L. Cytotoxicité-du and D. , des AuNPs-DTDTPA, des TiONts-AuNPs-PEG 3000 et des TiONts-AuNPs-PEG 3000 -DTX est évaluée sur les cellules PC-3

U. Brièvement and D. Gamme-croissante-de, 5 nM, 1 nM, 5 nM, 10 nM, 20 nM, 50 nM, 100 nM, 200 nM et 500 nM) est utilisée pour évaluer la molécule libre et les TiONts-AuNPs-PEG 3000 -DTX. Pour une concentration fixée en DTX, la quantité engagée des TiONts-AuNPs-PEG 3000 (sans DTX) (courbe verte) correspond à la quantité de TiONts-AuNPs-PEG 3000 présents sur les TiONts-AuNPs-PEG 3000 -DTX (courbe orange), Quant à la quantité engagée des AuNPs-DTDTPA (courbe bleu), elle correspond à la quantité de nanoparticules d'or modifiées présentes sur les TiONts-AuNPs-PEG 3000 -DTX

L. Résultats, M. Sur-la-lignée-cellulaire, and P. , montrent que les AuNPs-DTDTPA et les TiONts-AuNPs-PEG 3000 ne présentent pas de cytotoxicité sur la gamme étudiée à savoir de 4,1.10 -3 à 4,1 ?g.mL -1 de TiONts-AuNPs-PEG 3000 et 3.10 -3 à 3 ?g.mL -1 d'AuNPs-DTDTPA (à savoir que 100 nM de DTX correspond à une quantité de 0,2 ?g de nanohybride par puits soit 1,0 ?g.mL -1 , rapport établi par ATG) (Figure 167)

. Cette-valeur-est-en-accord, 2 nM) et avec la littérature [270]. Néanmoins, l'IC 50 du DTX diffère de celle obtenue dans le chapitre 3 (IC 50 : 20 nM) alors que le lot de DTX utilisé est le même (Figure 144) Ceci pourrait alors confirmer l'hypothèse d'un problème survenu lors de la culture cellulaire PC-3 pour ces expériences en fonction de la longueur de la chaîne de PEG. L'efficacité plus importante du nanohybride TiONts-AuNPs-PEG 3000 -DTX (IC 50 = 82 nM) par rapport au nanohybride TiONts-PEG 3000 -DTX (dit de génération 1, chapitre 2) (IC 50 = 360 nM), atteste d'un meilleur accès du DTX aux microtubles. Ces dernières étant dans la cellule, cela semble traduire une meilleure internalisation des TiONts-AuNPs-PEG 3000 -DTX dans les cellules, par rapport aux TiONts-PEG 3000 -DTX de génération 1. Ces nanohybrides étant mieux dispersés, plus stables en suspension, avec de surcroît un potentiel zêta à pH 7,4 moins négatif (-7 mV vs. -20 mV), tout ceci n'est pas surprenant et devrait favoriser l'internalisation cellulaire (? Chapitre 1. ? I.3.4. et ? III.). Finalement ces résultats très concluants car même si la cytotoxicité du nanohybride TiONts-AuNPs-PEG 3000 -DTX est plus faible que le DTX seul, le DTX garde une activité cytotoxique lorsqu'il est greffé sur le nanohybride

J. Mirjolet, A. Boudon, S. Loiseau, T. Chevrier, R. Gautier et al., 207 The enhancement of radiotherapy efficacy with docetaxel-titanate nanotubes as a new nanohybrid for localized high risk prostate cancer, European Journal of Cancer, vol.50, pp.67-67, 2014.
DOI : 10.1016/S0959-8049(14)70333-8

C. Mirjolet, J. Boudon, A. Loiseau, S. Chevrier, R. Boidot et al., Docetaxel-titanate nanotubes enhance radiosensitivity in an androgen-independent prostate cancer model, P5 Docetaxel-titanate nanotubes enhance radiosensitivity Cancer statistics CA: A Cancer Journal for Clinicians, pp.6357-6364, 2016.
DOI : 10.2147/IJN.S139167

URL : https://hal.archives-ouvertes.fr/hal-01614449

C. Holohan, Cancer drug resistance: an evolving paradigm. Nature reviews. Cancer, 2013, pp.714-726
DOI : 10.1038/nrc3599

I. Brigger, C. Dubernet, and P. Couvreur, Nanoparticles in cancer therapy and diagnosis, Advanced Drug Delivery Reviews, vol.54, issue.5, pp.631-651, 2002.
DOI : 10.1016/S0169-409X(02)00044-3

M. Shi, J. Lu, and M. S. Shoichet, Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer, Journal of Materials Chemistry, vol.105, issue.31, pp.19-5485, 2009.
DOI : 10.1002/adfm.20081271

B. Park, Current and future applications of nanotechnology. Issues in environmental Science and Technology, pp.1-18, 2007.

T. L. Doane and C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy, Chemical Society Reviews, vol.132, issue.7, pp.41-2885, 2012.
DOI : 10.1021/ja1049093

S. M. Moghimi, A. C. Hunter, and J. C. Murray, Long-circulating and target-specific nanoparticles: theory to practice, Pharmacological reviews, vol.53, issue.2, pp.283-318, 2001.

K. Maruyama, Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects, Advanced Drug Delivery Reviews, vol.63, issue.3, pp.161-169, 2011.
DOI : 10.1016/j.addr.2010.09.003

H. Huang, Inorganic nanoparticles for cancer imaging and therapy, Journal of Controlled Release, vol.155, issue.3, pp.344-357, 2011.
DOI : 10.1016/j.jconrel.2011.06.004

E. P. Goldberg, Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery, Journal of Pharmacy and Pharmacology, vol.17, issue.Suppl., pp.159-180, 2002.
DOI : 10.1016/0305-7372(90)90045-H

URL : http://onlinelibrary.wiley.com/doi/10.1211/0022357021778268/pdf

K. Y. Choi, Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives, Nanoscale, vol.39, issue.2, pp.330-342, 2012.
DOI : 10.1039/b920377j

URL : http://europepmc.org/articles/pmc3629960?pdf=render

A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, issue.18, pp.3995-4021, 2005.
DOI : 10.1016/j.biomaterials.2004.10.012

A. S. Karakoti, PEGylated Inorganic Nanoparticles, Angewandte Chemie International Edition, vol.132, issue.9, pp.1980-1994, 2011.
DOI : 10.1021/ja1005493

N. Erathodiyil and J. Y. Ying, Functionalization of Inorganic Nanoparticles for Bioimaging Applications, Accounts of Chemical Research, vol.44, issue.10, pp.925-935, 2011.
DOI : 10.1021/ar2000327

L. Wang, Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes, International Journal of Nanomedicine, issue.6, pp.2641-2652, 2011.
DOI : 10.2147/IJN.S24167

T. J. Guillaume, Thèse: Nanoparticules de magnétite fonctionnalisées pour l'imagerie bimodale IRM/TEP Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization, International Journal of Radiation Oncology*Biology*Physics, issue.1, pp.94-189, 2015.

J. Xie, S. Lee, and X. Chen, Nanoparticle-based theranostic agents, Advanced Drug Delivery Reviews, vol.62, issue.11, pp.1064-1079, 2010.
DOI : 10.1016/j.addr.2010.07.009

URL : http://europepmc.org/articles/pmc2988080?pdf=render

J. Xie and S. Jon, Magnetic Nanoparticle-Based Theranostics, Theranostics, vol.2, issue.1, pp.122-124, 2012.
DOI : 10.7150/thno.4051

URL : http://www.thno.org/v02p0122.pdf

F. H. James, N. S. Daniel, M. S. Henry, and C. , The use of gold nanoparticles to enhance radiotherapy in mice The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma: A proof-of-concept, Physics in Medicine and Biology Radiotherapy and Oncology, vol.49, issue.1081, pp.136-142, 2004.

M. Ferrari and . Nanovector-therapeutics, Nanovector therapeutics, Current Opinion in Chemical Biology, vol.9, issue.4, pp.343-346, 2005.
DOI : 10.1016/j.cbpa.2005.06.001

Z. Liu, Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery Titanate nanotubes: towards a novel and safer nanovector for cardiomyocytes, Nano Research Nanotoxicology, vol.2, issue.2 76, pp.1131-1173, 2009.

X. Références, A. Verma, and F. Stellacci, Effect of Surface Properties on Nanoparticle?Cell Interactions, Small, vol.6, issue.1, pp.12-21, 2010.

L. Brannon-peppas, J. O. Blanchette, and D. , Nanoparticle and targeted systems for cancer therapy Advanced Drug Delivery Reviews Nanocarriers as an emerging platform for cancer therapy, Nat Nano, vol.64, issue.212, pp.751-760, 2007.

R. Misra, S. Acharya, S. K. Sahoo, and T. , Cancer nanotechnology: application of nanotechnology in cancer therapy Drug Discovery Today Effect of Intratumoral Injection on the Biodistribution and the Therapeutic Potential of HPMA Copolymer-Based Drug Delivery Systems, Neoplasia, issue.810, pp.15-788, 2006.

J. Verma, S. Lal, and C. J. Van-noorden, Abstract, European Journal of Nanomedicine, vol.93, issue.4, pp.271-287, 2015.
DOI : 10.2147/IJN.S596

M. E. Davis, D. M. Shin, and T. , Nanoparticle therapeutics: an emerging treatment modality for cancer Nature reviews Drug discovery, Theranostic Nanomedicine. Accounts of Chemical Research, vol.7, issue.910, pp.771-782, 2008.
DOI : 10.1142/9789814287005_0025

C. Sánchez, Expression of multidrug resistance proteins in prostate cancer is related with cell sensitivity to chemotherapeutic drugs. The Prostate Engineered Nanoparticles for Drug Delivery in Cancer Therapy, Angewandte Chemie International Edition, vol.69, issue.3646, pp.1448-1459, 2009.

M. O. Oyewumi, Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice, Journal of Controlled Release, vol.95, issue.3, pp.95-613, 2004.
DOI : 10.1016/j.jconrel.2004.01.002

R. Samain and N. B. Merchant, Ciblage thérapeutique du microenvironnement tumoral: exemple du cancer du pancréas Adjuvant Chemoradiation Therapy for Pancreatic Adenocarcinoma: Who Really Benefits, Journal of the American College of Surgeons, vol.208, issue.5, pp.39-829, 2009.

N. Chanda, Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA- 198

L. Bregoli, Nanomedicine applied to translational oncology: A future perspective on cancer treatment, Nanomedicine: Nanotechnology, Biology and Medicine, vol.12, issue.1, pp.81-103, 2014.
DOI : 10.1016/j.nano.2015.08.006

H. Xie, Effect of intratumoral administration on biodistribution of 64 Cu-labeled nanoshells, Int J Nanomedicine, issue.7, pp.2227-2238, 2012.

T. Lammers, Nanotheranostics and Image-Guided Drug Delivery: Current Concepts and Future Directions, Molecular Pharmaceutics, vol.7, issue.6, pp.1899-1912, 2010.
DOI : 10.1021/mp100228v

M. S. Muthu, Nanotheranostics ?? Application and Further Development of Nanomedicine Strategies for Advanced Theranostics, Theranostics, vol.4, issue.6, pp.660-677, 2014.
DOI : 10.7150/thno.8698

Z. Liu, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nature Nanotechnology, vol.47, issue.1, pp.47-52, 2007.
DOI : 10.1007/BF00046364

A. Louie and J. Park, Multimodality Imaging Probes: Design and Challenges. Chemical reviews Gold nanoparticles functionalized by gadolinium?DTPA conjugate of cysteine as a multimodal bioimaging agent, Bioorganic & Medicinal Chemistry Letters, vol.110, issue.487, pp.3146-3195, 2010.
DOI : 10.1021/cr9003538

URL : http://europepmc.org/articles/pmc2878382?pdf=render

E. C. Dreaden, Beating cancer in multiple ways using nanogold, Chemical Society Reviews, vol.20, issue.7, pp.3391-3404, 2011.
DOI : 10.1088/0957-4484/20/37/375101

URL : http://europepmc.org/articles/pmc5875987?pdf=render

N. Millot and X. Michalet, Rôle des interfaces sur les propriétés des nanomatériaux Habilitation à diriger des recherches, Vivo Imaging, and Diagnostics, pp.307-538, 2005.

X. Références, M. Daniel, and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology, Chemical reviews, vol.104, issue.1, pp.293-346, 2004.

X. Huang, S. Neretina, and M. A. El?sayed, Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications, Advanced Materials, vol.17, issue.126, pp.4880-4910, 2009.
DOI : 10.1088/0957-4484/17/17/024

S. Jiang, Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics, Nanoscale, vol.1, issue.8, pp.3127-3148, 2013.
DOI : 10.1038/ncomms1042

M. Liong, Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery, ACS Nano, vol.2, issue.5, pp.889-896, 2008.
DOI : 10.1021/nn800072t

M. Johannsen, Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial, International Journal of Hyperthermia, vol.172, issue.3, pp.315-323, 2007.
DOI : 10.1097/01.ju.0000144028.20928.af

B. Bonnemain, Superparamagnetic Agents in Magnetic Resonance Imaging: Physicochemical Characteristics and Clinical Applications A Review, Journal of Drug Targeting, vol.41, issue.1, pp.167-174, 1998.
DOI : 10.1148/radiology.196.2.7617871

D. B. Chithrani, Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy, Radiation Research, vol.173, issue.6, pp.719-747, 2010.
DOI : 10.1667/RR1984.1

G. Laurent, Nanoparticules d'or multifonctionnelles pour l'imagerie et la thérapie Iodine Contrast Medium Sensitizes Cultured Mammalian Cells to X Rays but Not to ? Rays Engineered nanoparticles as precise drug delivery systems, Radiation Research Journal of Cellular Biochemistry, vol.84, issue.626, pp.61-144, 1980.

S. K. Sahoo and V. Labhasetwar, Nanotech approaches to drug delivery and imaging. Drug Discovery Today, pp.1112-1120, 2003.
DOI : 10.1016/s1359-6446(03)02903-9

P. Couvreur, Nanocapsule technology: a review. Critical Reviews? in Therapeutic Drug Carrier Systems, 2002.
DOI : 10.1615/critrevtherdrugcarriersyst.v19.i2.10

T. K. Jain, Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier Surface-modified biodegradable albumin nano-and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats, Journal of the American Chemical Society European Journal of Pharmaceutics and Biopharmaceutics, vol.120, issue.433, pp.11092-11095, 1998.
DOI : 10.1021/ja973849x

R. Gref, The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres, Advanced Drug Delivery Reviews, vol.16, issue.2-3, pp.215-233, 1995.
DOI : 10.1016/0169-409X(95)00026-4

U. Sakulkhu, Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona, Biomaterials Science, vol.4, issue.8, pp.265-78, 2015.
DOI : 10.1038/srep05020

A. Gianella, Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in Experimental Cancer, ACS Nano, vol.5, issue.6, pp.4422-182, 2011.
DOI : 10.1021/nn103336a

URL : http://europepmc.org/articles/pmc3296132?pdf=render

J. Lee, Proteomics and biomarkers in clinical trials for drug development, Journal of Proteomics, vol.74, issue.12, pp.2632-2641, 2011.
DOI : 10.1016/j.jprot.2011.04.023

URL : http://europepmc.org/articles/pmc3158266?pdf=render

S. M. Janib, A. S. Moses, and J. A. Mackay, Imaging and drug delivery using theranostic nanoparticles, Advanced Drug Delivery Reviews, vol.62, issue.11, pp.62-1052, 2010.
DOI : 10.1016/j.addr.2010.08.004

URL : http://europepmc.org/articles/pmc3769170?pdf=render

H. Gao, W. Shi, and L. B. Freund, From The Cover: Mechanics of receptor-mediated endocytosis, Proceedings of the National Academy of Sciences of the United States of America, pp.102-9469, 2005.
DOI : 10.1209/epl/i2003-00438-4

H. F. Krug, P. Wick, A. L. Nel, and A. E. , Nanotoxicology: An Interdisciplinary Challenge, Angewandte Chemie International Edition, vol.3, issue.6, pp.1260-1278, 2009.
DOI : 10.1038/nnano.2008.113

X. Références and C. Relier, Study of TiO 2 P25 Nanoparticles Genotoxicity on Lung, Blood, and Liver Cells in Lung Overload and Non-Overload Conditions After Repeated Respiratory Exposure in Rats. Toxicological sciences : an official journal of the Society of Toxicology, pp.156-527, 2017.

F. Zhao, Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials, Small, vol.36, issue.10, pp.1322-1337, 2011.
DOI : 10.1016/j.ejps.2008.11.013

B. D. Chithrani, A. A. Ghazani, and W. C. Chan, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters, vol.6, issue.4, pp.662-668, 2006.
DOI : 10.1021/nl052396o

URL : http://web.ics.purdue.edu/~jfleary/nanomedicine_course_2011/Lecture_6/Lecture 6 References/Chan_uptake_2006.pdf

B. D. Chithrani, W. C. Chan-huynh, and N. T. , Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes, Nano Letters, vol.7, issue.6, pp.1542-1550, 2007.
DOI : 10.1021/nl070363y

S. M. Moghimi, A. C. Hunter, and J. C. Murray, Nanomedicine: current status and future prospects. The FASEB journal, pp.311-330, 2005.
DOI : 10.1096/fj.04-2747rev

C. He, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles, Biomaterials, vol.31, issue.13, pp.31-3657, 2010.
DOI : 10.1016/j.biomaterials.2010.01.065

P. Decuzzi, Size and shape effects in the biodistribution of intravascularly injected particles, Journal of Controlled Release, vol.141, issue.3, pp.320-327, 2010.
DOI : 10.1016/j.jconrel.2009.10.014

M. J. Ernsting, Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles, Journal of Controlled Release, vol.172, issue.3, pp.782-794, 2013.
DOI : 10.1016/j.jconrel.2013.09.013

Z. J. Deng, Differential plasma protein binding to metal oxide nanoparticles Covalent Surface Modification of Oxide Surfaces Dispersion of titanate nanotubes for nanomedicine: comparison of PEI and PEG nanohybrids, 455101. 88. Pujari, pp.53-6322, 2009.

V. Angeles, The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells Role of surface charge and oxidative stress in cytotoxicity of organic monolayercoated silicon nanoparticles towards macrophage NR8383 cells. Particle and fibre toxicology Targeting of nanoparticles to the clathrin-mediated endocytic pathway, ): p. 115103. 91. Bhattacharjee, Biochemical and Biophysical Research Communications, pp.25-26, 2007.

M. Rahman, Protein-Nanoparticle Interactions: The Bio-Nano Interface PEGylated nanoparticles for biological and pharmaceutical applications, Advanced Drug Delivery Reviews, vol.15, issue.3, pp.55-403, 2003.
DOI : 10.1007/978-3-642-37555-2

T. S. Levchenko, Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating PEGylation of nanoparticles improves their cytoplasmic transport, International Journal of Pharmaceutics International Journal of Nanomedicine, vol.240, issue.24, pp.735-741, 2002.

S. Sant, S. Poulin, and P. Hildgen, Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles, Journal of Biomedical Materials Research Part A, vol.45, issue.4, pp.885-895, 2008.
DOI : 10.1002/jbm.a.30711

Y. Hu, Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells, Journal of Controlled Release, vol.118, issue.1, pp.7-17, 2007.
DOI : 10.1016/j.jconrel.2006.11.028

S. A. Iijima, Helical microtubules of graphitic carbon. nature Effect of Reaction Parameters on Composition and Morphology of Titanate Nanomaterials, Journal of Physical Chemistry C, issue.634829, pp.354-113, 1991.
DOI : 10.1038/354056a0

D. V. Bavykin, F. C. Walsh-kasuga, and T. , Titanate and titania nanotubes: synthesis, properties and applications Formation of titanium oxide nanotube, Royal Society of Chemistry. Langmuir, vol.103, issue.12, pp.14-3160, 1998.

M. Zhang, Y. Bando, and K. Wada, Sol-gel template preparation of TiO 2 nanotubes and nanorods, Journal of Materials Science Letters, vol.20, issue.2, pp.167-170, 2001.
DOI : 10.1023/A:1006739713220

P. Hoyer, Formation of a Titanium Dioxide Nanotube Array, Langmuir, vol.12, issue.6, pp.1411-1413, 1996.
DOI : 10.1021/la9507803

X. Références and D. Gong, Titanium oxide nanotube arrays prepared by anodic oxidation, Journal of Materials Research, issue.12, pp.16-3331, 2001.

J. Zhao, Fabrication of titanium oxide nanotube arrays by anodic oxidation, Solid State Communications, vol.134, issue.10, pp.705-710, 2005.
DOI : 10.1016/j.ssc.2005.02.028

H. Tsuchiya, Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes, Electrochemistry Communications, vol.7, issue.6, pp.576-580, 2005.
DOI : 10.1016/j.elecom.2005.04.008

X. Wu, Synthesis of titania nanotubes by microwave irradiation, Solid State Communications, vol.136, issue.9-10, pp.9-10, 2005.
DOI : 10.1016/j.ssc.2005.09.023

Q. Chen, Trititanate Nanotubes Made via a Single Alkali Treatment, Advanced Materials, vol.14, issue.17, pp.1208-1211, 2002.
DOI : 10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO;2-0

S. Zhang, Formation Mechanism of H 2 Ti 3 O 7 Nanotubes 91(25): p. 256103. 112, Study on composition, structure and formation process of nanotube Na 2 Ti 2 O 4 (OH) 2 . Dalton Transactions, pp.2003-3898, 2003.

R. A. Petros, J. M. Desimone-kasuga, and T. , Strategies in the design of nanoparticles for therapeutic applications Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes, Nature reviews Drug discovery Titania Nanotubes Prepared by Chemical Processing. Advanced Materials Chemistry ? A European Journal, vol.114, issue.115 910, pp.615-627, 1999.

D. V. Bavykin, The effect of hydrothermal conditions on the mesoporous structure of TiO 2 nanotubes, Journal of Materials Chemistry, issue.22, pp.14-3370, 2004.

Y. Ma, Sonication???hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors, Materials Research Bulletin, vol.41, issue.2, pp.237-243, 2006.
DOI : 10.1016/j.materresbull.2005.08.020

D. Wu, Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts, Chemistry of Materials, vol.18, issue.2, pp.547-553, 2006.
DOI : 10.1021/cm0519075

F. Sallem, Effect of mechanical stirring and temperature on dynamic hydrothermal synthesis of titanate nanotubes, Journal of Alloys and Compounds, vol.722, pp.785-796, 2017.
DOI : 10.1016/j.jallcom.2017.06.172

N. Viriya-empikul, Effect of preparation variables on morphology and anatase?brookite phase transition in sonication assisted hydrothermal reaction for synthesis of titanate nanostructures Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method, Materials Chemistry and Physics Journal of Alloys and Compounds, vol.118, issue.49012, pp.254-258, 2009.

V. Bellat, A multi-step mechanism and integrity of titanate nanoribbons, Dalton Transactions, vol.14, issue.3, pp.1150-60, 2015.
DOI : 10.1039/b406378c

V. Bellat, Thèse: Ingénierie d'un nouveau nanobiohybride à base de nanorubans de titanates pour la médecine régénérative, Thèse: Nanoparticules d'oxydes de fer et nanotubes de titanate pour l'imagerie multimodale et à destination de la thérapie anticancéreuse, 2012.

C. Tsai and H. Teng, with Different Post-Treatments, Chemistry of Materials, vol.18, issue.2, pp.367-373, 2006.
DOI : 10.1021/cm0518527

M. Zhang, Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2, Journal of Molecular Catalysis A: Chemical, vol.217, issue.1-2, pp.203-210, 2004.
DOI : 10.1016/j.molcata.2004.03.032

Á. Kukovecz, Oriented Crystal Growth Model Explains the Formation of Titania Nanotubes, The Journal of Physical Chemistry B, vol.109, issue.38, pp.17781-17783, 2005.
DOI : 10.1021/jp054320m

D. L. Morgan, Alkaline hydrothermal kinetics in titanate nanostructure formation, Journal of Materials Science, vol.111, issue.2, pp.548-557, 2011.
DOI : 10.1557/PROC-824-CC8.39

B. C. Viana, Structural, morphological and vibrational properties of titanate nanotubes and nanoribbons, Journal of the Brazilian Chemical Society, vol.20, issue.1, pp.167-175, 2006.
DOI : 10.1590/S0103-50532009000100025

URL : http://www.scielo.br/pdf/jbchs/v20n1/v20n1a25.pdf

L. Torrente-murciano, A. A. Lapkin, and D. Chadwick, Synthesis of high aspect ratio titanate nanotubes, Journal of Materials Chemistry, vol.178, issue.31, pp.20-6484, 2010.
DOI : 10.1039/c0jm01212b

P. I. Pontón, The effects of the chemical composition of titanate nanotubes and solvent type on 3-aminopropyltriethoxysilane grafting efficiency, Applied Surface Science, vol.301, pp.315-322, 2014.
DOI : 10.1016/j.apsusc.2014.02.071

X. Références and J. Boudon, Titanate Nanotubes as a Versatile Platform for Nanomedicine, pp.403-427, 2014.

D. V. Bavykin and F. C. Walsh, Elongated Titanate Nanostructures and Their Applications, European Journal of Inorganic Chemistry, vol.183, issue.8, pp.977-997, 2009.
DOI : 10.1590/S0103-50532006000200025

D. Kuang, Application of highly ordered TiO 2 nanotube arrays in flexible dye-sensitized solar cells, ACS nano, issue.26, pp.1113-1116, 2008.

V. Idakiev, Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction, Applied Catalysis A: General, vol.281, issue.1-2, pp.149-155, 2005.
DOI : 10.1016/j.apcata.2004.11.021

B. R. Matos, Nafion???Titanate Nanotube Composite Membranes for PEMFC Operating at High Temperature, Journal of The Electrochemical Society, vol.154, issue.12, pp.1358-1361, 2007.
DOI : 10.1016/j.memsci.2004.03.009

C. Lee, Effects of sodium content on the microstructures and basic dye cation exchange of titanate nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp.317-318, 2008.

I. Paramasivam, Nanotubes and Other Ordered Oxide Nanostructures, Small, vol.12, issue.435, pp.3073-3103, 2012.
DOI : 10.1016/j.elecom.2010.07.018

C. Huang, The structural and magnetic properties of Co-doped titanate nanotubes synthesized under hydrothermal conditions, Applied Physics A, vol.51, issue.4, pp.781-786, 2007.
DOI : 10.1007/s00339-007-3902-3

D. Wu, Y. C. , J. Liu, X. Zhao, A. Li et al., Co-doped titanate nanotubes Applied Physics Letters A novel cation-binding TiO 2 nanotube substrate for electro-and bioelectro-catalysis, Electrochemistry Communications, vol.87, issue.11 710, pp.1050-1058, 2005.

W. Zheng, Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films, Talanta, vol.74, issue.5, pp.1414-1419, 2008.
DOI : 10.1016/j.talanta.2007.09.017

A. Liu, Direct Electrochemistry of Myoglobin in Titanate Nanotubes Film, Analytical Chemistry, vol.77, issue.24, pp.77-8068, 2005.
DOI : 10.1021/ac051640t

L. Niu, Titanate nanotubes: preparation, characterization, and application in the detection of dopamine Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes Synthesis of Titanate Nanotubes Directly Coated with USPIO in Hydrothermal Conditions: A New Detectable Nanocarrier, Phthalocyanine-titanate nanotubes: a promising nanocarrier detectable by optical imaging in the so-called imaging window. RSC Advances, pp.1510-1514, 2005.

T. Baati, Biocompatible titanate nanotubes with high loading capacity of genistein: cytotoxicity study and anti-migratory effect on U87-MG cancer cell lines, RSC Advances, vol.269, issue.103, pp.101688-101696, 2016.
DOI : 10.1016/j.canlet.2008.03.052

URL : https://hal.archives-ouvertes.fr/hal-01444657

Z. Magdolenova, studies with engineered nanoparticles, Nanotoxicology, vol.7, issue.10, pp.233-278, 2014.
DOI : 10.1021/nl071303v

F. Fenyvesi, Investigation of the Cytotoxic Effects of Titanate Nanotubes on Caco-2 Cells, AAPS PharmSciTech, vol.15, issue.4, pp.858-861, 2014.
DOI : 10.1208/s12249-014-0115-x

N. Sekkat, Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics, Molecules, vol.17, issue.1, pp.98-144, 2011.
DOI : 10.3390/molecules17010098

A. Das, N. L. Banik, S. K. Ray, and K. , Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer Double-strand breaks in DNA induced by the K-shell ionization of calcium atoms, Acta Oncologica, vol.116, issue.17, pp.35-883, 1996.

H. Maezawa, Lethal Effect of K-Shell Absorption of Intracellular Phosphorus on Wild-Type and Radiation Sensitive Mutants of Escherichia Coli, Acta Oncologica, vol.63, issue.7, pp.35-889, 1996.
DOI : 10.1080/09553009314450721

J. Boudon, Radiolabeling and biodistribution study of titanate nanotubes, 2017.

S. J. Archibald, Macrocyclic coordination chemistry Annual Reports Section "A" (Inorganic Chemistry), 2012, pp.271-291

M. R. Mcdevitt, Tumor Targeting with Antibody-Functionalized, Radiolabeled Carbon Nanotubes, Journal of Nuclear Medicine, vol.48, issue.7, pp.48-1180, 2007.
DOI : 10.2967/jnumed.106.039131

E. Fabian, Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats, Archives of Toxicology, vol.103, issue.1, pp.151-157, 2008.
DOI : 10.1007/s00204-007-0253-y

X. Références and P. Debouttiere, Élaboration de nanoparticules d'or fonctionnalisées pour la détection et l'imagerie biologiques, I. 161. Dykman, L. and N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, p.41, 2006.

A. Mezni and P. J. Debouttière, Synthèse et caractérisation de nanoparticules métalliques vers la nanomédecine Université Toulouse III-Paul Sabatier. 163 Design of Gold Nanoparticles for Magnetic Resonance Imaging, Advanced Functional Materials, issue.18, pp.16-2330, 2006.

E. Brun, L. Sanche, and C. Sicard-roselli, Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution, Colloids and Surfaces B: Biointerfaces, vol.72, issue.1, pp.128-134, 2009.
DOI : 10.1016/j.colsurfb.2009.03.025

A. M. Alkilany and C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?, Journal of Nanoparticle Research, vol.30, issue.35, pp.12-2313, 2010.
DOI : 10.1016/j.nano.2007.03.005

URL : https://link.springer.com/content/pdf/10.1007%2Fs11051-010-9911-8.pdf

C. Alric, The biodistribution of gold nanoparticles designed for renal clearance, Nanoscale, vol.5, issue.13, pp.5930-5939, 2013.
DOI : 10.1002/smll.200900563

URL : https://hal.archives-ouvertes.fr/hal-00843843

A. J. Mieszawska, Multifunctional Gold Nanoparticles for Diagnosis and Therapy of Disease, Molecular Pharmaceutics, vol.10, issue.3, pp.831-847, 2013.
DOI : 10.1021/mp3005885

S. Figueiredo, R. C. , D. Luís, A. R. Fernandes, and P. V. Baptista, Conjugation of Gold nanoparticles and liposomes for combined vehicles of drug delivery in cancer, pp.2014-2063

M. Brust, Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid???Liquid system, J. Chem. Soc., Chem. Commun., vol.19, issue.7, 1994.
DOI : 10.1039/dt9800000767

J. C. Love, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chemical Reviews, vol.105, issue.4, pp.1103-1170, 2005.
DOI : 10.1021/cr0300789

C. Alric, Gold nanoparticles designed for combining dual modality imaging and radiotherapy, Gold Bulletin, vol.1669, issue.2, pp.90-97, 2008.
DOI : 10.1016/j.bbamem.2005.02.003

URL : https://hal.archives-ouvertes.fr/hal-00433978

P. K. Jain, W. Qian, and M. A. , El-Sayed, Ultrafast cooling of photoexcited electrons in gold nanoparticle? thiolated DNA conjugates involves the dissociation of the gold? thiol bond, Journal of the American Chemical Society, issue.7, pp.128-2426, 2006.

D. A. Giljohann, Gene Regulation with Polyvalent siRNA???Nanoparticle Conjugates, Journal of the American Chemical Society, vol.131, issue.6, pp.2072-2073, 2009.
DOI : 10.1021/ja808719p

URL : http://europepmc.org/articles/pmc2843496?pdf=render

D. Kim, Y. Y. Jeong, and S. Jon, A Drug-Loaded Aptamer???Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer, ACS Nano, vol.4, issue.7, pp.3689-3696, 2010.
DOI : 10.1021/nn901877h

F. Wang, Doxorubicin-Tethered Responsive Gold Nanoparticles Facilitate Intracellular Drug Delivery for Overcoming Multidrug Resistance in Cancer Cells, ACS Nano, vol.5, issue.5, pp.3679-3692, 2011.
DOI : 10.1021/nn200007z

R. Hong, Glutathione-Mediated Delivery and Release Using Monolayer Protected Nanoparticle Carriers, Journal of the American Chemical Society, vol.128, issue.4, pp.1078-1079, 2006.
DOI : 10.1021/ja056726i

N. Khlebtsov, L. Dykman, and K. T. , Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies, Chem. Soc. Rev., vol.5, issue.3, pp.1647-71, 2011.
DOI : 10.3109/17435390.2010.512401

I. Miladi, The In Vivo Radiosensitizing Effect of Gold Nanoparticles Based MRI Contrast Agents, Small, vol.53, issue.6, pp.1116-1124, 2014.
DOI : 10.1088/0031-9155/53/4/003

URL : https://hal.archives-ouvertes.fr/hal-00968601

J. F. Hainfeld, Gold nanoparticles: a new X-ray contrast agent, The British Journal of Radiology, vol.79, issue.939, pp.79-248, 2006.
DOI : 10.1016/S0002-8703(98)70336-9

F. H. James, Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles Scientific reports Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging, 184. Caravan, P., et al., Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications, pp.55-3045, 1999.

G. W. White, W. A. Gibby, and M. F. Tweedle, Comparison of Gd(DTPA-BMA) (Omniscan) Versus Gd(HP-DO3A) (ProHance) Relative to Gadolinium Retention in Human Bone Tissue by Inductively Coupled Plasma Mass Spectroscopy, Investigative Radiology, vol.41, issue.3, pp.41-272, 2006.
DOI : 10.1097/01.rli.0000186569.32408.95

X. Références and S. Roosenburg, PET and SPECT imaging of a radiolabeled minigastrin analogue conjugated with DOTA, NOTA, and NODAGA and labeled with 64 Cu, 68 Ga, and 111 In, Molecular pharmaceutics, issue.11, pp.11-3930, 2014.

E. W. Price and C. Orvig, Matching chelators to radiometals for radiopharmaceuticals, Chem. Soc. Rev., vol.30, issue.1, pp.260-290, 2014.
DOI : 10.1021/ic00007a024

E. Amstad, M. Textor, and E. Reimhult, Stabilization and functionalization of iron oxide nanoparticles for biomedical applications, Nanoscale, vol.19, issue.7, pp.2819-2843, 2011.
DOI : 10.1371/journal.pone.0013254

URL : https://infoscience.epfl.ch/record/207071/files/Amstad_2011_nanoscale.pdf

A. R. Studart, Rheology of Concentrated Suspensions Containing Weakly Attractive Alumina Nanoparticles, Journal of the American Ceramic Society, vol.56, issue.4, pp.89-2418, 2006.
DOI : 10.1103/PhysRevLett.52.2371

R. A. Sperling and W. J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.128, issue.15, pp.1333-1383, 2010.
DOI : 10.1021/ja060782h

URL : http://rsta.royalsocietypublishing.org/content/roypta/368/1915/1333.full.pdf

J. Bridot, Hybrid Gadolinium Oxide Nanoparticles:?? Multimodal Contrast Agents for in Vivo Imaging, Journal of the American Chemical Society, vol.129, issue.16, pp.129-5076, 2007.
DOI : 10.1021/ja068356j

URL : https://hal.archives-ouvertes.fr/inserm-00313780

L. Maurizi, Influence of Surface Charge and Polymer Coating on Internalization and Biodistribution of Polyethylene Glycol-Modified Iron Oxide Nanoparticles, Journal of Biomedical Nanotechnology, vol.11, issue.1, pp.126-136, 2015.
DOI : 10.1166/jbn.2015.1996

A. Dupraz, Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites Journal of biomedical materials research Functionalisation of nanoparticles for biomedical applications, Nano Today, vol.30, issue.53, pp.231-238, 1996.

S. Mohapatra and P. Pramanik, Synthesis and stability of functionalized iron oxide nanoparticles using organophosphorus coupling agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp.1-3, 2009.
DOI : 10.1016/j.colsurfa.2009.01.009

V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy, Chem. Soc. Rev., vol.24, issue.3, pp.744-764, 2014.
DOI : 10.1002/adma.201104964

J. T. Overbeek, E. Verwey-doane, and T. L. , Theory of the Stability of Lyophobic Colloids: The interaction of Sol Particles Having an Electric Double Layer, Nanoparticle ? -Potentials. Accounts of Chemical Research, issue.3, pp.45-317, 1948.

A. H. Lu, E. L. Salabas, and F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angewandte Chemie International Edition, vol.92, issue.8, pp.46-1222, 2007.
DOI : 10.3181/00379727-158-40158

T. Laaksonen, Stability and Electrostatics of Mercaptoundecanoic Acid-Capped Gold Nanoparticles with Varying Counterion Size, ChemPhysChem, vol.239, issue.10, pp.2143-2149, 2006.
DOI : 10.1002/cphc.200600307

R. A. Bini, Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes, Journal of Magnetism and Magnetic Materials, vol.324, issue.4, pp.534-539, 2012.
DOI : 10.1016/j.jmmm.2011.08.035

E. P. Plueddemann, Silane coupling agents Continuous hydrothermal synthesis of 3,4-dihydroxyhydrocinnamic acid-modified magnetite nanoparticles with stealth-functionality against immunological response, Science & Business Media. 203. Togashi, pp.22-9041, 2012.

E. Guénin, Catechol versus bisphosphonate ligand exchange at the surface of iron oxide nanoparticles: towards multi-functionalization, Journal of Nanoparticle Research, vol.41, issue.11, pp.16-17
DOI : 10.1039/c2dt11864e

A. Pringuet and T. Sakura, Granulation d'une poudre d'anatase par voie colloïdale : étude de formulations pour l'élaboration de sphères poreuses millimétriques One-pot preparation of mono-dispersed and physiologically stabilized gold colloid, Colloid and Polymer Science, vol.206, issue.2841, pp.97-101, 2005.

A. B. Salunkhe, Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications, Applied Surface Science, vol.264, pp.598-604, 2013.
DOI : 10.1016/j.apsusc.2012.10.073

J. R. Hwu, Targeted Paclitaxel by Conjugation to Iron Oxide and Gold Nanoparticles, Journal of the American Chemical Society, vol.131, issue.1, pp.66-68, 2008.
DOI : 10.1021/ja804947u

V. C. Mosqueira, Biodistribution of Long-Circulating PEG-Grafted Nanocapsules in Mice: Effects of PEG Chain Length and Density, Pharmaceutical Research, issue.10, pp.18-1411, 2001.

C. Cruje, B. Fritz, and G. , Polyethylene glycol density and length affects nanoparticle uptake by cancer cells): p. 00006. 211 Electrosteric stabilization of colloidal dispersions Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical society reviews, J Nanomed Res Langmuir, vol.1, issue.18166, pp.6381-6390, 2002.

X. Références, P. Parhi, C. Mohanty, and S. K. Sahoo, Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discovery Today, pp.2012-2029

C. Chiang, Combinations of mTORC1 inhibitor RAD001 with gemcitabine and paclitaxel for treating non-Hodgkin lymphoma. Cancer letters Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-?B and the serine/threonine kinase Akt and is independent of tubulin polymerization, Journal of Biological Chemistry, vol.298, issue.2158, pp.195-203, 2005.

M. Berhoune, Therapeutic strategy for treatment of metastatic non?small cell lung cancer Combined therapy for cancer of the anal canal: A preliminary report Combined modality therapy of gemcitabine and radiation. The oncologist, Diseases of the Colon & Rectum, pp.42-1640, 1974.

K. Cho, Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, pp.1310-1316, 2008.
DOI : 10.1158/1078-0432.ccr-07-1441

URL : http://clincancerres.aacrjournals.org/content/clincanres/14/5/1310.full.pdf

D. W. Bartlett and M. E. Davis, Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing, Biotechnology and Bioengineering, vol.441, issue.13, pp.909-921, 2007.
DOI : 10.1038/nature04688

V. Wagner, The emerging nanomedicine landscape Anti-inflammatory metabolites from marine sponges, Nature biotechnology Chemical Society Reviews, vol.34, issue.104, pp.24-355, 2005.

M. Rowinsky and K. Eric, The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annual review of medicine, pp.353-374, 1997.

K. Hennenfent and R. Govindan, Novel formulations of taxanes: a review. Old wine in a new bottle? Annals of oncology, pp.735-749, 2006.
DOI : 10.1093/annonc/mdj100

URL : https://academic.oup.com/annonc/article-pdf/17/5/735/404784/mdj100.pdf

P. Zhao and D. Astruc, Docetaxel Nanotechnology in Anticancer Therapy, ChemMedChem, vol.14, issue.6, pp.952-972, 2012.
DOI : 10.1016/j.drup.2011.01.003

H. Choy and G. Dranitsaris, Taxanes in combined modality therapy for solid tumors Critical reviews in oncology/hematology Nab-paclitaxel, docetaxel, or solvent-based paclitaxel in metastatic breast cancer: a cost-utility analysis from a Chinese health care perspective, ClinicoEconomics and Outcomes Research: CEOR, pp.237-247, 2001.

M. D. Galsky and N. J. Vogelzang, Docetaxel-based combination therapy for castration-resistant prostate cancer, Annals of Oncology, vol.27, issue.17, pp.2135-2144, 2010.
DOI : 10.1200/JCO.2008.18.9159

V. Hoff and D. D. , Phase I Study of PSMA-Targeted Docetaxel-Containing Nanoparticle BIND-014 in Patients with Advanced Solid Tumors. Clinical Cancer Research Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile, Science Translational Medicine, vol.2016, issue.2213 4128, pp.128-167, 2012.

S. Arora, Attachment of docetaxel to multiwalled carbon nanotubes for drug Delivery applications Advanced Science Letters, pp.70-75, 2012.

A. Sato, Magnetic nanoparticles of Fe3O4 enhance docetaxel-induced prostate cancer cell death, Metal complexes as diagnostic tools, pp.3151-3154, 1999.

S. Liu and D. S. Edwards, Bifunctional Chelators for Therapeutic Lanthanide Radiopharmaceuticals, Bioconjugate Chemistry, vol.12, issue.1, pp.7-34, 2001.
DOI : 10.1021/bc000070v

URL : http://pubs.acs.org/doi/pdf/10.1021/bc010069b

J. F. Carvalho, S. H. Kim, C. A. Chang-park, and J. , Synthesis and metal complex selectivity of macrocyclic DTPA and EDTA bis (amide) ligands. Inorganic Chemistry Gold nanoparticles functionalised by Gd-complex of DTPA-bis(amide) conjugate of glutathione as an MRI contrast agent, Bioorganic & Medicinal Chemistry Letters, vol.236, issue.2023, pp.31-4065, 1992.
DOI : 10.1021/ic00046a015

W. Wu, Covalently Combining Carbon Nanotubes with Anticancer Agent: Preparation and Antitumor Activity, ACS Nano, vol.3, issue.9, pp.2740-2750, 2009.
DOI : 10.1021/nn9005686

A. Safavy, De Novo Synthesis of a New Diethylenetriaminepentaacetic Acid (DTPA) Bifunctional Chelating Agent, Bioconjugate Chemistry, vol.13, issue.2, pp.317-326, 2002.
DOI : 10.1021/bc0100861

X. Références, J. Byegård, G. Skarnemark, and M. Skålberg, The stability of some metal EDTA, DTPA and DOTA complexes: Application as tracers in groundwater studies, Journal of radioanalytical and nuclear chemistry, vol.241, issue.2, pp.281-290, 1999.

R. D. Hancock, Chelate ring size and metal ion selection. The basis of selectivity for metal ions in open-chain ligands and macrocycles, Environmental Effects on the Structure of Metal Ion? DOTA Complexes: An ab I nitio Study of Radiopharmaceutical Metals. Inorganic chemistry, pp.615-660, 1992.
DOI : 10.1021/ed069p615

Y. Xing, Radiolabeled nanoparticles for multimodality tumor imaging Indium-111 labeled gold nanoparticles for in-vivo molecular targeting, Theranostics Biomaterials, vol.243, issue.4325, pp.290-306, 2014.

L. A. Torre, Global cancer statistics CA: A Cancer Journal for Clinicians Review: prostate cancer epidemiology. The Prostate, pp.87-108, 1984.

C. J. Paller and E. S. , Antonarakis, Management of biochemically recurrent prostate cancer after local therapy: evolving standards of care and new directions. Clinical advances in hematology & oncology: H&O, 2013, p.14

S. R. Denmeade and J. T. Isaacs, A history of prostate cancer treatment, Nature Reviews Cancer, vol.59, issue.Suppl. 1, pp.389-396, 2002.
DOI : 10.1146/annurev.immunol.18.1.813

P. Hoskin, Clinical Use of Brachytherapy, in Comprehensive Brachytherapy: Physical and Clinical Aspects, pp.247-252, 2012.

M. Laprise?pelletier, Low-Dose Prostate Cancer Brachytherapy with Radioactive Palladium-Gold Nanoparticles, Advanced Healthcare Materials, vol.489, issue.4, 2017.
DOI : 10.1038/nature11409

S. Mornet, G. Balasundaram, M. Sato, and T. J. Webster, Thèse: Synthèse et modification chimique de la surface de nanoparticules de maghémite à des fins d'applications biomédicales Université Sciences et Technologies -Bordeaux I. 251 Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD, Biomaterials, issue.14, pp.27-2798, 2002.

J. A. Howarter and J. P. Youngblood, Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane, Langmuir, vol.22, issue.26
DOI : 10.1021/la061240g

L. White and C. Tripp, Reaction of (3-Aminopropyl)dimethylethoxysilane with Amine Catalysts on Silica Surfaces, Journal of Colloid and Interface Science, vol.232, issue.2, pp.400-407, 2000.
DOI : 10.1006/jcis.2000.7224

Y. Liu, Kinetics of (3-Aminopropyl)triethoxylsilane (APTES) Silanization of Superparamagnetic Iron Oxide Nanoparticles, Langmuir, vol.29, issue.49, pp.29-15275, 2013.
DOI : 10.1021/la403269u

D. Bartczak and A. G. Kanaras, Preparation of Peptide-Functionalized Gold Nanoparticles Using One Pot EDC/Sulfo-NHS Coupling, Langmuir, vol.27, issue.16, pp.27-10119, 2011.
DOI : 10.1021/la2022177

C. Mi, Multifunctional nanocomposites of superparamagnetic (Fe 3 O 4 ) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF 4 :Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells, Nanoscale, issue.27, pp.1141-1148, 2010.

A. J. Lomant and G. Fairbanks, Chemical probes of extended biological structures: Synthesis and properties of the cleavable protein cross-linking reagent [35S]dithiobis(succinimidyl propionate), Journal of Molecular Biology, vol.104, issue.1, pp.243-261, 1976.
DOI : 10.1016/0022-2836(76)90011-5

P. G. Rouxhet and M. J. Genet, XPS analysis of bio-organic systems, Surface and Interface Analysis, vol.21, issue.12, pp.1453-1470, 2011.
DOI : 10.1007/s10856-009-3967-y

R. M. Koffie, Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging, Proceedings of the National Academy of Sciences, pp.18837-18842, 2011.
DOI : 10.3109/10611869509015940

C. Bussy, Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes, ACS Nano, vol.9, issue.8, pp.7815-7830
DOI : 10.1021/acsnano.5b02358

S. Sruthi, Interactions between titanate nanotubes and microglial cells, 2017.

H. Suzuki, T. Toyooka, and Y. Ibuki, Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environmental science & technology, pp.41-3018, 2007.

A. Jondeau, Evaluation of the sensitivity of three sublethal cytotoxicity assays in human HepG2 cell line using water contaminants, Toxicology, vol.226, issue.2-3, pp.218-228, 2006.
DOI : 10.1016/j.tox.2006.07.007

URL : https://hal.archives-ouvertes.fr/hal-00294427

X. Références and Y. Saibi, Hazard identification of emergent nanomaterials: Innovative bioassays to evaluate cytotoxicity, genotoxicity and oxidative stress on a human hepatoma cell line Reaction of N-phenyl maleimide with aminosilane monolayers, Colloids and Surfaces B: Biointerfaces, vol.35, issue.1, pp.2017-265, 2004.

S. Tardio, A Study of the Interfacial Interaction between Methylene Diphenyl Diisocyanate and Metals by XPS and ToF-SIMS

P. Cipriani and D. Ben-amotz, Characterization of select members of the Taxane family using Raman spectroscopy, Journal of Raman Spectroscopy, vol.58, issue.11, pp.36-1052, 2005.
DOI : 10.1002/jrs.1405

D. S. Lee, H. J. Im, and Y. S. Lee, Radionanomedicine: Widened perspectives of molecular theragnosis, Nanomedicine: Nanotechnology, Biology and Medicine, vol.11, issue.4, pp.795-810, 2015.
DOI : 10.1016/j.nano.2014.12.010

M. Moreau and X. Wang, In vitro and in vivo responses of advanced prostate tumors to PSMA ADC, an auristatinconjugated antibody to prostate-specific membrane antigen Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile, Thèse: Marquage de molécules biologiques par des complexes de radiométaux à base de polyamines macrocycliques, pp.1728-1739, 2011.

C. M. Armstrong and A. C. Gao, Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies, American Journal of Clinical and Experimental Urology, vol.3, issue.2, pp.64-76, 2015.

M. Quivrin, Multiparametric MRI and post implant CT-based dosimetry after prostate brachytherapy with iodine seeds: The higher the dose to the dominant index lesion, the lower the PSA bounce, Radiotherapy and Oncology, vol.117, issue.2, pp.258-261, 2015.
DOI : 10.1016/j.radonc.2015.08.020

Z. R. Stephen, F. M. Kievit, and M. Zhang, Magnetite nanoparticles for medical MR imaging, Materials Today, vol.14, issue.7-8, pp.330-338, 2011.
DOI : 10.1016/S1369-7021(11)70163-8

URL : https://doi.org/10.1016/s1369-7021(11)70163-8

M. Neouze and U. Schubert, Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands. Monatshefte für Chemie -Chemical Monthly, pp.183-195, 2008.

M. Zhu, M. Z. Lerum, and W. Chen, How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica Site Requirements for the Adsorption and Reaction of Oxygenates on Metal Oxide Surfaces, Langmuir Vohs, J.M. Chemical Reviews, vol.28, issue.2776, pp.416-423, 2012.

F. Benyettou, Superparamagnetic nanovector with anti-cancer properties: ??Fe2O3@Zoledronate, International Journal of Pharmaceutics, vol.379, issue.2, pp.324-327, 2009.
DOI : 10.1016/j.ijpharm.2009.04.010

URL : https://hal.archives-ouvertes.fr/hal-00416605

E. Amstad, Nanoparticles, The Journal of Physical Chemistry C, vol.115, issue.3, pp.683-691, 2011.
DOI : 10.1021/jp1109306

F. Benyettou, Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells, Journal of Materials Chemistry B, vol.22, issue.36, pp.7237-7245, 2015.
DOI : 10.1016/0065-2571(84)90007-4

E. Amstad, Ultrastable Iron Oxide Nanoparticle Colloidal Suspensions Using Dispersants with Catechol-Derived Anchor Groups, Nano Letters, vol.9, issue.12, pp.4042-4048, 2009.
DOI : 10.1021/nl902212q

L. Motte, Multimodal superparamagnetic nanoplatform for clinical applications: immunoassays, imaging & therapy, Faraday Discuss., vol.4, issue.0, pp.211-225, 2011.
DOI : 10.1186/bcr415

URL : https://hal.archives-ouvertes.fr/hal-00704927

A. Smith and W. Chen, How to Prevent the Loss of Surface Functionality Derived from Aminosilanes, Langmuir : the ACS journal of surfaces and colloids, issue.21, pp.24-12405, 2008.

J. Kim, G. J. Holinga, and G. A. Somorjai, Curing Induced Structural Reorganization and Enhanced Reactivity of Amino-Terminated Organic Thin Films on Solid Substrates: Observations of Two Types of Chemically and Structurally Unique Amino Groups on the Surface, Langmuir, vol.27, issue.9, pp.27-5171, 2011.
DOI : 10.1021/la2007205

H. Wang, X. F. Wang, C. L. Yu, and K. W. , Preparation and characterization of copolymerized aminohexylaminomethyl/phenylsilsesquioxane microparticles. in Applied Mechanics and Materials Major phenolics in apple and their contribution to the total antioxidant capacity, Journal of agricultural and food chemistry, issue.22, pp.51-6516, 2003.
DOI : 10.4028/www.scientific.net/amm.182-183.114

S. Bahri, ) in NaCl Solutions, Environmental Science & Technology, vol.45, issue.9, pp.3959-3966, 2011.
DOI : 10.1021/es1042832

X. Références and B. Malisova, Poly (ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability, Langmuir, vol.26, issue.6, pp.4018-4026, 2010.

E. Amstad and N. Lee, Thèse: Surface functionalizing superparamagnetic iron oxide nanoparticles using nitrocatechol anchors Speciation of l-DOPA on nanorutile as a function of pH and surface coverage using Surface- Enhanced Raman Spectroscopy (SERS), Langmuir, issue.50, pp.291-319, 2010.

S. Fahn and W. Poewe, Levodopa: 50 years of a revolutionary drug for Parkinson disease, Movement Disorders, vol.90, issue.4, pp.1-3, 2015.
DOI : 10.1002/mds.26078

M. Cencer, Effect of Nitro-Functionalization on the Cross-Linking and Bioadhesion of Biomimetic Adhesive Moiety, Biomacromolecules, vol.16, issue.1, pp.404-410, 2015.
DOI : 10.1021/bm5016333

G. Thomas, One-step continuous synthesis of functionalized magnetite nanoflowers Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups Monomolecular films of mixtures: I. Stearic acid with isostearic acid and with trip-cresyl phosphate. Comparison of components with octadecylphosphonic acid and with tri-o-xenyl phosphate, Nanotechnology Journal of the American Chemical Society Journal of Colloid Science, vol.131, issue.297 96, pp.27-135604, 1954.

P. H. Mutin, G. Guerrero, and A. Vioux, Hybrid materials from organophosphorus coupling molecules, Journal of Materials Chemistry, vol.18, issue.148, pp.35-36, 2005.
DOI : 10.1039/b105240n

G. Guerrero, Phosphonate coupling molecules for the control of surface/interface properties and the synthesis of nanomaterials, Dalton Transactions, vol.19, issue.11, p.42, 2013.
DOI : 10.1021/cm7020142

URL : https://hal.archives-ouvertes.fr/hal-00872675

G. Guerrero, P. H. Mutin, and A. Vioux, Anchoring of Phosphonate and Phosphinate Coupling Molecules on Titania Particles, Chemistry of Materials, vol.13, issue.11, pp.13-4367, 2001.
DOI : 10.1021/cm001253u

T. J. Daou, Investigation of the grafting rate of organic molecules on the surface of magnetite nanoparticles as a function of the coupling agent, Sensors and Actuators B: Chemical, vol.126, issue.1, pp.159-162, 2007.
DOI : 10.1016/j.snb.2006.11.020

URL : https://hal.archives-ouvertes.fr/hal-00212132

F. Benyettou, A multimodal magnetic resonance imaging nanoplatform for cancer theranostics, Physical Chemistry Chemical Physics, vol.3, issue.21, pp.10020-10027, 2011.
DOI : 10.1016/j.actbio.2007.05.011

URL : https://hal.archives-ouvertes.fr/hal-00704918

L. Rojo, Self-assembled monolayers of alendronate on Ti 6 Al 4 V alloy surfaces enhance osteogenesis in mesenchymal stem cells Scientific Reports Thèse: Conception et caractérisation de nano-objets magnétiques pour l'imagerie par résonance magnétique, XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings. Applied Surface Science, pp.253-2644, 2006.

J. Coste, D. Le-nguyen, and B. Castro, PyBOP??: A new peptide coupling reagent devoid of toxic by-product, Tetrahedron Letters, vol.31, issue.2, pp.31-205, 1990.
DOI : 10.1016/S0040-4039(00)94371-5

T. I. Al-warhi and H. M. , Recent development in peptide coupling reagents, Journal of Saudi Chemical Society, vol.16, issue.2, pp.97-116, 2012.
DOI : 10.1016/j.jscs.2010.12.006

URL : https://doi.org/10.1016/j.jscs.2010.12.006

M. Castedo and G. Kroemer, La catastrophe mitotique : un cas particulier d???apoptose, Journal de la Soci??t?? de Biologie, vol.198, issue.2, pp.97-103, 2004.
DOI : 10.1051/jbio/2004198020097

A. Subiel, R. Ashmore, and G. Schettino, Standards and Methodologies for Characterizing Radiobiological Impact of High-Z Nanoparticles, Theranostics, vol.6, issue.10, pp.1651-1671, 2016.
DOI : 10.7150/thno.15019

M. Bio, G. Nkepang, and Y. You, Click and photo-unclick chemistry of aminoacrylate for visible lighttriggered drug release, Chemical Communications, issue.52, pp.48-6517, 2012.
DOI : 10.1039/c2cc32373g

P. D. Zhao, Thèse: Nanoparticules d'or: fonctionnalisations et applications en nanomédecine et nanomatériaux Isolation and characterization of degradation impurities in docetaxel drug substance and its formulation, Journal of pharmaceutical and biomedical analysis, vol.43, issue.4, pp.1228-1235, 2007.

. Titre, Nanotubes de titanate comme nanovecteurs polyvalents : radiosensibilisants du cancer de la prostate et sondes pour l'imagerie nucléaire

. Résumé, Actuellement, les injections systémiques de médicaments atteignent faiblement les sites tumoraux et de fortes doses sont alors administrées provoquant des effets secondaires parfois lourds. Les possibilités offertes par les applications en médecine des nanoparticules permettent de nouvelles stratégies pour vectoriser des substances actives dans les cellules malades. Ces travaux de thèse portent sur le cancer de la prostate qui

L. Nanotubes-de-titanate, TiONts) sont synthétisés par voie hydrothermale et présentent une longueur moyenne de 170 nm, un diamètre extérieur de 10 nm et une cavité interne accessible de 4 nm. Leur morphologie tubulaire permet aux TiONts d'être internalisés plus facilement dans les cellules, sans induire de cytotoxicité

. La-première-approche-consiste-À-combiner-les-tionts-avec-un-agent-thérapeutique, le DOTA, radiomarqué avec l' 111 In) pour suivre la biodistribution des tubes par SPECT/CT. La surface des TiONts a été préalablement fonctionnalisée par l'APTES et le poly(éthylène) glycol (PEG3000) pour rendre les TiONts stables et biocompatibles Afin d'évaluer l'efficacité de ce nanohybride, des tests in vitro ont montré que l'association entre les TiONts et le DTX permettait de maintenir une activité cytotoxique sur des lignées cellulaires de prostate (cellules 22Rv1 et PC-3) alors que les TiONts sans le DTX n'étaient pas toxiques. Les études in vivo ont montré, sur des souris Swiss nude mâles, que plus de 70% des nanovecteurs étaient retenus dans la tumeur, après injection IT, après 7 jours. De plus, un retard de croissance tumorale pour les souris ayant reçu le nanohybride avec la radiothérapie (RT) est observé, par rapport aux souris ayant reçues seulement le DTX, largement utilisé pour inhiber les tumeurs de prostate et un agent chélatant Après cette étude, d'autres molécules organiques ont été greffées avec succès à la surface des TiONts pour améliorer la stabilité colloïdale et la biocompatibilité des nanotubes : AHAMTES, catéchols (LDOPA, DHCA et NDOPA), phosphonates (PHA, ALD et un polymère hétérobifonctionnel de type phosphonate : (HO)2-(O)P-PEG-NH2). De plus

. Dans-une-seconde-approche, elles-mêmes modifiées par le DTDTPA, ont été couplées avec les TiONts en présence ou non de DTX. Cette nouvelle combinaison a pour objectif le maintien des AuNPs, par les TiONts, dans la tumeur afin d'améliorer l'effet de la RT. Grâce aux AuNPs modifiées par le DTDTPA, le nanohybride est également détectable par imagerie X et par SPECT/CT. Les résultats in vitro ont démontré l'activité cytotoxique de l'édifice final