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Abstract

By means of taylor series expansion, a general analytic formula is derd to characterise
the uncertainty propagation from input variables to the model response in assuming
input independence. By using power-law and exponential functins, it is shown that
the widely used approximation considering only the rst order contribution of input

uncertainty is su ciently good only when the input uncertainty i s negligible or the
underlying model is almost linear. The method is then applied to apower grid system
and the EOQ model.

The method is also extended to correlated case. With the extendednethod, it is s-
traightforward to identify the importance of input correlations in the model response.
This allows one to determine whether or not the input correlations stould be considered
in practical applications. Numerical examples suggest the e ectivenss and validation
of our method for general models, as well as speci ¢ ones such as the detgnistic HIV
model.

Our method is then compared to Sobol's one which is implemented wit sampling based
strategy. Results show that, compared to our method, it may overvale the roles of
individual input factors but underestimate those of their interact ion e ects when there
are nonlinear coupling terms of input factors. A modi cation is then introduced, helping
understand the di erence between our method and Sobol's one.

Finally, a numerical model is designed based on a virtual gambling mdwnism, regarding
the formation of opinion dynamics. Theoretical analysis is proposed by theise of one-at-
a-time method. Sampling-based method provides a global analysis of outp uncertainty
and sensitivity.

Keywords : Uncertainty analysis, Sensitivity analysis, Variance decomposition Sam-
pling, Correlation, Sensitivity measure, Opinion dynamics



Resune

Par un ceveloppement en srie de Taylor, une relation analytique grerale estetablie
pour calculer la propagation des incertitudes des variables d'ente sur la eponse du
modckle, en assumant l'incependance des entees. En utilisah des relations puissances
et des relations exponentielles, il est demonte que I'approximation souvent utilise con-
sistanta ne consicerer que la contribution du premier ordre sur l'incertitude d'entee
permet devaluer de mangere satisfaisante l'incertitude sur la eponse du mocele pourvu
qgue lincertitude d'entee soit regligeable ou que le mocele it presque lireaire. La
nethode est appligee a letude d'un eseau de distribut ionelectrique eta un mockle
d'ordreeconomique.

La nmethode est etendue aux cas al les variables d'entee sont coekes. Avec la
nethode cereralige, on peux determiner si les corelati ons d'entee doivent ou non
@tre consickees pour des applications pratiques. Des exemptenuneriques montrent
I'e cacie et la validation de notre nethode dans l'analyse des modeles tant gereraux
gue speci ques tels que le moctle deterministe du VIH.

La nethode est ensuite compaeea celle de sobol. Les esultats nentrent que la nmethode
de sobol peut suevaluer l'incidence des divers facteurs, maisosis-estimer ceux de leurs
interactions dans le cas d'interactions non lireaires entre les paragires d'entee. Une
modi cation est alors introduite, aidanta comprendre la dieren ce entre notre nethode
et celle de sobol.

Enn, un mockle nunerique estetabli dans le cas d'un jeu virt uel prenant en compte
la formation de la dynamique de I'opinion publique. L'analyse theoriquea l'aide de la
nmethode de modi cation d'un paranetrea la fois. La methode bas ee sur lechantillonnage
fournit une analyse globale de l'incertitude et de la sensibilie des observations.

Mots-cks : Analyse d'incertitude, Analyse de sensibilie, Decomposition de variance,
Echantillonnage, Corelation, Mesure de sensibilie, Dynamique d'opinion
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General introduction

The concept of global uncertainty and sensitivity analysis has proposedadr a long time.

It attracts the considerations of a large number of researchers from variosiof areas. The
global uncertainty and sensitivity analysis aims at analysing the uncetainties of output

variables (also called observations or model responses) according toetluncertainties in
input variables (or named factors, parameters, covariates), and the sesitivity of each

output variable with respect to individual input parameters, as well as to their inter-

actions. Undoubtedly, global uncertainty and sensitivity analysis is ad/iantageous for
gaining insight into how input variables should be ranked according totheir importance

in establishing the uncertainties in di erent output variables. While the strategies for
uncertainty and sensitivity analysis are quite extensive, a genal analytic method is still

limited, especially for models of present input correlations. In his dissertation, we main-
ly focus on the establishment of a general theoretical framework for globalincertainty

and sensitivity analysis in the modelling of complex systems.

Mathematical models have a wide range of applications in diverse disgiines. They can
help explain a system by visualized data and/or gures and analyse the pasible e ects
of di erent parameters, and also, if necessary, make predictions abouthte underlying
behaviour. With a deterministic mathematical model of general formy = f (x) with

y denoting the output vector and x indicating the input vector. When vy is calculated
from x through a speci ed function or some natural or arti cial rules connectingy and
X, uncertainties in the elements of input vector, if exist, will propagate through the
calculation to the members of output vectory dependent onx [1, 2]. This process is
called variance propagation (or uncertainty propagation). Variance propagation, ofen
regarded as the fundamental ingredient of sensitivity analysis for comigx models, mainly
considers the determination of output's variance via uncertaintiesin input factors [3, 4].

At present, many strategies have been built for the determination ofvariance propa-
gation, such as simulation-based method$§] 6], most probable point-based methods],
8], functional expansion-based methodg]], numerical integration-based methods{0{ 13].
Simulation-based methods, also called sampling-based methods, aregarded as both
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e ective and widely used, especially for those models with the factional relationship
connectingy and x absent [L4{16]. These brie y mentioned strategies, however, are
computationally expensive, especially in the presence of a high nuoer of input vari-
ables. For a general model with given functional form, the procedure Wil be much easier
and numerically cheaper for determining the output's variance if an aralytic formula as-
sociated with variance propagation can be provided. More information assaated with
other methods for variance propagation can be found in some reviewed papef$7{19].

A simple analytic formula has been appeared since 1953. It approximatelyamputes
the variance of the product of two independent random variables 20]. In 1966, this
approximation was extended by engineers and experimentalists to mer general multi-
variate cases 21]. This formula, also called Taylor series approximation, restrictel to
the rst-order terms [ 22], has gained a wide applications thanks to its simplicity and
convenience 23]. However, it can satisfactorily estimate the output's variance only when
the functional relationship between output and input variables is almost linear or the
uncertainty of each input variable is negligible [L7]. For most models,y highly nonlin-
early depends onx having large uncertainties. This suggests the necessity of an exact
analytic formula in calculating the output's variance and evaluating it s sensitivities with
respect to individual input factors, as well as to their interactions.

Furthermore, many methods have also been designed for performingessitivity analy-
sis, including the traditional approach of changing one factor at a time R4, 25|, local
method [26], regression analysisg7], variance-based method 28], etc. Among the vari-
ous available strategies, variance-based sensitivity analysis has heassessed as versatile
and e ective for uncertainty and sensitivity analysis of model response. The considera-
tion of variance-based importance measures can be traced back to over ity years ago
when Sobol characterised the rst-order sensitivity measures on tk basis of deposing the
variance in model response into di erent partial contributions attr ibutable to individual
input variables and to their combinations (called variance decompositon) [29]. Then
extensive relevant investigations are carried out around this Sobol's wrk, boiling down
to the improvements in analysis strategies and to their applicationsto the sensitivity
and reliability analysis of complex systems 30, 31]. However, these frameworks, as well
as above mentioned strategies for the determination of variance propagatiorare often
proposed when the input variables are assumed to be statistically inependent.

Recently, the interest in extending sensitivity analysis strategies from uncorrelated case
to the correlated one is increasing as correlated factors are often happed in practical
applications. Previous investigations about sensitivity analysis of malels in the presence
of input correlations only provided overall sensitivity indices with respect to individual
input factors. However, the correlated and independent variance comtbutions were
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absent 32]. In practical applications, the distinction between independeri and correlated
contributions is quite important. It allows one to decide whether or not the correlations
among input factors should be considered.

Both correlated and independent variance contributions were rstly considered by C.
Xu et al [33]. They proposed a regression-based strategy to decompose partial varianc
contributions into independent and correlated parts by assuming appoximate linear
dependence between model response and input variables. To overne the limitation
of their method, many frameworks on sensitivity analysis are recentl developed in
the presence of input correlations, contraposing the investigation of rare e ective and
universal technics for sensitivity analysis in general correlated ituations [34{ 36]. Still,

a theoretical framework of the determination of partial variance contributions and of
relative correlated and independent e ects is limited, especidy when a single input is
correlated with many others simultaneously.

Consequently, in this dissertation, we mainly focus on the estabhment of a theoretical
framework for uncertainty and sensitivity analysis. The applications of sampling-based
method are also proposed to the uncertainty and sensitivity analysi®f epidemic spread-
ing and opinion formation systems.

The manuscript is organised as follows. The rst chapter introducesin detail the back-
ground of uncertainty and sensitivity analysis of complex systems. lItalso provides the
implementation of uncertainty and sensitivity analysis by using di erent strategies. In

the second chapter, a systematic theoretical framework is establigd for the uncertainty
and sensitivity analysis of general models with given functional formsby assuming that
input factors are statistically independent of each other. In the third chapter, the the-
oretical method for uncertainty and sensitivity analysis is generalsed to more universal
models of input correlations. The fourth chapter concerns the di erence of our method
from Sobol's one. A rough sampling-based approach that is coincident with ouanalyt-

ic method is then established by introducing a modi cation to the Sobol's method, in
assuming input independence. A systematic framework on uncertaiy and sensitivity

analysis of a numerical model is described in chapter 5. This modelonsiders the for-
mation of public opinion dynamics based on a virtual gambling mechanism. kally, a

general conclusion and future work plan are given.



Chapter 1

Introduction

Mathematical models are of great importance in the natural sciences. Thehave been
di usely utilized in many disciplines as diverse as mathematics 37, 38], physics R4, 25,
3942, chemistry [43], etc. With mathematical models, one can explicate a system in
mathematical language, analyse the roles of linked factors by physical metids, and then
make reasonable predictions of underlying behaviors. In general a meticontains three
major elements: the input vector, the output vector, and associatiors between them. In
practical applications, the elements of input vectors are rarely deteministic but contain
uncertainty following some distribution laws [44, 45. Consequently, the determination
of the variations in input variables, the investigation of their propagatin g through the
model, as well as the quanti cation of the sensitivities of model outputs with respect
to input variables are of crucial importance for establishing reliableand robust models
[3, 33, 46, 47]. The implementation of these procedures is known as uncertaintyand
sensitivity analysis.

A view of modeling that may help illustrate the role of uncertainty and sensitivity
analysis in the scienti ¢ process is o ered in Fig. 1.1, taken from the work of Robert
Rosen, an American theoretical biologist #8]. The gure shows two systems, a natural
system N which forms the subject under investigation, and a formal systemF which
indicates the modeling of this subsect. Each system has its own ternal entailment
structures and the two systems are connected by the encoding andedoding processes.

The uncertainty under discussion here is often referred to as epiemic uncertainty (also
known as systematic uncertainty). Epistemic uncertainty derives from a lack of infor-
mation or nhon-accuracy in measurement about the appropriate value used forpecifying
a quantity that is assumed to be constant in the context of the analysis br a particular
problem. In the conceptual and computational designation of an analysis, egtemic
uncertainty is regarded in general to be distinct from aleatory uncergainty, which, also

4
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Figure 1.1: Modeling after Rosen (1991)

known as statistical uncertainty, arises from an inherent randomnessn the behavior of
the system under study.

Uncertainty and sensitivity analysis are essential parts of analyses focomplex systems.
Speci cally, sensitivity analysis considers the determination ofvariance contributions of
individual input variables to the elements of output vectors [49]. Uncertainty analysis,
preceding sensitivity analysis, mainly focuses on the determition of the uncertainties
in output variables that derive from uncertainties in input factors. Conceptually, un-
certainty and sensitivity analyses should be run in tandem. They wok together to help
determine:

(1) Which input factors contribute most to the variation of model output .
(2) Which parameters are signi cant and which ones can be eliminated fromhe model,

(3) How to e ciently reduce the uncertainty in model output by str engthening the
knowledge base concerning input parameters.

Quantifying the impact of a variable under sensitivity analysis could be useful for a
series of purposes, such as deep understanding of the relationshipstween input and
output variables in a system or model, xing model inputs that have no e ect on the
output, identifying and removing redundant parts of the model structure, and avoiding
useless time consumption on non-sensitive variables in models of arge number of
parameters. In models consisting of a large number of input variablesensitivity analysis
constitutes essential ingredient of model building and quality asarance. Sensitivity
analysis has also extended its application to national and international agecies involved
in impact assessment studies, including the European Commissiorb(, 51], Australian
pathology laboratories 2], the Intergovernmental Panel on Climate Change $3], and
US Environmental Protection Agency's modelling guidelines 54].

The framework of uncertainty and sensitivity analysis is easily perbrmed when only a
single input factor is involved in the model under discussion, whih is known as uni-
variate situation. It requires a straightforward one-dimensional analyss by presenting
results in gures in a two-dimensional space. When two or more input actors are under
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assessment, however, the problem is much more complicated, esfaly if input factors
do not have a separable monotonic e ect on the output variable of interest

The early framework of sensitivity analysis for multivariate models was established by
using local analysis. Local sensitivity analysis aims at assessing thiecal e ects of
uncertainties in individual input factors on output variables, by concentrating on the
sensitivity in vicinity of a set of special factor values Bb5. Such sensitivity is usually
evaluated by the use of gradients or partial derivatives of functions conecting output and
input vectors at these special factor values. This means the values ohe rest factors are
xed while studying the local sensitivity of model response with respect to a single factor.
Local sensitivity analysis is most frequently employed for the analgis of complex models,
especially when a large number of input factors are involved. This is@mmon because of
the simplicity and low computational cost in its implementation. Howe ver, it abortively
guanti es the global impact of individual input factors and of their inte ractions on output
variables. Of importance to a part of model analysis practitioners (mosly working in the
elds of statistics, risk and safety assessment, and reliability désction) is understanding
the sensitivity of an output variable with respect to simultaneous variations of several
input factors [47, 56]. The global uncertainty and sensitivity analysis provides such
sensitivity information. It evaluates the in uence of individual i nput factors by looking
at the entire input space rather than at a speci ed point.

Generally, the process of global uncertainty and sensitivity analyss can be decomposed
into: (a) specifying the model under study and de ning its input and output variables;
(b) characterising the uncertainty in input variables; (c) determining the uncertainty in
model output; and (d) quantifying the importance of individual input variables in the
estimation of output variables. In establishing the framework of sendivity analysis for

a given model with de ned input and output variables, the main goal is to handle the
remaining procedures.

1.1 Characterisation of uncertainty in model input

Quite often, some or all of the model inputs are subject to sources of wertainty, includ-
ing errors of measurement in experiments, absence of information andoor or partial
understanding of the driving forces and mechanisms. The most essiéa practice in
uncertainty and sensitivity analysis is to characterise the uncetainty in input variables.

The de nition of model input, however, depends upon the particular model under in-
vestigation.
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A model can be stated as diagnostic or prognostic. Diagnostic models are uséat under-
standing a law. They are often built by wild speculations applied to play what-if games,
such as models designed to study the emergence of an agreement in a plagpion [57{ 59,
models used to investigate organizational change, etc. In the investigan of organiza-
tional change, as an example, three diagnostic models are high potential caitthtes to
highlight the problem areas and provide structure for solution developnent. The rst
one is an analytic model, also known as the di erence-integration mode It focuses
on thorough analytical diagnosis as the foundation for organisational change6p]. The
second one is the force- eld analysis model, originally developed by Wt Lewin in the
early 1950s. It regards the organisation as the result of internal forces that dve change
or maintain the current status [61]. The third one is developed on the bases of cause
maps and social network analysis. It provides a mathematical approach to @yanisation
diagnosis p2]. Regarding diagnostic models, input variables are pre-de ned by mdel
designers and often assumed to follow particular distribution laws m xed real ranges
(e.g. uniform and Gaussian distributions). Prognostic models can be wwed as accurate
and trusted predictors of a system. They mainly focus on the estimabn (prediction)
of the probability that a particular event or outcome will happen. Prognostic models
are often developed for the clinical practice, where the risk of dissese development or
disease outcome (e.g. recovery from a speci c disease) can be calceldtfor individuals
by combining information across patients. In the clinical practice, prognostic models
can be presented in the form of a clinical prediction rule $3{ 66]. Prognostic models also
nd their applications in other elds, such as risk and safety evaluation in engineering
[67, 68], problems solving of water dynamics in estuariesd9]. It is often preferable that
input variables in prognostic models, in contrast to those in diagnosticmodels, are easily
determined by social experience or practical examples for ensurgnthe applicability of
a prognostic model in practical applications.

Furthermore, models can also be classi ed as data-driven or law-drien. A data-driven
(or inverse) model tries to derive properties statistically by empirical study. Advocates
of data-driven models like to describe social behaviours with a mmimum of adjustable
parameters, for instance, models helping understand the spreadinof really happened
epidemics [f{ 73], models designed for explaining the generation of trac jams [74,
759], and models proposed to describe nancial time series7p, 77]. Law-driven (or
forward) models, on the other hand, aim at employing appropriate laws wlich have
been attributed to the system to predict its behaviour. For example, people can use
Darcy's and Fick's laws to understand the motion of a solute in water owing through
a porous medium [8, 79. In building design, as another example, building energy
simulation models are generally classi ed as prognostic law-driven maels by which the
behaviour of a complex system can be predicted in terms of a set of wale ned laws
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Figure 1.2: Uncertainty characterisation of independent input variables. (a): an example of
given distribution laws of input variables: input 1 is uniformly  distributed in the real range
[0, 1]; input 2 follows the standard normal distribution (=0, = 1). (b): an example
of deterministic input variables: input 1 is specied at 1; inp ut 2 is xed at 0.5. Their
uncertainties are represented by changing 50% around their normative values.

(e.g., mass balance, energy balance, conductivity, and heat transferfe) [80]. In data-
driven models, input parameters are introduced based on specialtsiations, which could
be deterministic and attached with an arti cially de ned uncertain ty. For law-driven
models, input factors are often imported by the laws we employed. Garacterising the
uncertainty in input factors is also dependent upon the situation under analysis.

With given distribution laws, the uncertainty in input variables can be speci ed by their
mean values (e.g., arithmetic mean or mathematical expectation, geomeitrimean, medi-
an), standard deviations, PDFs, CDFs and CCDFs. Particularly, when input variables
are deterministic (often happening in agent-based systems whereput parameters can
be determined based on practical experience), their uncertainés are frequently repre-
sented by arti cially introducing xed variation around their normat ive values or few
typical scenarios (e.g., scenarios corresponding to any possible comhtions of speci ed
low, medium, high values of input factors) for performing the uncertainty and sensitivity
analysis of the system under discussiorlp, 81{ 84]. The analysis framework of determin-
istic situations is often designed according to the variation in modeloutput driven from
the independent variation in each input factor. This method is known as one-at-a-time
method and will be discussed below in detail. Examples, as showm iFig. 1.2, present
the characterisation of uncertainties in input factors for both kinds of situations, in the
absence of input correlations.

1.2 Presentation of uncertainty in model output

As already mentioned at the beginning of this chapter, uncertainty and €nsitivity anal-
ysis should be run in series, with uncertainty analysis precedig in current practice.
Uncertainty analysis is, through a certain way, to determine the uncertainty in model
output based on the uncertainty in model input.
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One popular way of establishing uncertainty analysis is dependent pon the computer,
which is also known as Monte Carlo (MC) method. Consider a general moel of the
form y = f(x) with x = (X1;X2; ;Xn)' indicating an input vector of n-dimensional
variables. All elements of input vector are assumed to be independérof each other.
By given PDFs of individual input factors, a sample of sizeM, indicated by an M n
matrix, can be generated as

2 3
4R S
G4 S
(1.1)
X o1 Xm o1 X 11 Xu 1

Run independently the model for all points that are sampled in n-dimensional input
space. A set of values of the model outpuy are then generated accordingly:

y=(yny2s ym)': (1.2)

It is straightforward to state the uncertainty in output y according to its values presented
in Eq. (1.2).

Presentation formats of the uncertainty in model output include mathematical expec-
tation, standard deviation, the percentiles of its distribution, con dence bounds, PDF,
CDF, CCDF and box plot [ 85 89]. In general, the last four presentation patterns are
usually preferable to the rst several indices which will make large amount of uncertainty
information neglected in implementation. Furthermore, box plot is de nitely bene cial
for displaying the uncertainty in model output with normative inp ut factors and com-
paring the uncertainties in a number of related variables. The box ot is a standardised
way of displaying the distribution of data. It is often generated by a box and whisker
plots. The bottom and top of the box are, in general, the rst and third quar tiles of
all of the data. The band inside the box is always the second quartile fte median).
The ends of the whiskers can represent several possible alternagiwalues including: the
minimum and maximum of all of the data, the 9th percentile and the 91st perentile,
the 2nd percentile and the 98th percentile §0, 91]. Figure 1.3(a) exhibits an example of
uncertainty analysis of a simple model with functional form given by

y = X3+ x3: (1.3)

The uncertainties in input factors are de ned by Fig. 1.2(a), that is, x4 follows a uniform
distribution in the real range [0, 1] and x» the standard normal distribution. Box plot, as
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Figure 1.3: Representation of uncertainty in model output. ( a): uncertainty analysis for the

model presented in Eq. (1.3) whose input uncertainty is de ned by Fig. 1.2(a). (b): box plot

for the normalized susceptible and recovered agents at equilibrium state of SIR model with

input factors assumed to be uniformly distributed between 0 and 1. Bars show the full range

of the ensemble distribution of values; boxes show the range emompassed by the 25th and

75th percentiles; the horizontal line and square within each box show the median and mean,
respectively.

Figure 1.4:  Progression of population for SIR model.

another example, for the equilibrium state of SIR model is presenté in Fig. 1.3(b) where
the normalized susceptible and recovered agents are analysed. Thragut factors: s(0)
(initial proportion of susceptible agents), (recovered rate) and (infectious probability)
are assumed to be uniformly distributed between 0 and 192, 93]. SIR model is one of the
compartmental models in epidemiology, serving as a base mathematicaldmework for
understanding the complex dynamics of the disease spread. The modensists of three
compartments: susceptible agents, infectious agents, and recoveréor immune) agents.
Each member of the population typically progresses from susceptiblea infectious to
recovered, as shown in Fig.1.4.

In practical applications, the model output is not always a scalar but coud also be a
function. For example, in the investigation of epidemic spreading, tle system of interest
is time-dependent. Uncertainty in input factors will be propagated to the uncertainty
in the dependence of model output upon the time parameter. For suchiwiations, an
e ective presentation format of the uncertainty in model output is t o use two graphical
frames, with rst one displaying any possible dependence of modedutput upon a rele-
vant parameter and second one presenting statistical results for the daomes in the rst
one B0]. Figure 1.5 displays the uncertainty analysis for the normalized infected agers
in SIR model. Three input factors of SIR model: s(0) (initial proportion of susceptible
agents), (recovered rate) and (infectious probability) are assumed to be uniformly
distributed between 0 and 1. Having performed uncertainty analysiswe can then move
on to the sensitivity analysis. Sensitivity analysis allows one to uwmderstand how un-
certainty in the model output can be attributed to di erent source s of uncertainties in
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Figure 1.5: Representation of uncertainty in model output which acts a func tion of time

parameter. Analysis of the time-dependent normalized number of infected agents generated

in SIR model is presented as a particular example. Three involved input factors are assumed
to be uniformly distributed between 0 and 1.

input factors.

1.3 Methods of sensitivity analysis

Sensitivity analysis is a primary part of model development. It involves importance
evaluation of input parameters in the estimation of the model output. At present,
a large number of approaches have been built for performing the sensiity analysis.
Regarding the complexity of models, many methods are developed to adess one or
more constrains. For example, most common sensitivity analysis methaglassume input
factors are independent of each otherd0, 94]; approaches based on linear regression are
valid only for linear models; virtually all sensitivity analysis met hods consider a single
univariate model output, by which sensitivity measures are hard tobe interpreted for
models with correlated outputs.

Methods of sensitivity analysis can be classi ed based on the methasogy as mathe-
matical, statistical or graphical [95]. Mathematical methods evaluate the sensitivity of
model output with respect to the range of variation of each input factor. Typically,
they involve the calculation of output variable according to a few valuesof each factor
that represent the possible variation range of the factor. Mathematical méhods can
identify the in uences of individual factors in their variation range s on an output vari-
able. However, they do not indicate the variance of output variable propagaéd from
the uncertainties in input factors but represent, for example, the sensitivity of model
output as the magnitude of percentage change compared to its nominal value.nlsome
cases, especially when input factors are almost deterministic, mattmatical methods
are helpful in recognising the most important factors Bl, 96]. One-at-a-time method
(discussed below) is one of most widely used mathematical methodsStatistical meth-
ods assess the variance contribution of input factors to the output varable with given
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probability distributions related to input factors. By employing statistical methods, the
variation of one or more input factors can be considered simultaneously. Tis allows one
to identify the interaction e ects among multiple input factors on t he uncertainty in out-
put variable. Some statistical methods often considered are introdoed here, including
di erential-based method, response surface method, regression alysis, variance-based
analysis, and sampling-based method. Graphical methods, in general, ainly focus on
the representation of sensitivity analysis results in the form of grajns, charts, or surfaces.
They provide a visual understanding of how an output variable is a ected by the varia-
tion in input factors. Graphical methods can be used to complement tle analysis results
of mathematical and statistical methods in establishing systematicalframework of sen-
sitivity analysis. Some other classi cations of sensitivity analysismethods may focus on
the capability of a speci ¢ technique, which aids in understandirg the applicability of a
speci ¢ method to a particular model and analysis objective P7].

1.3.1 One-at-a-time method

One-at-a-time method for sensitivity analysis, also known as nominakange sensitivity
analysis, local sensitivity analysis or threshold sensitivity analysis, is one of the simplest
and most widely used approaches. This method is individually varyig only one of
the model inputs across its entire range of plausible values at a time kile xing the
others at their base-case or mean values, to see what e ect this exertsn the model
output. The sensitivity of the model output with respect to a part icular input variable
can be identi ed by the dierence in the model output contribute d by the variation
of the variable. Regarding deterministic models, sensitivity masures can be typically
represented as a positive or negative percentage change of the output vakile compared
to its normative value.

For linear models, one-at-a-time analysis is advantageous for recognisingné most im-
portant factors because of its simplicity and low computational cost in implementation.
This approach, however, does not consider the simultaneous variation afiput variables.
This makes it fail in identifying the impacts of interaction e ects among multiple input
factors on the uncertainty in an output variable. Accordingly, the analysis results of
one-at-a-time strategy are potentially misleading for models other thanlinear ones.

One-at-a-time method is quite often used for sensitivity analysisof models with a large
number of input variables (e.g., climate models, contagious disease sgading models)
since it is easily operated, by only repeating sensitivity analysigprocess for any number
of individual model inputs [81, 98{10(. Murphy et al, for example, applied the method
to address the range of climate changes resulted from the variation of indufactors [101].
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With one-at-a-time strategy, they obtained statistical predictions of climate prediction
and sensitivity indices in assuming that the e ects of perturbations of 32 input parame-
ters combine linearly and independently. In a deterministic HIV model with 20 uncertain
input parameters involved and supposed to be independent of each otheBlower and
Dowlatabadi employed PRCC to assess the statistical relationship b@veen each input
parameter and the outcome variable while xing the remaining input factors at their
nominal values [].

Regarding one-at-a-time method for sensitivity analysis, one often cosiders the Morris
method [102. Morris method is stated as e ective to screen a few important input factors
from a large number controlling a model. In this method, the input space (for simplicity,
de ned as ann-dimensional unit hypercube) is discretized ton-dimensional p-level grid.
Each input x; may take values from a sequencéO;1=(p 1);2=(p 1); ;1g. For a
given value of input vector x, the elementary e ect of the ith input factor is de ned

based on Morris method as

_fix+re) 1) _ @f

@x (1.4)

di(x)

where is a predetermined multiple of 1 =(p 1), and e; a column vector where theith
entry is set to 1 and the rest ones are set to zero. The nite distribution of elementary
e ects is estimated by randomly sampling di erent x from input space. For input X;,
the distribution is denoted by F;. The mean valueu; and standard deviation ; of the
distribution F; are then estimated. u; characterises the e ect of input x; on the model
output and ; the nonlinear e ect of x; as well as the interaction e ects associated with

Xij- n
I Z Z 2 #1=2

. @f . o ef :
uj @de, i @x up dx : (1.5)

When the model under discussion is non-monotonic, distributionF; contains positive
and negative elements. Averaging rule may cancel some e ects so as to neal very
small or even zero. For this reason, an improved sensitivity measuresiconsidered by
Campolongo et al, called u , which is de ned as the mean of the distribution of the
absolute values of the elementary e ects 103 104:

Z
@ dx:

ox (1.6)

Measureu can help identify out the input factors of important overall in uence on the
model output.



Introduction 14

1.3.2 Regression analysis method

Regression analysis is a statistical process for providing an algebrarepresentation of
the relationship between output variable and one or more of input parametes [105. It
allows one to understand how the output variable changes when any one of éinput
factors is varied while the remaining factors are xed.

The earliest form of the regression was the method of least squares, vehi was consid-
ered by Legendre in 1805106 and also by Gauss in 1809107. However, the term
"regression” was proposed by Francis Galton in the late of nineteenth cemry, with
which, a biological system was describedl0g. It was later extended by Udny Yule and
Karl Pearson to a more general statistical context L09.

In the context of sensitivity analysis, regression analysis usuallyrivolves the construction
of linear relationship connecting output variable and input parameters The standard-
ized regression coe cients are then directly used for assessinghe sensitivity of model
output with respect to individual input factors. Regression analysis contains three group-
s of variables: the unknown regression coe cients, denoted as& with i = 0;1; n,
the input factors x; with i =1;2; ;n, and the model output y. y could be a vector.
But for simplicity, we consider y as a scalar.

Regression analysis is most properly performed by independent randosamples which
constitute the mapping from input factors to the output variable. By | inear regression,
the model under study is approximated as

¢=lIy+ b Xi; a.7)
i=1
wherely is the regression coe cient for input x;, which can be interpreted as the change
in output y when the input factor x; increases by one unit in keeping the remaining
factors constant [110; ¥ denotes the predicted value of output variable for a given point
in the n-dimensional input space when regression coe cients are determiad. The coef-
cients b are determined by least squares: minimizing the sum of squares of dation
from the true values:
m !#
X , o T2
i %)= Yi b+  bx ; (1.8)
J:l J:l i=1
where M is the number of samples (experimental points)y; the jth output data point
given by the j th n-dimensional input data point, x! the jth sampled value of input x;

i
[111. The deviation of the prediction of the regression model (Eq. {.7)) from the exact
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values given by the original model can be evaluated as

2_)&I i 2, X ' 2.
R = @ Yy i Y% (1.9

which provides a measure of the amount of uncertainty in output variabke explained by
linear regression model 112 113. Particularly, R? ! 1 indicates that the developed
regression model accounts for most of the uncertainty in output variable Converse-
ly, R21 0 means that the regression model is not satis ed in explaining the oytut
uncertainty [30].

To some degree, the regression coe cients can re ect the sensitity of model output to
input factors. If a coe cient L is close to 0, then there is not a statistically signi cant
linear relationship between input x; and the output y. Conversely, if by is signi cantly
di erent from 0, then the output y can be regarded as being sensitive t&;. However,
b is in uenced by the units of xj. To reduce the dimensional e ects of input factors,
the regression model represented by Eq. 1(7) is commonly standardised to make the
variance of output and input variables equal to 1:

xo
g == ON=")x )N (1.10)
i=1
where
2 312
A= 4 1 X 25 .
=M i vy ; (1.11)
i=1
3 =
T 2 1=2
SRR G (1.12)
j=1
and
M
Y=y Y (1.13)
j=1
_ 1 X i
i = M X (1.14)

The coe cients k"= are referred to as standardised coe cients, taking values between
-1 and 1. The standardised coe cients are helpful in identifying which of input param-

eters have greater e ects on the output variable when the input variades are measured
in di erent units of measurement [114]. Linear regression analysis is most suitable when
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the model of interest is in fact linear as it is di cult to interpre t the standardised co-
e cients when nonlinear regression analysis is involved. In some analses, nonlinear
regression provides an alternative to linear regression for more accuratestimation of
the relationship between output and input variables [115 116).

Because of simplicity and low computational cost, regression analysis as strategy of
sensitivity analysis has been adopted by many researchers from variousf elds, such
as medical sciencell7, 118, bioscience 119, human science 120, and food science
[121, 122.

1.3.3 Response surface method

Response surface method consists of a group of mathematical and statistictechniques
used in the development of an adequate model function connecting an opiit variable
and a number of input parameters. With the established functional rdationship, re-
sponse surface method can identify curvature in the response sade by accounting for
high-order e ects produced by input parameters. The method was itroduced by Box
and Wilson in 1951 [123. The main idea of this approach is to use a sequence of designed
experiments to obtain an optimal response. Considering the complegy in implemen-
tation, response surface method, therefore, is commonly used for thenalysis of models
with limited number of input factors.

In general, the functional relationship between model output and input parameters is
unknown but can be approximated by a low-degree polynomial model of th form

y=fT(x) +; (1.15)

where x = (X1;X2; ;Xn)T, the input vector of n-dimensional variables;f T(x) is a
vector function of a group of elements, consisting of powers and crossqducts of powers
of individual input parameters up to a certain degreed ( 1); is a vector of unknown
constant coe cients; is a random experimental error and assumed to have a zero mean

[124).

Currently two important models are used in response surface methdy with one being
linear and the other, nonlinear. The linear one is also classi ed as therst-degree model
(d=1) constructed in terms of the rst-order terms of input parameters :

y= o+ iXj+ (1.16)
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The nonlinear one is classi ed as the second-degree modal<2), which still involves
second-order e ects of input parameters, except for rst-order ones
X XX X 5
Y= ot iXj + ij XiXj + i Xi + o (2.17)
i=1 i i=1
The application of response surface method to sensitivity analysis omodels can be
concluded as three procedures:

(1) To approximately establish the functional relationship connecting output variable
and input factors.

(2) To quantify, through hypothesis testing, importance of individual factors.

(3) To determine the optimum settings of input factors that result in the maximum or
minimum output value over a certain range of interest.

In general, the rst-degree model is su cient to determine which of input factors a ect
the model output of interest most. For a deep understanding of the eects produced
by input factors on the model output, however, a more complicated deign should be
implemented to estimate a second-degree polynomial model.

A series of experiments should be rst designed to perform respomessurface analysis,
helping generate the mapping from input factors to the output variable. The design,
denoted by D, can be represented by anM n matrix, as displayed in Eq. (1.1),
where M is the number of experiments (the size of a design) and the number of input
variables. Each row ofD represents a point in the n-dimensional input space. Designs
used for estimating the rst-degree model are usually referred toas rst-order designs
and those used for estimating the second-degree model, second-ordksigns.

In the estimation of the rst-degree model, an easy but most common degn is 2
factorial design [125. In a 2" factorial design, each input variable is measured at two
levels which are commonly coded as -1 for the low level and +1 for the Bh level. A
factorial design consists of all possible combinations of previously deed levels ofn
input factors. In practical applications, the points in a two-level factorial design are
frequently represented by plus and minus signs, conventionally, for the rst (or low)
level, and + for the second (or high) level. Take the case of three inpuffactors as an
example. The corresponding 2 design is a 8 3 matrix of the form

:§ + + + + é : (1.18)
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If n is large, a large number of points will be introduced by the 2 factorial design,
thereby high cost is required in the computer simulation. For this case, fractions (e.g.,
one-half fraction, one-fourth fraction) of a 2" design are often considered to reduce the
cost of computer simulations in the estimation of the rst-degree modé. In general, a
2 Mth fraction of a 2" design contains 2 ™ points of a 2" design. Herem is an integer
number such that 2 ™ n+1 for guaranteeing all n+1 parameters (elements of vector

) included in the rst-degree model (Eq. (1.16)) can be estimated. Particular manners
for the construction of fractions of a 2" design can be found in Refs. 126, 127]. Some
other commonly discussed designs for tting the rst-degree modelare Plackett-Burman
design [L28 129 and simplex design L30. The Plackett-Burman design allows two levels
of each input factor, analogous to the 2 factorial design, but requires a much smaller
number of design points, especially for large. The number of design points required by
the Plackett-Burman design is equal to the number of parameters (= +1) in the rst-
degree model. Speci cally, this design can be employed only whermé number of input
variables, n, is a multiple of 4 [128. The simplex design also contains1+1 experimental
points. These points are located at the nodes of am-dimensional regular-sided gure
[131, 137.

In the tting of the second-degree model, one of the most frequentlydiscussed designs is
the 3" factorial design [L33. A 3" factorial design is formed from all possible combina-
tions of the levels of alln input variables. Each input variable has three levels that are
commonly coded as -1 for the low level, O for the intermediate leveland +1 for the high
level. In practice, the matrix of a 3" factorial design simply consists of plus and minus
signs, and also 0. Analogously, the number of experimental points for this esign (=3")
will be very large when a large number of input factors are involved intothe original
model. Following the phenomenon, fractions of a 3 factorial design are often employed
to save the cost of computer simulations. In the construction of fractons, the number
of experimental points must at leat equal the number of parameters (=2n+1+n(n-1)/2,
the number of elements of vector ) included in the second-degree model (Eq. 1.17))
[127, 134. Another most widely used second-order design is the central compdside-
sign. It is stated as the most popular design for building a second-degeemodel. The
central composite design was rst introduced by A. I. Khuri in 1988 [135, consisting of
three distinct sets of experimental runs:

(1) A full (or a fraction of) 2 " factorial design. This is called the factorial portion. Two
levels of each input factor are coded as -1 and +1. They are often simpli & as plus and
minus signs in design matrix.

(2) ng central points. Central point, commonly coded as 0, is the median of the &lues
of each factor used in the factorial portion. ng replications of central point is used to
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improve the precision of the experiment.

(3) 2n axial points. Two points are taken on the axis of each input variable at a disaince
of from the center of the variable.

The number of experimental runs (design points) in a central compose design is (2' +
2n+ np). The design matrix of a simple case withn = 3 and ng = 4 is formed as follows:

2 3
ot 0 0 0 00000

ng ¥ ++ 0 0 0 oooooé:(1.19)
¥ + o ¥ 0 o 0000

Many strategies have been developed to select a useful value of theialkparameter
Let F denote the number of points in the factorial portion and T = 2n + ng. Two
common values are

=(Q F=4)¥ (1.20)

with Q =( P F+T P F)?2, which makes the central composite design orthogonal, and
= (1.21)

which makes the design rotatable 136. The value ofng is often assigned in terms of some
certain desirable properties of the central composite design. For exapte, ng can be set
to a value that makes a rotatable central composite design hold orthogonality poperty
or the uniform precision property [130 137. The other most frequently used second-
order design is the Box-Behnken design devised by G. E. P. Box and .[Behnken in 1960
[133. In this design, three levels (equally spaced) of each input factoare considered.
A Box-Behnken design is formed from a particular subset of the full 8 factorial design
[138 139. Some other second-order designs are available in Refd.4[{ 143.

A representative strategy to develop the expression of Eq. .15 is using a least squares
repression method to t a standardized rst- or second-order equaton to the data ob-
tained from the original model. MC methods are typically borrowed to produce multiple
values of each input factor, thereby to calculate corresponding valuesf model output.
Other techniques such as rank-based or nonparametric approaches are algsocasionally
considered in employing the response surface method to estalilishe framework of sen-
sitivity analysis [130, 144]. The precision and accuracy of analysis results provided by
the response surface method can be evaluated by comparing the pretdans provided
by the method to the output values of the original model generated by the same values
of input parameters. If the precision and accuracy are not satisfactory, animproved t
might be obtained by iterating on values of parameters 145.
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Time-consuming and e ort requirement in applying response surfae approach typically
rely on the number of input parameters included and the type of respose structure
required. Hence, mainly focusing on the e ects of those input factos that have been
identi ed as quite important through a screening sensitivity analy sis method (e.g., one-
at-a-time method) may be advantageous to reduce the complexity and di culty in the
implementation of response surface strategy.

A key advantage of the response surface method is that one can save computaial
time in computationally intensive model run by simplifying the f orm of the model under
discussion. Furthermore, the functional form of the model that is etablished by the
response surface method and the values of the coe cients includedn the form can
provide a fruitful information for quantifying the sensitivity of model output with respect
to individual parameters. However, most frameworks established byhe response surface
method only consider the e ects of some but not all of the input factors @ntained in the
original model. This may result in absent or non-accurate global sensitiity measures in
sensitivity analysis.

1.3.4 Di erential-based method

Di erential techniques for sensitivity analysis, also referred to as the direct or local
methods, involve partial derivatives of output variable with respect to input parame-

ters. In sensitivity analysis, one of the most used di erential-basd strategies is the
rst-order Taylor series approximation. It was discussed since 1966 Y engineers and
experimentalists [21].

Recall a generic model of the formy = f(x) with x = (x1;X2; ;xn)" labeling the
input vector of n-dimensional variables. By employing the rst-order Taylor series ap-
proximation, the variance of output y, denoted asV (y), is calculated as

v = @ v, (1.22)

i=1 @x Xo

where the subscript X indicates that the derivative is taken at a xed point (often
indicated by the central point) in the space of input variables, andV (x;) the variance of
input Xi. The sensitivity coe cient, denoted by s, interprets the importance of input
X; in establishing the uncertainty of output y. s; is determined by (see 144)

@yt .
ST gy, V) V) (1.23)
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This calculation is performed under the assumption that high-order (  2) partial di er-
entials are negligible and input parameters are independent of each otheConsequently,
the rst-order Taylor series approximation can provide accurate and reliable analysis re-
sults only when the model under study is almost linear or the uncerdinty in input
parameters is negligible 17, 147.

Sensitivity analysis proposed by the di erential-based techniqle is computationally e -
cient but bound with intensive e ort requirement in solving di  erential equations. When
an explicit algebraic equation describes the relationship connectig model output and
input parameters, it is straightforward to evaluate sensitivity measures by the use of
di erential-based strategy. If a large set of equations are involved wih the model under
discussion, the rst-order partial derivative can be approximated asa nite variation
in output values driven from a small change in the input parameter [L48 149. By
neglecting non-linearities of models, the sensitivity of model otput with respect to an
arbitrary input parameter X; can be approximated as

% y _ [0+ ) T0aI=F(0).

% Xi xi il=X

(1.24)

where X+ )=(X1; ;Xi+ i, ;Xn),and ;isasmallchange introduced to input

Xj.

A derivative-based global sensitivity method has also been proposedybSobol and
Kucherenko, by averaging the square of local derivatives1b0, 151]. In this method,
the global sensitivity measures are de ned as

z

@f ?
Vi = —  dx; 1.25
= . @x (1.25)
whereC" = (xjO0 x; 1;i=1;2; ;n), the n-dimensional unite hypercube. v; can

be regarded as an improvement of the importance criteriou (see Eq. (.6)). The above
de nition is motivated by the fact that a high value of the derivative of m odel output
with respect to an input variable indicates a robust in uence of the input variable on
the model output [152). It is proved that

Vi

vy

(1.26)
wheresy; are the one-dimensional total sensitivity indices (see Eq. 1.38) and V (y) the
total variance of output y. This states that small v; imply small st;. Unessential input
parameters then can be identi ed out based on computed values of; (i =1;2; ;n).
For highly nonlinear functions, however, the ranking of in uential p arameters in terms
of the importance criterion v; may suggest false conclusionsl Q.



Introduction 22

The di erential-based strategy is usually more demanding than other nethods in the
sensitivity analysis of complex models. It requires of model degners to explicitly cal-
culate the rst-order partial derivatives of output variable with res pect to individual
parameters, and yet provides only comparable but not accurate resultsespecially for
nonlinear models.

1.3.5 Variance-based methods

Variance-based techniques have a long history in the aspect of setigity analysis. They

are often used for determining whether an output variable is statistcally associated with
one or more input factors, and whether the values of model output vary in astatistically

signi cant manner with the variation in values of one or more input variables. In the

seventies, Cukier rstly established variance-based sensitity analysis of multi-variate

systems by Fourier implementation [L53. While the complete variance decomposition
strategy was rstly developed by Sobol in 1993 29). In 1994, Jansenet al introduced

an e cient method relying on random sampling to evaluate the partial contributions

from input variables of uncertainty to the predicted variance in output variable [154. A

similar strategy was developed by Homma and Saltellf55 in 1996 to determine global
sensitivity measures that quantify the global importance of individual input variables

in the estimation of model response. In spite of time consuming in coputation, the

instrument of complete variance decomposition is known to be usefuand informative

for uncertainty and sensitivity analysis of complex nonlinear systens [156].

Variance-based sensitivity analysis, often referred to as the Sobol ethod or Sobol in-
dices, speci es the uncertainty in input and output variables through probability dis-
tributions. Working within a probabilistic framework, it decompose s the variance of
model output into di erent partial contributions attributable to i  ndividual input vari-
ables and to their combinations. By computing the percentage of each parl variance
contribution in the global variance of output variable, sensitivity measures are directly
interpreted for individual factors and also for their interaction e e cts. Variance-based
sensitivity analysis methods are attractive and widely used becaws they allow full ex-
ploration of input space, analysis of nonlinear models, and consideration ahteractions
between di erent input variables.

Without any assumption regarding the type of the model under discus®n, variance-
based approaches nd broad applications across various elds, including@enti c models

evaluation [49], risk assessment J57], importance assessment1b8, economic system
analysis R8§], behaviour prediction in forest systems 159, etc.
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Recall the generic model of the formy = f (x) with x = (X1;X2; ;xn)" labeling the
input vector of n-dimensional variables. The model is de ned ovelC", the n-dimensional
unit hypercube, as de ned before. Recalling the classical Hoe dig decomposition R9,
16({ 163, the output variable can be expanded as

X XX
y="fo+ fi(xi)+ fij (xi;xj)+  + fa2 n(XaiX2;  5Xn); (1.27)
i=1 i=1 j>i
where fo is a constant, f; a function of x;, fj a function of x; and x;, and so on up
to the last term a function involving all input variables. Each term i s square integrable
over C". Summands presented in Eq. {.27) must satisfy

Z,
. fisio is(Xigs Xiys s Xig)dXi, =0; (1.28)
wherel i1<iz< <ig nandix2fiq;iy; ;1sg. This condition drives
Z
fo= f (x)dx; (1.29)
“'z 1 £
fi(xi) = f (x)dx=dx; fo; (1.30)
o 5 . o 5 .
fij (Xi;Xj) = o o f (X)dXZdXide fo fi(Xi) fj (Xj ); (1.31)

where dx=dx; is the product of all the dx; except dx;, similar to dx=dx;dx; which
indicates the integration with respect to all input variables, except x; and x;. By
assumingf (x) is square-integrable, the variance of model output can be expresseds

V(y) = 2 0 (i Xiz sXi)dxi,  Xi (1.32)
0 0 s=1 i1< <ig
Expanding the above equation yields
xo XX
Vy)= Vi+ Vi +  + Vi (1.33)
i=1 i=1 j>i
where
Z 1
Vi= fE(xi)dxi; (1.34)
2 1Z 1

Vi= f2 (xi; %) )dx;dx;; (1.35)
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are in sequence explaining the variances contributed by; alone, by the interaction be-
tween x; and x;, etc. Equation (1.33 is known as the complete variance decomposition,
deduced by Sobol in 1993. It shows how the variance of a model output can beedom-
posed into terms that are attributable to individual input factors and to their interaction

e ects [29]. Following the concept of Sobol's variance decomposition, sensitit§i mea-
sures are de ned by

si = Vil V(y); (1.36)
sij = Vi / V(y); (1.37)
0 1
X’] )
sti= @y + Vi + +Viz nA V(Y); (1.38)
j=1;j8i

wheres; is often called the rst-order sensitivity index or the main e ect index, labeling
the fraction of V(y) contributed by X; alone; sj the second-order sensitivity index,
indicating the fraction of V(y) contributed by the interaction between x; and x;; and so
on up to the last label st; the total sensitivity index, quantifying the fraction of V(y)
contributed by x; alone and also by interactions ofx; with the remaining factors. They
satisfy

Sj + Sij + +S12 n=1; (1.39)

sti L (1.40)

The equal sign in Eq. (1.40 holds i the model under analysis is purely additive.

Theoretically, the determination of sensitivity measures depend upon multidimensional
integrals. In practice, sampling-based strategies are often employetb carry out this
mission. It can become computationally expensive when there are a largeumber of
input variables.

Sobol's de nitions of the second and higher order partial variance contrilutions in Eq.
(1.33 hold if input factors are independent of each other. In the presenceof input
correlations, however, partial variance contributions with dimensionality larger than
1 are contributed not only by the coupling items presented in the functional form of
the model under discussion (for independent case), but also by #input correlations.
Recently, the interest in extending sensitivity analysis strategies from uncorrelated case
to the correlated one is increasing as correlated input variables are ofdquent occurrence
in practical applications [164, 165. In general, variance-based sensitivity analysis in the
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presence of correlated inputs is carried out by using linear correladn model which
regards the correlation part of an arbitrary variable as a linear combination of the rest
variables [34{ 36, 166|.

1.3.6 Moment independent method

The moment independent method looks at the in uence of input uncetainty on the
entire output distribution without reference to a speci ¢ moment of the output. The
moment independent importance indicator was rst introduced by Chun et al [167].
They quanti ed the entire change of CDFs in terms of the normalised Ewclidean metric
distance between two CDFs. The metric distance (Minkowski disance) of order a be-
tween two points X1 = (x1;x%;  ;x7) and X, = (x3;x3;  ;x3) is in general de ned
by |

o 1=

D= Xy xhj2 ; (1.41)

i=1
whereais a number no less than 1. The metric distance is typically used wih a being 1 or
2, which correspond to the Manhattan distance and the Euclidean distane, respectively.
The measure of uncertainty importance is then de ned by

Z, 1=2’

MD(i : 0) = i Y'Y E (y°); (1.42)
whereYj0 is the j th percentile of the output CDF for the base case,Yji the j the percentile
of the output CDF after introducing a change to input x;, and E (y°) the mean value of
output y for the base case. The base case refers to the case where an output dizition
is obtained by setting all input distributions to their nominal ones. It is stated that a
larger value of MD(i : o) implies a more important parameter xj, compared to other
input parameters. However, the value of MD( : 0) depends on the hypothesised change
introduced to parameter X;.

Another moment independent importance measure was presented by Borgomo, which
does not require one pre-suppose any changes associated with input pareters [L6§].
It follows from his concept that the global sensitivity index of parameter x;, denoted by
i, with respect to the output y is represented by
1 z z
=5 P(xi)  jPy(y) Pyjx (V)jdy dxi; (1.43)

R R
whereP (x;) = P(x) QjSi dx; the marginal density (PDF) of input x;, P(y) is the
PDF of output y, and Py, (y) indicates the conditional PDF of y by assuming that the
input parameter Xx; is xed at a constant value. It is proved that ; holds some properties,
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suchasa) 0 ; 1;b) ; =0ifthe output y is independent ofX;; ¢) 1.2 .n =1 (the
importance of all input parameters equals one); etc169. The indicator helps identify
out input parameters that a ect output uncertainty the most. In ident ifying the less
relevant parameters with respect to the model output, agrees with Sobol's variance-
based method. However, discrepancy between two evaluations exssin ranking relevant
parameters.

Regarding the di culty in deriving the PDFS of output variable, a ne w moment inde-
pendent measure was recently proposed, called the PAWN index, wht the conditional
and unconditional distributions characterised by their CDFs [17(. The Kolmogorove-
Smirnov statistic ([171]) is employed to measure the distance between conditional and
unconditional CDFs:

KS (xi) = max IFy(Y)  Fyix, DI (1.44)

where Fy(y) is the unconditional CDF of output vy, Fy;, (y) the conditional CDF when
the input x; is xed. As KS (x;) depends on the value at whichx; is xed, the PAWN
index, denoted byT;, is then de ned by considering a statistic (e.g. maximum or median)
over all possible values ok;:

T = Stfi‘t fKS (xi)g: (1.45)

The PAWN index T; is a global, quantitative and model independent sensitivity in-
dex, varying between 0 and 1 (the higher the value, the more inuental x;). T;
(i = 1;2; ;n) can be used for ranking input parameters according to their con-
tributions to the output uncertainty, so as to identify which of in put parameters are
in uential, and which are non-in uential. Compared to other moment in dependent sen-
sitivity indices, the PAWN index has the advantage of being very easyto implement
and interpret [17(. Regarding the convergence rate and screening of non-in uential pa-
rameters, the PAWN method is in good agreement with Sobol's variancdsased method.
However, the PAWN method is better than Sobol's one in quantifying the di erence
between relative importance of in uential parameters [172.

1.3.7 Sampling-based method

In the implementation of uncertainty and sensitivity analysis, the sampling-based (al-
so known as MC) approach has been classi ed as both e ective and widely sed. In
carrying out the sampling-based approach, what is the most fundamental anctritical

is to generate and explore the mapping from uncertain input variables ¢ the uncertain
model response. In exploration and generation of the underlying mappig, two basic
components should be previously considered. The rst one is the denition of proba-

bility distributions Pq; P»; ; Pn that characterise uncertainties in input variables in
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Figure 1.6: Example of random sampling to generate a sample of sizeM = 20 from x =
(X1;X2) with x1 uniformly distributed and x» normally distributed, de ned by Fig. 1.2(a). First
two panels illustrate sampling of values for x1 and Xz, respectively, and the last panel presents
a random pairing of the sampled values osx; and x; in the construction of a random sampling.

the absence of input correlations. The second one is the generation of safegoints in
n-dimensional input space according to the previously de ned distibutions of individual
input variables. Diversi ed sampling procedures have been degned. In this section,
we discuss some frequently considered sampling strategies: randasampling, sampling
for iterated fractional factorial design (IFFD), importance sampling, Lati n Hypercube
sampling (LHS), and Quasi Monte Carlo (QMC) sampling.

Random sampling

Sample points provided by random sampling are generated by pseudo-rand numbers.
Values of single uncertain input variables are chosen randomly and entaly by chance
from their real ranges, independent of their PDFs [73. It is stated that random sam-
pling is prone to clustering that yields wanted sample points and erpty areas in input
space because each new sample is selected randomly without mindingetgaps between
already generated sample valuesl[/4, 175. Figure 1.6 presents an example of random
samples of sizeM = 20 generated fromx = ( X1;X2). X3 is uniformly distributed in the
real range [0, 1] andx» follows the standard normal distribution (Fig. 1.2(a)). Clustering
e ect and empty areas are evident in the distribution of sample points The uniformity
of sample points in input space directly determines the accuracy of aalysis results when
the number of sample points is nite.

IFFD

The factorial sampling and fractional factorial sampling have been briey mentioned
before. They are widely considered in the response surface metho&ampling for IFFD
was also proposed as a direct tool for sensitivity analysisl[f6 177). In this sampling,
input variables are sampled at discrete levels. This is the main dierence from other
sampling strategies where each input variable is sampled at a continuauinterval. IFFD
was built to identify a few robust parameters within batches of a largenumber of fragile
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ones [L77). Investigation indicates that the sensitivity measure based on IFFD is ex-
tremely reproducible, and more robust than rank regression coe ciet in that it can
also identify quadratic e ects of individual parameters, except for linear ones [L7§.

Speci cally, IFFD is generated by multiple iterations of a basic orthogonal fractional
factorial design. Given a basic fractional factorial design, three step®f randomization
control the generation of a sampling for IFFD:

(1) Parameters are randomly assigned to columns of the basic fractional fact@l design.

(2) Each parameter is randomly oriented in considering two orientations positive one
and negative one. Parameters with a positive orientation will copy their values from
the associated column of the basic design, and those with a negative onelwiake the
opposite values from the associated column of the basic design.

(3) The orientation value of each parameter is randomly set to zero in a preiously
de ned proportion of the total iterations.

The rst two randomization steps are carried out independently for ead iteration, and
the third one is performed within the whole set of iterations. Each iteration of an IFFD is
analysed separately. The obtained results are then combined togetheof the sensitivity
analysis of the system under discussion. Denote the value of the outpwariable in the
ith simulation of the mth iteration by y™[i], and the input parameter that copies values
from the jth column of the basic design byz;. The main e ect in the mth iteration of
parameter z; on the output variable is given by
1R
ME m(z;y™) = o Inlid] y"il; (1.46)
i=1
where n is the number of input parameters, J, the basic fractional factorial design of
sizen n, and Jy[i;j ] the (i;j )th position in matrix J,. ME n(z;y™) is a linear e ect
as it calculates the di erence in average response between two lelge(low and high) of
zi. The main e ect of a parameter x throughout the entire design of M iterations is
given by Py

1 S
ME (x;y) = — =P ——

ME (zep;y™) . (1.47)

where S is the orientation value of parameterx in the mth iteration, ¢’ (taking a value
from 1 to n) the randomly chosen column associated with parametex. The quadratic
e ect of parameter x can also be de ned hy

P P Py P .

Mo (L] S Ayl Mo iSSP Y™l

on' M (1 j smj on' M_ismj
n =@ J ST N m-1 ISP

QE(x;y) = (1.48)
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Importance sampling

In statistics, importance sampling is a well-known technique forestimating properties of
a particular distribution, by using samples generated from a di erent distribution than
the distribution of interest. It is often used for the estimate of rare event probability
[179 18(. Consider a general univariate functionf (x). x is a random variable from a
previously de ned distribution of density P(x). One wishes to estimate the expected
value of f (x) under P(x), denoted ask (f ;P). A MC estimate of E(f ;P) is
Z
E(f;P)= f(X)P(x)dx
NG (1.49)
== f(x)
j=1
where M denotes the sample size. The precision of this estimate depends ap the
variance of f (x):
V(E(f);P) = V(f;P)=M: (1.50)

The basic idea of importance sampling is to reduce/ (E (f ); P) for a given sample size
by using samples from a di erent distribution. The principle of i mportance sampling is
z z
P(x)
E(f;P)=  fX)PX)dx= f(X)——=G(x)dx; (2.51)
G(x)
where the newly introduced distribution G(x) should have the same support af? (x).
Apparently, sampling x from a distribution P (x) is equivalent to samplingx w(x) from
the new distribution G(x), with importance sampling weight:

P(x).

w(x) G (1.52)

The object in importance sampling is to concentrate the distribution of the sample points
in the parts of interval of most importance (e.g. the interval [0, 1] that we discussed in
the example) instead of spreading them over the whole regiorilB1]. A good importance
sampling function G(x) should hold the following properties [182]

(1) G(x) > 0 wheneverf (x) 6 0;
(2) G(x) should be most closely the shape df (x) and makesf (x) P (x)=G(x) bounded;
(3) It should be easy to simulate values fromG(x);

(4) It should be easy to compute the densityG(x) for any values of x that one might
realize.
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Table 1.1: Estimated mean value and its standard deviation based on MC and importance
sampling (denoted by IS). Results are obtained by N independent simulations of sample size

100.
N Simulaton E(f;P)  (E(f);P)
wo NS Tao oo
wo NS G oom

oo NE O 0

Consider a simple example of (x) = x with x following a standard normal distribution:
X N(0;1). One wants to evaluate the mean off in the region [0, 1] of x. By MC
sampling, a sequence values; (j =1; ;M) of x can be generated fromN (0;1). The
mean value off (x) is then calculated by
Pwm
=1 G X
E(f;P)= 57— (1.53)
j=1 G
with
1 0 x; 1;

Cj = .
0 otherwise

(1.54)
In importance sampling, we setG(x) =1 for x 2 [0;1]. M sampled values of then can
be obtained from a uniform distribution in the region [0, 1]. For each sampéd valuex;,
the importance weight is

P (X;

w(xj) = Rl(—J): (1.55)
o P(2)dz

where P( ) is the standard normal distribution. The mean value of f (x) based on

importance sampling is then calculated by

R
E(f;P)= X W) (1.56)
j=1
A comparison between MC and importance sampling is presented in tabld.1. Results

display that the variance of the mean value off (x) is reduced by introducing importance
sampling.

LHS

LHS is a kind of strati ed sampling strategy. It is widely regarded as one ofthe most
popular variance reduction techniques that can be employed to incrase the analysis
e ciency so as to more possibly achieve the desired accuracy. The LHS ag rstly



Introduction 31

Figure 1.7: Example of LHS to generate a sample of sizeM = 20 from x = (X1;X2) with

x1 uniformly distributed and x, normally distributed, de ned by Fig. 1.2(a). First two panels

illustrate sampling of values for x; and x», respectively, and the last one a random pairing of
sampled values ofx; and x» in the construction of a LHS.

designed by McKayet al in 1979 for numerically evaluating a multiple integral [174. It
was further elaborated by Imanet al in 1981 [183.

Sample points provided by LHS are generated in terms of PDFs of individal input

variables, namely P1;P,;  ;P,. Divide the range of x; into M (the size of sample)
adjacent intervals with equal probability provided by P;. One point is selected at random
from each interval to construct a sequence oM points ijlg, j =1;2; ;M. Another

sequenceijzg, =12 M, can be formed similarly but independently for x,. The

two generated sequences are then randomly paired without replacemeto constitute an

M 2 matrix. These M pairs are continuously randomly combined without replacement
with M points in the sequencef xfg, j =12 ‘M, to forman M 3 matrix, and so
on until an M n matrix is constructed:

xj =[xhxZ oxM j =12 oM (1.57)

Figure 1.7 presents an example of LHS of size 20 for a special two-variate situation
X = (X1;X2). X1 is uniformly distributed between 0 and 1 and x; follows the standard
normal distribution, as de ned in Fig. 1.2(a).

The above generated LHS is known as standard LHS (or randomly generated LHS). It
can be quite structured: the variables may be highly correlated or tle sampled values
may not have good uniformity of distribution in the space of input variables. Conse-
guently, some optimal criteria are proposed to avoid these problems ahto obtain an
optimal sampling which achieves the space- lling property of input factors.

An often considered optimization is designed based on the maximin distage criterion
[184. For an established sampling desigrD (an M n matrix), the iner-site distance
between any twon-dimensional sample points (two rows intheM n matrix, as displayed
in Eq. (1.57) is de ned by

1] #1:
x
d(xt;Xs) = (Xt Xg) ; (1.58)

i=1
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where takes two values: 1 (corresponding to the rectangular distance) or 2 @lated to
the Euclidean distance). The rst built maximin distance criter ion aims at maximizing
the minimum inter-site distance:

. t;Sml'\cll ;tssd(xt;XS): (1.59)

Later on, an intuitively appealing extension of the maximin distance criterion was intro-
duced by Morris and Mitchell [185. For a designed samplingD , they de ned a distance
list: (dy;do; ; dm) where the elements are the distinct values of iner-site distanes and
sorted with d; <d, < < dm. Obviously, m, labeling the number of distinct distance
values, can be as large as'\g (the iner-site distances between any two sampling items
are unique) and as small as 1 (the iner-site distances between any twsampling items
are consistent). Continuously, an index list was accordingly de ned: (J1;J2;  ;Jm)
in which an element Jx counts the number of pairs of sites in the designed sampling
separated bydx. The maximin distance design criterion tends to make the minimum
distance maximal. This implies a sampling driven by this criterion must follow the prop-
erty: (1) di is maximized; (2) J;1 is minimized. To construct an optimal sampling that
satis es this property, an evaluation function was then introduced:

mn #l:
xn
p(D) = Jyd, ; (1.60)
k=1
where is a positive integer and D a designed sampling. An optimal sampling is

generated by minimising Eq. (1.60) [185.

The Shannon information entropy de ned by Shannon in 1948 was also applied tahe
optimisation of LHS, known as the entropy criterion [186. Shannon demonstrated that
the lower the information entropy, the more precise the knowledges. It has been further
illustrated that the entropy criterion is equivalent to minimizi ng the quantity:

logjRj; (1.61)

where R is the correlation matrix of the designed sampling with elements giva by
" #
X . .
ls = €xp Gix; Xy ;1 ts M;1 2; (1.62)
i=1
inwhich ¢ (i=1;2; ;n) are correlation coe cients [ 187. The entropy criterion can
help design an optimal sampling that minimizes correlations among inputfactors.
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In experimental design, L, discrepancy is most frequently used in solving the non-
uniformity problem. The centered L ,-discrepancy (L) criterion was developed to
optimise both random sampling and LHS [L8§. According to this criterion, a constructed
samplingD (an M n matrix) is optimal (having space- lling property) if it minimize s
the centeredL » discrepancy given by

13 2 22X ¥ 1. . 1. .
CLy(X)= = = 1+ Zjx} 05 Zjxi 05
12 M s 2 2
(1.63)
1 Xy 1. 1. 1
+W 1+ ijj 0.5 + éJxk 0:5 EJXJ- Xy
j=1 k=1i=1

Some other early developed algorithms also exist in constructing optiml LHSs. They
have been shown to have a good space- lling property, includingfor example, the row-
wise element exchange algorithm89, the columnwise-pairwise algorithm [L90, and the

threshold accepting algorithm [191]. Considering the requirement of highly computa-
tional cost in the implementation of these algorithms, Jin et al developed an e cient and

exible method for constructing optimal samplings, by the use of entanced stochastic
evolutionary algorithm and the employment of e cient evaluating strate gies of the op-
timality criteria [ 192. Some recently introduced methods for optimising the strategy of
LHS can be found in Refs. 193 195.

QMC sampling

QMC method is speci cally designed by using low-discrepancy spiences (also called
guasi-random sequences or sub-random sequences) to place sampledi®alas uniformly
as possible. This is in contrast to the regular MC method (random sampiig) consist-
ing of sequences of pseudo-random numbers. MC and QMC methods are statin a
similar way. The problem is to approximate the integral of a function as the average
of the function evaluated at a set of sampled values. The di erence bateen QMC and
MC methods is the way sampled values are generated. There are a few Nvknown and
commonly used low-discrepancy sequences, including Halton sequees 196, Sobol se-
guences 197, and Faure sequenceslpPg. Sobol low-discrepancy sequences are identi ed
in many aspects as the superior one, compared to other sequences.

Sobol sequences (also called LPsequences ort(s) sequences in base 2) were rst intro-
duced by Sobol in 1967199. De ne a real integrable function f over C" (n-dimensional
unit hypercube). The original motivation of Sobol was to generate a sequete x; in C"
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Figure 1.8: An example of QMC sampling based on Sobol sequences. The sanlp size:

M = 20. x; is uniformly distributed and x, normally distributed, de ned by Fig. 1.2(a).

The rst two panels illustrate sampled values of x; and X, respectively, and last one the
distribution of sampled values in the construction of QMC samp ling.

so that ~

li L X f = f ;
Mllrln Mj:l (xj) = . (x)dx; (1.64)

and the convergence is as fast as possible.

Sample values of QMC sampling by using Sobol sequences are uniformliaped in input
space, even for rather small sample size. Additional conditions, knowms property A
and A', were also introduced by Sobol in 1975 to make sample values perfégwuniformly
distributed in input space [200Q:

De nition : A low-discrepancy sequence is said to satisfiroperty A if for any binary
segment (not an arbitrary subset) of the n-dimensional sequence of length 2 there
is exactly one point in each 2 hyper-octant that results from subdividing the unit
hypercube along each of its length extensions into half.

De nition : A low-discrepancy sequence is said to satisffProperty A" if for any
binary segment (not an arbitrary subset) of the n-dimensional sequence of length ™4
there is exactly one point in each 4 hyper-octant that results from subdividing the unit

hypercube along each of its length extensions into four equal parts.

QMC method recently attracts much interest from researchers worling in the eld of
mathematical nance or computational nance. In these elds, high-dime nsional nu-
merical integrals in hundreds or thousands of variables are frequentlgvaluated within a
previously de ned threshold. Hence, QMC method is widely usedn the nancial sector,
helping value nancial derivatives [201, 207.

The detailed generation process of Sobol sequences can be found in R¢203. An
example of Sobol sequences-based QMC sampling is presented in Fig8. A sample of
sizeM = 20 is generated fromx = ( X1;X2). X1 is assumed to be uniformly distributed
between 0 and 1, andx, normally distributed (Fig. 1.2(a)).

A qualitative comparison is also presented in Fig. 1.9 for the uniformity of sampled
values provided by di erent sampling strategies, including random sampling, standard
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LHS, LHS with the use of maximin distance criterion, LHS with the use of CL , criterion,
and QMC sampling based on Sobol sequences. A situation of 2-dimensionapiat vector
is exemplied. Two kinds of sample size: M = 16 and M = 100 are considered,
respectively. Results suggest a higher uniformity of sampled valugeprovided by Sobol
sequences-based QMC sampling, compared to those given by random sanmgliand
LHSs. Furthermore, the optimised LHS is superior to the standard LHS whit precedes
random sampling in constructing uniformly distributed sample values, especially when
a large number of input factors are included. Some other newly introdaed sampling
strategies could be found in Refs. 204, 205.

1.4 Determination of analysis results

In the determination of uncertainty and sensitivity analysis results, the most funda-
mental task is to actually explore the mapping from input vector to output variables:

Xj;y(xp)l, j =1;2;, ;M. y labels the output vector. It may contain several inde-
pendent or correlated observations. For simplicity in statement, wejust consider an
arbitrary element in y, denoted by y. The mapping from input vector to the model

output can be analytically obtained if the functional form of the model under study is
previously provided. With this kind of situation, optionally, the m apping of interest
can also be constructed by computational strategies (sampling-based medds) which
are most frequently used since their implementations do not requi the form of model
function to be given at rst. In the following, several representations of analysis results
are introduced by the use of sampling-based methods.

1.4.1 Scatter plots

Scatter plots-based representation is a natural starting point in the uncertainty and
sensitivity analysis of complex systems. It provides an intuitive visual indication of
the dependence of output variable upon individual input factors. Furthermore, it is
de nitely advantageous for directly understanding the impact of uncertainties in input
factors on the uncertainty in model output. Scatter plots of two two-variate simple
models are presented as examples: one is constructed in the absemdecoupling items
between input factors (Fig. 1.10) and the other is designed in the presence of coupling
items. Input factors are assumed to be independent of each other and tbe uniformly
distributed in the real range [0, 1]. The scatter plots generated by thestandard LHS and
by the one-at-a-time method are considered, respectively. For sanlipg-based methods,
the dependence of outputy versus a single input factor is plotted in keeping values of the
rest factors arbitrary. Regarding one-at-a-time method, however, the relationship of y
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(e) Sampled values of QMC sampling based on Sobol sequences.

Figure 1.9: Distribution of sampled values in a 2-dimensional input space. Input factors are
assumed to be uniformly distributed in [0, 1]. ( @): sampled values are generated by employing
random sampling based on pseudo-random numbers. £): sampled values are generated by
applying the standard LHS. ( ¢): sampled values are generated based on LHS which is optimised
by the maximin distance criterion. ( d): sample values are generated based on LHS which is
optimised by CL criterion ( €): sampled values are generated by Sobol sequences-based QMC
sampling. From left to right, the size of sample M =16 and M = 100, respectively. The unit
square is divided into 64 (on the left) and 256 (on the right) squa res.
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(a) Sampling-based method.

(b) One-at-a-time method.

Figure 1.10: (Model 1) Examples of scatter plots-based representation for the uncertainty

and sensitivity analysis of model: y = 4x; +2x3. The input factors are assumed to be

independent of each other and to be uniformly distributed in the real range [0, 1]. Panel @)

presents the plots generated by standard LHS. Panel (b) illustrates the plots obtained in terms
of one-at-a-time method.

with a single input factor is presented while xing the rest factors (often constant at their
mathematical expectation values). It is straightforward to qualitative ly state that the
factor x1 is more important than X, in establishing the uncertainty in y for both models,
according to the sampling-based scatter plots. For the model with absa coupling
items between input factors, one-at-a-time method is superior to ampling-based ones
in displaying the qualitative relationship between output variabl e and individual input
factors (Fig. 1.10. However, when coupling items between input factors are involved
one-at-a-time method can just present local dependence of output vaéable upon a single
factor by neglecting the interaction e ects between di erent inp ut factors (introduced
by coupling items) (Fig. 1.11(b)). Moreover, analysis results associated with each single
factor rely on the previously assumed values of the remaining factors. fis implies
sampling-based scatter plots are de nitely bene cial for displaying the global dependence
of output variable upon input factors, regarding models involving couping terms (Fig.

1.11(a)).
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Figure 1.11:
and sensitivity analysis of model: y = 4x; +2x3
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(Model 2) Examples of scatter plots-based representation for the uncertainty

4x1X». The input factors are assumed to

be independent of each other and to be uniformly distributed in t he real range [0, 1]. Panel
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(a) presents the plots generated by standard LHS. Panel (b) illustrates the plots obtained in
terms of one-at-a-time method.

(b) One-at-a-time method.

(infectious probability),

(SIR model) Examples of scatter plots-based representation for the uncertainty
(recovered

Figure 1.12:

and sensitivity analysis of SIR model. The input factors

rate), and s(0) (initial proportion of susceptible agents) are assumed to b e independent of each

other and uniformly distributed in the real range [0, 1]. Panel ( a) presents the plots generated
by standard LHS. Panel (b) illustrates the plots obtained in terms of one-at-a-time met hod.
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1.4.2 Correlation measures

Correlation indices quantify the correlation and independence betwen two or more
values in fundamental statistics. One of the most often considered coelation indices is
Pearson correlation coe cient (CC). The CC was introduced by Pearsonin the 1880s,
following a related idea of Galton RO& 208. It provides a measure of the strength of
linear correlation between individual input factor and the output vari able. The CC

between two variables has values between -1 and 1. Three particular vaés -1, 0, and
1 separately correspond to the total negative linear correlation, no linar correlation,

and total linear correlation. Speci cally, the CC between an input factor x; and output

variable y, denoted by (X;;y), is de ned by

P _
M )y EW)
iy ’

(1.65)

(xiry) =

where ; denotes the mathematical expectation of inputx;, E(y) the mathematical
expectation of output y, ; the standard deviation of x;, and  the standard deviation
of y. They are determined by

SN em= 2y, (1.66)
I_szl g y_Mj=1yj, .
2 31:2 2 31:2
-4 1 X i 25 . -4 1 X 25 .
VY (X i) ; y =t (i E(y) : (1.67)
i=1 j=1

The absolute value of (x;;y), between 0 and 1, corresponds to a trend from no linear
relationship to an exact linear relationship betweenx; andy. Typically, for linear (purely
additive) models, the sum of squared pairwise CCs between each of ¢hinput factors
and output variable is 1 in the absence of correlations among input factors:

2(xiry) =1 (1.68)
i=1
As an example, the CCs are shown in tablel..2 for two two-variate nonlinear models and
SIR model. Their scatter plots are presented in Figs.1.10, 1.11and 1.12, by the use of
LHS-based method and one-at-a-time method.

The patrtial correlation coe cient (PCC) provides a measure to characterise the degree
of association between a single factox; and an output variable y with the e ects of the
remaining elements ofx removed. By the use of linear regression model, a new variable



Introduction 40
Table 1.2: The CCs for two-variate nonlinear models and SIR model with scatter plots
presented in Figs. 1.10, 1.11 and 1.12. For SIR model, x1 denotes the parameter , X, the

parameter , x3 the parameter s(0), and y the output variable s.
sampling-based method one-at-a-time method

CcC model 1 model 2 SIR model model 1 model 2 SIR model

(Fig. 1.10(a)) | (Fig. 1.11(a)) | (Fig. 1.12(a)) | (Fig. 1.10(b)) | (Fig. 1.11(b)) | (Fig. 1.12(b))
(X1;Y) 0.89 0.84 -0.35 1 1 -0.96
(x2;Y) 0.44 -0.03 0.53 0.97 0.00 0.61
(x3;Y) { { 0.62 { { 1.00

is introduced based on the elements ok exceptx;:
X
Xi = co+ G Xj (1.69)
j=1j6i
And the e ects of the remaining elements ofx ony are represented as
X
g=lIy+ b X;: (1.70)
j=1j6i

The PCC betweenx; and y is de ned as the CC between & Xy) and (y ¥). An
example of the PCCs for nonlinear models will be presented later, togber with a similar
measure: the partial rank correlation coe cient.

Spearman's rank correlation coe cient (RCC), named after Charles Sparman, char-
acterises the statistical association between the ranking of two vadbles of interest.
It quanti es how well the dependence between two variables can beexplained by a
monotonic function. The RCC between x; and y is de ned as the CC between their
corresponding ranks. Consider a size of sample . The values ofx; and y are replaced
by their rank numbers, positive integers between 1 andM, in the sorting of x; and y
from the smallest to the largest, namelyrx; and ry, respectively. The RCC betweenx;
and y is then given by

Pu i B
j= (X Xa)(ry; 1Y)

1= Tl
rXi)?

e (1.71)

jM=1 (I’X} jM:]_ (ryj W)z

When M rank numbers (integers from 1 toM) are distinct from each other for both x;
and y, the mathematical expectation and statistical variance of rank transformed data
is calculated as

M+1 M2 1

Xi=1y=—5—; V(rxi)= V(ry) = T

(1.72)
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Table 1.3:

RCCs for two-variate nonlinear models and SIR model with scatt er plots presented
in Figs. 1.10, 1.11 and 1.12. In SIR model, x1 denotes the parameter

x3 the parameter s(0), and y the output variable s.

, X2 the parameter

sampling-based method

one-at-a-time method

RCC model 1 model 2 SIR model model 1 model 2 SIR model
(Fig. 1.10(a)) | (Fig. 1.11(a)) | (Fig. 1.12(a)) | (Fig. 1.10(b)) | (Fig. 1.11(b)) | (Fig. 1.12(b))
(X1;Y) 0.89 0.89 -0.38 1 1 -1
(x2;Y) 0.41 0.06 0.63 1 0.00 1
(X3;Y) { { 0.58 { { 1

P
where the formula jle j2= M(2M +1)(M +1)=6 was used. The RCC betweerx;
and y then can be simpli ed as

p |
6 M(xl ory)?
MMM2 1)

(Xisy)=1 (1.73)

The RCC betweenx; and y has values between -1 and 1, analogous to the CC, with
positive values corresponding to the increase or decrease ®f and y along the same
direction and negative values corresponding to the increase or decreasfx; and y along
opposite directions. A RCC of zero value indicates an obvious non-monotoairelation-
ship betweenx; and y. The larger the RCC in magnitude, the closer the relationship
betweenx; and y gets to be monotonic. The RCCs are displayed in tablel.3 for three
models with scatter plots presented in Figs.1.10, 1.11and 1.12 by the use of LHS-based
method and one-at-a-time method.

Another rank correlation coe cient is the Kendall rank correlation coe cient(KRCC),
commonly referred to as Kendall's coe cient. The KRCC was developed by Kendall in
1938 p09. It measures the ordinal association between two variables under gtly. The
KRCC between x; and y is also de ned based on their rank numbers in the sorting from
the smallest to the largest. It has values between -1 and 1, with high vales indicating
a similar (or identical when the coe cient is 1) rank between x; and y and low values
labeling a dissimilar (or fully di erent when the coe cient is - 1) rank between them.
A KRCC of zero value betweenx; and y corresponds to the independent relationship
between them. For a size of sampléM, an arbitrary pair of mappings from x; to y:
XLyl Xyl § 6 kand jik =1;2
both elements follow the same direction, that is, if both x; > x| and y; > yy or if

:M, is said to be concordant if the ranks for

both x} < x|} andy; <y. Itis said to be discordant if the ranks for both elements
follow opposite directions, that is, if x| > x| andy; <y orif x| <x| andy; >yx.
When x; =
discordant. The de nition of KRCC is given by

x}( or yj = Yk, the correspond pair of mappings is neither concordant nor

2 [(number of concordant pairs)-(number of discordant pairs)]
MM 1) '

(Xi;y) = 1.74)
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Table 1.4: KRCCs for two-variate nonlinear models and SIR model with scat ter plots
presented in Figs. 1.10, 1.11 and 1.12. For SIR model, x1 denotes the parameter , X, the
parameter , x3 the parameter s(0), and y the output variable s.

KRCC sampling-based method one-at-a-time method
model 1 model 2 SIR model model 1 model 2 SIR model
(Fig. 1.10(a)) | (Fig. 1.11(a)) | (Fig. 1.12(a)) | (Fig. 1.10(b)) | (Fig. 1.11(b)) | (Fig. 1.12(b))
(X1;Y) 0.71 0.73 -0.27 1 1 -1
(X2, Y) 0.29 0.05 0.46 1 0.00 1
(x3;Y) { { 0.45 { { 1
Table 1.5 The PCCs and PRCCs for two-variate nonlinear models and SIR mod el with

scatter plots presented in Figs. 1.10(a) (model 1), 1.11(a) (model 2) and 1.12(a) (SIR model).
, X3 the parameter s(0), and

For SIR model, x1 denotes the parameter

, X2 the parameter

y the output variable s.

measures PCC PRCC
model 1 | model 2 | SIR model | model 1| model 2| SIR model
(X1;Y) 0.99 0.83 -0.57 0.98 0.90 -0.68
(X2;Y) 0.97 -0.02 0.64 0.92 0.17 0.78
(Xa1Y) { { 0.73 { { 0.76

As an example, the KRCCs are exhibited in table1.4 for the models with scatter plots
presented in Figs. 1.10 1.11and 1.12 by the use of LHS-based method and one-at-a-
time method.

Similar to PCC, the partial rank correlation coe cient (PRCC) perfor ms a partial cor-
relation on rank-transformed data: rx; and ry by the use of linear regression models
described by Egs. (.69 and (1.70). The PRCC provides a robust sensitivity measure
for nonlinear but monotonic relationships betweenx; and y in the absence of input cor-
relations. The PCCs and PRCCs are presented in tablel.5 for nonlinear models with
1.10(a) (model 1), 1.11(a) (model 2) and 1.12 (SIR
model), by the use of LHS-based method.

scatter plots illustrated in Figs.

In the absence of coupling terms involving di erent input factors, rank correlation co-

e cients, including RCC and KRCC, based on one-at-a-time method is equivalent to

the PCC and PRCC based on sampling strategies. They all provide reliale measures
in quantifying the monotonic relationship between each individual input factor and the

output variable. However, in the presence of coupling items, the PRC is superior to any
other correlation coe cient in assessing how well the relationshipbetween an individual

input factor and the output variable can be described by a monotonic fundion.

Occasionally, multiple correlation is also of interest to be considezd. The coe cient of
multiple correlation, denoted asR in general, assesses how well a given output variable
can be predicted using a linear function of a set of input variablesq10. It provides

a global measure of the strength of the association between input variabeand the
output variable. The coe cient of multiple correlation takes values b etween 0 and 1. A
higher value indicates a stronger linear association connecting inputactors and output
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variable. A value of zero suggests the absence of linear relationship brten input factors
and output variable. Unlike the previously introduced correlation coe cients which o er
both the strength and direction of the underlying association connedhg input factors
and the output varaible, the coe cient of multiple correlation tells only the strength
of the association. Regarding a general model of two input factors, the @ocient of
multiple correlation is de ned by

2x1;y)+ Ax21y) 2 (xa1y) (X2y) (Xa;x2) T2,

R = ) : (1.75)

where indicates the pairwise CC (Eqg. (1.65) between involved variables. By assuming
input variables to be independent of each other, the above expressn can be simpli ed
as

R= 2(xuy)+ 2xzy) o (1.76)

which is naturally extended to a general situation of n input factors of absent input

correlations: " "
1=2
X0

R = 2(xiy) (1.77)
i=1
The multiple correlation coe cient is 0.99 for model 1 (Fig. 1.1Q0(a)), 0.84 for model 2
(Fig. 1.11(a)) and 0.89 for SIR model (Fig. 1.12(a))

1.4.3 Sensitivity indices

The sensitivity indices (or measures), also called importance indes (measures), of out-
put variables with respect to input factors are often de ned by variance-based methods.
One commonly considered variance-based method is the Sobol's variandecomposi-
tion [29]. Following his concept, the determination of sensitivity indices depends upon
multidimensional integrals, as introduced in Section1.3. Considering the complexity
in evaluating multidimensional integrals, the sampling-based methd is frequently ap-
plied to the calculation of sensitivity indices in practice. With sampling-based method,
the sensitivity indices of di erent orders are evaluated by usingtwo independently con-
structed samplings, namelyA and B, which are M n matrices. The mathematical
expectation and statistical variance of output y are approximated by any of the con-
structed samplings, for instance,A, as
1 M
E)= o  F(A) (1.78)

M =1

X
V)= o fAA) EA): (1.79)
j=1
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Table 1.6:  An example of construction of both A(Bi) and BE\” matrices with sample size
M =5 and number of input variables n = 3. Matrices A and B are generated by the use of
standard LHS. Three input variables are independently and uniform ly distributed in the range

[0, 1].
2 0:747 0:359 0:008 3 2 0:760 0:806 0:381 °
0:053 0:783 0:955 0:524 0:755 0:422
A :E 0:325 0:098 0:453 z B :E 0:342  0:194 0:180 z:
0:899 0:936 0:220 0:949  0:400 0:746
0:519 0:549 0:618 0:062 0:480 0:958
2 0760 0:359 0:008 3 2 0:747 0806 0:381 3
o 0:524  0:783  0:955 o 0:053  0:755 0:422
AY =8 0:32 0008 0453 7; B =8 0:325 0194 0:180 7;
0:949  0:936 0:220 0:899  0:400 0:746
0:062 0:549 0:618 0:519  0:480 0:958
2 0:747  0:806 0:008 ° 2 0:760 0:359 0:381 °
0:053 0:755  0:955 0:524  0:783  0:422
A® =§ 0:325 0:194  0:453 z 8@ =§ 0:342  0:098  0:180 z
0:899 0:400 0:220 0:949 0:936 0:746
0:519  0:480  0:618 0:062  0:549  0:958
2 0:747 0:359 0:381 3 2 0:760 0:806 0:008 3
0:053 0:783  0:422 0:524 0:755  0:955
AP :E 0:325 0:098  0:180 z; B :E 0:342  0:194  0:453 z:
0:899 0:936  0:746 0:949  0:400  0:220
0:519 0:549  0:958 0:062 0:480 0:618

Following the concept of Sobol's variance decompaosition, the rst-orde and total sensi-
tivity indices are estimated, respectively, by

2 3
5= 42N faniEY), EX5 Vi) (1.80)
| M J A Jj y y) .
p 17 3
sti = P f(A) f(A) AL 5 V(y); (1.81)
Ti M j j B /i Y)i .
i=1

whereA(Bi) is a matrix with column i in A substituted by the ith column in B, and vice
versa for matrix Bg) whose columni comes from matrix A and the remaining (n 1)
columns come from matrix B [156. An example of construction of both Ag) and B,&i)
matrices is presented in tablel1.6 with sample sizeM = 5 and three input variables
considered. They are assumed to be independently and uniformly diributed in the real
range [0, 1].

Analogously, the second- and higher-order sensitivity indices are detmined by

2 3,
R .
swi =400 FANTBR™) EWS V() s, s (1.82)
j=1
2 3
R !
Suiais = 45 TARFBRY) EXS V) s, s (1.83)
j=1

Siz  Sijip;  Siyiz  Sizizs (1.84)
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where the rst two indices separately quantify the fraction of total v ariance of output y
that is contributed by the interaction e ect between Xx;, and x;,, and by the interaction
e ect involving Xi,, Xj, and Xi.

Alternative formulas for the determination of the rst-order and total se nsitivity indices
are o ered by Jansen in 1999 154, 211], which are expressed as

2 3,
1 X i)y 2 )
s=1 4o f(B) f(Ag) > V() (1.85)
2 = 3,
: 2
sii= 4o f(A) TAR) 5 V() (1.86)
j

=1

By employing a large set of test functions involving di erent degrees of linearity, addi-
tivity and e ective dimension, it is stated that Jansen's method i s more e cient than
Sobol's one in evaluating sensitivity indices 156. The sensitivity indices of three exem-
pli ed models are presented, as examples, in table$.7, 1.8, and 1.9, accompanying with
a comparison of Sobol's and Jansen's methods. When the size of sampleasge enough,
Sobol's and Jansen's methods both o er perfect sensitivity indice. However, Jansen's
method is more e cient than Sobol's one as it requires less computatioal cost in imple-
mentation. Both the standard LHS and QMC sampling are performed to carry out the
analysis process in considering the e ect of sample size. QMC sanipf can be seen as
a deterministic algorithm as the low discrepancy sequence used fdhe construction of
sampling is not random, but deterministic. Speci cally, in the im plementation of QMC
sampling, matrices A and B of sizeM n, used for the determination of sensitivity
analysis results, should be constructed from a quasi-random sequenof sizeM 2n. A
is generated by the left half part of the sequence, an@ by the rest half part, as shown
in table 1.10. Regarding sampling strategies, average over independent constriens of
LHS is of necessity in obtaining accurate sensitivity measures. Thistates again that
QMC sampling is much more e cient for sensitivity analysis of models. It provides ac-
curate analysis results by using a small number of sampled points and sb avoids highly
computational cost in performing con guration average.
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Table 1.7: Variance-based sensitivity analysis results for the model of form y = 4x; +

2x3. The standard LHS and QMC sampling are used, with the e ect of sa mple size M

considered. Both Sobol's (Egs. (1.80)-(1.81)) and Jansen's (Egs. (1.85)-(1.86)) methods are

employed to the evaluation of sensitivity indices. For LHS, analysis results are averaged over

100 independent con gurations, with standard deviations dis played in parentheses. QMC

sampling, generated based on Sobol sequences, is determinigt and numbers in parentheses
indicate the thousandth and ten-thousandth digits.

sampling M method E(y) V(y) S1 S2

ST1 ST2
102 Sobol' 2.67(.00)  1.69(.15)  0.79(.05)  0.21(.08)  0.79(.08) 0.21(.05)
Jansen 2.67(.00) 1.70(.15)  0.79(.03)  0.22(.11)  0.78(.11) 0.21(.03)
LHS
104 Sobol 2.67(.00)  1.69(.01)  0.79(.00)  0.21(.01)  0.79(.01) 0.21(.00)
Jansen  2.67(.00)  1.69(.01)  0.79(.00)  0.21(.01)  0.79(.01) 0.21(.00)
T T 0 1827 " "Sobol” ~ 2.66(72) ~ 1.67(50) ~ 0.79(63)  0.21(41) ~ 0.78(60) = 0.20( ~ ~ 37)
Jansen 2.66(72) 1.67(50) 0.77(61) 0.22(85) 0.77(15) 0.22( 40)
oM 104 Sobol' 2.66(67) 1.68(89) 0.78(90) 0.21(05) 0.78(95) 0.21( 10)
Jansen  2.66(67) 1.68(89) 0.78(95) 0.21(06) 0.78(95) 0.21( 05)
3 10 Sobol' 2.66(66) 1.68(88) 0.78(97) 0.21(03) 0.78(97) 0.21( 04)
Jansen  2.66(66) 1.68(88) 0.78(95) 0.21(05) 0.78(95) 0.21( 05)

Table 1.8: Variance-based sensitivity analysis results for the model of form y = 4x; +

2x3  4x1x». The standard LHS and QMC sampling are used, with the e ect of sa mple size

M considered. Both Sobol's (Egs. (1.80)-(1.81)) and Jansen's (Egs. (1.85)-(1.86)) methods

are employed to the evaluation of sensitivity indices. For LH S, analysis results are averaged

over 100 independent con gurations, with standard deviation s displayed in parentheses. QMC

sampling, generated based on Sobol sequences, is determinigt and numbers in parentheses
indicate the thousandth and ten-thousandth digits.

sampling M method E(y) V(y) S1 S2 ST1 ST 2
102 Sobol' 1.67(.04) 0.46(.04) 0.71(.19) 0.03(.21) 0.97(.21) 0.29(.19)
Jansen 1.67(.03) 0.47(.04) 0.72(.05) 0.04(.14) 0.96(.12) 0.29(.04)
LHS
10 Sobol' 1.67(.00) 0.47(.00) 0.72(.02) 0.05(.02) 0.95(.02) 0.28(.02)
Jansen 1.67(.00) 0.47(.00) 0.72(.00) 0.05(.02) 0.95(.01) 0.28(.00)
I 1827 " "Sobol" T 1.67(46) ~ 0.48(74) ~ 0.67(7I)  "0.08(13) ~ 0.91(87) = 0.32( ~ ~ 29)
Jansen 1.67(46) 0.48(74) 0.72(51) 0.09(33) 0.85(59) 0.26( 22)
omc 10 Sobol' 1.66(67) 0.46(65) 0.71(46) 0.04(78) 0.95(22) 0.28( 54)
Jansen 1.66(67) 0.46(65) 0.71(41) 0.04(73) 0.95(24) 0.28( 60)
3 104 Sobol' 1.66(67) 0.46(68) 0.71(41) 0.04(72) 0.95(28) 0.28( 59)
Jansen 1.66(67) 0.46(68) 0.71(43) 0.04(77) 0.95(25) 0.28( 57)

Table 1.9:  Variance-based sensitivity analysis results for SIR model. The standard LHS

and QMC sampling are used, with the e ect of sample size M considered. Both Sobol's (Egs.

(1.80)-(1.81)) and Jansen's (Egs. (1.85)-(1.86)) methods are employed to the evaluation of

sensitivity indices. For LHS, analysis results are averaged over 100 independent con gura-

tions, with standard deviations displayed in parentheses. QM C sampling, generated based

on Sobol sequences, is deterministic and numbers in parenthesg indicate the thousandth and
ten-thousandth digits.

sampling M method E (y) V(y) s s Ss(0) ST ST STs (0)
102 Sobol' 0.24(.01) 0.07(.01) 0.19(.14) 0.20(.12) 0.43(.15) 0.30(.09) 0.33(.12) 0.59(.13)
Jansen 0.25(.01) 0.07(.01) 0.19(.12) 0.19(.13) 0.42(.10) 0.31(.07) 0.33(.08) 0.60(.09)

LHS
10 Sobol' 0.24(.00) 0.07(.00) 0.19(.01) 0.18(.01) 0.42(.01) 0.31(.01) 0.34(.01) 0.59(.01)
Jansen 0.24(.00) 0.07(.00) 0.19(.01) 0.19(.01) 0.42(.01) 0.31(.01) 0.34(.01) 0.59(.01)

T T 10727 ~ "Sobol” ~ 0.23(83)  0.07(30) ~ 0.23(21) ~ "0.23(95) ~ 0.3I(50)  0.34(C ~ ~ 66) ~ 0.50(42) = 0.54(42) ~

Jansen 0.23(83) 0.07(30) 0.31(77) 0.36(61) 0.41(09) 0.32( 83) 0.41(59) 0.56(16)
omc 104 Sobol' 0.24(19) 0.07(14) 0.18(56) 0.18(11) 0.41(54) 0.30( 97) 0.33(99) 0.59(45)
Jansen 0.24(19) 0.07(14) 0.18(30) 0.18(08) 0.41(36) 0.30( 99) 0.33(97) 0.59(50)
3 104 Sobol' 0.24(19) 0.07(14) 0.18(61) 0.18(15) 0.41(51) 0.30( 82) 0.34(13) 0.59(53)

Jansen  0.24(19)  0.07(14)  0.8(75)  0.18(30)  0.41(59)  0.30( 81)  0.34(08)  0.59(55)
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Table 1.10:  An example of the construction of two independent QMC samplin gs with sample
sizeM =10 and number of input variables n = 3. Three input variables are independently
and uniformly distributed in the real range [0, 1].

2 0:09375 0:46875 0 :84375 0:40625 0:28125  0:34375 s
0:59375 0:96875 0 :34375 0:90625 0:78125 0 :84375
0:84375 0:21875  0:09375 0:15625 0:53125 0:09375
0:34375 0:71875  0:59375 0:65625 0:03125 0:59375
0:46875 0:09375 0 :46875 0:28125 0:65625 0:71875 .
0:96875  0:59375  0:96875 0:78125 0:15625 0:21875 !
0:71875 0:34375 0:71875 0:03125 0:40625 0:96875
0:21875 0:84375 0:21875 0:53125 0:90625 0 :46875
0:15625 0:15625  0:53125 0:84375 0:84375  0:40625
0:65625 0:65625 0:03125 0:34375 0:34375  0:90625
2 0:09375 0:46875 0:84375 2 0:40625 0:28125 0:34375
0:59375 0:96875  0:34375 0:90625 0:78125 0:84375
0:84375 0:21875 0:09375 0:15625 0:53125 0:09375
0:34375 0:71875  0:59375 0:65625 0:03125 0:59375
A = 0:46875 0:09375 0 :46875 B = 0:28125 0:65625 0:71875
0:96875 0:59375  0:96875 0:78125 0:15625 0:21875
0:71875 0:34375 0:71875 0:03125 0:40625 0 :96875
0:21875 0:84375 0:21875 0:53125 0:90625 0 :46875
0:15625 0:15625 0:53125 0:84375 0:84375 0 :40625
0:65625 0:65625 0:03125 0:34375 0:34375 0:90625




Chapter 2

The analytic analysis for models
with independent input variables

Any operations that we perform on a model response dependent upon a nurab of in-
put variables of uncertainty require us to identify the response uncertainty based on the
uncertainty in input variables. The propagation of variance, characterisng the e ect of
input uncertainty on the uncertainty of model response, constitutes the essential ingre-
dient of uncertainty and sensitivity analysis of complex systems. h the present chapter,
an analytic formula is derived by using Taylor series to specify tke variance propagation
from input variables to the model response in the absence of input coelations. With
the formula, we can exactly calculate the uncertainty of model respons. Furthermore,
it also allows one to quantify the partial variance contributions of di e rent orders from
input variables to the output one, whereby input variables can be ranlked according to
their importance in explaining the uncertainty of the output variabl e.

2.1 Taylor series

The concept of a Taylor series was formulated by a Scottish mathematiein James Gre-
gory and formally introduced by an English mathematician Brook Taylor in 1715. In
mathematics, a Taylor series is a representation of a function as an imite sum of terms
that are evaluated from the values of the function's derivatives at a simgle point [217].
In general, a function can be approximated as the sum of a nite number otterms con-
stituting of function's derivatives of di erent orders by using T aylor series of neglecting
higher-order terms.

48
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Taylor series is widely used for the expansion of functions only depwlent upon one
single variable. Regarding a general univariate function of the formy = f (x), its Taylor
series at a pointx = a is given by

R £0)(a)
i!

(x a); (2.1)
i=0

wherei! denotes the factorial ofi, and f () (a) the ith derivative of f evaluated at point a.

The zeroth-order derivative off is de ned asf itself and 0!=1. If a = 0, the expansion is

known as a Maclaurin series, named after the Scottish mathematician Cal Maclaurin

who introduced extensive use of this special case of Taylor seriés the 18th century

[213.

The Taylor series can also be generalised to functions of more than onepgut variable
[214. For a real function of the formy = f(x) with x = (X1;X2; ;Xn)' labeling
the input vector of n-dimensional variables, its Taylor series at a speci ed pointx =
(az;a; ;an)T is represented as

I

AR a )t (e a)r @ tiof
o s sl in! @% @k

(az; ;an): (2.2)

2.2 Variance propagation for univariate case

Beginning with the univariate function y = f (x), it can be expanded by the use of Taylor

series at the central point ofx as

X1 dif :

y=f()+ = = (x )5 (2.3)
i=1 x=

in which indicates the mathematical expectation ofx. Taking the average of both

sides of Eq.Q.3) yields

X1 dif

EM=1O)* 5 g7 M (2.4)

i=1 x=

where M;(x) is the i" central moment of variable x, given by

yA
Mi(x)= (x )Px)dx: (2.5)
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P (x), as stated in Chapter 1, denotes the PDF ofx and characterises the epistemic
uncertainty in x. The variance ofy, namely V (y), is de ned in mathematics by

Z
V()= y*P(x)dx  EZ(y): (2.6)

Substituting Egs. (2.3) and (2.4) into Eq. (2.6) provides

" ! #
Z o1 df .
V= fO+ T S S5 () P(odx
i=1 x=
" ! #
NETRIE LV
i=1 I' dXi X= I | Z
X1 df df "
= 2 _ . 1+
fo()+ I TIEO (x )T P(x)dx
| |
T i X 1 df
+2f( )i:1 T (X . ) P(x)dx  2f ( )i=1 T M (x)
X1 dif df ,
oy 1L dxi o dx MiCOM; () 12C)
- |
X1 df df
= . — [Mi+j(x)  Mi(xX)M; (X)];
-1 ibjrodx o dx J J
2.7)
which is equivalent to
|
X1 dif df
V(y) = - [Mi+j(x)  Mi(x)Mj(X)]; (2.8)

i =0 itjlodxt o dxd

sinceMg(x) = 1. This analytic expression mathematically explains the output variance
propagated from the uncertainty in input variable through the functional relationship
connectingy and x. Furthermore, it can also help identify the partial variance contri-
butions of di erent orders of x, embodied by the derivatives of di erent orders of f . If
one just considers the rst-order variance contribution of x, Eq. (2.8) is then simpli ed

as |
2

vy T v, (2.9)

x=
where M; = 0 and M, = V(x) have been used, andV (x) labels the variance ofx.
Equation (2.9), called the general Taylor series expansion truncated to the rst oder, is
most widely used for the estimation of the uncertainty iny in terms of the uncertainty
in x. This approximation, however, is satisfactory for the uncertainty analysis of highly
nonlinear models only when the uncertainty in input variable is neglgible [17], as stated
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in the rst chapter.

To identify the partial variance contributions of di erent orders fr om input x, a new
quantity of interest is proposed, labeled as R. It is de ned as the ratio of V(y) con-
tributed by rst orders of uncertainty in x to its exact value:

_ V.
Yoovr(y)'

(2.10)

whereV (y) is calculated with Eq. (2.8) under the condition i+ 2 and Vy(y) the
theoretical value of V (y) obtained from the below integral:
Z
Vr(y)=  y*P(x)dx  EX(y);
z z 2 (2.11)
= f2(x)P(x)dx f (X)P (x)dx

The analytic formula previously deduced (Eq. (2.8)) speci es the variance propagation
from input variable to the model output. With this formula, it is natu ral to quantify
the importance of partial variance contributions of di erent orders from input x in the
estimation of uncertainty in output y. In the following, higher-order contributions of
input uncertainty to the uncertainty of output y are evaluated for highly nonlinear
models, by using the analytic formula. Two widely discussed digibution laws: uniform
distribution and normal distribution, as examples, specify the uncertainty in input x.

2.2.1 Uniform distribution

We rst suppose x is uniformly distributed. Its PDF is given by

8
30 X<Xo;
P(x) = 5 o X0 X Xm (2.12)
0 X>Xm:
Uniform distribution provides the mathematical expectation of x: = w and its
central moments: (
0; k is odd;
M(X) = s . (2.13)
ST % kiseven

wherek is a positive integer; labels the standard deviation ofx; xg and x,,, denote the
lower and upper bounds ofx, respectively. Detailed derivation of M (x) is presented in
Appendix A. Inserting the expression of central moments (Eq. 2.13) into Eq. (2.9
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(b) Distributions for exponential function

Figure 2.1: Distributions of the observation R , with dierent parameters for power-law

function: y = x (panel (a)) and exponential function: y = e* (panel (b)) by assuming input
variable is uniformly distributed; To the left in both panels is th e distribution of R ,, versus the
order index for two kinds of nonlinear relationship connecting y and x with constant values
of parameter ; to the middle is the dependence of R, on the parameter in considering
di erent order contributions of uncertainty in  x; to the right is the association of R, with the
distribution parameter of variable x by setting = 4 for both panels. For a function with

speci ed parameter , the observation R, only depends upon the ratio of to (power-law
function) or  (exponential function) for each specied . Inthe left and middle plots, = =2

in panel (a) and 2 =0:5 in panel (b).

yields I
x X dif df S
V(y) = Cij O o " (2.14)

i=1 j=i X= x=

where| is summed with an increment of 2 andC;; is de ned as follows.

el 8 gi+i)=2 : .
2 [ U i andj are odd
Cj = S (2.15)
: 3(i+§)=2 j | L. di
ey G ey | and]j are even
Else 8 23(i+j)=2 | . .
R IR i andj are odd
Cj = S (2.16)
: 230*1)=2 j .

G+ 7+ (+Or Genrs | andj are even

The underlying results of R, are displayed in Fig. 2.1, for two widely discussed nonlinear
functions: power-law function and exponential function. It is noticed that Ry will be
close to one while is large enough for both kinds of functions with di erent parameters,
see left plots in both panels.
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By inserting the functions under discussion:y = x andy = e* , equation (2.14) can
be separately updated by

—~ ? (=), (2.17)

and
h3

e Ci( ) (2.18)
i=1 j=i
j=j+2
which demonstrate that, for specied (thereby both i andj are specied) and , the
contribution of uncertainty in input x to the observation Ry is embodied in the ratio
of to for power-law relationships connectingy and x and in  for exponential rela-
tionships. In Fig. 2.1, middle plots of both panels display the distribution of Ry versus
exponent under specied = (for power-law function) and xed  (for exponential
function), by considering di erent order contributions of uncert ainty in x. Right ones
illustrate the dependence of R on = (1= ) for power-law function (exponential func-
tion) by, particularly, setting = 4. Regarding power-law function, should be large
for large | 1j if = is constant, or for small = if is constant, in order to make
Ry more closer to 1, i.e., to make the estimated variance in model output rare closer
to its exact value. For example, the contribution of uncertainty in x should be consid-
ered until up to the 6th order (to ensure R, > 0:98) in regions of < 0:1 and > 8.
For the exponential relationship connectingy and x, Ry is symmetric with respect to
= 0. The contributions of higher orders of input uncertainty are non-ignorable when
the functional form deviates from linear law and also is non-negligible. The statement
is visually veri ed that the original approximation presented in Eq. (2.9), by only con-
sidering the contribution of the rst order of input uncertainty, ¢ an successfully estimate
the uncertainty in output variable only when the input uncertainty is negligible or the
model under discussion is almost linear. The contributions of higherrder( 2) of
input uncertainty, however, are non-ignorable for models behavingnon-linearly in the
neighbourhood of input variable when (for the exponential association connecting in-
put and output variables) or = (for the power-law association connecting input and
output variables) is non-negligible.

2.2.2 Normal distribution

Optionally, specify the uncertainty in x by normal (Gaussian) distribution. Its PDF is
given by

x_)?

P(xj; )=ﬁ012—e e x2 (1 ;+1); (2.19)
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(b) Distributions for exponential function

Figure 2.2: Distributions of the observation R , versus di erent parameters for power-law
function: y = x (panel (a)) and exponential function: y = e* (panel (b)) by assuming input
variable is normally distributed; To the left in both panels is th e distribution of R ,, with order
index for two kinds of functional form connecting y and x, by considering di erent values
of parameter ; to the middle is the association of R, with parameter  under considering
di erent order contributions of uncertainty in  x; to the right is the dependence of R, upon

the distribution parameter of variable x by setting =5 in panel (a) and =1 in panel (b),
respectively. For a function with specied , the observation R, correlates with the ratio of
to  (power-law function) or with (exponential function) for each xed . In the left and
middle plots, = =2 in panel (a) and =1 in panel (b).
which provides (
0; k is odd;
M (X) = (2.20)

K(k 1) kis even

where (?)!! is the double factorial with de nition given by

8
3?2 2 4 531 ?>0o0dd

(N = 5?20 22 4 642 2>0ewen (2.21)
R ?= 10

Associations of the observation R with order index , exponent parameter , as well
as the input uncertainty that is specied by and , are presented in Fig. 2.2. Panel
(a) illustrates the data for the power-law relationship connectingy and x. Panel (b)
displays the results for the exponential relationship. The obseration Ry will be close
to one when is large enough for each constant , see left plots in both panels. We can
notice from the middle plots that the contributions of higher orders of input uncertainty
should be considered for highly nonlinear functions. Right plots in boh panels suggest
that Ry of =1 can reach 1 only when the ratio of to is very large for power-law
function (y = x> as an example) or is very small for exponential function (y = €* as
an example). Typically, when the input variable is normally distrib uted, parameter
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Figure 2.3: Results associated with the observation R, for exponential relationship connect-
ing y and x: y = e* by assuming input x is uniformly and normally distributed, respectively.

To the left is the distribution of R , versus order index by keeping = =1; To the middle
denotes the dependence of R upon parameter in Xing = = 1; To the right is the
correlation between R, and by settihng = =1.

of power-law function should be a positive integer to enable the meamand variance of
output y calculable.

To understand the in uence of di erent distribution laws speci fying the uncertainty in

input variable on the estimation of output variance, a comparison of uniformand normal
distributions is provided for the observation R, by keeping both and the same for
two kinds of law, see Fig.2.3. The exponential relationship connectingy and x: y = e* ,
as an example, is discussed here. Results suggest that, when bottand are speci ed,
uniformly distributed input variable will drive the evaluated out put uncertainty more

close to its exact value, compared to normally distributed one, in conislering variance
contributions of the same order.

2.3 Generalisation of the analytic formula

The analytic formula Eqg. (2.8) for variance propagation is valid only for the model of
a single input variable. However, in mathematical modeling, the outpu quantity often

depends upon two or more input variables of uncertainty. In the folloning, the analytic
formula is generalised to the general case of more than one input variableRecall the
real model ofn independent input variables of the form

y="f(x)=f(Xu;X2;  Xn): (2.22)
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By the use of multi-variate Taylor series, the model responsg can be expanded at the

central point (f 9)=( 1; 2; ; n) of input vector as
x %X (Xt t)i @f xR ()(t t)it(Xs S)is,
= f f TR Y f . .
oo t=1 i=1 a (@}()( 9 ts=1 itiis=1 e ds!
t<s
@ x (x1 )" (Xn n)n @t tinf
—)(f ) ( _ L\t
otk 97 C il in! @y ap 9
(2.23)

where ; denotes the mathematical expectation of inputx;, as before. Reviewing the
mathematical de nition of variance, V (y) is analogously calculated as
!

A Fo \iq inin @1+ +inf @1+ *ing
_ (x1)'J1 (xn)'n .
V = _ S _ i i i i f o (2.24
v) iz Al Siniiy i) @ @k @f @f 9 @2
jl jn:0

with
A( )=ial ip! il el (2.25)

and

Fix)itin (xp)inin = Mi+j;(X1) M+, (Xn)  Mi (X1)Mj,(X1)  Mi, (Xn)Mj, (Xn):
(2.26)
Equation (2.24) speci es the variance propagation from input variables to the output
one for a general model, by assuming input variables are statisticallyndependent of
each other.

2.4 Applications to the analysis of complex systems

The power grid system and economic system are considered in this $ien as examples
of the application of our generalised analytic formula, Eq. @.24), in the uncertainty and
sensitivity analysis of complex systems. These two systems plagxtremely important
roles in modern society. Their reliability analyses have attractel many researchers'
interest.

Concerning the topic of sensitivity analysis, someone is of most intest to the sensitivity
indices. They allow one to quantitatively interpret the importanc e of individual factors
and of their interaction e ects in the estimation of model response. Recalling the analytic
formula of variance propagation in general models (see Eq. 2(24), partial variance
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contributions of di erent dimensionality in Eq. ( 1.33) can be computed through

x F(Xt)ij @f @f

Vi = ——(— —)(f X 2.27
i o A @k @*)( 9) | (2.27)
x F(x )i (xs)K @" &t @*'f -

Vis = =S . . f Vi Vs 2.28

BT o AIK]) okef efey @ O (2.28)
!
iipg - AEEKLPG)  @k@§@%F ekekef

Vi V& Mo Vs Vo Ve (2.29)

The sensitivity indices of di erent orders are then quanti ed accordingly by

Vi Vis Visu
St = 57 Sts = Stsu = T ;
T V() =T V() ST V()
X X
Stt = St t Sts + Stsk t : (2.30)
s=1;s6t s;k=1;s>k ;s;k6't

2.4.1 Power grid system

In our daily life, the main form of energy that we think of is the power from electricity.
Typically, a complex distribution system used for the transmissbon of electric power
is called the power grid. The electricity power grid is a physicalsystem that delivers
electricity from the place where it is generated to the site whereét is used. Consequently,
a power grid system can be segmented into three sections: elearpower generation,
supply, and transmission, which work together to meet the basic elddcity demand of
ordinary people. Uncertainty and reliability analysis of the power grid system has been
carried out since 1994 by using MC methodsZ15. In general, the assessment of power
grid system reliability is divided into two aspects: system adegacy and system security
which are, respectively, related to the steady-state operation of sstem and to the ability
of system to withstand sudden natural disturbances or to avoid attack.

Facing the increased global energy consumption, electric utility corpanies are striving to
generate wind power to meet the growing electricity demand. Windpower, as a typical
example of renewable energy sources, is plentiful, widely distouted, clean, produces
no greenhouse gas emissions during operation, consumes no water, andsubtle land
[214. In this part, a framework on the uncertainty and sensitivity analysis of the actual
wind power output, denoted asPy, is established by using the above established analytic
method.
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In theory, the wind output power of the wind turbine generator is always the same
when the wind speed is speci ed. In reality, however, the outpa power for a eet wind
turbine generator of the same type exhibits considerable variations ean when they are
operating at the same wind speedq17, 218. Consequently, P4 is often considered as a
random variable that is characterised by two parameters:x and " through a functional
relationship:

Pa(x) = f(x)+ (2.31)

where x indicates the wind speed,f (x) the deterministic power output from a wind
turbine generator, which acts as a function of the wind speed:

8
%o; 0 X vg

(A+Bx+cx?) P Ve X Vi

f(x)= (2.32)
Pr; Vi X Vo,
0; X Vco;
and " the variation of the power output, obeying normal distribution with =0 and

=0:1P; [219227. v, is called the cut-in wind speed at which the turbine rst starts
to rotate and generate power,v; the rated wind speed at which the rated powerP; (the
power output limit that the electrical generator is capable of) is reached, and v, the
cut-out wind speed at which the wind turbine generator is shut downfor safety reasons,
as shown in Fig. 2.4. Following the reference P27, v;i =3ms ! and v, = 12ms 1. The
constants A, B, and C are determined by v and v, through equations 219

i #
1 Vei + V,
= g e Vel v dvev o= (2.33)
Cl r r
! #
3
Vei TV
= m 4(Vei + Vr) C|2V ' Bvei + vr) (2.34)
Cl r r
" #
_ 1 Vei + Vr
= g w2 2 o (2.35)

Substituting the values of v and v;, we getA =0:1215,B = 0:0784 andC = 0:0126.

A systematic framework on reliability evaluation of Py is performed by limiting x to the
closed interval fv¢j, v¢]. With Eqg. (2.32), the actual power output can be updated as

Pg(x) = (A + Bx + cxX?)P, + ™ (2.36)
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R S Sy

Figure 2.4: Typical wind turbine power output with steady wind speed.

Figure 2.5: The probability density distribution of wind speed for di erent  combinations of
parameters ¢ and k.

Table 2.1: Parameters associated with the uncertainty in wind speed x.

x  V(X) Ms(x) Ma(x)

c=4,k=2 479 197 3.03 16.09
c=4,k=4 4.1 0.5 0.21 0.73
c=10, k=2 747 6.03 0.37 69.63

In the power grid system, the uncertainty of the wind speedx is often represented by a
Weibull distribution of two parameters as

P(x) = I;()é)k le (D (k>0 x> 0 ¢c> 1); (2.37)

where ¢ and k are the scale parameter and the shape parameter, respectively\243.
Three di erent combinations of ¢ and k are considered here. The underlying proba-
bility density function of the wind speed is displayed in Fig. 2.5. In our analysis, the
wind speedx is limited to the real range [3m/s, 12m/s]. Parameters characterising the
uncertainty in x are displayed in table2.1.
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Table 2.2: Analysis results of the power grid system in considering di eren t values of (the
highest order of Taylor expansion considered in our method).

V (Pg)=P? s« S Sy

c=4 k=2 1 0.01(35) 0.26(07) 0.73(93) O

' 2 0.01(87) 0.46(51) 0.53(49) O
c=a4 k=4 "170.01(03) ~  0.03(01) 0.96(99) 0

’ 2 0.01(05) 0.04(93) 0.95(07) O
c=10. k=2 "170.08(28) ~ 0.87(92) 0.12(08) 0

' 2 0.08(91) 0.88(77) 0.11(23) ©

Figure 2.6: A comparison of our method with Sobol's one. Sobol's values are obtained by
random sampling-based strategy (sample size: M = 10000), with error bars indicating the
standard deviation of 100 runs.

The underlying results of uncertainty and sensitivity analysis are presented in table2.2,

by considering di erent values of the order index . Analysis results of = 2 also

represent the exact values of our method as the highest order is two ithe functional

form. The obtained values suggest that, the uncertainty of model output Py and its

sensitivity with respect to individual input variables robustl y depend upon the values
of c and k. ¢ and k work together to control the uncertainty in input X, thus directly

in uence the analysis results. For example, in the rst case ofc = 4 and k = 2, the

second-order variance contribution ofx plays a robust role in establishing the uncertainty
in output Py. While in the second case ot = 4 and k = 4, and also the third one of
¢ = 10 and k = 2, the second-order variance contribution of x is ignorable. sy = 0

indicates a vanishing interaction e ect associated withx and ". This is because the
combination term between input variables is absent in the form of modéfunction, see
Eq. (2.36. A comparison of our method with Sobol's one is also presented in Fig2.6.

The exact values obtained by our method are in good agreement with thoserpvided

by Sobol's method. This implies our method is equivalent to Sobol'sone in the analysis
of the model under consideration.



Model inputs are independent 61

2.4.2 Economic system

Regarding the economic system, one of the oldest classic productionteduling models
is the EOQ model. This model was developed by Harris in 19132p4]. It aims at
determining the economic order quantity that minimizes the total system cost. Some
analyses about the uncertainty and sensitivity of this model have ben proposed in
Refs.[L9, 168 225. However, the discussion of its reliability to each input paramete,
especially to the interaction e ects between di erent parameters, is still limited.

This subsection builds an intuitive insight into the uncertaint y and reliability of EOQ

model in terms of the analytic formula deduced before. In EOQ modelthree types of
cost are accounted: purchase cost, holding cost and ordering cost. The mhase cost
is the variable cost of goods, equaling the product of the price of the nits themselves,
denoted asP, and the annual demand quantity, denoted asD. The price of the units
themselves is assumed to be xed, regardless of the number of demamghantity. The

holding cost indicates the cost of holding units in inventory (managemat's cost of capital
invested in the units, the cost of the space consumed by the unitstaxes of insurance,
etc). It is expressed as the product of the cost of holding unit, dented ash, and the
average quantity in inventory (between fully replenished and empy), denoted asQ=2. Q
is the order quantity. The ordering cost represents all the costs aswxiated with placing
orders excluding the purchase cost. Suppose each order has a xed cdét The number
of orders we need to make per year i®=Q. Hence the ordering cost isKk D=Q. The
total system cost in EOQ model can then be represented as

TC=PD+ Dg+ h7Q: (2.38)

EOQ is the order quantity that minimizes the total system cost. It is easy to obtain the
value of Q which determines the minimum point of TC, that is
r

2DK
=

(2.39)

The uncertainty of Q , as well as its sensitivity with respect to independent input \ari-
ablesD, K, h and to their interactions, is quanti ed in this part by using our analy tic
method.
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Table 2.3:  Analysis results for the EOQ model while considering di erent va lues of .

= V(@Q) sp Sk Sh SpK Sph Skh Spkh

1 2119 0.385 0.307 0.307 0 0 0 0
2 2192 0.377 0.300 0.314 -0.002 0.006 0.005 0

Input variables are assumed to be independently and uniformly distibuted in real ranges
as follows p29:

900 D 1600 unit per year,
$75 K  $125 per order (2.40)
$15 h $25 per order and per year

which yields

b = 1250; k =100; h=2;
V(D) =40833:333  V(K)=208:333 V(h)=0:083 (2.41)

Substituting the functional form and distribution laws of model in puts into Eq. (2.11)
gives the exact value of output uncertainty: V(Q ) = 2195. The exact values of sensi-
tivity analysis are determined as

sp = 0:377, sk = 0:300, shp = 0:314
spk = 0:002 Sph = 0:006 Skh = 0:005 Spkh = 0:000 (2.42)

Sensitivity analysis results are listed in table2.3 for di erent values of . While =2,
the analysis results are almost equal to the exact values. This suggestisat the contri-
butions of input uncertainty of third- or higher-order can be neglected and the analysis
results of = 2 can truly represent the reliability of EOQ model. Results state that
all three parameters are important in establishing the uncertainty in model response.
Furthermore, the interaction e ect between each two parameters al® contributes a small
part to the uncertainty in response Q . spx = 0:002 says that the interaction e ect
between D and K will result in a small decrease in the variance of model response.
A comparison of our analysis results with Sobol's values is shown in Fig.2.7. The
convergent results of our method are almost the same as Sobol's numbers.
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Figure 2.7: A comparison of our method with Sobol's one. Sobol's values are obtained by
random sampling-based strategy (sample size: M = 10000), with error bars indicating the
standard deviation of 100 runs.



Chapter 3

The analytic analysis for models
with correlated input variables

Over the past few decades, the uncertainty and sensitivity analys of models is mainly
performed by assuming that input variables are independent of each otbr. A problem
is often arisen in the development of the methodology for sensitivityanalysis: how to
interpret the sensitivity measures when input variables are nonindependent? Recently,
the interest in uncertainty and sensitivity analysis is increasing in the presence of corre-
lated input variables, facing the existence of correlated factors in pactical applications.
In this chapter, we focus on the extension of the analytic framework @sablished in the
previous chapter. The extended framework allows one to understandrom a theoretical
point of view, the variance propagation from correlated input variables to the model
response and also the sensitivity of model response with respeab input independence
and correlations.

3.1 Variance propagation

Analogously, consider a general model of the forny = f (x) with x = (Xx1;X2;  ;Xn)"
labeling the input vector of n-dimensional variables. Recalling the multi-variate Taylor
series at the central point of input vector, presented in Eq. @.23, the mathematical
expectation of the model response can be represented in the presenof input correlations

64
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as
eyt ae MBI g X X Mot sy
<s
N +i1;>4;in:1 Mil;A;(iinl(;Xill;;in);XLn)(g; +gk)(f )
(3.1)

whereA( )isdened by Eqg. (2.29, f gthe central point in input space, and M,
the multivariate central moment with n di erent variables. Mathematically, the multi-

iin
variate central moment is de ned as

Mi,. ;in(Xilli ?Xin”)zg (x1 1) (xn n)'n

. . (3.2)
= (x1 )" (xa n)"P(x)dX;

with P (x) indicating the joint PDF of x. In the absence of input correlations,P(x) is
simpli ed as

Y

P(x)= Pi; (3.3)

i=1
where P; denotes the PDF of input x;, as before. In the existence of correlations among
input variables, the variance of model response is derived by the @esof Egs. .23 and

(3.1 as

)(- 1 @+ +inf @1+ +jnf
V(y) = L DT - i - — (f 9
_il; ;!nzo A(|1, 1|ﬂ!le !Jn) @*1 @k @gl @k
h J1; ;]n=0 |
Mi+jy; ;in+jn(X|11+Jl; ;Xin"+j") Miy o (XT ;Xinn)Mjl; ;jn(XJll; ;Xjnn) :

(3.4)

Apparently, in the absence of input correlations, the above equation iscoincident with
Eq. (2.29) that explains the variance propagation from independent input variables to
the model response.

The concept of complete variance decomposition, presented in Eq.1(33), is proposed
by assuming input independence. Its form is also valid for the cordated case. In
the presence of correlated input variables, however, partial variane contributions with

dimensionality larger than 1 are contributed not only by the coupling items presented in
the functional form of the model under discussion (for independentase), but also by the
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input correlations. Regarding the situation of correlated inputs, the impact of a single
variable can be represented as the sum of contributions provided byts correlations with
the remaining variables and by its independence, respectivelyBased on the description,
each fractional variance contribution included in the original variance decomposition can
be divided into three sections: independent variance contribuibn (labeled by superscript
U), correlated variance contribution (labeled by superscript C), and coupling variance
contribution (labeled by superscript UC). Mathematically, the outp ut variance can be
decomposed in the presence of input correlations as

X X
u c uc u c uc
V)= (VU VOO + (Vi P+ VP V) (V' + V' + Vi h);

i=1 i =1
I<j

(3.5)

wherep2fi;jg, q2fl1;2, ;ng, and
Vi = Y+ Ve S (3.6)
(VIERVERVACEAVAStS (3.7)

U C ucC

Viz n = Vo' g+ Vg + Vi e (3.8)

VY (V©) is the variance contribution produced by the independent (corrdated) section
of x; alone, \/ijUi (Vijci) the contribution of the interaction between x; and the inde-
pendent (correlated) section ofx;, and so on up to Vlgq 0 (Vlgq n) the contribution of
the interaction associated with the independent (correlated) setion of x4 and the rest
variables. Coupling variance contributions are produced by the couphg e ects between
independent and correlated sections for individual input variables

3.2 Estimation of sensitivity indices

Working within a probabilistic framework, variance-based sensitivity measures are de-
ned on the bases of partial contributions presented in the variance deomposition of

model response. In the determination of each partial variance contribtion, higher-order

covariance embodied in the analytic formula Eq. @.4) should be concerned for nonlinear
models. Consequently, it is necessary to specify the correlateahd independent sections
of single input variables for the con rmation of fractions contained in Eq. (3.5), whereby

the importance of the independent section, correlated section and thir coupling e ect

can be quanti ed for each individual input variable, in establishing the uncertainty of

model response.
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3.2.1 Generation of correlated variables

In probabilistic models the dependency between input variabless often represented by
the CC that is de ned as

Elxi )X )]

I

; (3.9)

(Xi;xj) =

whereE[ ] is the expectation operation by returning the average value of . Eq. (3.9) is
equivalent to Eq. (1.65 which de nes the CC between an arbitrary input variable and
the model response. For the sake of simplicity in writing, (Xi;X;) is simplied as jj in
the following discussion.

In the presence of correlations, an arbitrary variable can be represestl as the sum of a
correlated section and an independent section. Based on the descriph, we can rewrite
the input vector as

x = x©+ xY (3.10)
=(x§ixg; xT+H(xEixg; x)T: (3.11)
The correlated sectionsxiC with i =1;2; :n indicate the correlations of x; with the

remaining variables. By using the linear correlation model (Eq. B.9), x© can be
generated as
x€ = Ax ; (3.12)

where A is ann n nonsymmetric hollow matrix (diagonal elements are all equal to
zero). The independent sections<iU with i =1;2; ; n denote the independence ok;.
They are often represented by newly introduced random variablesx" can be expressed
as

xY = Cr; (3.13)

where C isann n diagonal matrix and r = (rq;ro; ;rn)T an n-dimensional vector
of random variables. r must follow the same type distributions asx and also satisfy

n=c i A): (3.14)

and
(= (3.15)
in which, C 1! is the inverse of matrix C, (r)=( (r1); (r2); ; (rn))T the mean
vector of newly introduced random variables, =( 1; 2; © )T the mean vector of

input variables, and similarly for (r) and the vectors of standard deviations. Entries
in matrices A and C: fa;;cj;i;j =1;2; ;ngare called coe cients that specify the
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correlated and independent sections of input variables. They are dermined by given
pairwise correlations through equations

2 33
i X 5 X ) X X
aj = —41 (@ hg) +2 ki kh( Ih lq hq)
] k<l: h<q; k<l<h; g6 i;l:h s>k
k;l&i h>k ;h;g6 i;l k;lh6i
2
X ) X X X )
§ i (1 k+2 Kl kh Ih) ik jk (1 ha)
k<l; k<l<h; k6 i;j h<q;
k;16i;j k;l;h 6 i; h;q6 i;j;k
X X
+ Cik g+ i ) kh Ih)é; (3.16)
k<l; h6 i;j;k;l
k;16i;j
and
2 3 1o
X 5 X 5 X X
Gi = §1 (1 hg) T2 ki kh( 1h Iq hq)é
k<l; h<q; k<l<h; g6 i;l;h ;q>k
k;16i h>k ;h;q6 il kiih6i
31
2
X ) X 5 X X
§1 i (1 hg) T2 k kh( 1 Iq hq)é ; (3.17)
k<l h<q; k<l<h g6 I;h;g>k
h>k ;h;q6 |

where the fth- and higher-order terms are neglected. The above exgessions, derived
according to the analysis of simple cases as shown in Appendi&, constitute essen-
tial ingredients of quantifying sensitivity measures associated wh correlated section,
independent section, and their coupling e ect, for each single inpt variable.

If two variables, say x; and x;, simultaneously correlate with a third variable, say Xy,
the correlation betweenx; and x; is then not arbitrary assigned. With given correlation
coecients  and jk, X; and x; then can be formulated based orxy as

. q
Xj = ikaXk+ 1 ﬁ(ui; (3.18)

and

Xj = jk —LXk + 1 j2k uj; (3.19)

where u; and u; are newly introduced variables that are independent ofxy. Inserting
the above formulations into Eq. (3.9) yields

q
i= koKt @ f)@ ) (uisy): (3.20)
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In statistics, (uj;u;j), labeling the linear correlation between variablesu; and u;, can be
as large as 1 (total positive correlation) and as small as -1 (total negative corration).
This implies the correlation j betweenx; and x; will be limited to the range

h q q [
ik jk T D@ ) wk+t @ A F) (3.21)

when the correlations of them with a third variable xx are speci ed. The relationship
i = i jk holdsi the newly introduced variables u; and u; are set to be independent
of each other.

3.2.2 Sensitivity indices

With help of the analytic formula ( 3.4) that explains the variance propagation in the
presence of input correlations, the partial variance contributions of d erent dimension-
ality can be calculated by

X1 @f @f
Vi = o K I!( XK @()(f 9) Mi+i(xi)  My(Xi)M(xi)]; (3.22)
— X- 1 @"’Df @"'Qf h k+!1.,ptQ
k kl;p;q =0 kt 1t p q!( XI‘IXJp @*qu)(f 9 Micrtr olX 5257
Mk;p(xr?xjp)Ml;q(Xg?Xﬁ) Vi Vi (3.23)

where multivariate central moments with di erent variables are involved. The (k;l)
central moment with any two di erent variables, say x; and x;, is de ned as (simpli ed
from Eq. (3.2) h i

M (x5x)=E (i ke ) e (3.24)

It can be derived analytically by formulating one variable on the basis of amther:

Xi = —_in + 1 %Ui; (3.25)
J

or q

Xj = jj iji + 1 2 Uj; (3.26)

i
with u;(u;) independent of x; (x;) and taking the same standard deviation asx;(x;). If

k 6 |, the above two formulating strategies are equivalent in determining M (x; x|

only when x; and x; are normally distributed and hold the same standard deviation.
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The kth-order central moment of x is given by

n
Mg, ke ()= E (% DN (3.27)
i=1

wherek; + ko + + Kk = k. For normal distribution, we have

(
0; Kk is odd;
Mk kn(X )= P _ (3.28)
(ij mn ) kiseven
where the sum is taken over all allocations of the set1;2; ;kginto k=2 pairs, and j
the covariance ofx; and x;. For example, for the fourth-order central moment (k = 4)
with four di erent variables (calculated in detail in Appendix D), one sums the products
of any two covariances:
" #
Y

E (Xi i) = 12 34+ 13 224+ 14 23 (3.29)
i=1

This yields (k  1)!! (double factorial) terms in the sum. When nonlinear terms of a

variable are contained in the central moments, like §; )< in Eg. (3.24), one can
expand it as the product of k variables and uses j = 2. Consequently, for normally
distributed x; and x; with ;| = |, Mk;|(x!‘;x}) is invariant in exchanging x; and x;,

that is

Mict (X5 X)) = Mg (%15 %) (3.30)

This property (invariant in exchanging any two variables) could go for any order central

moments with any number of di erent variables that follow a normal dist ribution and
have the same standard deviation.

For uniformly distributed variables, however, the fourth-order central moment with four

di erent variables is calculated as
m #
v 6
E (Xi i) = 1234+ 13 24% 14 23 g (3.31)
i=1
where is a product of three covariances, dependent upon how to cloose a variable
to be unformulated in the calculating process. For example, wherx, is selected to be
unformulated, we will get

= 12 23 24: (3.32)

Furthermore, if one focuses on the correlated, independent and colipg e ects contained
in a high-order covariance, see Eq. 3.24), x; (Xj) should be formulated on the bases of
all the remaining input parameters, as discussed before.
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The total contributions to the variance of model response, provided ly the independence,
correlation, and their coupling e ect are represented, for an arbitrary variable x;, as

VTV = U 4 X (VAL VI 3.33
i i ij 12 n» ( ' )
j6i
VTC:V_C_'_)@V_Q+ +vSG - 3.34
i i ij 12 n» ( ' )
j6i
X
VTUC = yUC 4 \/ijUCi + o+ VRO (3.35)

i6i

The sensitivity (or importance) measures can then be determined ¥

= V. e VO el W
V(y) V(y) V(y)
TU TC TuC
U= U o= e = Y (3.39)
V(y) V(y) V(y)

The rst three measures are called the main sensitivity indices viich, separately, denote
the importance of the independent section, correlated section, andheir coupling e ect,
by neglecting the interaction e ects among input parameters. The lag three measures
are called the total sensitivity indices which denote the importane of each corresponding
part in considering the interaction e ects of x; with the remaining inputs. Similar to
Sobal's indices, the main and total sensitivity indices are de ned as

_ i _ U C ucC.
s = = sV + sC+ s¥C; (3.37)
vey) 1
X 1
Sriz @i+ Vi+ A V)= s s (3.38)

i6i

which evaluate the importance of individual input parameters x; before and after con-
sidering the interaction e ects among di erent input parameters, respectively.

With given correlation coe cients between any two input parameters, our method allows
one to evaluate the importance of individual input parameters in the esimation of model
output in both the absence and presence of input correlations. The nely introduced
sensitivity indices also quantify the importance of input independence and correlations,
allowing one to determine whether or not the input correlations shoutl be considered in
practice. Quite recently the original Sobol's sensitivity indices are generalised to deal
with correlated inputs, by using hierarchically orthogonal functional decomposition P26,
227). Compared to the generalised Sobol's indices, our indices are easterunderstand
and interpret.
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3.3 Numerical examples and a practical application

In this section, analytic polynomial models, including one purely adlitive and three
nonlinear ones, are taken as examples to illustrate the e ectivenesand validation of our
established analytic framework. A practical application of the method is also proposed
to a deterministic HIV model. Ten involved parameters are then ranked according to
their importance in establishing the uncertainty of the basic reproduction number Rg.

3.3.1 Additive linear model

In the rst example a purely additive model is investigated, with functional form given
by

Yy =2X1+ X+ X3; (3.39)
where (x1;x2;x3) N( ;) with mean vector  =(0;0;0)" and covariance matrix
0 1
1 12 213
= % 12 1 2 23 § . (3.40)
213 223 4

By the use of Eq. (3.4), we get the exact expression of the variance of model response:
V(y)=9+4 12+8 13+4 23 (3.41)
which is constituted of the following fractional contributions of di erent dimensionality:

Vi =4, Vo=1; V3 =4;Vip =4 1
Vi3 =8 13; Voz =4 23; V123 =0: (3.42)

The vanishing nonlinear problem in the model function suggests the akence of coupling
variance contributions but the presence of independent and correlad ones:

VY= v VlLéj =4, Vig< =0; Vy =0;
C.
VE=(1 )V, V) = Viz V5= Vi Vg = Vag;

Vizs = Vi35 =0; (3.43)
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Table 3.1:  Uncertainty and sensitivity analysis results for linear addit ive model by assuming
di erent correlations between input variables.

V(y) x S| s’ st s STi stV sT¢ sTU¢
x1 0.444 0.444 0.0 0.0 0.444 0.444 0.0 0.0
=0 9 X2 0.111 0.111 0.0 0.0 0.111 0.111 0.0 0.0

x3 0.444 0.444 0.0 0.0 0.444 0.444 0.0 0.0

x3 0328 0.118 0.210 0.0 0590 0.118 0.472 0.0
12=0:8 122 x, 0.082 0.030 0.052 0.0 0.344 0.030 0.314 0.0
x3 0.328 0.328 0.0 0.0 0.328 0.328 0.0 0.0

X3 0.690 0.248 0.442 0.0 0.138 0.248 -0.110 0.0
x2 0172 0.062 0.110 0.0 -0.379 0.062 -0.441 0.0
x3 0.690 0.690 0.0 0.0 0.690 0.690 0.0 0.0
xy 0.225 0.072 0.152 0.0 0.629 0.072 0.557 0.0
178 x» 0.056 0.020 0.036 0.0 0.326 0.020 0.306 0.0

x3 0225 0.169 0.056 0.0 0539 0.169 0.371 0.0
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wherei 2f1;2;3g,j 211,29, k21 1;3g,1 2f 2;3g, and ¢; , specifying the independence
of variable x;, are determined via Eq. 3.17) as

ci=(1 %) 1 L 5 53+2 1213 23 (3.44)
=01 %) PQ % %4 55+2 1213 )Y (3.45)
=1 1) PQ I %t2 12132 (3.46)

in which f 2,; 2, 2,986 1.

The underlying sensitivity measures are provided in table3.1 under considering di erent

correlations between input variables. Results indicate the vanising sensitivity indices
associated with the coupling e ect between input independenceand correlations. In the
absence of correlated input variables ( = 0), the main sensitivity indices sum up to one.
By introducing input correlations, however, this summation could be smaller than one
(with positive correlations) or larger than one (with negative correlations), contrary to

the sum of the total sensitivity indices. A negative sensitivity index explains a negative
partial variance contribution produced by the negative input correlation.

3.3.2 Nonlinear models
Trivariate model

In the second example a trivariate nonlinear model is considered, coaining the linear,
guadratic, and interaction terms:

y = 2X1+ X3+ 4X3X0 + X1X3; (3.47)
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where (X1;X2;x3) N( ;) with mean vector =(0:0;0)" and covariance matrix

0 1
1 12 13

= % 2 1 23§: (3.48)

13 23 1

The variance V (y) of model response can be similarly computed by the use of Eq.3(4)
as
V(y)=55+48 12+2 1p 23+192 2,+ %5 (3.49)

which is generated by the partial variance contributions involving

Vi =4, Vo =2; V3 =0;
Vip=48(1+4 3,+ 1o); Vig=1+ 2 Vo3 =0;
Vizz=2 12 23 (3.50)

The independent, correlated and coupling variance contributions diided from the main
variance contributions V; and V, are stated as

vl =4c; V=41 ) WO =0;
V=205, Vo =21 5% VRS =41 ) (3.51)

Regarding the existent higher-order partial variance contributions, we have

Vipi =48cl;; Vi =480k

Vi =48(L c)(L et 12+4 D) Vi =48(1+4 L+ 12 o),
VTt =482+ 12+4 %, 2¢))chy; Vit = 0;

Vi3 = & Vig =1+ 5 o Vig™ =0;

U; Ci uc
Vi3 =0; Vizs =2 12 23 Vips' =0; (3.52)

wherei 2 f1;3g, j 2 f1;2;3g and ¢ are determined with Eq. (3.17). A detailed
calculation process for the above items are presented in Appendi€. In table 3.2, the
exact sensitivity indices are listed, showing a dominated in uerce of the interaction
e ect between x1 and X, in the absence of input correlations. In the presence of input
correlations, the independent, correlated and coupling e ects preided by x; and x, are
all signi cant in establishing the uncertainty of model response. The convergence of our
analysis results with the order of Taylor expansion is also presenteich Fig. 3.1. is
the highest-order of Taylor expansion that is considered in our method Analysis results
are convergent at = 3 (the highest-order of Taylor expansion of the model output),
implying the e ects of any possible orders of Taylor expansion of the mdel output are
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Table 3.2:  Exact analytic results for uncertainty and sensitivity analys is of the rst nonlinear
model with di erent input correlations.

V() x S| s’ st sl¢ STi sfV s¢  glve
x1 0.073 0.073 0.0 0.0 0.964 0.964 0.0 0.0
=0 55 X2 0.036 0.036 0.0 0.0 0.909 0.909 0.0 0.0

X3 0.0 0.0 0.0 0.0 0.018 0.018 0.0 0.0

x3 0.031 0.024 0.007 0.0 0.984 0.242 0.175 0.567
12=0:5 127 x» 0.016 0.009 0.001 0.006 0.960 0.292 0.662 0.006
X3 0.0 0.0 0.0 0.0 0.008 0.008 0.0 0.0

12= 05 X3 0.050 0.020 0.03 0.0 0.975 0.117 0.452 0.406
13=0:6 79.36 x> 0.025 0.009 0.004 0.012 0.932 0.382 0.538 0.012
X3 0.0 0.0 0.0 0.0 0.017 0.007 0.010 0.0

X3 0.038 0.028 0.01 0.0 0.981 0.291 0.166 0.524
10581 x, 0.019 0.002 0.008 0.009 0.950 0.167 0.774 0.009
X3 0.0 0.0 0.0 0.0 0.018 0.003 0.015 0.0
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Figure 3.1: The convergence of analysis results with the order of Taylor expansion.

in uential.

Fourvariate model

Another nonlinear model is designed based on four input variables as

Y = X1X3 t X2Xa; (353)
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where (X1; X2;X3;X4) N ( ;) with mean vector =(1;2,2 1)T and covariance matrix

0 1
1 1 13 14

1
_ 12 23 2 L. (3.54)

13 23 1 3

14 24 3 1

The total variance of model response is obtained by employing Eq.3.4) as
V(y)=12+4 1p+4 1348 14+2 3+4 p4+4 gu+ 23+ 5,+2( 12 aat+ 14 23); (3.55)
which is constituted of

Vi =4; Vo =1; V=1, Vy =4,
Vi =4 1 Vis=1+4 13+ 33 Vig =8 14 Vo3 =2 23

Vos=1+4 4+ 3 Vas =4 34 Vi23a = 2( 12 34+ 14 23): (3.56)

In the calculation of V1234, the covariance covks; X2; X3; X4) of four variables is involved,
whose derivation is presented in AppendixD. The form of model function (only involves
the linear problem of each input) suggests the vanishing coupling e et in all partial
variance contributions but the existent correlated and independem ones:

VW=V vt =1 )V
Uj _ Ci _ Ui .
Vig = (ﬁ ; Vig = Vis Vi3,
Vo = G Voi = Vas Vi (3.57)

wherei 2 1;2;3;4g,j 2f1;3gand k 2 f 2;4g. The partial variance contributions V2,

V14, V23, V34 and Vi34 are all contributed by input correlations. The coe cients ¢ are

determined with Eqg. (3.17). Table 3.3 lists the exact analytic values of the underlying
sensitivity indices. Data show a vanishing coupling e ect between input independence
and correlations. This because the nonlinear problems of single variatdeare absent in
the form of model function. The convergence of our analysis results isisplayed in Fig.

3.2, along the direction of the highest-order of Taylor expansion that is conglered in

our method. Values are convergent at = 2 (the highest-order of Taylor expansion of
the model output).
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Table 3.3: Exact analytic values of uncertainty and sensitivity analys is for the second
nonlinear model by assuming uncorrelated and correlated inputs.

V(y) x si s’ st s st st s'¢ sTu¢
x; 0.333 0.333 0.0 0.0 0.417 0.417 0.0 0.0
=0 12 X2 0.083 0.083 0.0 0.0 0.167 0.167 0.0 0.0

x3 0.083 0.083 0.0 0.0 0.167 0.167 0.0 0.0
x4 0.333 0.333 0.0 0.0 0.417 0.417 0.0 0.0

13=0:5 x1 0.221 0.166 0.055 0.0 0.401 0.207 0.194 0.0
24 =0:8 18.09 x» 0.055 0.020 0.035 0.0 0.323 0.040 0.283 0.0
x3 0.055 0.041 0.014 0.0 0.235 0.083 0.152 0.0
Xs 0.221 0.080 0.141 00 0.489 0.100 0.389 0.0

2= 05 x; 0251 0.058 0.193 0.0 0.561 0.072 0.489 0.0

13 =0:6 1596 x» 0.063 0.030 0.033 0.0 0.0 0.060 -0.060 0.0
14=0:4 x3 0.063 0.024 0.039 0.0 0.298 0.049 0.249 0.0

x4 0251 0.148 0.103 0.0 0.514 0.185 0.329 0.0

2= 05 13= 04 x1 0.289 0.110 0.179 0.0 0.208 0.137 0.071 0.0
14=0:2, 3=0:3 13.84 x», 0.072 0.032 0.040 0.0 0.150 0.065 0.085 0.0
24=0:4, 33=0:4 x3 0.072 0.040 0.032 0.0 0.179 0.080 0.099 0.0

Xs 0.289 0.121 0.168 0.0 0.699 0.152 0.547 0.0

s 2 2 2 2 4 4 s o

p,=05 p,=06, p =04 S e o o o o o o e
40060009

tﬂ—o—o—o—o—Q—o—o—. p,=05 p,;=04, p, =02
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Figure 3.2: The convergence of analysis results with the order of Taylor expansion.
Ishigami function

The Ishigami function [228 has been extensively used as a benchmark for sensitivity
analysis R29 230. Its functional form was de ned as

y = sin(x1) + 7sin?(xz) + 0 :1x3 sin(x1); (3.58)

where all input variables are uniformly distributed in the interval [ ; ]. The presence
of correlation betweenx, and each of the rest does not in uence the total variance of



Model inputs are correlated 78

Table 3.4: Exact analytic values of uncertainty and sensitivity analys is for Ishigami function
by assuming uncorrelated and correlated inputs. In case 1x; is generated based orxs, contrary
to the second case wherexs is generated based onx;.

U c uc TU TC TUC
V(y) X Si Si Si Si Si S Si

X1 0.036 0.036 0.0 0.0 0.557 0.557 0.0 0.0
13=0 13.845 xp 0442 0442 0.0 0.0 0.442 0.442 0.0 0.0
X3 0.0 0.0 0.0 0.0 0.521 0.521 0.0 0.0

STi

15=05 x; 0.039 0044 0.039 -0.044 0528 0.633 1.048 -1.153

(case 1) 12971 x, 0472 0472 00 0.0 0472 0472 0.0 0.0
xs 0.0 | | | 0489 | | |

13=05 x; 0026 | | | 0679 | | |

(case 2) 19.110 x» 0.321 0.321 0.0 0.0 0.321 0321 0.0 0.0
X3 0.0 0.0 0.0 0.0 0.653 0.145 0.004 0.505

model response owing to zero partial variance contributions associatl with the inter-
action between x, and the rest. Consequently, we just consider here the correlation
betweenx; and x3. The results of analytic analysis are listed in table3.4 by assuming
independent and correlated input variables. Two formulating strategies are considered in
the presence of correlation:x; is formulated on the basis ofx3 and vice versa. They are
non-equivalent for the uncertainty and sensitivity analysis of the model under discussion
asx; and x3 are uniformly distributed.

In the rst case, xi is formulated on the basis ofxz as

qi
X1 = 13fx3+ 1 2ry; (3.59)

where the newly introduced random variabler; is the element ofr that satis es Egs.

(3.149 and (3.15. Sensitivity measures show a strong positive variance contribubn

produced by the interaction e ect between x3 and the correlated part of x4, as well as a
very strong negative variance contribution caused by the interaction £rm involving x3

and both correlated and independent sections oK.

For the second case, we generates on the basis ofx; as
_ 3 2 . .
X3 = 13*1X1 + 1 a3 (3.60)

where the random variablers is the element ofr that satis es Egs. (3.14) and (3.15.
Zero mean ofx; leads to the nonexistence of sensitivity measures evaluating the ain
e ect of x3. A dominated contribution to the variance of model response is produed
by the interaction e ect between x; and the coupling of independent section with the

correlated one ofxs.

Analysis results imply that the correlation between x; and xs, if exists, will play a
crucial role in determining the model response. Sensitivity imlices of correlated and
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p,=05 p,=05

Figure 3.3: The convergence of analysis results with the order of Taylor expansion.

independent sections ofxz are not indicated in the rst case becausexs is considered
as a whole variable, analogous to the second case. The derivation process il

variance contributions of di erent orders is presented in detail in Appendix E for both

cases. The convergence of our analysis results is also discussed, Kige 3.3. For three
situations, values are all convergent at = 13 (the highest-order of Taylor expansion
that is considered in our method).

HIV model

The basic reproduction number, denoted afRy, is arguably the most important quantity
in infectious disease epidemiology because it helps determine wther or not an infec-
tious disease can spread through a population2B31, 237. Ry is de ned as the average
number of new cases of an infection caused by one typical infected inddual, in a pop-
ulation consisting of susceptibles only 233 235. The rst application of this metric in
epidemiology was introduced by George MacDonald in 1952, who designed agerased
models of the spread of malariag3€. Generally, the larger the value ofRg, the harder
it is to control the spreading of an epidemic. Typically, when Rg < 1, the disease free
equilibrium is locally asymptotically stable and the epidemic will die out in the long
run, whereas ifRg > 1, it is unstable and the epidemic will invade the population R37].

Consider a deterministic model of HIV-1 with vertical transmission (from an HIV-
infected mother to her child) which was discussed in Ref. §4]. The basic reproduction
number Ry is represented by

ol )3+ mQo(d )+ 2mQo+(1 ) + )Od:

Ro= (ot o+ )

(3.61)

Description and baseline values of parameters included in the abovexpression are pre-
sented in table 3.5.

To identify the importance of individual parameters in establishing the uncertainty of
Ro, each parameter is arti cially increased and decreased by 10% of its baseé value.
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Table 3.5:  Description and baseline values of parameters for HIV/AIDS model, see Refs.

[84, 238, 239].
Parameter Symbol Baseline value
Recruitment rate Qo 0.029
Birth rate of infective 0 0.03

Fraction of susceptible newborn

. . 0.4
from infective class
Contact rate of susceptible with
. . 1 0.2
asymptomatic infective
Contact rate of susceptible with
N . 2 0.08
symptomatic infective
Number of sexual partners of susceptible
. L. . Ny 2.0
with asymptomatic infective
Number of sexual partners of susceptible
. .. R ns 2.0
with symptomatic infective
Natural death rate d 0.02
Removal rate to symptomatic class 0.6
Rate of development to AIDS 0.1

Furthermore, for simplicity, uncertainties of parameters are indicated by uniform distri-
bution in their ranges of variation. The mathematical expectations and uncertainties of
input parameters and output Rg are presented in table3.6. Regarding the uncertainty
in R, both independent and correlated situations are discussed. The uratlying sensi-
tivity analysis results are displayed in table 3.7. In our analysis, the rst-order Taylor
expansions are considered only, which explain 99.6% and 98.8% of the exact @n@inty
(indicated by the standard deviation) of Rp for independent and correlated situations,
respectively. A ranking of input parameters is displayed in Fig. 3.4, according to the
total sensitivity indices. Two values of (the highest-order of Taylor expansion that is
considered in our method) are considered. Results suggest that the alysis results of

=1 are almost the same as those of = 2 for both the absence and presence of input
correlations. This implies our analysis results are convergent at the rst-order Taylor
expansion for the model under discussion. In both the absence and mence of input
correlations, parameters (rate of development to AIDS), » (contact rate of suscepti-
ble with symptomatic infective), and n, (number of sexual partners of susceptible with
symptomatic infective) are identi ed as the most in uential, whil e parameters g (the
birth rate of infective) and  (the fraction of susceptible newborn from infective class)
are identi ed as negligible, in determining the basic reproducton number Ry. This
provides one an opportunity to e ectively limit the spread of a disease by controlling
the three most in uential parameters, and to simplify an HIV model by neglecting the
e ects contributed by parameters ¢ and

The distribution of our analysis results is also presented in Fig.3.5, along the direction
of the correlation between 1 and nq, and the direction of the correlation between »
and ny,. The underlying results suggest that the e ect contributed by the correlation


































































































































































































































































