J. Abbott, Syngas from renewables, production of green methanol. Presented at the 2015 European Methanol Policy Forum, 2015.

K. Abe, S. Iwamoto, and H. Yano, Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood, Biomacromolecules, vol.8, issue.10, pp.3276-3278, 2007.
DOI : 10.1021/bm700624p

S. Ahola, M. Österberg, and J. Laine, Cellulose nanofibrils???adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive, Cellulose, vol.1, issue.6, pp.303-314, 2008.
DOI : 10.1007/s10570-007-9167-3

M. Andresen, L. Johansson, B. S. Tanem, and P. Stenius, Properties and characterization of hydrophobized microfibrillated cellulose, Cellulose, vol.4, issue.145, pp.665-677, 2006.
DOI : 10.1007/s10570-006-9072-1

T. Anthierens, P. Ragaert, S. Verbrugghe, A. Ouchchen, B. G. De-geest et al., Use of endospore-forming bacteria as an active oxygen scavenger in plastic packaging materials, Innovative Food Science & Emerging Technologies, vol.12, issue.4, pp.594-599, 2011.
DOI : 10.1016/j.ifset.2011.06.008

S. Arola, J. Malho, P. Laaksonen, M. Lille, and M. B. Linder, The role of hemicellulose in nanofibrillated cellulose networks, Soft Matter, vol.19, issue.4, 2013.
DOI : 10.1007/s10570-012-9661-0

C. Aulin, M. Gällstedt, and T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose, vol.17, issue.3, pp.559-574, 2010.
DOI : 10.1016/0166-6622(87)80140-3

C. Aulin and G. Ström, Multilayered Alkyd Resin/Nanocellulose Coatings for Use in Renewable Packaging Solutions with a High Level of Moisture Resistance, Industrial & Engineering Chemistry Research, vol.52, issue.7, pp.2582-2589, 2013.
DOI : 10.1021/ie301785a

L. Axrup, I. Heiskanen, and K. Backfolk, A Paper or Paperboard Substrate, a Process for Production of the Substrate and a Package Formed of the Substrate, p.78770, 2011.

A. Samir, M. A. Alloin, F. Sanchez, J. Dufresne, and A. , Cellulose nanocrystals reinforced poly(oxyethylene), Polymer, vol.45, issue.12, pp.4149-4157, 2004.
DOI : 10.1016/j.polymer.2004.03.094

URL : https://hal.archives-ouvertes.fr/hal-00306793

R. Bardet, C. Reverdy, N. Belgacem, I. Leirset, K. Syverud et al., Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment, Cellulose, vol.67, issue.2, pp.1227-1241, 2015.
DOI : 10.1177/004051759706700505

URL : https://hal.archives-ouvertes.fr/hal-01585688

R. M. Barrer and J. H. Petropoulos, Diffusion in heterogeneous media: lattices of parallelepipeds in a continuous phase, British Journal of Applied Physics, vol.12, issue.12, p.691, 1961.
DOI : 10.1088/0508-3443/12/12/322

S. Belbekhouche, J. Bras, G. Siqueira, C. Chappey, L. Lebrun et al., Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films, Carbohydrate Polymers, vol.83, issue.4, pp.1740-1748, 2011.
DOI : 10.1016/j.carbpol.2010.10.036

L. Bertolla, I. Dlouhý, A. Philippart, and A. R. Boccaccini, Mechanical reinforcement of Bioglass®based scaffolds by novel polyvinyl-alcohol, 2014.
DOI : 10.1016/j.matlet.2013.12.079

I. Besbes, S. Alila, and S. Boufi, Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content, Carbohydrate Polymers, vol.84, issue.3, pp.975-983, 2011.
DOI : 10.1016/j.carbpol.2010.12.052

R. K. Bharadwaj, Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites, Macromolecules, vol.34, issue.26, pp.9189-9192, 2001.
DOI : 10.1021/ma010780b

D. Bhattacharya, L. T. Germinario, and W. T. Winter, Isolation, preparation and characterization of cellulose microfibers obtained from bagasse, Carbohydrate Polymers, vol.73, issue.3, pp.371-377, 2008.
DOI : 10.1016/j.carbpol.2007.12.005

M. Biedermann and K. Grob, Is recycled newspaper suitable for food contact materials? Technical grade mineral oils from printing inks, European Food Research and Technology, vol.16, issue.Suppl, pp.785-796, 2010.
DOI : 10.1080/02652039809374702

C. Birck, New crosslinked cast films based on poly(vinyl alcohol): Preparation and physico-chemical properties, Express Polymer Letters, vol.8, issue.12, 2014.
DOI : 10.3144/expresspolymlett.2014.95

URL : http://doi.org/10.3144/expresspolymlett.2014.95

R. Blum and H. Diehl, Barrier solutions for innovative and sustainable paper and board packaging Coating International, 2015.

. Borregaard, Borregaard invests NOK 225 million in a production facility for Exilva microfibrillar cellulose. [WWW Document]. URL www.borregaard.com/New/Borregaard-invests-NOK-225- million-in-a-production-facility-for-Exilva-microfibrillater-cellulose (accessed 11, 2014.

J. Bras, M. L. Hassan, C. Bruzesse, E. A. Hassan, N. A. El-wakil et al., Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites, Industrial Crops and Products, vol.32, issue.3, pp.627-633, 2010.
DOI : 10.1016/j.indcrop.2010.07.018

D. W. Breiby, E. J. Samuelsen, and O. Konovalov, The drying behaviour of conjugated polymer solutions, Synthetic Metals, vol.139, issue.2, pp.361-369, 2003.
DOI : 10.1016/S0379-6779(03)00186-3

G. H. Brundtland, Rapport Brundtland [WWW Document]. Ministère Aff. Étrangères Dév. Int. L'Odyssée Dév. Durable. URL http, 1987.

R. Bundersinstitut-für, XXXVI. Paper and board for food contact [WWW Document]. URL https, 2016.

&. Byk-additives and . Instruments, Food Contact Regulatory Status Information -Cloisite-Na+, 2015.

F. Carosio, F. Cuttica, L. Medina, and L. A. Berglund, Clay nanopaper as multifunctional brick and mortar fire protection coating???Wood case study, Materials & Design, vol.93, 2016.
DOI : 10.1016/j.matdes.2015.12.140

F. Carosio, J. Kochumalayil, F. Cuttica, G. Camino, and L. Berglund, Oriented Clay Nanopaper from Biobased Components???Mechanisms for Superior Fire Protection Properties, ACS Applied Materials & Interfaces, vol.7, issue.10, pp.5847-585610, 1021.
DOI : 10.1021/am509058h

C. Castro, A. Vesterinen, R. Zuluaga, G. Caro, I. Filpponen et al., In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteria: effect of chemical crosslinking, Cellulose, vol.76, issue.1, pp.1745-1756, 2014.
DOI : 10.1016/j.carbpol.2008.09.024

D. F. Caulfield, Ester crosslinking to improve wet performance of paper using multifunctional caboxylic acids, butanetetracarboxylic and citic acid, Tappi J, vol.77, pp.205-212, 1994.

. Cellucomp, Applications of Curran®, 2013.

A. Chakraborty, M. Sain, and M. Kortschot, Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing, Holzforschung, vol.37, issue.4, pp.102-107, 2005.
DOI : 10.1016/S0032-5910(98)00024-2

W. Chen, Q. Li, J. Cao, Y. Liu, J. Li et al., Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation, Carbohydrate Polymers, vol.117, pp.950-956, 2015.
DOI : 10.1016/j.carbpol.2014.10.024

W. Chen, G. C. Lickfield, and C. Q. Yang, Molecular modeling of cellulose in amorphous state part II: effects of rigid and flexible crosslinks on cellulose, Polymer, vol.45, issue.21, 2004.
DOI : 10.1016/j.polymer.2004.08.023

X. Chen, J. Ren, and L. Meng, Influence of Ammonium Zirconium Carbonate on Properties of Poly(vinyl alcohol)/Xylan Composite Films, Journal of Nanomaterials, vol.2015, p.810464, 2015.
DOI : 10.1016/s0079-6700(02)00149-1

G. Chinga-carrasco, Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view, Nanoscale Research Letters, vol.6, issue.1, pp.1-7, 2011.
DOI : 10.1021/bm801065u

G. Chinga-carrasco, N. Averianova, O. Kondalenko, M. Garaeva, V. Petrov et al., The effect of residual fibres on the micro-topography of cellulose nanopaper, Micron, vol.56, pp.80-84, 2014.
DOI : 10.1016/j.micron.2013.09.002

F. Chivrac, E. Pollet, and L. Avérous, Progress in nano-biocomposites based on polysaccharides and nanoclays, Materials Science and Engineering: R: Reports, vol.67, issue.1, 2009.
DOI : 10.1016/j.mser.2009.09.002

G. Choudalakis and A. D. Gotsis, Permeability of polymer/clay nanocomposites: A review, European Polymer Journal, vol.45, issue.4, 2009.
DOI : 10.1016/j.eurpolymj.2009.01.027

B. C. Clark, R. E. Arvidson, R. Gellert, R. V. Morris, D. W. Ming et al., Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars, Synergistic and Competitive Aspects of the Adsorption of Poly(ethylene glycol) and Poly(vinyl alcohol) onto Na-Bentonite, pp.13268-1327810, 1021.
DOI : 10.1097/00010694-195310000-00009

URL : http://onlinelibrary.wiley.com/doi/10.1029/2006JE002756/pdf

. Coexpan, Film plastique haute barrière pour l'industrie alimentaire

V. Coma, I. Sebti, P. Pardon, F. H. Pichavant, and A. Deschamps, Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid, Carbohydrate Polymers, vol.51, issue.3, pp.265-271, 2003.
DOI : 10.1016/S0144-8617(02)00191-1

J. Crank, The Mathematics of Diffusion, 1975.

K. M. Dean, M. D. Do, E. Petinakis, and L. Yu, Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro- and nanocomposites, Composites Science and Technology, vol.68, issue.6, pp.1453-1462, 2008.
DOI : 10.1016/j.compscitech.2007.10.037

C. Demitri, R. Del-sole, F. Scalera, A. Sannino, G. Vasapollo et al., Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid, Journal of Applied Polymer Science, vol.56, issue.4, pp.2453-2460, 2008.
DOI : 10.2136/sssaj1997.03615995006100020028x

I. Diddens, B. Murphy, M. Krisch, and M. Müller, Anisotropic Elastic Properties of Cellulose Measured Using Inelastic X-ray Scattering, Macromolecules, vol.41, issue.24, pp.9755-9759, 2008.
DOI : 10.1021/ma801796u

K. Dimic-misic, P. A. Gane, and J. Paltakari, Micro- and Nanofibrillated Cellulose as a Rheology Modifier Additive in CMC-Containing Pigment-Coating Formulations, Industrial & Engineering Chemistry Research, vol.52, issue.45, pp.16066-1608310, 1021.
DOI : 10.1021/ie4028878

A. Dufresne, Nanocellulose: from nature to high performance tailored materials, De Gruyter, 2012.

S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona et al., Review: current international research into cellulose nanofibres and nanocomposites, Journal of Materials Science, vol.22, issue.5, pp.1-33, 2010.
DOI : 10.3139/217.2059

URL : http://doc.rero.ch/record/17566/files/wed_rci.pdf

E. Parliament, on plastic materials and articles intended to come into contact with food, Off. J. Eur, issue.10, 2011.

E. Parliament, D. E. Of, . European, . Parliament, . Of et al., REGULATION (EC) No on materials and articles intended to come into contact with food and repealing directives 80, 1935.

E. Parliament and &. Council, Waste Framework Directive, EC, vol.98, 2008.

Z. Fang, H. Zhu, Y. Yuan, D. Ha, S. Zhu et al., Novel Nanostructured Paper with Ultrahigh Transparency and Ultrahigh Haze for Solar Cells, Nano Letters, vol.14, issue.2, pp.765-773, 2009.
DOI : 10.1021/nl404101p

S. Fujisawa, Y. Okita, H. Fukuzumi, T. Saito, and A. Isogai, Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups, Carbohydrate Polymers, vol.84, issue.1, pp.579-583, 2011.
DOI : 10.1016/j.carbpol.2010.12.029

H. Fukuzumi, S. Fujisawa, T. Saito, and A. Isogai, Selective Permeation of Hydrogen Gas Using Cellulose Nanofibril Film, Biomacromolecules, vol.14, issue.5, pp.1705-1709, 2013.
DOI : 10.1021/bm400377e

H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.10, issue.1, pp.162-165, 2009.
DOI : 10.1021/bm801065u

E. P. Giannelis, R. Krishnamoorti, E. Manias, S. Granick, K. Binder et al., Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes, Polymers in Confined Environments, Advances in Polymer Science, 1999.
DOI : 10.1007/3-540-69711-X_3

URL : http://zeus.plmsc.psu.edu/%7Emanias/PDFs/advpol99.pdf

F. Girard, Barrier materials. Presented at the Formation barrier at CTP, 2011.

H. S. Grewal and K. L. Kalra, Fungal production of citric acid, Biotechnology Advances, vol.13, issue.2, pp.209-23410, 1995.
DOI : 10.1016/0734-9750(95)00002-8

F. Grüneberger, T. Künniger, T. Zimmermann, and M. Arnold, Rheology of nanofibrillated cellulose/acrylate systems for coating applications, Cellulose, vol.79, issue.4, pp.1313-1326, 2014.
DOI : 10.1016/j.carbpol.2009.10.045

J. C. Grunlan, A. Grigorian, C. B. Hamilton, and A. R. Mehrabi, Effect of clay concentration on the oxygen permeability and optical properties of a modified poly(vinyl alcohol), Journal of Applied Polymer Science, vol.271, issue.3, 2004.
DOI : 10.1007/BF00652830

D. Guerin, E. Zeno, and L. Crowther-alwyn, Cellulose-based packaging materials for pouch cells, 2016.

C. Guezennec, Development of new packaging materials based on micro-and nano-fibrillated cellulose, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00870839

C. Guezennec, F. Girard, A. Dufresne, and D. Guerin, The use of microfibrillated cellulose to develop a barrier packaging board, Presented at the 8th CTP-PTS International Symposium on Packaging Design and Recycling, 2014.

M. Hämäläinen, Kotkamill's new Consumer Board machine now in production, pp.0-17, 2016.

P. F. Harmsen, M. M. Hackmann, and H. L. Bos, Green building blocks for bio-based plastics, Biofuels, Bioproducts and Biorefining, vol.7, issue.2, pp.306-324, 2014.
DOI : 10.1002/mabi.200600223

M. L. Hassan, A. P. Mathew, E. A. Hassan, N. A. El-wakil, and K. Oksman, Nanofibers from bagasse and rice straw: process optimization and properties, Wood Science and Technology, vol.90, issue.1-3, pp.193-205, 2012.
DOI : 10.1063/1.2450666

I. Heiskanen, K. Backfolk, and L. Axrup, A coated substrate, a process for production of a coated substrate, a package and a dispersion coating, 2011.

Z. Hejri, A. Ahmadpour, A. A. Seifkordi, and S. M. Zebarjad, Role of nano-sized TiO2 on mechanical and thermal behavior of starch/Poly (vinyl alcohol) blend films, Int. J. Nanosci. Nanotechnol, vol.8, pp.215-226, 2012.

T. T. Ho, Y. S. Ko, T. Zimmermann, T. Geiger, and W. Caseri, Processing and characterization of nanofibrillated cellulose/layered silicate systems, Journal of Materials Science, vol.23, issue.04, pp.4370-4382, 2012.
DOI : 10.1557/jmr.2008.0147

T. T. Ho, T. Zimmermann, S. Ohr, and W. R. Caseri, Composites of Cationic Nanofibrillated Cellulose and Layered Silicates: Water Vapor Barrier and Mechanical Properties, ACS Applied Materials & Interfaces, vol.4, issue.9, pp.4832-484010, 1021.
DOI : 10.1021/am3011737

C. Honorato, V. Kumar, J. Liu, H. Koivula, C. Xu et al., Transparent nanocellulose-pigment composite films, Journal of Materials Science, vol.17, issue.1, pp.7343-7352, 2015.
DOI : 10.1007/s10570-009-9393-y

H. Hu, X. Zhang, Y. He, Z. Guo, J. Zhang et al., Combined effect of relative humidity and temperature on dynamic viscoelastic properties and glass transition of poly(vinyl alcohol), Journal of Applied Polymer Science, vol.46, issue.5, 2013.
DOI : 10.1016/j.polymer.2005.06.103

J. H. Huis-in-'t-veld, Microbial and biochemical spoilage of foods: an overview, International Journal of Food Microbiology, vol.33, issue.1, pp.1-18, 1996.
DOI : 10.1016/0168-1605(96)01139-7

E. Hult, M. Iotti, and M. Lenes, Efficient approach to high barrier packaging using microfibrillar cellulose and shellac, Cellulose, vol.25, issue.1, pp.575-586, 2010.
DOI : 10.1007/978-94-009-4858-7_2

W. Niosh, ICSC:NFRN1489 International Chemical Safety Cards, 2015.

M. Iotti, E. Øyvind, Ø. , G. Lenes, and M. , Semi industrial application of MFC barrier coating, a rheological and technological study, 2010.

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.23, issue.10, 2011.
DOI : 10.1021/la063118n

S. Iwamoto, K. Abe, and H. Yano, The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics, Biomacromolecules, vol.9, issue.3, pp.1022-1026, 2008.
DOI : 10.1021/bm701157n

A. Javed, H. Ullsten, M. Ernstsson, and L. Järnström, Study of starch and starch-PVOH blends and effects of plasticizers on mechanical and barrier properties of coated paperboard, Nordic Pulp and Paper Research Journal, vol.31, issue.03, pp.499-510, 2016.
DOI : 10.3183/NPPRJ-2016-31-03-p499-510

G. Jimenez, N. Ogata, H. Kawai, and T. Ogihara, Structure and thermal/mechanical properties of poly (?-caprolactone)-clay blend, 11<2211::AID-APP17>3.0.CO, pp.2211-22201097, 1997.
DOI : 10.1002/(sici)1097-4628(19970613)64:11<2211::aid-app17>3.0.co;2-6

J. Jo, C. Min, and J. Shin, Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System, Journal of Korea Technical Association of The Pulp and Paper Industry, vol.44, issue.2, pp.29-34, 2012.
DOI : 10.7584/ktappi.2012.44.2.029

H. Kangas, P. Lahtinen, A. Sneck, A. Saariaho, O. Laitinen et al., Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods, Nordic Pulp and Paper Research Journal, vol.29, issue.01, pp.129-143, 2014.
DOI : 10.3183/NPPRJ-2014-29-01-p129-143

H. Keski-orvola, The contemporary drying of paper and paperboard coatings, 2007.

K. Khwaldia, E. Arab-tehrany, and S. Desobry, Biopolymer Coatings on Paper Packaging Materials, Comprehensive Reviews in Food Science and Food Safety, vol.82, issue.2, pp.82-91, 2010.
DOI : 10.1016/j.lwt.2005.05.008

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1541-4337.2009.00095.x/pdf

J. Kim, S. W. Kim, S. Park, K. T. Lim, H. Seonwoo et al., Bacterial Cellulose Nanofibrillar Patch as a Wound Healing Platform of Tympanic Membrane Perforation, Advanced Healthcare Materials, vol.32, issue.11, pp.1525-1531, 2013.
DOI : 10.1097/MAO.0b013e31822e0e53

S. K. Kisku, N. Sarkar, S. Dash, and S. K. Swain, Preparation of Starch, 2014.

V. Kumar, A. Elfving, H. Koivula, D. Bousfield, and M. L. Toivakka, Roll-to-Roll Processed Cellulose Nanofiber Coatings A material for packaging of foodstuff, and a package for foodstuff, Ind. Eng. Chem. Res, vol.55, issue.A1, p.2730698, 2014.

J. Lange and Y. Wyser, Recent innovations in barrier technologies for plastic packaging?a review, Packaging Technology and Science, vol.3, issue.4, pp.149-158, 2003.
DOI : 10.1063/1.477829

N. Lavoine, Design, Processing and Characterization of innovative functional bio-nanomaterials for packaging, 2014.

N. Lavoine, I. Desloges, B. Khelifi, and J. Bras, Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper, Journal of Materials Science, vol.19, issue.3, pp.2879-2893, 2014.
DOI : 10.1007/s10570-012-9685-5

A. Liu and L. A. Berglund, Fire-retardant and ductile clay nanopaper biocomposites based on montmorrilonite in matrix of cellulose nanofibers and carboxymethyl cellulose, European Polymer Journal, vol.49, issue.4, 2013.
DOI : 10.1016/j.eurpolymj.2012.12.017

A. Liu and L. A. Berglund, Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers???Improvements due to chitosan addition, Carbohydrate Polymers, vol.87, issue.1, 2012.
DOI : 10.1016/j.carbpol.2011.07.019

A. Liu, A. Walther, O. Ikkala, L. Belova, and L. A. Berglund, Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions, Biomacromolecules, vol.12, issue.3, pp.633-641, 2011.
DOI : 10.1021/bm101296z

G. Liu, Y. Song, J. Wang, H. Zhuang, L. Ma et al., Effects of nanoclay type on the physical and antimicrobial properties of PVOH-based nanocomposite films, LWT - Food Science and Technology, vol.57, issue.2, pp.562-568, 2014.
DOI : 10.1016/j.lwt.2014.01.009

L. Liu, Y. Z. Chen, and Z. J. Zhang, Preparation of the Microfibrillated Cellulose and its Application in the Food Packaging Paper, Applied Mechanics and Materials, vol.469, pp.87-90, 2013.
DOI : 10.4028/www.scientific.net/AMM.469.87

C. Locre, Les Matériaux Barrières : Définitions et Utilisations. Presented at the Formation barrier at CTP, 2016.

M. J. Lundahl, A. G. Cunha, E. Rojo, A. C. Papageorgiou, L. Rautkari et al., Strength and Water Interactions of Cellulose I Filaments Wet-Spun from, Cellulose Nanofibril Hydrogels. Sci. Rep, vol.6, pp.3069510-30695, 1038.
DOI : 10.1038/srep30695

URL : http://www.nature.com/articles/srep30695.pdf

W. T. Luu and D. W. Bousfield, Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing, 2011.

L. R. Lynd, P. J. Weimer, W. H. Zyl, . Van, and I. S. Pretorius, Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiology and Molecular Biology Reviews, vol.66, issue.3, pp.506-577, 2002.
DOI : 10.1128/MMBR.66.3.506-577.2002

URL : http://mmbr.asm.org/content/66/4/739.full.pdf

H. Ma, B. S. Hsiao, and B. Chu, Highly permeable nanofibrous membranes for energy efficient water purification, in: Abstracts of Papers of the, 2013.

S. Mahendia, A. K. Tomar, P. K. Goyal, and S. Kumar, Tuning of refractive index of poly(vinyl alcohol): Effect of embedding Cu and Ag nanoparticles, Journal of Applied Physics, vol.2, issue.7, 2013.
DOI : 10.1103/PhysRevB.6.4370

E. Marin, J. Rojas, and Y. Ciro, A review of polyvinyl alcohol derivatives: Promising materials for pharmaceutical and biomedical applications. Afr, J. Pharm. Pharmacol, vol.8, pp.674-684, 2014.

N. C. Martins, C. S. Freire, C. P. Neto, A. J. Silvestre, J. Causio et al., Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.417, pp.111-119, 2013.
DOI : 10.1016/j.colsurfa.2012.10.042

A. P. Mathew, P. Liu, Z. Karim, and K. Oksman, Nanocellulose and functional material for water cleaning, pp.16-19, 2014.

S. Matsumura, H. Kurita, and H. Shimokobe, Anaerobic biodegradability of polyvinyl alcohol, Biotechnology Letters, vol.31, issue.7, pp.749-754, 1993.
DOI : 10.1007/BF01080150

K. S. Mikkonen, J. Schmidt, A. Vesterinen, and M. Tenkanen, Crosslinking with ammonium zirconium carbonate improves the formation and properties of spruce galactoglucomannan films, Journal of Materials Science, vol.12, issue.3, pp.4205-4213, 2013.
DOI : 10.1021/bm200128s

M. Minelli, M. G. Baschetti, F. Doghieri, M. Ankerfors, T. Lindström et al., Investigation of mass transport properties of microfibrillated cellulose (MFC) films, Journal of Membrane Science, vol.358, issue.1-2, 2010.
DOI : 10.1016/j.memsci.2010.04.030

S. Ming, G. Chen, Z. Wu, L. Su, J. He et al., Effective dispersion of aqueous clay suspension using carboxylated nanofibrillated cellulose as dispersant, RSC Advances, vol.21, issue.44, pp.37330-37336, 2012.
DOI : 10.1007/s10570-014-0192-8

P. J. Moles, The use of zirconium in Surface Coatings, 2002.

. Mondi, Mondi presents alufree BarrierFilm for food packaging at FachPack, pp.345-28956, 2015.

S. Montserrat, P. Cortés, Y. Calventus, and J. Hutchinson, The use of DSC to characterize structural relaxation in thermosetting polymers, Journal of thermal analysis, vol.59, issue.174, pp.79-85, 1997.
DOI : 10.1007/BF01987423

P. Navarri and J. Andrieu, High-intensity infrared drying study, Chemical Engineering and Processing: Process Intensification, vol.32, issue.5, pp.319-325, 1993.
DOI : 10.1016/0255-2701(93)85016-9

O. Nechyporchuk, M. N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances, Industrial Crops and Products, vol.93, 2016.
DOI : 10.1016/j.indcrop.2016.02.016

O. Nechyporchuk, M. N. Belgacem, F. O. Pignon, F. Pignon, and M. N. Belgacem, Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process, Journal of Materials Science, vol.21, issue.2, pp.531-541, 2015.
DOI : 10.1007/s10924-012-0548-9

M. Nogi, K. Handa, A. N. Nakagaito, and H. Yano, Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix, Applied Physics Letters, vol.87, issue.24, 2005.
DOI : 10.1002/adma.200400597

M. Nuopponen, J. Tamper, and I. Kajanto, Method and device for monitoring the quality of nanofibrillar cellulose, pp.2016001480-2016001481, 2016.

S. Nygards, Nanocellulose in pigment coatings: Aspects of barrier properties and printability in offset, 2011.

T. Obokata and A. Isogai, The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine-epichlorohydrin (PAE) resin, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.302, issue.1-3, pp.525-531, 2007.
DOI : 10.1016/j.colsurfa.2007.03.025

Y. Oishi and A. Hotta, The Structure and the Mechanical Properties of a Newly Fabricated Cellulose-Nanofiber/Polyvinyl-Alcohol Composite, MRS Proc. 1621, pp.149-154, 2014.
DOI : 10.1021/bm300609c

T. Oksanen, J. Buchert, and L. Viikari, The Role of Hemicelluloses in the Hornification of Bleached Kraft Pulps, Holzforschung, vol.2, issue.9, 1997.
DOI : 10.1016/0141-0229(92)90128-B

E. Olsson, Effects of Citric Acid on Starch-Based Barrier Coatings, 2013.

E. Olsson, M. S. Hedenqvist, C. Johansson, and L. Järnström, Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films, Carbohydrate Polymers, vol.94, issue.2, pp.765-772, 2013.
DOI : 10.1016/j.carbpol.2013.02.006

E. Olsson, C. Johansson, and L. Järnström, Montmorillonite for starch-based barrier dispersion coating ??? Part 1: The influence of citric acid and poly(ethylene glycol) on viscosity and barrier properties, Applied Clay Science, vol.97, issue.98, pp.97-98, 2014.
DOI : 10.1016/j.clay.2014.04.040

E. Olsson, C. Menzel, C. Johansson, R. Andersson, K. Koch et al., The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid, Carbohydrate Polymers, vol.98, issue.2, pp.1505-1513, 2013.
DOI : 10.1016/j.carbpol.2013.07.040

M. Österberg, J. Vartiainen, J. Lucenius, U. Hippi, J. Seppälä et al., A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials, ACS Applied Materials & Interfaces, vol.5, issue.11, pp.4640-464710, 1021.
DOI : 10.1021/am401046x

M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola et al., Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Biomacromolecules, vol.8, issue.6, pp.1934-194110, 1021.
DOI : 10.1021/bm061215p

M. Pääkkö, J. Vapaavuori, R. Silvennoinen, H. Kosonen, M. Ankerfors et al., Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities, Soft Matter, vol.153, issue.12, pp.2492-2499, 2008.
DOI : 10.1080/713738864

D. R. Paul and L. M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer, vol.49, issue.15, pp.3187-3204, 2008.
DOI : 10.1016/j.polymer.2008.04.017

N. A. Peppas and E. W. Merrill, Differential scanning calorimetry of crystallized PVA hydrogels, Journal of Applied Polymer Science, vol.20, issue.6, pp.1457-1465, 1976.
DOI : 10.1002/app.1976.070200604

D. Plackett, Biopolymers: New materials for sustainable films and coatings, 2011.
DOI : 10.1002/9781119994312

D. Plackett, H. Anturi, M. Hedenqvist, M. Ankerfors, M. Gällstedt et al., Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin, Journal of Applied Polymer Science, vol.36, pp.3601-3609, 2010.
DOI : 10.1111/j.2042-7158.1966.tb07906.x

P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim et al., Ultrastrong and Stiff Layered Polymer Nanocomposites, Science, vol.72, issue.6941, pp.80-83, 2007.
DOI : 10.5254/1.3538823

A. Quellmalz and A. Mihranyan, Citric Acid Cross-Linked Nanocellulose-Based Paper for Size-Exclusion Nanofiltration, ACS Biomaterials Science & Engineering, vol.1, issue.4, pp.271-276, 2015.
DOI : 10.1021/ab500161x

P. Qvintus and H. Kangas, VTT Webinar: Cellulose nanofibrils (CNF) ? a big hype or on the edge of a breakthrough [WWW Document]. URL https, pp.25-40, 2015.

G. Rodionova, T. Saito, M. Lenes, Ø. Eriksen, Ø. Gregersen et al., Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps, Cellulose, vol.84, issue.3, pp.705-711, 2012.
DOI : 10.1016/j.carbpol.2010.12.066

J. Rojas and E. Azevedo, Functionalization and crosslinking of microcrystalline cellulose in aqueous media: A safe and economic approach, Int. J. Pharm. Sci. Rev. Res, vol.8, pp.28-36, 2011.

R. P. Scalzo, J. E. Brandenburg, M. L. Mitchell, P. H. Mitchell, M. G. Mitchell et al., Extrudable composition derived from renewable resources, 2014.

P. Schexnailder and G. Schmidt, Nanocomposite polymer hydrogels, Colloid and Polymer Science, vol.111, issue.25, pp.1-11, 2009.
DOI : 10.1140/epje/i2007-10303-4

W. Schmidt, G. Papier, M. Schlenstedt, R. Gericke, and A. Fehlker, Receiving Layer for Digital Printing Methods Having Nanofibrillated Cellulose, pp.20150140237-1, 2015.

H. Sehaqui, A. Liu, Q. Zhou, and L. A. Berglund, Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures, Biomacromolecules, vol.11, issue.9, pp.2195-2198, 2010.
DOI : 10.1021/bm100490s

H. Sehaqui, T. Zimmermann, and P. Tingaut, Hydrophobic cellulose nanopaper through a mild esterification procedure, Cellulose, vol.79, issue.4, pp.367-382, 2014.
DOI : 10.1016/j.carbpol.2009.10.045

J. J. Shi and E. L. Yang, Green Electrospinning and Crosslinking of Polyvinyl Alcohol/Citric Acid, Journal of Nano Research, vol.32, pp.32-42, 2015.
DOI : 10.4028/www.scientific.net/JNanoR.32.32

Z. Shi, G. O. Phillips, and G. Yang, Nanocellulose electroconductive composites, Nanoscale, vol.3, issue.8, pp.3194-3201, 2013.
DOI : 10.1039/c0ee00137f

Z. Shi, Y. Zhang, G. O. Phillips, and G. Yang, Utilization of bacterial cellulose in food. Food Hydrocoll, 2014.

M. Shimao, Biodegradation of plastics, Current Opinion in Biotechnology, vol.12, issue.3, pp.242-247, 2001.
DOI : 10.1016/S0958-1669(00)00206-8

M. Shimizu, T. Saito, and A. Isogai, Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions, Journal of Membrane Science, vol.500, 2016.
DOI : 10.1016/j.memsci.2015.11.002

URL : https://manuscript.elsevier.com/S0376738815303021/pdf/S0376738815303021.pdf

S. Aldrich, Ammonium zirconium(IV) carbonate solution in H2O, 2015.

S. Sinha-ray and M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science, vol.28, issue.11, pp.1539-1641, 2003.
DOI : 10.1016/j.progpolymsci.2003.08.002

E. J. Siqueira, Polyamidoamine epichlorohydrin-based papers: mechanisms of wet strength development and paper repulping, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00952991

G. Siqueira, J. Bras, A. G. Dufresne, J. Bras, and A. Dufresne, Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications, Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites, pp.728-765, 1021.
DOI : 10.1016/j.carbpol.2009.03.039

URL : http://www.mdpi.com/2073-4360/2/4/728/pdf

G. Siqueira, C. Fraschini, J. Bras, A. Dufresne, R. Prud-'homme et al., Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(??-caprolactone), European Polymer Journal, vol.47, issue.12, pp.2216-2227, 2011.
DOI : 10.1016/j.eurpolymj.2011.09.014

I. Siró, D. Plackett, M. Hedenqvist, M. Ankerfors, and T. Lindström, Highly transparent films from carboxymethylated microfibrillated cellulose: The effect of multiple homogenization steps on key properties, Journal of Applied Polymer Science, vol.16, issue.5, pp.2652-2660, 2011.
DOI : 10.1016/j.carbpol.2007.11.015

A. M. Slavutsky, M. A. Bertuzzi, and M. Armada, Water barrier properties of starch-clay nanocomposite films, Brazilian Journal of Food Technology, vol.44, issue.12, pp.208-218, 2012.
DOI : 10.1016/S0032-3861(03)00062-4

URL : http://www.scielo.br/pdf/bjft/v15n3/aop6411.pdf

. Song, Reduction of the linting and dusting propensity of newspaper using starch and microfibrillated cellulose, Nordic Pulp and Paper Research Journal, vol.25, issue.04, pp.495-504, 2010.
DOI : 10.3183/NPPRJ-2010-25-04-p495-504

D. Song, Starch crosslinking for cellulose fiber modification and starch nanoparticle formation, 2011.

D. Song, V. Breedveld, and Y. Deng, Rheological study of self-crosslinking and co-crosslinking of ammonium zirconium carbonate and starch in aqueous solutions, Journal of Applied Polymer Science, vol.35, issue.2, pp.1019-1029, 2011.
DOI : 10.1016/S0144-8617(97)00236-1

K. L. Spence, R. A. Venditti, Y. Habibi, O. J. Rojas, and J. J. Pawlak, The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties, Bioresource Technology, vol.101, issue.15, pp.5961-5968, 2010.
DOI : 10.1016/j.biortech.2010.02.104

K. L. Spence, R. A. Venditti, O. J. Rojas, Y. Habibi, and J. J. Pawlak, A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods, Cellulose, vol.37, issue.1, pp.1097-1111, 2011.
DOI : 10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1

K. L. Spence, R. A. Venditti, O. J. Rojas, Y. Habibi, and J. J. Pawlak, The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications, Cellulose, vol.30, issue.4, pp.835-848, 2010.
DOI : 10.1002/app.1593

K. L. Spence, R. A. Venditti, O. J. Rojas, J. J. Pawlak, and M. A. Hubbe, Water vapor barrier properties of coated and filled microfibrillated cellulose composite films, BioResources, vol.6, pp.4370-4388, 2011.

S. Spoljaric, A. Salminen, N. Dang-luong, P. Lahtinen, J. Vartiainen et al., Nanofibrillated cellulose, poly(vinyl alcohol), montmorillonite clay hybrid nanocomposites with superior barrier and thermomechanical properties, Polymer Composites, vol.29, pp.1117-1131, 2014.
DOI : 10.1016/j.msec.2009.01.015

S. A. Stone, P. Gosavi, T. J. Athauda, and R. R. Ozer, In situ citric acid crosslinking of alginate/polyvinyl alcohol electrospun nanofibers, Materials Letters, vol.112, pp.32-35, 2013.
DOI : 10.1016/j.matlet.2013.08.100

S. Enso, PerformaNatura [WWW Document]. URL http://assets.storaenso.com/se/renewablepackaging/DownloadDocuments/PerformaNatura -en.pdf, 2014.

K. E. Strawhecker, E. S. Manias, W. Jaafar, W. N. Azmi, N. N. Anwar et al., Montmorillonite Nanocomposites, Microscopy Observation on Nanocellulose from Kenaf Fibre, pp.2943-2949, 2000.
DOI : 10.1021/cm000506g

S. Gladman, A. Matsumoto, E. A. Nuzzo, R. G. Mahadevan, L. Lewis et al., Biomimetic 4D printing, Nature Materials, vol.84, issue.4, pp.413-418, 2009.
DOI : 10.1021/ma202114z

T. Taniguchi and K. Okamura, New films produced from microfibrillated natural fibres, Polymer International, vol.47, issue.3, pp.291-294, 1998.
DOI : 10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1

S. Tapin-lingua, Microfibrillated Cellulose and production optimization. Presented at the BioMatPack Winter Training School -Use of nanopolysaccharides in Biobased Packaging, 2013.

T. Pack, The environmental impact plays an important role in purchasing decisions, pp.6-7, 2015.

J. Thomassin, C. Pagnoulle, G. Caldarella, A. Germain, and R. Jérôme, Contribution of nanoclays to the barrier properties of a model proton exchange membrane for fuel cell application, Journal of Membrane Science, vol.270, issue.1-2, pp.50-56, 2006.
DOI : 10.1016/j.memsci.2005.06.041

J. Trifol, D. Plackett, C. Sillard, P. Szabo, J. Bras et al., Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance, Polymer International, vol.522, issue.1115-1123, 2016.
DOI : 10.1016/j.tca.2010.12.024

URL : http://orbit.dtu.dk/files/133865703/Hybrid_poly_lactic_acid_nanocellulose_nanoclay_composites_manuskript.pdf

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibrillated cellulose and process for producing it, 1985.

G. P. Van-engelen, G. A. Van-ingen, and C. Meeuwissen, Anti-cracking agent for water-borne acrylic paint and coating compositions, 2014.

J. Velásquez-cock, P. Gañán, P. Posada, C. Castro, A. Serpa et al., Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: Thermal and mechanical properties of the resulting films, Industrial Crops and Products, vol.85, pp.1-10, 2016.
DOI : 10.1016/j.indcrop.2016.02.036

L. Wågberg, G. Decher, M. Norgren, T. Lindström, M. Ankerfors et al., The Build-Up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes, Langmuir, vol.24, issue.3, pp.784-79510, 1021.
DOI : 10.1021/la702481v

A. Walther, I. Bjurhager, J. Malho, J. Pere, J. Ruokolainen et al., Large-Area, Lightweight and Thick Biomimetic Composites with Superior Material Properties via Fast, Economic, and Green Pathways, Nano Letters, vol.10, issue.8, pp.2742-274810, 1021.
DOI : 10.1021/nl1003224

B. Wang and M. Sain, Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers, Composites Science and Technology, vol.67, issue.11-12, pp.2521-2527, 2007.
DOI : 10.1016/j.compscitech.2006.12.015

J. Wang, Q. Cheng, L. Lin, and L. Jiang, Synergistic Toughening of Bioinspired Poly(vinyl alcohol)???Clay???Nanofibrillar Cellulose Artificial Nacre, ACS Nano, vol.8, issue.3, pp.2739-2745, 2014.
DOI : 10.1021/nn406428n

S. Wang, J. Ren, W. Kong, C. Gao, C. Liu et al., Influence of urea and glycerol on functional properties of biodegradable PVA/xylan composite films, Cellulose, vol.93, issue.1, pp.495-505, 2013.
DOI : 10.1002/app.20910

B. W. Wolff, V. Pandian, and D. Van-calcar, Role of Zirconium Complexes to Produce Multiple Use Paper, pp.121-136, 1996.

C. Wu, T. Saito, S. Fujisawa, H. Fukuzumi, and A. Isogai, Ultrastrong and High Gas-Barrier Nanocellulose/Clay-Layered Composites, Biomacromolecules, vol.13, issue.6, pp.1927-1932, 2012.
DOI : 10.1021/bm300465d

W. Xiao, J. Xu, X. Liu, Q. Hu, and J. Huang, Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silvernanoparticle composite films, Xylophane Official Website [WWW Document]. Xylophane. URL http, pp.10-1021, 2013.

N. Yildirim, S. M. Shaler, D. J. Gardner, R. Rice, and D. W. Bousfield, Cellulose nanofibril (CNF) reinforced starch insulating foams, Cellulose nanofibril (CNF) reinforced starch insulating foams, pp.4337-4347, 2014.
DOI : 10.1016/j.fuel.2006.12.013

K. Yuwawech, J. Wootthikanokkhan, and S. Tanpichai, Effects of Two Different Cellulose Nanofiber Types on Properties of Poly(vinyl alcohol) Composite Films, Journal of Nanomaterials, vol.6, issue.1, p.69, 2015.
DOI : 10.1007/s10570-009-9393-y

H. Zhao, X. Feng, and H. Gao, Ultrasonic technique for extracting nanofibers from nature materials, Applied Physics Letters, vol.90, issue.7, p.73112, 2007.
DOI : 10.1038/nature01809

Q. Zheng, Z. Cai, and S. Gong, Green synthesis of polyvinyl alcohol (PVA)???cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents, J. Mater. Chem. A, vol.19, issue.9, pp.3110-3118, 2014.
DOI : 10.1039/b823218k

T. Zimmermann, E. Pöhler, and T. Geiger, Cellulose Fibrils for Polymer Reinforcement, Advanced Engineering Materials, vol.6, issue.9, pp.754-761, 2004.
DOI : 10.1002/adem.200400097

W. Chen, Q. Li, J. Cao, Y. Liu, J. Li et al., Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation, Carbohydrate Polymers, vol.117, 2015.
DOI : 10.1016/j.carbpol.2014.10.024

G. Chinga-carrasco, Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view, Nanoscale Research Letters, vol.6, issue.1, pp.1-7, 2011.
DOI : 10.1021/bm801065u

C. Guezennec, Development of new packaging materials based on micro-and nano-fibrillated cellulose, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00870839

H. Kangas, P. Lahtinen, A. Sneck, A. Saariaho, O. Laitinen et al., Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods, Nordic Pulp and Paper Research Journal, vol.29, issue.01, pp.129-143, 2014.
DOI : 10.3183/NPPRJ-2014-29-01-p129-143

N. Lavoine, I. Desloges, B. Khelifi, and J. Bras, Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper, Journal of Materials Science, vol.19, issue.3, pp.2879-2893, 2014.
DOI : 10.1007/s10570-012-9685-5

A. Liu and L. A. Berglund, Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers???Improvements due to chitosan addition, Carbohydrate Polymers, vol.87, issue.1, 2012.
DOI : 10.1016/j.carbpol.2011.07.019

O. Nechyporchuk, M. N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances, Industrial Crops and Products, vol.93, 2016.
DOI : 10.1016/j.indcrop.2016.02.016

M. Nuopponen, J. Tamper, and I. Kajanto, Method and device for monitoring the quality of nanofibrillar cellulose, pp.2016001480-2016001481, 2016.

D. R. Paul and L. M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer, vol.49, issue.15, pp.3187-3204, 2008.
DOI : 10.1016/j.polymer.2008.04.017

W. Schmidt, G. Papier, M. Schlenstedt, R. Gericke, and A. Fehlker, Receiving Layer for Digital Printing Methods Having Nanofibrillated Cellulose, pp.20150140237-1, 2015.

K. Syverud and P. Stenius, Strength and barrier properties of MFC films, Cellulose, vol.37, issue.1, pp.75-85, 2009.
DOI : 10.1007/978-1-4615-2137-2