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Abstract

By means of taylor series expansion, a general analytic formula is derived to characterise

the uncertainty propagation from input variables to the model response, in assuming

input independence. By using power-law and exponential functions, it is shown that

the widely used approximation considering only the first order contribution of input

uncertainty is sufficiently good only when the input uncertainty is negligible or the

underlying model is almost linear. The method is then applied to a power grid system

and the EOQ model.

The method is also extended to correlated case. With the extended method, it is s-

traightforward to identify the importance of input correlations in the model response.

This allows one to determine whether or not the input correlations should be considered

in practical applications. Numerical examples suggest the effectiveness and validation

of our method for general models, as well as specific ones such as the deterministic HIV

model.

Our method is then compared to Sobol’s one which is implemented with sampling based

strategy. Results show that, compared to our method, it may overvalue the roles of

individual input factors but underestimate those of their interaction effects when there

are nonlinear coupling terms of input factors. A modification is then introduced, helping

understand the difference between our method and Sobol’s one.

Finally, a numerical model is designed based on a virtual gambling mechanism, regarding

the formation of opinion dynamics. Theoretical analysis is proposed by the use of one-at-

a-time method. Sampling-based method provides a global analysis of output uncertainty

and sensitivity.

Keywords: Uncertainty analysis, Sensitivity analysis, Variance decomposition, Sam-

pling, Correlation, Sensitivity measure, Opinion dynamics
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Résumé

Par un développement en série de Taylor, une relation analytique générale est établie

pour calculer la propagation des incertitudes des variables d’entrée sur la réponse du

modèle, en assumant l’indépendance des entrées. En utilisant des relations puissances

et des relations exponentielles, il est démontré que l’approximation souvent utilisée con-

sistant à ne considérer que la contribution du premier ordre sur l’incertitude d’entrée

permet d’évaluer de manière satisfaisante l’incertitude sur la réponse du modèle pourvu

que l’incertitude d’entrée soit négligeable ou que le modèle soit presque linéaire. La

méthode est appliquée à l’étude d’un réseau de distribution électrique et à un modèle

d’ordre économique.

La méthode est étendue aux cas où les variables d’entrée sont corrélées. Avec la

méthode généralisée, on peux déterminer si les corrélations d’entrée doivent ou non

être considérées pour des applications pratiques. Des exemples numériques montrent

l’efficacité et la validation de notre méthode dans l’analyse des modèles tant généraux

que spécifiques tels que le modéle déterministe du VIH.

La méthode est ensuite comparée à celle de sobol. Les résultats montrent que la méthode

de sobol peut surévaluer l’incidence des divers facteurs, mais sous-estimer ceux de leurs

interactions dans le cas d’interactions non linéaires entre les paramètres d’entrée. Une

modification est alors introduite, aidant à comprendre la différence entre notre méthode

et celle de sobol.

Enfin, un modéle numérique est établi dans le cas d’un jeu virtuel prenant en compte

la formation de la dynamique de l’opinion publique. L’analyse théorique à l’aide de la

méthode de modification d’un paramètre à la fois. La méthode basée sur l’échantillonnage

fournit une analyse globale de l’incertitude et de la sensibilité des observations.

Mots-clés: Analyse d’incertitude, Analyse de sensibilité, Décomposition de variance,

Echantillonnage, Corrélation, Mesure de sensibilité, Dynamique d’opinion
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AIDS Acquired Immune Deficiency Syndrome

CC Pearson Correlation Coefficient

CCDF Complementary Cumulative Distribution Function

CDF Cumulative Distribution Function

CL2 Centered L2-discrepancy

EOQ Economic Order Quantity

HIV Human Immunodeficiency Virus

IFFD Iterated Fractional Factorial Design

KRCC Kendall Rank Correlation Coefficient

LHS Latin Hypercube Sampling

MC Monte Carlo

PCC Partial Correlation Coefficient

PDF Probability Density Function

PRCC Partial Rank Correlation Coefficient

QMC Quasi Monte Carlo

RCC Rank Correlation Coefficient

SIR Susceptible-Infected-Recovered

SIS Susceptible-Infected-Susceptible
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General introduction

The concept of global uncertainty and sensitivity analysis has proposed for a long time.

It attracts the considerations of a large number of researchers from various of areas. The

global uncertainty and sensitivity analysis aims at analysing the uncertainties of output

variables (also called observations or model responses) according to the uncertainties in

input variables (or named factors, parameters, covariates), and the sensitivity of each

output variable with respect to individual input parameters, as well as to their inter-

actions. Undoubtedly, global uncertainty and sensitivity analysis is advantageous for

gaining insight into how input variables should be ranked according to their importance

in establishing the uncertainties in different output variables. While the strategies for

uncertainty and sensitivity analysis are quite extensive, a general analytic method is still

limited, especially for models of present input correlations. In this dissertation, we main-

ly focus on the establishment of a general theoretical framework for global uncertainty

and sensitivity analysis in the modelling of complex systems.

Mathematical models have a wide range of applications in diverse disciplines. They can

help explain a system by visualized data and/or figures and analyse the possible effects

of different parameters, and also, if necessary, make predictions about the underlying

behaviour. With a deterministic mathematical model of general form y = f(x) with

y denoting the output vector and x indicating the input vector. When y is calculated

from x through a specified function or some natural or artificial rules connecting y and

x, uncertainties in the elements of input vector, if exist, will propagate through the

calculation to the members of output vector y dependent on x [1, 2]. This process is

called variance propagation (or uncertainty propagation). Variance propagation, often

regarded as the fundamental ingredient of sensitivity analysis for complex models, mainly

considers the determination of output’s variance via uncertainties in input factors [3, 4].

At present, many strategies have been built for the determination of variance propa-

gation, such as simulation-based methods[5, 6], most probable point-based methods[7,

8], functional expansion-based methods[9], numerical integration-based methods[10–13].

Simulation-based methods, also called sampling-based methods, are regarded as both

1



General introduction 2

effective and widely used, especially for those models with the functional relationship

connecting y and x absent [14–16]. These briefly mentioned strategies, however, are

computationally expensive, especially in the presence of a high number of input vari-

ables. For a general model with given functional form, the procedure will be much easier

and numerically cheaper for determining the output’s variance if an analytic formula as-

sociated with variance propagation can be provided. More information associated with

other methods for variance propagation can be found in some reviewed papers [17–19].

A simple analytic formula has been appeared since 1953. It approximately computes

the variance of the product of two independent random variables [20]. In 1966, this

approximation was extended by engineers and experimentalists to more general multi-

variate cases [21]. This formula, also called Taylor series approximation, restricted to

the first-order terms [22], has gained a wide applications thanks to its simplicity and

convenience [23]. However, it can satisfactorily estimate the output’s variance only when

the functional relationship between output and input variables is almost linear or the

uncertainty of each input variable is negligible [17]. For most models, y highly nonlin-

early depends on x having large uncertainties. This suggests the necessity of an exact

analytic formula in calculating the output’s variance and evaluating its sensitivities with

respect to individual input factors, as well as to their interactions.

Furthermore, many methods have also been designed for performing sensitivity analy-

sis, including the traditional approach of changing one factor at a time [24, 25], local

method [26], regression analysis [27], variance-based method [28], etc. Among the vari-

ous available strategies, variance-based sensitivity analysis has been assessed as versatile

and effective for uncertainty and sensitivity analysis of model response. The considera-

tion of variance-based importance measures can be traced back to over twenty years ago

when Sobol characterised the first-order sensitivity measures on the basis of deposing the

variance in model response into different partial contributions attributable to individual

input variables and to their combinations (called variance decomposition) [29]. Then

extensive relevant investigations are carried out around this Sobol’s work, boiling down

to the improvements in analysis strategies and to their applications to the sensitivity

and reliability analysis of complex systems [30, 31]. However, these frameworks, as well

as above mentioned strategies for the determination of variance propagation, are often

proposed when the input variables are assumed to be statistically independent.

Recently, the interest in extending sensitivity analysis strategies from uncorrelated case

to the correlated one is increasing as correlated factors are often happened in practical

applications. Previous investigations about sensitivity analysis of models in the presence

of input correlations only provided overall sensitivity indices with respect to individual

input factors. However, the correlated and independent variance contributions were
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absent [32]. In practical applications, the distinction between independent and correlated

contributions is quite important. It allows one to decide whether or not the correlations

among input factors should be considered.

Both correlated and independent variance contributions were firstly considered by C.

Xu et al [33]. They proposed a regression-based strategy to decompose partial variance

contributions into independent and correlated parts by assuming approximate linear

dependence between model response and input variables. To overcome the limitation

of their method, many frameworks on sensitivity analysis are recently developed in

the presence of input correlations, contraposing the investigation of more effective and

universal technics for sensitivity analysis in general correlated situations [34–36]. Still,

a theoretical framework of the determination of partial variance contributions and of

relative correlated and independent effects is limited, especially when a single input is

correlated with many others simultaneously.

Consequently, in this dissertation, we mainly focus on the establishment of a theoretical

framework for uncertainty and sensitivity analysis. The applications of sampling-based

method are also proposed to the uncertainty and sensitivity analysis of epidemic spread-

ing and opinion formation systems.

The manuscript is organised as follows. The first chapter introduces in detail the back-

ground of uncertainty and sensitivity analysis of complex systems. It also provides the

implementation of uncertainty and sensitivity analysis by using different strategies. In

the second chapter, a systematic theoretical framework is established for the uncertainty

and sensitivity analysis of general models with given functional forms, by assuming that

input factors are statistically independent of each other. In the third chapter, the the-

oretical method for uncertainty and sensitivity analysis is generalised to more universal

models of input correlations. The fourth chapter concerns the difference of our method

from Sobol’s one. A rough sampling-based approach that is coincident with our analyt-

ic method is then established by introducing a modification to the Sobol’s method, in

assuming input independence. A systematic framework on uncertainty and sensitivity

analysis of a numerical model is described in chapter 5. This model considers the for-

mation of public opinion dynamics based on a virtual gambling mechanism. Finally, a

general conclusion and future work plan are given.



Chapter 1

Introduction

Mathematical models are of great importance in the natural sciences. They have been

diffusely utilized in many disciplines as diverse as mathematics [37, 38], physics [24, 25,

39–42], chemistry [43], etc. With mathematical models, one can explicate a system in

mathematical language, analyse the roles of linked factors by physical methods, and then

make reasonable predictions of underlying behaviors. In general a model contains three

major elements: the input vector, the output vector, and associations between them. In

practical applications, the elements of input vectors are rarely deterministic but contain

uncertainty following some distribution laws [44, 45]. Consequently, the determination

of the variations in input variables, the investigation of their propagating through the

model, as well as the quantification of the sensitivities of model outputs with respect

to input variables are of crucial importance for establishing reliable and robust models

[3, 33, 46, 47]. The implementation of these procedures is known as uncertainty and

sensitivity analysis.

A view of modeling that may help illustrate the role of uncertainty and sensitivity

analysis in the scientific process is offered in Fig. 1.1, taken from the work of Robert

Rosen, an American theoretical biologist [48]. The figure shows two systems, a natural

system N which forms the subject under investigation, and a formal system F which

indicates the modeling of this subsect. Each system has its own internal entailment

structures and the two systems are connected by the encoding and decoding processes.

The uncertainty under discussion here is often referred to as epistemic uncertainty (also

known as systematic uncertainty). Epistemic uncertainty derives from a lack of infor-

mation or non-accuracy in measurement about the appropriate value used for specifying

a quantity that is assumed to be constant in the context of the analysis for a particular

problem. In the conceptual and computational designation of an analysis, epistemic

uncertainty is regarded in general to be distinct from aleatory uncertainty, which, also

4
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Figure 1.1: Modeling after Rosen (1991)

known as statistical uncertainty, arises from an inherent randomness in the behavior of

the system under study.

Uncertainty and sensitivity analysis are essential parts of analyses for complex systems.

Specifically, sensitivity analysis considers the determination of variance contributions of

individual input variables to the elements of output vectors [49]. Uncertainty analysis,

preceding sensitivity analysis, mainly focuses on the determination of the uncertainties

in output variables that derive from uncertainties in input factors. Conceptually, un-

certainty and sensitivity analyses should be run in tandem. They work together to help

determine:

(1) Which input factors contribute most to the variation of model output.

(2) Which parameters are significant and which ones can be eliminated from the model;

(3) How to efficiently reduce the uncertainty in model output by strengthening the

knowledge base concerning input parameters.

Quantifying the impact of a variable under sensitivity analysis could be useful for a

series of purposes, such as deep understanding of the relationships between input and

output variables in a system or model, fixing model inputs that have no effect on the

output, identifying and removing redundant parts of the model structure, and avoiding

useless time consumption on non-sensitive variables in models of a large number of

parameters. In models consisting of a large number of input variables, sensitivity analysis

constitutes essential ingredient of model building and quality assurance. Sensitivity

analysis has also extended its application to national and international agencies involved

in impact assessment studies, including the European Commission [50, 51], Australian

pathology laboratories [52], the Intergovernmental Panel on Climate Change [53], and

US Environmental Protection Agency’s modelling guidelines [54].

The framework of uncertainty and sensitivity analysis is easily performed when only a

single input factor is involved in the model under discussion, which is known as uni-

variate situation. It requires a straightforward one-dimensional analysis by presenting

results in figures in a two-dimensional space. When two or more input factors are under
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assessment, however, the problem is much more complicated, especially if input factors

do not have a separable monotonic effect on the output variable of interest.

The early framework of sensitivity analysis for multivariate models was established by

using local analysis. Local sensitivity analysis aims at assessing the local effects of

uncertainties in individual input factors on output variables, by concentrating on the

sensitivity in vicinity of a set of special factor values [55]. Such sensitivity is usually

evaluated by the use of gradients or partial derivatives of functions connecting output and

input vectors at these special factor values. This means the values of the rest factors are

fixed while studying the local sensitivity of model response with respect to a single factor.

Local sensitivity analysis is most frequently employed for the analysis of complex models,

especially when a large number of input factors are involved. This is common because of

the simplicity and low computational cost in its implementation. However, it abortively

quantifies the global impact of individual input factors and of their interactions on output

variables. Of importance to a part of model analysis practitioners (mostly working in the

fields of statistics, risk and safety assessment, and reliability detection) is understanding

the sensitivity of an output variable with respect to simultaneous variations of several

input factors [47, 56]. The global uncertainty and sensitivity analysis provides such

sensitivity information. It evaluates the influence of individual input factors by looking

at the entire input space rather than at a specified point.

Generally, the process of global uncertainty and sensitivity analysis can be decomposed

into: (a) specifying the model under study and defining its input and output variables;

(b) characterising the uncertainty in input variables; (c) determining the uncertainty in

model output; and (d) quantifying the importance of individual input variables in the

estimation of output variables. In establishing the framework of sensitivity analysis for

a given model with defined input and output variables, the main goal is to handle the

remaining procedures.

1.1 Characterisation of uncertainty in model input

Quite often, some or all of the model inputs are subject to sources of uncertainty, includ-

ing errors of measurement in experiments, absence of information and poor or partial

understanding of the driving forces and mechanisms. The most essential practice in

uncertainty and sensitivity analysis is to characterise the uncertainty in input variables.

The definition of model input, however, depends upon the particular model under in-

vestigation.
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A model can be stated as diagnostic or prognostic. Diagnostic models are used for under-

standing a law. They are often built by wild speculations applied to play what-if games,

such as models designed to study the emergence of an agreement in a population [57–59],

models used to investigate organizational change, etc. In the investigation of organiza-

tional change, as an example, three diagnostic models are high potential candidates to

highlight the problem areas and provide structure for solution development. The first

one is an analytic model, also known as the difference-integration model. It focuses

on thorough analytical diagnosis as the foundation for organisational change [60]. The

second one is the force-field analysis model, originally developed by Kurt Lewin in the

early 1950s. It regards the organisation as the result of internal forces that drive change

or maintain the current status [61]. The third one is developed on the bases of cause

maps and social network analysis. It provides a mathematical approach to organisation

diagnosis [62]. Regarding diagnostic models, input variables are pre-defined by model

designers and often assumed to follow particular distribution laws in fixed real ranges

(e.g. uniform and Gaussian distributions). Prognostic models can be viewed as accurate

and trusted predictors of a system. They mainly focus on the estimation (prediction)

of the probability that a particular event or outcome will happen. Prognostic models

are often developed for the clinical practice, where the risk of disease development or

disease outcome (e.g. recovery from a specific disease) can be calculated for individuals

by combining information across patients. In the clinical practice, prognostic models

can be presented in the form of a clinical prediction rule [63–66]. Prognostic models also

find their applications in other fields, such as risk and safety evaluation in engineering

[67, 68], problems solving of water dynamics in estuaries [69]. It is often preferable that

input variables in prognostic models, in contrast to those in diagnostic models, are easily

determined by social experience or practical examples for ensuring the applicability of

a prognostic model in practical applications.

Furthermore, models can also be classified as data-driven or law-driven. A data-driven

(or inverse) model tries to derive properties statistically by empirical study. Advocates

of data-driven models like to describe social behaviours with a minimum of adjustable

parameters, for instance, models helping understand the spreading of really happened

epidemics [70–73], models designed for explaining the generation of traffic jams [74,

75], and models proposed to describe financial time series [76, 77]. Law-driven (or

forward) models, on the other hand, aim at employing appropriate laws which have

been attributed to the system to predict its behaviour. For example, people can use

Darcy’s and Fick’s laws to understand the motion of a solute in water flowing through

a porous medium [78, 79]. In building design, as another example, building energy

simulation models are generally classified as prognostic law-driven models by which the

behaviour of a complex system can be predicted in terms of a set of well-defined laws
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Figure 1.2: Uncertainty characterisation of independent input variables. (a): an example of
given distribution laws of input variables: input 1 is uniformly distributed in the real range
[0, 1]; input 2 follows the standard normal distribution (µ = 0, σ = 1). (b): an example
of deterministic input variables: input 1 is specified at 1; input 2 is fixed at 0.5. Their

uncertainties are represented by changing 50% around their normative values.

(e.g., mass balance, energy balance, conductivity, and heat transfer, etc.) [80]. In data-

driven models, input parameters are introduced based on special situations, which could

be deterministic and attached with an artificially defined uncertainty. For law-driven

models, input factors are often imported by the laws we employed. Characterising the

uncertainty in input factors is also dependent upon the situation under analysis.

With given distribution laws, the uncertainty in input variables can be specified by their

mean values (e.g., arithmetic mean or mathematical expectation, geometric mean, medi-

an), standard deviations, PDFs, CDFs and CCDFs. Particularly, when input variables

are deterministic (often happening in agent-based systems where input parameters can

be determined based on practical experience), their uncertainties are frequently repre-

sented by artificially introducing fixed variation around their normative values or few

typical scenarios (e.g., scenarios corresponding to any possible combinations of specified

low, medium, high values of input factors) for performing the uncertainty and sensitivity

analysis of the system under discussion [16, 81–84]. The analysis framework of determin-

istic situations is often designed according to the variation in model output driven from

the independent variation in each input factor. This method is known as one-at-a-time

method and will be discussed below in detail. Examples, as shown in Fig. 1.2, present

the characterisation of uncertainties in input factors for both kinds of situations, in the

absence of input correlations.

1.2 Presentation of uncertainty in model output

As already mentioned at the beginning of this chapter, uncertainty and sensitivity anal-

ysis should be run in series, with uncertainty analysis preceding in current practice.

Uncertainty analysis is, through a certain way, to determine the uncertainty in model

output based on the uncertainty in model input.
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One popular way of establishing uncertainty analysis is dependent upon the computer,

which is also known as Monte Carlo (MC) method. Consider a general model of the

form y = f(x) with x = (x1, x2, · · · , xn)T indicating an input vector of n-dimensional

variables. All elements of input vector are assumed to be independent of each other.

By given PDFs of individual input factors, a sample of size M , indicated by an M × n

matrix, can be generated as





















x11 x21 · · · xn−1
1 xn1

x12 x22 · · · xn−1
2 xn2

...
...

...
...

...

x1M−1 x2M−1 · · · xn−1
M−1 xnM−1

x1M x2M · · · xn−1
M xnM





















. (1.1)

Run independently the model for all points that are sampled in n-dimensional input

space. A set of values of the model output y are then generated accordingly:

y = (y1, y2, · · · , yM )T. (1.2)

It is straightforward to state the uncertainty in output y according to its values presented

in Eq. (1.2).

Presentation formats of the uncertainty in model output include mathematical expec-

tation, standard deviation, the percentiles of its distribution, confidence bounds, PDF,

CDF, CCDF and box plot [85–89]. In general, the last four presentation patterns are

usually preferable to the first several indices which will make large amount of uncertainty

information neglected in implementation. Furthermore, box plot is definitely beneficial

for displaying the uncertainty in model output with normative input factors and com-

paring the uncertainties in a number of related variables. The box plot is a standardised

way of displaying the distribution of data. It is often generated by a box and whisker

plots. The bottom and top of the box are, in general, the first and third quartiles of

all of the data. The band inside the box is always the second quartile (the median).

The ends of the whiskers can represent several possible alternative values including: the

minimum and maximum of all of the data, the 9th percentile and the 91st percentile,

the 2nd percentile and the 98th percentile [90, 91]. Figure 1.3(a) exhibits an example of

uncertainty analysis of a simple model with functional form given by

y = x21 + x22. (1.3)

The uncertainties in input factors are defined by Fig. 1.2(a), that is, x1 follows a uniform

distribution in the real range [0, 1] and x2 the standard normal distribution. Box plot, as
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Figure 1.3: Representation of uncertainty in model output. (a): uncertainty analysis for the
model presented in Eq. (1.3) whose input uncertainty is defined by Fig. 1.2(a). (b): box plot
for the normalized susceptible and recovered agents at equilibrium state of SIR model with
input factors assumed to be uniformly distributed between 0 and 1. Bars show the full range
of the ensemble distribution of values; boxes show the range encompassed by the 25th and
75th percentiles; the horizontal line and square within each box show the median and mean,

respectively.

Figure 1.4: Progression of population for SIR model.

another example, for the equilibrium state of SIR model is presented in Fig. 1.3(b) where

the normalized susceptible and recovered agents are analysed. Three input factors: s(0)

(initial proportion of susceptible agents), γ (recovered rate) and β (infectious probability)

are assumed to be uniformly distributed between 0 and 1 [92, 93]. SIR model is one of the

compartmental models in epidemiology, serving as a base mathematical framework for

understanding the complex dynamics of the disease spread. The model consists of three

compartments: susceptible agents, infectious agents, and recovered (or immune) agents.

Each member of the population typically progresses from susceptible to infectious to

recovered, as shown in Fig. 1.4.

In practical applications, the model output is not always a scalar but could also be a

function. For example, in the investigation of epidemic spreading, the system of interest

is time-dependent. Uncertainty in input factors will be propagated to the uncertainty

in the dependence of model output upon the time parameter. For such situations, an

effective presentation format of the uncertainty in model output is to use two graphical

frames, with first one displaying any possible dependence of model output upon a rele-

vant parameter and second one presenting statistical results for the outcomes in the first

one [30]. Figure 1.5 displays the uncertainty analysis for the normalized infected agents

in SIR model. Three input factors of SIR model: s(0) (initial proportion of susceptible

agents), γ (recovered rate) and β (infectious probability) are assumed to be uniformly

distributed between 0 and 1. Having performed uncertainty analysis we can then move

on to the sensitivity analysis. Sensitivity analysis allows one to understand how un-

certainty in the model output can be attributed to different sources of uncertainties in
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Figure 1.5: Representation of uncertainty in model output which acts a function of time
parameter. Analysis of the time-dependent normalized number of infected agents generated
in SIR model is presented as a particular example. Three involved input factors are assumed

to be uniformly distributed between 0 and 1.

input factors.

1.3 Methods of sensitivity analysis

Sensitivity analysis is a primary part of model development. It involves importance

evaluation of input parameters in the estimation of the model output. At present,

a large number of approaches have been built for performing the sensitivity analysis.

Regarding the complexity of models, many methods are developed to address one or

more constrains. For example, most common sensitivity analysis methods assume input

factors are independent of each other [30, 94]; approaches based on linear regression are

valid only for linear models; virtually all sensitivity analysis methods consider a single

univariate model output, by which sensitivity measures are hard to be interpreted for

models with correlated outputs.

Methods of sensitivity analysis can be classified based on the methodology as mathe-

matical, statistical or graphical [95]. Mathematical methods evaluate the sensitivity of

model output with respect to the range of variation of each input factor. Typically,

they involve the calculation of output variable according to a few values of each factor

that represent the possible variation range of the factor. Mathematical methods can

identify the influences of individual factors in their variation ranges on an output vari-

able. However, they do not indicate the variance of output variable propagated from

the uncertainties in input factors but represent, for example, the sensitivity of model

output as the magnitude of percentage change compared to its nominal value. In some

cases, especially when input factors are almost deterministic, mathematical methods

are helpful in recognising the most important factors [81, 96]. One-at-a-time method

(discussed below) is one of most widely used mathematical methods. Statistical meth-

ods assess the variance contribution of input factors to the output variable with given
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probability distributions related to input factors. By employing statistical methods, the

variation of one or more input factors can be considered simultaneously. This allows one

to identify the interaction effects among multiple input factors on the uncertainty in out-

put variable. Some statistical methods often considered are introduced here, including

differential-based method, response surface method, regression analysis, variance-based

analysis, and sampling-based method. Graphical methods, in general, mainly focus on

the representation of sensitivity analysis results in the form of graphs, charts, or surfaces.

They provide a visual understanding of how an output variable is affected by the varia-

tion in input factors. Graphical methods can be used to complement the analysis results

of mathematical and statistical methods in establishing systematical framework of sen-

sitivity analysis. Some other classifications of sensitivity analysis methods may focus on

the capability of a specific technique, which aids in understanding the applicability of a

specific method to a particular model and analysis objective [97].

1.3.1 One-at-a-time method

One-at-a-time method for sensitivity analysis, also known as nominal range sensitivity

analysis, local sensitivity analysis or threshold sensitivity analysis, is one of the simplest

and most widely used approaches. This method is individually varying only one of

the model inputs across its entire range of plausible values at a time while fixing the

others at their base-case or mean values, to see what effect this exerts on the model

output. The sensitivity of the model output with respect to a particular input variable

can be identified by the difference in the model output contributed by the variation

of the variable. Regarding deterministic models, sensitivity measures can be typically

represented as a positive or negative percentage change of the output variable compared

to its normative value.

For linear models, one-at-a-time analysis is advantageous for recognising the most im-

portant factors because of its simplicity and low computational cost in implementation.

This approach, however, does not consider the simultaneous variation of input variables.

This makes it fail in identifying the impacts of interaction effects among multiple input

factors on the uncertainty in an output variable. Accordingly, the analysis results of

one-at-a-time strategy are potentially misleading for models other than linear ones.

One-at-a-time method is quite often used for sensitivity analysis of models with a large

number of input variables (e.g., climate models, contagious disease spreading models)

since it is easily operated, by only repeating sensitivity analysis process for any number

of individual model inputs [81, 98–100]. Murphy et al, for example, applied the method

to address the range of climate changes resulted from the variation of input factors [101].
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With one-at-a-time strategy, they obtained statistical predictions of climate prediction

and sensitivity indices in assuming that the effects of perturbations of 32 input parame-

ters combine linearly and independently. In a deterministic HIV model with 20 uncertain

input parameters involved and supposed to be independent of each other, Blower and

Dowlatabadi employed PRCC to assess the statistical relationship between each input

parameter and the outcome variable while fixing the remaining input factors at their

nominal values [3].

Regarding one-at-a-time method for sensitivity analysis, one often considers the Morris

method [102]. Morris method is stated as effective to screen a few important input factors

from a large number controlling a model. In this method, the input space (for simplicity,

defined as an n-dimensional unit hypercube) is discretized to n-dimensional p-level grid.

Each input xi may take values from a sequence {0, 1/(p − 1), 2/(p − 1), · · · , 1}. For a

given value of input vector x, the elementary effect of the ith input factor is defined

based on Morris method as

di(x) =
f(x+ ei∆)− f(x)

∆
=

∂f

∂xi
, (1.4)

where ∆ is a predetermined multiple of 1/(p− 1), and ei a column vector where the ith

entry is set to 1 and the rest ones are set to zero. The finite distribution of elementary

effects is estimated by randomly sampling different x from input space. For input xi,

the distribution is denoted by Fi. The mean value ui and standard deviation υi of the

distribution Fi are then estimated. ui characterises the effect of input xi on the model

output and υi the nonlinear effect of xi as well as the interaction effects associated with

xi:

ui =

∫

∂f

∂xi
dx, υi =

[

∫ (

∂f

∂xi
− ui

)2

dx

]1/2

. (1.5)

When the model under discussion is non-monotonic, distribution Fi contains positive

and negative elements. Averaging rule may cancel some effects so as to make u very

small or even zero. For this reason, an improved sensitivity measure is considered by

Campolongo et al, called u∗, which is defined as the mean of the distribution of the

absolute values of the elementary effects [103, 104]:

u∗ =
∫
∣

∣

∣

∣

∂f

∂xi

∣

∣

∣

∣

dx. (1.6)

Measure u∗ can help identify out the input factors of important overall influence on the

model output.
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1.3.2 Regression analysis method

Regression analysis is a statistical process for providing an algebraic representation of

the relationship between output variable and one or more of input parameters [105]. It

allows one to understand how the output variable changes when any one of the input

factors is varied while the remaining factors are fixed.

The earliest form of the regression was the method of least squares, which was consid-

ered by Legendre in 1805 [106] and also by Gauss in 1809 [107]. However, the term

”regression” was proposed by Francis Galton in the late of nineteenth century, with

which, a biological system was described [108]. It was later extended by Udny Yule and

Karl Pearson to a more general statistical context [109].

In the context of sensitivity analysis, regression analysis usually involves the construction

of linear relationship connecting output variable and input parameters. The standard-

ized regression coefficients are then directly used for assessing the sensitivity of model

output with respect to individual input factors. Regression analysis contains three group-

s of variables: the unknown regression coefficients, denoted as bi with i = 0, 1, · · · , n,
the input factors xi with i = 1, 2, · · · , n, and the model output y. y could be a vector.

But for simplicity, we consider y as a scalar.

Regression analysis is most properly performed by independent random samples which

constitute the mapping from input factors to the output variable. By linear regression,

the model under study is approximated as

ŷ = b0 +
n
∑

i=1

bixi, (1.7)

where bi is the regression coefficient for input xi, which can be interpreted as the change

in output y when the input factor xi increases by one unit in keeping the remaining

factors constant [110]; ŷ denotes the predicted value of output variable for a given point

in the n-dimensional input space when regression coefficients are determined. The coef-

ficients bi are determined by least squares: minimizing the sum of squares of deviation

from the true values:

M
∑

j=1

(yj − ŷj)
2 =

M
∑

j=1

[

yj −
(

b0 +

n
∑

i=1

bix
i
j

)]2

, (1.8)

where M is the number of samples (experimental points), yj the jth output data point

given by the jth n-dimensional input data point, xij the jth sampled value of input xi

[111]. The deviation of the prediction of the regression model (Eq. (1.7)) from the exact
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values given by the original model can be evaluated as

R2 =
M
∑

j=1

(ŷj − ȳ)2

/

M
∑

j=1

(yj − ȳ)2, (1.9)

which provides a measure of the amount of uncertainty in output variable explained by

linear regression model [112, 113]. Particularly, R2 → 1 indicates that the developed

regression model accounts for most of the uncertainty in output variable. Converse-

ly, R2 → 0 means that the regression model is not satisfied in explaining the output

uncertainty [30].

To some degree, the regression coefficients can reflect the sensitivity of model output to

input factors. If a coefficient bi is close to 0, then there is not a statistically significant

linear relationship between input xi and the output y. Conversely, if bi is significantly

different from 0, then the output y can be regarded as being sensitive to xi. However,

bi is influenced by the units of xi. To reduce the dimensional effects of input factors,

the regression model represented by Eq. (1.7) is commonly standardised to make the

variance of output and input variables equal to 1:

(ŷ − ȳ)/σ̂ =

n
∑

i=1

(biσ̂i/σ̂)(xi − µi)σ̂i, (1.10)

where

σ̂ =





1

M

M
∑

j=1

(yj − ȳ)2





1/2

, (1.11)

σ̂i =





1

M

M
∑

j=1

(xij − µi)
2





1/2

, (1.12)

and

ȳ =
1

M

M
∑

j=1

yj , (1.13)

µi =
1

M

M
∑

j=1

xij . (1.14)

The coefficients biσ̂i/σ̂ are referred to as standardised coefficients, taking values between

-1 and 1. The standardised coefficients are helpful in identifying which of input param-

eters have greater effects on the output variable when the input variables are measured

in different units of measurement [114]. Linear regression analysis is most suitable when
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the model of interest is in fact linear as it is difficult to interpret the standardised co-

efficients when nonlinear regression analysis is involved. In some analyses, nonlinear

regression provides an alternative to linear regression for more accurate estimation of

the relationship between output and input variables [115, 116].

Because of simplicity and low computational cost, regression analysis as a strategy of

sensitivity analysis has been adopted by many researchers from various of fields, such

as medical science [117, 118], bioscience [119], human science [120], and food science

[121, 122].

1.3.3 Response surface method

Response surface method consists of a group of mathematical and statistical techniques

used in the development of an adequate model function connecting an output variable

and a number of input parameters. With the established functional relationship, re-

sponse surface method can identify curvature in the response surface by accounting for

high-order effects produced by input parameters. The method was introduced by Box

and Wilson in 1951 [123]. The main idea of this approach is to use a sequence of designed

experiments to obtain an optimal response. Considering the complexity in implemen-

tation, response surface method, therefore, is commonly used for the analysis of models

with limited number of input factors.

In general, the functional relationship between model output and input parameters is

unknown but can be approximated by a low-degree polynomial model of the form

y = fT(x)β + ϵ, (1.15)

where x = (x1, x2, · · · , xn)T, the input vector of n-dimensional variables; fT(x) is a

vector function of a group of elements, consisting of powers and cross-products of powers

of individual input parameters up to a certain degree d (≥ 1); β is a vector of unknown

constant coefficients; ϵ is a random experimental error and assumed to have a zero mean

[124].

Currently two important models are used in response surface method, with one being

linear and the other, nonlinear. The linear one is also classified as the first-degree model

(d=1) constructed in terms of the first-order terms of input parameters:

y = β0 +

n
∑

i=1

βixi + ϵ. (1.16)
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The nonlinear one is classified as the second-degree model (d=2), which still involves

second-order effects of input parameters, except for first-order ones:

y = β0 +
n
∑

i=1

βixi +
n
∑

i

n
∑

j>i

βijxixj +
n
∑

i=1

βiix
2
i + ϵ. (1.17)

The application of response surface method to sensitivity analysis of models can be

concluded as three procedures:

(1) To approximately establish the functional relationship connecting output variable

and input factors.

(2) To quantify, through hypothesis testing, importance of individual factors.

(3) To determine the optimum settings of input factors that result in the maximum or

minimum output value over a certain range of interest.

In general, the first-degree model is sufficient to determine which of input factors affect

the model output of interest most. For a deep understanding of the effects produced

by input factors on the model output, however, a more complicated design should be

implemented to estimate a second-degree polynomial model.

A series of experiments should be first designed to perform response surface analysis,

helping generate the mapping from input factors to the output variable. The design,

denoted by D, can be represented by an M × n matrix, as displayed in Eq. (1.1),

where M is the number of experiments (the size of a design) and n the number of input

variables. Each row of D represents a point in the n-dimensional input space. Designs

used for estimating the first-degree model are usually referred to as first-order designs

and those used for estimating the second-degree model, second-order designs.

In the estimation of the first-degree model, an easy but most common design is 2n

factorial design [125]. In a 2n factorial design, each input variable is measured at two

levels which are commonly coded as -1 for the low level and +1 for the high level. A

factorial design consists of all possible combinations of previously defined levels of n

input factors. In practical applications, the points in a two-level factorial design are

frequently represented by plus and minus signs, conventionally, − for the first (or low)

level, and + for the second (or high) level. Take the case of three input factors as an

example. The corresponding 23 design is a 8× 3 matrix of the form

D =









− − − + − + + +

− − + − + − + +

− + − − + + − +









T

. (1.18)
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If n is large, a large number of points will be introduced by the 2n factorial design,

thereby high cost is required in the computer simulation. For this case, fractions (e.g.,

one-half fraction, one-fourth fraction) of a 2n design are often considered to reduce the

cost of computer simulations in the estimation of the first-degree model. In general, a

2−mth fraction of a 2n design contains 2n−m points of a 2n design. Here m is an integer

number such that 2n−m ≥ n+1 for guaranteeing all n+1 parameters (elements of vector

β) included in the first-degree model (Eq. (1.16)) can be estimated. Particular manners

for the construction of fractions of a 2n design can be found in Refs. [126, 127]. Some

other commonly discussed designs for fitting the first-degree model are Plackett-Burman

design [128, 129] and simplex design [130]. The Plackett-Burman design allows two levels

of each input factor, analogous to the 2n factorial design, but requires a much smaller

number of design points, especially for large n. The number of design points required by

the Plackett-Burman design is equal to the number of parameters (=n+ 1) in the first-

degree model. Specifically, this design can be employed only when the number of input

variables, n, is a multiple of 4 [128]. The simplex design also contains n+1 experimental

points. These points are located at the nodes of an n-dimensional regular-sided figure

[131, 132].

In the fitting of the second-degree model, one of the most frequently discussed designs is

the 3n factorial design [133]. A 3n factorial design is formed from all possible combina-

tions of the levels of all n input variables. Each input variable has three levels that are

commonly coded as -1 for the low level, 0 for the intermediate level, and +1 for the high

level. In practice, the matrix of a 3n factorial design simply consists of plus and minus

signs, and also 0. Analogously, the number of experimental points for this design (=3n)

will be very large when a large number of input factors are involved into the original

model. Following the phenomenon, fractions of a 3n factorial design are often employed

to save the cost of computer simulations. In the construction of fractions, the number

of experimental points must at leat equal the number of parameters (=2n+1+n(n-1)/2,

the number of elements of vector β) included in the second-degree model (Eq. (1.17))

[127, 134]. Another most widely used second-order design is the central composite de-

sign. It is stated as the most popular design for building a second-degree model. The

central composite design was first introduced by A. I. Khuri in 1988 [135], consisting of

three distinct sets of experimental runs:

(1) A full (or a fraction of) 2n factorial design. This is called the factorial portion. Two

levels of each input factor are coded as -1 and +1. They are often simplified as plus and

minus signs in design matrix.

(2) n0 central points. Central point, commonly coded as 0, is the median of the values

of each factor used in the factorial portion. n0 replications of central point is used to
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improve the precision of the experiment.

(3) 2n axial points. Two points are taken on the axis of each input variable at a distance

of α from the center of the variable.

The number of experimental runs (design points) in a central composite design is (2n +

2n+n0). The design matrix of a simple case with n = 3 and n0 = 4 is formed as follows:

D =









− − − + − + + + −α α 0 0 0 0 0 0 0 0

− − + − + − + + 0 0 −α α 0 0 0 0 0 0

− + − − + + − + 0 0 0 0 −α α 0 0 0 0









T

. (1.19)

Many strategies have been developed to select a useful value of the axial parameter α.

Let F denote the number of points in the factorial portion and T = 2n + n0. Two

common values are

α = (Q× F/4)1/4 (1.20)

with Q = (
√
F + T −

√
F )2, which makes the central composite design orthogonal, and

α = F 1/4 (1.21)

which makes the design rotatable [136]. The value of n0 is often assigned in terms of some

certain desirable properties of the central composite design. For example, n0 can be set

to a value that makes a rotatable central composite design hold orthogonality property

or the uniform precision property [130, 137]. The other most frequently used second-

order design is the Box-Behnken design devised by G. E. P. Box and D. Behnken in 1960

[133]. In this design, three levels (equally spaced) of each input factor are considered.

A Box-Behnken design is formed from a particular subset of the full 3n factorial design

[138, 139]. Some other second-order designs are available in Refs. [140–143].

A representative strategy to develop the expression of Eq. (1.15) is using a least squares

repression method to fit a standardized first- or second-order equation to the data ob-

tained from the original model. MC methods are typically borrowed to produce multiple

values of each input factor, thereby to calculate corresponding values of model output.

Other techniques such as rank-based or nonparametric approaches are also occasionally

considered in employing the response surface method to establish the framework of sen-

sitivity analysis [130, 144]. The precision and accuracy of analysis results provided by

the response surface method can be evaluated by comparing the predictions provided

by the method to the output values of the original model generated by the same values

of input parameters. If the precision and accuracy are not satisfactory, an improved fit

might be obtained by iterating on values of parameters [145].



Introduction 20

Time-consuming and effort requirement in applying response surface approach typically

rely on the number of input parameters included and the type of response structure

required. Hence, mainly focusing on the effects of those input factors that have been

identified as quite important through a screening sensitivity analysis method (e.g., one-

at-a-time method) may be advantageous to reduce the complexity and difficulty in the

implementation of response surface strategy.

A key advantage of the response surface method is that one can save computational

time in computationally intensive model run by simplifying the form of the model under

discussion. Furthermore, the functional form of the model that is established by the

response surface method and the values of the coefficients included in the form can

provide a fruitful information for quantifying the sensitivity of model output with respect

to individual parameters. However, most frameworks established by the response surface

method only consider the effects of some but not all of the input factors contained in the

original model. This may result in absent or non-accurate global sensitivity measures in

sensitivity analysis.

1.3.4 Differential-based method

Differential techniques for sensitivity analysis, also referred to as the direct or local

methods, involve partial derivatives of output variable with respect to input parame-

ters. In sensitivity analysis, one of the most used differential-based strategies is the

first-order Taylor series approximation. It was discussed since 1966 by engineers and

experimentalists [21].

Recall a generic model of the form y = f(x) with x = (x1, x2, · · · , xn)T labeling the

input vector of n-dimensional variables. By employing the first-order Taylor series ap-

proximation, the variance of output y, denoted as V (y), is calculated as

V (y) =

n
∑

i=1

(

∂y

∂xi

)2

X0

V (xi), (1.22)

where the subscript X0 indicates that the derivative is taken at a fixed point (often

indicated by the central point) in the space of input variables, and V (xi) the variance of

input xi. The sensitivity coefficient, denoted by si, interprets the importance of input

xi in establishing the uncertainty of output y. si is determined by (see [146])

si =

(

∂y

∂xi

)2

X0

V (xi)

/

V (y). (1.23)
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This calculation is performed under the assumption that high-order (≥ 2) partial differ-

entials are negligible and input parameters are independent of each other. Consequently,

the first-order Taylor series approximation can provide accurate and reliable analysis re-

sults only when the model under study is almost linear or the uncertainty in input

parameters is negligible [17, 147].

Sensitivity analysis proposed by the differential-based technique is computationally effi-

cient but bound with intensive effort requirement in solving differential equations. When

an explicit algebraic equation describes the relationship connecting model output and

input parameters, it is straightforward to evaluate sensitivity measures by the use of

differential-based strategy. If a large set of equations are involved with the model under

discussion, the first-order partial derivative can be approximated as a finite variation

in output values driven from a small change in the input parameter [148, 149]. By

neglecting non-linearities of models, the sensitivity of model output with respect to an

arbitrary input parameter xi can be approximated as

si =
%∆y

%∆xi
=

[f(x+∆i)− f(x)] /f(x)

[xi −∆i] /xi
, (1.24)

where (x+∆i) = (x1, · · · , xi+∆i, · · · , xn), and ∆i is a small change introduced to input

xi.

A derivative-based global sensitivity method has also been proposed by Sobol and

Kucherenko, by averaging the square of local derivatives [150, 151]. In this method,

the global sensitivity measures are defined as

vi =

∫

Cn

(

∂f

∂xi

)2

dx, (1.25)

where Cn = (x|0 ≤ xi ≤ 1; i = 1, 2, · · · , n), the n-dimensional unite hypercube. vi can

be regarded as an improvement of the importance criterion u∗ (see Eq. (1.6)). The above

definition is motivated by the fact that a high value of the derivative of model output

with respect to an input variable indicates a robust influence of the input variable on

the model output [152]. It is proved that

sT i ≤
vi

π2V (y)
, (1.26)

where sT i are the one-dimensional total sensitivity indices (see Eq. (1.38)) and V (y) the

total variance of output y. This states that small vi imply small sT i. Unessential input

parameters then can be identified out based on computed values of vi (i = 1, 2, · · · , n).
For highly nonlinear functions, however, the ranking of influential parameters in terms

of the importance criterion vi may suggest false conclusions [150].



Introduction 22

The differential-based strategy is usually more demanding than other methods in the

sensitivity analysis of complex models. It requires of model designers to explicitly cal-

culate the first-order partial derivatives of output variable with respect to individual

parameters, and yet provides only comparable but not accurate results, especially for

nonlinear models.

1.3.5 Variance-based methods

Variance-based techniques have a long history in the aspect of sensitivity analysis. They

are often used for determining whether an output variable is statistically associated with

one or more input factors, and whether the values of model output vary in a statistically

significant manner with the variation in values of one or more input variables. In the

seventies, Cukier firstly established variance-based sensitivity analysis of multi-variate

systems by Fourier implementation [153]. While the complete variance decomposition

strategy was firstly developed by Sobol in 1993 [29]. In 1994, Jansen et al introduced

an efficient method relying on random sampling to evaluate the partial contributions

from input variables of uncertainty to the predicted variance in output variable [154]. A

similar strategy was developed by Homma and Saltelli[155] in 1996 to determine global

sensitivity measures that quantify the global importance of individual input variables

in the estimation of model response. In spite of time consuming in computation, the

instrument of complete variance decomposition is known to be useful and informative

for uncertainty and sensitivity analysis of complex nonlinear systems [156].

Variance-based sensitivity analysis, often referred to as the Sobol method or Sobol in-

dices, specifies the uncertainty in input and output variables through probability dis-

tributions. Working within a probabilistic framework, it decomposes the variance of

model output into different partial contributions attributable to individual input vari-

ables and to their combinations. By computing the percentage of each partial variance

contribution in the global variance of output variable, sensitivity measures are directly

interpreted for individual factors and also for their interaction effects. Variance-based

sensitivity analysis methods are attractive and widely used because they allow full ex-

ploration of input space, analysis of nonlinear models, and consideration of interactions

between different input variables.

Without any assumption regarding the type of the model under discussion, variance-

based approaches find broad applications across various fields, including scientific models

evaluation [49], risk assessment [157], importance assessment [158], economic system

analysis [28], behaviour prediction in forest systems [159], etc.
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Recall the generic model of the form y = f(x) with x = (x1, x2, · · · , xn)T labeling the

input vector of n-dimensional variables. The model is defined over Cn, the n-dimensional

unit hypercube, as defined before. Recalling the classical Hoeffding decomposition [29,

160–163], the output variable can be expanded as

y = f0 +

n
∑

i=1

fi(xi) +

n
∑

i=1

n
∑

j>i

fij(xi, xj) + · · ·+ f12···n(x1, x2, · · · , xn), (1.27)

where f0 is a constant, fi a function of xi, fij a function of xi and xj , and so on up

to the last term a function involving all input variables. Each term is square integrable

over Cn. Summands presented in Eq. (1.27) must satisfy

∫ 1

0
fi1i2···is(xi1 , xi2 , · · · , xis)dxik = 0, (1.28)

where 1 ≤ i1 < i2 < · · · < is ≤ n and ik ∈ {i1, i2, · · · , is}. This condition drives

f0 =

∫

Cn

f(x)dx, (1.29)

fi(xi) =

∫ 1

0
· · ·
∫ 1

0
f(x)dx/dxi − f0, (1.30)

fij(xi, xj) =

∫ 1

0
· · ·
∫ 1

0
f(x)dx/dxidxj − f0 − fi(xi)− fj(xj), (1.31)

...

where dx/dxi is the product of all the dxj except dxi, similar to dx/dxidxj which

indicates the integration with respect to all input variables, except xi and xj . By

assuming f(x) is square-integrable, the variance of model output can be expressed as

V (y) =

∫ 1

0
· · ·
∫ 1

0

[

n
∑

s=1

n
∑

i1<···<is

f2
i1,··· ,is(xi1 , xi2 , · · · , xis)dxi1 · · ·xis

]

. (1.32)

Expanding the above equation yields

V (y) =

n
∑

i=1

Vi +

n
∑

i=1

n
∑

j>i

Vij + · · ·+ V12···n, (1.33)

where

Vi =

∫ 1

0
f2
i (xi)dxi, (1.34)

Vij =

∫ 1

0

∫ 1

0
f2
ij(xi, xj)dxidxj , (1.35)

...
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are in sequence explaining the variances contributed by xi alone, by the interaction be-

tween xi and xj , etc. Equation (1.33) is known as the complete variance decomposition,

deduced by Sobol in 1993. It shows how the variance of a model output can be decom-

posed into terms that are attributable to individual input factors and to their interaction

effects [29]. Following the concept of Sobol’s variance decomposition, sensitivity mea-

sures are defined by

si = Vi/V (y), (1.36)

sij = Vij/V (y), (1.37)

...

sT i =



Vi +

n
∑

j=1;j ̸=i

Vij + · · ·+ V12···n





/

V (y), (1.38)

where si is often called the first-order sensitivity index or the main effect index, labeling

the fraction of V (y) contributed by xi alone; sij the second-order sensitivity index,

indicating the fraction of V (y) contributed by the interaction between xi and xj ; and so

on up to the last label sT i the total sensitivity index, quantifying the fraction of V (y)

contributed by xi alone and also by interactions of xi with the remaining factors. They

satisfy

n
∑

i=1

si +

n
∑

i=1

n
∑

j>i

sij + · · ·+ s12···n = 1, (1.39)

n
∑

i=1

sT i ≥ 1. (1.40)

The equal sign in Eq. (1.40) holds iff the model under analysis is purely additive.

Theoretically, the determination of sensitivity measures depends upon multidimensional

integrals. In practice, sampling-based strategies are often employed to carry out this

mission. It can become computationally expensive when there are a large number of

input variables.

Sobol’s definitions of the second and higher order partial variance contributions in Eq.

(1.33) hold if input factors are independent of each other. In the presence of input

correlations, however, partial variance contributions with dimensionality larger than

1 are contributed not only by the coupling items presented in the functional form of

the model under discussion (for independent case), but also by the input correlations.

Recently, the interest in extending sensitivity analysis strategies from uncorrelated case

to the correlated one is increasing as correlated input variables are of frequent occurrence

in practical applications [164, 165]. In general, variance-based sensitivity analysis in the
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presence of correlated inputs is carried out by using linear correlation model which

regards the correlation part of an arbitrary variable as a linear combination of the rest

variables [34–36, 166].

1.3.6 Moment independent method

The moment independent method looks at the influence of input uncertainty on the

entire output distribution without reference to a specific moment of the output. The

moment independent importance indicator was first introduced by Chun et al [167].

They quantified the entire change of CDFs in terms of the normalised Euclidean metric

distance between two CDFs. The metric distance (Minkowski distance) of order a be-

tween two points X1 = (x11, x
2
1, · · · , xn1 ) and X2 = (x12, x

2
2, · · · , xn2 ) is in general defined

by

D =

(

n
∑

i=1

|xi1 − xi2|a
)1/a

, (1.41)

where a is a number no less than 1. The metric distance is typically used with a being 1 or

2, which correspond to the Manhattan distance and the Euclidean distance, respectively.

The measure of uncertainty importance is then defined by

MD(i : o) =

(∫ 1

0
[Y i

j − Y o
j ]

2dj

)1/2
/

E(yo), (1.42)

where Y o
j is the jth percentile of the output CDF for the base case, Y i

j the jthe percentile

of the output CDF after introducing a change to input xi, and E(yo) the mean value of

output y for the base case. The base case refers to the case where an output distribution

is obtained by setting all input distributions to their nominal ones. It is stated that a

larger value of MD(i : o) implies a more important parameter xi, compared to other

input parameters. However, the value of MD(i : o) depends on the hypothesised change

introduced to parameter xi.

Another moment independent importance measure was presented by Borgonovo, which

does not require one pre-suppose any changes associated with input parameters [168].

It follows from his concept that the global sensitivity index of parameter xi, denoted by

δi, with respect to the output y is represented by

δi =
1

2

∫

P (xi)

[∫

|Py(y)− Py|xi
(y)|dy

]

dxi, (1.43)

where P (xi) =
∫

· · ·
∫

P (x)
∏

j ̸=i dxj the marginal density (PDF) of input xi, P (y) is the

PDF of output y, and PY |xi
(y) indicates the conditional PDF of y by assuming that the

input parameter xi is fixed at a constant value. It is proved that δi holds some properties,
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such as a) 0 ≤ δi ≤ 1; b) δi = 0 if the output y is independent of xi; c) δ1,2,··· ,n = 1 (the

importance of all input parameters equals one); etc [169]. The indicator δ helps identify

out input parameters that affect output uncertainty the most. In identifying the less

relevant parameters with respect to the model output, δ agrees with Sobol’s variance-

based method. However, discrepancy between two evaluations exists in ranking relevant

parameters.

Regarding the difficulty in deriving the PDFS of output variable, a new moment inde-

pendent measure was recently proposed, called the PAWN index, with the conditional

and unconditional distributions characterised by their CDFs [170]. The Kolmogorove-

Smirnov statistic ([171]) is employed to measure the distance between conditional and

unconditional CDFs:

KS(xi) = max
y

|Fy(y)− Fy|xi
(y)|, (1.44)

where Fy(y) is the unconditional CDF of output y, Fy|xi
(y) the conditional CDF when

the input xi is fixed. As KS(xi) depends on the value at which xi is fixed, the PAWN

index, denoted by Ti, is then defined by considering a statistic (e.g. maximum or median)

over all possible values of xi:

Ti = stat
xi

{KS(xi)}. (1.45)

The PAWN index Ti is a global, quantitative and model independent sensitivity in-

dex, varying between 0 and 1 (the higher the value, the more influential xi). Ti

(i = 1, 2, · · · , n) can be used for ranking input parameters according to their con-

tributions to the output uncertainty, so as to identify which of input parameters are

influential, and which are non-influential. Compared to other moment independent sen-

sitivity indices, the PAWN index has the advantage of being very easy to implement

and interpret [170]. Regarding the convergence rate and screening of non-influential pa-

rameters, the PAWN method is in good agreement with Sobol’s variance-based method.

However, the PAWN method is better than Sobol’s one in quantifying the difference

between relative importance of influential parameters [172].

1.3.7 Sampling-based method

In the implementation of uncertainty and sensitivity analysis, the sampling-based (al-

so known as MC) approach has been classified as both effective and widely used. In

carrying out the sampling-based approach, what is the most fundamental and critical

is to generate and explore the mapping from uncertain input variables to the uncertain

model response. In exploration and generation of the underlying mapping, two basic

components should be previously considered. The first one is the definition of proba-

bility distributions P1, P2, · · · , Pn that characterise uncertainties in input variables in
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Figure 1.6: Example of random sampling to generate a sample of size M = 20 from x =
(x1, x2) with x1 uniformly distributed and x2 normally distributed, defined by Fig.1.2(a). First
two panels illustrate sampling of values for x1 and x2, respectively, and the last panel presents
a random pairing of the sampled values os x1 and x2 in the construction of a random sampling.

the absence of input correlations. The second one is the generation of sample points in

n-dimensional input space according to the previously defined distributions of individual

input variables. Diversified sampling procedures have been designed. In this section,

we discuss some frequently considered sampling strategies: random sampling, sampling

for iterated fractional factorial design (IFFD), importance sampling, Latin Hypercube

sampling (LHS), and Quasi Monte Carlo (QMC) sampling.

Random sampling

Sample points provided by random sampling are generated by pseudo-random numbers.

Values of single uncertain input variables are chosen randomly and entirely by chance

from their real ranges, independent of their PDFs [173]. It is stated that random sam-

pling is prone to clustering that yields wanted sample points and empty areas in input

space because each new sample is selected randomly without minding the gaps between

already generated sample values [174, 175]. Figure 1.6 presents an example of random

samples of size M = 20 generated from x = (x1, x2). x1 is uniformly distributed in the

real range [0, 1] and x2 follows the standard normal distribution (Fig.1.2(a)). Clustering

effect and empty areas are evident in the distribution of sample points. The uniformity

of sample points in input space directly determines the accuracy of analysis results when

the number of sample points is finite.

IFFD

The factorial sampling and fractional factorial sampling have been briefly mentioned

before. They are widely considered in the response surface method. Sampling for IFFD

was also proposed as a direct tool for sensitivity analysis [176, 177]. In this sampling,

input variables are sampled at discrete levels. This is the main difference from other

sampling strategies where each input variable is sampled at a continuous interval. IFFD

was built to identify a few robust parameters within batches of a large number of fragile
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ones [177]. Investigation indicates that the sensitivity measure based on IFFD is ex-

tremely reproducible, and more robust than rank regression coefficient in that it can

also identify quadratic effects of individual parameters, except for linear ones [178].

Specifically, IFFD is generated by multiple iterations of a basic orthogonal fractional

factorial design. Given a basic fractional factorial design, three steps of randomization

control the generation of a sampling for IFFD:

(1) Parameters are randomly assigned to columns of the basic fractional factorial design.

(2) Each parameter is randomly oriented in considering two orientations: positive one

and negative one. Parameters with a positive orientation will copy their values from

the associated column of the basic design, and those with a negative one will take the

opposite values from the associated column of the basic design.

(3) The orientation value of each parameter is randomly set to zero in a previously

defined proportion of the total iterations.

The first two randomization steps are carried out independently for each iteration, and

the third one is performed within the whole set of iterations. Each iteration of an IFFD is

analysed separately. The obtained results are then combined together for the sensitivity

analysis of the system under discussion. Denote the value of the output variable in the

ith simulation of the mth iteration by ym[i], and the input parameter that copies values

from the jth column of the basic design by zj . The main effect in the mth iteration of

parameter zj on the output variable is given by

MEm(zj , y
m) =

1

n

2n
∑

i=1

Jn[i, j] · ym[i], (1.46)

where n is the number of input parameters, Jn the basic fractional factorial design of

size n× n, and Jn[i, j] the (i, j)th position in matrix Jn. MEm(zj , y
m) is a linear effect

as it calculates the difference in average response between two levels (low and high) of

zj . The main effect of a parameter x throughout the entire design of M iterations is

given by

ME(x, y) =

∑M
m=1 S

m
x ·ME(zcmx , y

m)
∑M

m=1 |Sm
x |

, (1.47)

where Sm
x is the orientation value of parameter x in the mth iteration, cmx (taking a value

from 1 to n) the randomly chosen column associated with parameter x. The quadratic

effect of parameter x can also be defined by

QE(x, y) =

∑M
m=1(1− |Sm

x |)∑2n
i=1 y

m[i]

2n
∑M

m=1(1− |Sm
x |)

−
∑M

m=1 |Sm
x |∑2n

i=1 y
m[i]

2n
∑M

m=1 |Sm
x |

. (1.48)
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Importance sampling

In statistics, importance sampling is a well-known technique for estimating properties of

a particular distribution, by using samples generated from a different distribution than

the distribution of interest. It is often used for the estimate of rare event probability

[179, 180]. Consider a general univariate function f(x). x is a random variable from a

previously defined distribution of density P (x). One wishes to estimate the expected

value of f(x) under P (x), denoted as E(f ;P ). A MC estimate of E(f ;P ) is

Ê(f ;P ) =

∫

f(x)P (x)dx

=
1

M

M
∑

j=1

f(xj)
(1.49)

where M denotes the sample size. The precision of this estimate depends upon the

variance of f(x):

V (Ê(f);P ) = V (f, P )/M. (1.50)

The basic idea of importance sampling is to reduce V (Ê(f);P ) for a given sample size

by using samples from a different distribution. The principle of importance sampling is

Ê(f ;P ) =

∫

f(x)P (x)dx =

∫

f(x)
P (x)

G(x)
G(x)dx, (1.51)

where the newly introduced distribution G(x) should have the same support as P (x).

Apparently, sampling x from a distribution P (x) is equivalent to sampling x ·w(x) from
the new distribution G(x), with importance sampling weight:

w(x) ≡ P (x)

G(x)
. (1.52)

The object in importance sampling is to concentrate the distribution of the sample points

in the parts of interval of most importance (e.g. the interval [0, 1] that we discussed in

the example) instead of spreading them over the whole region [181]. A good importance

sampling function G(x) should hold the following properties [182]

(1) G(x) > 0 whenever f(x) ̸= 0;

(2) G(x) should be most closely the shape of f(x) and makes f(x) ·P (x)/G(x) bounded;

(3) It should be easy to simulate values from G(x);

(4) It should be easy to compute the density G(x) for any values of x that one might

realize.
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Table 1.1: Estimated mean value and its standard deviation based on MC and importance
sampling (denoted by IS). Results are obtained by N independent simulations of sample size

100.

N Simulation Ê(f ;P ) σ(Ê(f);P )

100
MC 0.459 0.051
IS 0.460 0.020

1000
MC 0.459 0.048
IS 0.461 0.021

100000
MC 0.460 0.049
IS 0.460 0.022

Consider a simple example of f(x) = x with x following a standard normal distribution:

x ∼ N(0, 1). One wants to evaluate the mean of f in the region [0, 1] of x. By MC

sampling, a sequence values xj (j = 1, · · · ,M) of x can be generated from N(0, 1). The

mean value of f(x) is then calculated by

Ê(f ;P ) =

∑M
j=1 cj · xj
∑M

j=1 cj
, (1.53)

with

cj =

{

1 0 ≤ xj ≤ 1,

0 otherwise.
(1.54)

In importance sampling, we set G(x) = 1 for x ∈ [0, 1]. M sampled values of x then can

be obtained from a uniform distribution in the region [0, 1]. For each sampled value xj ,

the importance weight is

w(xj) =
P (xj)

∫ 1
0 P (z)dz

. (1.55)

where P (·) is the standard normal distribution. The mean value of f(x) based on

importance sampling is then calculated by

Ê(f ;P ) =
1

M

M
∑

j=1

xj · w(xj). (1.56)

A comparison between MC and importance sampling is presented in table 1.1. Results

display that the variance of the mean value of f(x) is reduced by introducing importance

sampling.

LHS

LHS is a kind of stratified sampling strategy. It is widely regarded as one of the most

popular variance reduction techniques that can be employed to increase the analysis

efficiency so as to more possibly achieve the desired accuracy. The LHS was firstly
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Figure 1.7: Example of LHS to generate a sample of size M = 20 from x = (x1, x2) with
x1 uniformly distributed and x2 normally distributed, defined by Fig.1.2(a). First two panels
illustrate sampling of values for x1 and x2, respectively, and the last one a random pairing of

sampled values of x1 and x2 in the construction of a LHS.

designed by McKay et al in 1979 for numerically evaluating a multiple integral [174]. It

was further elaborated by Iman et al in 1981 [183].

Sample points provided by LHS are generated in terms of PDFs of individual input

variables, namely P1, P2, · · · , Pn. Divide the range of x1 into M (the size of sample)

adjacent intervals with equal probability provided by P1. One point is selected at random

from each interval to construct a sequence of M points {x1j}, j = 1, 2, · · · ,M . Another

sequence, {x2j}, j = 1, 2, · · · ,M , can be formed similarly but independently for x2. The

two generated sequences are then randomly paired without replacement to constitute an

M×2 matrix. These M pairs are continuously randomly combined without replacement

with M points in the sequence {x3j}, j = 1, 2, · · · ,M , to form an M × 3 matrix, and so

on until an M × n matrix is constructed:

xj = [x1j , x
2
j , · · · , xnj ], j = 1, 2, · · · ,M. (1.57)

Figure 1.7 presents an example of LHS of size 20 for a special two-variate situation

x = (x1, x2). x1 is uniformly distributed between 0 and 1 and x2 follows the standard

normal distribution, as defined in Fig.1.2(a).

The above generated LHS is known as standard LHS (or randomly generated LHS). It

can be quite structured: the variables may be highly correlated or the sampled values

may not have good uniformity of distribution in the space of input variables. Conse-

quently, some optimal criteria are proposed to avoid these problems and to obtain an

optimal sampling which achieves the space-filling property of input factors.

An often considered optimization is designed based on the maximin distance criterion

[184]. For an established sampling design D (an M × n matrix), the iner-site distance

between any two n-dimensional sample points (two rows in theM×nmatrix, as displayed

in Eq. (1.57)) is defined by

d(xt,xs) =

[

n
∑

i=1

(xit − xis)
α

]1/α

, (1.58)
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where α takes two values: 1 (corresponding to the rectangular distance) or 2 (related to

the Euclidean distance). The first built maximin distance criterion aims at maximizing

the minimum inter-site distance:

min
1≤t,s≤M ;t ̸=s

d(xt,xs). (1.59)

Later on, an intuitively appealing extension of the maximin distance criterion was intro-

duced by Morris and Mitchell [185]. For a designed sampling D, they defined a distance

list: (d1, d2, · · · , dm) where the elements are the distinct values of iner-site distances and

sorted with d1 < d2 < · · · < dm. Obviously, m, labeling the number of distinct distance

values, can be as large as
(

M
2

)

(the iner-site distances between any two sampling items

are unique) and as small as 1 (the iner-site distances between any two sampling items

are consistent). Continuously, an index list was accordingly defined: (J1, J2, · · · , Jm)

in which an element Jk counts the number of pairs of sites in the designed sampling

separated by dk. The maximin distance design criterion tends to make the minimum

distance maximal. This implies a sampling driven by this criterion must follow the prop-

erty: (1) d1 is maximized; (2) J1 is minimized. To construct an optimal sampling that

satisfies this property, an evaluation function was then introduced:

ϕp(D) =

[

m
∑

k=1

Jkd
−α
k

]1/α

, (1.60)

where α is a positive integer and D a designed sampling. An optimal sampling is

generated by minimising Eq. (1.60) [185].

The Shannon information entropy defined by Shannon in 1948 was also applied to the

optimisation of LHS, known as the entropy criterion [186]. Shannon demonstrated that

the lower the information entropy, the more precise the knowledge is. It has been further

illustrated that the entropy criterion is equivalent to minimizing the quantity:

− log |R|, (1.61)

where R is the correlation matrix of the designed sampling with elements given by

rts = exp

[

n
∑

i=1

ci|xit − xis|α
]

, 1 ≤ t, s ≤ M ; 1 ≤ α ≤ 2, (1.62)

in which ci (i = 1, 2, · · · , n) are correlation coefficients [187]. The entropy criterion can

help design an optimal sampling that minimizes correlations among input factors.



Introduction 33

In experimental design, L2 discrepancy is most frequently used in solving the non-

uniformity problem. The centered L2-discrepancy (CL2) criterion was developed to

optimise both random sampling and LHS [188]. According to this criterion, a constructed

sampling D (an M ×n matrix) is optimal (having space-filling property) if it minimizes

the centered L2 discrepancy given by

CL2(X) =

(

13

12

)2

− 2

M

M
∑

j=1

n
∏

i=1

(

1 +
1

2
|xij − 0.5| − 1

2
|xij − 0.5|2

)

+
1

M2

M
∑

j=1

M
∑

k=1

n
∏

i=1

(

1 +
1

2
|xij − 0.5|+ 1

2
|xik − 0.5| − 1

2
|xij − xik|

)

.

(1.63)

Some other early developed algorithms also exist in constructing optimal LHSs. They

have been shown to have a good space-filling property, including, for example, the row-

wise element exchange algorithm [189], the columnwise-pairwise algorithm [190], and the

threshold accepting algorithm [191]. Considering the requirement of highly computa-

tional cost in the implementation of these algorithms, Jin et al developed an efficient and

flexible method for constructing optimal samplings, by the use of enchanced stochastic

evolutionary algorithm and the employment of efficient evaluating strategies of the op-

timality criteria [192]. Some recently introduced methods for optimising the strategy of

LHS can be found in Refs. [193–195].

QMC sampling

QMC method is specifically designed by using low-discrepancy sequences (also called

quasi-random sequences or sub-random sequences) to place sampled values as uniformly

as possible. This is in contrast to the regular MC method (random sampling) consist-

ing of sequences of pseudo-random numbers. MC and QMC methods are stated in a

similar way. The problem is to approximate the integral of a function as the average

of the function evaluated at a set of sampled values. The difference between QMC and

MC methods is the way sampled values are generated. There are a few well-known and

commonly used low-discrepancy sequences, including Halton sequences [196], Sobol se-

quences [197], and Faure sequences [198]. Sobol low-discrepancy sequences are identified

in many aspects as the superior one, compared to other sequences.

Sobol sequences (also called LPτ sequences or (t, s) sequences in base 2) were first intro-

duced by Sobol in 1967 [199]. Define a real integrable function f over Cn (n-dimensional

unit hypercube). The original motivation of Sobol was to generate a sequence xj in Cn
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Figure 1.8: An example of QMC sampling based on Sobol sequences. The sample size:
M = 20. x1 is uniformly distributed and x2 normally distributed, defined by Fig.1.2(a).
The first two panels illustrate sampled values of x1 and x2, respectively, and last one the

distribution of sampled values in the construction of QMC sampling.

so that

lim
M→∞

1

M

M
∑

j=1

f(xj) =

∫

Cn

f(x)dx, (1.64)

and the convergence is as fast as possible.

Sample values of QMC sampling by using Sobol sequences are uniformly placed in input

space, even for rather small sample size. Additional conditions, known as property A

and A’, were also introduced by Sobol in 1975 to make sample values perfectly uniformly

distributed in input space [200]:

Definition: A low-discrepancy sequence is said to satisfy Property A if for any binary

segment (not an arbitrary subset) of the n-dimensional sequence of length 2n there

is exactly one point in each 2n hyper-octant that results from subdividing the unit

hypercube along each of its length extensions into half.

Definition: A low-discrepancy sequence is said to satisfy Property A’ if for any

binary segment (not an arbitrary subset) of the n-dimensional sequence of length 4n

there is exactly one point in each 4n hyper-octant that results from subdividing the unit

hypercube along each of its length extensions into four equal parts.

QMC method recently attracts much interest from researchers working in the field of

mathematical finance or computational finance. In these fields, high-dimensional nu-

merical integrals in hundreds or thousands of variables are frequently evaluated within a

previously defined threshold. Hence, QMC method is widely used in the financial sector,

helping value financial derivatives [201, 202].

The detailed generation process of Sobol sequences can be found in Ref. [203]. An

example of Sobol sequences-based QMC sampling is presented in Fig. 1.8. A sample of

size M = 20 is generated from x = (x1, x2). x1 is assumed to be uniformly distributed

between 0 and 1, and x2 normally distributed (Fig.1.2(a)).

A qualitative comparison is also presented in Fig. 1.9 for the uniformity of sampled

values provided by different sampling strategies, including random sampling, standard
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LHS, LHS with the use of maximin distance criterion, LHS with the use of CL2 criterion,

and QMC sampling based on Sobol sequences. A situation of 2-dimensional input vector

is exemplified. Two kinds of sample size: M = 16 and M = 100 are considered,

respectively. Results suggest a higher uniformity of sampled values provided by Sobol

sequences-based QMC sampling, compared to those given by random sampling and

LHSs. Furthermore, the optimised LHS is superior to the standard LHS which precedes

random sampling in constructing uniformly distributed sample values, especially when

a large number of input factors are included. Some other newly introduced sampling

strategies could be found in Refs. [204, 205].

1.4 Determination of analysis results

In the determination of uncertainty and sensitivity analysis results, the most funda-

mental task is to actually explore the mapping from input vector to output variables:

[xj ,y(xj)], j = 1, 2, · · · ,M . y labels the output vector. It may contain several inde-

pendent or correlated observations. For simplicity in statement, we just consider an

arbitrary element in y, denoted by y. The mapping from input vector to the model

output can be analytically obtained if the functional form of the model under study is

previously provided. With this kind of situation, optionally, the mapping of interest

can also be constructed by computational strategies (sampling-based methods) which

are most frequently used since their implementations do not require the form of model

function to be given at first. In the following, several representations of analysis results

are introduced by the use of sampling-based methods.

1.4.1 Scatter plots

Scatter plots-based representation is a natural starting point in the uncertainty and

sensitivity analysis of complex systems. It provides an intuitive visual indication of

the dependence of output variable upon individual input factors. Furthermore, it is

definitely advantageous for directly understanding the impact of uncertainties in input

factors on the uncertainty in model output. Scatter plots of two two-variate simple

models are presented as examples: one is constructed in the absence of coupling items

between input factors (Fig. 1.10) and the other is designed in the presence of coupling

items. Input factors are assumed to be independent of each other and to be uniformly

distributed in the real range [0, 1]. The scatter plots generated by the standard LHS and

by the one-at-a-time method are considered, respectively. For sampling-based methods,

the dependence of output y versus a single input factor is plotted in keeping values of the

rest factors arbitrary. Regarding one-at-a-time method, however, the relationship of y
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(a) Sampled values based on random sampling.

 

 

  

 

(b) Sampled values based on standard LHS.
 

 

 

 

(c) Sampled values based on LHS with the use of maximin distance criterion.

 

 
 

 

(d) Sampled values based on LHS with the use of CL2 criterion.

 

 

 

 

(e) Sampled values of QMC sampling based on Sobol sequences.

Figure 1.9: Distribution of sampled values in a 2-dimensional input space. Input factors are
assumed to be uniformly distributed in [0, 1]. (a): sampled values are generated by employing
random sampling based on pseudo-random numbers. (b): sampled values are generated by
applying the standard LHS. (c): sampled values are generated based on LHS which is optimised
by the maximin distance criterion. (d): sample values are generated based on LHS which is
optimised by CL2 criterion (e): sampled values are generated by Sobol sequences-based QMC
sampling. From left to right, the size of sample M = 16 and M = 100, respectively. The unit

square is divided into 64 (on the left) and 256 (on the right) squares.
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(a) Sampling-based method.
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(b) One-at-a-time method.

Figure 1.10: (Model 1) Examples of scatter plots-based representation for the uncertainty
and sensitivity analysis of model: y = 4x1 + 2x2

2. The input factors are assumed to be
independent of each other and to be uniformly distributed in the real range [0, 1]. Panel (a)
presents the plots generated by standard LHS. Panel (b) illustrates the plots obtained in terms

of one-at-a-time method.

with a single input factor is presented while fixing the rest factors (often constant at their

mathematical expectation values). It is straightforward to qualitatively state that the

factor x1 is more important than x2 in establishing the uncertainty in y for both models,

according to the sampling-based scatter plots. For the model with absent coupling

items between input factors, one-at-a-time method is superior to sampling-based ones

in displaying the qualitative relationship between output variable and individual input

factors (Fig. 1.10). However, when coupling items between input factors are involved,

one-at-a-time method can just present local dependence of output variable upon a single

factor by neglecting the interaction effects between different input factors (introduced

by coupling items) (Fig. 1.11(b)). Moreover, analysis results associated with each single

factor rely on the previously assumed values of the remaining factors. This implies

sampling-based scatter plots are definitely beneficial for displaying the global dependence

of output variable upon input factors, regarding models involving coupling terms (Fig.

1.11(a)).
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(b) One-at-a-time method.

Figure 1.11: (Model 2) Examples of scatter plots-based representation for the uncertainty
and sensitivity analysis of model: y = 4x1 + 2x2

2 − 4x1x2. The input factors are assumed to
be independent of each other and to be uniformly distributed in the real range [0, 1]. Panel
(a) presents the plots generated by standard LHS. Panel (b) illustrates the plots obtained in

terms of one-at-a-time method.
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(b) One-at-a-time method.

Figure 1.12: (SIR model) Examples of scatter plots-based representation for the uncertainty
and sensitivity analysis of SIR model. The input factors β (infectious probability), γ (recovered
rate), and s(0) (initial proportion of susceptible agents) are assumed to be independent of each
other and uniformly distributed in the real range [0, 1]. Panel (a) presents the plots generated
by standard LHS. Panel (b) illustrates the plots obtained in terms of one-at-a-time method.
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1.4.2 Correlation measures

Correlation indices quantify the correlation and independence between two or more

values in fundamental statistics. One of the most often considered correlation indices is

Pearson correlation coefficient (CC). The CC was introduced by Pearson in the 1880s,

following a related idea of Galton [206–208]. It provides a measure of the strength of

linear correlation between individual input factor and the output variable. The CC

between two variables has values between -1 and 1. Three particular values -1, 0, and

1 separately correspond to the total negative linear correlation, no linear correlation,

and total linear correlation. Specifically, the CC between an input factor xi and output

variable y, denoted by ρ(xi, y), is defined by

ρ(xi, y) =
1
M

∑M
j=1(x

i
j − µi)(yj − E(y))

σiσy
, (1.65)

where µi denotes the mathematical expectation of input xi, E(y) the mathematical

expectation of output y, σi the standard deviation of xi, and σy the standard deviation

of y. They are determined by

µi =
1

M

M
∑

j=1

xij , E(y) =
1

M

M
∑

j=1

yj , (1.66)

σi =





1

M

M
∑

j=1

(xij − µi)
2





1/2

, σy =





1

M

M
∑

j=1

(yj − E(y))2





1/2

. (1.67)

The absolute value of ρ(xi, y), between 0 and 1, corresponds to a trend from no linear

relationship to an exact linear relationship between xi and y. Typically, for linear (purely

additive) models, the sum of squared pairwise CCs between each of the input factors

and output variable is 1 in the absence of correlations among input factors:

n
∑

i=1

ρ2(xi, y) = 1. (1.68)

As an example, the CCs are shown in table 1.2 for two two-variate nonlinear models and

SIR model. Their scatter plots are presented in Figs. 1.10, 1.11 and 1.12, by the use of

LHS-based method and one-at-a-time method.

The partial correlation coefficient (PCC) provides a measure to characterise the degree

of association between a single factor xi and an output variable y with the effects of the

remaining elements of x removed. By the use of linear regression model, a new variable
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Table 1.2: The CCs for two-variate nonlinear models and SIR model with scatter plots
presented in Figs. 1.10, 1.11 and 1.12. For SIR model, x1 denotes the parameter β, x2 the

parameter γ, x3 the parameter s(0), and y the output variable s.

CC
sampling-based method one-at-a-time method

model 1 model 2 SIR model model 1 model 2 SIR model
(Fig. 1.10(a)) (Fig. 1.11(a)) (Fig. 1.12(a)) (Fig. 1.10(b)) (Fig. 1.11(b)) (Fig. 1.12(b))

ρ(x1, y) 0.89 0.84 -0.35 1 1 -0.96

ρ(x2, y) 0.44 -0.03 0.53 0.97 0.00 0.61

ρ(x3, y) – – 0.62 – – 1.00

is introduced based on the elements of x except xi:

x̂i = c0 +

n
∑

j=1,j ̸=i

cjxj (1.69)

And the effects of the remaining elements of x on y are represented as

ŷ = b0 +
n
∑

j=1,j ̸=i

bjxj . (1.70)

The PCC between xi and y is defined as the CC between (xi − x̂i) and (y − ŷ). An

example of the PCCs for nonlinear models will be presented later, together with a similar

measure: the partial rank correlation coefficient.

Spearman’s rank correlation coefficient (RCC), named after Charles Spearman, char-

acterises the statistical association between the ranking of two variables of interest.

It quantifies how well the dependence between two variables can be explained by a

monotonic function. The RCC between xi and y is defined as the CC between their

corresponding ranks. Consider a size of sample M . The values of xi and y are replaced

by their rank numbers, positive integers between 1 and M , in the sorting of xi and y

from the smallest to the largest, namely rxi and ry, respectively. The RCC between xi

and y is then given by

ρ(xi, y) =

∑M
j=1(rx

i
j − rxi)(ryj − ry)

[

∑M
j=1(rx

i
j − rxi)2

]1/2 [
∑M

j=1(ryj − ry)2
]1/2

. (1.71)

When M rank numbers (integers from 1 to M) are distinct from each other for both xi

and y, the mathematical expectation and statistical variance of rank transformed data

is calculated as

rxi = ry =
M + 1

2
, V (rxi) = V (ry) =

M2 − 1

12
, (1.72)
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Table 1.3: RCCs for two-variate nonlinear models and SIR model with scatter plots presented
in Figs. 1.10, 1.11 and 1.12. In SIR model, x1 denotes the parameter β, x2 the parameter γ,

x3 the parameter s(0), and y the output variable s.

RCC
sampling-based method one-at-a-time method

model 1 model 2 SIR model model 1 model 2 SIR model
(Fig. 1.10(a)) (Fig. 1.11(a)) (Fig. 1.12(a)) (Fig. 1.10(b)) (Fig. 1.11(b)) (Fig. 1.12(b))

ρ(x1, y) 0.89 0.89 -0.38 1 1 -1

ρ(x2, y) 0.41 0.06 0.63 1 0.00 1

ρ(x3, y) – – 0.58 – – 1

where the formula
∑M

j=1 j
2 = M(2M + 1)(M + 1)/6 was used. The RCC between xi

and y then can be simplified as

ρ(xi, y) = 1−
6
∑M

j=1(rx
i
j − ryj)

2

M(M2 − 1)
. (1.73)

The RCC between xi and y has values between -1 and 1, analogous to the CC, with

positive values corresponding to the increase or decrease of xi and y along the same

direction and negative values corresponding to the increase or decrease of xi and y along

opposite directions. A RCC of zero value indicates an obvious non-monotonic relation-

ship between xi and y. The larger the RCC in magnitude, the closer the relationship

between xi and y gets to be monotonic. The RCCs are displayed in table 1.3 for three

models with scatter plots presented in Figs. 1.10, 1.11 and 1.12, by the use of LHS-based

method and one-at-a-time method.

Another rank correlation coefficient is the Kendall rank correlation coefficient(KRCC),

commonly referred to as Kendall’s τ coefficient. The KRCC was developed by Kendall in

1938 [209]. It measures the ordinal association between two variables under study. The

KRCC between xi and y is also defined based on their rank numbers in the sorting from

the smallest to the largest. It has values between -1 and 1, with high values indicating

a similar (or identical when the coefficient is 1) rank between xi and y and low values

labeling a dissimilar (or fully different when the coefficient is -1) rank between them.

A KRCC of zero value between xi and y corresponds to the independent relationship

between them. For a size of sample M , an arbitrary pair of mappings from xi to y:

[xij , yj ], [x
i
k, yk], j ̸= k and j, k = 1, 2, · · · ,M , is said to be concordant if the ranks for

both elements follow the same direction, that is, if both xij > xik and yj > yk or if

both xij < xik and yj < yk. It is said to be discordant if the ranks for both elements

follow opposite directions, that is, if xij > xik and yj < yk or if xij < xik and yj > yk.

When xij = xik or yj = yk, the correspond pair of mappings is neither concordant nor

discordant. The definition of KRCC is given by

τ(xi, y) =
2 [(number of concordant pairs)-(number of discordant pairs)]

M(M − 1)
. (1.74)
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Table 1.4: KRCCs for two-variate nonlinear models and SIR model with scatter plots
presented in Figs. 1.10, 1.11 and 1.12. For SIR model, x1 denotes the parameter β, x2 the

parameter γ, x3 the parameter s(0), and y the output variable s.

KRCC
sampling-based method one-at-a-time method

model 1 model 2 SIR model model 1 model 2 SIR model
(Fig. 1.10(a)) (Fig. 1.11(a)) (Fig. 1.12(a)) (Fig. 1.10(b)) (Fig. 1.11(b)) (Fig. 1.12(b))

τ(x1, y) 0.71 0.73 -0.27 1 1 -1

τ(x2, y) 0.29 0.05 0.46 1 0.00 1

τ(x3, y) – – 0.45 – – 1

Table 1.5: The PCCs and PRCCs for two-variate nonlinear models and SIR model with
scatter plots presented in Figs. 1.10(a) (model 1), 1.11(a) (model 2) and 1.12(a) (SIR model).
For SIR model, x1 denotes the parameter β, x2 the parameter γ, x3 the parameter s(0), and

y the output variable s.

measures
PCC PRCC

model 1 model 2 SIR model model 1 model 2 SIR model

ρ(x1, y) 0.99 0.83 -0.57 0.98 0.90 -0.68

ρ(x2, y) 0.97 -0.02 0.64 0.92 0.17 0.78

ρ(x3, y) – – 0.73 – – 0.76

As an example, the KRCCs are exhibited in table 1.4 for the models with scatter plots

presented in Figs. 1.10, 1.11 and 1.12, by the use of LHS-based method and one-at-a-

time method.

Similar to PCC, the partial rank correlation coefficient (PRCC) performs a partial cor-

relation on rank-transformed data: rxi and ry by the use of linear regression models

described by Eqs. (1.69) and (1.70). The PRCC provides a robust sensitivity measure

for nonlinear but monotonic relationships between xi and y in the absence of input cor-

relations. The PCCs and PRCCs are presented in table 1.5 for nonlinear models with

scatter plots illustrated in Figs. 1.10(a) (model 1), 1.11(a) (model 2) and 1.12 (SIR

model), by the use of LHS-based method.

In the absence of coupling terms involving different input factors, rank correlation co-

efficients, including RCC and KRCC, based on one-at-a-time method is equivalent to

the PCC and PRCC based on sampling strategies. They all provide reliable measures

in quantifying the monotonic relationship between each individual input factor and the

output variable. However, in the presence of coupling items, the PRCC is superior to any

other correlation coefficient in assessing how well the relationship between an individual

input factor and the output variable can be described by a monotonic function.

Occasionally, multiple correlation is also of interest to be considered. The coefficient of

multiple correlation, denoted as R in general, assesses how well a given output variable

can be predicted using a linear function of a set of input variables [210]. It provides

a global measure of the strength of the association between input variables and the

output variable. The coefficient of multiple correlation takes values between 0 and 1. A

higher value indicates a stronger linear association connecting input factors and output
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variable. A value of zero suggests the absence of linear relationship between input factors

and output variable. Unlike the previously introduced correlation coefficients which offer

both the strength and direction of the underlying association connecting input factors

and the output varaible, the coefficient of multiple correlation tells only the strength

of the association. Regarding a general model of two input factors, the coefficient of

multiple correlation is defined by

R =

[

ρ2(x1, y) + ρ2(x2, y)− 2ρ(x1, y)ρ(x2, y)ρ(x1, x2)

1− ρ2(x1, x2)

]1/2

, (1.75)

where ρ indicates the pairwise CC (Eq. (1.65)) between involved variables. By assuming

input variables to be independent of each other, the above expression can be simplified

as

R =
[

ρ2(x1, y) + ρ2(x2, y)
]1/2

, (1.76)

which is naturally extended to a general situation of n input factors of absent input

correlations:

R =

[

n
∑

i=1

ρ2(xi, y)

]1/2

. (1.77)

The multiple correlation coefficient is 0.99 for model 1 (Fig. 1.10(a)), 0.84 for model 2

(Fig. 1.11(a)) and 0.89 for SIR model (Fig. 1.12(a))

1.4.3 Sensitivity indices

The sensitivity indices (or measures), also called importance indices (measures), of out-

put variables with respect to input factors are often defined by variance-based methods.

One commonly considered variance-based method is the Sobol’s variance decomposi-

tion [29]. Following his concept, the determination of sensitivity indices depends upon

multidimensional integrals, as introduced in Section 1.3. Considering the complexity

in evaluating multidimensional integrals, the sampling-based method is frequently ap-

plied to the calculation of sensitivity indices in practice. With sampling-based method,

the sensitivity indices of different orders are evaluated by using two independently con-

structed samplings, namely A and B, which are M × n matrices. The mathematical

expectation and statistical variance of output y are approximated by any of the con-

structed samplings, for instance, A, as

E(y) =
1

M

M
∑

j=1

f(A)j , (1.78)

V (y) =
1

M

M
∑

j=1

f2(A)j − E2(y). (1.79)
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Table 1.6: An example of construction of both A
(i)
B

and B
(i)
A

matrices with sample size
M = 5 and number of input variables n = 3. Matrices A and B are generated by the use of
standard LHS. Three input variables are independently and uniformly distributed in the range

[0, 1].

A =











0.747 0.359 0.098
0.053 0.783 0.955
0.325 0.098 0.453
0.899 0.936 0.220
0.519 0.549 0.618











, B =











0.760 0.806 0.381
0.524 0.755 0.422
0.342 0.194 0.180
0.949 0.400 0.746
0.062 0.480 0.958











.

A
(1)
B

=











0.760 0.359 0.098
0.524 0.783 0.955
0.342 0.098 0.453
0.949 0.936 0.220
0.062 0.549 0.618











, B
(1)
A

=











0.747 0.806 0.381
0.053 0.755 0.422
0.325 0.194 0.180
0.899 0.400 0.746
0.519 0.480 0.958











,

A
(2)
B

=











0.747 0.806 0.098
0.053 0.755 0.955
0.325 0.194 0.453
0.899 0.400 0.220
0.519 0.480 0.618











, B
(2)
A

=











0.760 0.359 0.381
0.524 0.783 0.422
0.342 0.098 0.180
0.949 0.936 0.746
0.062 0.549 0.958











,

A
(3)
B

=











0.747 0.359 0.381
0.053 0.783 0.422
0.325 0.098 0.180
0.899 0.936 0.746
0.519 0.549 0.958











, B
(3)
A

=











0.760 0.806 0.098
0.524 0.755 0.955
0.342 0.194 0.453
0.949 0.400 0.220
0.062 0.480 0.618











.

Following the concept of Sobol’s variance decomposition, the first-order and total sensi-

tivity indices are estimated, respectively, by

si =





1

M

M
∑

j=1

f(A)jf(B
(i)
A
)j − E2(y)





/

V (y), (1.80)

sT i =





1

M

M
∑

j=1

f(A)j

(

f(A)j − f(A
(i)
B
)j

)





/

V (y), (1.81)

where A
(i)
B

is a matrix with column i in A substituted by the ith column in B, and vice

versa for matrix B
(i)
A

whose column i comes from matrix A and the remaining (n − 1)

columns come from matrix B [156]. An example of construction of both A
(i)
B

and B
(i)
A

matrices is presented in table 1.6 with sample size M = 5 and three input variables

considered. They are assumed to be independently and uniformly distributed in the real

range [0, 1].

Analogously, the second- and higher-order sensitivity indices are determined by

si1i2 =





1

M

M
∑

j=1

f(A)jf(B
(i1i2)
A

)j − E2(y)





/

V (y)− si1 − si2 , (1.82)

si1i2i3 =





1

M

M
∑

j=1

f(A)jf(B
(i1i2i3)
A

)j − E2(y)





/

V (y)− si1 − si2 (1.83)

− si3 − si1i2 − si1i3 − si2i3 , (1.84)

...
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where the first two indices separately quantify the fraction of total variance of output y

that is contributed by the interaction effect between xi1 and xi2 , and by the interaction

effect involving xi1 , xi2 and xi3 .

Alternative formulas for the determination of the first-order and total sensitivity indices

are offered by Jansen in 1999 [154, 211], which are expressed as

si = 1−





1

2M

M
∑

j=1

(

f(B)j − f(A
(i)
B
)j

)2





/

V (y), (1.85)

sT i =





1

2M

M
∑

j=1

(

f(A)j − f(A
(i)
B
)j

)2





/

V (y). (1.86)

By employing a large set of test functions involving different degrees of linearity, addi-

tivity and effective dimension, it is stated that Jansen’s method is more efficient than

Sobol’s one in evaluating sensitivity indices [156]. The sensitivity indices of three exem-

plified models are presented, as examples, in tables 1.7, 1.8, and 1.9, accompanying with

a comparison of Sobol’s and Jansen’s methods. When the size of sample is large enough,

Sobol’s and Jansen’s methods both offer perfect sensitivity indices. However, Jansen’s

method is more efficient than Sobol’s one as it requires less computational cost in imple-

mentation. Both the standard LHS and QMC sampling are performed to carry out the

analysis process in considering the effect of sample size. QMC sampling can be seen as

a deterministic algorithm as the low discrepancy sequence used for the construction of

sampling is not random, but deterministic. Specifically, in the implementation of QMC

sampling, matrices A and B of size M × n, used for the determination of sensitivity

analysis results, should be constructed from a quasi-random sequence of size M ×2n. A

is generated by the left half part of the sequence, and B by the rest half part, as shown

in table 1.10. Regarding sampling strategies, average over independent constructions of

LHS is of necessity in obtaining accurate sensitivity measures. This states again that

QMC sampling is much more efficient for sensitivity analysis of models. It provides ac-

curate analysis results by using a small number of sampled points and also avoids highly

computational cost in performing configuration average.
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Table 1.7: Variance-based sensitivity analysis results for the model of form y = 4x1 +
2x2

2. The standard LHS and QMC sampling are used, with the effect of sample size M
considered. Both Sobol’s (Eqs. (1.80)-(1.81)) and Jansen’s (Eqs. (1.85)-(1.86)) methods are
employed to the evaluation of sensitivity indices. For LHS, analysis results are averaged over
100 independent configurations, with standard deviations displayed in parentheses. QMC
sampling, generated based on Sobol sequences, is deterministic and numbers in parentheses

indicate the thousandth and ten-thousandth digits.

sampling M method E(y) V (y) s1 s2 sT1 sT2

LHS

102
Sobol’ 2.67(.00) 1.69(.15) 0.79(.05) 0.21(.08) 0.79(.08) 0.21(.05)
Jansen 2.67(.00) 1.70(.15) 0.79(.03) 0.22(.11) 0.78(.11) 0.21(.03)

104
Sobol’ 2.67(.00) 1.69(.01) 0.79(.00) 0.21(.01) 0.79(.01) 0.21(.00)
Jansen 2.67(.00) 1.69(.01) 0.79(.00) 0.21(.01) 0.79(.01) 0.21(.00)

QMC

102
Sobol’ 2.66(72) 1.67(50) 0.79(63) 0.21(41) 0.78(60) 0.20(37)
Jansen 2.66(72) 1.67(50) 0.77(61) 0.22(85) 0.77(15) 0.22(40)

104
Sobol’ 2.66(67) 1.68(89) 0.78(90) 0.21(05) 0.78(95) 0.21(10)
Jansen 2.66(67) 1.68(89) 0.78(95) 0.21(06) 0.78(95) 0.21(05)

3 · 104
Sobol’ 2.66(66) 1.68(88) 0.78(97) 0.21(03) 0.78(97) 0.21(04)
Jansen 2.66(66) 1.68(88) 0.78(95) 0.21(05) 0.78(95) 0.21(05)

Table 1.8: Variance-based sensitivity analysis results for the model of form y = 4x1 +
2x2

2 − 4x1x2. The standard LHS and QMC sampling are used, with the effect of sample size
M considered. Both Sobol’s (Eqs. (1.80)-(1.81)) and Jansen’s (Eqs. (1.85)-(1.86)) methods
are employed to the evaluation of sensitivity indices. For LHS, analysis results are averaged
over 100 independent configurations, with standard deviations displayed in parentheses. QMC
sampling, generated based on Sobol sequences, is deterministic and numbers in parentheses

indicate the thousandth and ten-thousandth digits.

sampling M method E(y) V (y) s1 s2 sT1 sT2

LHS

102
Sobol’ 1.67(.04) 0.46(.04) 0.71(.19) 0.03(.21) 0.97(.21) 0.29(.19)
Jansen 1.67(.03) 0.47(.04) 0.72(.05) 0.04(.14) 0.96(.12) 0.29(.04)

104
Sobol’ 1.67(.00) 0.47(.00) 0.72(.02) 0.05(.02) 0.95(.02) 0.28(.02)
Jansen 1.67(.00) 0.47(.00) 0.72(.00) 0.05(.02) 0.95(.01) 0.28(.00)

QMC

102
Sobol’ 1.67(46) 0.48(74) 0.67(71) 0.08(13) 0.91(87) 0.32(29)
Jansen 1.67(46) 0.48(74) 0.72(51) 0.09(33) 0.85(59) 0.26(22)

104
Sobol’ 1.66(67) 0.46(65) 0.71(46) 0.04(78) 0.95(22) 0.28(54)
Jansen 1.66(67) 0.46(65) 0.71(41) 0.04(73) 0.95(24) 0.28(60)

3 · 104
Sobol’ 1.66(67) 0.46(68) 0.71(41) 0.04(72) 0.95(28) 0.28(59)
Jansen 1.66(67) 0.46(68) 0.71(43) 0.04(77) 0.95(25) 0.28(57)

Table 1.9: Variance-based sensitivity analysis results for SIR model. The standard LHS
and QMC sampling are used, with the effect of sample size M considered. Both Sobol’s (Eqs.
(1.80)-(1.81)) and Jansen’s (Eqs. (1.85)-(1.86)) methods are employed to the evaluation of
sensitivity indices. For LHS, analysis results are averaged over 100 independent configura-
tions, with standard deviations displayed in parentheses. QMC sampling, generated based
on Sobol sequences, is deterministic and numbers in parentheses indicate the thousandth and

ten-thousandth digits.

sampling M method E(y) V (y) sβ sγ ss(0) sTβ sTγ sTs(0)

LHS

102
Sobol’ 0.24(.01) 0.07(.01) 0.19(.14) 0.20(.12) 0.43(.15) 0.30(.09) 0.33(.12) 0.59(.13)
Jansen 0.25(.01) 0.07(.01) 0.19(.12) 0.19(.13) 0.42(.10) 0.31(.07) 0.33(.08) 0.60(.09)

104
Sobol’ 0.24(.00) 0.07(.00) 0.19(.01) 0.18(.01) 0.42(.01) 0.31(.01) 0.34(.01) 0.59(.01)
Jansen 0.24(.00) 0.07(.00) 0.19(.01) 0.19(.01) 0.42(.01) 0.31(.01) 0.34(.01) 0.59(.01)

QMC

102
Sobol’ 0.23(83) 0.07(30) 0.23(21) 0.23(95) 0.31(50) 0.34(66) 0.50(42) 0.54(42)
Jansen 0.23(83) 0.07(30) 0.31(77) 0.36(61) 0.41(09) 0.32(83) 0.41(59) 0.56(16)

104
Sobol’ 0.24(19) 0.07(14) 0.18(56) 0.18(11) 0.41(54) 0.30(97) 0.33(99) 0.59(45)
Jansen 0.24(19) 0.07(14) 0.18(30) 0.18(08) 0.41(36) 0.30(99) 0.33(97) 0.59(50)

3 · 104
Sobol’ 0.24(19) 0.07(14) 0.18(61) 0.18(15) 0.41(51) 0.30(82) 0.34(13) 0.59(53)
Jansen 0.24(19) 0.07(14) 0.18(75) 0.18(30) 0.41(59) 0.30(81) 0.34(08) 0.59(55)
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Table 1.10: An example of the construction of two independent QMC samplings with sample
size M = 10 and number of input variables n = 3. Three input variables are independently

and uniformly distributed in the real range [0, 1].































0.09375 0.46875 0.84375 0.40625 0.28125 0.34375
0.59375 0.96875 0.34375 0.90625 0.78125 0.84375
0.84375 0.21875 0.09375 0.15625 0.53125 0.09375
0.34375 0.71875 0.59375 0.65625 0.03125 0.59375
0.46875 0.09375 0.46875 0.28125 0.65625 0.71875
0.96875 0.59375 0.96875 0.78125 0.15625 0.21875
0.71875 0.34375 0.71875 0.03125 0.40625 0.96875
0.21875 0.84375 0.21875 0.53125 0.90625 0.46875
0.15625 0.15625 0.53125 0.84375 0.84375 0.40625
0.65625 0.65625 0.03125 0.34375 0.34375 0.90625































,

A =































0.09375 0.46875 0.84375
0.59375 0.96875 0.34375
0.84375 0.21875 0.09375
0.34375 0.71875 0.59375
0.46875 0.09375 0.46875
0.96875 0.59375 0.96875
0.71875 0.34375 0.71875
0.21875 0.84375 0.21875
0.15625 0.15625 0.53125
0.65625 0.65625 0.03125































. B =































0.40625 0.28125 0.34375
0.90625 0.78125 0.84375
0.15625 0.53125 0.09375
0.65625 0.03125 0.59375
0.28125 0.65625 0.71875
0.78125 0.15625 0.21875
0.03125 0.40625 0.96875
0.53125 0.90625 0.46875
0.84375 0.84375 0.40625
0.34375 0.34375 0.90625































.



Chapter 2

The analytic analysis for models

with independent input variables

Any operations that we perform on a model response dependent upon a number of in-

put variables of uncertainty require us to identify the response uncertainty based on the

uncertainty in input variables. The propagation of variance, characterising the effect of

input uncertainty on the uncertainty of model response, constitutes the essential ingre-

dient of uncertainty and sensitivity analysis of complex systems. In the present chapter,

an analytic formula is derived by using Taylor series to specify the variance propagation

from input variables to the model response in the absence of input correlations. With

the formula, we can exactly calculate the uncertainty of model response. Furthermore,

it also allows one to quantify the partial variance contributions of different orders from

input variables to the output one, whereby input variables can be ranked according to

their importance in explaining the uncertainty of the output variable.

2.1 Taylor series

The concept of a Taylor series was formulated by a Scottish mathematician James Gre-

gory and formally introduced by an English mathematician Brook Taylor in 1715. In

mathematics, a Taylor series is a representation of a function as an infinite sum of terms

that are evaluated from the values of the function’s derivatives at a single point [212].

In general, a function can be approximated as the sum of a finite number of terms con-

stituting of function’s derivatives of different orders by using Taylor series of neglecting

higher-order terms.

48
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Taylor series is widely used for the expansion of functions only dependent upon one

single variable. Regarding a general univariate function of the form y = f(x), its Taylor

series at a point x = a is given by

∞
∑

i=0

f (i)(a)

i!
(x− a)i, (2.1)

where i! denotes the factorial of i, and f (i)(a) the ith derivative of f evaluated at point a.

The zeroth-order derivative of f is defined as f itself and 0!=1. If a = 0, the expansion is

known as a Maclaurin series, named after the Scottish mathematician Colin Maclaurin

who introduced extensive use of this special case of Taylor series in the 18th century

[213].

The Taylor series can also be generalised to functions of more than one input variable

[214]. For a real function of the form y = f(x) with x = (x1, x2, · · · , xn)T labeling

the input vector of n-dimensional variables, its Taylor series at a specified point x =

(a1, a2, · · · , an)T is represented as

∞
∑

i1=0

· · ·
∞
∑

in=0

(x1 − a1)
i1 · · · (xn − an)

in

i1! · · · in!

(

∂i1+···+inf

∂xi11 · · · ∂xinn

)

(a1, · · · , an). (2.2)

2.2 Variance propagation for univariate case

Beginning with the univariate function y = f(x), it can be expanded by the use of Taylor

series at the central point of x as

y = f(µ) +

∞
∑

i=1

1

i!

(

dif

dxi

∣

∣

∣

∣

x=µ

)

(x− µ)i, (2.3)

in which µ indicates the mathematical expectation of x. Taking the average of both

sides of Eq.(2.3) yields

E(y) = f(µ) +

∞
∑

i=1

1

i!

(

dif

dxi

∣

∣

∣

∣

x=µ

)

Mi(x), (2.4)

where Mi(x) is the ith central moment of variable x, given by

Mi(x) =

∫

(x− µ)iP (x)dx. (2.5)
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P (x), as stated in Chapter 1, denotes the PDF of x and characterises the epistemic

uncertainty in x. The variance of y, namely V (y), is defined in mathematics by

V (y) =

∫

y2P (x)dx− E2(y). (2.6)

Substituting Eqs. (2.3) and (2.4) into Eq. (2.6) provides

V (y) =

∫

[

f(µ) +
∞
∑

i=1

1

i!

(

dif

dxi

∣

∣

∣

∣

x=µ

)

(x− µ)i

]2

P (x)dx

−
[

f(µ) +

∞
∑

i=1

1

i!

(

dif

dxi

∣

∣

∣

∣

x=µ

)

Mi(x)

]2

=f2(µ) +
∞
∑

i,j=1

1

i! · j!

(

dif

dxi

∣

∣

∣

∣

x=µ

· d
jf

dxj

∣

∣

∣

∣

x=µ

)

∫

(x− µ)i+jP (x)dx

+ 2f(µ)

∞
∑

i=1

1

i!

(

dif

dxi

∣

∣

∣

∣

x=µ

)

∫

(x− µ)iP (x)dx− 2f(µ)

∞
∑

i=1

1

i!

(

dif

dxi

∣

∣

∣

∣

x=µ

)

Mi(x)

−
∞
∑

i,j=1

1

i! · j!

(

dif

dxi

∣

∣

∣

∣

x=µ

· d
jf

dxj

∣

∣

∣

∣

x=µ

)

Mi(x)Mj(x)− f2(µ)

=
∞
∑

i,j=1

1

i! · j!

(

dif

dxi

∣

∣

∣

∣

x=µ

· d
jf

dxj

∣

∣

∣

∣

x=µ

)

[Mi+j(x)−Mi(x)Mj(x)] ,

(2.7)

which is equivalent to

V (y) =

∞
∑

i,j=0

1

i! · j!

(

dif

dxi

∣

∣

∣

∣

x=µ

· d
jf

dxj

∣

∣

∣

∣

x=µ

)

[Mi+j(x)−Mi(x)Mj(x)] , (2.8)

since M0(x) = 1. This analytic expression mathematically explains the output variance

propagated from the uncertainty in input variable through the functional relationship

connecting y and x. Furthermore, it can also help identify the partial variance contri-

butions of different orders of x, embodied by the derivatives of different orders of f . If

one just considers the first-order variance contribution of x, Eq. (2.8) is then simplified

as

V (y) ≈
(

df

dx

∣

∣

∣

∣

x=µ

)2

V (x), (2.9)

where M1 = 0 and M2 = V (x) have been used, and V (x) labels the variance of x.

Equation (2.9), called the general Taylor series expansion truncated to the first order, is

most widely used for the estimation of the uncertainty in y in terms of the uncertainty

in x. This approximation, however, is satisfactory for the uncertainty analysis of highly

nonlinear models only when the uncertainty in input variable is negligible [17], as stated
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in the first chapter.

To identify the partial variance contributions of different orders from input x, a new

quantity of interest is proposed, labeled as Rγ
v. It is defined as the ratio of V (y) con-

tributed by first γ orders of uncertainty in x to its exact value:

Rγ
v =

Vγ(y)

VT(y)
, (2.10)

where Vγ(y) is calculated with Eq. (2.8) under the condition i + j ≤ 2γ and VT(y) the

theoretical value of V (y) obtained from the below integral:

VT(y) =

∫

y2P (x)dx− E2(y),

=

∫

f2(x)P (x)dx−
(∫

f(x)P (x)dx

)2

.

(2.11)

The analytic formula previously deduced (Eq. (2.8)) specifies the variance propagation

from input variable to the model output. With this formula, it is natural to quantify

the importance of partial variance contributions of different orders from input x in the

estimation of uncertainty in output y. In the following, higher-order contributions of

input uncertainty to the uncertainty of output y are evaluated for highly nonlinear

models, by using the analytic formula. Two widely discussed distribution laws: uniform

distribution and normal distribution, as examples, specify the uncertainty in input x.

2.2.1 Uniform distribution

We first suppose x is uniformly distributed. Its PDF is given by

P (x) =















0, x < x0,
1

xm−x0
, x0 ≤ x ≤ xm,

0, x > xm.

(2.12)

Uniform distribution provides the mathematical expectation of x: µ = xm+x0
2 and its

central moments:

Mk(x) =

{

0, k is odd,
3k/2

k+1σ
k, k is even,

(2.13)

where k is a positive integer; σ labels the standard deviation of x; x0 and xm denote the

lower and upper bounds of x, respectively. Detailed derivation of Mk(x) is presented in

Appendix A. Inserting the expression of central moments (Eq. (2.13)) into Eq. (2.8)
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Figure 2.1: Distributions of the observation Rγ
v with different parameters for power-law

function: y = xα (panel (a)) and exponential function: y = eαx (panel (b)) by assuming input
variable is uniformly distributed; To the left in both panels is the distribution of Rγ

v versus the
order index γ for two kinds of nonlinear relationship connecting y and x with constant values
of parameter α; to the middle is the dependence of Rγ

v on the parameter α in considering
different order contributions of uncertainty in x; to the right is the association of Rγ

v with the
distribution parameter of variable x by setting α = 4 for both panels. For a function with
specified parameter α, the observation Rγ

v only depends upon the ratio of µ to σ (power-law
function) or σ (exponential function) for each specified γ. In the left and middle plots, µ/σ = 2

in panel (a) and σ2 = 0.5 in panel (b).

yields

V (y) =

∞
∑

i=1

∞
∑

j=i
j=j+2

Cij

(

dif

dxi

∣

∣

∣

∣

x=µ

· d
jf

dxj

∣

∣

∣

∣

x=µ

)

σi+j , (2.14)

where j is summed with an increment of 2 and Cij is defined as follows.

If i = j

Cij =











3(i+j)/2

(i+j+1)·i!·j! , i and j are odd,

3(i+j)/2·i·j
(i+j+1)·(i+1)!·(j+1)! , i and j are even.

(2.15)

Else

Cij =











2·3(i+j)/2

(i+j+1)·i!·j! , i and j are odd,

2·3(i+j)/2·i·j
(i+j+1)·(i+1)!·(j+1)! , i and j are even.

(2.16)

The underlying results of Rγ
v are displayed in Fig. 2.1, for two widely discussed nonlinear

functions: power-law function and exponential function. It is noticed that Rγ
v will be

close to one while γ is large enough for both kinds of functions with different parameters,

see left plots in both panels.
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By inserting the functions under discussion: y = xα and y = eαx, equation (2.14) can

be separately updated by

∞
∑

i=1

∞
∑

j=i
j=j+2

Cij(α!)
2

(α− i)! · (α− j)!
µ2α(

σ

µ
)i+j , (2.17)

and ∞
∑

i=1

∞
∑

j=i
j=j+2

e2αµCij(ασ)
i+j , (2.18)

which demonstrate that, for specified γ (thereby both i and j are specified) and α, the

contribution of uncertainty in input x to the observation Rγ
v is embodied in the ratio

of σ to µ for power-law relationships connecting y and x and in σ for exponential rela-

tionships. In Fig. 2.1, middle plots of both panels display the distribution of Rγ
v versus

exponent α under specified µ/σ (for power-law function) and fixed σ (for exponential

function), by considering different order contributions of uncertainty in x. Right ones

illustrate the dependence of Rγ
v on µ/σ (1/σ) for power-law function (exponential func-

tion) by, particularly, setting α = 4. Regarding power-law function, γ should be large

for large |α − 1| if µ/σ is constant, or for small µ/σ if α is constant, in order to make

Rγ
v more closer to 1, i.e., to make the estimated variance in model output more closer

to its exact value. For example, the contribution of uncertainty in x should be consid-

ered until up to the 6th order (to ensure Rγ
v > 0.98) in regions of α < 0.1 and α > 8.

For the exponential relationship connecting y and x, Rγ
v is symmetric with respect to

α = 0. The contributions of higher orders of input uncertainty are non-ignorable when

the functional form deviates from linear law and also σ is non-negligible. The statement

is visually verified that the original approximation presented in Eq. (2.9), by only con-

sidering the contribution of the first order of input uncertainty, can successfully estimate

the uncertainty in output variable only when the input uncertainty is negligible or the

model under discussion is almost linear. The contributions of higher order(γ ≥ 2) of

input uncertainty, however, are non-ignorable for models behaving non-linearly in the

neighbourhood of input variable when σ (for the exponential association connecting in-

put and output variables) or σ/µ (for the power-law association connecting input and

output variables) is non-negligible.

2.2.2 Normal distribution

Optionally, specify the uncertainty in x by normal (Gaussian) distribution. Its PDF is

given by

P (x|µ, σ) = 1

σ
√
2π

e−
(x−µ)2

2σ2 ; x ∈ (−∞,+∞), (2.19)
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Figure 2.2: Distributions of the observation Rγ
v versus different parameters for power-law

function: y = xα (panel (a)) and exponential function: y = eαx (panel (b)) by assuming input
variable is normally distributed; To the left in both panels is the distribution of Rγ

v with order
index γ for two kinds of functional form connecting y and x, by considering different values
of parameter α; to the middle is the association of Rγ

v with parameter α under considering
different order contributions of uncertainty in x; to the right is the dependence of Rγ

v upon
the distribution parameter of variable x by setting α = 5 in panel (a) and α = 1 in panel (b),
respectively. For a function with specified α, the observation Rγ

v correlates with the ratio of
µ to σ (power-law function) or with σ (exponential function) for each fixed γ. In the left and

middle plots, µ/σ = 2 in panel (a) and σ = 1 in panel (b).

which provides

Mk(x) =

{

0, k is odd,

σk(k − 1)!!, k is even,
(2.20)

where (⋆)!! is the double factorial with definition given by

(⋆)!! =















⋆ · (⋆− 2) · (⋆− 4) · · · 5 · 3 · 1, ⋆ > 0 odd,

⋆ · (⋆− 2) · (⋆− 4) · · · 6 · 4 · 2, ⋆ > 0 even,

1, ⋆ = −1, 0.

(2.21)

Associations of the observation Rγ
v with order index γ, exponent parameter α, as well

as the input uncertainty that is specified by µ and σ, are presented in Fig. 2.2. Panel

(a) illustrates the data for the power-law relationship connecting y and x. Panel (b)

displays the results for the exponential relationship. The observation Rγ
v will be close

to one when γ is large enough for each constant α, see left plots in both panels. We can

notice from the middle plots that the contributions of higher orders of input uncertainty

should be considered for highly nonlinear functions. Right plots in both panels suggest

that Rγ
v of γ = 1 can reach 1 only when the ratio of µ to σ is very large for power-law

function (y = x5 as an example) or σ is very small for exponential function (y = ex as

an example). Typically, when the input variable is normally distributed, parameter α
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Figure 2.3: Results associated with the observation Rγ
v for exponential relationship connect-

ing y and x: y = eαx by assuming input x is uniformly and normally distributed, respectively.
To the left is the distribution of Rγ

v versus order index γ by keeping α = σ = 1; To the middle
denotes the dependence of Rγ

v upon parameter α in fixing γ = σ = 1; To the right is the
correlation between Rγ

v and σ by setting γ = α = 1.

of power-law function should be a positive integer to enable the mean and variance of

output y calculable.

To understand the influence of different distribution laws specifying the uncertainty in

input variable on the estimation of output variance, a comparison of uniform and normal

distributions is provided for the observation Rγ
v by keeping both µ and σ the same for

two kinds of law, see Fig. 2.3. The exponential relationship connecting y and x: y = eαx,

as an example, is discussed here. Results suggest that, when both α and σ are specified,

uniformly distributed input variable will drive the evaluated output uncertainty more

close to its exact value, compared to normally distributed one, in considering variance

contributions of the same order.

2.3 Generalisation of the analytic formula

The analytic formula Eq. (2.8) for variance propagation is valid only for the model of

a single input variable. However, in mathematical modeling, the output quantity often

depends upon two or more input variables of uncertainty. In the following, the analytic

formula is generalised to the general case of more than one input variable. Recall the

real model of n independent input variables of the form

y = f(x) = f(x1, x2, · · · , xn). (2.22)
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By the use of multi-variate Taylor series, the model response y can be expanded at the

central point ({µ}) = (µ1, µ2, · · · , µn) of input vector as

y = f({µ}) +
n
∑

t=1

∞
∑

i=1

(xt − µt)
i

i!
(
∂if

∂xit
)({µ}) +

n
∑

t,s=1
t<s

∞
∑

it,is=1

(xt − µt)
it(xs − µs)

is

it! · is!

× (
∂it+isf

∂xitt ∂x
is
s

)({µ}) + · · ·+
∞
∑

i1,··· ,in=1

(x1 − µ1)
i1 · · · (xn − µn)

in

i1! · · · in!
(
∂i1+···+inf

∂xi11 · · · ∂xinn
)({µ}),

(2.23)

where µi denotes the mathematical expectation of input xi, as before. Reviewing the

mathematical definition of variance, V (y) is analogously calculated as

V (y) =

∞
∑

i1···in=0
j1···jn=0

F(x1)i1j1 ···(xn)injn

A(i1, · · · , in, j1, · · · , jn)

(

∂i1+···+inf

∂xi11 · · · ∂xinn
· ∂j1+···+jnf

∂xj11 · · · ∂xjnn

)

({µ}), (2.24)

with

A(· · · ) = i1! · · · in! · j1! · · · jn!, (2.25)

and

F(x1)i1j1 ···(xn)injn = Mi1+j1(x1) · · ·Min+jn(xn)−Mi1(x1)Mj1(x1) · · ·Min(xn)Mjn(xn).

(2.26)

Equation (2.24) specifies the variance propagation from input variables to the output

one for a general model, by assuming input variables are statistically independent of

each other.

2.4 Applications to the analysis of complex systems

The power grid system and economic system are considered in this section as examples

of the application of our generalised analytic formula, Eq. (2.24), in the uncertainty and

sensitivity analysis of complex systems. These two systems play extremely important

roles in modern society. Their reliability analyses have attracted many researchers’

interest.

Concerning the topic of sensitivity analysis, someone is of most interest to the sensitivity

indices. They allow one to quantitatively interpret the importance of individual factors

and of their interaction effects in the estimation of model response. Recalling the analytic

formula of variance propagation in general models (see Eq. (2.24)), partial variance
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contributions of different dimensionality in Eq. (1.33) can be computed through

Vt =
∞
∑

i,j=0

F(xt)ij

A(i, j)
(
∂if

∂xit
× ∂jf

∂xjt
)({µ}), (2.27)

Vts =

∞
∑

i,j,k,l=0

F(xt)ij(xs)kl

A(i, j, k, l)

(

∂i+kf

∂xit∂x
k
s

· ∂j+lf

∂xjt∂x
l
s

)

({µ})− Vt − Vs, (2.28)

Vtsu =

∞
∑

i,j,k,l,p,q=0

F(xt)ij(xs)kl(xu)pq

A(i, j, k, l, p, q)

(

∂i+k+pf

∂xit∂x
k
s∂x

p
u
· ∂j+l+qf

∂xjt∂x
l
s∂x

q
u

)

({µ})

− Vt − Vs − Vu − Vts − Vtu − Vsu, (2.29)

...

The sensitivity indices of different orders are then quantified accordingly by

st =
Vt

V (y)
, sts =

Vts

V (y)
, stsu =

Vtsu

V (y)
, · · · ,

sTt = st +

n
∑

s=1;s̸=t

sts +

n
∑

s,k=1;s>k;s,k ̸=t

stsk + · · · . (2.30)

2.4.1 Power grid system

In our daily life, the main form of energy that we think of is the power from electricity.

Typically, a complex distribution system used for the transmission of electric power

is called the power grid. The electricity power grid is a physical system that delivers

electricity from the place where it is generated to the site where it is used. Consequently,

a power grid system can be segmented into three sections: electric power generation,

supply, and transmission, which work together to meet the basic electricity demand of

ordinary people. Uncertainty and reliability analysis of the power grid system has been

carried out since 1994 by using MC methods [215]. In general, the assessment of power

grid system reliability is divided into two aspects: system adequacy and system security

which are, respectively, related to the steady-state operation of system and to the ability

of system to withstand sudden natural disturbances or to avoid attack.

Facing the increased global energy consumption, electric utility companies are striving to

generate wind power to meet the growing electricity demand. Wind power, as a typical

example of renewable energy sources, is plentiful, widely distributed, clean, produces

no greenhouse gas emissions during operation, consumes no water, and uses little land

[216]. In this part, a framework on the uncertainty and sensitivity analysis of the actual

wind power output, denoted as Pd, is established by using the above established analytic

method.
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In theory, the wind output power of the wind turbine generator is always the same

when the wind speed is specified. In reality, however, the output power for a fleet wind

turbine generator of the same type exhibits considerable variations even when they are

operating at the same wind speed [217, 218]. Consequently, Pd is often considered as a

random variable that is characterised by two parameters: x and ε through a functional

relationship:

Pd(x) = f(x) + ε, (2.31)

where x indicates the wind speed, f(x) the deterministic power output from a wind

turbine generator, which acts as a function of the wind speed:

f(x) =



































0, 0 ≤ x ≤ vci,

(A+Bx+ cx2) ∗ Pr, vci ≤ x ≤ vr,

Pr, vr ≤ x ≤ vco,

0, x ≥ vco,

(2.32)

and ε the variation of the power output, obeying normal distribution with µ = 0 and

σ = 0.1Pr [219–222]. vci is called the cut-in wind speed at which the turbine first starts

to rotate and generate power, vr the rated wind speed at which the rated power Pr (the

power output limit that the electrical generator is capable of) is reached, and vco the

cut-out wind speed at which the wind turbine generator is shut down for safety reasons,

as shown in Fig. 2.4. Following the reference [222], vci = 3ms−1 and vr = 12ms−1. The

constants A, B, and C are determined by vci and vr through equations [219]

A =
1

(vci − vr)2

[

vci(vci + vr)− 4vcivr

(

vci + vr
2vr

)3
]

, (2.33)

B =
1

(vci − vr)2

[

4(vci + vr)

(

vci + vr
2vr

)3

− (3vci + vr)

]

, (2.34)

C =
1

(vci − vr)2

[

2− 4

(

vci + vr
2vr

)3
]

. (2.35)

Substituting the values of vci and vr, we get A = 0.1215, B = −0.0784 and C = 0.0126.

A systematic framework on reliability evaluation of Pd is performed by limiting x to the

closed interval [vci, vr]. With Eq. (2.32), the actual power output can be updated as

Pd(x) = (A+Bx+ cx2)Pr + ε. (2.36)



Model inputs are independent 59

 

 

 
po

w
er

 o
ut

pu
t

wind speed
P r

vcovrvci

Figure 2.4: Typical wind turbine power output with steady wind speed.
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Figure 2.5: The probability density distribution of wind speed for different combinations of
parameters c and k.

Table 2.1: Parameters associated with the uncertainty in wind speed x.

µx V (x) M3(x) M4(x)

c = 4, k = 2 4.79 1.97 3.03 16.09
c = 4, k = 4 4.1 0.5 0.21 0.73
c = 10, k = 2 7.47 6.03 0.37 69.63

In the power grid system, the uncertainty of the wind speed x is often represented by a

Weibull distribution of two parameters as

P (x) =
k

c
(
x

c
)k−1e−(x

c
)k ; (k > 0, x > 0, c > 1), (2.37)

where c and k are the scale parameter and the shape parameter, respectively, [223].

Three different combinations of c and k are considered here. The underlying proba-

bility density function of the wind speed is displayed in Fig. 2.5. In our analysis, the

wind speed x is limited to the real range [3m/s, 12m/s]. Parameters characterising the

uncertainty in x are displayed in table 2.1.
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Table 2.2: Analysis results of the power grid system in considering different values of γ (the
highest order of Taylor expansion considered in our method).

γ V (Pd)/P
2
r sx sε sxε

c = 4, k = 2
1 0.01(35) 0.26(07) 0.73(93) 0
2 0.01(87) 0.46(51) 0.53(49) 0

c = 4, k = 4
1 0.01(03) 0.03(01) 0.96(99) 0
2 0.01(05) 0.04(93) 0.95(07) 0

c = 10, k = 2
1 0.08(28) 0.87(92) 0.12(08) 0
2 0.08(91) 0.88(77) 0.11(23) 0
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Figure 2.6: A comparison of our method with Sobol’s one. Sobol’s values are obtained by
random sampling-based strategy (sample size: M = 10000), with error bars indicating the

standard deviation of 100 runs.

The underlying results of uncertainty and sensitivity analysis are presented in table 2.2,

by considering different values of the order index γ. Analysis results of γ = 2 also

represent the exact values of our method as the highest order is two in the functional

form. The obtained values suggest that, the uncertainty of model output Pd and its

sensitivity with respect to individual input variables robustly depend upon the values

of c and k. c and k work together to control the uncertainty in input x, thus directly

influence the analysis results. For example, in the first case of c = 4 and k = 2, the

second-order variance contribution of x plays a robust role in establishing the uncertainty

in output Pd. While in the second case of c = 4 and k = 4, and also the third one of

c = 10 and k = 2, the second-order variance contribution of x is ignorable. sxε = 0

indicates a vanishing interaction effect associated with x and ε. This is because the

combination term between input variables is absent in the form of model function, see

Eq. (2.36). A comparison of our method with Sobol’s one is also presented in Fig. 2.6.

The exact values obtained by our method are in good agreement with those provided

by Sobol’s method. This implies our method is equivalent to Sobol’s one in the analysis

of the model under consideration.
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2.4.2 Economic system

Regarding the economic system, one of the oldest classic production scheduling models

is the EOQ model. This model was developed by Harris in 1913 [224]. It aims at

determining the economic order quantity that minimizes the total system cost. Some

analyses about the uncertainty and sensitivity of this model have been proposed in

Refs.[19, 168, 225]. However, the discussion of its reliability to each input parameter,

especially to the interaction effects between different parameters, is still limited.

This subsection builds an intuitive insight into the uncertainty and reliability of EOQ

model in terms of the analytic formula deduced before. In EOQ model, three types of

cost are accounted: purchase cost, holding cost and ordering cost. The purchase cost

is the variable cost of goods, equaling the product of the price of the units themselves,

denoted as P , and the annual demand quantity, denoted as D. The price of the units

themselves is assumed to be fixed, regardless of the number of demand quantity. The

holding cost indicates the cost of holding units in inventory (management’s cost of capital

invested in the units, the cost of the space consumed by the units, taxes of insurance,

etc). It is expressed as the product of the cost of holding unit, denoted as h, and the

average quantity in inventory (between fully replenished and empty), denoted as Q/2. Q

is the order quantity. The ordering cost represents all the costs associated with placing

orders excluding the purchase cost. Suppose each order has a fixed cost K. The number

of orders we need to make per year is D/Q. Hence the ordering cost is K ∗D/Q. The

total system cost in EOQ model can then be represented as

TC = PD +
DK

Q
+

hQ

2
. (2.38)

EOQ is the order quantity that minimizes the total system cost. It is easy to obtain the

value of Q which determines the minimum point of TC, that is

Q∗ =

√

2DK

h
. (2.39)

The uncertainty of Q∗, as well as its sensitivity with respect to independent input vari-

ables D, K, h and to their interactions, is quantified in this part by using our analytic

method.
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Table 2.3: Analysis results for the EOQ model while considering different values of γ.

γ = V (Q∗) sD sK sh sDK sDh sKh sDKh

1 2119 0.385 0.307 0.307 0 0 0 0
2 2192 0.377 0.300 0.314 -0.002 0.006 0.005 0

Input variables are assumed to be independently and uniformly distributed in real ranges

as follows [225]:

900 ≤ D ≤ 1600 unit per year,

$75 ≤ K ≤ $125 per order,

$1.5 ≤ h ≤ $2.5 per order and per year,

(2.40)

which yields

µD = 1250, µK = 100, µh = 2,

V (D) = 40833.333, V (K) = 208.333, V (h) = 0.083. (2.41)

Substituting the functional form and distribution laws of model inputs into Eq. (2.11)

gives the exact value of output uncertainty: V (Q∗) = 2195. The exact values of sensi-

tivity analysis are determined as

sD = 0.377, sK = 0.300, sh = 0.314,

sDK = −0.002, sDh = 0.006, sKh = 0.005, sDKh = 0.000. (2.42)

Sensitivity analysis results are listed in table 2.3 for different values of γ. While γ = 2,

the analysis results are almost equal to the exact values. This suggests that the contri-

butions of input uncertainty of third- or higher-order can be neglected and the analysis

results of γ = 2 can truly represent the reliability of EOQ model. Results state that

all three parameters are important in establishing the uncertainty in model response.

Furthermore, the interaction effect between each two parameters also contributes a small

part to the uncertainty in response Q∗. sDK = −0.002 says that the interaction effect

between D and K will result in a small decrease in the variance of model response.

A comparison of our analysis results with Sobol’s values is shown in Fig. 2.7. The

convergent results of our method are almost the same as Sobol’s numbers.



Model inputs are independent 63

D K h
0.0

0.1

0.2

0.3

0.4

Se
ns

iti
vi

ty
 In

de
x 

(s
)

 

 

               Sobol

Figure 2.7: A comparison of our method with Sobol’s one. Sobol’s values are obtained by
random sampling-based strategy (sample size: M = 10000), with error bars indicating the

standard deviation of 100 runs.



Chapter 3

The analytic analysis for models

with correlated input variables

Over the past few decades, the uncertainty and sensitivity analysis of models is mainly

performed by assuming that input variables are independent of each other. A problem

is often arisen in the development of the methodology for sensitivity analysis: how to

interpret the sensitivity measures when input variables are non-independent? Recently,

the interest in uncertainty and sensitivity analysis is increasing in the presence of corre-

lated input variables, facing the existence of correlated factors in practical applications.

In this chapter, we focus on the extension of the analytic framework established in the

previous chapter. The extended framework allows one to understand, from a theoretical

point of view, the variance propagation from correlated input variables to the model

response and also the sensitivity of model response with respect to input independence

and correlations.

3.1 Variance propagation

Analogously, consider a general model of the form y = f(x) with x = (x1, x2, · · · , xn)T

labeling the input vector of n-dimensional variables. Recalling the multi-variate Taylor

series at the central point of input vector, presented in Eq. (2.23), the mathematical

expectation of the model response can be represented in the presence of input correlations

64
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as

E(y) =f({µ}) +
n
∑

t=1

∞
∑

it=1

Mit(xt)

A(it)
(
∂itf

∂xitt
)({µ}) +

n
∑

t,s=1
t<s

∞
∑

it,is=1

Mit,is(x
it
t , x

is
s )

A(it, is)
(
∂it+isf

∂xitt ∂x
is
s

)({µ})

+ · · ·+
∞
∑

i1,··· ,in=1

Mi1,··· ,in(x
i1
1 , · · · , xinn )

A(i1, · · · , in)
(
∂i1+···+inf

∂xi11 · · · ∂xinn
)({µ})

=

∞
∑

i1,··· ,in=0

Mi1,··· ,in(x
i1
1 , · · · , xinn )

A(i1, · · · , in)
(
∂i1+···+inf

∂xi11 · · · ∂xinn
)({µ}),

(3.1)

where A(· · · ) is defined by Eq. (2.25), {µ} the central point in input space, and Mi1,··· ,in

the multivariate central moment with n different variables. Mathematically, the multi-

variate central moment is defined as

Mi1,··· ,in(x
i1
1 , · · · , xinn ) = E

[

(x1 − µ1)
i1 · · · (xn − µn)

in
]

=

∫

(x1 − µ1)
i1 · · · (xn − µn)

inP (x)dx,
(3.2)

with P (x) indicating the joint PDF of x. In the absence of input correlations, P (x) is

simplified as

P (x) =

n
∏

i=1

Pi, (3.3)

where Pi denotes the PDF of input xi, as before. In the existence of correlations among

input variables, the variance of model response is derived by the use of Eqs. (2.23) and

(3.1) as

V (y) =

∞
∑

i1,··· ,in=0
j1,··· ,jn=0

1

A(i1, · · · , in, j1, · · · , jn)

(

∂i1+···+inf

∂xi11 · · · ∂xinn
· ∂j1+···+jnf

∂xj11 · · · ∂xjnn

)

({µ})

×
[

Mi1+j1,··· ,in+jn(x
i1+j1
1 , · · · , xin+jn

n )−Mi1,··· ,in(x
i1
1 , · · · , xinn )Mj1,··· ,jn(x

j1
1 , · · · , xjnn )

]

.

(3.4)

Apparently, in the absence of input correlations, the above equation is coincident with

Eq. (2.24) that explains the variance propagation from independent input variables to

the model response.

The concept of complete variance decomposition, presented in Eq. (1.33), is proposed

by assuming input independence. Its form is also valid for the correlated case. In

the presence of correlated input variables, however, partial variance contributions with

dimensionality larger than 1 are contributed not only by the coupling items presented in

the functional form of the model under discussion (for independent case), but also by the
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input correlations. Regarding the situation of correlated inputs, the impact of a single

variable can be represented as the sum of contributions provided by its correlations with

the remaining variables and by its independence, respectively. Based on the description,

each fractional variance contribution included in the original variance decomposition can

be divided into three sections: independent variance contribution (labeled by superscript

U), correlated variance contribution (labeled by superscript C), and coupling variance

contribution (labeled by superscript UC). Mathematically, the output variance can be

decomposed in the presence of input correlations as

V (y) =

n
∑

i=1

(V U
i +V C

i +V UC
i )+

n
∑

i,j=1
i<j

(V
Up

ij +V
Cp

ij +V
UCp

ij )+ · · ·+(V
Uq

12···n+V
Cq

12···n+V
UCq

12···n),

(3.5)

where p ∈ {i, j}, q ∈ {1, 2, · · · , n}, and

Vi = V U
i + V C

i + V UC
i , (3.6)

Vij = V
Up

ij + V
Cp

ij + V
UCp

ij , (3.7)

...

V12···n = V
Uq

12···n + V
Cq

12···n + V
UCq

12···n. (3.8)

V U
i (V C

i ) is the variance contribution produced by the independent (correlated) section

of xi alone, V Ui
ij (V Ci

ij ) the contribution of the interaction between xj and the inde-

pendent (correlated) section of xi, and so on up to V
Uq

12···n (V
Cq

12···n) the contribution of

the interaction associated with the independent (correlated) section of xq and the rest

variables. Coupling variance contributions are produced by the coupling effects between

independent and correlated sections for individual input variables.

3.2 Estimation of sensitivity indices

Working within a probabilistic framework, variance-based sensitivity measures are de-

fined on the bases of partial contributions presented in the variance decomposition of

model response. In the determination of each partial variance contribution, higher-order

covariance embodied in the analytic formula Eq. (3.4) should be concerned for nonlinear

models. Consequently, it is necessary to specify the correlated and independent sections

of single input variables for the confirmation of fractions contained in Eq. (3.5), whereby

the importance of the independent section, correlated section and their coupling effect

can be quantified for each individual input variable, in establishing the uncertainty of

model response.
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3.2.1 Generation of correlated variables

In probabilistic models the dependency between input variables is often represented by

the CC that is defined as

ρ(xi, xj) =
E[(xi − µi)(xj − µj)]

σiσj
, (3.9)

where E[∗] is the expectation operation by returning the average value of ∗. Eq. (3.9) is
equivalent to Eq. (1.65) which defines the CC between an arbitrary input variable and

the model response. For the sake of simplicity in writing, ρ(xi, xj) is simplified as ρij in

the following discussion.

In the presence of correlations, an arbitrary variable can be represented as the sum of a

correlated section and an independent section. Based on the description, we can rewrite

the input vector as

x = xC + xU (3.10)

= (xC1 , x
C
2 , · · · , xCn )T + (xU1 , x

U
2 , · · · , xUn )T. (3.11)

The correlated sections xCi with i = 1, 2, · · · , n indicate the correlations of xi with the

remaining variables. By using the linear correlation model (Eq. (3.9)), xC can be

generated as

xC = Ax, (3.12)

where A is an n × n nonsymmetric hollow matrix (diagonal elements are all equal to

zero). The independent sections xUi with i = 1, 2, · · · , n denote the independence of xi.

They are often represented by newly introduced random variables. xU can be expressed

as

xU = Cr, (3.13)

where C is an n× n diagonal matrix and r = (r1, r2, · · · , rn)T an n-dimensional vector

of random variables. r must follow the same type distributions as x and also satisfy

µ(r) = C−1(µ−Aµ), (3.14)

and

σ(r) = σ, (3.15)

in which, C−1 is the inverse of matrix C, µ(r) = (µ(r1), µ(r2), · · · , µ(rn))T the mean

vector of newly introduced random variables, µ = (µ1, µ2, · · · , µn)
T the mean vector of

input variables, and similarly for σ(r) and σ the vectors of standard deviations. Entries

in matrices A and C: {aij , cii; i, j = 1, 2, · · · , n} are called coefficients that specify the
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correlated and independent sections of input variables. They are determined by given

pairwise correlations through equations

aij =
σi
σj









1−
∑

k<l,
k,l ̸=i

ρ2kl(1−
∑

h<q,
h>k;h,q ̸=i,l

ρ2hq) + 2
∑

k<l<h,
k,l,h ̸=i

ρklρkh(ρlh −
∑

q ̸=i,l,h;q>k

ρlqρhq)









−1

×









ρij(1−
∑

k<l,
k,l ̸=i,j

ρ2kl + 2
∑

k<l<h,
k,l,h ̸=i,j

ρklρkhρlh)−
∑

k ̸=i,j

ρikρjk(1−
∑

h<q,
h,q ̸=i,j,k

ρ2hq)

+
∑

k<l,
k,l ̸=i,j

(ρikρjl + ρilρjk)(ρkl −
∑

h ̸=i,j,k,l

ρkhρlh)









, (3.16)

and

cii =









1−
∑

k<l,
k,l ̸=i

ρ2kl(1−
∑

h<q,
h>k;h,q ̸=i,l

ρ2hq) + 2
∑

k<l<h,
k,l,h ̸=i

ρklρkh(ρlh −
∑

q ̸=i,l,h;q>k

ρlqρhq)









−1/2

×









1−
∑

k<l

ρ2kl(1−
∑

h<q,
h>k;h,q ̸=l

ρ2hq) + 2
∑

k<l<h

ρklρkh(ρlh −
∑

q ̸=l,h;q>k

ρlqρhq)









1
2

, (3.17)

where the fifth- and higher-order terms are neglected. The above expressions, derived

according to the analysis of simple cases as shown in Appendix B, constitute essen-

tial ingredients of quantifying sensitivity measures associated with correlated section,

independent section, and their coupling effect, for each single input variable.

If two variables, say xi and xj , simultaneously correlate with a third variable, say xk,

the correlation between xi and xj is then not arbitrary assigned. With given correlation

coefficients ρik and ρjk, xi and xj then can be formulated based on xk as

xi = ρik
σi
σk

xk +
√

1− ρ2ikui, (3.18)

and

xj = ρjk
σj
σk

xk +
√

1− ρ2jkuj , (3.19)

where ui and uj are newly introduced variables that are independent of xk. Inserting

the above formulations into Eq. (3.9) yields

ρij = ρikρjk +
√

(1− ρ2ik)(1− ρ2jk)ρ(ui, uj). (3.20)
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In statistics, ρ(ui, uj), labeling the linear correlation between variables ui and uj , can be

as large as 1 (total positive correlation) and as small as -1 (total negative correlation).

This implies the correlation ρij between xi and xj will be limited to the range

[

ρikρjk −
√

(1− ρ2ik)(1− ρ2jk), ρikρjk +
√

(1− ρ2ik)(1− ρ2jk)
]

(3.21)

when the correlations of them with a third variable xk are specified. The relationship

ρij = ρikρjk holds iff the newly introduced variables ui and uj are set to be independent

of each other.

3.2.2 Sensitivity indices

With help of the analytic formula (3.4) that explains the variance propagation in the

presence of input correlations, the partial variance contributions of different dimension-

ality can be calculated by

Vi =

∞
∑

k,l=0

1

k! · l! (
∂kf

xki
· ∂

lf

∂xli
)({µ}) · [Mk+l(xi)−Mk(xi)Ml(xi)] , (3.22)

Vij =
∞
∑

k,l,p,q=0

1

k! · l! · p! · q! (
∂k+pf

xki x
p
j

· ∂
l+qf

∂xlix
q
j

)({µ})
[

Mk+l,p+q(x
k+l
i , xp+q

j )−

Mk,p(x
k
i , x

p
j )Ml,q(x

l
i, x

q
j)
]

− Vi − Vj , (3.23)

...

where multivariate central moments with different variables are involved. The (k, l)

central moment with any two different variables, say xi and xj , is defined as (simplified

from Eq. (3.2))

Mk,l(x
k
i , x

l
j) = E

[

(xi − µi)
k(xj − µj)

l
]

. (3.24)

It can be derived analytically by formulating one variable on the basis of another:

xi = ρij
σi
σj

xj +
√

1− ρ2ijui, (3.25)

or

xj = ρij
σj
σi

xi +
√

1− ρ2ijuj , (3.26)

with ui(uj) independent of xj(xi) and taking the same standard deviation as xi(xj). If

k ̸= l, the above two formulating strategies are equivalent in determining Mk,l(x
k
i , x

l
j)

only when xi and xj are normally distributed and hold the same standard deviation.
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The kth-order central moment of x is given by

Mk1,··· ,km(x) = E

[

m
∏

i=1

(xi − µi)
ki

]

, (3.27)

where k1 + k2 + · · ·+ km = k. For normal distribution, we have

Mk1,··· ,km(x− µ) =

{

0, k is odd,
∑

(σijσlh · · · ), k is even,
(3.28)

where the sum is taken over all allocations of the set {1, 2, · · · , k} into k/2 pairs, and σij

the covariance of xi and xj . For example, for the fourth-order central moment (k = 4)

with four different variables (calculated in detail in Appendix D), one sums the products

of any two covariances:

E

[

4
∏

i=1

(xi − µi)

]

= σ12σ34 + σ13σ24 + σ14σ23. (3.29)

This yields (k − 1)!! (double factorial) terms in the sum. When nonlinear terms of a

variable are contained in the central moments, like (xi − µi)
k in Eq. (3.24), one can

expand it as the product of k variables and uses σii = σ2
i . Consequently, for normally

distributed xi and xj with σi = σj , Mk,l(x
k
i , x

l
j) is invariant in exchanging xi and xj ,

that is

Mk,l(x
k
i , x

l
j) = Ml,k(x

l
i, x

k
j ). (3.30)

This property (invariant in exchanging any two variables) could go for any order central

moments with any number of different variables that follow a normal distribution and

have the same standard deviation.

For uniformly distributed variables, however, the fourth-order central moment with four

different variables is calculated as

E

[

4
∏

i=1

(xi − µi)

]

= σ12σ34 + σ13σ24 + σ14σ23 −
6

5
∆, (3.31)

where ∆ is a product of three covariances, dependent upon how to choose a variable

to be unformulated in the calculating process. For example, when x2 is selected to be

unformulated, we will get

∆ = σ12σ23σ24. (3.32)

Furthermore, if one focuses on the correlated, independent and coupling effects contained

in a high-order covariance, see Eq. (3.24), xi (xj) should be formulated on the bases of

all the remaining input parameters, as discussed before.
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The total contributions to the variance of model response, provided by the independence,

correlation, and their coupling effect are represented, for an arbitrary variable xi, as

V TU
i = V U

i +
n
∑

j ̸=i

V Ui
ij + · · ·+ V Ui

12···n, (3.33)

V TC
i = V C

i +

n
∑

j ̸=i

V Ci
ij + · · ·+ V Ci

12···n, (3.34)

V TUC
i = V UC

i +

n
∑

j ̸=i

V UCi
ij + · · ·+ V UCi

12···n. (3.35)

The sensitivity (or importance) measures can then be determined by

sUi =
V U
i

V (y)
, sCi =

V C
i

V (y)
, sUC

i =
V UC
i

V (y)
,

sTU
i =

V TU
i

V (y)
, sTC

i =
V TC
i

V (y)
, sTUC

i =
V TUC
i

V (y)
. (3.36)

The first three measures are called the main sensitivity indices which, separately, denote

the importance of the independent section, correlated section, and their coupling effect,

by neglecting the interaction effects among input parameters. The last three measures

are called the total sensitivity indices which denote the importance of each corresponding

part in considering the interaction effects of xi with the remaining inputs. Similar to

Sobol’s indices, the main and total sensitivity indices are defined as

si =
Vi

V (y)
= sUi + sCi + sUC

i , (3.37)

ST i =



Vi +
∑

j ̸=i

Vij + · · ·





/

V (y) = sTU
i + sTC

i + sTUC
i , (3.38)

which evaluate the importance of individual input parameters xi before and after con-

sidering the interaction effects among different input parameters, respectively.

With given correlation coefficients between any two input parameters, our method allows

one to evaluate the importance of individual input parameters in the estimation of model

output in both the absence and presence of input correlations. The newly introduced

sensitivity indices also quantify the importance of input independence and correlations,

allowing one to determine whether or not the input correlations should be considered in

practice. Quite recently the original Sobol’s sensitivity indices are generalised to deal

with correlated inputs, by using hierarchically orthogonal functional decomposition [226,

227]. Compared to the generalised Sobol’s indices, our indices are easier to understand

and interpret.
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3.3 Numerical examples and a practical application

In this section, analytic polynomial models, including one purely additive and three

nonlinear ones, are taken as examples to illustrate the effectiveness and validation of our

established analytic framework. A practical application of the method is also proposed

to a deterministic HIV model. Ten involved parameters are then ranked according to

their importance in establishing the uncertainty of the basic reproduction number R0.

3.3.1 Additive linear model

In the first example a purely additive model is investigated, with functional form given

by

y = 2x1 + x2 + x3, (3.39)

where (x1, x2, x3) ∼ N(µ,Σ) with mean vector µ = (0, 0, 0)T and covariance matrix

Σ =









1 ρ12 2ρ13

ρ12 1 2ρ23

2ρ13 2ρ23 4









. (3.40)

By the use of Eq. (3.4), we get the exact expression of the variance of model response:

V (y) = 9 + 4ρ12 + 8ρ13 + 4ρ23, (3.41)

which is constituted of the following fractional contributions of different dimensionality:

V1 = 4, V2 = 1, V3 = 4, V12 = 4ρ12,

V13 = 8ρ13, V23 = 4ρ23, V123 = 0. (3.42)

The vanishing nonlinear problem in the model function suggests the absence of coupling

variance contributions but the presence of independent and correlated ones:

V U
i = c2iiVi, V

Uj

12 = 0, V Uk
13 = 0, V Ul

23 = 0,

V C
i = (1− c2ii)Vi, V

Cj

12 = V12, V Ck
13 = V13, V Cl

23 = V23,

V Ui
123 = V Ci

123 = 0, (3.43)
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Table 3.1: Uncertainty and sensitivity analysis results for linear additive model by assuming
different correlations between input variables.

ρ V (y) x si sUi sCi sUC
i sTi sTU

i sTC
i sTUC

i

ρ = 0 9
x1 0.444 0.444 0.0 0.0 0.444 0.444 0.0 0.0
x2 0.111 0.111 0.0 0.0 0.111 0.111 0.0 0.0
x3 0.444 0.444 0.0 0.0 0.444 0.444 0.0 0.0

ρ12 = 0.8 12.2
x1 0.328 0.118 0.210 0.0 0.590 0.118 0.472 0.0
x2 0.082 0.030 0.052 0.0 0.344 0.030 0.314 0.0
x3 0.328 0.328 0.0 0.0 0.328 0.328 0.0 0.0

ρ12 = −0.8 5.8
x1 0.690 0.248 0.442 0.0 0.138 0.248 -0.110 0.0
x2 0.172 0.062 0.110 0.0 -0.379 0.062 -0.441 0.0
x3 0.690 0.690 0.0 0.0 0.690 0.690 0.0 0.0

ρ12 = 0.8
17.8

x1 0.225 0.072 0.152 0.0 0.629 0.072 0.557 0.0
ρ13 = 0.5 x2 0.056 0.020 0.036 0.0 0.326 0.020 0.306 0.0
ρ23 = 0.4 x3 0.225 0.169 0.056 0.0 0.539 0.169 0.371 0.0

where i ∈ {1, 2, 3}, j ∈ {1, 2}, k ∈ {1, 3}, l ∈ {2, 3}, and cii, specifying the independence

of variable xi, are determined via Eq. (3.17) as

c11 = (1− ρ223)
−1/2(1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23)

1/2, (3.44)

c22 = (1− ρ213)
−1/2(1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23)

1/2, (3.45)

c33 = (1− ρ212)
−1/2(1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23)

1/2, (3.46)

in which {ρ212, ρ213, ρ223} ̸= 1.

The underlying sensitivity measures are provided in table 3.1 under considering different

correlations between input variables. Results indicate the vanishing sensitivity indices

associated with the coupling effect between input independence and correlations. In the

absence of correlated input variables (ρ = 0), the main sensitivity indices sum up to one.

By introducing input correlations, however, this summation could be smaller than one

(with positive correlations) or larger than one (with negative correlations), contrary to

the sum of the total sensitivity indices. A negative sensitivity index explains a negative

partial variance contribution produced by the negative input correlation.

3.3.2 Nonlinear models

Trivariate model

In the second example a trivariate nonlinear model is considered, containing the linear,

quadratic, and interaction terms:

y = 2x1 + x22 + 4x21x2 + x1x3, (3.47)
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where (x1, x2, x3) ∼ N(µ,Σ) with mean vector µ = (0, 0, 0)T and covariance matrix

Σ =









1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1









. (3.48)

The variance V (y) of model response can be similarly computed by the use of Eq. (3.4)

as

V (y) = 55 + 48ρ12 + 2ρ12ρ23 + 192ρ212 + ρ213, (3.49)

which is generated by the partial variance contributions involving

V1 = 4, V2 = 2, V3 = 0,

V12 = 48(1 + 4ρ212 + ρ12), V13 = 1 + ρ213, V23 = 0,

V123 = 2ρ12ρ23. (3.50)

The independent, correlated and coupling variance contributions divided from the main

variance contributions V1 and V2 are stated as

V U
1 = 4c211, V C

1 = 4(1− c211), V UC
1 = 0,

V U
2 = 2c422, V C

2 = 2(1− c222)
2, V UC

2 = 4c222(1− c222). (3.51)

Regarding the existent higher-order partial variance contributions, we have

V U1
12 = 48c411, V U2

12 = 48c222,

V C1
12 = 48(1− c211)(1− c211 + ρ12 + 4ρ212), V C2

12 = 48(1 + 4ρ212 + ρ12 − c222),

V UC1
12 = 48(2 + ρ12 + 4ρ212 − 2c211)c

2
11, V UC2

12 = 0,

V Ui
13 = c2ii, V Ci

13 = 1 + ρ213 − c2ii, V UCi
13 = 0,

V
Uj

123 = 0, V
Cj

123 = 2ρ12ρ23, V
UCj

123 = 0, (3.52)

where i ∈ {1, 3}, j ∈ {1, 2, 3} and ci are determined with Eq. (3.17). A detailed

calculation process for the above items are presented in Appendix C. In table 3.2, the

exact sensitivity indices are listed, showing a dominated influence of the interaction

effect between x1 and x2 in the absence of input correlations. In the presence of input

correlations, the independent, correlated and coupling effects provided by x1 and x2 are

all significant in establishing the uncertainty of model response. The convergence of our

analysis results with the order of Taylor expansion is also presented in Fig. 3.1. γ is

the highest-order of Taylor expansion that is considered in our method. Analysis results

are convergent at γ = 3 (the highest-order of Taylor expansion of the model output),

implying the effects of any possible orders of Taylor expansion of the model output are



Model inputs are correlated 75

Table 3.2: Exact analytic results for uncertainty and sensitivity analysis of the first nonlinear
model with different input correlations.

ρ V (y) x si sUi sCi sUC
i sTi sTU

i sTC
i sTUC

i

ρ = 0 55
x1 0.073 0.073 0.0 0.0 0.964 0.964 0.0 0.0
x2 0.036 0.036 0.0 0.0 0.909 0.909 0.0 0.0
x3 0.0 0.0 0.0 0.0 0.018 0.018 0.0 0.0

ρ12 = 0.5 127
x1 0.031 0.024 0.007 0.0 0.984 0.242 0.175 0.567
x2 0.016 0.009 0.001 0.006 0.960 0.292 0.662 0.006
x3 0.0 0.0 0.0 0.0 0.008 0.008 0.0 0.0

ρ12 = −0.5
79.36

x1 0.050 0.020 0.03 0.0 0.975 0.117 0.452 0.406
ρ13 = 0.6 x2 0.025 0.009 0.004 0.012 0.932 0.382 0.538 0.012

x3 0.0 0.0 0.0 0.0 0.017 0.007 0.010 0.0

ρ12 = 0.4
105.81

x1 0.038 0.028 0.01 0.0 0.981 0.291 0.166 0.524
ρ13 = 0.5 x2 0.019 0.002 0.008 0.009 0.950 0.167 0.774 0.009
ρ23 = 0.8 x3 0.0 0.0 0.0 0.0 0.018 0.003 0.015 0.0
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Figure 3.1: The convergence of analysis results with the order of Taylor expansion.

influential.

Fourvariate model

Another nonlinear model is designed based on four input variables as

y = x1x3 + x2x4, (3.53)
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where (x1, x2, x3, x4) ∼ N(µ,Σ) with mean vector µ = (1, 2, 2, 1)T and covariance matrix

Σ =















1 ρ12 ρ13 ρ14

ρ12 1 ρ23 ρ24

ρ13 ρ23 1 ρ34

ρ14 ρ24 ρ34 1















. (3.54)

The total variance of model response is obtained by employing Eq. (3.4) as

V (y) = 12+4ρ12+4ρ13+8ρ14+2ρ23+4ρ24+4ρ34+ρ213+ρ224+2(ρ12ρ34+ρ14ρ23), (3.55)

which is constituted of

V1 = 4, V2 = 1, V3 = 1, V4 = 4,

V12 = 4ρ12, V13 = 1 + 4ρ13 + ρ213, V14 = 8ρ14, V23 = 2ρ23,

V24 = 1 + 4ρ24 + ρ224, V34 = 4ρ34, V1234 = 2(ρ12ρ34 + ρ14ρ23). (3.56)

In the calculation of V1234, the covariance cov(x1, x2, x3, x4) of four variables is involved,

whose derivation is presented in Appendix D. The form of model function (only involves

the linear problem of each input) suggests the vanishing coupling effect in all partial

variance contributions but the existent correlated and independent ones:

V U
i = c2iiVi, V C

i = (1− c2ii)Vi,

V
Uj

13 = c2jj , V
Cj

13 = V13 − V
Uj

13 ,

V Uk
24 = c2kk, V Ck

24 = V24 − V Uk
24 , (3.57)

where i ∈ {1, 2, 3, 4}, j ∈ {1, 3} and k ∈ {2, 4}. The partial variance contributions V12,

V14, V23, V34 and V1234 are all contributed by input correlations. The coefficients ci are

determined with Eq. (3.17). Table 3.3 lists the exact analytic values of the underlying

sensitivity indices. Data show a vanishing coupling effect between input independence

and correlations. This because the nonlinear problems of single variables are absent in

the form of model function. The convergence of our analysis results is displayed in Fig.

3.2, along the direction of the highest-order of Taylor expansion that is considered in

our method. Values are convergent at γ = 2 (the highest-order of Taylor expansion of

the model output).
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Table 3.3: Exact analytic values of uncertainty and sensitivity analysis for the second
nonlinear model by assuming uncorrelated and correlated inputs.

ρ V (y) x si sUi sCi sUC
i sTi sTU

i sTC
i sTUC

i

ρ = 0 12
x1 0.333 0.333 0.0 0.0 0.417 0.417 0.0 0.0
x2 0.083 0.083 0.0 0.0 0.167 0.167 0.0 0.0
x3 0.083 0.083 0.0 0.0 0.167 0.167 0.0 0.0
x4 0.333 0.333 0.0 0.0 0.417 0.417 0.0 0.0

ρ13 = 0.5
18.09

x1 0.221 0.166 0.055 0.0 0.401 0.207 0.194 0.0
ρ24 = 0.8 x2 0.055 0.020 0.035 0.0 0.323 0.040 0.283 0.0

x3 0.055 0.041 0.014 0.0 0.235 0.083 0.152 0.0
x4 0.221 0.080 0.141 0.0 0.489 0.100 0.389 0.0

ρ12 = −0.5
15.96

x1 0.251 0.058 0.193 0.0 0.561 0.072 0.489 0.0
ρ13 = 0.6 x2 0.063 0.030 0.033 0.0 0.0 0.060 -0.060 0.0
ρ14 = 0.4 x3 0.063 0.024 0.039 0.0 0.298 0.049 0.249 0.0

x4 0.251 0.148 0.103 0.0 0.514 0.185 0.329 0.0

ρ12 = −0.5, ρ13 = −0.4
13.84

x1 0.289 0.110 0.179 0.0 0.208 0.137 0.071 0.0
ρ14 = 0.2, ρ23 = 0.3 x2 0.072 0.032 0.040 0.0 0.150 0.065 0.085 0.0
ρ24 = 0.4, ρ34 = 0.4 x3 0.072 0.040 0.032 0.0 0.179 0.080 0.099 0.0

x4 0.289 0.121 0.168 0.0 0.699 0.152 0.547 0.0

0.00

0.25

0.50

0.00

0.25

0.50

0 2 4 6 8 10
0.0

0.4

0.8

0 2 4 6 8 10
0.0

0.4

0.8

Se
ns

iti
vi

ty
 in

de
x

 s1  s2  s3  s4  sT1  sT2  sT3  sT4

 

 

 

 

,   

 

 

,   

 

 

Figure 3.2: The convergence of analysis results with the order of Taylor expansion.

Ishigami function

The Ishigami function [228] has been extensively used as a benchmark for sensitivity

analysis [229, 230]. Its functional form was defined as

y = sin(x1) + 7 sin2(x2) + 0.1x43 sin(x1), (3.58)

where all input variables are uniformly distributed in the interval [−π, π]. The presence

of correlation between x2 and each of the rest does not influence the total variance of
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Table 3.4: Exact analytic values of uncertainty and sensitivity analysis for Ishigami function
by assuming uncorrelated and correlated inputs. In case 1 x1 is generated based on x3, contrary

to the second case where x3 is generated based on x1.

ρ V (y) x si sUi sCi sUC
i sTi sTU

i sTC
i sTUC

i

ρ13 = 0 13.845
x1 0.036 0.036 0.0 0.0 0.557 0.557 0.0 0.0
x2 0.442 0.442 0.0 0.0 0.442 0.442 0.0 0.0
x3 0.0 0.0 0.0 0.0 0.521 0.521 0.0 0.0

ρ13 = 0.5
12.971

x1 0.039 0.044 0.039 -0.044 0.528 0.633 1.048 -1.153
(case 1) x2 0.472 0.472 0.0 0.0 0.472 0.472 0.0 0.0

x3 0.0 — — — 0.489 — — —

ρ13 = 0.5
19.110

x1 0.026 — — — 0.679 — — —
(case 2) x2 0.321 0.321 0.0 0.0 0.321 0.321 0.0 0.0

x3 0.0 0.0 0.0 0.0 0.653 0.145 0.004 0.505

model response owing to zero partial variance contributions associated with the inter-

action between x2 and the rest. Consequently, we just consider here the correlation

between x1 and x3. The results of analytic analysis are listed in table 3.4 by assuming

independent and correlated input variables. Two formulating strategies are considered in

the presence of correlation: x1 is formulated on the basis of x3 and vice versa. They are

non-equivalent for the uncertainty and sensitivity analysis of the model under discussion

as x1 and x3 are uniformly distributed.

In the first case, x1 is formulated on the basis of x3 as

x1 = ρ13
σ1
σ3

x3 +
√

1− ρ213r1, (3.59)

where the newly introduced random variable r1 is the element of r that satisfies Eqs.

(3.14) and (3.15). Sensitivity measures show a strong positive variance contribution

produced by the interaction effect between x3 and the correlated part of x1, as well as a

very strong negative variance contribution caused by the interaction term involving x3

and both correlated and independent sections of x1.

For the second case, we generate x3 on the basis of x1 as

x3 = ρ13
σ3
σ1

x1 +
√

1− ρ213r3, (3.60)

where the random variable r3 is the element of r that satisfies Eqs. (3.14) and (3.15).

Zero mean of x1 leads to the nonexistence of sensitivity measures evaluating the main

effect of x3. A dominated contribution to the variance of model response is produced

by the interaction effect between x1 and the coupling of independent section with the

correlated one of x3.

Analysis results imply that the correlation between x1 and x3, if exists, will play a

crucial role in determining the model response. Sensitivity indices of correlated and
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Figure 3.3: The convergence of analysis results with the order of Taylor expansion.

independent sections of x3 are not indicated in the first case because x3 is considered

as a whole variable, analogous to the second case. The derivation process of partial

variance contributions of different orders is presented in detail in Appendix E for both

cases. The convergence of our analysis results is also discussed, see Fig. 3.3. For three

situations, values are all convergent at γ = 13 (the highest-order of Taylor expansion

that is considered in our method).

HIV model

The basic reproduction number, denoted as R0, is arguably the most important quantity

in infectious disease epidemiology because it helps determine whether or not an infec-

tious disease can spread through a population [231, 232]. R0 is defined as the average

number of new cases of an infection caused by one typical infected individual, in a pop-

ulation consisting of susceptibles only [233–235]. The first application of this metric in

epidemiology was introduced by George MacDonald in 1952, who designed agent-based

models of the spread of malaria [236]. Generally, the larger the value of R0, the harder

it is to control the spreading of an epidemic. Typically, when R0 < 1, the disease free

equilibrium is locally asymptotically stable and the epidemic will die out in the long

run, whereas if R0 > 1, it is unstable and the epidemic will invade the population [237].

Consider a deterministic model of HIV-1 with vertical transmission (from an HIV-

infected mother to her child) which was discussed in Ref. [84]. The basic reproduction

number R0 is represented by

R0 =
β0(1− γ)θ2d + β1n1Q0(θd − κ) + β2n2αQ0 + (1− γ)(κ+ α)β0θd

θd(θd + κ)(θd + α)
. (3.61)

Description and baseline values of parameters included in the above expression are pre-

sented in table 3.5.

To identify the importance of individual parameters in establishing the uncertainty of

R0, each parameter is artificially increased and decreased by 10% of its baseline value.



Model inputs are correlated 80

Table 3.5: Description and baseline values of parameters for HIV/AIDS model, see Refs.
[84, 238, 239].

Parameter Symbol Baseline value

Recruitment rate Q0 0.029
Birth rate of infective β0 0.03
Fraction of susceptible newborn

γ 0.4
from infective class
Contact rate of susceptible with

β1 0.2
asymptomatic infective
Contact rate of susceptible with

β2 0.08
symptomatic infective
Number of sexual partners of susceptible

n1 2.0
with asymptomatic infective
Number of sexual partners of susceptible

n2 2.0
with symptomatic infective
Natural death rate θd 0.02
Removal rate to symptomatic class α 0.6
Rate of development to AIDS κ 0.1

Furthermore, for simplicity, uncertainties of parameters are indicated by uniform distri-

bution in their ranges of variation. The mathematical expectations and uncertainties of

input parameters and output R0 are presented in table 3.6. Regarding the uncertainty

in R0, both independent and correlated situations are discussed. The underlying sensi-

tivity analysis results are displayed in table 3.7. In our analysis, the first-order Taylor

expansions are considered only, which explain 99.6% and 98.8% of the exact uncertainty

(indicated by the standard deviation) of R0 for independent and correlated situations,

respectively. A ranking of input parameters is displayed in Fig. 3.4, according to the

total sensitivity indices. Two values of γ (the highest-order of Taylor expansion that is

considered in our method) are considered. Results suggest that the analysis results of

γ = 1 are almost the same as those of γ = 2 for both the absence and presence of input

correlations. This implies our analysis results are convergent at the first-order Taylor

expansion for the model under discussion. In both the absence and presence of input

correlations, parameters κ (rate of development to AIDS), β2 (contact rate of suscepti-

ble with symptomatic infective), and n2 (number of sexual partners of susceptible with

symptomatic infective) are identified as the most influential, while parameters β0 (the

birth rate of infective) and γ (the fraction of susceptible newborn from infective class)

are identified as negligible, in determining the basic reproduction number R0. This

provides one an opportunity to effectively limit the spread of a disease by controlling

the three most influential parameters, and to simplify an HIV model by neglecting the

effects contributed by parameters β0 and γ.

The distribution of our analysis results is also presented in Fig. 3.5, along the direction

of the correlation between β1 and n1, and the direction of the correlation between β2

and n2. The underlying results suggest that the effect contributed by the correlation
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Table 3.6: Uncertainty determination for both input and output parameters. The uncertain-
ty in R0 is obtained by considering the first-order Taylor expansion, which explains 99.6% and
98.8% of the exact uncertainty of R0 for independent and correlated situations, respectively.

parameter µ (baseline value) Range of variation σ (uncertainty)

input

Q0 0.029 [0.0261, 0.0319] 0.002
β0 0.03 [0.027, 0.033] 0.002
γ 0.4 [0.36, 0.44] 0.023
β1 0.2 [0.18, 0.22] 0.012
β2 0.08 [0.072, 0.088] 0.005
n1 2 [1.8, 2.2] 0.115
n2 2 [1.8, 2.2] 0.115
θd 0.02 [0.018, 0.022] 0.001
α 0.6 [0.54, 0.66] 0.035
κ 0.1 [0.09, 0.11] 0.006

output R0
1.429 – 0.227(ρ = 0)
1.432 – 0.252

(ρβ1n1 = 0.3, ρβ2n2 = 0.5)

Table 3.7: The convergent analysis results of the basic reproduction number R0 for a de-
terministic HIV-1 model with vertical transmission by assuming independent and correlated

input parameters.

x
ρ = 0 ρβ1n1 = 0.3, ρβ2n2 = 0.5

sTi(= sUTi) sTi sUTi sCTi

Q0 0.101 0.082 0.082 0
β0 0.002 0.002 0.002 0
γ 0.001 0.001 0.001 0
β1 0.025 0.032 0.018 0.014
β2 0.227 0.363 0.138 0.225
n1 0.025 0.032 0.018 0.014
n2 0.227 0.363 0.138 0.225
θd 0.122 0.098 0.098 0
α 0.027 0.022 0.022 0
κ 0.244 0.197 0.197 0
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Figure 3.4: (Color online) Parameters are ranked according to their global importance (the
total sensitivity indices sTi) in establishing the uncertainty of the basic reproduction number
R0 for HIV-1 model with vertical transmission. The left panel is for independent situation,

and the right one for the correlated one with ρβ1n1 = 0.3 and ρβ2n2 = 0.5.
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Figure 3.5: The distribution of our analysis results along the direction of the correlation
between β1 and n1, and the direction of the correlation between β2 and n2. The sensitivity

indices for n1 and n2 are exactly the same as those for β1 and β2, respectively.

between β1 and n1 can be neglected, but the one contributed by the correlation between

β2 and n2 is quite influential, in the estimation of the basic reproduction number R0.



Chapter 4

The establishment of

sampling-based strategy

In diverse strategies for uncertainty and sensitivity analysis, the sampling-based method

are considered as both effective and widely used in the absence of input correlations.

Analysis relying on the this method involves the generation and exploration of a map-

ping from input variables to the model response. The most crucial ingredient is the

generation of sample points regarding sampling-based uncertainty and sensitivity anal-

ysis. In general, LHS and QMC sampling are often discussed and widely used for the

analysis of computationally demanding models. The efficient stratification property of

LHS allows for the extraction of a large amount of uncertainty and sensitivity informa-

tion with a relatively small sample size [30, 240]. Low-discrepancy sequences guarantee

a perfect uniformity and uniqueness of QMC sampling in the input space, which avoids

large computational cost in configuration average [31, 241].

4.1 A comparison of our method with Sobol’s one

A comparison of our method with Sobol’s one is discussed in this chapter. Sobol’s

variance-based method is implemented here with the sampling-based strategy which

also allows one to evaluate the sensitivity indices even if the functional form connecting

input and output variables is absent. By using sample points, the representations of

Sobol’s sensitivity indices of different orders are presented in Section 1.3.7. In this

part, the difference of our method from Sobol’s one is presented via trivariate linear

and nonlinear systems of specified functional relationships connecting y and x, in the

83
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absence of input correlations. Four numerical models of forms below are exemplified:

y1 = 2x1 − 4x2 + 6x3, (4.1)

y2 = 2x1 + 3x22 + 4x1x3, (4.2)

y3 = x1x2x
2
3, (4.3)

y4 = x1x2/x3, (4.4)

where input variables are assumed to be independent of each other and uniformly dis-

tributed in the closed interval [0, 1] ([0.1, 1.1] for the last case).

The underlying results obtained by our analytic method and by the sampling-based

Sobol’s one are exhibited in tables 4.1 and 4.2, respectively. Two sampling strategies

are employed here, including LHS and QMC sampling. Typically, QMC sampling is per-

formed by using high-dimensional Sobol low-discrepancy sequences that hold advanced

uniformity properties in the input space. In practice, LHS-based results are averaged

over 1000 configurations used for eliminating the randomness in sample generation. And

QMC sampling-based values are obtained by unique configuration as low-discrepancy se-

quences are deterministic for given sample size and input variables. Results indicate a

good agreement between our values and Sobol’s ones, except the last two examples

involving interaction effect of nonlinear problems of x3. For these two cases, Sobol’s

sensitivity indices overestimate the impacts contributed by x1, x2, as well as by their

interaction, but underestimate the roles played by the association of each of them with

x3, compared to the values provided by our method. This difference is introduced by

the following components separately appearing in the analytic expansions of s13, s23,

and s123 (see the definition of sensitivity indices in the second chapter):

∞
∑

i=1

1

i!
(
∂f

∂x1
· ∂i+1f

∂x1∂xi3
)({µ}) ·M2(x1)Mi(x3)

/

V (y), (4.5)

∞
∑

i=1

1

i!
(
∂f

∂x2
· ∂i+1f

∂x2∂xi3
)({µ}) ·M2(x2)Mi(x3)

/

V (y), (4.6)

∞
∑

i=1

1

i!
(

∂2f

∂x1∂x2
· ∂i+2f

∂x1∂x2∂xi3
)({µ}) ·M2(x1)M2(x2)Mi(x3)

/

V (y). (4.7)

The above components are in sequence regarded as the effects of x1, x2 and of the inter-

action effect between them in Sobol’s definition since artificially moving the above items

in our analytic formula for the third case yields {s1=0.14, s2=0.14, s3=0.36, s12=0.05,

s13=0.13, s23=0.13, s123=0.04} which are in remarkable agreement with Sobol’s sampling-

based values.

The information provided by item [∂y/∂xt] in Eqs. (4.5) and (4.6) can be approximated
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Table 4.1: Analytic values for uncertainty and sensitivity analysis to numerical test examples.
Numbers in parentheses denote the thousandth and ten-thousandth digits of corresponding

items.

y s1 s2 s3 sT1 sT2 sT3 s12 s13 s23 s123

y1 0.07(14) 0.28(57) 0.64(29) 0.07(14) 0.28(57) 0.64(29) 0 0 0 0
y2 0.51(73) 0.31(03) 0.12(93) 0.56(04) 0.31(03) 0.17(24) 0 0.04(31) 0 0
y3 0.08(52) 0.08(52) 0.36(37) 0.36(36) 0.36(36) 0.80(11) 0.02(84) 0.18(75) 0.18(75) 0.06(25)
y4 0.08(00) 0.08(00) 0.41(57) 0.32(25) 0.32(25) 0.82(15) 0.01(85) 0.18(18) 0.18(18) 0.04(21)

E(y1)=2.00(00), E(y2)=3.00(00), E(y3)=0.08(33), E(y4)=0.86(32);
V (y1)=4.66(67), V (y2)=2.57(66), V (y3)=0.01(53), V (y4)=1.04(16).

as the square root of the whole information provided by xt alone which decides the sen-

sitivity index st, that is
√
Vt . Similarly, the contribution made by item [∂2y/(∂x1∂x2)]

in Eq. (4.7) can be approximated as
√
V12. Nevertheless, the impact resulted from the

right part in brackets of each equation among Eqs. (4.5), (4.6) and (4.7) should be sep-

arately approximated as half of the square root of V13, V23 and V123. This because of the

only existent even-order central moments of x3. x3 is uniformly distributed, resulting

non-existence of contributions from the relevant odd-order derivatives of f with respec-

t to x3. Following these approximations, a modification is introduced to the Sobol’s

method:

sr1 = s1 −
√
s1 · s13
2

, sr2 = s2 −
√
s2 · s23
2

, sr12 = s12 −
√
s12 · s123

2
,

sr13 = s13 +

√
s1 · s13
2

, sr23 = s23 +

√
s2 · s23
2

, sr123 = s123 +

√
s12 · s123

2
. (4.8)

The revised results for the last two cases are shown in yr3- and yr4-th rows in table 4.2.

They are in well agreement with analytic values accompanied by ignorable errors. The

above modification depends upon the functional form of the model under discussion that

provides information about which of measures are overvalued and which are underesti-

mated. Following the modification, it is easy to understand the difference between our

method and Sobol’s one. For models of absent nonlinear interaction effects of input

parameters, our method (in the absence of input correlations) is equivalent to Sobol’s

one in evaluating the importance of individual input parameters. When the model

under discussion involves nonlinear interaction terms, however, the difference between

our method and Sobol’s one is existed in quantifying some sensitivity indices. By in-

troducing the modification to Sobol’s method, a rough sampling-based method is also

established, coincident with our analytic concept. This builds a foundation of extending

the sampling-based method from independent case to the correlated one. Sampling-

based method of input correlations is of great importance in practice, which allows one

to decide where or not the input correlations should be considered in models of ab-

sent functional forms. Results also suggest that QMC sampling, compared to LHS, can

provide more precise measures at lower computational cost, as stated in the first chapter.
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Table 4.2: Sampling-based results for uncertainty and sensitivity analysis of numerical
test examples with M = 10000. Rows of yr

3 and yr
4 indicate the values after introducing

our proposed modification. Values provided by LHS-based method are averaged over 1000
simulations with the corresponding standard deviation displayed in parentheses. For the results
given by QMC sampling-based method, data in parentheses denote the thousandth and ten-

thousandth digits.

LHS-based method

y s1 s2 s3 sT1 sT2 sT3 s12 s13 s23 s123

y1 0.07(.01) 0.29(.01) 0.64(.01) 0.07(.00) 0.29(.01) 0.64(.01) 0.00(0.01) 0.00(.01) 0.00(.01) 0.00(.01)
y2 0.52(.01) 0.31(.01) 0.13(.01) 0.56(.01) 0.31(.01) 0.17(.01) 0.00(.01) 0.04(0.01) 0.00(0.01) 0.00(.01)
y3 0.15(.01) 0.15(.01) 0.37(.01) 0.36(.02) 0.36(.02) 0.64(0.02) 0.05(.01) 0.12(.02) 0.12(.02) 0.04(.01)
y4 0.17(.01) 0.17(.01) 0.42(.02) 0.32(.02) 0.32(.02) 0.63(.02) 0.04(.01) 0.09(.02) 0.09(.02) 0.02(.01)
yr
3 0.09(.02) 0.09(.02) 0.37(.02) 0.36(.02) 0.36(.02) 0.64(.02) 0.03(.01) 0.18(.02) 0.18(.02) 0.07(.01)

yr
4 0.10(.02) 0.10(.02) 0.42(.02) 0.32(.02) 0.32(.02) 0.63(0.02) 0.02(.01) 0.16(.03) 0.16(.03) 0.04(.02)

E(y1)=2(.00), E(y2)=3(.00), E(y3)=0.08(.00), E(y4)=0.86(.00);
V (y1)=4.66(.05), V (y2)=2.59(.03), V (y3)=0.015(.00), V (y4)=1.04(.03).

QMC sampling-based method

y s1 s2 s3 sT1 sT2 sT3 s12 s13 s23 s123

y1 0.07(17) 0.28(57) 0.64(29) 0.07(15) 0.28(55) 0.64(28) 0.00(02) 0.00(02) 0.00(02) 0.00(02)
y2 0.51(75) 0.31(02) 0.12(82) 0.56(12) 0.31(06) 0.17(19) 0.00(04) 0.04(37) 0.00(04) 0.00(04)
y3 0.15(82) 0.15(33) 0.36(55) 0.36(37) 0.36(15) 0.64(53) 0.04(32) 0.11(49) 0.11(75) 0.04(74)
y4 0.16(80) 0.16(76) 0.41(48) 0.32(24) 0.32(44) 0.62(96) 0.03(49) 0.09(29) 0.09(53) 0.02(66)
yr
3 0.09(08) 0.08(62) 0.36(55) 0.36(37) 0.36(15) 0.80(24) 0.02(06) 0.18(22) 0.18(46) 0.07(01)

yr
4 0.10(55) 0.10(44) 0.41(48) 0.32(23) 0.32(44) 0.77(05) 0.01(96) 0.15(53) 0.15(85) 0.04(19)

E(y1)=2.00(00), E(y2)=3.00(00), E(y3)=0.08(33), E(y4)=0.86(34);
V (y1)=4.66(70), V (y2)=2.57(75), V (y3)=0.01(53), V (y4)=1.04(34).

4.2 Analysis of SIR and SIS models

The modeling of infectious diseases provides a tool to study the mechanisms by which

diseases spread, to predict the future course of an outbreak and to evaluate strategies to

control an epidemic [242]. Mathematical modeling of disease spreading was first carried

out in 1766 by Daniel Bernoulli who designed a numerical model to defend the practice

of inoculating against smallpox [243]. However, modern theoretical epidemiology did

not begin until the research of Ronald Ross into the spread of malaria [244]. This was

soon followed by a deterministic model, i.e., SIR model, proposed by W.O. Kermack

and A.G. McKendrick in 1927 with the consideration of a fixed population divided into

three compartments: susceptible group S who are not infected with disease but can get

infected, infectious category I who are infected with disease and can spread the disease

to group S, and recovered community R who have been recovered from infection and are

immune to reinfection [37]. Another widely considered model for epidemic spreading is

SIS model relying on a coarse grained description of individuals in the population within

which individuals are immediately susceptible once they have recovered.

The reliability investigation regarding deterministic compartmental models are per-

formed for many years under the consideration of output’s dependence upon one input

factor at a time in fixing the others [245, 246]. This widely used one-at-a-time method,

however, fails to globally quantify the roles played by individual input factors and by

their interaction effects in the estimation of model response. Following the deficiency,
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a systematical framework is carried out for the reliability analysis of both SIR and SIS

models, by using sampling-based strategy and our proposed modification.

Considering a fixed population: N = S(t) + I(t) + S(t), McKendrick and Kermack

designed the following nonlinear system of ordinary differential equations:



















ds(t)
dt = −βs(t)i(t),

di(t)
dt = βs(t)i(t)− γi(t),

dr(t)
dt = γi(t).

(4.9)

Apparently, we have s(t)+ i(t)+r(t) = 1. β labels the probability at which a susceptible

individual can be infected after communicating with infected individuals, and γ the

probability at which an infected individual will be spontaneously recovered from the

infection. In Eq. (4.9), dividing the first equation by the third one yields:

ln s(t) = −β

γ
r(t) + ln s(0) + r(0), (4.10)

in which s(0) and r(0) label the initial condition that specifies the infectious invading.

In general, r(0) is set to 0, yielding i(0) = 1 − s(0). At equilibrium state of disease

spreading, the normalized number of both susceptible and infectious agents satisfy



















βsi = 0,

βsi− γi = 0,

γi = 0.

(4.11)

which, together with Eq. (4.10), provides







i = 0,

ln s = −β
γ (1− s) + ln s(0).

(4.12)

Apparently, SIR model does not lead to any analytic solution for the equilibrium state

but just states that s associates with input parameters β, γ and s(0) which are assumed

to be independent of each other and uniformly distributed in the real range [0, 1]:

s = f(s(0), β, γ); β, γ, s(0) ∈ [0, 1]. (4.13)
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Differential equations for SIS model can be deduced from SIR model by removing the

recovered populations into the susceptible compartment:







ds(t)
dt = −βs(t)i(t) + γi(t),

di(t)
dt = βs(t)i(t)− γi(t).

(4.14)

Its exact solution at equilibrium state is

s =







1, γ ≥ β,

γ
β , γ < β.

(4.15)

Numerical simulations of Eqs (4.9) and (4.14) are presented in Fig. 4.1 by considering

different values of input variables. Results demonstrate that the underlying system will

fast reach the equilibrium state for both models. Uncertainty and sensitivity analysis

of both models is performed by sampling-based strategies including LHS and QMC

sampling. QMC sampling is implemented by the use of high-dimensional Sobol low-

discrepancy sequence generator. The underlying analysis results are exhibited in table

4.3 where rows of SIRr and SISr correspond to the values after introducing our proposed

modification. LHS-based values are averaged over 1000 configurations for eliminating

the randomness in sample generation, and QMC sampling-based ones are provided by

unique configuration.

Regarding SIS model yielding the exact solution of equilibrium state, the inaccuracy of

the original sampling-based strategy in the implementation of our analytic method is

introduced by the following summation set:

∞
∑

i=1

1

i!
(
∂s

∂γ
· ∂i+1s

∂γ∂iβ
)({µ}) ·M2(γ)Mi(β)

/

V (y), (4.16)

which leads to the overestimation of index sγ but underestimation of index sβγ . Based

on this description, the relevant items are then corrected as

srγ = sγ −
√
sγ · sβγ
2

, srβγ = sβγ +

√
sγ · sβγ
2

. (4.17)

For SIR model with no exact solution of equilibrium state, the association of model

response s with each input variable is shown in Fig. 4.2. It is noticed that s nonlinearly

depends upon the ratio of γ to β but almost linearly correlates with s(0). Furthermore,

the interaction effect of s(0) with each of β and γ can be neglected since the lines in

double log plane of s-s(0) are almost parallel to each other for different ratios of γ to

β except as s(0) → 1. In the region of s(0) → 1, interaction effects of s(0) with other
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Table 4.3: Sampling-based values for uncertainty and sensitivity analysis of both SIR and
SIS models. The sample size is M = 10000. Rows of SIRr and SISr indicate the results
after introducing our proposed modifications. For LHS-based results, numbers in parentheses
denote the standard deviation of each corresponding item, resulting from 1000 independent
simulations. For QMC sampling-based values, data in parentheses are the thousandth and

ten-thousandth digits.

LHS-based method

y = s sβ sγ ss(0) sTβ sTγ sTs(0) sβγ sβs(0) sγs(0) sβγs(0)

SIR 0.19(.01) 0.18(.01) 0.42(.01) 0.31(.01) 0.34(.01) 0.60(.01) 0.04(.01) 0.06(.02) 0.09(.02) 0.03(.01)
SIS 0.20(.02) 0.64(.01) — 0.36(.01) 0.80(.02) — 0.16(.02) — — —
SIRr 0.15(.02) 0.14(.02) 0.42(.01) 0.35(.01) 0.38(.01) 0.60(.01) 0.11(.03) 0.06(.02) 0.09(.02) 0.03(.01)
SISr 0.20(.02) 0.49(.02) — 0.51(.01) 0.80(.02) — 0.31(.04) — — —

E(y)SIR=0.24(.00), E(y)SIS=0.75(.00); V (y)SIR=0.07(.00), V (y)SIS=0.10(.00).

QMC sampling-based method

y = s sβ sγ ss(0) sTβ sTγ sTs(0) sβγ sβs(0) sγs(0) sβγs(0)

SIR 0.18(56) 0.18(11) 0.41(54) 0.30(97) 0.34(00) 0.59(45) 0.03(88) 0.05(90) 0.09(38) 0.02(62)
SIS 0.20(12) 0.64(41) — 0.35(59) 0.79(88) — 0.15(47) — — —
SIRr 0.14(32) 0.13(92) 0.41(54) 0.35(16) 0.38(23) 0.59(45) 0.12(32) 0.05(90) 0.09(38) 0.02(62)
SISr 0.20(12) 0.48(62) — 0.51(38) 0.79(88) — 0.31(26) — — —

E(y)SIR=0.24(19), E(y)SIS=0.75(01); V (y)SIR=0.07(14), V (y)SIS=0.10(42).

factors are existed, explaining the non-vanishing high-order sensitivity indices involving

s(0). Consequently, for SIR model, the items that give rise to the inaccuracy of the

sampling-based strategy in the implementation of our analytic method include

∞
∑

i,j,k=1

1

i! · j! · k! (
∂is

∂γi
· ∂j+ks

∂γj∂βk
)({µ}) ·Mi+j(γ)Mk(β)

/

V (y), (4.18)

∞
∑

i,j,k=1

1

i! · j! · k! (
∂is

∂βi
· ∂j+ks

∂γj∂βk
)({µ}) ·Mj(γ)Mi+k(β)

/

V (y), (4.19)

which yield the modification of sensitivity indices as

srβ = sβ −
√
sβ · sβγ
2

, srγ = sγ −
√
sγ · sβγ
2

, srβγ = sβγ +

√
sβ · sβγ
2

+

√
sγ · sβγ
2

.

(4.20)

By introducing modifications presented above, analysis results of SIR model suggest

that the initial proportion s(0) of susceptible individuals plays the most important role

in the estimation of equilibrium state of epidemic spreading; infectious probability β

and recovered rate γ almost explain the same proportion of variance in response s; the

interaction effects of input factors play fragile roles in the decision of model response.

Regarding SIS model, parameter γ plays more robust role than β, and their interaction

effect also provides a crucial contribution to the uncertainty of equilibrium state, by

holding 31% of the decision of s. Sampling-based plots for the association of s with each

single factor are exhibited in Fig. 4.3, together with phase diagrams of model response

s in any possible two-dimensional input spaces.
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(a) Numerical simulation for SIR model
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(b) Numerical simulation for SIS model

Figure 4.1: Numerical simulation results for both SIR and SIS models by considering different
values of input parameters.
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Figure 4.2: The normalized number s of susceptible individuals acts as functions of individual
input factors at equilibrium state of SIR model.
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(a) SIR model
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(b) SIS model

Figure 4.3: Scatter plots based on LHS, as an example, with M = 1000 for the normalized
number of susceptible individuals at equilibrium state, together with its phase diagrams in

any possible two-dimensional input space.



Chapter 5

Opinion formation based on a

gambling mechanism and its

sensitivity analysis

5.1 Introduction

The dynamics formation of public opinion has raised a fair amount of attention from

researchers working on employing diverse tools furnished by statistical physics to un-

derstand the appearance of some social phenomena [247–249]. As Castellano et al have

stated, a common theme of social dynamics is the understanding of the transition from

an initially disordered state to a configuration that displays order (at least partially)

[39]. In opinion dynamics, ordered configuration corresponds to the emergence of an a-

greement which is necessary to be reached for a community in many situations appeared

in daily life. In establishing a framework on opinion dynamics, the most important part

includes specifying any possible opinion states of a community and defining the elemen-

tary processes or rules that determine opinion transitions of every individual between

such states.

The first model of opinion dynamics known so far was proposed by Weidlich to study

individual’s decision behaviour by reformulating statistical models which are originally

used for describing the dynamics of interacting spins [250]. Later on, Ising model made

its first appearance in opinion dynamics [251]. In these early models, as well as many

other subsequently built ones, such as the widely considered majority-voter model [25,

252], and the Sznajd model [253], the public opinion is simplified as a discrete variable.

Discrete opinion often takes two possible values, representing a reasonable description

in several instances: yes or no, buying or selling, cooperation or defection, Samsung

91
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or iPhone, etc. The discrete opinion dynamics is favoured over continuous one where

agent’s opinion can vary smoothly from one extreme of the range of possible choices

to another, because of its simplicity in theoretical analysis [24, 254, 255]. However, for

the investigation of the evolution of agent’s attitudes about a given topic, for example,

the political orientation of individual agents, continuous opinion dynamics seems more

suitable. Furthermore, the latter is also definitely advantageous for gaining insight into

the emergence of opinion clusters.

Opinion clusters could be one (consensus), two (polarization), or more (fragmentation).

How social clusters emerge in opinion space is one of the fundamental problems in

social science. In small communities, such as a football team, or a research group,

each agent knows and can communicate with every other one. For a large community or

population, however, many agents do not know or even never heard of each other because

of the geographic limitation. Hence, local interactions happen only within groups of

friends. In computer simulations, the friendship in a community is defined in general

by a connected network with the same size of the community. Moreover, the bounded

confidence is also widely considered. It was proposed according to the realistic aspect of

human communications happening among agents whose opinions are sufficiently close to

each other [256–258]. Mathematical models and statistical physics have offered powerful

tools for deeply understanding how and what conditions collective behaviours happen

in local individual interaction rules [259, 260]. The roles of some possible social factors,

such as leaders and environmental noises [261], mass media [262], agent’s conviction and

influence strength [263], and informed agents [264], are also identified recently in the

formation of opinion dynamics.

In current social opinion research, unidirectional influence from considered social factors

to the underlying dynamics is the main focus. However, agent’s opinion may also, in

turn, react on the associated social environment. Based on the consideration, a virtual

gambling mechanism is introduced to explore the characteristics of opinion dynamics

behaviour in a social community. At each round of gambling, agents fight for a limited

but conserved resource. The social pattern considered here is the resource distribution

in the underlying system. Opinions of agents determine directly the resource that each

agent can share, thereby deciding winning or losing of agents at our gambling. Agents

then can accumulate scores from a reward and punishment system which is proposed

based on the winning or losing state of agents. Agent’s scores will, in turn, affect his

opinion in subsequent interactions with his friends whose opinions must differ from his

own not more than a pre-defined confidence threshold. In general, human beings are

recognised as ”higher animal” because of self-awareness and the freedom from nature’s

determinism that allows one to choose, whether for good or ill. This implies that agents

participating in our gambling will instinctively learn from their friends who have earned
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more scores from the activity owing to the primary intend of winning money and/or

material goods. A systematic framework is also performed for the uncertainty and

sensitivity analysis of the model under discussion. The underlying analysis results help

gain insight into how involved parameters can be ranked according to their importance

in establishing the uncertainty of model response of our interest.

5.2 Modeling

In our model, we have N social agents. Their friendship is realized on a Barabási-Albert

scale-free network (for detailed generation process, please check Ref. [265]) as many

social networks have been reported to be scale-free [265–267]. Each agent i has an

opinion si in the real range [-1, 1]. Agents are segregated into two cliques according to

the sign of their opinions: G+ (with positive opinions) and G− (with negative opinions).

The absolute value of si is regarded as the degree of attention or the cost that agent i

pays for the issue of gambling.

A parameter γ is introduced by the gambling mechanism to control the resource dis-

crepancy between two cliques: γ = R+/R− in keeping total resource R (=R+ + R−)

conserved. R+ and R− label the resource allocated to G+ and G−, respectively. In

computer simulations, they are specified by γ and R defined previously:

R+ =
γR

1 + γ
, R− =

R

1 + γ
, (5.1)

where the total resource R is set to 1 in our simulations, but the behavior of our model

is almost independent of the value of R. For simplicity but without loss of generality, γ

is restricted to the closed interval [0, 1] (the system is symmetric around γ = 1). The

resource held by each clique is then shared by their members. Generally speaking, an

agent who pays more attention or cost will share more resource according to the general

rule of survival: the more you give, the more you receive. On this basis, the resource

that an agent shares from his community is proportional to the absolute value of his

opinion.

Rewards and punishments system is also introduced. An agent is regarded as a winner

and to be rewarded with C scores if the resource he shares is no less than the global

average value Ar = R/N ; otherwise, the agent is considered as a loser and to be punished

with losing C scores. C is a constant for each agent and set to 5 in our modelling, but

its value does not influence the results of our interest. Actually, similar ideas have been

considered in earlier modeling of social behaviors. In the naming game, as an example,

the concept of score is introduced to indicate the agent’s reputation which is variable
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in time and partially controls the behavior of the system [268]. For another example,

in the modeling of discrete opinion dynamics based on a majority rule, a parameter

indicating the convincing power of each agent, which may increase or decrease with

time, analogous to the above mentioned score, is proposed to decide whether the majority

opinion succeeds or not in a randomly selected group [269]. More considerations of the

concept or similar concept of score are given by [270–272].

In general, gamblers are economic with making decisions by their own and taking the

strategy in their favour. Some people, however, may act as mindless while facing some

events or subjects possibly because the corresponding events or subjects do not interest

them or they do not care about personal gain. Following the consideration, a parameter

p is introduced to control the fraction of mindless agents included in the system under

consideration.

The initial state of the system is assumed to be fully disordered, that is, at the beginning

of the dynamics, each individual has an opinion drawn from the uniform distribution in

the range [-1, 1]. Mindless agents are selected at random from the system with proba-

bility p. At a given time step t, the following microscopic rules control the formation of

opinion dynamics:

(1) Agent i is mindless. In this case, the agent takes the average opinion of those friends

whose opinions differ from his own no larger than a certain confidence threshold ε to

form his opinion for the next time, that is

si(t+ 1) = δ|F (i,t)|si(t) + (1− δ|F (i,t)|)
1

|F (i, t)|
∑

j∈F (i,t)

sj(t), (5.2)

where | · | for a finite set denotes the number of elements, δx = 1(0) for x = 0(> 0) the

Kronecker delta function. The set F (i, t), which denotes the effective friends of agent i,

is defined by

F (i, t) =
{

1 ≤ j ≤ N, j ̸= i| aij = 1and |si(t)− sj(t)| ≤ ε
}

, (5.3)

in which | · | denotes the absolute value of a real number, aij the element in adjacency

matrix with aij = 1(0) if there is an edge connecting i and j (otherwise). In the present

paper, the confidence threshold ε is taken as constant in time and across the whole

population, as discussed in Ref. [273] where the heterogeneity of threshold and the

adaptive threshold were also introduced, respectively, yielding the appearance of new

features of opinion dynamics.

(2) Agent i is economic. i will update his opinion by taking into account the scores

of himself and of his effective friends. si keeps unchanged if i gains the highest scores
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compared with all j ∈ F (i, t); otherwise, si is updated by the opinion (or average

opinion) of the agent(s) who own(s) the highest scores in the set F (i, t). The rule for

the evolution of si is given by

si(t+ 1) = δci(t)mi(t)si(t) + (1− δci(t)mi(t))
1

|M(i, t)|
∑

j∈M(i,t)

sj(t), (5.4)

with

mi(t) = max
(

ci(t), {cj(t), j ∈ F (i, t)}
)

(5.5)

and

M(i, t) =
{

j ∈ F (i, t)| cj(t) = mi(t)
}

, (5.6)

where δxy = 1(0) if x = y(otherwise), and max() is a function to return the maximum

value of a set of elements. ci(t) labels the scores that i has gained until time t, which

will be refreshed accordingly by

ci(t+ 1) =

{

ci(t) + 5, ri(t) ≥ Ar,

ci(t)− 5, ri(t) < Ar.
(5.7)

ri(t) is the resource that i shares at time t, given by

ri(t) =







si(t)
T Ω+(t)

·R+, si(t) > 0,
si(t)

T Ω−(t)
·R−, si(t) ≤ 0,

(5.8)

in which T Ω+(t) and T Ω−(t) are the sum of positive and negative opinions, respec-

tively,

T Ω+(t) =
N
∑

i=1,si(t)>0

si(t), T Ω−(t) =
N
∑

i=1,si(t)≤0

si(t). (5.9)

In our modelling, the unit time (t = 1) is defined as N , which corresponds to a single

update of each agent. Network parameters are set as N = 1000 and ka = 4. ka indicates

the average degree of each agent, that is the average number of friends.

5.3 Methods

Time evolution of the underlying opinion dynamics is firstly presented in Fig. 5.1. The

absolute global average opinion and local average opinions in both cliques are represented

as

Ω(t) =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

si(t)

∣

∣

∣

∣

∣

, Ω+(t) =
T Ω+(t)

N+(t)
, Ω−(t) =

T Ω−(t)
N−(t)

, (5.10)
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Figure 5.1: Time evolution of opinion dynamics for different specified values of parameters
with N = 1000 and ka = 4. One unit time corresponds to sampling one round of gambling

game.

where N+(N−) indicates the number of agents in clique G+(G−). Numerical results

demonstrate the presence of steady state on the opinion evolution process.

To characterise the coherence of the collective state of the population, we employ

Ωs =

⟨

1

N

∣

∣

∣

∣

∣

N
∑

i=1

si

∣

∣

∣

∣

∣

⟩

, (5.11)

where ⟨· · · ⟩ denotes average over configurations, computed at steady states. Ωs is known

to be an order parameter which plays the role of the magnetisation in magnetic systems.

It is sensitive to the unbalance between positive and negative opinions. A collective state

with a significantly nonvanishing value of Ωs indicates a symmetry-broken distribution

of opinions. A very small value of Ωs(≃ 0) means a symmetric distribution of opinions.

And an exact value Ωs = 0 corresponds to an absorbing state where all agents share the

neutral opinion s = 0 [274].

In practical simulations, first 100 time steps are used to make the system reach its

steady state. Time average is then taken over the following 100 steps. 1000 independent

simulations are proposed to take the average over configurations.

5.4 Results and discussion

The global steady state is driven from the local steady states of both cliques. This

implies that the order parameter can be represented as

Ωs =
∣

∣n+ ∗ Ω+
s + (1− n+) ∗ Ω−

s

∣

∣ , (5.12)

where n+ indicates the normalized number of agents in clique G+; Ω
+
s and Ω−

s denote

the average opinions in clique G+ and G− at steady state, respectively.
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Figure 5.2: The generation of three adjacent regions in the opinion space.

5.4.1 Theoretical analysis for special cases

p = 0, ε = 2

Firstly, the role of resource allocation parameter γ in the formation of opinion dynamics

is focused by fixing both confidence threshold and fraction of mindless agents. For

simplicity, we set ε = 2 and p = 0. The primary intent of winning money or material

goods at gambling will drive agents to learn opinions (or strategies) of their friends

who have gained more scores. At the beginning of the dynamics (t = 0), rewards and

punishments system requires the opinions of winners (have the ability to affect others)

to follow

|si(0)| ≥
{

1+γ
4γ , si(0) > 0,
1+γ
4 , si(0) < 0.

(5.13)

Consider the situation of γ ≥ 1/3 obtained from the inequation

1 + γ

4γ
≤ 1, (5.14)

which guarantees the presence of winners in G+ at the initial time. We divide the

opinion space into three adjacent regions, as shown in Fig. 5.2. An agent i with initial

opinion si(0) in the region R2 will adapt his opinion to R1 or R3, or continuously to

R2 by learning from his friends. However, to keep si(t > 0) staying in R2, i must have

friends with initial opinions in neither or both of the regions R1 and R3. This event is

neglected in the following analysis as it occurs with a quite small probability decided by

the power function of the fraction of agents in different regions.

Fully disordered initial state also drives uniformly distributed opinions in both regions

R1 and R3 at very beginning of gambling. With agents migrating in opinions from R2

to R1 or R3, the resource shared by each agent will decrease accordingly. This gives

rise to a higher requirement for the opinions of agents who can continuously win at our

gambling. The final range of opinions in both cliques can be approximated by

si

N+ · 1
2(1 +

1+γ
4γ )

·R+ ≥ R

N
, (5.15)
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and
|si|

N− · 1
2(1 +

1+γ
4 )

·R− ≥ R

N
, (5.16)

respectively. Simulation results suggest N+/N− = R+/R− at steady state (Fig. 5.3(a)).

Inserting R+ = γR/(1 + γ) and R− = R/(1 + γ) into Eqs. (5.15) and (5.16) yields

|si| ≥
{

1
2 + 1+γ

8γ , si > 0,
1
2 + 1+γ

8 , si < 0.
(5.17)

which determines the order parameter as

Ωs =

∣

∣

∣

∣

γ

1 + γ
· 1
2

(

1 +
1

2
+

1 + γ

8γ

)

− 1

1 + γ
· 1
2

(

1 +
1

2
+

1 + γ

8

)∣

∣

∣

∣

=
3

2(1 + γ)
− 3

4
.

(5.18)

Sufficiently biased resource allocation, that is γ < 1/3 obtained from the inequation

1 + γ

4γ
≥ 1, (5.19)

will result in the absence of winners in G+ at the initial time. However, some agents

will be attracted from G+ to G− by communicating with their friends. The decrease

in the number of agents with positive opinions will then generate winners in G+. The

distribution of the fraction of winners presented in Fig. 5.3(b) demonstrates that almost

all agents are winner at final state when 10/N < γ < 1/3 (γ = 0 is also included).

Assume agents in G+ gather finally in opinion s. The condition for winning requires

s

N+s
·R+ ≥ R

N
. (5.20)

By substituting R+ = γR/(1 + γ), we have

γ >
1

N
. (5.21)

This explains the absence of winners at quite low γ: 0 < γ < 1/N (Fig. 5.3(b)).

Furthermore, the fluctuation of the fraction of winners in the region of 1/N ≤ γ < 10/N

is apparent. This results from the cyclical change of the opinion of one or few exceptional

agents between positive and negative values at steady state (Fig. 5.4(a)). The cyclical

behaviour makes the fraction of winners, denoted by nw, skip continually between one

value (close to 0) and another (close to 1) (Fig. 5.4(b)). Nevertheless, it does not

influence the main clustering of agents in opinion close to -1, compared to which, opinion
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contribution of other agents is negligible. This provides

Ωs =
1

1 + γ
. (5.22)

When we limit γ to [10/N, 1/3), the fraction of winers is close to one. This implies two

main clusterings of agents in opinions -1 and 1 because the condition of winning requires

the final minimal absolute opinions in both cliques to satisfy

s

N+ · 1
2(1 + s)

·R+ ≥ R

N
, for s > 0, (5.23)

and
|s|

N− · 1
2(1 + |s|)

·R− ≥ R

N
, for s < 0, (5.24)

respectively. Clustering of few agents is ignored in opinion close to 0 here, which is

generated by agents who have friends in both above mentioned clusters. The order

parameter Ωs is then specified as

Ωs = | γ

1 + γ
− 1

1 + γ
|

=
2

1 + γ
− 1.

(5.25)

Now we analytically obtain the distribution of order parameter Ωs in the whole region

of resource allocation parameter γ by keeping p = 0 and ε = 2:

Ωs =



























1, 0 ≤ γ < 1
N ,

1
1+γ ,

1
N ≤ γ < 10

N ,
2

1+γ − 1, 10
N ≤ γ < 1

3 ,
3

2(1+γ) −
3
4 , γ ≥ 1

3 .

(5.26)

In the present paper, the size of system considered is N = 1000. This implies the above

equation can be simplified as

Ωs =

{

2
1+γ − 1, 0 ≤ γ < 1

3 ,
3

2(1+γ) −
3
4 ,

1
3 < γ ≤ 1.

(5.27)

A remarkable agreement between analytic values and numerical results is presented in

Fig. 5.3(c).
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Figure 5.3: Corresponding results for the special case with p = 0 and ε = 2 after system
reaches the steady state. Simulation data are averaged over 1000 simulations with N = 1000
and ka = 4. (a): values for the normalised number of agents in G+; (b): distribution of the
fraction of winners with error bars denoting its standard deviation derived from independent
simulations; (c): a comparison between numerical results and theoretic analysis, represented

by Eq. (5.27), for the order parameter Ωs.
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Figure 5.4: Show only single run with N = 1000, ka = 4. Model parameters: p = 0, ε = 2,
γ = 0.003. One unit time corresponds to sampling one round of gambling game.

p = γ = 0

The effect of confidence threshold ε is also assessed on the formation of opinion dynamics

by assuming p = γ = 0. γ = 0 stipulates the total resource is concentrated in one clique

(G−). Following Eq. (5.13), initial winners hold opinions between -1 and -0.25. By

introducing confidence threshold, an agent i with initial opinion larger than -0.25 can

be affected at a probability Pi by his friends with opinions between -(ε− si) and -0.25.

Pi is straightforwardly specified by the mean filed assumption as

Pi =
ka
2
(ε− si(0)−

1

4
), (5.28)

where ka(=4) denotes the average degree. Setting Pi = 1 yields

si(0) = ε− 1

4
− 2

ka
= ε− 3

4
. (5.29)

We divide the opinion space into four adjacent regions, as shown in Fig. 5.5. Agents

with initial opinions in region R2 will definitely adapt their opinions to R1 by local

communications. Agents who take initial opinions in R3 will be affected by their effective

friends at a certain probability. For the fourth region, opinion distribution will maintain
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Figure 5.5: The generation of four adjacent regions in the opinion space.

its initial configuration throughout the time evolution of opinion dynamics because of

confidence limitation.

When ε ∈ (3/4, 5/4], the fraction of agents who will migrate in opinion from R3 to R1

is approximated as

n3→1 =

∫ ε− 1
4

ε− 3
4

1

2
· ka
2
(ε− x− 1

4
)dx

=
1

8
.

(5.30)

The fraction of winners (all agents in G−) in the steady state is then determined by

nw =
1

8
+

1

2
(ε− 3

4
+ 1) =

ε

2
+

1

4
, (5.31)

which says the final opinions of agents in G− must satisfy the inequality

|s|
N( ε2 + 1

4) · 1
2(|s|+ 1)

·R− ≥ R

N
, (5.32)

where opinions in G− are assumed to be uniformly distributed between -1 and s. Sub-

stituting R− = R drives

s ≤ 2ε+ 1

2ε− 7
, (5.33)

which also gives the final average opinion in G−:

Ω−
s =

2ε+ 1

2ε− 7
. (5.34)

The final average opinion in R4 is readily calculated:

Ω4
s =

1

2
[1− (ε− 1

4
)] · 1

2
[1 + (ε+

1

4
)]

= −ε2

4
+

ε

8
+

15

64
.

(5.35)

Regarding region R3, some agents will be affected by his friends with initial opinions in

R1. Furthermore, agents with opinions more closer to R2 are more easier to be affected.
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This implies the final opinions in R3 is non-uniformly distributed and

Ω3
s =

∫ ε− 1
4

ε− 3
4

1

2
[1− ka

2
(ε− 1

4
− x)] · xdx

=
ε

8
− 5

96
.

(5.36)

The sum of Ω3
s and Ω4

s yields the final average opinion in G+,

Ω+
s = −ε2

4
+

ε

4
+

35

192
. (5.37)

Then we have

Ωs = |Ω+
s +Ω−

s |

=
8

7− 2ε
+

1

4
(ε− 1

2
)2 − 239

192
.

(5.38)

For any other possible values of ε, Ωs can be analogously determined and is analysed in

Appendix F in detail. Finally, we obtain

Ωs =















































1
13−4ε2

(83ε
3 + 3ε2), 0 ≤ ε ≤ 1

4 ,
1

8ε2−26
(ε− 391

12 ) +
1
6(ε− 1

4)
3 − 5

4 ,
1
4 < ε ≤ 1

2 ,
1

7−2ε [−4
3(ε− 3

4)
3 + 2(ε+ 1

2)] +
1
6(ε− 1

4)
3 − 1

4 ,
1
2 < ε ≤ 3

4 ,
8

7−2ε +
1
4(ε− 1

2)
2 − 239

192 ,
3
4 < ε ≤ 5

4 ,
4

(ε− 7
4
)2+2

− ε
6(ε− 9

8)
2 + 55

128(ε− 1)− 29
24 ,

5
4 < ε ≤ 7

4 ,

1, 7
4 < ε ≤ 2.

(5.39)

Similar analysis is also performed for scale-free networks with ka = 32 (as an example

of dense networks) and fully connected networks, that is, ka = N − 1. When ka = 32,

the order parameter is expressed as

Ωs =















































0, 0 ≤ ε ≤ 1
16 ,

128
105−32ε

[

1 + 1
4(ε− 1

4)
2 − 1

64(ε− 13
48)
]

− 5
4 ,

1
16 < ε ≤ 1

4 ,
128

105−32ε

[

1 + 4
3(

5
16 − ε)3

]

+ 4
3(ε− 1

4)
3 − 5

4 ,
1
4 < ε ≤ 5

16 ,
128

105−32ε +
1
4(ε− 1

4)
2 − 1

64(ε− 13
48)− 5

4 ,
5
16 < ε ≤ 5

4 ,
2

4(ε− 21
16

)2+1
− 4

3(ε− 5
16)

3 + 4(ε− 5
16)− 11

3 ,
5
4 < ε ≤ 21

16 ,

1, 21
16 < ε ≤ 2.

(5.40)
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Figure 5.6: A comparison between numerical results (star symbols) and analytic values (solid
line) for the association of Ωs with parameter ε in keeping p = γ = 0. Numerical results are
averaged over 1000 simulations with N = 1000 and ka indicated on the figure. Analytic results

are represented, from left to right, by Eqs. (5.39), (5.40) and (5.41).

For fully connected networks, we have

Ωs =















16
13−4ε

[

1 + 1
4(ε− 1

4)
2
]

− 5
4 , 0 ≤ ε ≤ 1

4 ;
16

13−4ε +
1
4(ε− 1

4)
2 − 5

4 ,
1
4 < ε ≤ 5

4 ;

1, 5
4 < ε ≤ 2.

(5.41)

A remarkable agreement between analytic values and numerical results is presented

in Fig. 5.6, attached with a reasonable discrepancy when the friendship network is

sparse (Fig. 5.6(a)). The small discrepancy is caused by mean field assumption, which

gradually decreases with network parameter ka (check plots from left to right) and will

vanish when the underlying network is fully connected, i.e., when the mean field limit

reaches.

5.4.2 The distribution of Ωs in general situations

Consider different values of both p and γ. We would like to investigate the effect of

parameter ε on the formation of opinion dynamics in detail. The underlying numerical

results are exhibited in Fig. 5.7: the first panel relates to the distribution lines for

different p by keeping γ = 0, and the second one involves the data for different γ by

setting p = 0. For any fixed p and γ, Ωs is positively correlated with ε. This is because

higher confidence threshold guarantees the happening of more local communications

between an arbitrary agent and his friends in the system under consideration, which

also benefits the formation of more ordered opinion dynamics.

Equation (5.13) suggests a vanishing cross-opinion influence between two cliques when

ε ≤ (1 + γ)/4. Consequently, the fraction of agents whose opinions will be affected by
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Figure 5.7: Steady values of order parameter Ωs versus confidence threshold ε with the
impacts of mindless agents in keeping resource undivided (γ = 0) (a) and the roles of resource
allocation parameter in keeping all agents economic (p = 0) (b) considered, respectively. In
panel (a), the fraction p of mindless agents is 0, 0.4, 0.6 and 0.8 in sequence from up to down.
In panel (b), the resource allocation parameter γ = 0, 0.1, 0.3, 0.5 and 0.7 from up to down.

Results are averaged over 1000 simulations with N = 1000 and ka = 4.

others can be approximated as

nf =

∫ ε− 1+γ
4

− 1+γ
4

1

2
· ka
2
(ε− x− 1 + γ

4
)dx+

∫ 1+γ
4γ

1+γ
4

−ε

1

2
· ka
2
(x+ ε− 1 + γ

4γ
)dx

=
ka
4
ε2.

(5.42)

Apparently, for sparse networks (ka is small), the evolution of opinion dynamics is neg-

ligible at low confidence threshold: ε ≤ (1 + γ)/4. When ε > (1 + γ)/4, cross-opinion

influence between two cliques will result in non-ignorable change in the dynamics. This

indicates that the variation of opinion dynamics starts from (1 + γ)/4 along ε-axis, see

Fig. 5.7.

γ = 0

γ = 0 guarantees the concentration of winners only in G− throughout the evolution of

dynamics. It is difficult for economic agents in G+ to be affected at low ε because of

their primary intention of winning scores. The introducing of mindless agents then will

make positive opinions move along the direction of -1 because of opinion average rule

among their effective friends, so as to increase the order parameter: Ωs = |Ω+ − Ω−| =
|Ω−| − Ω+. At high ε, economic agents will gradually adapt their opinions to -1 by

learning from their friends. The clustering of agents is generated accordingly in opinion

-1. This clustering, however, will be broken by the introducing of mindless agents. The

corresponding numerical results are displayed in Fig. 5.7(a). Positive and negative

correlations associated with Ωs and p are presented respectively in the region of low ε

and of high ε, which coincides with above analysis. More detailed information about

opinion evolution can be found in Fig. 5.8 which provides an intuitive comparison
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Figure 5.8: Show only single runs. Opinion evolution with time step t for N = 100, ka = 4.
The initial state of opinion distribution keeps the same for four considered cases. One unit

time corresponds to one sampling round of gambling game.

between before and after introducing mindless agents by considering both low and high

confidence thresholds.

p = 0

p = 0 says all agents involved in our gambling are economic. Numerical results suggest

the presence of platform in the distribution of Ωs for fixed γ (Fig. 5.7(b)). This implies,

when ε is sufficiently high, its further increase will not influence the established dynamics.

Denote the critical confidence threshold as εc from which a platform is generated.

Reviewing the special case with γ = 0, agents will try to migrate in opinion from G+ to

G− for gaining scores. Eq.(5.29) states that the initial opinion of an agent i from G+

who will be definitely affected by others must follow

si(0) ≤ ε− 1

4
− 2

ka
. (5.43)

To ensure the migration of all agents in opinion from G+ to G−, we have

1 ≤ ε− 1

4
− 2

ka
, (5.44)

which determines

εc =

{

5
4 + 2

ka
, ka ≥ 8

3 ,

2, ka < 8
3 .

(5.45)



Opinion dynamics 106

This critical value of confidence threshold indicates the emergence of consensus state in

keeping p = γ = 0.

When parameter γ is limited to the range (0, 1/3], initial winners must hold opinions

no larger than −(1 + γ)/4. By changing 1/4 to (1 + γ)/4 in Eq. (5.28), Eq. (5.29) is

then updated by

si(0) = ε− 3 + γ

4
. (5.46)

where ka = 4 is inserted. To ensure agent i can be definitely affected by others that

hold opinions in [-1, -(1 + γ)/4], its initial opinion must satisfy

si(0) ≤ ε− 3 + γ

4
. (5.47)

By ignoring the migration of agents with initial opinions larger than ε− (3 + γ)/4 (rare

event), the critical confidence threshold then can be approximated as

1

2
(εc −

3 + γ

4
) =

1

2
− γ

1 + γ
, (5.48)

where n+ = γ/(1 + γ) (final fraction of agents in G+) was used. Now we get

εc =
3 + γ

4
+

1

1 + γ
. (5.49)

For comparable resource allocation between two cliques: γ ∈ (1/3, 1], winners are pro-

duced in both cliques at the beginning of dynamics: si(0) ≤ −(1 + γ)/4 or si(0) ≥
(1 + γ)/(4γ). The average probability at which an agent i with initial opinion between

−(1 + γ)/4 and (1 + γ)/(4γ) will be affected is represented by

Pi =
1

2

[

ka
2
(ε− si(0)−

1 + γ

4
) +

ka
2
(ε+ si(0)−

1 + γ

4γ
)

]

. (5.50)

Inserting ka = 4 and setting Pi = 1 provide

εc =
1

2
+

(1 + γ)2

8γ
. (5.51)

5.4.3 Opinion Clustering

A dispersion index proposed by Derrida and Flyvberg [275] is introduced to identify

agents clustering in opinions:

Y =
M
∑

j=1

m2
j , (5.52)
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where M labels the number of clusters, mj the normalized size of jth cluster. That

Y → 0 as N → ∞ indicates random opinion distribution in the range [-1, 1] since

Y = 1/M labels M clusters of equal size. Finite Y corresponds to the emergence of

large clusters. The generation of large cluster can be identified by the relative difference

between quantity Y and the largest cluster, given by

R(Y,mL) =
Y − (mL)2

Y
. (5.53)

R(Y,mL) ≈ 0 indicates Y just considers the contribution of mL compared to which other

clusters, if exist, can be neglected, and R(Y,mL) ≈ 1, which is equivalent to Y ≈ 0,

indicates a vanishing large cluster but existent small ones with comparable size.

The underlying results regarding Y and R(Y,mL) are exhibited along ε-axis (Fig. 5.9).

It is noticed that, in the absence of economic agents, Y is a fast increasing function of

parameter ε. The emergence of large cluster compared to which other clusters, if exist,

are negligible (R(Y,mL) ≈ 0) happens from ε = 0.4. Furthermore, the consensus state

is definitely generated since ε = 1. When economic agents are present, however, the

emergence of consensus state requires higher confidence threshold ε and p = γ = 0. In-

troducing of mindless agents or increase of the difference in resource between two cliques

will destroy the clustering of agents in one opinion so as to generate small clusters with

comparable size at high ε. Nevertheless, when ε is not so large (< 1.8), dispersing re-

source to two cliques is better for opinion clustering, compared to concentrating resource

in one clique where comparable clusters in size are produced in adjacent opinions.

Colour fill diagrams of dispersion index Y (Fig. 5.10) present an intuitive interpretation

for the roles of both p and γ in the clustering of agents in opinions. For fixed ε, opinion

clustering happens only in the field with small p and γ (p < 0.5, γ < 0.4) and when p

tends to 1. However, this clustering will fade away with the decrease of ε. Along with

p-axis, the smallest value of Y is obtained at p ≈ 0.7 which corresponds to the most

chaotic steady state of opinion dynamics.

5.4.4 The fraction of winners

Regarding gambling game, one of most attractive observations is the fraction of winners:

nw. Numerical results of nw are presented in γ-ε space by fixing parameter p, as shown

in Fig. 5.11(a). In the upper half region of ε, increase of mindless agents will decrease

the generation of winners. However, when ε is fixed between 0.5 and 1, a fragile positive

correlation between nw and p exists at low γ. Furthermore, for small p, nw acts as

a positive function of ε for each specified γ except the pattern formed at the position

with ε ≈ 1.5 and γ ≈ 0.1. The pattern, corresponding to the presence of a small
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Figure 5.9: Steady values of dispersion index Y and relative difference R(Y,mL) versus
parameter ε, for different values of p and γ indicated on the figure. Network parameters used

for the results generation averaged over 1000 simulations are N = 1000 and ka = 4.
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Figure 5.10: (Color online) Color fill diagrams of dispersion index Y , generated in γ-p space
for different values of ε: 1.4, 1.7, and 2.0 from left to right. Data are averaged over 100

simulations with N = 1000 and ka = 4.

number of winners, will gradually disappear with the increase of p, accompanied by the

appearance of a non-monotonic relationship between nw and ε. Robust association of nw

with parameter γ happens only when p is large and ε > 0.5. A weak positive correlation

between nw and γ appears in the region of low confidence threshold (ε < 0.5) (opinions

of almost all agents keep their initial states), which is introduced by fully disordered

initial dynamics that gives

nw(0) =

{

3−γ
8 , γ ≤ 1

3 ,

1− (1+γ)2

8γ , γ > 1
3 .

(5.54)

The association of the fraction of economic agents in the group of winners, denoted by

N e
w, with that in the whole system (= 1 − p) is also investigated for identifying who,

an economic one or a mindless one, is more likely to win at our gambling game (Fig.

5.11(b)). Results display that ε plays a fragile role in deciding the probability of winning
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(a) Phase diagrams of nw generated in γ-ε space for p=0.2, 0.5, and 0.8 from left to
right.
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(b) ne
w as a function of (1-p) with γ = 0 to the left and ε = 2 to the right.

Figure 5.11: (Color online) Distribution of the fraction nw of winners (a), and the dependence
of the percentage of economic agents in winners upon the percentage of economic agents
included in the system under consideration (b). Data are averaged over 100 simulations for

panel (a) and 1000 simulations for panel (b) with N = 1000 and ka = 4.

for economic or mindless agents. The increase of γ, however, enables a general economic

agent to win with higher probability. Furthermore, values of ne
w are located only in

the upside of diagonal (ne
w = 1 − p, corresponding to the equal opportunity of winning

for economic and mindless agents). This suggests, in general case, it is more likely for

economic agents than mindless ones to win at gambling.

5.4.5 Uncertainty and Sensitivity analysis

Finally, a systematic framework on sensitivity analysis of the model under discussion

is performed by the use of sampling-based strategies including LHS and QMC sam-

pling. Particularly, QMC sampling is implemented by using the high-dimensional Sobol

low-discrepancy sequence generator. Sobol low-discrepancy sequence holds advanced

uniformity properties in the input space, and makes QMC sampling deterministic for

previously defined input space, as stated in the first chapter. This avoids highly com-

putational cost in performing configuration average.

Regarding nonlinear models, sensitivity analysis allows one to globally understand the

importance of individual input factors and of their interaction effects in establishing the

uncertainty of model response. The model response of our interest here includes the order

parameter Ωs of opinion dynamics, the dispersion index Y of opinion clustering, and the

fraction nw of winners at gambling. Analysis results are listed in table 5.1. LHS-based
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Table 5.1: Sampling-based results for the uncertainty and sensitivity analysis of the model
under discussion. The number of samples used here is 10000. Each value offered by LHS-based
method is averaged over 100 samplings with number in parentheses denoting the standard
deviation resulted from independent samplings. For each sample, the opinion dynamics is es-
tablished by averaging over 20 random configurations. For QMC method, results are obtained
by a deterministic sampling. And the opinion dynamics is established by averaging over 100

random configurations for each sample.

LHS-based method

y E(y) V (y) sp sγ sε sTp sTγ sTε

Ωs 0.20(.00) 0.05(.00) 0.01(.01) 0.41(.01) 0.29(.01) 0.07(.01) 0.68(.01) 0.57(.01)
Y 0.04(.00) 0.01(.00) 0.34(.02) 0.08(.02) 0.05(.01) 0.73(.02) 0.47(.03) 0.51(.03)
nw 0.50(.00) 0.03(.00) 0.62(.02) 0.03(.02) 0.03(.03) 0.89(.02) 0.16(.01) 0.33(.02)

QMC sampling-based method

y E(y) V (y) sp sγ sε sTp sTγ sTε

Ωs 0.20(87) 0.05(23) 0.00(50) 0.41(06) 0.28(38) 0.06(60) 0.67(95) 0.56(61)
Y 0.03(85) 0.00(80) 0.36(22) 0.07(41) 0.05(08) 0.74(03) 0.45(54) 0.48(88)
nw 0.49(94) 0.03(35) 0.62(36) 0.03(48) 0.02(61) 0.89(41) 0.15(80) 0.32(03)

results are averaged over 100 samplings used for eliminating the randomness in sample

generation. For each sample, the opinion dynamics is established by averaging over 20

random configurations. QMC sampling-based values are provided by a deterministic

sampling. And for each sample, the opinion dynamics is established over 100 random

configurations . Regarding observation Ωs, its uncertainty is mainly contributed by

the resource allocation parameter γ, confidence threshold ε, and the interaction effect

between them. In establishing the uncertainty of dispersion index Y , parameter p,

the fraction of mindless agents, acts as the most important factor. Furthermore, the

interaction effects among three involved parameters are non-ignorable in determining

the uncertainty in Y . Parameter p also plays the most important role in the generation

of winners at our gambling, compared to which, the influence contributed by each of the

remaining parameters alone is ignorable.



Chapter 6

Conclusions and Prospectives

6.1 Conclusions

The present research focuses on the establishment of a systematic theoretical framework

on the uncertainty and sensitivity analysis of complex systems, as well as its applications

to some numerical models. Specifically, the remarkable results and potential applications

are concluded as below.

Firstly, an analytic formula is deduced by using Taylor series to exactly evaluate the

uncertainty in output variable with given uncertainties in input factors in the absence

of input correlations. With its applications to univariate power-law and exponential

functions, it is analytically demonstrated that the widely used approximation with only

the first order contribution of input uncertainty considered can satisfactorily explain

the output variance only when the input uncertainty is negligible or the input-output

relationship is close to linear. This implies the importance of high-order contributions of

input uncertainty in the analysis of highly nonlinear models. Applications of the analytic

method are proposed to the power grid system and EOQ model where input factors are

assumed to be statistically independent of each other. Input factors of both models

are analytically ranked according to their importance in establishing the uncertainty of

model response.

The analytic method is then extended to the situation of input correlations. An arbi-

trary variable can be divided into independent and correlated parts. Coefficients that

specify the correlated and independent parts are then derived by using linear correla-

tion model. With given correlation coefficients between any two input parameters, it is

straightforward to quantify the sensitivity of model response with respect to the input

independence and correlations, as well as to their coupling effects. This allows one to
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decide whether or not the input correlations should be considered in practice. Four

numerical examples have confirmed the effectiveness and applicability of the extend-

ed analytic method. Specifically, the method is applied to a deterministic HIV model.

Analysis results provide the importance of ten involved factors in determining the basic

reproduction number R0. This may help effectively limit the spread of HIV by con-

trolling the first three most important parameters: the rate of development to AIDS

(κ), the contact rate of susceptible with symptomatic infective (β2), and the number

of sexual partners of susceptible with symptomatic infective (n2), and simplify an HIV

model by neglecting the effects of two negligible parameters: the birth rate of infective

(β0) and the fraction of susceptible newborn from infective class (γ). Moreover, the

correlation between β2 and n2, if exists, also provides a non-negligible effect on the basic

reproduction number.

The difference of our method from Sobol’s one is also discussed in the absence of input

correlations. Sobol’s method is implemented with the sampling-based strategy. Results

suggest that our method is equivalent to Sobol’s one when the nonlinear interaction

effects between input factors are absent in the model under discussion. However, when

the model involves nonlinear interaction effects between input factors, Sobol’s method

may overvalue the roles acted by individual factors but underestimate those played by

their interaction effects, compared to our analytic results. Following the phenomenon, a

modification is introduced to Sobol’s method for establishing a sampling-based strategy

that well coincides with our analytic method. The modification depends on the func-

tional form connecting input and output variables that tells which of sensitivity indices

are overvalued and which are underestimated. Furthermore, both SIR and SIS models

regarding the epidemic spreading dynamics are analysed by the modified sampling-based

strategy. Results suggest that the equilibrium state of SIR model more robustly depends

upon the initial proportion of susceptible individuals than both infectious probability β

and recovered rate γ; their interaction effects totally contribute 30% of the information

for the decision of equilibrium state. As for SIS model, parameter γ plays more crucial

role than β, by explaining 49% variance in observation s. Their interaction effect also

provides non-ignorable (31%) contribution to the determination of epidemic spreading.

Finally, we design a model based on a virtual gambling mechanism to investigate the

dynamics formation of public opinion in the presence of limited but conserved resource

and of confidence threshold. Theoretical analysis based on the traditional one-at-a-time

method provides a deep understanding of the roles of both resource allocation parame-

ter and confidence threshold in the formation of public opinion dynamics. For a sparse

network, the evolution of opinion dynamics is negligible in the period of low confidence

threshold when mindless agents are absent. Furthermore, the consensus state which

also means a win-win state is generated only when the following three conditions are
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satisfied simultaneously: mindless agents are absent, the resource is concentrated in one

clique, and confidence threshold tends to a critical value which is negatively dependent

upon the average number of friends of individual agents. Numerical results also imply

that, for specified fraction of mindless agents, the dependence of opinion dynamics upon

confidence threshold is weakened with the decrease in resource difference between two

cliques. The clustering of agents in opinions is also considered. The introducing of gam-

bling mechanism leads to a higher requirement for confidence threshold (> 1.2) to drive

apparent clustering of agents, which also demands the percentage of mindless agents to

be less than half and resource allocation between two cliques to be very biased. For

the low fraction of mindless agents (<0.5), resource partitioning is more advantageous

to opinion clustering when confidence threshold departs from 2, compared to resource

concentration. In addition, for fixed γ and ε, the most chaotic steady state of opinion

dynamics is generated at p ≈ 0.7. It is also stated that, in general cases, it is more

likely for economic agents to win at gambling, instead of mindless ones. By the use

of sampling-based methods, a systematic framework for the uncertainty and sensitivity

analysis of the model under discussion is provided. Results state that the resource allo-

cation parameter, confidence threshold, and their interaction effect all play robust roles

in establishing the uncertainty of the order parameter of opinion dynamics. Regarding

the dispersion index of opinion clustering and the fraction of winners, their uncertainties

are mainly contributed by the fraction of mindless agents, and also by the interaction

effects among three involved parameters. This research may contribute to the deep un-

derstanding of the generation of some social dynamics, and of the roles played by any

parameters that drive the underlying dynamics.

6.2 Future work plan

Following the above research work for uncertainty and sensitivity analysis of complex

systems, several aspects may deserve further considerations, whereby the roles of input

parameters can be more precisely quantified in both the modeling of complex systems

and the analysis of practical problems.

Sampling-based strategy design in the presence of input correlations

A theoretical framework has been established for the uncertainty and sensitivity analysis

of general complex systems with given functional relationships connecting input and

output variables. However, in the modeling of most complex systems (e.g., the agent-

based system), it is often hard to specify the exact functional form of models. In the

absence of functional forms connecting input and output variables, the uncertainty and

sensitivity analysis should be performed only through sampling-based strategies. At
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present, nevertheless, sampling-based strategies regarding uncertainty and sensitivity

analysis have been designed by assuming that input variables are independent of each

other. Following the presence of input correlations in practical applications, we shall

aim at extending the sampling-based strategy to the case of input correlations. This

may contribute to the application of uncertainty and sensitivity analysis in the modeling

specific to more general practical problems, and help decide whether or not the input

correlations should be considered in practice when the functional form connecting input

and output variables is absent.

Sensitivity analysis for the economic time series

For now, the uncertainty and sensitivity analysis is mainly implemented for models with

scalar output. In many situations, however, the output variable is not always a scalar

but could also be a function. This commonly happens in time-dependent systems. A

most typical example of time-dependent systems is the economic time series. In official

statistics and applied macroeconomics, it has been customary to analyse an economic

time series by extracting from it a long term movement, or trend, for separate study and

then scrutinizing the residual portion for short term oscillatory movements and random

fluctuations. With given time series, we shall try to quantify the roles of some possible

parameters in the generation of a typical shape and fluctuations, and in trend extraction,

using Sobol’s measures.

Sensitivity analysis for the spread of an epidemic disease

The spread of an epidemic disease is referred to as another typical time-dependent prob-

lem. In the context of uncertainty and sensitivity analysis of models for the reproduction

of disease spreading, what researchers are usually interested in is the equilibrium state of

the underlying system, as that we discussed in Chapter 4. Focusing on the equilibrium

state of epidemic spreading neglects the influence of temporal dimension. In practical

applications, however, the evolution process of epidemic disease with time parameter is

much more important than the equilibrium state, which provides fruitful information

for identifying the outbreak of a disease and then makes its efficient controlling possible.

We shall attempt to quantitatively identify the global roles of different parameters in the

propagation process of an epidemic disease along the axis of time, whereby the outbreak

of a disease could be understood more deeply.





Appendix A

Central moments

The kth central moment of a continuously distributed variable x is defined as

Mk(x) =

∫ +∞

−∞
(x− µ)kP (x)dx. (A.1)

A.1 Uniform distribution

Suppose x is uniformly distributed. Its PDF is then given by

P (x) =















0, x < x0,
1

xm−x0
, x0 ≤ x ≤ xm,

0, x > xm,

(A.2)

which provides µ = (xm + x0)/2, and standard deviation σ = (xm − x0)/(2
√
3). Substi-

tuting Eq. (A.2) into Eq. (A.1) yields

Mk(x) =
1

xm − x0

∫ xm

x0

(x− µ)kdx

=
1

(xm − x0)(k + 1)

[

(xm − µ)k+1 − (x0 − µ)k+1
]

,

(A.3)

which can be simplified as follows by inserting µ = (xm + x0)/2:

Mk(x) =
1

2(k + 1)

(

xm − x0
2

)k
[

1− (−1)k+1
]

. (A.4)

The above expression suggests Mk(x) keeps at zero for odd k but acts as a function of

σ for even k, that is

Mk(x) =

{

0, k is odd,
3k/2

k+1σ
k, k is even.

(A.5)
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A.2 Normal distribution

Regarding normally distributed x, the PDF is defined as

P (x|µ, σ) = 1

σ
√
2π

e−
(x−µ)2

2σ2 ; x ∈ (−∞,+∞). (A.6)

By inserting the above expression into Eq. (A.1), we have

Mk(x) =
1

σ
√
2π

∫ +∞

−∞
(x− µ)ke−

(x−µ)2

2σ2 dx

t=x−µ
=

1

σ
√
2π

∫ +∞

−∞
tke−

t2

2σ2 dt

t=uσ
=

1√
2π

∫ +∞

−∞
σkuke−

u2

2 du,

(A.7)

which fixes at zero for odd k since it involves the integral of an odd function over a real

line. While k is even, Mk(x) is obtained as

Mk(x) =
2σk

√
2π

∫ +∞

0
uke−

u2

2 du

u=
√
2v

=
2σk

√
2π

· 2 1
2
(k−1)

∫ +∞

0
v

1
2
(k−1)e−vdv

=
2σk

√
2π

· 2 1
2
(k−1)

∫ +∞

0
v

1
2
(k+1)−1e−vdv

= σk(k − 1)!!,

(A.8)

where k!! denotes the double factorial of k with 0!! = 1. The kth central moment of a

normally distributed variable x is obtained as

Mk(x) =

{

0, k is odd,

σk(k − 1)!!, k is even.
(A.9)
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Generation of correlated variables

B.1 Two correlated variables

Suppose x1 and x2 are only correlated with each other in the input space with given

correlation coefficient ρ12. By using the linear correlation model, x1 can be formulated

on the basis of x2 as

x1 = a12x2 + c11r1, (B.1)

where r1 is the element of r that satisfies Eqs. (3.14) and (3.15). Employing the

definition of correlation coefficient, see Eq. (3.9), we have

ρ12 =
1

σ1σ2
E [(x1 − µ1)(x2 − µ2)]

=
1

σ1σ2
E [(a12(x2 − µ2) + c11(r1 − µ(r1)))(x2 − µ2)]

=
σ2
σ1

a12,

(B.2)

which yields

a12 =
σ1
σ2

ρ12. (B.3)

Furthermore, we also have

σ2
1 = E

[

(x1 − µ1)
2
]

= E
[

(a12(x2 − µ2) + c11(r1 − µ(r1)))
2
]

= a212σ
2
2 + c211V (r1).

(B.4)

By substituting σ2
1 = V (r1), coefficient c11 is obtained as

c11 =
√

1− ρ212. (B.5)
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As a consequence, x1, if only correlated with x2, can be formulated as

x1 =
σ1
σ2

ρ12x2 +
√

1− ρ212r1. (B.6)

B.2 Three correlated variables

If correlations just exist among three variables, say x1, x2 and x3, x1, for example, then

can be similarly formulated by the use of linear correlation model as

x1 = a12x2 + a13x3 + c11r1. (B.7)

Recalling the correlation coefficient between x1 and x2, we get

ρ12 =
1

σ1σ2
E [(x1 − µ1)(x2 − µ2)]

=
1

σ1σ2
E [(a12(x2 − µ2) + a13(x3 − µ3) + c11(r1 − µ(r1)))(x2 − µ2)]

=
σ2
σ1

a12 +
σ3
σ1

a13ρ23.

(B.8)

Analogously, the correlation coefficient between x1 and x3 can be expressed as

ρ13 =
1

σ1σ3
E [(x1 − µ1)(x3 − µ3)]

=
1

σ1σ3
E [(a12(x2 − µ2) + a13(x3 − µ3) + c11(r1 − µ(r1)))(x3 − µ3)]

=
σ2
σ1

a12ρ23 +
σ3
σ1

a13,

(B.9)

which, together with Eq. (B.8), states

a12 =
ρ12 − ρ13ρ23

1− ρ223

σ1
σ2

, a13 =
ρ13 − ρ12ρ23

1− ρ223

σ1
σ3

. (B.10)

c11 can be determined by the definition of the variance of x1, that is

σ2
1 = E

[

(x1 − µ1)
2
]

= E
[

(a12(x2 − µ2) + a13(x3 − µ3) + c11(r1 − µ(r1)))
2
]

= a212σ
2
2 + a213σ

2
3 + 2a12a13σ2σ3ρ23 + c211V (r1).

(B.11)

Inserting the expressions of a12 and a13, and σ2
1 = V (r1), into the above equation, we

obtain

c11 =

√

1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23
1− ρ223

. (B.12)
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Accordingly, an arbitrary variable x1 that is correlated with x2 and x3 at the same time

can be generated with given pairwise correlation coefficients through equation

x1 =
ρ12 − ρ13ρ23

1− ρ223

σ1
σ2

x2 +
ρ13 − ρ12ρ23

1− ρ223

σ1
σ3

x3 +

√

1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23
1− ρ223

r1.

(B.13)

B.3 Four correlated variables

Consider a more complex situation where correlations exist among four variables, say

x1, x2, x3 and x4. As before, employing the linear correlation model, we can represent

x1 as

x1 = a12x2 + a13x3 + a14x4 + c11r1, (B.14)

Reviewing the definition of correlation coefficient, we have

ρ12 =
1

σ1σ2
E [(x1 − µ1)(x2 − µ2)] ,

ρ13 =
1

σ1σ3
E [(x1 − µ1)(x3 − µ3)] ,

ρ14 =
1

σ1σ4
E [(x1 − µ1)(x4 − µ4)] . (B.15)

Substituting the formulation of x1 (Eq. (B.14)) into the previous equation, we get

ρ12 =
1

σ1σ2
(a12σ

2
2 + a13σ2σ3ρ23 + a14σ2σ4ρ24),

ρ13 =
1

σ1σ3
(a12σ2σ3ρ23 + a13σ

2
3 + a14σ3σ4ρ34),

ρ14 =
1

σ1σ4
(a12σ2σ4ρ24 + a13σ3σ4ρ34 + a14σ

2
4), (B.16)

which drive

a12 =
ρ12(1− ρ234)− (ρ13ρ23 + ρ14ρ24) + (ρ13ρ24 + ρ14ρ23)ρ34

1− ρ223 − ρ224 − ρ234 + 2ρ23ρ24ρ34

σ1
σ2

,

a13 =
ρ13(1− ρ224)− (ρ12ρ23 + ρ14ρ34) + (ρ12ρ34 + ρ14ρ23)ρ24

1− ρ223 − ρ224 − ρ234 + 2ρ23ρ24ρ34

σ1
σ3

,

a14 =
ρ14(1− ρ223)− (ρ12ρ24 + ρ13ρ34) + (ρ12ρ34 + ρ13ρ24)ρ23

1− ρ223 − ρ224 − ρ234 + 2ρ23ρ24ρ34

σ1
σ4

. (B.17)

Similarly, c11 can be obtained by the definition of the variance of x1:

σ2
1 = E

[

(x1 − µ1)
2
]

, (B.18)
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which implies

c211 = 1− 1

σ2
1

(a212σ
2
2+a213σ

2
3+a214σ

2
4+2a12a13σ2σ3ρ23+2a12a14σ2σ4ρ24+2a13a14σ3σ4ρ34),

(B.19)

where σ2(r1) = σ2
1 was used. Inserting Eq. (B.17) into Eq. (B.19) provides

c11 =
[

1− ρ223 − ρ224 − ρ234 + 2ρ23ρ24ρ34
]−1/2 [

1− ρ223 − ρ224 − ρ234 + 2ρ23ρ24ρ34

− ρ212(1− ρ234)− ρ213(1− ρ224)− ρ214(1− ρ223) + 2ρ12ρ13(ρ23 − ρ24ρ34)

+2ρ13ρ14(ρ34 − ρ23ρ24) + 2ρ12ρ14(ρ24 − ρ23ρ34)]
1/2 . (B.20)

Through the above analysis of simple cases, general expressions of the coefficients (entries

of matrices A and C) that specify the independence and correlation sections separated

from arbitrary variables are then derived, see Eqs. (3.16) and (3.17).
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Derivation of Eqs. (3.51-3.52)

The form of related model function is

y = 2x1 + x22 + 4x21x2 + x1x3, (C.1)

where (x1, x2, x3) ∼ N(µ,Σ) with mean vector µ = (0, 0, 0)T and covariance matrix

Σ =









1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1









. (C.2)

C.1 First-order contributions

With Eq. (3.4), fractional variance contribution produced by each input factor alone

are represented as

V1 = (
∂y

∂x1
)2({µ}) ·M2(x1) = 4M2(x1), (C.3)

V2 =
1

2! · 2!(
∂2y

∂x22
)2({µ}) ·

[

M4(x2)−M2
2 (x2)

]

= M4(x2)−M2
2 (x2), (C.4)

V3 = (
∂y

∂x3
)2({µ}) ·M2(x3) = 0, (C.5)

To determine the independent, correlated and coupling variance contributions that are

contained in V1, x1 should be reformed on the bases of x2 and x3 as

x1 = a12x2 + a13x3 + c11r1, (C.6)

in which r1 is the element of r that satisfies Eqs. (3.14) and (3.15). Coefficients

{a12, a13, c11} are presented in Eqs. (B.10) and (B.12). Substituting the formulation
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of x1 into Eq. (C.3) yields

V1 = 4E
[

(a12x2 + a13x3 + c11r1)
2
]

= 4(a212 + a213 + 2a12a13ρ23 + c211)

= 4(1− c211) + 4c211,

(C.7)

where µi = 0 for i = 1, 2, 3 were used. The above expression suggests a vanishing

coupling variance contribution but the existent independent and correlated ones:

V U
1 = 4c211, V C

1 = 4(1− c211), V UC
1 = 0. (C.8)

Analogously, x2 can be reformed as below based on x1 and x3 for the quantification of

independent, correlated and coupling variance contributions contained in V2:

x2 = a21x1 + a23x3 + c22r2, (C.9)

with r2 being the element of r that satisfies Eqs. (3.14) and (3.15). Coefficients

{a21, a23, c22} determined by Eqs. (3.16) and (3.17). Inserting Eq. (C.9) into Eq.

(C.4) drives

V2 =E
[

(a21x1 + a23x3 + c22r2)
4
]

− E2
[

(a21x1 + a23x3 + c22r2)
2
]

=E
[

(a221x
2
1 + a223x

2
3 + 2a21a23x1x3 + 2a21c22x1r2 + 2a23c22x3r2 + c222r

2
2)

2
]

− E2
[

(a21x1 + a23x3 + c22r2)
2
]

=
[

3(a421 + a423) + 6a221a
2
23(2ρ

2
13 + 1) + 12a21a23ρ13(a

2
21 + a223)

]

+
[

6c222(a
2
21 + a223 + 2a21a23ρ13)

]

+ 3c422 −
[

(a221 + a223 + 2a21a23ρ13) + c222
]2

=2(1− c222)
2 + 2c422 + 4c222(1− c222),

(C.10)

where µi = 0 for i = 1, 2, 3 were used. In the above equation, the first term is produced

by the correlations of x2 with the remaining inputs, the second one by its independence,

and the third one by the coupling effect associated with correlations and independence,

indicating

V U
2 = 2c422, V C

2 = 2(1− c222)
2, V UC

2 = 4c222(1− c222). (C.11)
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C.2 Second-order contributions

The second-order partial variance contributions produced by the combinations between

each pair of inputs are expressed as

V12 =
1

2! · 2!(
∂3y

∂x21∂x2
)2({µ}) ·M4,2(x

4
1, x

2
2) +

2

2!
(
∂y

∂x1
· ∂3y

∂x21∂x2
)({µ}) ·M3,1(x

3
1, x2)

= 16
[

M4,2(x
4
1, x

2
2) +M3,1(x

3
1, x2)

]

, (C.12)

V13 = (
∂2y

∂x1∂x3
)2({µ}) ·

[

M2,2(x
2
1, x

2
3)−M2

1,1(x1, x3)
]

= M2,2(x
2
1, x

2
3)− ρ213, (C.13)

V23 = 0. (C.14)

Considering the reforming of x1 on the bases of x2 and x3, the partial variance contri-

bution V12 is determined as

V12 =16E
[

x22(a12x2 + a13x3 + c11r1)
4
]

+ 16E
[

x2(a12x2 + a13x3 + c11r1)
3
]

=16E
[

x22(a
2
12x

2
2 + a213x

2
3 + 2a12a13x2x3 + 2a12c11x2r1 + 2a13c11x3r1 + c211r

2
1)

2
]

+ 16E
[

x2(a
3
12x

3
2 + a313x

3
3 + 3a212a13x

2
2x3 + 3a12a

2
13x2x

2
3)
]

+ 16E
[

x2(3c11(a
2
12x

2
2 + a213x

2
3 + 2a12a13x2x3)r1 + 3c211(a12x2 + a13x3)r

2
1 + c311r

3
1)
]

=48(1− c211)(1− c211 + ρ12 + 4ρ212) + 48c411 + 48c211(2− 2c211 + ρ12 + 4ρ212),

(C.15)

which, from the first fraction to the third one, are separately produced by the correlations

of x1 with the rest, the independence of x1, and the coupling effect between correlations

and independence, specifying

V C1
12 = 48(1− c211)(1− c211 + ρ12 + 4ρ212),

V U1
12 = 48c111

4, V UC1
12 = 48c211(2− 2c211 + ρ12 + 4ρ212). (C.16)

Regarding the formulation of input x2, V12 can also be calculated as

V12 = 16
[

x41(a21x1 + a23x3 + c22r2)
2
]

+ 16E
[

x31(a21x1 + a23x3 + c22r2)
]

= 16
[

15a221 + a223(12ρ
2
13 + 3) + 30a21a23ρ13 + 3a21 + 3a23ρ13

]

+ 48c222

= 48(1− c222 + ρ12 + 4ρ212) + 48c222,

(C.17)

which shows a vanishing coupling variance contribution but the existent correlated (first

term with brackets) and independent (last term) ones:

V U2
12 = 48c222, V C2

12 = 48(1− c222 + ρ12 + 4ρ212), V UC2
12 = 0. (C.18)
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Recalling the formulation of x1 on the bases of x2 and x3, the partial variance contribu-

tion V13 can be analogously obtained as

V13 = E
[

x23 · (a12x2 + a13x3 + c11r1)
2
]

− ρ213

= a212
(

2ρ223 + 1
)

+ 3a213 + 6a12a13ρ23 − ρ213 + c211

= 1− c211 + 2a12ρ23(a13 + a12ρ23) + 2a13(a13 + a12ρ23)− ρ213 + c211

= 1− c211 + ρ213 + c211,

(C.19)

which only contains the correlated variance contribution (first three components) pro-

duced by the correlations of x1 with the rest variables, and independent one (last com-

ponent) produced by the independence of x1:

V U1
13 = c211, V C1

13 = 1− c211 + ρ213, V UC1
13 = 0. (C.20)

V13 can be equivalently obtained by formulating x3 on the bases of x1 and x2, constituted

of

V U3
13 = c233, V C3

13 = 1− c233 + ρ213, V UC3
13 = 0. (C.21)

C.3 Third-order contributions

The third-order partial variance contribution associated with the second test case is

expressed as

V123 =
2

2!
(
∂2y

∂x22
· ∂2y

∂x1∂x3
)({µ})

[

M1,2,1(x1, x
2
2, x3)−M2(x2)M1,1(x1, x3)

]

= M1,2,1(x1, x
2
2, x3)−M2(x2)ρ13.

(C.22)

By introducing the reforming of x2 (Eq. (C.9)), we get

V123 =E
[

x1x3(a21x1 + a23x3 + c22r2)
2
]

− E
[

(a21x1 + a23x3 + c22r2)
2
]

ρ13

=E
[

x1x3(a21x1 + a23x3)
2
]

− E
[

(a21x1 + a23x3)
2
]

ρ13 + E
[

c222x1x3r
2
2

]

− E
[

c222r
2
2

]

ρ13,

(C.23)

where µi = 0 for i = 1, 2, 3 were used. In the above equation, the first two items

are contributed by the correlations of x2 with both x1 and x3, and the last two items,

summing to zero, are provided by the coupling effect between the independence of x2
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and the correlation of x1 with x3. V123 is then computed as

V123 = 2a212ρ13 + 2a223ρ13 + 2a12a23ρ
2
13 + 2a12a23

= 2a12ρ13(a12 + a23ρ13) + 2a23(a12 + a23ρ13)

= 2a12ρ12ρ13 + 2a23ρ12

= 2ρ12ρ23,

(C.24)

which is totally contributed by input correlations:

V U2
123 = V UC2

123 = 0, V C2
123 = 2ρ12ρ23. (C.25)

We can analogously state that

V U1
123 = V UC1

123 = V U3
123 = V UC3

123 = 0, V C1
123 = V C3

123 = 2ρ12ρ23. (C.26)



Appendix D

Derivation of the fourth-order

central moment with four

different variables

In the second nonlinear test case presented in Chapter 3, the fourth-order central moment

with four different variables is involved:

M1,1,1,1(x1, x2, x3, x4) = E [(x1 − µ1)(x2 − µ2)(x3 − µ3)(x4 − µ4)] , (D.1)

where (x1, x2, x3, x4) ∼ N(µ,Σ) with mean vector µ = (1, 2, 2, 1)T and covariance matrix

displayed in (3.54). Select x1 (equivalent to select each of the others) to be reformed on

the bases of the remaining factors:

x1 = a12x2 + a13x3 + a14x4 + c11r1, (D.2)

where r1 is the element of r that satisfies Eqs. (3.14) and (3.15). Coefficients {a12, a13, a14, c11}
are presented in Eqs. (B.17) and (B.20). Inserting (D.2) into (D.1) provides

M1,1,1,1(x1, x2, x3, x4) = E
[

(a12x
′
2 + a13x

′
3 + a14x

′
4 + c11r

′
1)x

′
2x

′
3x

′
4

]

= E
[

a12(x
′
2)

2x′3x
′
4

]

+ E
[

a13x
′
2(x

′
3)

2x′4
]

+ E
[

a14x
′
2x

′
3(x

′
4)

2
]

,

(D.3)

where x′i = xi − µi for i = 2, 3, 4 and r′1 = r1 − µ(r1). In the determination of

E
[

a12(x
′
2)

2x′3x
′
4

]

, another variable should also be reformed based on the others en-

closed in the brackets. Here we formulate x3 (equivalent to formulate x2 or x4 as input

126
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variables are normally distributed and hold the same standard deviation) as

x3 = a32x2 + a34x4 + c33r3, (D.4)

where r3 is the element of r that satisfies Eqs. (3.14) and (3.15). Coefficients {a32, a34, c33}
are determined via Eqs. (3.16) and (3.17) as

a32 = (ρ23 − ρ24ρ34)/(1− ρ224), (D.5)

a34 = (ρ34 − ρ23ρ24)/(1− ρ224), (D.6)

c33 = (1− ρ223 − ρ224 − ρ234 + 2ρ23ρ24ρ34)
1/2/(1− ρ224)

1/2. (D.7)

Then we can obtain

E
[

a12(x
′
2)

2x′3x
′
4

]

=
[

a12a32(x
′
2)

3x′4 + a12a34(x
′
2)

2(x′4)
2
]

= 2a12ρ24(a32 + a34ρ24) + a12(a34 + a32ρ24)

= 2a12ρ23ρ24 + a12ρ34.

(D.8)

The other two average items in Eq. (D.3) can be similarly determined as

E
[

a13x
′
2(x

′
3)

2x′4
]

= 2a13ρ23ρ34 + a13ρ24, (D.9)

E
[

a14x
′
2x

′
3(x

′
4)

2
]

= 2a14ρ24ρ34 + a14ρ23. (D.10)

We now get

M1,1,1,1(x1, x2, x3, x4) =2(a12ρ23ρ24 + a13ρ23ρ34 + a14ρ24ρ34) + (a12ρ34 + a13ρ24 + a14ρ23)

=ρ34(a12 + a13ρ23 + a14ρ24) + ρ24(a13 + a12ρ23 + a14ρ34)

+ ρ23(a14 + a12ρ24 + a13ρ34)

=ρ12ρ34 + ρ13ρ24 + ρ14ρ23.

(D.11)
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Partial variance contributions for

Ishigami function

The Ishigami function is expressed as

y = sin(x1) + 7 sin2(x2) + 0.1x43 sin(x1), (E.1)

with input variables uniformly distributed in the interval [−π, π] which provides µi=0

and σi = π/
√
3 for i = 1, 2, 3.

E.1 First-order contributions

With help of Eq. (3.4), the main partial variance contribution produced by input x1

alone is represented as

V1 =

∞
∑

i,j=0

1

i! · j! (
∂iy

∂xi1
· ∂

jy

∂xj1
)({µ}) · [Mi+j(xi)−Mi(x1)Mj(x1)] . (E.2)

The existent partial derivatives of y with respect to x1 are totally provided by the first

term of Eq. (E.1): sin(x1) as µ3 = 0. Zero mean value of x1 determines

(

∂i sin(x1)

∂xi1

∣

∣

∣

∣

µ1=0

)

=

{

(−1)(i−1)/2, i is odd,

0, i is even.
(E.3)

Substituting Eqs. (A.5) and (E.3) into Eq. (E.2) yields

V1 =

∞
∑

i,j=0

(−1)i+j

(2i+ 1)!(2j + 1)!
· π2(i+j+1)

2i+ 2j + 3
= 0.5. (E.4)

128
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Analogously, the main variance contribution produced by x2 is represented as

V2 =

∞
∑

i,j=0

1

i! · j! (
∂iy

∂xi2
· ∂

jy

∂xj2
)({µ}) · [Mi+j(x2)−Mi(x2)Mj(x2)] , (E.5)

which is provided by the second term of Eq. (E.1): 7 sin2(x2). Zero mean value of x2

suggests
(

∂i sin2(x2)

∂xi2

∣

∣

∣

∣

µ2=0

)

=

{

2i−1(−1)(i+2)/2, i is even,

0, i is odd.
(E.6)

By inserting Eqs. (A.5) and (E.6) into Eq. (E.5), we get

V2 = 72
∞
∑

i,j=0

(−1)i+j4i+j+1π2(i+j+2)

(2i+ 2)!(2j + 2)!

[

1

2i+ 2j + 5
− 1

(2i+ 3)(2j + 3)

]

= 6.125. (E.7)

Zero mean value of x1 also suggests a vanishing main partial variance contribution

produced by x3 alone since x3 just appears in the combination with sin function of x1

in the form of Ishigami function. x2 is assumed to be independent. But x1 and x3 may

correlate with each other. To interpret the independent, correlated and also coupling

variance contributions included in V1, x1 should be formulated on the basis of x3:

x1 = ρ13
σ1
σ3

x3 +
√

1− ρ213r1

= ρ13x3 +
√

1− ρ213r1,

(E.8)

with r1 holding the same distribution as x1 (since the mean values of x1 and x3 are

zero). Equation (E.4) is then rewritten as

V1 =
∞
∑

i,j=0

(−1)i+j

(2i+ 1)!(2j + 1)!
· E
[

(ρ13x3 +
√

1− ρ213r1)
2(i+j+1)

]

, (E.9)

where µ3 = µ(r1) = 0 were used. By employing the binomial theory, the above expression

is updated as

V1 =
∞
∑

i,j=0

i+j+1
∑

k=0

(

2(i+ j + 1)

2k

)

(−1)i+j · π2(i+j+1)

(2i+ 1)!(2j + 1)!
· ρ2k13(1− ρ213)

i+j+1−k

(2i+ 2j + 3− 2k)(2k + 1)
. (E.10)
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The independent and correlated variance contributions are then evaluated by setting

k = 0 and k = i+ j + 1, respectively:

V U
1 =

∞
∑

i,j=0

(−1)i+j · π2(i+j+1)

(2i+ 1)!(2j + 1)!
· (1− ρ213)

i+j+1

2i+ 2j + 3
, (E.11)

V C
1 =

∞
∑

i,j=0

(−1)i+j · π2(i+j+1)

(2i+ 1)!(2j + 1)!
· ρ

2(i+j+1)
13

2i+ 2j + 3
. (E.12)

The coupling variance contribution is then evaluated accordingly by

V UC
1 = V1 − V U

1 − V C
1 . (E.13)

E.2 Second-order contributions

For partial variance contributions of second-order, the form of Ishigami function provides

V12 = V23 = 0 and

V13 =0.12
∞
∑

i,j=0

1

i! · j! · 4! · 4!
(
∂4+iy

∂xi
1∂x

4
3

·
∂4+jy

∂xj
1∂x

4
3

)({µ}) ·
[

Mi+j,8(x
i+j
1 , x8

4)−Mi,4(x
i
1, x

4
3)Mj,4(x

j
1, x

4
3)
]

+ 2 · 0.1
∞
∑

i,j=0

1

i! · j! · 4!
(
∂iy

∂xi
1

·
∂4+jy

∂xj
1∂x

4
3

)({µ}) ·
[

Mi+j,4(x
i+j
1 , x4

3)−Mi(x1)Mj,4(x
j
1, x

4
3)
]

=0.12
∞
∑

i,j=0

1

i! · j!
(
∂i sin(x1)

∂xi
1

·
∂j sin(x1)

∂xj
1

)(µ1 = 0) ·
[

Mi+j,8(x
i+j
1 , x8

4)−Mi,4(x
i
1, x

4
3)Mj,4(x

j
1, x

4
3)
]

+ 2 · 0.1

∞
∑

i,j=0

1

i! · j!
(
∂i sin(x1)

∂xi
1

·
∂j sin(x1)

∂xj
1

)(µ1 = 0) ·
[

Mi+j,4(x
i+j
1 , x4

3)−Mi(x1)Mj,4(x
j
1, x

4
3)
]

(E.14)

By substituting Eq. (E.3), V13 is updated as

V13 = 0.1

∞
∑

i,j=0

(−1)i+j

(2i+ 1)!(2j + 1)!

[

0.1M2i+2j+2,8(x
2i+2j+2
1 , x8

3) + 2M2i+2j+2,4(x
2i+2j+2
1 , x4

3)
]

. (E.15)

To determine V13, it is necessary to derive the covariance items enclosed in the above

square parentheses.
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Firstly, consider the generation of x1 on the basis of x3. Inserting Eq. (E.8) into

covariance items in Eq. (E.14) yields

M2i+2j+2,8(x
2(i+j+1)
1 , x83)

= E

[

x83

i+j+1
∑

k=0

(

2(i+ j + 1)

2k

)

ρ2k13(1− ρ213)
i+j+1−kx2k3 r2i+2j+2−2k

1

]

=

i+j+1
∑

k=0

(

2(i+ j + 1)

2k

)

ρ2k13(1− ρ213)
i+j+1−kM2i+2j+2−2k(r1)M8+2k(x3)

=

i+j+1
∑

k=0

(

2(i+ j + 1)

2k

)

· π2(i+j+1)+8ρ2k13(1− ρ213)
i+j+1−k

(2(i+ j + 1)− 2k + 1)(8 + 2k + 1)
,

(E.16)

and

M2i+2j+2,4(x
2(i+j+1)
1 , x43)

= E

[

x43

i+j+1
∑

k=0

(

2(i+ j + 1)

2k

)

ρ2k13(1− ρ213)
i+j+1−kx2k3 r2i+2j+2−2k

1

]

=

i+j+1
∑

k=0

(

2(i+ j + 1)

2k

)

ρ2k13(1− ρ213)
i+j+1−kM2(i+j+1)−2k(x1)M4+2k(x3)

=

i+j+1
∑

k=0

(

2(i+ j + 1)

2k

)

· π2(i+j+1)+4ρ2k13(1− ρ213)
i+j+1−k

(2(i+ j + 1)− 2k + 1)(4 + 2k + 1)
.

(E.17)

V13 is now obtained as

V13 = 0.1
∞
∑

i,j=0

i+j+1
∑

k=0

(−1)i+jπ2(i+j+1)+4

(2i+ 1)!(2j + 1)!
·
(

2(i+ j + 1)

2k

)

× ρ2k13(1− ρ213)
i+j+1−k

2(i+ j − k) + 3

[

0.1 · π4

9 + 2k
+

2

5 + 2k

]

. (E.18)

The Independent and correlated partial variance contributions included in V13 are spec-

ified by setting k = 0 and k = i+ j + 1, respectively:

V U1
13 = 0.1

∞
∑

i,j=0

(−1)i+jπ2(i+j+1)+4

(2i+ 1)!(2j + 1)!

(1− ρ213)
i+j+1

2(i+ j) + 3

[

0.1 · π4

9
+

2

5

]

, (E.19)

V C1
13 = 0.1

∞
∑

i,j=0

(−1)i+jπ2(i+j+1)+4

(2i+ 1)!(2j + 1)!
ρ
2(i+j+1)
13

[

0.1 · π4

2(i+ j) + 11
+

2

2(i+ j) + 7

]

. (E.20)
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The coupling variance contribution is then spontaneously determined for x1 by

V UC1
13 = V13 − V U1

13 − V C1
13 . (E.21)

Optionally, x3 can be also formulated in terms of x1 as:

x3 = ρ13
σ3
σ1

x1 +
√

1− ρ213r3

= ρ13x1 +
√

1− ρ213r3,

(E.22)

with r3 holding the same distribution as x3. Then we get

M2i+2j+2,8(x
2(i+j+1)
1 , x83)

= E

[

x
2(i+j+1)
1

4
∑

k=0

(

8

2k

)

ρ2k13(1− ρ213)
4−kx2k1 r8−2k

3

]

=
4
∑

k=0

(

8

2k

)

ρ2k13(1− ρ213)
4−kM2(i+j+1)+2k(x1)M8−2k(x3)

=
4
∑

k=0

(

8

2k

)

· π2(i+j+1)+8ρ2k13(1− ρ213)
4−k

(2(i+ j + 1) + 2k + 1)(8− 2k + 1)
,

(E.23)

and

M2i+2j+2,4(x
2(i+j+1)
1 , x43)

= E

[

x
2(i+j+1)
1

2
∑

l=0

(

4

2l

)

ρ2l13(1− ρ213)
2−lx2l1 r

4−2l
3

]

=

2
∑

l=0

(

4

2l

)

ρ2l13(1− ρ213)
2−lM2(i+j+1)+2l(x1)M4−2l(x3)

=

2
∑

l=0

(

4

2l

)

· π2(i+j+1)+4ρ2l13(1− ρ213)
2−l

(2(i+ j + 1) + 2l + 1)(4− 2l + 1)
,

(E.24)

which yield

V13 = 0.1

∞
∑

i,j=0

(−1)i+jπ2(i+j+1)+4

(2i+ 1)!(2j + 1)!

[

0.1

4
∑

k=0

(

8

2k

)

· π4ρ2k13(1− ρ213)
4−k

(2i+ 2j + 2k + 3)(9− 2k)

+2
2
∑

l=0

(

4

2l

)

· ρ2l13(1− ρ213)
2−l

(2i+ 2j + 2l + 3)(5− 2l)

]

. (E.25)
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The independent and correlated effects contained in the above partial variance contri-

bution can be calculated by setting k = l = 0 and k = 4, l = 2, respectively:

V U3
13 = 0.1

∞
∑

i,j=0

(−1)i+jπ2(i+j+1)+4

(2i+ 1)!(2j + 1)!

[

0.1 · π4(1− ρ213)
4

9(2i+ 2j + 3)
+

2(1− ρ213)
2

5(2i+ 2j + 3)

]

, (E.26)

V C3
13 = 0.1

∞
∑

i,j=0

(−1)i+jπ2(i+j+1)+4

(2i+ 1)!(2j + 1)!

[

0.1 · π4ρ813
2i+ 2j + 11

+
2ρ413

2i+ 2j + 7

]

. (E.27)

The coupling variance contribution is then determined for x3 by

V UC3
13 = V13 − V U3

13 − V C3
13 . (E.28)



Appendix F

Special case for opinion

formation: p = γ = 0

Regarding sparse scale-free networks with ka = 4, the theoretical analysis of the associ-

ation of opinion dynamics with confidence threshold ε is completed in detail in this part

by keeping p = γ = 0.

When the confidence threshold is quite low: ε ≤ 1/4, we can divide the opinion space into

four adjacent regions, as shown in Fig. F.1. With time evolution of opinion dynamics,

the fraction of agents who will migrate in opinion from R2 to R1 is

n2→1 =

∫ ε− 1
4

− 1
4

1

2
· ka
2
(ε− x− 1

4
)dx

=
1

2
ε2,

(F.1)

which determines the final fraction of agents in R1 as

n1 =
3

8
+

1

2
ε2. (F.2)

Analogous to Eq. (5.36), at steady state, the average opinion in the region R2 can be

specified as

Ω2
s =

∫ ε− 1
4

− 1
4

1

2
[1− ka

2
(ε− x− 1

4
)] · xdx

= −1

6
ε3 +

3

8
ε2 − 1

8
ε.

(F.3)

With respect to the limitation of confidence threshold, opinion distributions in both R3

and R4 will keep at their initial configurations (uniformly distributed) throughout the

134
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Figure F.1: The generation of four adjacent regions in the opinion space when ε ∈ [0, 1/4].

time evolution. This provides

Ω3
s = −1

4
(ε− 1

4
)2, (F.4)

and

Ω+
s = Ω4

s =
1

4
. (F.5)

The primary intend of winning scores at gambling will impel agents with opinions in R1

to win. Denote the maximal steady opinion held by winners as s. The steady value of

average opinion in G− then can be determined accordingly by

Ω−
s = Ω1

s +Ω2
s +Ω3

s

= n1 ·
1

2
(s− 1)− 1

6
ε3 +

3

8
ε2 − 1

8
ε− 1

4
(ε− 1

4
)2.

(F.6)

The definition of winning at our gambling requires

|s|
N−|Ω−

s |
·R− ≥ R

N
, (F.7)

which yields

Ω−
s =

1

4ε2 − 13
(
8

3
ε3 + 2ε2 +

13

4
). (F.8)

The order parameter is now directly stated as

Ωs =
1

13− 4ε2
(
8

3
ε3 + 3ε2). (F.9)

When we limit the confidence threshold to the range (1/4, 1/2], the opinion space then

can be partitioned as Fig. F.2. The fraction of agents who will migrate in opinion from

R2 and R3 to R1 is the same as that who will migrate from R2 to R1 in the previous

situation, that is

n2,3→1 =
1

2
ε2. (F.10)

This implies the fraction of winners at steady state is given by

nw =
3

8
+

1

2
ε2. (F.11)
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Figure F.2: The generation of four adjacent regions in the opinion space when ε ∈ (1/4, 1/2].

The stable average opinions in R2 and R3 are given by

Ω2
s =

∫ 0

− 1
4

1

2
[1− ka

2
(ε− x− 1

4
)] · xdx

=
1

32
(ε− 7

12
),

(F.12)

and

Ω3
s =

∫ ε− 1
4

0

1

2
[1− ka

2
(ε− x− 1

4
)] · xdx

= −1

6
(ε− 1

4
)2(ε− 7

4
).

(F.13)

respectively. In the region R4, opinions are fixed at fully disordered initial positions

throughout the evolution of dynamics. This offers

Ω4
s =

1

4
[1− (ε− 1

4
)2]. (F.14)

Now we get the final average opinion in clique G+:

Ω+
s = Ω3

s +Ω4
s = −1

6
(ε− 1

4
)3 +

1

4
. (F.15)

Similarly, denote the maximal opinion among the group of winners as s. The final

average opinion in clique G− then can be represented by

Ω−
s = nw · 1

2
(s− 1) + Ω2

s. (F.16)

By recalling Eq. (F.7), we obtain

Ω−
s = 1− 1

8ε2 − 26
(ε− 391

12
), (F.17)

which, together with previously calculated Ω+
s , specifies

Ωs =
1

8ε2 − 26
(ε− 391

12
) +

1

6
(ε− 1

4
)3 − 5

4
. (F.18)

If the confidence threshold is limited to the interval (1/2, 3/4], we can divide the opinion
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space into five adjacent regions (Fig. F.3). As stated before, all agents holding initial

opinions in R2 will migrate to R1 in opinion by communicating with their friends. And

the fraction of agents who will be affected in opinion by their friends from R3 and R4

to R1 is approximated as

n3,4→1 =

∫ ε− 1
4

ε− 3
4

ka
2

· 1
2
(ε− x− 1

4
)dx

=
1

8
.

(F.19)

The fraction of agents holding steady opinions in R1 is then determined as

n1 =
1

2
ε+

1

4
. (F.20)

The steady average opinion in G+ is the same as that in the previous case, i.e., Eq.

(F.15), since the partition of opinion space in the positive interval keeps unchanged. For

region R3, its average opinion at steady state is analogously computed as

Ω3
s =

∫ 0

ε− 3
4

1

2
[1− ka

2
(ε− x− 1

4
)] · xdx

=
1

6
(ε− 3

4
)3.

(F.21)

Agents taking opinions in R1 will finally win at gambling by further local communica-

tions. This suggests the average opinion in G− will stabilize at

Ω−
s = n1 ·

1

2
(s− 1) + Ω3

s, (F.22)

where s denotes the maximal opinion held by winners. Substituting the above expression

into Eq. (F.7) yields

Ω−
s =

1

2ε− 7
[−4

3
(ε− 3

4
)3 + 2(ε+

1

2
)], (F.23)

which, together with Ω+
s , provides

Ωs =
1

7− 2ε
[−4

3
(ε− 3

4
)3 + 2(ε+

1

2
)] +

1

6
(ε− 3

4
)3 − 1

4
. (F.24)

For high confidence threshold: ε ∈ (54 ,
7
4 ], the opinion space can be divided into three

regions (Fig. F.4). The fraction of agents who will be affected in opinion by their friends
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Figure F.3: The generation of five adjacent regions in the opinion space when ε ∈ (1/2, 3/4].

Figure F.4: The generation of three adjacent regions in the opinion space when ε ∈ (5/4, 7/4].

from R3 to R1 is approximated as

n3→1 =

∫ 1

ε− 3
4

1

2
· ka
2
(ε− x− 1

4
)dx

= −1

2
(ε− 5

4
)2 +

1

8
.

(F.25)

Consequently, the fraction of agents in G− will fix at

n− =
1

2
(ε− 3

4
+ 1) + n3→1

= 1− 1

2
(ε− 7

4
)2.

(F.26)

The primary intend of winning scores at gambling will guide all agents in G− to win.

Analogously, the final average opinion in G− can be obtained as below by recalling Eq.

(F.7):

Ω−
s = 1− 4

(ε− 7
4)

2 + 2
. (F.27)

For the clique G+, we have

Ω+
s =

∫ 1

ε− 3
4

1

2
[1− ka

2
(ε− x− 1

4
)] · xdx

=
ε

6
(ε− 9

8
)2 − 55

128
(ε− 1) +

5

24
.

(F.28)

The corresponding order parameter is now obtained as

Ωs =
4

(ε− 7
4)

2 + 2
− ε

6
(ε− 9

8
)2 +

55

128
(ε− 1)− 29

24
. (F.29)

Consider sufficiently high confidence threshold: ε > 7/4. The partition of opinion space

can be simplified as two regions (Fig. F.5). With local communication, almost all agents
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Figure F.5: The generation of two adjacent regions in the opinion space when ε ∈ (7/4, 2].

having initial opinions in R2 will migrate to R1 in opinion. Analogously, the agents with

opinions in R1 then will learn from their friends to win in the opinion evolution process.

This requires
|s|

N · 1
2(|s|+ 1)

·R− ≥ R

N
. (F.30)

Solution of the above inequality (|s| ≥ 1) implies the clustering of all agents in opinion

-1 at steady state. So we get

Ωs = 1. (F.31)
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[214] L. Hörmander. The analysis of linear partial differential operators I: Distribution

theory and Fourier analysis. Springer, Berlin, 2 edition, 2003.

[215] R. Billinton and W. Li. Reliability Assessment of Electric Power Systems Using

Monte Carlo Methods. Springer, New York, 1 edition, 1994.

[216] V. Fthenakis and H. C. Kim. Land use and electricity generation: A life-cycle

analysis. Renew. Sustainable Energy Rev., 13(6):1465–1474, 2009.

[217] T. Thiringer and J. Linders. Control by variable rotor speed of a fixed-pitch

wind turbine operating in a wide speed range. IEEE Transactions on Energy

Conversion, 8(3):520–526, 1993.

[218] J. G. Slootweg and W. L. Kling. Modeling of large wind farms in power system

simulations. In 2002 Power Engineering Society Summer Meeting Proceedings,

volume 3 of Conference Proceedings, pages 503–508. IEEE, 2002.

[219] G. L. Park. Planning manual for utility application of wecs. Technical report,

Michigan State Univ., East Lansing (USA). Div. of Engineering Research, 1979.



Bibliography 156

[220] P. Giorsetto and K. F. Utsurogi. Development of a new procedure for reliability

modeling of wind turbine generators. IEEE transactions on power apparatus and

systems, PAS-102(1):134–143, 1983.

[221] T. Jin and Z. Tian. Uncertainty analysis for wind energy production with dynamic

power curves. In 11th Int. Conf. Probabilistic Methods Applied to Power Systems

(PMAPS), pages 745–750, San Marcos, June 2010. IEEE.

[222] G. Sansavini et al. A stochastic framework for uncertainty analysis in electric

power transmission systems with wind generation. Renew. Energ., 64:71, 2014.

[223] G. L. Johnson. Wind energy systems. Prentice hall, 1985.

[224] F. W. Harris. How many parts to make at once. Oper. Res., 38(6):947, 1990.

[225] L. B. Schwarz. The economic order-quantity (eoq) model. In D. Chhajed and T. J.

Lowe, editors, Building Intuition, volume 115 of International Series in Operations

Research & Management Science, pages 135–154. Springer, 2008.

[226] G. Chastaing et al. Generalized hoeffding-sobol decomposition for dependent

variables-application to sensitivity analysis. Electron. J. Stat., 6:2420–2448, 2012.

[227] G. Chastaing, F. Gamboa, and C. Prieur. Generalized sobol sensitivity indices for

dependent variables: numerical methods. J. Stat. Comput. Simul., 85(7):1306–

1333, 2015.

[228] T. Ishigami and T. Homma. An importance quantification technique in uncertainty

analysis for computer models. In Proc. 1st Int. Symp. Uncertainty Modeling and

Analysis, pages 398–403. IEEE, 1990.

[229] J. Morio. Global and local sensitivity analysis methods for a physical system. Eur.

J. Phys., 32(6):1577, 2011.

[230] I. Lira. Beyond the gum: variance-based sensitivity analysis in metrology. Meas.

Sci. Technol., 27(7):075006, 2016.

[231] C. Fraser et al. Pandemic potential of a strain of influenza a (h1n1): early findings.

Science, 324(5934):1557–1561, 2009.

[232] P. Holme and N. Masuda. The basic reproduction number as a predictor for

epidemic outbreaks in temporal networks. PloS one, 10(3):e0120567, 2015.

[233] R. M. Anderson, R. M. May, and B. Anderson. Infectious diseases of humans:

dynamics and control, volume 28. Wiley Online Library, 1992.



Bibliography 157

[234] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz. On the definition and the

computation of the basic reproduction ratio r 0 in models for infectious diseases

in heterogeneous populations. J. Math. Biol., 28(4):365–382, 1990.

[235] O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts. The construction of next-

generation matrices for compartmental epidemic models. J. R. Soc. Interface, 7

(47):873–885, 2010.

[236] G. Macdonald. The epidemiology and control of malaria. Oxford University Press,

1957.

[237] P. Van den Driessche and J. Watmough. Reproduction numbers and sub-threshold

endemic equilibria for compartmental models of disease transmission. Math.

Biosci., 180(1):29–48, 2002.

[238] Z. Mukandavire and W. Garira. Hiv/aids model for assessing the effects of pro-

phylactic sterilizing vaccines, condoms and treatment with amelioration. J. Biol.

Syst., 14(03):323–355, 2006.

[239] R. Safiel, E. S. Massawe, and D. O. Makinde. Modelling the effect of screening and

treatment on transmission of hiv/aids infection in a population. Amer. J. Math.

Stat., 2(4):75–88, 2012.

[240] J. C. Helton and F. J. Davis. Latin hypercube sampling and the propagation of

uncertainty in analyses of complex systems. Reliab. Eng. Syst. Safe., 81(1):23–69,

2003.

[241] S. Kucherenko, S. Tarantola, and P. Annoni. Estimation of global sensitivity

indices for models with dependent variables. Comput. Phys. Comm., 183(4):937–

946, 2012.

[242] D. J. Daley and J. Gani. Epidemic Modeling: An Introduction. Cambridge Studies

in Mathematical Biology. Cambridge University Press, 1999.

[243] D. Bernoulli. Essai d’une nouvelle analyse de la mortalité causée par la petite
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Résumé 
 
Par un développement en série de taylor, une relation 
analytique générale est établie pour calculer l’incertitude 
de la réponse du modèle, en assumant l'indépendance 
des entrées. En utilisant des relations de puissances et 
exponentielles, il est démontré que l’approximation 
souvent utilisée permet d’évaluer de manière 
satisfaisante l’incertitude sur la réponse du modèle 
pourvu que l’incertitude d’entrée soit négligeable ou que 
le modèle soit presque linéaire. La méthode est 
appliquée à l’étude d’un réseau de distribution 
électrique et à un modèle d’ordre économique.  
La méthode est étendue aux cas où les variables 
d’entrée sont corrélées. Avec la méthode généralisée, 
on peux déterminer si les corrélations d'entrée doivent 
ou non être considérées pour des applications 
pratiques. Des exemples numériques montrent 
l'efficacité et la validation de notre méthode dans 
l'analyse des modèles tant généraux que spécifiques 
tels que le modèle déterministe du vih. 
La méthode est ensuite comparée à celle de sobol. Les 
résultats montrent que la méthode de sobol peut 
surévaluer l’incidence des divers facteurs, mais sous-
estimer ceux de leurs interactions dans le cas 
d’interactions non linéaires entre les paramètres 
d’entrée. Une modification est alors introduite, aidant à 
comprendre la différence entre notre méthode et celle 
de sobol. 
Enfin, un modèle numérique est établi dans le cas d’un 
jeu virtuel prenant en compte la formation de la 
dynamique de l'opinion publique. L’analyse théorique à 
l’aide de la méthode de modification d'un paramètre à la 
fois. La méthode basée sur l'échantillonnage fournit une 
analyse globale de l'incertitude et de la sensibilité des 
observations. 
 

Mots clés 
Analyse d’incertitude, Analyse de sensibilité, 
Décomposition de variance, Echantillonnage, 
Corrélation, Mesure de sensibilité, Dynamique d’opinion 

 

Abstract 
 
By means of taylor series expansion, a general analytic 
formula is derived to characterise the uncertainty 
propagation from input variables to the model response, 
in assuming input independence. By using power-law 
and exponential functions, it is shown that the widely 
used approximation considering only the first order 
contribution of input uncertainty is sufficiently good only 
when the input uncertainty is negligible or the underlying 
model is almost linear. This method is then applied to a 
power grid system and the eoq model.  
The method is also extended to correlated case. With 
the extended method, it is straightforward to identify the 
importance of input correlations in the model response. 
This allows one to determine whether or not the input 
correlations should be considered in practical 
applications. Numerical examples suggest the 
effectiveness and validation of our method for general 
models, as well as specific ones such as the 
deterministic hiv model. 
The method is then compared to Sobol’s one which is 
implemented with sampling based strategy. Results 
show that, compared to our method, it may overvalue 
the roles of individual input factors but underestimate 
those of their interaction effects when there are 
nonlinear coupling terms of input factors. A modification 
is then introduced, helping understand the difference 
between our method and Sobol’s one.  
Finally, a numerical model is designed based on a 
virtual gambling mechanism, regarding the formation of 
opinion dynamics. Theoretical analysis is proposed by 
the use of one-at-a-time method. Sampling-based 
method provides a global analysis of output uncertainty 
and sensitivity. 
 

Key Words 
Uncertainty analysis, Sensitivity analysis, Variance 
decomposition, Sampling, Correlation, Sensitivity 
measure, Opinion dynamics 

 

 L’Université Bretagne Loire 
 

Investigation on uncertainty and sensitivity analysis of complex 
systems 
  

Yueying ZHU   

 


