) � N (� ; �) with mean vector � = (1 ; 2; 2; 1)T and covariance matrix

� =

0

B
B
B
B
B
@

1 � 12 � 13 � 14

� 12 1 � 23 � 24

� 13 � 23 1 � 34

� 14 � 24 � 34 1

1

C
C
C
C
C
A

: (3.54)

The total variance of model response is obtained by employing Eq. (3.4) as

V (y) = 12+4 � 12+4 � 13+8 � 14+2 � 23+4 � 24+4 � 34+ � 2
13+ � 2

24+2( � 12� 34+ � 14� 23); (3.55)

which is constituted of

V1 = 4 ; V2 = 1 ; V3 = 1 ; V4 = 4 ;

V12 = 4 � 12; V13 = 1 + 4 � 13 + � 2
13; V14 = 8 � 14; V23 = 2 � 23;

V24 = 1 + 4 � 24 + � 2
24; V34 = 4 � 34; V1234 = 2( � 12� 34 + � 14� 23): (3.56)

In the calculation of V1234, the covariance cov(x1; x2; x3; x4) of four variables is involved,

whose derivation is presented in AppendixD. The form of model function (only involves

the linear problem of each input) suggests the vanishing coupling e�ect in all partial

variance contributions but the existent correlated and independent ones:

V U
i = c2

ii Vi ; V C
i = (1 � c2

ii )Vi ;

V U j
13 = c2

jj ; V Cj
13 = V13 � V U j

13 ;

V Uk
24 = c2

kk ; V Ck
24 = V24 � V Uk

24 ; (3.57)

where i 2 f 1; 2; 3; 4g, j 2 f 1; 3g and k 2 f 2; 4g. The partial variance contributions V12,

V14, V23, V34 and V1234 are all contributed by input correlations. The coe�cients ci are

determined with Eq. (3.17). Table 3.3 lists the exact analytic values of the underlying

sensitivity indices. Data show a vanishing coupling e�ect between input independence

and correlations. This because the nonlinear problems of single variables are absent in

the form of model function. The convergence of our analysis results is displayed in Fig.

3.2, along the direction of the highest-order of Taylor expansion that is considered in

our method. Values are convergent at
 = 2 (the highest-order of Taylor expansion of

the model output).
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Table 3.3: Exact analytic values of uncertainty and sensitivity analys is for the second
nonlinear model by assuming uncorrelated and correlated inputs.

� V (y) x s i sU
i sC

i sUC
i sT i sTU

i sTC
i sTUC

i

� = 0 12
x1 0.333 0.333 0.0 0.0 0.417 0.417 0.0 0.0
x2 0.083 0.083 0.0 0.0 0.167 0.167 0.0 0.0
x3 0.083 0.083 0.0 0.0 0.167 0.167 0.0 0.0
x4 0.333 0.333 0.0 0.0 0.417 0.417 0.0 0.0

� 13 = 0 :5
18.09

x1 0.221 0.166 0.055 0.0 0.401 0.207 0.194 0.0
� 24 = 0 :8 x2 0.055 0.020 0.035 0.0 0.323 0.040 0.283 0.0

x3 0.055 0.041 0.014 0.0 0.235 0.083 0.152 0.0
x4 0.221 0.080 0.141 0.0 0.489 0.100 0.389 0.0

� 12 = � 0:5
15.96

x1 0.251 0.058 0.193 0.0 0.561 0.072 0.489 0.0
� 13 = 0 :6 x2 0.063 0.030 0.033 0.0 0.0 0.060 -0.060 0.0
� 14 = 0 :4 x3 0.063 0.024 0.039 0.0 0.298 0.049 0.249 0.0

x4 0.251 0.148 0.103 0.0 0.514 0.185 0.329 0.0

� 12 = � 0:5, � 13 = � 0:4
13.84

x1 0.289 0.110 0.179 0.0 0.208 0.137 0.071 0.0
� 14 = 0 :2, � 23 = 0 :3 x2 0.072 0.032 0.040 0.0 0.150 0.065 0.085 0.0
� 24 = 0 :4, � 34 = 0 :4 x3 0.072 0.040 0.032 0.0 0.179 0.080 0.099 0.0

x4 0.289 0.121 0.168 0.0 0.699 0.152 0.547 0.0
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Figure 3.2: The convergence of analysis results with the order of Taylor expansion.

Ishigami function

The Ishigami function [228] has been extensively used as a benchmark for sensitivity

analysis [229, 230]. Its functional form was de�ned as

y = sin( x1) + 7 sin 2(x2) + 0 :1x4
3 sin(x1); (3.58)

where all input variables are uniformly distributed in the interv al [� �; � ]. The presence

of correlation betweenx2 and each of the rest does not in
uence the total variance of
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Table 3.4: Exact analytic values of uncertainty and sensitivity analys is for Ishigami function
by assuming uncorrelated and correlated inputs. In case 1x1 is generated based onx3 , contrary

to the second case wherex3 is generated based onx1 .

� V (y) x s i sU
i sC

i sUC
i sT i sTU

i sTC
i sTUC

i

� 13 = 0 13.845
x1 0.036 0.036 0.0 0.0 0.557 0.557 0.0 0.0
x2 0.442 0.442 0.0 0.0 0.442 0.442 0.0 0.0
x3 0.0 0.0 0.0 0.0 0.521 0.521 0.0 0.0

� 13 = 0 :5
12.971

x1 0.039 0.044 0.039 -0.044 0.528 0.633 1.048 -1.153
(case 1) x2 0.472 0.472 0.0 0.0 0.472 0.472 0.0 0.0

x3 0.0 | | | 0.489 | | |

� 13 = 0 :5
19.110

x1 0.026 | | | 0.679 | | |
(case 2) x2 0.321 0.321 0.0 0.0 0.321 0.321 0.0 0.0

x3 0.0 0.0 0.0 0.0 0.653 0.145 0.004 0.505

model response owing to zero partial variance contributions associated with the inter-

action between x2 and the rest. Consequently, we just consider here the correlation

betweenx1 and x3. The results of analytic analysis are listed in table3.4 by assuming

independent and correlated input variables. Two formulating strategies are considered in

the presence of correlation:x1 is formulated on the basis ofx3 and vice versa. They are

non-equivalent for the uncertainty and sensitivity analysis of the model under discussion

as x1 and x3 are uniformly distributed.

In the �rst case, x1 is formulated on the basis ofx3 as

x1 = � 13
� 1

� 3
x3 +

q
1 � � 2

13r1; (3.59)

where the newly introduced random variabler1 is the element of r that satis�es Eqs.

(3.14) and (3.15). Sensitivity measures show a strong positive variance contribution

produced by the interaction e�ect between x3 and the correlated part of x1, as well as a

very strong negative variance contribution caused by the interaction term involving x3

and both correlated and independent sections ofx1.

For the second case, we generatex3 on the basis ofx1 as

x3 = � 13
� 3

� 1
x1 +

q
1 � � 2

13r3; (3.60)

where the random variabler3 is the element of r that satis�es Eqs. (3.14) and (3.15).

Zero mean ofx1 leads to the nonexistence of sensitivity measures evaluating the main

e�ect of x3. A dominated contribution to the variance of model response is produced

by the interaction e�ect between x1 and the coupling of independent section with the

correlated one ofx3.

Analysis results imply that the correlation between x1 and x3, if exists, will play a

crucial role in determining the model response. Sensitivity indices of correlated and
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Figure 3.3: The convergence of analysis results with the order of Taylor expansion.

independent sections ofx3 are not indicated in the �rst case becausex3 is considered

as a whole variable, analogous to the second case. The derivation process of partial

variance contributions of di�erent orders is presented in detail in Appendix E for both

cases. The convergence of our analysis results is also discussed, seeFig. 3.3. For three

situations, values are all convergent at
 = 13 (the highest-order of Taylor expansion

that is considered in our method).

HIV model

The basic reproduction number, denoted asR0, is arguably the most important quantity

in infectious disease epidemiology because it helps determine whether or not an infec-

tious disease can spread through a population [231, 232]. R0 is de�ned as the average

number of new cases of an infection caused by one typical infected individual, in a pop-

ulation consisting of susceptibles only [233{ 235]. The �rst application of this metric in

epidemiology was introduced by George MacDonald in 1952, who designed agent-based

models of the spread of malaria [236]. Generally, the larger the value ofR0, the harder

it is to control the spreading of an epidemic. Typically, when R0 < 1, the disease free

equilibrium is locally asymptotically stable and the epidemic will die out in the long

run, whereas ifR0 > 1, it is unstable and the epidemic will invade the population [237].

Consider a deterministic model of HIV-1 with vertical transmission (from an HIV-

infected mother to her child) which was discussed in Ref. [84]. The basic reproduction

number R0 is represented by

R0 =
� 0(1 � 
 )� 2

d + � 1n1Q0(� d � � ) + � 2n2�Q 0 + (1 � 
 )( � + � )� 0� d

� d(� d + � )( � d + � )
: (3.61)

Description and baseline values of parameters included in the above expression are pre-

sented in table 3.5.

To identify the importance of individual parameters in establishing the uncertainty of

R0, each parameter is arti�cially increased and decreased by 10% of its baseline value.
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Table 3.5: Description and baseline values of parameters for HIV/AIDS model, see Refs.
[84, 238, 239].

Parameter Symbol Baseline value

Recruitment rate Q0 0.029
Birth rate of infective � 0 0.03
Fraction of susceptible newborn


 0.4
from infective class
Contact rate of susceptible with

� 1 0.2
asymptomatic infective
Contact rate of susceptible with

� 2 0.08
symptomatic infective
Number of sexual partners of susceptible

n1 2.0
with asymptomatic infective
Number of sexual partners of susceptible

n2 2.0
with symptomatic infective
Natural death rate � d 0.02
Removal rate to symptomatic class � 0.6
Rate of development to AIDS � 0.1

Furthermore, for simplicity, uncertainties of parameters are indicated by uniform distri-

bution in their ranges of variation. The mathematical expectations and uncertainties of

input parameters and output R0 are presented in table3.6. Regarding the uncertainty

in R0, both independent and correlated situations are discussed. The underlying sensi-

tivity analysis results are displayed in table 3.7. In our analysis, the �rst-order Taylor

expansions are considered only, which explain 99.6% and 98.8% of the exact uncertainty

(indicated by the standard deviation) of R0 for independent and correlated situations,

respectively. A ranking of input parameters is displayed in Fig. 3.4, according to the

total sensitivity indices. Two values of 
 (the highest-order of Taylor expansion that is

considered in our method) are considered. Results suggest that the analysis results of


 = 1 are almost the same as those of
 = 2 for both the absence and presence of input

correlations. This implies our analysis results are convergent at the �rst-order Taylor

expansion for the model under discussion. In both the absence and presence of input

correlations, parameters� (rate of development to AIDS), � 2 (contact rate of suscepti-

ble with symptomatic infective), and n2 (number of sexual partners of susceptible with

symptomatic infective) are identi�ed as the most in
uential, whil e parameters� 0 (the

birth rate of infective) and 
 (the fraction of susceptible newborn from infective class)

are identi�ed as negligible, in determining the basic reproduction number R0. This

provides one an opportunity to e�ectively limit the spread of a disease by controlling

the three most in
uential parameters, and to simplify an HIV model by neglecting the

e�ects contributed by parameters � 0 and 
 .

The distribution of our analysis results is also presented in Fig.3.5, along the direction

of the correlation between � 1 and n1, and the direction of the correlation between � 2

and n2. The underlying results suggest that the e�ect contributed by th e correlation












































































































































































