B. 1. Monnier and J. , Corrosion atmosphérique sous abri d'alliages ferreux historiques -Caractérisation du système, mécanismes et apport à la modélisation, 2008.

M. Bouchar, Mécanismes de la corrosion atmosphérique multiséculaire des alliages ferreux : Le cas des renforts de la cathédrale de Metz, p.294, 2015.

P. Dillmann, Les métaux ferreux dans les monuments historiques avant le XIXe siècle, structure et propriétés des matériaux. Monumental, pp.92-97, 2007.

P. Dillmann, From Soissons to Beauvais : the use of iron in some French cathedrals., in The archaeometallurgy of Iron ? Recent Developments in Archaeological and Scientific Research, pp.173-196, 2011.

J. Taupin, Le fer dans les cathédrales. Monumental, pp.18-27, 1996.

L. Héritier, M. , and P. Dillmann, Fer ou acier ? Caractérisation des alliages ferreux utilisés dans la construction des églises gothiques au Moyen Âge et à la période moderne L'exemple de Troyes et de Rouen, L'acier en Europe avant Bessemer, pp.263-284, 2011.

W. Haas, Die rolle des eisens in der vorindustriellen arkitektur dargestellt an ostbayerischen beispielen, Die Oberpfalz ein Europäisches Eisenzentrum 1600 Jahre Grosse Hammereinigung. 1987, Ostbayern Bergbau und Industrie Museum: Amberg. p, pp.495-504

M. Bouchar, D. Philippe, D. Neff, F. , J. Gras et al., Atmospheric Corrosion Mechanisms of Low Alloy Steel Reinforcements of Cultural Heritage Buildings Semi-empirical model for carbon steel corrosion in long term geological nuclear waste disposal. in Prediction of long term corrosion behaviour in Nuclear Wastes System Cadarache, France: European Federation of Corrosion. 11. Landolt, D., Traité des matériaux : Corrosion et chimie de surface des matériaux Le livre de l'acier The atmospheric corrosion of iron and steel, Métallurgie du minerai au matériau: Masson. 1107. 14. Graedel, T.E. and R.P. Frankenthal, Corrosion Mechanism for Iron and Low Alloy Steels Exposed to the Atmosphere, pp.2385-2394, 1990.

H. V. Antony, Etude électrochimique des composés du fer -Apport à la compréhension des processus environnementaux Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron, Corrosion Science, issue.48, pp.2050-2063, 2005.

S. Hoerlé, Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet???dry cycles, Corrosion Science, vol.46, issue.6, pp.1431-1465, 2004.
DOI : 10.1016/j.corsci.2003.09.028

C. Leygraf, Atmospheric corrosion Long-term atmospheric corrosion of mild steel, Corrosion Science, vol.20, issue.532, pp.604-617, 2011.

I. S. Cole, D. A. Paterson, and W. D. Ganther, Holistic model for atmospheric corrosion Part 1 - Theoretical framework for production, transportation and deposition of marine salts, Corrosion Engineering, Science and Technology, vol.1170, issue.2, pp.129-134, 2003.
DOI : 10.1016/0960-1686(91)90050-H

N. T. Lau, A microscopic study of the effects of particle size and composition of atmospheric aerosols on the corrosion of mild steel, Corrosion Science, vol.50, issue.10, pp.50-2927, 2008.
DOI : 10.1016/j.corsci.2008.07.009

R. Shahack-gross, Bat guano and preservation of archaeological remains in cave sites Ash Bones and Guano: a Study of the Minerals and Phytoliths in the Sediments of Grotte XVI, Journal of Archaeological Science Journal of Archeological Science, vol.24, issue.97, pp.31-1259, 2002.

J. F. Marco, Characterization of the corrosion products formed on carbon steel after exposure 43 Raman imaging of ancient rust scales on archaeological iron artefacts for long-term atmospheric corrosion mechanisms study, Journal of Raman Spectroscopy, issue.10, pp.37-1228, 2006.

L. Bellot-gurlet, Raman Studies of Corrosion Layers Formed on Archaeological Irons in Various Media, Journal of Nano Research, vol.8, issue.8, pp.147-156, 2009.
DOI : 10.4028/www.scientific.net/JNanoR.8.147

URL : https://hal.archives-ouvertes.fr/hal-00477440

R. Balasubramaniam and A. V. Kumar, Characterization of Delhi iron pillar rust by X-ray diffraction, Fourier transform infrared spectroscopy and M??ssbauer spectroscopy, Corrosion Science, vol.42, issue.12, pp.2085-2101, 2000.
DOI : 10.1016/S0010-938X(00)00045-7

P. Dillmann, R. Balasubramaniam, and G. Béranger, Characterization of protective rust on ancient Indian iron using microprobe analyses, Corrosion Science, vol.44, issue.10, pp.44-2231, 2002.
DOI : 10.1016/S0010-938X(02)00028-8

H. Leidheiser, J. , and S. Music, The atmospheric corrosion of iron as studied by M??ssbauer spectroscopy, Corrosion Science, vol.22, issue.12, pp.1089-1096, 1982.
DOI : 10.1016/0010-938X(82)90095-6

P. Dillmann, Vers un diagnostic de l'altération des métaux ferreux du patrimoine, pp.136-142, 2008.

P. Dillmann, P. Bernardi, P. Fluzin-neff, and D. , Use of iron for the building of medieval monuments. The Palais des Papes in Avignon and other french buildings. in Archaeometallurgy in Europe Milano: Associazione Italiana di Metallurgia. 50 A review of the archaeological analogue approaches to predict the long-term corrosion behaviour of carbon steel overpack and reinforced concrete structures in the French disposal systems, Journal of Nuclear Materials, vol.402, issue.2-3, pp.196-205, 2003.

E. Vega, R. Cornell, U. Schwertmann, and R. K. , Seine-maritime, France, XVIe siècle) Caractérisation des produits de corrosion et étude des mécanismes The iron oxides -Structure, Properties, Occurrences and Uses Characterisation of 'rolled-in', 'fragmented' and 'red' scale formation during secondary processing of steels Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments, Altération des objets ferreux archéologiques sur le site de Glinet, pp.1044-1050, 2003.

J. Monnier, A methodology for Raman structural quantification imaging and its application to iron indoor atmospheric corrosion products, Journal of Raman Spectroscopy, vol.18, issue.45, pp.773-781, 2010.
DOI : 10.1002/maco.19670181002

URL : https://hal.archives-ouvertes.fr/hal-01665918

M. Michel and F. , The Structure of Ferrihydrite Iron Oxydes in the laboratory, Wiley-VCH. 137. 58. Manceau, A. and V.A. Drits, Local Structure of Ferrihydrite and Feroxyhite by EXAFS Spectroscopy. Clay Minerals, pp.316-57, 1993.

V. A. Drits, Structural Model for Ferrihydrite, Clay Minerals, vol.28, issue.2, pp.185-207, 1993.
DOI : 10.1180/claymin.1993.028.2.02

URL : http://doi.org/10.1180/claymin.1993.028.2.02

D. E. Janney, J. M. Cowley, and P. R. Buseck, Structure of synthetic 2-line ferrihydrite by electron nanodiffraction, American Mineralogist, vol.85, issue.9, pp.1180-1187, 2000.
DOI : 10.2138/am-2000-8-910

T. Misawa, K. Hashimoto, and S. Shimodaira, The mecanism of formation of iron oxide and oxyhydroxides in aquaeous solutions at room temperature. Corrosion science, pp.131-149, 1974.

P. Refait, M. Abdelmoula, and J. R. Génin, Mechanisms of formation and structure of green rust one in aqeous corrosion of iron in the presence of chloride ions, Corrosion Science, issue.9, pp.40-1547, 1998.

J. Génin, Structure and stability of the Fe(II)???Fe(III) green rust ???fougerite??? mineral and its potential for reducing pollutants in soil solutions, Applied Geochemistry, vol.16, issue.5, pp.559-570, 2001.
DOI : 10.1016/S0883-2927(00)00043-3

M. Bouchar, D. Neff, P. Dillmann-burger, and E. , Atmospheric corrosion of iron-based reinforcement of gothic cathedrals ? Overview of possible corrosion systems and influence of the structure and composition of the corrosion layers on the corrosion diagnosis Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion, Metal 2013. 2013. Edinburgh: ICOM. 65, pp.53-2122, 2011.

J. Monnier, X-rays absorption study on medieval corrosion layers for??the??understanding of very long-term indoor atmospheric iron corrosion, Applied Physics A, vol.66, issue.2, pp.399-406, 2010.
DOI : 10.2138/am-2001-5-612

R. Balasubramaniam and A. V. Kumar, Corrosion resistance of the Dhar iron pillar. Corrosion science, pp.2451-2465, 2003.
DOI : 10.1016/s0010-938x(03)00074-x

O. Benali, Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite, Geochimica et Cosmochimica Acta, vol.65, issue.11, pp.65-1715, 2001.
DOI : 10.1016/S0016-7037(01)00556-7

J. Monnier, X-ray absorption spectroscopy study of the various forms of phosphorus in ancient iron samples, Journal of Analytical Atomic Spectrometry, vol.72, issue.103, pp.885-891, 2011.
DOI : 10.2136/sssaj2007.0078

S. Wold, Chemometrics; what do we mean with it, and what do we want from it? Chemometrics and Intelligent Laboratory Systems, pp.109-115, 1995.
DOI : 10.1016/0169-7439(95)00042-9

A. Smilde, R. Bro, P. Geladi, D. , and E. Dufour, Multi-way Analysis : Applications in the Chemical Sciences, La spectroscopie infrarouge et ses applications analytiques, 2000.
DOI : 10.1002/0470012110

R. Salzer and H. W. Siesler, Infrared and Raman Spectroscopic Imaging, 2009.

A. Savitzky and M. J. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures., Analytical Chemistry, vol.36, issue.8, pp.36-1627, 1964.
DOI : 10.1021/ac60214a047

D. L. Massart, A New Baseline Correction Algorithm Using Objective Criteria Baseline Correction with Asymmetric Least Squares Smoothing Parametric Time Warping Resolution and segmentation of hyperspectral biomedical images by Multivariate Curve Resolution-Alternating Least Squares Chemometric Tools for Image Analysis, Handbook of Chemometrics and Qualimetrics Infrared and Raman Spectroscopic Imaging, pp.41-447, 1987.

P. Solsona and S. , A new matching image preprocessing for image data fusion, pp.32-42, 2017.

P. Robert, M. Devaux, and D. Bertrand, Beyond prediction: extracting relevant information from near infrared spectra, Journal of Near Infrared Spectroscopy, vol.4, issue.1, pp.75-84, 1996.
DOI : 10.1255/jnirs.78

F. B. Allouche, Analyse multibloc d'images hyperspectrales multimodales et multirésolutions : cartographie des parois de tiges de maïs par microspectroscopies en rayonnement synchrotron. 2012, Nantes Angers Le Mans Testing the performance of pure spectrum resolution form Raman hyperspectral images of differently manufactures pharmaceutical tablets, Analytica Chimica Acta, vol.712, pp.45-55, 2012.

R. Tauler, D. Barcelo-de-juan, A. , and R. Tauler, Multivariate curve resolution applied to liquid chromatography???diode array detection, TrAC Trends in Analytical Chemistry, vol.12, issue.8, pp.319-327, 1993.
DOI : 10.1016/0165-9936(93)88015-W

W. Windig, J. Guilment-de-juan, A. , J. Jaumot, R. Tauler et al., Interactive self-modeling mixture analysis Multivariate Curve Resolution (MCR) Solving the mixture analysis problem Self-healing for nanolayered manganese oxides in the presence of cerium (IV) ammonium nitrate: new findings, Analytical Chemistry Analytical Methods New Journal of Chemistry, vol.88, issue.394, pp.63-1425, 1991.

L. R. Tucker, An inter-battery method of factor analysis, Psychometrika, vol.6, issue.2, pp.111-136, 1958.
DOI : 10.1111/j.2044-8317.1950.tb00284.x

S. Wold, Multi-way principal components -and PLS-analysis Analysis of multiblock and hierarchical PCA and PLS models, Journal of chemometrics Journal of chemometrics, vol.12, issue.1, pp.41-56, 1987.

S. Wold, N. Kettaneh, and K. Tjessem, Hierachical multiblock PLS and PC models for easier model interpretation and as an alternative to varaible selection, Journal of chemometrics, issue.10, pp.463-482, 1996.
DOI : 10.1002/(sici)1099-128x(199609)10:5/6<463::aid-cem445>3.3.co;2-c

M. Hanafi, H. Kohler, E. M. Qannari, and E. M. , Shedding new light on Hierarchical Principal Component Analysis Defining the underlying sensory dimensions, Journal of chemometrics Food Quality and Preference, vol.11, issue.1, pp.151-154, 2000.
DOI : 10.1002/cem.1334

G. Mazerolles, Common components and specific weights analysis: A chemometric method for dealing with complexity of food products, Chemometrics and Intelligent Laboratory Systems, vol.81, issue.1, pp.41-49, 2006.
DOI : 10.1016/j.chemolab.2005.09.004

D. Chessel and M. Hanafi, Analyses de la co-inertie de K nuages de points, pp.35-60, 1996.

M. Hanafi, A. Kohler, and E. Qannari, Connections between multiple co-inertia analysis and consensus principal component analysis. Chemometrics and Intelligent Laboratory Systems, pp.37-40, 2011.
DOI : 10.1016/j.chemolab.2010.05.010

A. K. Smilde, J. A. Westerhuis, S. De, and J. , A framework for sequential multiblock component methods, Journal of Chemometrics, vol.1, issue.6, pp.17-323, 2003.
DOI : 10.2307/2347233

M. A. Coimbra, FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts, Carbohydrate Research, vol.317, issue.1-4, pp.1-4, 1999.
DOI : 10.1016/S0008-6215(99)00071-3

P. Mishra, Application of independent components analysis with the JADE algorithm and NIR hyperspectral imaging for revealing food adulteration, Journal of Food Engineering, vol.168, pp.7-15, 2016.
DOI : 10.1016/j.jfoodeng.2015.07.008

URL : https://hal.archives-ouvertes.fr/hal-01250504

P. Robert, D. Bertrand, and M. F. Devaux, Multivariate analysis applied to near-infrared spectra of milk, Analytical Chemistry, vol.59, issue.17, pp.2187-2191, 1987.
DOI : 10.1021/ac00144a038

P. Mishra, Application of independent components analysis with the JADE algorithm and NIR hyperspectral imaging for revealing food adulteration, Journal of Food Engineering, vol.168, pp.7-15, 2016.
DOI : 10.1016/j.jfoodeng.2015.07.008

URL : https://hal.archives-ouvertes.fr/hal-01250504

F. Ammari, L. Redjdal, and D. N. Rutledge, Detection of orange juice frauds using front-face fluorescence spectroscopy and Independent Components Analysis, Food Chemistry, vol.168, pp.211-217, 2015.
DOI : 10.1016/j.foodchem.2014.06.110

URL : https://hal.archives-ouvertes.fr/hal-01173943

B. Vajna, Comparison of chemometric methods in the analysis of pharmaceuticals with hyperspectral Raman imaging, Journal of Raman Spectroscopy, vol.29, issue.11, pp.42-1977, 2011.
DOI : 10.1016/j.trac.2009.09.009

J. Amigo and C. Ravn, Direct quantification and distribution assessment of major and minor components in pharmaceutical tablets by NIR-chemical imaging. Pharmaceutical sciences, pp.76-82, 2009.
DOI : 10.1016/j.ejps.2009.01.001

M. K. Nieuwoudt, J. D. Comins, C. , and I. , The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman microspectrocopy and electrochemical polarization. Part II : In situ Raman spectra of the passive film surface during growth by electrochemical polarization, Journal of Raman spectroscopy, issue.42, pp.1353-1365, 2011.

M. K. Nieuwoudt, J. D. Comins, and I. Cukrowski, Analysis of the composition of the passive film on iron under pitting conditions in 0.05???M NaOH/NaCl using Raman microscopy in situ with anodic polarisation and MCR-ALS, Journal of Raman Spectroscopy, vol.2, issue.7, pp.43-928, 2012.
DOI : 10.1016/0010-938X(89)90038-3

E. P. Burt and . Adelson, The Laplacian Pyramid as a Compact Image Code, IEEE Transactions on Communications, vol.31, issue.4, pp.532-540, 1983.
DOI : 10.1109/TCOM.1983.1095851

B. Jaillais, V. Morrin, and G. Downey, Image processing of outer-product matrices ? A new way to classify samples Examples using visible/NIR/MIR spectral data, pp.179-188, 2007.
DOI : 10.1016/j.chemolab.2006.06.014

F. Allouche, Coupling hyperspectral image data having different spatial resolutions by extending multivariate inter-battery Tucker analysis. Chemometrics and Intelligent Laboratory Systems, pp.43-51, 2012.
DOI : 10.1016/j.chemolab.2011.08.010

F. Allouche, Coupling hyperspectral image data having different spatial resolutions using Multiple Co-inertia Analysis, Chemometrics and Intelligent Laboratory Systems, vol.117, pp.200-212, 2012.
DOI : 10.1016/j.chemolab.2012.04.004

URL : https://hal.archives-ouvertes.fr/hal-01268293

J. , M. J. , and M. G. Ferreira, The corrosion of mild steel in simulated SO2 containing atmospheres, Corrosion Science, issue.291112, pp.1353-1369, 1989.

. Renishaw, . Raman, and . Renishaw, Streamline (TM), generate chemical images rapidly Available from: http://www.renishaw.com/en/streamline-generate-chemical-images- rapidly, p.9449, 2015.

. Renishaw, . Raman, and . Renishaw, Streamline (TM), Slalom Available from, 2015.

D. Shannon and R. , Refractive Index and Dispersion of Fluorides and Oxides, Journal of Physical and Chemical Reference Data, vol.31, issue.4, pp.931-970, 2002.
DOI : 10.1063/1.1497384

S. Reguer, Phases chlorées sur les objets archéologiques ferreux corrodés dans les sols : caracterisation et mecanismes de formation, p.330, 2005.

J. P. Eberhart, Analyse structurale et chimique des matériaux. Diffraction des rayons X, électrons et neutrons. Spectrométrie des rayons X, électrons et ions. Microscopie Electronique, Science Sup, p.614, 1989.

P. J. Potts, A Handbook of silicate rock analysis, 1987.
DOI : 10.1007/978-1-4615-3270-5

P. Soille, Morphological image analysis: principles and applications

F. Pedregosa, Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

J. Jaumot, A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemometrics and Intelligent Laboratory Systems, pp.101-110, 2005.
DOI : 10.1016/j.chemolab.2004.12.007

J. Jaumot, A. De-juan, R. Tauler, and M. Gui, 0 : New features and application. Chemometrics and Intelligent Laboratory Systems, pp.1-12, 2015.

C. B. Cordella and D. Bertrand, SAISIR: A new general chemometric toolbox, TrAC Trends in Analytical Chemistry, vol.54, pp.75-82, 2014.
DOI : 10.1016/j.trac.2013.10.009

URL : https://hal.archives-ouvertes.fr/hal-01004756

L. S. Selwyn, W. R. Mckinnon, and V. Argyropoulos, Models for Chloride Ion Diffusion in Archaeological Iron, Studies in Conservation, vol.46, issue.2, pp.109-120, 2001.
DOI : 10.2307/1506841

M. Morcillo, Weathering steels: From empirical development to scientific design. A review, Corrosion Science, vol.83, pp.6-31, 2014.
DOI : 10.1016/j.corsci.2014.03.006

URL : https://digital.csic.es/bitstream/10261/94988/1/Wheathering%20steels.pdf

E. Pons, Corrosion à long terme du fer et des aciers non ou faiblement alliés dans les sols à dominante argileuse -Caractérisation Physico-chimique et étude électrochimique d'analogues archéologiques, p.239, 2002.

J. Eberhart, Analyse structurale et chimique des matériaux, 1989.

V. Solé, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.1, pp.63-68, 2007.
DOI : 10.1016/j.sab.2006.12.002

. Après-convergence-de-l-'algorithme, le pourcentage de variance exprimé pour la zone 1 (resp. zone 2) est de 98,7 % (resp. 98,6 %) et l'erreur d'estimation du modèle MCR-ALS est de 1,8 % (resp. 2,3 %)

X. La-fluorescence-des-rayons, XRF) sert à qualifier ou quantifier la composition élémentaire des échantillons solides et liquides de manière non destructrice Le principe physique de la technique est basé sur l'interaction lumière-matière et peut être trouvé facilement dans des ouvrages comme [132]. Le seuil de détection de la XRF est bas et atteint les parties par million (ppm) ce qui permet d'être sous le seuil de détection du MEB-EDS

L. Acquisitions-ont-Été-réalisées-sur-la-ligne-de-lumière, L. Au-synchrotron, and S. , Le faisceau de rayons X, de taille 4,2 x 4,1 ?m², est réglé à 4,1 keV (seuil du calcium) Une fois les zones repérées au microscope optique, des balayages rapides avec des pas de 15 x 15 ?m² ont été effectuées pour optimiser les durées d'acquisition sur des zones incluant les zones d'intérêt définies par spectrométrie Raman et MEB-EDS. La taille de pixel a été fixée à 3 x 3 ?m². La profondeur de pénétration dépend de la matrice de l'échantillon analysé

L. Enfin and . Sixième-composante, Figure 168.a) avec 3,6 % de variance exprime en positif l'hématite mélangée au silicium. En négatif, un mélange de trois phases cristalline est visible (lépidocrocite, goethite et magnétite) non corrélé à la présence d'éléments spécifiques. Les zones intenses en hématite sont visibles sur la cartographie associée

. La-composante-1-na, . As, P. Si, and S. , a, montre dans la partie Raman le pic caractéristique de la lépidocrocite (250 cm -1 ) et dans la partie EDS les éléments La carte des concentrations (Figure 170.c) permet de retrouver ici les zones mises en évidence par la MCR-ALS sur les données Raman seules