M. Srs, E. Fm-srs-figure, ?. , and F. , 20 ? Cartes de concentration en glycérol deutéré dans les modalités SRS résonnant Echantillon : glycérol deutérée 40% (a, b, c) et 10% (d, e, f) dans unéchantillonunéchantillon de papier optique Thorlabs. La résolution des images de 100x100µm est de 200x200pts, avec un temps d'acquisition par pixel de 40µs, SRS non résonnant, 2100.

F. Un-autre-avantage-de-la-modalité, insensibilité aux mouvements de l'échantillon, même rapides, comme nous l'avons déja décrit en 2.4. En effet la détection synchrone donne directement la différence de signal entre la longueur d'onde résonnante et non résonnante, et ceci à une fréquence de 20MHz. La modalité FM-SRS 3.5. CONCLUSION Une suite logique à ces expériences voudrait que l'on applique la modalité FM-SRS à l'imagerie in vivo. On pourrait également se diriger vers la détection de

. Mique-de-la-méthode, la faible sensibilité aux artefacts ou bien aux mouvements d'échantillons , ou encore les faibles temps d'acquisition, ouvrent également la voie à une multitude d'autres applications comme par exemple l

C. Raman and F. Plate, A new radiation*, Indian J. Phys, vol.2, pp.387-398, 1928.

G. Landsherg and L. Mandelstam, New phenomenon in scattering of light (preliminary report) Journal of the Russian Physico-Chemical Society, Physics Section, vol.60, p.335, 1928.

R. W. Boyd, Nonlinear optics, 2003.

P. D. Maker and R. W. Terhune, Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength, Physical Review, vol.12, issue.3A, pp.801-818, 1965.
DOI : 10.1103/PhysRevLett.12.592

P. Berto, Microscopie et spectroscopie de phase. Développements en diffusion Raman cohérente (CRS) et en thermo-plasmonique, 2013.

M. D. Levenson, C. Flytzanis, and N. Bloembergen, Interference of Resonant and Nonresonant Three-Wave Mixing in Diamond, Physical Review B, vol.4, issue.10, pp.3962-3965, 1972.
DOI : 10.1103/PhysRevB.4.3437

M. D. Levenson and N. Bloembergen, Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media, Physical Review B, vol.147, issue.10, pp.4447-4463, 1974.
DOI : 10.1103/PhysRev.147.608

H. Lotem, R. T. Lynch, and N. Bloembergen, Interference between Raman resonances in four-wave difference mixing, Physical Review A, vol.27, issue.5, pp.1748-1755, 1976.
DOI : 10.1063/1.88470

J. Song, M. Eesley, and . Levenson, Background suppression in coherent Raman spectroscopy, Applied Physics Letters, vol.50, issue.9, 1976.
DOI : 10.1016/0375-9601(74)90353-3

J. Cheng, X. Book, and . Xie, Polarization coherent anti-Stokes Raman scattering microscopy, Optics Letters, vol.26, issue.17, 2001.
DOI : 10.1364/OL.26.001341

URL : http://bernstein.harvard.edu/papers/BiophysJCheng2002.pdf

Y. Yacoby, R. Fitzgibbon, and B. Lax, Coherent cancellation of background in four???wave mixing spectroscopy, Journal of Applied Physics, vol.233, issue.6, pp.3072-3077, 1980.
DOI : 10.1016/0030-4018(76)90020-1

G. Marowsky and G. Lüpke, CARS-Background suppression by phase-controlled nonlinear interferometry, Applied Physics B Photophysics and Laser Chemistry, vol.16, issue.1, pp.49-51, 1990.
DOI : 10.1007/BF00332324

L. Daniel, C. Marks, J. S. Vinegoni, S. A. Bredfeldt, and . Boppart, Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four wave mixing processes, Applied Physics Letters, vol.85, issue.23, pp.5787-5789, 2004.

C. Vinegoni, J. S. Bredfeldt, D. L. Marks, and S. A. Boppart, Nonlinear optical contrast enhancement for optical coherence tomography, Optics Express, vol.12, issue.2, p.331, 2004.
DOI : 10.1364/OPEX.12.000331

L. Conor, E. O. Evans, X. Potma, . Sunney, and . Xie, Coherent anti-Stokes Raman scattering spectral interferometry determination of the real and imaginary components of nonlinear susceptibility ??(3) for vibrational microscopy, Optics Letters, issue.24, p.292923, 2004.

E. O. Potma, C. L. Evans, X. Sunney, and . Xie, Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging, Optics Letters, vol.31, issue.2, p.31241, 2006.
DOI : 10.1364/OL.31.000241

URL : http://bernstein.harvard.edu/papers/eric_conor_opl_ 2006.pdf

M. Francois, M. G. Kamga, and . Sceats, Pulse-sequenced coherent anti-Stokes Raman scattering spectroscopy : a method for suppression of the nonresonant background, Optics Letters, vol.5, issue.3, p.126, 1980.

A. Volkmer, X. Book, and . Xie, Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay, Applied Physics Letters, vol.80, issue.9, 2002.
DOI : 10.1016/0030-4018(92)90027-O

A. Volkmer, X. Cheng, and . Xie, Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy, Physical Review Letters, vol.70, issue.2, 2001.
DOI : 10.1063/1.118442

J. Cheng, L. Volkmer, and . Book, An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity, The Journal of Physical Chemistry B, vol.105, issue.7
DOI : 10.1021/jp003774a

J. Lin, F. Lu, H. Wang, W. Zheng, J. Colin et al., Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection, Applied Physics Letters, vol.95, issue.13, p.95133703, 2009.
DOI : 10.1364/JOSAB.19.001363

J. Lin, F. Lu, W. Zheng, and Z. Huang, Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging, Applied Physics Letters, vol.15, issue.8, p.97083701, 2010.
DOI : 10.1063/1.3377905

E. Woodbury and W. Ng, Ruby laser operation in near IR, Proceedings of the Institute of Radio Engineers, 1962.

G. Eckhardt, . Hellwarth, S. Mcclung, and . Schwarz, Stimulated Raman Scattering From Organic Liquids, Physical Review Letters, vol.52, issue.11, 1962.
DOI : 10.1007/BF02716001

. Ji-xin, Cheng and Xiaoliang Sunney. Xie. Coherent Raman Scattering Microscopy, 2016.

M. D. Duncan, J. Reintjes, and T. J. Manuccia, Scanning coherent anti-Stokes Raman microscope, Optics Letters, vol.7, issue.8, p.350, 1982.
DOI : 10.1364/OL.7.000350

A. Zumbusch, X. Holtom, and . Xie, Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Physical review letters, 1999.
DOI : 10.1103/physrevlett.82.4142

E. Ploetz, S. Laimgruber, and . Berner, Femtosecond stimulated Raman microscopy, Applied Physics B, vol.75, issue.3, 2007.
DOI : 10.1007/s00340-007-2630-x

C. Freudiger, . Min, . Saar, G. Lu, and . Holtom, Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy, Science, vol.50, issue.5909, 2008.
DOI : 10.1021/jp0482971

URL : http://science.sciencemag.org/content/sci/322/5909/1857.full.pdf

P. Nandakumar, A. Kovalev, and . Volkmer, Vibrational imaging based on stimulated Raman scattering microscopy, New Journal of Physics, vol.11, issue.3, 2009.
DOI : 10.1088/1367-2630/11/3/033026

Y. Ozeki, . Dake, . Kajiyama, K. Fukui, and . Itoh, Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy, Optics Express, vol.17, issue.5, 2009.
DOI : 10.1364/OE.17.003651

W. Kaiser and C. G. Garrett, Two-Photon Excitation in Ca, Physical Review Letters, vol.2, issue.76, pp.229-231, 1961.

W. Zipfel, W. Williams, and . Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nature Biotechnology, vol.21, issue.11, 2003.
DOI : 10.1038/nbt899

P. Franken, . Hill, G. Peters, and . Weinreich, Generation of Optical Harmonics, Physical Review Letters, vol.6, issue.4, 1961.
DOI : 10.1103/PhysRevLett.6.106

S. Fine and W. Hansen, Optical Second Harmonic Generation in Biological Systems, Applied Optics, vol.10, issue.10, 1971.
DOI : 10.1364/AO.10.002350

W. Zipfel, R. Williams, and . Christie, Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation, Proceedings of the, 2003.
DOI : 10.1073/pnas.172368799

URL : http://www.pnas.org/content/100/12/7075.full.pdf

K. Ekvall, P. Van-der-meulen, and C. Dhollande, Cross phase modulation artifact in liquid phase transient absorption spectroscopy, Journal of Applied Physics, vol.87, issue.5, 2000.
DOI : 10.1364/OL.23.001292

R. Snook and R. Lowe, Thermal lens spectrometry. A review, The Analyst, vol.120, issue.8, 1995.
DOI : 10.1039/an9952002051

URL : https://hal.archives-ouvertes.fr/jpa-00253251

P. Berto, E. Andresen, and H. Rigneault, Background-free stimulated Raman spectroscopy and microscopy. Physical review letters, 2014.
DOI : 10.1103/physrevlett.112.053905

URL : https://hal.archives-ouvertes.fr/hal-00947532

D. Fu, . Ye, . Matthews, G. Chen, and . Yurtserver, High-resolution in vivo imaging of blood vessels without labeling. Optics, 2007.
DOI : 10.1364/ol.32.002641

K. I. Popov, A. F. Pegoraro, A. Stolow, and L. Ramunno, Image formation in CARS and SRS: effect of an inhomogeneous nonresonant background medium, Optics Letters, vol.37, issue.4, p.473, 2012.
DOI : 10.1364/OL.37.000473

P. Ferrand and . Gpscan, GPScan.VI: A general-purpose LabVIEW program for scanning imaging or any application requiring synchronous analog voltage generation and data acquisition, Computer Physics Communications, vol.192, pp.342-347, 2015.
DOI : 10.1016/j.cpc.2015.03.010

URL : https://hal.archives-ouvertes.fr/hal-01141210

R. Warren, R. M. Zipfel, R. Williams, A. Y. Christie, . Nikitin et al., Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation, Proceedings of the National Academy of Sciences of the United States of America, vol.100, issue.12, pp.7075-80, 2003.

M. Donald, . Mcdonald, L. Peter, and . Choyke, Imaging of angiogenesis : from microscope to clinic, Nature Medicine, vol.9, issue.6, pp.713-725, 2003.

K. Wolf, I. Mazo, H. Leung, K. Engelke, U. H. Von-andrian et al., Compensation mechanism in tumor cell migration, The Journal of Cell Biology, vol.8, issue.2, pp.267-277, 2003.
DOI : 10.1038/sj.onc.1204097

URL : http://jcb.rupress.org/content/jcb/160/2/267.full.pdf

P. Paolo, . Provenzano, W. Kevin, . Eliceiri, M. Jay et al., Collagen reorganization at the tumor-stromal interface facilitates local invasion, BMC Medicine, vol.4, issue.1, p.38, 2006.

T. C. Connolly, A. Y. Hamilton, . Nikitin, R. Warren, and . Zipfel, Strategies for High Resolution Imaging of Epithelial Ovarian Cancer by Laparoscopic Nonlinear Microscopy, Translational Oncology, vol.3, issue.3, pp.181-194, 2010.

G. S. Agar, C. Young, S. Spino, S. Santagata, . Camelo-piragua et al., Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy, Science translational medicine, vol.5, issue.201, pp.201-119, 2013.

M. Ji, S. Lewis, S. Camelo-piragua, H. Shakti, M. Ramkissoon et al., Xiaoliang Sunney Xie, and Daniel A Orringer. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy, Science translational medicine, vol.7, issue.309, pp.309-163, 2015.

. Orringer, Improving the accuracy of brain tumor surgery via Raman-based technology, Neurosurgical Focus, vol.40, issue.3, p.9, 2016.

C. W. Trautman, S. Freudiger, and . Camelo-piragua, Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based

R. He, Y. Xu, L. Zhang, S. Ma, X. Wang et al., Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging, Optica, vol.4, issue.1, p.44, 2017.
DOI : 10.1364/OPTICA.4.000044.v004

P. Esben-ravn-andresen, H. Berto, and . Rigneault, Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse, Optics Letters, vol.36, issue.13, pp.2387-2389, 2011.
DOI : 10.1364/OL.36.002387

K. Ruth, D. Freinkel, and . Woodley, The biology of the skin, 2001.

K. M. Halprin, EPIDERMAL "TURNOVER TIME"???A RE-EXAMINATION, British Journal of Dermatology, vol.30, issue.1, pp.14-19, 1972.
DOI : 10.1001/archderm.103.1.33

X. Chen, Human skin investigations using nonlinear spectroscopy and microscopy, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01169635

B. Sarri, Spectrin-lipid interactions and their effect on the membrane mechanical properties, 2014.

X. Chen, S. Grégoire, F. Formanek, J. Galey, and H. Rigneault, Quantitative 3D molecular cutaneous absorption in human skin using label free nonlinear microscopy, Journal of Controlled Release, vol.200, pp.78-86, 2015.
DOI : 10.1016/j.jconrel.2014.12.033

URL : https://hal.archives-ouvertes.fr/hal-01117360

F. Bernerd, C. Marionnet, and C. Duval, Solar ultraviolet radiation induces biological alterations in human skin in vitro: Relevance of a well-balanced UVA/UVB protection, Indian Journal of Dermatology, Venereology, and Leprology, vol.78, issue.7, p.7815, 2012.
DOI : 10.4103/0378-6323.97351

. Merali, Human skin to replace animal tests, New Scientist, vol.195, issue.2614, p.14, 2007.
DOI : 10.1016/S0262-4079(07)61866-1

M. Müller and A. Zumbusch, Coherent anti-Stokes Raman Scattering Microscopy, ChemPhysChem, vol.287, issue.15, pp.2156-2170, 2007.
DOI : 10.1007/978-0-387-45524-2

A. Lombardini, Nonlinear optical endoscopy with micro-structured photonic crystal fibers, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01577793

A. Lombardini, V. Mytskaniuk, S. Sivankutty, X. Esben-ravn-andresen, J. Chen et al., Frédéric Louradour, Alexandre Kudlinski, and Hervé Rigneault. High-resolution multimodal flexible coherent Raman endoscope. arXiv preprint, 2017.