I. Schéma and . Au-laboratoire......., 10 Préparation de cages de Pt(II) selon les conditions développées, p.52

I. Schéma, 4 Formation du semiquinoate et du quinoate par oxydation du catécholate, p.78

I. Schéma, 9 Complexation du catécholate sur la brique de platine(II) cyclométallé solvatée, p.80

]. S. Shanmugaraju, S. A. Joshi, and P. S. Mukherjee, Self-Assembly of Metallamacrocycles Using a Dinuclear Organometallic Acceptor: Synthesis, Characterization, and Sensing Study, Inorganic Chemistry, vol.50, issue.22, pp.11736-11745, 2011.
DOI : 10.1021/ic201745y

]. S. Shanmugaraju, A. K. Bar, K. Chi, and P. S. Mukherjee, Organometallic Building Block with 90?? Geometry and Optical Sensing of Anions, Organometallics, vol.29, issue.13, pp.2971-2980, 2010.
DOI : 10.1021/om100202c

H. Amouri, L. Mimassi, M. N. Rager, B. E. Mann, C. Guyard-duhayon et al., Host-Guest Interactions: Design Strategy and Structure of an Unusual Cobalt Cage That Encapsulates a Tetrafluoroborate Anion, Angewandte Chemie International Edition, vol.99, issue.29, pp.4543-4546, 2005.
DOI : 10.1002/3527607439

H. Sesolis, J. Dubarle-offner, C. K. Chan, E. Puig, G. Gontard et al., Highly Phosphorescent Crystals of Square-Planar Platinum Complexes with Chiral Organometallic Linkers: Homochiral versus Heterochiral Arrangements, Induced Circular Dichroism, and TD-DFT Calculations, Chemistry - A European Journal, vol.16, issue.24, pp.8032-8037, 2016.
DOI : 10.1002/chem.200903046

URL : https://hal.archives-ouvertes.fr/hal-01662095

J. Moussa, A. Loch, L. Chamoreau, A. Degli-esposti, E. Bandini et al., Luminescent Cyclometalated Platinum Complexes with ??-Bonded Catecholate Organometallic Ligands, Inorganic Chemistry, vol.56, issue.4, pp.2050-2059, 2017.
DOI : 10.1021/acs.inorgchem.6b02731

URL : https://hal.archives-ouvertes.fr/hal-01473708

R. Djeda, C. Desmarets, L. Chamoreau, Y. Li, Y. Journaux et al., -Helicates with Rigid Angular Tetradentate Ligand: Design, Molecular Structures, and Progress Towards Self-Assembly of Metal???Organic Nanotubes, Inorganic Chemistry, vol.52, issue.22, pp.13042-13047, 2013.
DOI : 10.1021/ic4017195

C. Desmarets, T. Ducarre, M. Rager, G. Gontard, and H. Amouri, Self-Assembled M2L4 Nanocapsules: Synthesis, Structure and Host-Guest Recognition Toward Square Planar Metal Complexes, Materials, vol.64, issue.1, pp.287-301, 2014.
DOI : 10.1107/S0108767307043930

URL : https://hal.archives-ouvertes.fr/hal-01330185

C. Desmarets, G. Gontard, A. L. Cooksy, M. N. Rager, H. Amouri et al., Invitation, 9] C. Hierlinger, T. Roisnel, D. B. Cordes, A. M. Z. Slawin, D. Jacquemin, V. Guerchais, E. Zysman- Colman, pp.4287-4294, 1933.

S. Perera, X. Li, M. Guo, C. Wesdemiotis, C. N. Moorefield et al., Sterically congested, hexameric tetrakispyridinyl-PdII/CdII-metallomacrocycles: self-assembly and structural characterization, Chemical Communications, vol.9, issue.16, pp.4658-4660, 2011.
DOI : 10.1016/j.inoche.2006.02.003

L. Schneider, V. Sivchik, K. Y. Chung, Y. T. Chen, A. J. Karttunen et al., Cyclometalated Platinum(II) Cyanometallates: Luminescent Blocks for Coordination Self-Assembly, Inorganic Chemistry, vol.56, issue.8, pp.4459-4467, 2017.
DOI : 10.1021/acs.inorgchem.7b00006

S. Shanmugaraju, V. Vajpayee, S. Lee, K. W. Chi, P. J. Stang et al., Binding Study, Inorganic Chemistry, vol.51, issue.8, pp.4817-4823, 2012.
DOI : 10.1021/ic300199j

S. Shanmugaraju, S. A. Joshi, and P. S. Mukherjee, Self-Assembly of Metallamacrocycles Using a Dinuclear Organometallic Acceptor: Synthesis, Characterization, and Sensing Study, Inorganic Chemistry, vol.50, issue.22, pp.11736-11745, 2011.
DOI : 10.1021/ic201745y

S. Shanmugaraju, A. K. Bar, K. Chi, and P. S. Mukherjee, Organometallic Building Block with 90?? Geometry and Optical Sensing of Anions, Organometallics, vol.29, issue.13, pp.2971-2980, 2010.
DOI : 10.1021/om100202c

J. Su, L. Yao, J. Zhang, S. Yuan, F. Xie et al., ) microporous coordination polymer with a tripodal carboxylic acid ligand and solvent-dependent luminescence properties, New Journal of Chemistry, vol.41, issue.1, pp.97-100, 2016.
DOI : 10.1088/0022-3727/41/1/013001

P. D. Frischmann, V. Kunz, and F. Würthner, Angew. Chemie -Int, pp.7285-7289, 2015.

X. Yan, T. R. Cook, P. Wang, F. Huang, and P. J. Stang, Highly emissive platinum(II) metallacages, Nature Chemistry, vol.7, issue.4, pp.342-348, 2015.
DOI : 10.1002/anie.200701925

A. B. Elliott, J. E. Lewis, H. Van-der-salm, C. J. Mcadam, J. D. Crowley et al., ???Click??? Cages, Inorganic Chemistry, vol.55, issue.7, pp.3440-3447, 2016.
DOI : 10.1021/acs.inorgchem.5b02843

K. Harano, S. Hiraoka, and M. Shionoya, 3 nm-Scale Molecular Switching between Fluorescent Coordination Capsule and Nonfluorescent Cage, Journal of the American Chemical Society, vol.129, issue.17, pp.5300-5301, 2007.
DOI : 10.1021/ja0659727

D. K. Crites, C. T. Cunningham, and D. R. Mcmillin, Remarkable substituent effects on the photophysics of Pt(4???-X-trpy)Cl+ systems (trpy = 2,2???; 6???,2???-terpyridine), Inorganica Chimica Acta, vol.273, issue.1-2, pp.346-353, 1998.
DOI : 10.1016/S0020-1693(97)06082-9

J. A. Williams, A. Beeby, E. S. Davies, J. A. Weinstein, and C. Wilson, N-Coordinating Dipyridylbenzene Ligands, Inorganic Chemistry, vol.42, issue.26, pp.8609-8611, 2003.
DOI : 10.1021/ic035083+

V. W. Yam, R. P. Tang, K. M. Wong, and K. Cheung, Synthesis, Luminescence, Electrochemistry, and Ion-Binding Studies of Platinum(II) Terpyridyl Acetylide Complexes, Organometallics, vol.20, issue.22, pp.4476-4482, 2001.
DOI : 10.1021/om010336x

W. Tang, X. Lu, K. M. Wong, and V. W. Yam, Synthesis, photophysics and binding studies of Pt(ii) alkynyl terpyridine complexes with crown ether pendant. Potential luminescent sensors for metal ions, Journal of Materials Chemistry, vol.97, issue.27-28, p.2714, 2005.
DOI : 10.1039/b501644d

J. Romanova, M. R. Prabhath, and P. D. Jarowski, Relationship between Metallophilic Interactions and Luminescent Properties in Pt(II) Complexes: TD-DFT Guide for the Molecular Design of Light-Responsive Materials, The Journal of Physical Chemistry C, vol.120, issue.3, pp.2002-2012, 2016.
DOI : 10.1021/acs.jpcc.5b12132

C. Zhou, L. Yuan, Z. Yuan, N. K. Doyle, T. Dilbeck et al., Phosphorescent Molecular Butterflies with Controlled Potential-Energy Surfaces and Their Application as Luminescent Viscosity Sensor, Inorganic Chemistry, vol.55, issue.17, pp.8564-8569, 2016.
DOI : 10.1021/acs.inorgchem.6b01108

B. Ma, J. Li, P. I. Djurovich, M. Yousufuddin, R. Bau et al., Synthetic Control of Pt??????Pt Separation and Photophysics of Binuclear Platinum Complexes, Journal of the American Chemical Society, vol.127, issue.1, pp.28-29, 2005.
DOI : 10.1021/ja044313w

A. Aliprandi, D. Genovese, M. Mauro, L. De, and . Cola, Recent Advances in Phosphorescent Pt(II) Complexes Featuring Metallophilic Interactions: Properties and Applications, Chemistry Letters, vol.44, issue.9, pp.1152-1169, 2015.
DOI : 10.1246/cl.150592

URL : http://www.journal.csj.jp/doi/pdf/10.1246/cl.150592

H. Sesolis, J. Dubarle-offner, C. K. Chan, E. Puig, G. Gontard et al., Highly Phosphorescent Crystals of Square-Planar Platinum Complexes with Chiral Organometallic Linkers: Homochiral versus Heterochiral Arrangements, Induced Circular Dichroism, and TD-DFT Calculations, Chemistry - A European Journal, vol.16, issue.24, pp.8032-8037, 2016.
DOI : 10.1002/chem.200903046

URL : https://hal.archives-ouvertes.fr/hal-01662095

J. Moussa, A. Loch, L. Chamoreau, A. Degli-esposti, E. Bandini et al., Luminescent Cyclometalated Platinum Complexes with ??-Bonded Catecholate Organometallic Ligands, Inorganic Chemistry, vol.56, issue.4, pp.2050-2059, 2017.
DOI : 10.1021/acs.inorgchem.6b02731

URL : https://hal.archives-ouvertes.fr/hal-01473708

R. Djeda, C. Desmarets, L. Chamoreau, Y. Li, Y. Journaux et al., -Helicates with Rigid Angular Tetradentate Ligand: Design, Molecular Structures, and Progress Towards Self-Assembly of Metal???Organic Nanotubes, Inorganic Chemistry, vol.52, issue.22, pp.13042-13047, 2013.
DOI : 10.1021/ic4017195

C. Desmarets, T. Ducarre, M. Rager, G. Gontard, and H. Amouri, Self-Assembled M2L4 Nanocapsules: Synthesis, Structure and Host-Guest Recognition Toward Square Planar Metal Complexes, Materials, vol.64, issue.1, pp.287-301, 2014.
DOI : 10.1107/S0108767307043930

URL : https://hal.archives-ouvertes.fr/hal-01330185

C. Desmarets, G. Gontard, A. L. Cooksy, M. N. Rager, and H. Amouri, Encapsulation of a Metal Complex within a Self-Assembled Nanocage: Synergy Effects, Molecular Structures, and Density Functional Theory Calculations, Inorganic Chemistry, vol.53, issue.9, pp.4287-4294, 2014.
DOI : 10.1021/ic402539x

URL : https://hal.archives-ouvertes.fr/hal-01662102

C. Desmarets, F. Poli, X. F. Le-goff, K. Müller, and H. Amouri, Supramolecular Chemestry: Concepts and Perspectives, II 6. Bibliographie : [1] J. Lehn, pp.5004-5011, 1995.

M. H. Chisholm, S. E. Brown-xu, and T. F. Spilker, Photophysical Studies of Metal to Ligand Charge Transfer Involving Quadruply Bonded Complexes of Molybdenum and Tungsten, Accounts of Chemical Research, vol.48, issue.3, pp.877-885, 2015.
DOI : 10.1021/ar500256f

]. Y. Xie, J. R. Li, C. Zhang, and X. H. Bu, Syntheses and Crystal Structures of Manganese(II), Cadmium(II), Cobalt(II), and Zinc(II) Complexes with 4-Pyridyl Dithioether Ligands, Crystal Growth & Design, vol.5, issue.5, pp.1743-1749, 2005.
DOI : 10.1021/cg0496538

Y. P. Su, C. L. Cai, M. D. Chen, . Smith, H. C. Kaim et al., Ligand-Directed Molecular Architectures:?? Self-Assembly of Two-Dimensional Rectangular Metallacycles and Three-Dimensional Trigonal or Tetragonal Prisms, Journal of the American Chemical Society, vol.125, issue.28, pp.8595-8613, 2003.
DOI : 10.1021/ja034267k

L. Zhou and Q. Sun, cage that selectively encapsulates nitrate, Chemical Communications, vol.108, issue.94, pp.16767-16770, 2015.
DOI : 10.1021/jp047480r

URL : http://pubs.rsc.org/en/content/articlepdf/2015/cc/c5cc07306e

Y. Jiang, H. Zhang, Z. Cui, and T. Tan, Nanocapsule Featuring Competitive Guest Encapsulation, The Journal of Physical Chemistry Letters, vol.8, issue.9, pp.2082-2086, 2017.
DOI : 10.1021/acs.jpclett.7b00773

K. Yazaki, S. Noda, Y. Tanaka, Y. Sei, M. Akita et al., Molecular Capsule with a Redox Switchable Polyradical Shell, Angewandte Chemie International Edition, vol.124, issue.48, pp.15031-15034, 2016.
DOI : 10.1021/ja0206285

D. A. Mcmorran, P. J. Steel, and A. , Chemie -Int, pp.3295-3297, 1998.

A. Schmidt, A. Casini, and F. E. Kühn, Self-assembled M2L4 coordination cages: Synthesis and potential applications, Coordination Chemistry Reviews, vol.275, pp.19-36, 2014.
DOI : 10.1016/j.ccr.2014.03.037

V. Croué, S. Krykun, M. Allain, Y. Morille, F. Aubriet et al., A self-assembled M2L4 cage incorporating electron-rich 9-(1,3-dithiol-2-ylidene)fluorene units, New Journal of Chemistry, vol.30, issue.9, pp.3238-3241, 2017.
DOI : 10.1007/s40242-014-3518-z

A. Ahmedova, D. Momekova, M. Yamashina, P. Shestakova, G. Momekov et al., Coordination Capsules with Improved Selectivity, Chemistry - An Asian Journal, vol.120, issue.4, pp.474-477, 2016.
DOI : 10.1021/ja980853f

P. Liao, B. W. Langloss, A. M. Johnson, E. R. Knudsen, F. S. Tham et al., Two-component control of guest binding in a self-assembled cage molecule, Chemical Communications, vol.56, issue.27, p.4932, 2010.
DOI : 10.1039/c0cc00234h

A. M. Johnson and R. J. Hooley, Steric Effects Control Self-Sorting in Self-Assembled Clusters, Inorganic Chemistry, vol.50, issue.11, pp.4671-4673, 2011.
DOI : 10.1021/ic2001688

C. Desmarets, T. Ducarre, M. Rager, G. Gontard, and H. Amouri, Self-Assembled M2L4 Nanocapsules: Synthesis, Structure and Host-Guest Recognition Toward Square Planar Metal Complexes, Materials, vol.64, issue.1, pp.287-301, 2014.
DOI : 10.1107/S0108767307043930

URL : https://hal.archives-ouvertes.fr/hal-01330185

T. Osuga, T. Murase, K. Ono, Y. Yamauchi, and M. Fujita, ] Metal Ion Arrays Templated by Coordination Cages, Journal of the American Chemical Society, vol.132, issue.44, pp.15553-15555, 2010.
DOI : 10.1021/ja108367j

C. Desmarets, G. Gontard, A. L. Cooksy, M. N. Rager, and H. Amouri, Encapsulation of a Metal Complex within a Self-Assembled Nanocage: Synergy Effects, Molecular Structures, and Density Functional Theory Calculations, Inorganic Chemistry, vol.53, issue.9, pp.4287-4294, 2014.
DOI : 10.1021/ic402539x

URL : https://hal.archives-ouvertes.fr/hal-01662102

Y. Zhang, K. D. Ley, and K. S. Schanze, Photooxidation of Diimine Dithiolate Platinium(II) Complexes Induced by Charge Transfer to Diimine Excitation, Inorganic Chemistry, vol.35, issue.24, pp.7102-7110, 1996.
DOI : 10.1021/ic960685x

A. Vogler and H. Kunkely, Photooxidation of (2,2'-bipyridine)(3,4-toluenedithiolato)platinum(II) following ligand-to-ligand and charge-transfer excitation, Journal of the American Chemical Society, vol.103, issue.6, pp.1559-1560, 1981.
DOI : 10.1021/ja00396a045

W. B. Connick and H. B. Gray, Photooxidation of Platinum(II) Diimine Dithiolates, Journal of the American Chemical Society, vol.119, issue.48, pp.11620-11627, 1997.
DOI : 10.1021/ja9723803

J. Moussa, A. Loch, L. Chamoreau, A. Degli-esposti, E. Bandini et al., Luminescent Cyclometalated Platinum Complexes with ??-Bonded Catecholate Organometallic Ligands, Inorganic Chemistry, vol.56, issue.4, pp.2050-2059, 2017.
DOI : 10.1021/acs.inorgchem.6b02731

URL : https://hal.archives-ouvertes.fr/hal-01473708

M. K. Krepps, S. Parkin, and D. A. Atwood, Hydrogen Bonding with Sulfur, Crystal Growth & Design, vol.1, issue.4, pp.291-297, 2001.
DOI : 10.1021/cg015505v

URL : http://www.chem.uky.edu/xray/people_documents/Parkin/Parkin_Papers_pdfs/41_CGDv1n4p291.pdf

R. Hayoun, D. K. Zhong, A. L. Rheingold, and L. H. Doerrer, Gold(III) and Platinum(II) Polypyridyl Double Salts and a General Metathesis Route to Metallophilic Interactions, Inorganic Chemistry, vol.45, issue.16, pp.6120-6122, 2006.
DOI : 10.1021/ic060830z

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2, pp.785-789, 1988.
DOI : 10.1103/PhysRevA.20.397

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.5648-5652, 1993.
DOI : 10.1063/1.460205

Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, vol.103, issue.1-3, pp.215-241, 2008.
DOI : 10.1002/ijch.199300041

J. Tomasi, B. Mennucci, and R. Cammi, Quantum Mechanical Continuum Solvation Models, Chemical Reviews, vol.105, issue.8, pp.2999-3094, 2005.
DOI : 10.1021/cr9904009

J. S. Binkley, J. A. Pople, and W. J. Hehre, Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements, Journal of the American Chemical Society, vol.102, issue.3, pp.939-947, 1980.
DOI : 10.1021/ja00523a008

T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, The Journal of Chemical Physics, vol.17, issue.2, pp.1007-1023, 1989.
DOI : 10.1063/1.452534

W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms, Canadian Journal of Chemistry, vol.70, issue.2, pp.612-630, 1992.
DOI : 10.1139/v92-085

URL : http://www.nrcresearchpress.com/doi/pdf/10.1139/v92-085

W. J. Stevens, H. Basch, and M. Krauss, Compact effective potentials and efficient shared???exponent basis sets for the first??? and second???row atoms, The Journal of Chemical Physics, vol.13, issue.12, pp.6026-6033, 1984.
DOI : 10.1063/1.434793

P. J. Hay and W. R. Wadt, effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, The Journal of Chemical Physics, vol.67, issue.1, pp.270-283, 1985.
DOI : 10.1063/1.433731

T. Schwabe and S. Grimme, Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability, Physical Chemistry Chemical Physics, vol.125, issue.26, p.3397, 2007.
DOI : 10.1021/jp070571e

J. P. Foster and F. Weinhold, Natural hybrid orbitals, Journal of the American Chemical Society, vol.102, issue.24, pp.7211-7218, 1980.
DOI : 10.1021/ja00544a007

C. Edmiston and K. Ruedenberg, Localized Atomic and Molecular Orbitals, Reviews of Modern Physics, vol.66, issue.3, pp.457-464, 1963.
DOI : 10.1021/j100818a001

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon et al., General atomic and molecular electronic structure system, Journal of Computational Chemistry, vol.115, issue.11, pp.1347-1363, 1993.
DOI : 10.1007/978-94-009-4584-5_13

I. Chapitre, Assemblages de coordination de Pt(II) chiraux et luminescents

.. Et-luminescents, 123 IV 3. 1 Synthèse, Première série d'assemblages de Pt(II) chiraux, p.123

L. Chiraux, 135 IV 4. 1 Synthèse, IV 4. Nouveaux Assemblage de Pt, p.135

. Le-ligand-Énantiopur, -chiragen[6] a permis pour la première fois la synthèse d'un complexe de Ru(II) octaédrique énantiopur sans avoir besoin d'un dédoublement d'un mélange racémique. Plus récemment, le groupe de Meggers a appliqué cette stratégie de transfert avec un ligand chiral sulfoxyde comme simple auxiliaire

L. Gong, Z. Lin, K. Harms, and E. Meggers, Isomerization-Induced Asymmetric Coordination Chemistry: From Auxiliary Control to Asymmetric Catalysis, Angewandte Chemie International Edition, vol.42, issue.43, pp.7955-7957, 2010.
DOI : 10.1002/chem.200902652

E. Anger, M. Rudoplh, L. Norel, S. Zrig, C. Shen et al., Multifunctional and Reactive Enantiopure Organometallic Helicenes: Tuning Chiroptical Properties by Structural Variations of Mono- and Bis(platinahelicene)s, Chemistry - A European Journal, vol.32, issue.50, pp.14178-14198, 2011.
DOI : 10.1107/S0021889898007717

URL : https://hal.archives-ouvertes.fr/hal-00875414

I. Tableau, 1 Valeurs obtenues en absorption (10 -5 M dans l'acétone, 298 K)

L. Nombreux-travaux-de-l-'équipe-de-yam-sur-la-brique, (tpy)Pt] 2+ , [42][43] ainsi que de récents travaux sur la coordination de cette brique à des thiolates aromatiques, [44] permettent l'analyse des données que nous avons obtenues. Remarquons tout d'abord qu'il n'existe pas de différences significatives entre les trois composés en ce qui concerne l'absorption dans les conditions expérimentales adoptées. Les trois spectres adoptent un comportement très classique pour ce type de composés

I. Au-sein-de-la-terpyridine-et-de-l-'organométalloligand, Dans le domaine du visible, nous observons très clairement une bande à 484 nm responsable de la couleur rouge-vif des composés 15 Cette bande possède un ? plus faible (de l'ordre de 10 3 M -1 .cm -1 ) typique de transitions de type transfert de charge au sein des complexes de platine(II), Elle est attribuée à un mélange des transitions 1 MLCT [d?(Pt)??*(tpy)] et 1 L'LCT [?(S)??*(tpy)]. Rappelons que le précurseur solvaté [(tpy)Pt(MeCN)][OTf] 2 de même que le dérivé chloré [(tpy)PtCl][Cl] avaient des couleurs jaunes pâles

V. W. Yam, R. P. Tang, K. M. Wong, and K. K. Cheung, Synthesis, Luminescence, Electrochemistry, and Ion-Binding Studies of Platinum(II) Terpyridyl Acetylide Complexes, Organometallics, vol.20, issue.22, pp.4476-4482, 2001.
DOI : 10.1021/om010336x

K. M. Wong and V. W. Yam, Self-Assembly of Luminescent Alkynylplatinum(II) Terpyridyl Complexes: Modulation of Photophysical Properties through Aggregation Behavior, Accounts of Chemical Research, vol.44, issue.6, pp.424-434, 2011.
DOI : 10.1021/ar100130j

W. H. Chen, E. W. Reinheimer, K. R. Dunbar, and M. A. Omary, Coarse and Fine Tuning of the Electronic Energies of Triimineplatinum(II) Square-Planar Complexes, Inorganic Chemistry, vol.45, issue.7, pp.2770-2772, 2006.
DOI : 10.1021/ic051518c

I. Schéma, 15 Synthèse des de la brique de platine [PtMeCN(terpy-tBu 3, p.14

U. Knof and A. Zelewsky, Predetermined Chirality at Metal Centers, Angewandte Chemie International Edition, vol.38, issue.3, pp.302-322, 1999.
DOI : 10.1002/(SICI)1521-3773(19990201)38:3<302::AID-ANIE302>3.0.CO;2-G

A. P. Smirnoff, Zur Stereochemie des Platinatoms; ??ber relativ asymmetrische Synthese bei anorganischen Komplexen, Helvetica Chimica Acta, vol.50, issue.II, pp.177-195, 1920.
DOI : 10.1002/hlca.19200030117

P. Hayoz, A. Von-zelewsky, and H. Stoeckli-evans, Stereoselective synthesis of octahedral complexes with predetermined helical chirality, Journal of the American Chemical Society, vol.115, issue.12, pp.5111-5114, 1993.
DOI : 10.1021/ja00065a023

L. Gong, Z. Lin, K. Harms, and E. Meggers, Isomerization-Induced Asymmetric Coordination Chemistry: From Auxiliary Control to Asymmetric Catalysis, Angewandte Chemie International Edition, vol.42, issue.43, pp.7955-7957, 2010.
DOI : 10.1002/chem.200902652

E. Anger, M. Rudolph, L. Norel, S. Zrig, C. Shen et al., Multifunctional and Reactive Enantiopure Organometallic Helicenes: Tuning Chiroptical Properties by Structural Variations of Mono- and Bis(platinahelicene)s, Chemistry - A European Journal, vol.32, issue.50, pp.14178-14198, 2011.
DOI : 10.1107/S0021889898007717

URL : https://hal.archives-ouvertes.fr/hal-00875414

H. Brunner, Angew. Chemie Int, pp.382-383, 1969.

C. Ganter, Chiral organometallic half-sandwich complexes with defined metal configuration, Chemical Society Reviews, vol.32, issue.3, pp.130-138, 2003.
DOI : 10.1039/b205996g

H. Brunner, Angew. Chemie Int, pp.1194-1208, 1999.

S. G. Davies, Asymmetric synthesis via the iron chiral auxiliary [(??5-C5H5)Fe(CO)(PPh3), Pure and Applied Chemistry, vol.60, issue.1, pp.13-20, 1988.
DOI : 10.1351/pac198860010013

J. W. Faller, B. J. Grimmond, and D. G. , An Application of Electronic Asymmetry to Highly Enantioselective Catalytic Diels???Alder Reactions, Journal of the American Chemical Society, vol.123, issue.11, pp.2525-2529, 2001.
DOI : 10.1021/ja003528c

M. Jin, T. Seki, and H. Ito, ) isocyanide complexes with a binaphthyl moiety, Chem. Commun., vol.133, issue.52, pp.8083-8086, 2016.
DOI : 10.1021/ja209327q

K. D. Oyler, F. J. Coughlin, and S. Bernhard, Controlling the Helicity of 2,2???-Bipyridyl Ruthenium(II) and Zinc(II) Hemicage Complexes, Journal of the American Chemical Society, vol.129, issue.1, pp.210-217, 2007.
DOI : 10.1021/ja067016v

K. H. Chan, J. W. Lam, K. M. Wong, B. Tang, and V. W. Yam, Chiral Poly(4-ethynylbenzoyl-L-valine)-Induced Helical Self-Assembly of Alkynylplatinum(II) Terpyridyl Complexes with Tunable Electronic Absorption, Emission, and Circular Dichroism Changes, Chemistry - A European Journal, vol.38, issue.10, pp.2328-2334, 2009.
DOI : 10.1016/S0032-3861(98)00333-4

L. Mimassi, C. Guyard-duhayon, M. N. Rager, and H. Amouri, ][??-Trisphat], Inorganic Chemistry, vol.43, issue.21, pp.6644-6649, 2004.
DOI : 10.1021/ic049361w

L. Mimassi, C. Cordier, C. Guyard-duhayon, B. E. Mann, and H. Amouri, Chiral Supramolecular Triangular Hosts:?? Anion Metathesis, Solution Behavior, and High Stability of the Metal Configuration, Organometallics, vol.26, issue.4, pp.860-864, 2007.
DOI : 10.1021/om060756s

J. Dubarle-offner, M. Barbazanges, M. Augé, C. Desmarets, J. Moussa et al., Gold Compounds Anchored to a Metalated Arene Scaffold: Synthesis, X-ray Molecular Structures, and Cycloisomerization of Enyne, Organometallics, vol.32, issue.6, pp.1665-1673, 2013.
DOI : 10.1021/om301101z

URL : https://hal.archives-ouvertes.fr/hal-01397904

H. Sesolis, J. Dubarle-offner, C. K. Chan, E. Puig, G. Gontard et al., Highly Phosphorescent Crystals of Square-Planar Platinum Complexes with Chiral Organometallic Linkers: Homochiral versus Heterochiral Arrangements, Induced Circular Dichroism, and TD-DFT Calculations, Chemistry - A European Journal, vol.16, issue.24, pp.8032-8037, 2016.
DOI : 10.1002/chem.200903046

URL : https://hal.archives-ouvertes.fr/hal-01662095

T. P. Gill and K. R. Mann, Photochemical properties of the cyclopentadienyl(.eta.6-benzene)ruthenium(II) cation. The synthesis and reactions of a synthetically useful intermediate: the cyclopentadienyltris(acetonitrile)ruthenium(II) cation, Organometallics, vol.1, issue.3, pp.485-488, 1982.
DOI : 10.1021/om00063a014

L. Beer, R. W. Reed, C. M. Robertson, R. T. Oakley, F. S. Tham et al., Tetrathiophenalenyl Radical and its Disulfide-Bridged Dimer, Organic Letters, vol.10, issue.14, pp.3121-3123, 2008.
DOI : 10.1021/ol801159z

J. Djukic, A. Hijazi, H. D. Flack, and G. Bernardinelli, Non-racemic (scalemic) planar-chiral five-membered metallacycles: routes, means, and pitfalls in their synthesis and characterization, Chem. Soc. Rev., vol.16, issue.2, pp.406-425, 2008.
DOI : 10.1021/om970098z

URL : http://crystal.flack.ch/b618557f.pdf

V. W. Yam, R. P. Tang, K. M. Wong, and K. Cheung, Synthesis, Luminescence, Electrochemistry, and Ion-Binding Studies of Platinum(II) Terpyridyl Acetylide Complexes, Organometallics, vol.20, issue.22, pp.4476-4482, 2001.
DOI : 10.1021/om010336x

K. M. Wong and V. W. Yam, Self-Assembly of Luminescent Alkynylplatinum(II) Terpyridyl Complexes: Modulation of Photophysical Properties through Aggregation Behavior, Accounts of Chemical Research, vol.44, issue.6, pp.424-434, 2011.
DOI : 10.1021/ar100130j

W. Chen, E. W. Reinheimer, K. R. Dunbar, and M. A. Omary, Coarse and Fine Tuning of the Electronic Energies of Triimineplatinum(II) Square-Planar Complexes, Inorganic Chemistry, vol.45, issue.7, pp.2770-2772, 2006.
DOI : 10.1021/ic051518c

D. R. Mcmillin and J. J. Moore, Luminescence that lasts from Pt(trpy)Cl+ derivatives (trpy=2,2???;6???,2???-terpyridine), Coordination Chemistry Reviews, vol.229, issue.1-2, pp.113-121, 2002.
DOI : 10.1016/S0010-8545(02)00041-3

F. G. Baddour, M. I. Kahn, J. A. Golen, A. L. Rheingold, and L. H. Doerrer, Platinum(iv)-??3-terpyridine complexes: synthesis with spectroscopic and structural characterization, Chemical Communications, vol.102, issue.27, p.4968, 2010.
DOI : 10.1039/c0cc00283f

K. Schlögl, Stereochemistry of metallocenes, Journal of Organometallic Chemistry, vol.300, issue.1-2, pp.219-248, 1986.
DOI : 10.1016/0022-328X(86)84063-3

N. Saleh, B. Moore, M. Srebro, N. Vanthuyne, L. Toupet et al., Acid/Base-Triggered Switching of Circularly Polarized Luminescence and Electronic Circular Dichroism in Organic and Organometallic Helicenes, Chemistry - A European Journal, vol.303, issue.4, pp.1673-1681, 2015.
DOI : 10.1016/0022-328X(86)80119-X

URL : https://hal.archives-ouvertes.fr/hal-01090117

H. Isla and J. Crassous, Helicene-based chiroptical switches, Comptes Rendus Chimie, vol.19, issue.1-2, pp.39-49
DOI : 10.1016/j.crci.2015.06.014

URL : https://hal.archives-ouvertes.fr/hal-01254818

V. Figure, 5 Utilisation d'un ligand assembleur plus grand pour élargir l'espace

]. K. Ray, T. Weyhermüller, A. Goossens, M. W. Crajé, and K. Wieghardt, Couple, Inorganic Chemistry, vol.42, issue.13, pp.4082-4087, 2003.
DOI : 10.1021/ic0207092

. Dans-un-schlenk-sous-atmosphère-d-'argon, du triflate d'argent (277 mg, 1.08 mmol) est ajouté à une solution de [PtCl 2 (C 2 H 5 CN) 2 ] 193mg (0,182mmol) dans 3,5 mL de dichlorométhane et 90 ?L (1,28 mmol) de propanenitrile. La suspension est agitée vigoureusement à température ambiante pendant 5 heures. Le précipité d'AgCl est filtré de la solution jaune pâle, Le filtrat est concentré sous vide et de l'Et 2 O est ajouté progressivement ce qui conduit à la formation d'un précipité blanc

. Métallocage, tétratrifluorométhanesulfonato tétrakis-?-(5-méthoxy-1,3-bis(pyridin-3- ylethynyl)benzene)-bis-platinum(II) (1) Dans un schlenk sous atmosphère d'argon, pp.126-126

. Métallocage, tetratrifluoromethanesulfonato tétrakis-?-(5-nitro-1,3-bis(pyridin-3- ylethynyl)aniline)-bis-platinum(II) (2c) La même procédure que pour la cage 1 en

. Métallocage, tétratrifluorométhanesulfonato tétrakis-?-(5-trifluorométhane-1,3- bis(pyridin-3-ylethynyl)aniline)-bis-platinum(II) (2d)

. De-pt-chloro-pontant-phénylpyridine, On obtient un solide vert avec un rendement de 64%, p.77

. Ml, Le mélange est ajouté sur une solution de [Pt(ppy)(Hppy)Cl] (216 mg, 40 mmol) dans du CH 2 Cl

. Ml, Apres agitation à température ambiante pendant 90 min, une solution trouble rougeorangée est obtenue Le solvant est évaporé sous vide et le résidu est extrait avec du CH 2 Cl 2 (30ml) et séché avec du MgSO 4 et filtré. La solution est concentrée sous vide (4ml) et un ajout progressif d'Et 2 O (20 mL) conduit à la précipitation d'un solide rouge, Celui-ci est filtré, lavé à l'Et 2 O ((2 x 3 ml) et séché sous vide pour aboutir à 3

. Hz, 30 (m, 1 H, bdt), 6.99 (m, 2 H, Ph4, Ph5), 6.88 (m, 1 H, py5), (m, 2 H, bdt), 2.77 (m, pp.55-55

. De-manière-générale, mL d'une solution incolore de la cage 1 à 9 mmol.L -1 dans du CD 3 CN est traité avec 0,5 ml d'une solution verte de 7 à 18 mmol.L -1 dans du CD 3 CN. On observe un précipité vert qui est redilué par ajout de 0,1 mL de DMSO-d6. Le suivi RMN est effectué immédiatement après

. Le-complexe, CpRu(MeCN) 3 ]PF 6 est acheté chez sigma Aldrich

J. and 1. Hz, 56 (t; J=5,6 Hz ; 1H ; Hc), Hb Cp, vol.5, issue.5, p.4104

. La-même-procédure-que-pour, 10 a été suivie en partant du (pR, R)-9. (pR, R)-10 est obtenu sous la forme d'un solide blanc, pp.109-73

J. and 1. Hz, 56 (t; J=5,6 Hz ; 1H ; Hc), Hb Cp, vol.5, issue.5, p.4104

. La-même-procédure-que-pour, 10 a été suivie en partant du (pS, S)-9. (pS, S)-10 est obtenu sous la forme d'un solide blanc, pp.111-74

J. and 1. Hz, 56 (t; J=5,6 Hz ; 1H ; Hc), Hb Cp, vol.5, issue.5, p.4104

. Hz, 54 (td ; J=6,0 ; 1,2 Hz ; 2H, p.4541

J. and 6. Hz, 54 (bs ; 1H (s ; 15H ; He), p.565

. La-même-procédure-que-pour, 15 a été suivie en partant de l'organométalloligand (pR, R)-10. (pR, R)-15 est obtenu sous la forme d'un solide rouge stable a l'air (34 mg, pp.33-63

J. and 6. Hz, 54 (bs ; 1H (s ; 15H ; He), CH3) ppm, p.565

. La-même-procédure-que-pour, 15 a été suivie en partant de l'organométalloligand (pS, S)-10. (pS, S)-15 est obtenu sous la forme d'un solide rouge stable a l'air (43 mg

J. and 6. Hz, 54 (bs ; 1H (s ; 15H ; He), p.565

. Dans-le-dichlorométhane, La suspension devient immédiatement rouge-orangée Ajout de 2mL de nitrométhane pour solubiliser le tout et le milieu réactionnel est laissé sous agitation pendant 30 min

. Hz, s ; 6H, pp.5546-5558

A. E. Calculé-pour, (? 5 -C 6 H 4 SCH(OH)CH 3

R. Pr, [tBu 3 -(tpy)Pt-[CpRu(? 5 -C 6 H 4 SCH(OH)CH 3, p.16

. La-même-procédure-que-pour, 16 a été suivie en partant de l'organométalloligand (pR, R)-10. (pR, R)-16 est obtenu sous la forme d'un solide orange stable a l'air (78 mg, pp.64-64

J. and 4. Hz, s ; 6H, pp.5546-5558

. La-même-procédure-que-pour, 16 a été suivie en partant de l'organométalloligand (pS, S)-10. (pS, S)-16 est obtenu sous la forme d'un solide orange stable a l'air, p.63

. Hz, 55 (s ; 6H ), pp.46-58

]. C. Desmarets, G. Gontard, A. L. Cooksy, M. N. Rager, and H. Amouri, Encapsulation of a Metal Complex within a Self-Assembled Nanocage: Synergy Effects, Molecular Structures, and Density Functional Theory Calculations, Inorganic Chemistry, vol.53, issue.9, pp.4287-4294, 2014.
DOI : 10.1021/ic402539x

URL : https://hal.archives-ouvertes.fr/hal-01662102

R. Équipé-d-'un-détecteur and . Pmt, Les études photophysiques à l'état solide ont été effectuées en plaçant l'échantillon solide dans un tube de quartz lui-même

. Crosby-9, Une solution dégazée de [Ru(bpy) 3 ]Cl 2 dans l'acétonitrile (? lum =0.062, excitation à 436 nm) a

H. Sesolis, J. Dubarle-offner, C. K. Chan, E. Puig, G. Gontard et al., Highly Phosphorescent Crystals of Square-Planar Platinum Complexes with Chiral Organometallic Linkers: Homochiral versus Heterochiral Arrangements, Induced Circular Dichroism, and TD-DFT Calculations, Highly Phosphorescent Crystals of Square-Planar Platinum Complexes with Chiral Organometallic Linkers: Homochiral versus Heterochiral Arrangements, Induced Circular Dichroism, and TD-DFT Calculations» Chem, p.8032, 2016.
DOI : 10.1002/chem.200903046

URL : https://hal.archives-ouvertes.fr/hal-01662095

H. Sesolis, J. Dubarle-offner, C. K. Chan, E. Puig, G. Gontard et al., Inside Cover: Highly Phosphorescent Crystals of Square-Planar Platinum Complexes with Chiral Organometallic Linkers: Homochiral versus Heterochiral Arrangements, Induced Circular Dichroism, and TD-DFT Calculations (Chem. Eur. J. 24/2016), Chemistry - A European Journal, vol.22, issue.24, p.7990, 2016.
DOI : 10.1002/chem.201602070