]. R. Abramson-2014, T. E. Abramson, and . Yankeelov, Imaging Biomarkers and Surrogate Endpoints in Oncology Clinical Trials, Functional Imaging in Oncology, pp.2942-2973, 2014.
DOI : 10.1007/978-3-642-40412-2_2

]. R. Abramson, K. R. Burton, J. Y. John-paul, E. M. Scalzetti, T. E. Yankeelov et al., Lenchiket al. Methods and challenges in quantitative imaging biomarker development, Academic radiology, vol.22, issue.1, pp.2532-2015, 2015.

]. K. Adlassnig, C. Combi, A. K. Das, E. T. Keravnou, and G. Pozzi, Temporal representation and reasoning in medicine: Research directions and challenges, Artificial Intelligence in Medicine, vol.38, issue.2, p.101113, 2006.
DOI : 10.1016/j.artmed.2006.10.001

M. L. Ah-see, A. Makris, N. J. Taylor, M. Harrison, P. I. Richman et al., Pittamet al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer, Clinical Cancer Research, vol.14, issue.20, p.65806589, 2008.

]. E. Amdouni, Y. Morvan, and B. Gibaud, Towards an Imaging Biomarker Ontology Based on the Open Biological and Biomedical Ontologies Foundry, SWA4TLS : Semantic Web Applications Tools for Life Sciences, p.2015, 2015.

]. E. Amdouni and B. Gibaud, Concept-based versus Realism-based Approach to Represent Neuroimaging Observations, Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, pp.179185-2016, 2016.
DOI : 10.5220/0006084401790185

URL : https://hal.archives-ouvertes.fr/hal-01479223

]. E. Amdouni and B. Gibaud, Conception d'une ontologie générique pour la représentation sémantique des biomarqueurs d'imagerie, JFO : Journées Francophones sur les ontologies, pp.1224-2016, 2016.

]. R. Arp, B. Smith, and A. D. Spear, Building ontologies with basic formal ontology, p.2015, 2015.
DOI : 10.7551/mitpress/9780262527811.001.0001

]. M. Asslaber and K. Zatloukal, Biobanks: transnational, European and global networks, Briengs in functional genomics & proteomics, 2007.
DOI : 10.1093/bfgp/elm023

]. J. Ball and C. M. , Evaluation of biomarkers and surrogate endpoints in chronic disease, pp.41-43, 2010.

]. A. Bandrowski, R. Brinkman, M. Brochhausen, M. H. Brush, B. Bug et al., The Ontology for Biomedical Investigations, PLOS ONE, vol.2014, issue.5950, pp.154556-2016, 2016.
DOI : 10.1371/journal.pone.0154556.s001

URL : https://doi.org/10.1371/journal.pone.0154556

M. S. Mcdermott, S. Berger, and . Cha, Dierentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging, Radiology, vol.253, issue.2, p.486496, 2009.

]. J. Bard, S. Y. Rhee, and M. Ashburner, An ontology for cell types, 2005.

]. P. Basser and C. Pierpaoli, Microstructural and physiological features of tissues elucidated by quantitative-diusion-tensor MRI, Journal of magnetic resonance, vol.213, issue.2, p.560570, 2011.

]. B. Bennett, V. Chaudhri, and N. Dinesh, A Vocabulary of Topological and Containment Relations for a Practical Biological Ontology, International Conference on Spatial Information Theory, pp.418437-2013, 2013.
DOI : 10.1007/978-3-319-01790-7_23

S. Bisdas, M. Kirkpatrick, P. Giglio, C. Welsh, M. V. Spampinato et al., Cerebral Blood Volume Measurements by Perfusion-Weighted MR Imaging in Gliomas: Ready for Prime Time in Predicting Short-Term Outcome and Recurrent Disease?, American Journal of Neuroradiology, vol.69, issue.4, p.681688, 2009.
DOI : 10.1200/JCO.2006.08.1661

]. T. Bittner and B. Smith, Formal ontologies for space and time. IFO- MIS, 2003.

]. T. Bittner and B. Smith, Normalizing medical ontologies using basic formal ontology, 2004.

C. Bjartmar, G. Kidd, S. Mörk, R. Rudick, and B. D. Trapp, Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients, Annals of neurology, vol.48, issue.6, p.893901, 2000.
DOI : 10.1002/1531-8249(200012)48:6<893::aid-ana10>3.0.co;2-b

]. J. Bomers and J. O. Barentsz, Standardization of Multiparametric Prostate MR Imaging Using PI-RADS, BioMed Research International, vol.179, issue.3, p.2014, 2014.
DOI : 10.1016/j.eururo.2012.06.044

URL : http://doi.org/10.1155/2014/431680

]. L. Bonmatí, A. Alberich-bayarri, G. García-martí, R. S. Requena, C. P. Castillo et al., Imaging biomarkers , quantitative imaging, and bioengineering, Radiología, vol.54, issue.153, pp.269278-2012, 2012.

]. J. Boone, Radiological interpretation 2020: Toward quantitative image assessment, Medical Physics, vol.24, issue.11, p.41734179, 2007.
DOI : 10.1109/TMI.2005.845331

URL : http://onlinelibrary.wiley.com/doi/10.1118/1.2789501/pdf

]. J. Bosmans, L. Peremans, M. Menni, A. M. De-schepper, P. O. Duyck et al., Structured reporting: if, why, when, how???and at what expense? Results of a focus group meeting of radiology professionals from eight countries, Insights into Imaging, vol.185, issue.386???94, pp.295302-2012, 2012.
DOI : 10.2214/ajr.185.3.01850804

S. Bradshaw, D. Brickley, L. J. Castro, T. Clark, T. Cole et al., Open Annotation Data Model : community draft, 2013.

R. R. Brinkman, M. Courtot, D. Derom, J. Fostel, Y. He et al., Modeling biomedical experimental processes with OBI, Journal of Biomedical Semantics, vol.1, issue.Suppl 1, p.7, 2010.
DOI : 10.1093/bioinformatics/btl207

URL : https://jbiomedsem.biomedcentral.com/track/pdf/10.1186/2041-1480-1-S1-S7?site=jbiomedsem.biomedcentral.com

]. A. Brodbelt, Clinical applications of imaging biomarkers. Part 2. The neurosurgeon's perspective. The British journal of radiology, p.2014, 2014.

]. M. Brunnbauer, DICOM metadata as RDF, GI-Jahrestagung, p.17961804, 2013.

]. A. Bruns, B. Künnecke, C. Risterucci, J. L. Moreau, and M. Von-kienlin, Validation of cerebral blood perfusion imaging as a modality for quantitative pharmacological MRI in rats, Magnetic Resonance in Medicine, vol.72, issue.6, p.14511458, 2009.
DOI : 10.2174/0929867003375335

]. A. Buckler and R. Boellaard, Standardization of Quantitative Imaging: The Time Is Right, and 18F-FDG PET/CT Is a Good Place to Start, Journal of Nuclear Medicine, vol.52, issue.2, 2011.
DOI : 10.2967/jnumed.110.081224

]. A. Buckler, L. Bresolin, N. R. Dunnick, and D. C. Sullivan, A Collaborative Enterprise for Multi-Stakeholder Participation in the Advancement of Quantitative Imaging, Radiology, vol.258, issue.3, pp.906914-906935, 2011.
DOI : 10.1148/radiol.10100799

]. A. Buckler, L. Bresolin, N. R. Dunnick, and D. C. Sullivan, Quantitative imaging test approval and biomarker qualication : interrelated but Bibliographie distinct activities, Radiology, vol.259, issue.3, p.875884, 2011.
DOI : 10.1148/radiol.10100800

URL : http://europepmc.org/articles/pmc5410955?pdf=render

]. A. Buckler, M. Ouellette, J. Danagoulian, G. Wernsing, T. T. Liu et al., Quantitative Imaging Biomarker Ontology (QIBO) for Knowledge Representation of Biomedical Imaging Biomarkers, Journal of Digital Imaging, vol.40, issue.3, pp.630641-2013, 2013.
DOI : 10.1016/j.jbi.2006.08.002

]. A. Buckler, D. Paik, M. Ouellette, J. Danagoulian, G. Wernsing et al., A Novel Knowledge Representation Framework for the Statistical Validation of Quantitative Imaging Biomarkers, Journal of Digital Imaging, vol.11, issue.Suppl 4, pp.614629-2013, 2013.
DOI : 10.1186/1471-2164-11-S4-S24

]. I. Buvat, Understanding the limitations of SUV, Medecine Nucleaire, vol.31, p.165172, 2007.

]. W. Ceusters and B. Smith, Strategies for referent tracking in electronic health records, Journal of Biomedical Informatics, vol.39, issue.3, p.71, 2005.
DOI : 10.1016/j.jbi.2005.08.002

URL : https://doi.org/10.1016/j.jbi.2005.08.002

]. W. Ceusters, P. Elkin, and B. Smith, Referent tracking : The problem of negative ndings, Studies in health technology and informatics, vol.124, pp.741-126, 2006.

]. W. Ceusters and B. Smith, Biomarkers in the Ontology for General Medical Science, Digital Healthcare Empowering Europeans, pp.155159-85, 2015.

]. M. Chan, S. Thellier, B. Heuga, J. Hannequin, A. Pluvinage et al., ONCO-WP-8 Comment interpreter les bilans de surveillance d???un cancer en imagerie ?, Journal de Radiologie, vol.88, issue.10, p.1561, 2007.
DOI : 10.1016/S0221-0363(07)81827-0

]. D. Channin, P. Mongkolwat, V. Kleper, K. Sepukar, and D. L. Rubin, The caBIG??? Annotation and Image Markup Project, Journal of Digital Imaging, vol.20, issue.Suppl 1, pp.217225-67, 2010.
DOI : 10.1007/s10278-009-9193-9

URL : https://link.springer.com/content/pdf/10.1007%2Fs10278-009-9193-9.pdf

]. M. Choong and G. Tsafnat, The implications of biomarker evidence for systematic reviews, BMC Medical Research Methodology, vol.65, issue.7, pp.176-2012, 2012.
DOI : 10.1016/j.jclinepi.2012.01.008

]. P. Ciccarese, M. Ocana, L. J. Castro, C. T. Das, and S. , An open annotation ontology for science on web 3.0, Journal of Biomedical Semantics, vol.2, issue.Suppl 2, p.4, 2011.
DOI : 10.1371/journal.pcbi.1000361

URL : https://jbiomedsem.biomedcentral.com/track/pdf/10.1186/2041-1480-2-S2-S4

]. P. Ciccarese, M. Ocana, and T. Clark, Open semantic annotation of scientific publications using DOMEO, Journal of Biomedical Semantics, vol.3, issue.Suppl 1, pp.1-2012, 2012.
DOI : 10.1093/bib/bbn052

]. P. Ciccarese, integrating open annotation with any domain ontology, 2014.

]. D. Clunie, DICOM structured reporting, 2000.

]. D. Clunie, DICOM Structured Reporting and Cancer Clinical Trials Results, Cancer Informatics, vol.4, pp.33-39, 2007.
DOI : 10.4137/CIN.S37032

URL : https://doi.org/10.4137/cin.s37032

]. D. Clunie, Encoding of Oncology Clinical Trial Read Results in DICOM SR, pp.2011-2022, 2007.

]. D. Clunie, DICOM Correction Proposal, pp.2012-2019, 2012.

]. R. Craddock, S. Jbabdi, C. G. Yan, J. T. Vogelstein, F. X. Castellanos et al., Imaging human connectomes at the macroscale, Nature Methods, vol.2, issue.6, pp.524539-2013, 2013.
DOI : 10.1016/j.brs.2009.03.005

URL : http://europepmc.org/articles/pmc4096321?pdf=render

]. D. Crommelin, G. Storm, and P. Luijten, Personalised medicine'through`personalisedthrough`personalised medicines' : time to integrate advanced, noninvasive imaging approaches and smart drug delivery systems, International journal of pharmaceutics, vol.415, issue.1, p.58, 2011.
DOI : 10.1016/j.ijpharm.2011.02.010

]. I. Desar, C. M. Van-herpen, H. W. Van-laarhoven, J. O. Barentsz, W. J. Oyen et al., Beyond RECIST: Molecular and functional imaging techniques for evaluation of response to targeted therapy, Cancer Treatment Reviews, vol.35, issue.4, p.309321, 2009.
DOI : 10.1016/j.ctrv.2008.12.001

]. S. Després and S. Mhiri, Ontology Visualization Tool for Indexing DICOM Structured Reporting (SR) Documents, 10th International Protégé Conference, pp.150153-150159, 2007.

D. Chiro-1988a-]-g, R. A. Di-chiro, and . Brooks, PET-FDG of untreated and treated cerebral gliomas, Journal of Nuclear Medicine, vol.29, issue.3, p.421422, 1988.

D. Chiro-1988b-]-g, E. Di-chiro, D. C. Oldeld, D. Wright, D. A. De-michele et al., Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors : PET and neuropathologic studies, American Journal of Roentgenology, vol.150, issue.1, p.189197, 1988.

]. B. Dickerson and R. A. Sperling, Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer???s disease, NeuroRX, vol.55, issue.Suppl 2, p.348360, 2005.
DOI : 10.1002/ana.20009

K. Liang, S. Aldape, M. D. Cha, and . Kuo, Identication of noninvasive imaging surrogates for brain tumor gene-expression modules, Proceedings of the National Academy of Sciences, p.52135218, 2008.

]. D. Disantis, Early American Radiology: the pioneer years, American Journal of Roentgenology, vol.147, issue.4, p.850853, 1986.
DOI : 10.2214/ajr.147.4.850

]. G. Downing, Biomarkers Denitions Working Group. Biomarkers and Surrogate Endpoints, Clinical Pharmacology & Therapeutics, vol.69, pp.8995-9001, 2001.

]. E. Eisenhauer, J. Bogaerts, P. Therasse, L. H. Schwartz, D. Sargent et al., New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1), European Journal of Cancer, vol.45, issue.2, pp.228247-228270, 2009.
DOI : 10.1016/j.ejca.2008.10.026

]. M. Filippi, P. Preziosa, and M. A. Rocca, Magnetic resonance outcome measures in multiple sclerosis trials, Current Opinion in Neurology, vol.27, issue.3, pp.290299-2014, 2014.
DOI : 10.1097/WCO.0000000000000095

]. M. Filippi, M. A. Rocca, O. Ciccarelli, N. De-stefano, N. Evangelou et al., Frederiksenet al. MRI criteria for the diagnosis of multiple sclerosis : MAGNIMS consensus guidelines, The Lancet Neurology, vol.15, issue.3, pp.292303-2016, 2016.

]. J. Fletcher, B. Djulbegovic, H. P. Soares, B. A. Siegel, V. J. Lowe et al., Avrilet al. Recommendations on the use of 18F-FDG PET in oncology, Journal of Nuclear Medicine, vol.49, issue.3, p.480508, 2008.

]. R. Frank and R. Hargreaves, Clinical biomarkers in drug discovery and development, Nature Reviews Drug Discovery, vol.75, issue.7, p.566, 2003.
DOI : 10.1177/009127001773744260

]. J. Garcia-donas-2013, C. Garcia-donas, E. Rodriguez-antona, and . Jonasch, Molecular Markers to Predict Response to Therapy, Seminars in oncology, pp.444458-444489, 2013.
DOI : 10.1053/j.seminoncol.2013.05.005

]. M. Garrett and P. Workman, Discovering novel chemotherapeutic drugs for the third millennium, European Journal of Cancer, vol.35, issue.14, p.20102030, 1999.
DOI : 10.1016/S0959-8049(99)00280-4

]. B. Gibaud, G. Kassel, M. Dojat, B. Batrancourt, F. Michel et al., NeuroLOG : sharing neuroimaging data using an ontology-based federated approach, AMIA... Annual Symposium proceedings [electronic resource]/AMIA Symposium. AMIA Symposium., volume 2011, p.47280, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00683087

]. A. Giorgio and N. Stefano, Clinical use of brain volumetry, Journal of Magnetic Resonance Imaging, vol.37, issue.1, p.114, 2013.
DOI : 10.1002/jmri.23999

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/jmri.23999

]. G. Gkoutos, P. N. Schoeld, and R. Hoehndorf, The Units Ontology: a tool for integrating units of measurement in science, Database, vol.7, issue.suppl_2, pp.33-2012, 2012.
DOI : 10.1186/1471-2105-7-97

]. E. Bibliographie, G. Green, D. J. Yothers, and . Sargent, Surrogate endpoint validation : statistical elegance versus clinical relevance. Statistical methods in medical research, 2008.

]. P. Grenon, B. Smith, and L. Goldberg, Biodynamic ontology : applying BFO in the biomedical domain. Studies in health technology and informatics, p.2038, 2004.

]. T. Gruber, A translation approach to portable ontology specications Knowledge acquisition, 1993.
DOI : 10.1006/knac.1993.1008

URL : http://tomgruber.org/writing/ontolingua-kaj-1993.pdf

]. D. Gutman, L. A. Cooper, S. N. Hwang, C. A. Holder, J. Gao et al., MR imaging predictors of molecular prole and survival : multi-institutional study of the TCGA glioblastoma data set, Radiology, vol.267, issue.2, pp.560569-2013, 2013.

]. E. Haacke, R. W. Brown, R. Thompson, and R. Venkatesan, Magnetic resonance imaging : physical principles and sequence design, 1999.

]. D. Hanahan and R. A. Weinberg, The hallmarks of cancer. cell, p.5770, 2000.

]. R. Harris, Nuclear magnetic resonance spectroscopy, 1986.

]. R. Hewitt and P. Watson, Dening biobank, Biopreservation and biobanking, vol.11, issue.5, p.309315, 2013.

]. L. Hu, J. M. Eschbacher, A. C. Dueck, J. E. Heiserman, S. Liu et al., Correlations between perfusion MR imaging cerebral blood volume, microvessel quantication , and clinical outcome using stereotactic analysis in recurrent high-grade glioma, American Journal of Neuroradiology, vol.33, issue.1, pp.6976-2012, 2012.

]. S. Huettel, A. W. Song, and G. Mccarthy, Functional magnetic resonance imaging, 2004.

]. R. Hussein, U. Engelmann, A. Schroeter, and H. P. Meinzer, DICOM Structured Reporting, RadioGraphics, vol.24, issue.3, p.897909, 2004.
DOI : 10.1148/rg.243035722

]. A. Hutter, K. E. Schwetye, A. J. Bierhals, and R. C. Mckinstry, Brain neoplasms: epidemiology, diagnosis, and prospects for cost-effective imaging, Neuroimaging Clinics of North America, vol.13, issue.2, p.237250, 2003.
DOI : 10.1016/S1052-5149(03)00016-9

. Tomlinson, Multicenter accuracy and interobserver agreement of spot sign identication in acute intracerebral hemorrhage, Stroke, vol.45, issue.1, pp.107112-2014

]. R. Jain, L. M. Poisson, D. Gutman, L. Scarpace, S. N. Hwang et al., Outcome Prediction in Patients with Glioblastoma by Using Imaging, Clinical, and Genomic Biomarkers: Focus on the Nonenhancing Component of the Tumor, Radiology, vol.272, issue.2, pp.484493-2014, 2014.
DOI : 10.1148/radiol.14131691

]. R. John and P. R. Innocent, Modeling Uncertainty in Clinical Diagnosis Using Fuzzy Logic, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.35, issue.6, p.13401350, 2005.
DOI : 10.1109/TSMCB.2005.855588

D. M. Channin, D. Hovsepian, and . Rubin, Toward best practices in radiology reporting 1, Radiology, vol.252, issue.3, p.852856, 2009.

]. C. Kahn, L. M. Roberts, K. A. Shaer, and P. Haddawy, Construction of a Bayesian network for mammographic diagnosis of breast cancer, Computers in biology and medicine, p.1929, 1997.
DOI : 10.1016/S0010-4825(96)00039-X

H. W. Kao, S. W. Chiang, H. W. Chung, F. Y. Tsai, and C. Y. Chen, Advanced MR Imaging of Gliomas: An Update, BioMed Research International, vol.33, issue.8, pp.28-32, 2013.
DOI : 10.3174/ajnr.A2986

URL : https://doi.org/10.1155/2013/970586

]. R. Katz, Biomarkers and surrogate markers: An FDA perspective, NeuroRX, vol.23, issue.Suppl 5, pp.189195-189226, 2004.
DOI : 10.1016/S0197-2456(02)00264-7

URL : https://link.springer.com/content/pdf/10.1602%2Fneurorx.1.2.189.pdf

. Sullivan, The emerging science of quantitative imaging biomarkers

]. P. Kinahan and J. W. Fletcher, Positron emission tomographycomputed tomography standardized uptake values in clinical practice and assessing response to therapy, Seminars in Ultrasound, CT and MRI, p.496505, 2010.

]. D. Kopans, Standardized mammography reporting, Radiologic Clinics of North America, vol.30, issue.1, p.257264, 1992.

]. D. Korenblum, D. Rubin, S. Napel, C. Rodriguez, and C. Beaulieu, Managing Biomedical Image Metadata for Search and Retrieval of Similar Images, Journal of Digital Imaging, vol.15, issue.4, p.739748, 2011.
DOI : 10.1197/jamia.M2522

]. A. Kumar and B. Smith, The Universal Medical Language System and the Gene Ontology: Some Critical Reflections, Annual Conference on Articial Intelligence, p.135148, 2003.
DOI : 10.1007/978-3-540-39451-8_11

]. C. La-fougère, B. Suchorska, P. Bartenstein, F. W. Kreth, and J. Tonn, Molecular imaging of gliomas with PET: Opportunities and limitations, Neuro-Oncology, vol.16, issue.33, pp.54-2011, 2011.
DOI : 10.2174/092986709789712844

]. R. Lacson, K. P. Andriole, L. M. Prevedello, and R. Khorasani, Information from Searching Content with an Ontology-Utilizing Toolkit (iSCOUT), Journal of Digital Imaging, vol.2011, issue.1, 2012.
DOI : 10.1214/ss/1177010638

URL : http://europepmc.org/articles/pmc3389089?pdf=render

C. Finn, M. Casilla, N. Fazzari, H. W. Srivastava, and . Yeung, Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging : the visual response score and the change in total lesion glycolysis, Clinical Positron Imaging, vol.2, issue.3, pp.159-171, 1999.

]. P. Lavin and G. Flowerdew, Studies in variation associated with the measurement of solid tumors, Cancer, vol.38, issue.5, p.12861290, 1980.
DOI : 10.1002/1097-0142(19800901)46:5<1286::AID-CNCR2820460533>3.0.CO;2-F

L. Bihan-1986, ]. D. Le-bihan, E. Breton, D. Lallemand, P. Grenier et al., MR imaging of intravoxel incoherent motions : application to diusion and perfusion in neurologic disorders, Radiology, vol.161, issue.2, p.401407, 1986.

L. Bihan, D. Le-bihan, J. F. Mangin, C. Poupon, C. A. Clark et al., Diusion tensor imaging : concepts and applications, Journal of magnetic resonance imaging, vol.13, issue.4, p.534546, 2001.

L. Bihan-2003 and ]. D. Bihan, Looking into the functional architecture of the brain with diusion MRI, Nature Reviews Neuroscience, vol.4, issue.6, p.480, 2003.

L. Bihan-2013 and ]. D. Bihan, Apparent diusion coecient and beyond : what diusion MR imaging can tell us about tissue structure, 2013.

]. M. Levy, J. B. Freymann, J. S. Kirby, A. Fedorov, F. M. Fennessy et al., Informatics methods to enable sharing of quantitative imaging research data, Magnetic Resonance Imaging, vol.30, issue.9, pp.12491256-2012, 2012.
DOI : 10.1016/j.mri.2012.04.007

]. T. Lynda, Ontologie de partage de données et d'outils de traitement dans le domaine de la neuroimagerie, 2008.

]. J. Malone, E. Holloway, T. Adamusiak, M. Kapushesky, J. Zheng et al., Modeling sample variables with an Experimental Factor Ontology, Bioinformatics, vol.11, issue.8, p.11121118, 2010.
DOI : 10.1017/S0269888900007797

URL : https://hal.archives-ouvertes.fr/hal-00721833

]. E. Marrer and F. Dieterle, Promises of Biomarkers in Drug Development ? A Reality Check, Chemical Biology & Drug Design, vol.11, issue.6, p.381, 2007.
DOI : 10.1007/BF03256453

]. D. Miller, Biomarkers and surrogate outcomes in neurodegenerative disease: Lessons from multiple sclerosis, NeuroRX, vol.59, issue.Suppl 3, pp.284-294, 2004.
DOI : 10.1136/jnnp.59.3.306

URL : https://link.springer.com/content/pdf/10.1602%2Fneurorx.1.2.284.pdf

]. C. Moertel and J. A. Hanley, The eect of measuring error on the results of therapeutic trials in advanced cancer, Cancer, vol.38, issue.1, p.388394, 1976.

C. Mungall, G. Gkoutos, N. Washington, and S. Lewis, Representing Phenotypes in OWL, Proceedings of the OWLED 2007 Workshop on OWL : Experience and Directions. Innsbruck, Austria Edited by Golbreich C, p.99, 2007.

]. N. Noy, N. H. Shah, P. L. Whetzel, B. Dai, M. Dorf et al., BioPortal: ontologies and integrated data resources at the click of a mouse, Nucleic Acids Research, vol.36, issue.suppl_2, pp.170-173, 2009.
DOI : 10.1093/nar/gkn317

URL : https://hal.archives-ouvertes.fr/hal-00492020

]. H. Oberkampf, S. Zillner, B. Bauer, and M. Hammon, Interpreting Patient Data using Medical Background Knowledge, ICBO, vol.897, issue.87, pp.3-2012, 2012.

H. Oberkampf, S. Zillner, J. A. Overton, B. Bauer, A. Cavallaro et al., Semantic representation of reported measurements in radiology, BMC Medical Informatics and Decision Making, vol.77, issue.Suppl 1, pp.5-2016, 2016.
DOI : 10.1016/j.ijmedinf.2007.11.003

]. J. O-'connor, A. Jackson, M. C. Asselin, D. L. Buckley, G. J. Parker et al., Quantitative imaging biomarkers in the clinical development of targeted therapeutics : current and future perspectives. The lancet oncology, pp.766776-766807, 2008.

]. B. Ofoghi, G. H. Campos, K. Verspoor, and F. J. Sanchez, BiomR- KRS : a biomarker retrieval and knowledge reasoning system, Proceedings of the Seventh Australasian Workshop on Health Informatics and Knowledge Management, pp.3139-2014, 2014.

M. G. Francis, P. Friedrich, E. Leeson, S. Nagel, F. E. Plein et al., Imaging in population science : cardiovascular magnetic resonance in 100,000 participants of UK Biobank-rationale, challenges and approaches, Journal of Cardiovascular Magnetic Resonance, vol.15, issue.1, pp.46-2013

C. Sormani, S. Enzinger, J. Ropele, J. Alonso, and . Sastre-garriga, Brain atrophy and lesion load predict long term disability in multiple sclerosis, Journal of Neurology Neurosurgery & Psychiatry, vol.84, issue.10, pp.1082-1091

N. Porz, S. Bauer, A. Pica, P. Schucht, J. Beck et al., Multi-Modal Glioblastoma Segmentation: Man versus Machine, PLoS ONE, vol.119, issue.5, pp.96873-2014, 2014.
DOI : 10.1371/journal.pone.0096873.s001

URL : http://doi.org/10.1371/journal.pone.0096873

]. J. Prescott, Quantitative imaging biomarkers : the application of advanced image processing and analysis to clinical and preclinical decision Bibliographie 169, 2013.

. Sorensen, Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging, American Journal of Roentgenology, vol.178, issue.3, p.711716, 2002.

]. E. Purcell, H. C. Torrey, and R. V. Pound, Resonance Absorption by Nuclear Magnetic Moments in a Solid, Physical Review, vol.79, issue.1-2, p.37, 1946.
DOI : 10.1007/BF01349398

W. A. Nowlan, S. Kay, and A. L. Rector, Foundations for an electronic medical record, Methods Inf Med, vol.30, issue.3, p.179186, 1991.

]. J. Rodriguez, A. Perez, D. Arteta, D. Tejedor, and J. A. Lozano, Using multidimensional bayesian network classiers to assist the treatment of multiple sclerosis, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.42, issue.6, pp.17051715-2012, 2012.

]. A. Rosenkrantz, M. Mendiratta-lala, B. J. Bartholmai, D. Ganeshan, R. G. Abramson et al., Clinical Utility of Quantitative Imaging, Academic Radiology, vol.22, issue.1, pp.3349-2015, 2015.
DOI : 10.1016/j.acra.2014.08.011

URL : http://europepmc.org/articles/pmc4259826?pdf=render

C. Rosse and J. L. Mejino-jr, A reference ontology for biomedical informatics: the Foundational Model of Anatomy, Journal of Biomedical Informatics, vol.36, issue.6, pp.478500-76, 2003.
DOI : 10.1016/j.jbi.2003.11.007

]. D. Rubin, Creating and Curating a Terminology for Radiology: Ontology Modeling and Analysis, Journal of Digital Imaging, vol.19, issue.Suppl 1, p.355362, 2008.
DOI : 10.1007/s10278-007-9073-0

URL : http://europepmc.org/articles/pmc3043845?pdf=render

]. D. Rubin, C. Rodriguez, P. Shah, and C. F. Beaulieu, iPad : Semantic annotation and markup of radiological images, AMIA, p.50, 2008.

. Moreira, Automated tracking of quantitative assessments of tumor burden in clinical trials, Translational oncology, vol.7, issue.1, pp.2335-68, 2014.

]. M. Bibliographie, R. Rudin, and . Weissleder, Molecular imaging in drug discovery and development, Nature reviews Drug discovery, vol.2, issue.2, p.123131, 2003.

]. A. Ruttenberg, T. Clark, W. Bug, M. Samwald, O. Bodenreider et al., Advancing translational research with the Semantic Web, BMC Bioinformatics, vol.8, issue.Suppl 3, p.2, 2007.
DOI : 10.1186/1471-2105-8-S3-S2

]. R. Sanderson, P. Ciccarese, H. Van-de-sompel, S. Bradshaw, D. Brickley et al., Open annotation data model, p.2013, 2013.
DOI : 10.1145/2464464.2464474

]. P. Schaefer, P. E. Grant, and R. G. Gonzalez, Diusion-weighted MR imaging of the brain 1, Radiology, vol.217, issue.2, p.331345, 2000.

]. R. Scheuermann, W. Ceusters, and B. Smith, Toward an ontological treatment of disease and diagnosis, Summit on translational bioinformatics, vol.2009, issue.108, 2009.

S. Arze, Y. W. Nadendla, M. Chang, V. Mazaitis, G. Felix et al., Disease Ontology : a backbone for disease semantic integration, Nucleic acids research, vol.40, issue.D1, pp.940-946, 2011.

S. Schulz, H. Stenzhorn, M. Boeker, and B. Smith, Strengths and limitations of formal ontologies in the biomedical domain. Revista electronica de comunicacao, informacao & inovacao em saude : RECIIS, p.31, 2009.

S. Seifert, M. Kelm, M. Moeller, S. Mukherjee, A. Cavallaro et al., Semantic annotation of medical images, Medical Imaging 2010: Advanced PACS-based Imaging Informatics and Therapeutic Applications, 2010.
DOI : 10.1117/12.844207

]. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, Pellet : A practical owl-dl reasoner. Web Semantics : science, services and agents on the World Wide Web, p.5153, 2007.
DOI : 10.1016/j.websem.2007.03.004

]. B. Smith, B. Ceusters, J. Klagges, A. Köhler, J. Kumar et al., Relations in biomedical ontologies, Genome Biology, vol.6, issue.5, pp.46-75, 2005.
DOI : 10.1186/gb-2005-6-5-r46

]. B. Smith, T. Kumar, and . Bittner, Basic formal ontology for bioinformatics, Journal of Information Systems, vol.94, pp.116-75, 2005.

]. B. Smith, From concepts to clinical reality: An essay on the benchmarking of biomedical terminologies, Journal of Biomedical Informatics, vol.39, issue.3, pp.288298-98, 2006.
DOI : 10.1016/j.jbi.2005.09.005

URL : https://doi.org/10.1016/j.jbi.2005.09.005

]. B. Smith, D. Kusnierczyk, W. Schober, and . Ceusters, Towards a reference terminology for ontology research and development in the biomedical domain, In KR-MED, pp.5766-125, 2006.

K. Goldberg, A. Eilbeck, and C. J. Ireland, The OBO Foundry : coordinated evolution of ontologies to support biomedical data integration, Nature biotechnology, vol.25, issue.98, pp.12511255-75, 2007.

]. E. Smith, Clinical applications of imaging biomarkers. Part 1. The neuroradiologist's perspective. The British journal of radiology, 2014.

]. B. Smith, M. Arabandi, M. Brochhausen, P. Calhoun, S. Ciccarese et al., Biomedical imaging ontologies : A survey and proposal for future work, Journal of pathology informatics, vol.6, p.2015, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212447

]. J. Starkbaum, H. Gottweis, U. Gottweis, C. Kleiser, J. Linseisen et al., Public Perceptions of Cohort Studies and Biobanks in Germany, Biopreservation and Biobanking, vol.12, issue.2, pp.121130-2014, 2014.
DOI : 10.1089/bio.2013.0071

G. Kassel and B. Gibaud, Towards an ontology for sharing medical images and regions of interest in neuroimaging, Journal of Biomedical Informatics, vol.41, issue.5, p.766778, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00344293

H. B. Knopp, T. Y. Larsson, N. A. Lee, G. J. Mayr, and . Parker, Estimating kinetic parameters from dynamic contrast-enhanced T 1-weighted MRI Bibliographie of a diusable tracer : standardized quantities and symbols, Journal of Magnetic Resonance Imaging, vol.10, issue.35, pp.223232-223259, 1999.

]. P. Tofts, T1-weighted DCE imaging concepts : modelling, acquisition and analysis. signal, p.400, 2010.

E. R. Velazquez, R. Meier, W. D. Dunn-jr, B. Alexander, R. Wiest et al., Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features, Scientic reports, p.2015, 2015.
DOI : 10.1007/s00234-015-1576-7

S. Verma, A. Rajesh, H. Morales, L. Lemen, G. Bills et al., Assessment of Aggressiveness of Prostate Cancer: Correlation of Apparent Diffusion Coefficient With Histologic Grade After Radical Prostatectomy, American Journal of Roentgenology, vol.196, issue.2, p.374381, 2011.
DOI : 10.2214/AJR.10.4441

]. E. Vos, G. J. Litjens, T. Kobus, T. Hambrock, C. A. Hulsbergenvan-de-kaa et al., Assessment of Prostate Cancer Aggressiveness Using Dynamic Contrast-enhanced Magnetic Resonance Imaging at 3 T, European Urology, vol.64, issue.3, pp.448455-2013, 2013.
DOI : 10.1016/j.eururo.2013.05.045

]. R. Wahl, K. Zasadny, M. Helvie, G. D. Hutchins, B. Weber et al., Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation., Journal of Clinical Oncology, vol.11, issue.11, pp.21012111-21012141, 1993.
DOI : 10.1200/JCO.1993.11.11.2101

]. R. Wahl, H. Jacene, Y. Kasamon, and M. A. Lodge, From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors, Journal of Nuclear Medicine, vol.50, issue.Suppl_1, pp.122-150, 2009.
DOI : 10.2967/jnumed.108.057307

URL : http://jnm.snmjournals.org/content/50/Suppl_1/122S.full.pdf

]. J. Waterton, What imaging biomarkers are and how they are used, 2008.

]. W. Weber, Positron Emission Tomography As an Imaging Biomarker, Journal of Clinical Oncology, vol.24, issue.20, p.32823292, 2006.
DOI : 10.1200/JCO.2006.06.6068

]. W. Weber, Assessing Tumor Response to Therapy, Journal of Nuclear Medicine, vol.50, issue.Suppl_1, pp.1-10, 2009.
DOI : 10.2967/jnumed.108.057174

URL : http://jnm.snmjournals.org/content/50/Suppl_1/1S.full.pdf

]. C. Weng, S. W. Tu, I. Sim, and R. Richesson, Formal representation of eligibility criteria: A literature review, Journal of Biomedical Informatics, vol.43, issue.3, p.451467, 2010.
DOI : 10.1016/j.jbi.2009.12.004

]. C. West and N. Charnley, The potential of PET to increase understanding of the biological basis of tumour and normal tissue response to radiotherapy, The British Journal of Radiology, vol.28, issue.1, p.2014, 2014.
DOI : 10.1088/0031-9155/50/6/001

. Donnan, Acute stroke imaging research roadmap, American Journal of Neuroradiology, vol.29, issue.5, pp.23-30, 2008.

M. Woodbridge, G. Fagiolo, and D. P. O-'regan, MRIdb: Medical Image Management for Biobank Research, Journal of Digital Imaging, vol.23, issue.6, pp.886890-2013
DOI : 10.1007/s10278-009-9230-8

URL : https://link.springer.com/content/pdf/10.1007%2Fs10278-013-9604-9.pdf

C. A. Woodeld, G. A. Tung, D. J. Grand, J. A. Pezzullo, J. T. Machan et al., Diffusion-Weighted MRI of Peripheral Zone Prostate Cancer: Comparison of Tumor Apparent Diffusion Coefficient With Gleason Score and Percentage of Tumor on Core Biopsy, American Journal of Roentgenology, vol.194, issue.4, pp.316-322, 2010.
DOI : 10.2214/AJR.09.2651

]. T. Yankeelov, M. Lepage, A. Chakravarthy, E. E. Broome, K. J. Niermann et al., Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results, Magnetic Resonance Imaging, vol.25, issue.1, pp.113-139, 2007.
DOI : 10.1016/j.mri.2006.09.006

M. A. Zahra, K. G. Hollingsworth, E. Sala, D. J. Lomas, and L. T. Tan, Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy . The lancet oncology, p.6374, 2007.

C. Zarow, H. V. Vinters, W. G. Ellis, M. W. Weiner, D. Mungas et al., Correlates of hippocampal neuron number in Alzheimer's disease and ischemic vascular dementia, Annals of Neurology, vol.54, issue.6, p.896903, 2005.
DOI : 10.1212/WNL.54.3.581

]. B. Zhao, G. R. Oxnard, C. S. Moskowitz, M. G. Kris, W. Pao et al., A Pilot Study of Volume Measurement as a Method of Tumor Response Evaluation to Aid Biomarker Development, Clinical Cancer Research, vol.16, issue.18, pp.46474653-2010, 2010.
DOI : 10.1158/1078-0432.CCR-10-0125

]. H. Zheng, B. Y. Kang, and H. G. Kim, An Ontology-Based Bayesian Network Approach for Representing Uncertainty in Clinical Practice Guidelines, Uncertainty Reasoning for the Semantic Web I, p.161173, 2008.
DOI : 10.1136/jamia.1998.0050357

]. B. Zussman, P. Jabbour, K. Talekar, R. Gorniak, and A. E. Flanders, Sources of variability in computed tomography perfusion: implications for acute stroke management, Neurosurgical Focus, vol.25, issue.6, p.8, 2011.
DOI : 10.1007/s00234-007-0336-8

URL : http://thejns.org/doi/pdf/10.3171/2011.3.FOCUS1136